Print all triplets in sorted array that form AP
Last Updated :
04 Aug, 2022
Given a sorted array of distinct positive integers, print all triplets that form AP (or Arithmetic Progression)
Examples :
Input : arr[] = { 2, 6, 9, 12, 17, 22, 31, 32, 35, 42 };
Output :
6 9 12
2 12 22
12 17 22
2 17 32
12 22 32
9 22 35
2 22 42
22 32 42
Input : arr[] = { 3, 5, 6, 7, 8, 10, 12};
Output :
3 5 7
5 6 7
6 7 8
6 8 10
8 10 12
A simple solution is to run three nested loops to generate all triplets and for every triplet, check if it forms AP or not. Time complexity of this solution is O(n3).
A better solution is to use hashing. We traverse array from left to right. We consider every element as middle and all elements after it as next element. To search the previous element, we use a hash table.
Implementation:
C++
// C++ program to print all triplets in given
// array that form Arithmetic Progression
// C++ program to print all triplets in given
// array that form Arithmetic Progression
#include <bits/stdc++.h>
using namespace std;
// Function to print all triplets in
// given sorted array that forms AP
void printAllAPTriplets(int arr[], int n)
{
unordered_set<int> s;
for (int i = 0; i < n - 1; i++)
{
for (int j = i + 1; j < n; j++)
{
// Use hash to find if there is
// a previous element with difference
// equal to arr[j] - arr[i]
int diff = arr[j] - arr[i];
if (s.find(arr[i] - diff) != s.end())
cout << arr[i] - diff << " " << arr[i]
<< " " << arr[j] << endl;
}
s.insert(arr[i]);
}
}
// Driver code
int main()
{
int arr[] = { 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 };
int n = sizeof(arr) / sizeof(arr[0]);
printAllAPTriplets(arr, n);
return 0;
}
Java
// Java program to print all
// triplets in given array
// that form Arithmetic
// Progression
import java.io.*;
import java.util.*;
class GFG
{
// Function to print
// all triplets in
// given sorted array
// that forms AP
static void printAllAPTriplets(int []arr,
int n)
{
ArrayList<Integer> s =
new ArrayList<Integer>();
for (int i = 0;
i < n - 1; i++)
{
for (int j = i + 1; j < n; j++)
{
// Use hash to find if
// there is a previous
// element with difference
// equal to arr[j] - arr[i]
int diff = arr[j] - arr[i];
boolean exists =
s.contains(arr[i] - diff);
if (exists)
System.out.println(arr[i] - diff +
" " + arr[i] +
" " + arr[j]);
}
s.add(arr[i]);
}
}
// Driver code
public static void main(String args[])
{
int []arr = {2, 6, 9, 12, 17,
22, 31, 32, 35, 42};
int n = arr.length;
printAllAPTriplets(arr, n);
}
}
// This code is contributed by
// Manish Shaw(manishshaw1)
Python3
# Python program to print all
# triplets in given array
# that form Arithmetic
# Progression
# Function to print
# all triplets in
# given sorted array
# that forms AP
def printAllAPTriplets(arr, n) :
s = [];
for i in range(0, n - 1) :
for j in range(i + 1, n) :
# Use hash to find if
# there is a previous
# element with difference
# equal to arr[j] - arr[i]
diff = arr[j] - arr[i];
if ((arr[i] - diff) in arr) :
print ("{} {} {}" .
format((arr[i] - diff),
arr[i], arr[j]),
end = "\n");
s.append(arr[i]);
# Driver code
arr = [2, 6, 9, 12, 17,
22, 31, 32, 35, 42];
n = len(arr);
printAllAPTriplets(arr, n);
# This code is contributed by
# Manish Shaw(manishshaw1)
C#
// C# program to print all
// triplets in given array
// that form Arithmetic
// Progression
using System;
using System.Collections.Generic;
class GFG
{
// Function to print
// all triplets in
// given sorted array
// that forms AP
static void printAllAPTriplets(int []arr,
int n)
{
List<int> s = new List<int>();
for (int i = 0;
i < n - 1; i++)
{
for (int j = i + 1; j < n; j++)
{
// Use hash to find if
// there is a previous
// element with difference
// equal to arr[j] - arr[i]
int diff = arr[j] - arr[i];
bool exists = s.Exists(element =>
element == (arr[i] -
diff));
if (exists)
Console.WriteLine(arr[i] - diff +
" " + arr[i] +
" " + arr[j]);
}
s.Add(arr[i]);
}
}
// Driver code
static void Main()
{
int []arr = new int[]{ 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 };
int n = arr.Length;
printAllAPTriplets(arr, n);
}
}
// This code is contributed by
// Manish Shaw(manishshaw1)
PHP
<?php
// PHP program to pr$all
// triplets in given array
// that form Arithmetic
// Progression
// Function to print
// all triplets in
// given sorted array
// that forms AP
function printAllAPTriplets($arr, $n)
{
$s = array();
for ($i = 0; $i < $n - 1; $i++)
{
for ($j = $i + 1;
$j < $n; $j++)
{
// Use hash to find if
// there is a previous
// element with difference
// equal to arr[j] - arr[i]
$diff = $arr[$j] - $arr[$i];
if (in_array($arr[$i] -
$diff, $arr))
echo(($arr[$i] - $diff) .
" " . $arr[$i] .
" " . $arr[$j] . "\n");
}
array_push($s, $arr[$i]);
}
}
// Driver code
$arr = array(2, 6, 9, 12, 17,
22, 31, 32, 35, 42);
$n = count($arr);
printAllAPTriplets($arr, $n);
// This code is contributed by
// Manish Shaw(manishshaw1)
?>
JavaScript
<script>
// JavaScript program to print all triplets in given
// array that form Arithmetic Progression
// Function to print all triplets in
// given sorted array that forms AP
function printAllAPTriplets( arr, n){
const s = new Set()
for (let i = 0; i < n - 1; i++)
{
for (let j = i + 1; j < n; j++)
{
// Use hash to find if there is
// a previous element with difference
// equal to arr[j] - arr[i]
let diff = arr[j] - arr[i];
if (s.has(arr[i] - diff))
document.write(arr[i] - diff +" " + arr[i]
+ " " + arr[j] + "<br>");
}
s.add(arr[i]);
}
}
// Driver code
let arr = [ 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 ];
let n = arr.length;
printAllAPTriplets(arr, n);
</script>
Output6 9 12
2 12 22
12 17 22
2 17 32
12 22 32
9 22 35
2 22 42
22 32 42
Time Complexity : O(n2)
Auxiliary Space : O(n)
An efficient solution is based on the fact that the array is sorted. We use the same concept as discussed in GP triplet question. The idea is to start from the second element and fix every element as a middle element and search for the other two elements in a triplet (one smaller and one greater).
Below is the implementation of the above idea.
C++
// C++ program to print all triplets in given
// array that form Arithmetic Progression
#include <bits/stdc++.h>
using namespace std;
// Function to print all triplets in
// given sorted array that forms AP
void printAllAPTriplets(int arr[], int n)
{
for (int i = 1; i < n - 1; i++)
{
// Search other two elements of
// AP with arr[i] as middle.
for (int j = i - 1, k = i + 1; j >= 0 && k < n;)
{
// if a triplet is found
if (arr[j] + arr[k] == 2 * arr[i])
{
cout << arr[j] << " " << arr[i]
<< " " << arr[k] << endl;
// Since elements are distinct,
// arr[k] and arr[j] cannot form
// any more triplets with arr[i]
k++;
j--;
}
// If middle element is more move to
// higher side, else move lower side.
else if (arr[j] + arr[k] < 2 * arr[i])
k++;
else
j--;
}
}
}
// Driver code
int main()
{
int arr[] = { 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 };
int n = sizeof(arr) / sizeof(arr[0]);
printAllAPTriplets(arr, n);
return 0;
}
Java
// Java implementation to print
// all the triplets in given array
// that form Arithmetic Progression
import java.io.*;
class GFG
{
// Function to print all triplets in
// given sorted array that forms AP
static void findAllTriplets(int arr[], int n)
{
for (int i = 1; i < n - 1; i++)
{
// Search other two elements
// of AP with arr[i] as middle.
for (int j = i - 1, k = i + 1; j >= 0 && k < n;)
{
// if a triplet is found
if (arr[j] + arr[k] == 2 * arr[i])
{
System.out.println(arr[j] +" " +
arr[i]+ " " + arr[k]);
// Since elements are distinct,
// arr[k] and arr[j] cannot form
// any more triplets with arr[i]
k++;
j--;
}
// If middle element is more move to
// higher side, else move lower side.
else if (arr[j] + arr[k] < 2 * arr[i])
k++;
else
j--;
}
}
}
// Driver code
public static void main (String[] args)
{
int arr[] = { 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 };
int n = arr.length;
findAllTriplets(arr, n);
}
}
// This code is contributed by vt_m.
Python 3
# python 3 program to print all triplets in given
# array that form Arithmetic Progression
# Function to print all triplets in
# given sorted array that forms AP
def printAllAPTriplets(arr, n):
for i in range(1, n - 1):
# Search other two elements of
# AP with arr[i] as middle.
j = i - 1
k = i + 1
while(j >= 0 and k < n ):
# if a triplet is found
if (arr[j] + arr[k] == 2 * arr[i]):
print(arr[j], "", arr[i], "", arr[k])
# Since elements are distinct,
# arr[k] and arr[j] cannot form
# any more triplets with arr[i]
k += 1
j -= 1
# If middle element is more move to
# higher side, else move lower side.
elif (arr[j] + arr[k] < 2 * arr[i]):
k += 1
else:
j -= 1
# Driver code
arr = [ 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 ]
n = len(arr)
printAllAPTriplets(arr, n)
# This article is contributed
# by Smitha Dinesh Semwal
C#
// C# implementation to print
// all the triplets in given array
// that form Arithmetic Progression
using System;
class GFG
{
// Function to print all triplets in
// given sorted array that forms AP
static void findAllTriplets(int []arr, int n)
{
for (int i = 1; i < n - 1; i++)
{
// Search other two elements
// of AP with arr[i] as middle.
for (int j = i - 1, k = i + 1; j >= 0 && k < n;)
{
// if a triplet is found
if (arr[j] + arr[k] == 2 * arr[i])
{
Console.WriteLine(arr[j] +" " +
arr[i]+ " " + arr[k]);
// Since elements are distinct,
// arr[k] and arr[j] cannot form
// any more triplets with arr[i]
k++;
j--;
}
// If middle element is more move to
// higher side, else move lower side.
else if (arr[j] + arr[k] < 2 * arr[i])
k++;
else
j--;
}
}
}
// Driver code
public static void Main ()
{
int []arr = { 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 };
int n = arr.Length;
findAllTriplets(arr, n);
}
}
// This code is contributed by vt_m.
PHP
<?php
// PHP implementation to print
// all the triplets in given array
// that form Arithmetic Progression
// Function to print all triplets in
// given sorted array that forms AP
function findAllTriplets($arr, $n)
{
for ($i = 1; $i < $n - 1; $i++)
{
// Search other two elements
// of AP with arr[i] as middle.
for ($j = $i - 1, $k = $i + 1;
$j >= 0 && $k < $n;)
{
// if a triplet is found
if ($arr[$j] + $arr[$k] == 2 *
$arr[$i])
{
echo $arr[$j] ." " .
$arr[$i]. " " .
$arr[$k] . "\n";
// Since elements are distinct,
// arr[k] and arr[j] cannot form
// any more triplets with arr[i]
$k++;
$j--;
}
// If middle element is more move to
// higher side, else move lower side.
else if ($arr[$j] + $arr[$k] < 2 *
$arr[$i])
$k++;
else
$j--;
}
}
}
// Driver code
$arr = array(2, 6, 9, 12, 17,
22, 31, 32, 35, 42);
$n = count($arr);
findAllTriplets($arr, $n);
// This code is contributed by Sam007
?>
JavaScript
<script>
// JavaScript program to print all triplets in given
// array that form Arithmetic Progression
// Function to print all triplets in
// given sorted array that forms AP
function printAllAPTriplets(arr, n)
{
for (let i = 1; i < n - 1; i++)
{
// Search other two elements of
// AP with arr[i] as middle.
for (let j = i - 1, k = i + 1; j >= 0 && k < n;)
{
// if a triplet is found
if (arr[j] + arr[k] == 2 * arr[i])
{
document.write(arr[j] + " " + arr[i]
+ " " + arr[k] + "<br>");
// Since elements are distinct,
// arr[k] and arr[j] cannot form
// any more triplets with arr[i]
k++;
j--;
}
// If middle element is more move to
// higher side, else move lower side.
else if (arr[j] + arr[k] < 2 * arr[i])
k++;
else
j--;
}
}
}
// Driver code
let arr = [ 2, 6, 9, 12, 17,
22, 31, 32, 35, 42 ];
let n = arr.length;
printAllAPTriplets(arr, n);
// This code is contributed by Surbhi Tyagi.
</script>
Output6 9 12
2 12 22
12 17 22
2 17 32
12 22 32
9 22 35
2 22 42
22 32 42
Time Complexity : O(n2)
Auxiliary Space : O(1)
Similar Reads
Javascript Program for Print all triplets in sorted array that form AP
Given a sorted array of distinct positive integers, print all triplets that form AP (or Arithmetic Progression)Examples : Input : arr[] = { 2, 6, 9, 12, 17, 22, 31, 32, 35, 42 };Output :6 9 122 12 2212 17 222 17 3212 22 329 22 352 22 4222 32 42Input : arr[] = { 3, 5, 6, 7, 8, 10, 12};Output :3 5 75
3 min read
Find all triplets in a sorted array that forms Geometric Progression
Given a sorted array of distinct positive integers, print all triplets that forms Geometric Progression with integral common ratio.A geometric progression is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common r
10 min read
Program to print Sum Triangle for a given array
Given a array, write a program to construct a triangle where last row contains elements of given array, every element of second last row contains sum of below two elements and so on. Example: Input: arr[] = {4, 7, 3, 6, 7};Output:8140 4121 19 2211 10 9 134 7 3 6 7 Input: {10, 40, 50}Output:14050 901
9 min read
Count triplets having product 0 from a given array
Given an array arr[] of size N, the task is to count the number of triplets (arr[i], arr[j], arr[k]) such that arr[i] * arr[j] = arr[j] * arr[k] = 0 (i < j < k). Examples: Input: arr[] = {0, 8, 12, 0} Output: 2 Explanation: Triplets satisfying the given conditions are (0, 8, 0) and (0, 12, 0).
8 min read
3 Sum - Count Triplets With Given Sum In Sorted Array
Given a sorted array arr[] and a target value, the task is to find the count of triplets present in the given array having sum equal to the given target. More specifically, the task is to count triplets (i, j, k) of valid indices, such that arr[i] + arr[j] + arr[k] = target and i < j < k.Examp
10 min read
Largest lexicographic triplet from a given Array that forms a triangle
Given an array arr[], the task is to find the lexicographically largest triplet in that array that can form a triangle. If no such triplet exists, print -1.Example: Input: arr[] = { 4, 2, 10, 3, 5 } Output: 3 4 5 Explanation: The lexicographically largest triplet is (4, 5, 10). But it does not form
5 min read
Find triplets in an array whose AND is maximum
Given an array of positive integers of size n. Find the count of the triplets whose AND is maximum and also find that maximum given that i < j < k where i, j, k are the indices of the numbers. Assuming that numbers will not be greater than 10^9. Examples: Input : a[] = {1, 2, 3, 4, 5, 6} Outpu
11 min read
3 Sum - Pythagorean Triplet in an array
Given an array of positive integers, the task is to determine if a Pythagorean triplet exists in the given array. A triplet {a, b, c} is considered a Pythagorean triplet if it satisfies the condition a2 + b2 = c2.Example:Input: arr[] = [3, 1, 4, 6, 5] Output: trueExplanation: The array contains a Py
15+ min read
Twin Pythagorean triplets in an array
Given an array of integers arr[], the task is to check if there is a Twin Pythagorean Triplet in the array.A Twin Pythagorean Triplet is a Pythagorean triplet (a, b, c) for which two values are consecutive integers. The first few twin triples are (3, 4, 5), (5, 12, 13), (7, 24, 25), (20, 21, 29), (9
13 min read
Print all triplets with sum S in given sorted Linked List
Given a sorted singly linked list as list of N distinct nodes (no two nodes have the same data) and an integer S. The task is to find all distinct triplets in the list that sum up to given integer S. Examples: Input: list = 1->2->4->5->6->8->9, S = 15Output: [(1, 5, 9), (1, 6, 8),
15+ min read