Given an array arr[] of size n, the task is to return an equilibrium index (if any) or -1 if no equilibrium index exists. The equilibrium index of an array is an index such that the sum of all elements at lower indexes equals the sum of all elements at higher indexes.
Note: When the index is at the start of the array, the left sum is 0, and when it's at the end, the right sum is 0.
Examples:
Input: arr[] = [1, 2, 0, 3]
Output: 2
Explanation: The sum of left of index 2 is 1 + 2 = 3 and sum on right of index 2 is 3.
Input: arr[] = [1, 1, 1, 1]
Output: -1
Explanation: There is no equilibrium index in the array.
Input: arr[] = [-7, 1, 5, 2, -4, 3, 0]
Output: 3
Explanation: The sum of left of index 3 is -7 + 1 + 5 = -1 and sum on right of index 3 is -4 + 3 + 0 = -1.
[Naive Approach] Using Nested Loop - O(n^2) Time and O(1) Space
The most basic idea is to use nested loops.
- The outer loop iterates through all the indices one by one. Consider it as equilibrium index.
- The inner loop finds out whether index i is equilibrium index or not, by checking if left side sum = right side sum.
C++
// C++ program to find equilibrium index of an array
// using nested loop
#include <iostream>
#include <vector>
using namespace std;
int findEquilibrium(vector<int>& arr) {
// Check for indexes one by one until
// an equilibrium index is found
for (int i = 0; i < arr.size(); ++i) {
// Get left sum
int leftSum = 0;
for (int j = 0; j < i; j++)
leftSum += arr[j];
// Get right sum
int rightSum = 0;
for (int j = i + 1; j < arr.size(); j++)
rightSum += arr[j];
// If leftsum and rightsum are same, then
// index i is an equilibrium index
if (leftSum == rightSum)
return i;
}
// If equilibrium index doesn't exist
return -1;
}
int main() {
vector<int> arr = {-7, 1, 5, 2, -4, 3, 0};
cout << findEquilibrium(arr);
return 0;
}
C
// C program to find equilibrium index of an array
// using nested loop
#include <stdio.h>
int findEquilibrium(int arr[], int n) {
// Check for indexes one by one until
// an equilibrium index is found
for (int i = 0; i < n; ++i) {
// Get left sum
int leftSum = 0;
for (int j = 0; j < i; j++)
leftSum += arr[j];
// Get right sum
int rightSum = 0;
for (int j = i + 1; j < n; j++)
rightSum += arr[j];
// If leftsum and rightsum are same, then
// index i is an equilibrium index
if (leftSum == rightSum)
return i;
}
// If equilibrium index doesn't exist
return -1;
}
int main() {
int arr[] = {-7, 1, 5, 2, -4, 3, 0};
int n = sizeof(arr) / sizeof(arr[0]);
printf("%d", findEquilibrium(arr, n));
return 0;
}
Java
// Java program to find equilibrium index of an array
// using nested loop
import java.util.*;
class GfG {
static int findEquilibrium(int[] arr) {
// Check for indexes one by one until
// an equilibrium index is found
for (int i = 0; i < arr.length; ++i) {
// Get left sum
int leftSum = 0;
for (int j = 0; j < i; j++)
leftSum += arr[j];
// Get right sum
int rightSum = 0;
for (int j = i + 1; j < arr.length; j++)
rightSum += arr[j];
// If leftsum and rightsum are same, then
// index i is an equilibrium index
if (leftSum == rightSum)
return i;
}
// If equilibrium index doesn't exist
return -1;
}
public static void main(String[] args) {
int[] arr = {-7, 1, 5, 2, -4, 3, 0};
System.out.println(findEquilibrium(arr));
}
}
Python
# Python program to find equilibrium index of an array
# using nested loop
def findEquilibrium(arr):
# Check for indexes one by one until
# an equilibrium index is found
for i in range(len(arr)):
# Get left sum
leftSum = sum(arr[:i])
# Get right sum
rightSum = sum(arr[i + 1:])
# If leftsum and rightsum are same, then
# index i is an equilibrium index
if leftSum == rightSum:
return i
# If equilibrium index doesn't exist
return -1
if __name__ == '__main__':
arr = [-7, 1, 5, 2, -4, 3, 0]
print(findEquilibrium(arr))
C#
// C# program to find equilibrium index of an array
// using nested loop
using System;
using System.Collections.Generic;
class GfG {
static int findEquilibrium(int[] arr) {
// Check for indexes one by one until
// an equilibrium index is found
for (int i = 0; i < arr.Length; ++i) {
// Get left sum
int leftSum = 0;
for (int j = 0; j < i; j++)
leftSum += arr[j];
// Get right sum
int rightSum = 0;
for (int j = i + 1; j < arr.Length; j++)
rightSum += arr[j];
// If leftsum and rightsum are same, then
// index i is an equilibrium index
if (leftSum == rightSum)
return i;
}
// If equilibrium index doesn't exist
return -1;
}
static void Main() {
int[] arr = {-7, 1, 5, 2, -4, 3, 0};
Console.WriteLine(findEquilibrium(arr));
}
}
JavaScript
// JavaScript program to find equilibrium index of an array
// using nested loop
function findEquilibrium(arr) {
// Check for indexes one by one until
// an equilibrium index is found
for (let i = 0; i < arr.length; ++i) {
// Get left sum
let leftSum = 0;
for (let j = 0; j < i; j++)
leftSum += arr[j];
// Get right sum
let rightSum = 0;
for (let j = i + 1; j < arr.length; j++)
rightSum += arr[j];
// If leftsum and rightsum are same, then
// index i is an equilibrium index
if (leftSum === rightSum)
return i;
}
// If equilibrium index doesn't exist
return -1;
}
// Driver code
let arr = [-7, 1, 5, 2, -4, 3, 0];
console.log(findEquilibrium(arr));
[Better Approach] Prefix Sum and Suffix Sum Array - O(n) Time and O(n) Space
The idea is to remove the need of inner loop. Instead of calculating the left side sum and right side sum each time, precompute the prefix sum array and suffix sum array, and simply access this in O(1) time.
So for each index i, we can check if prefixSum[i - 1] = suffixSum[i + 1] but to avoid unnecessary boundary checks we can also check if prefixSum[i] = suffixSum[i].
C++
// C++ program to find equilibrium index of an array
// using prefix sum and suffix sum arrays
#include <iostream>
#include <vector>
using namespace std;
int findEquilibrium(vector<int>& arr) {
int n = arr.size();
vector<int> pref(n, 0);
vector<int> suff(n, 0);
// Initialize the ends of prefix and suffix array
pref[0] = arr[0];
suff[n - 1] = arr[n - 1];
// Calculate prefix sum for all indices
for (int i = 1; i < n; i++)
pref[i] = pref[i - 1] + arr[i];
// Calculating suffix sum for all indices
for (int i = n - 2; i >= 0; i--)
suff[i] = suff[i + 1] + arr[i];
// Checking if prefix sum is equal to suffix sum
for (int i = 0; i < n; i++) {
if (pref[i] == suff[i])
return i;
}
// if equilibrium index doesn't exist
return -1;
}
int main() {
vector<int> arr = {-7, 1, 5, 2, -4, 3, 0};
cout << findEquilibrium(arr) << "\n";
return 0;
}
C
// C program to find equilibrium index of an array
// using prefix sum and suffix sum arrays
#include <stdio.h>
int findEquilibrium(int arr[], int n) {
int pref[n];
int suff[n];
// Initialize the ends of prefix and suffix array
pref[0] = arr[0];
suff[n - 1] = arr[n - 1];
// Calculate prefix sum for all indices
for (int i = 1; i < n; i++)
pref[i] = pref[i - 1] + arr[i];
// Calculating suffix sum for all indices
for (int i = n - 2; i >= 0; i--)
suff[i] = suff[i + 1] + arr[i];
// Checking if prefix sum is equal to suffix sum
for (int i = 0; i < n; i++) {
if (pref[i] == suff[i])
return i;
}
// if equilibrium index doesn't exist
return -1;
}
int main() {
int arr[] = {-7, 1, 5, 2, -4, 3, 0};
int n = sizeof(arr) / sizeof(arr[0]);
printf("%d\n", findEquilibrium(arr, n));
return 0;
}
Java
// Java program to find equilibrium index of an array
// using prefix sum and suffix sum arrays
import java.util.*;
class GfG {
static int findEquilibrium(int[] arr) {
int n = arr.length;
int[] pref = new int[n];
int[] suff = new int[n];
// Initialize the ends of prefix and suffix array
pref[0] = arr[0];
suff[n - 1] = arr[n - 1];
// Calculate prefix sum for all indices
for (int i = 1; i < n; i++)
pref[i] = pref[i - 1] + arr[i];
// Calculating suffix sum for all indices
for (int i = n - 2; i >= 0; i--)
suff[i] = suff[i + 1] + arr[i];
// Checking if prefix sum is equal to suffix sum
for (int i = 0; i < n; i++) {
if (pref[i] == suff[i])
return i;
}
// if equilibrium index doesn't exist
return -1;
}
public static void main(String[] args) {
int[] arr = {-7, 1, 5, 2, -4, 3, 0};
System.out.println(findEquilibrium(arr));
}
}
Python
# Python program to find equilibrium index of an array
# using prefix sum and suffix sum arrays
def findEquilibrium(arr):
n = len(arr)
pref = [0] * n
suff = [0] * n
# Initialize the ends of prefix and suffix array
pref[0] = arr[0]
suff[n - 1] = arr[n - 1]
# Calculate prefix sum for all indices
for i in range(1, n):
pref[i] = pref[i - 1] + arr[i]
# Calculating suffix sum for all indices
for i in range(n - 2, -1, -1):
suff[i] = suff[i + 1] + arr[i]
# Checking if prefix sum is equal to suffix sum
for i in range(n):
if pref[i] == suff[i]:
return i
# if equilibrium index doesn't exist
return -1
if __name__ == "__main__":
arr = [-7, 1, 5, 2, -4, 3, 0]
print(findEquilibrium(arr))
C#
// C# program to find equilibrium index of an array
// using prefix sum and suffix sum arrays
using System;
class GfG {
static int findEquilibrium(int[] arr) {
int n = arr.Length;
int[] pref = new int[n];
int[] suff = new int[n];
// Initialize the ends of prefix and suffix array
pref[0] = arr[0];
suff[n - 1] = arr[n - 1];
// Calculate prefix sum for all indices
for (int i = 1; i < n; i++)
pref[i] = pref[i - 1] + arr[i];
// Calculating suffix sum for all indices
for (int i = n - 2; i >= 0; i--)
suff[i] = suff[i + 1] + arr[i];
// Checking if prefix sum is equal to suffix sum
for (int i = 0; i < n; i++) {
if (pref[i] == suff[i])
return i;
}
// if equilibrium index doesn't exist
return -1;
}
static void Main() {
int[] arr = {-7, 1, 5, 2, -4, 3, 0};
Console.WriteLine(findEquilibrium(arr));
}
}
JavaScript
// JavaScript program to find equilibrium index of an array
// using prefix sum and suffix sum arrays
function findEquilibrium(arr) {
const n = arr.length;
const pref = new Array(n).fill(0);
const suff = new Array(n).fill(0);
// Initialize the ends of prefix and suffix array
pref[0] = arr[0];
suff[n - 1] = arr[n - 1];
// Calculate prefix sum for all indices
for (let i = 1; i < n; i++)
pref[i] = pref[i - 1] + arr[i];
// Calculating suffix sum for all indices
for (let i = n - 2; i >= 0; i--)
suff[i] = suff[i + 1] + arr[i];
// Checking if prefix sum is equal to suffix sum
for (let i = 0; i < n; i++) {
if (pref[i] === suff[i])
return i;
}
// if equilibrium index doesn't exist
return -1;
}
// Driver Code
const arr = [-7, 1, 5, 2, -4, 3, 0];
console.log(findEquilibrium(arr));
[Expected Approach] Running Prefix Sum and Suffix Sum - O(n) Time and O(1) Space
Now the above prefix sum array and suffix sum array approach can be further optimized in terms of space, by using prefix sum and suffix sum variables. The idea is that instead of storing the prefix sum and suffix sum for each element in an array, we can simply use the fact that
PrefixSum(arr[0 : pivot - 1]) + arr[pivot] + SuffixSum[pivot + 1: n - 1] = ArraySum
so, SuffixSum[pivot + 1: n - 1] = ArraySum - PrefixSum(arr[0 : pivot - 1])
Here, pivot refers to the index that we are currently checking for the equilibrium index.
C++
// C++ program to find equilibrium index of an array
// using prefix sum and suffix sum variables
#include <iostream>
#include <vector>
using namespace std;
int equilibriumPoint(vector<int>& arr) {
int prefSum = 0, total = 0;
// Calculate the array sum
for (int ele: arr) {
total += ele;
}
// Iterate pivot over all the elements of the array and
// till left != right
for (int pivot = 0; pivot < arr.size(); pivot++) {
int suffSum = total - prefSum - arr[pivot];
if (prefSum == suffSum) {
return pivot;
}
prefSum += arr[pivot];
}
// there is no equilibrium point
return -1;
}
int main() {
vector<int> arr = { 1, 7, 3, 6, 5, 6 };
cout << equilibriumPoint(arr) << endl;
return 0;
}
C
// C program to find equilibrium index of an array
// using prefix sum and suffix sum variables
#include <stdio.h>
int equilibriumPoint(int arr[], int n) {
int prefSum = 0, total = 0;
// Calculate the array sum
for (int i = 0; i < n; i++) {
total += arr[i];
}
// Iterate pivot over all the elements of the array
for (int pivot = 0; pivot < n; pivot++) {
int suffSum = total - prefSum - arr[pivot];
if (prefSum == suffSum) {
return pivot;
}
prefSum += arr[pivot];
}
// There is no equilibrium point
return -1;
}
int main() {
int arr[] = {1, 7, 3, 6, 5, 6};
int n = sizeof(arr) / sizeof(arr[0]);
printf("%d\n", equilibriumPoint(arr, n));
return 0;
}
Java
// Java program to find equilibrium index of an array
// using prefix sum and suffix sum variables
import java.util.*;
class GfG {
static int equilibriumPoint(int[] arr) {
int prefSum = 0, total = 0;
// Calculate the array sum
for (int ele : arr) {
total += ele;
}
// Iterate pivot over all the elements of the array
for (int pivot = 0; pivot < arr.length; pivot++) {
int suffSum = total - prefSum - arr[pivot];
if (prefSum == suffSum) {
return pivot;
}
prefSum += arr[pivot];
}
// There is no equilibrium point
return -1;
}
public static void main(String[] args) {
int[] arr = {1, 7, 3, 6, 5, 6};
System.out.println(equilibriumPoint(arr));
}
}
Python
# Python program to find equilibrium index of an array
# using prefix sum and suffix sum variables
def equilibriumPoint(arr):
prefSum = 0
total = sum(arr)
# Iterate pivot over all the elements of the array
for pivot in range(len(arr)):
suffSum = total - prefSum - arr[pivot]
if prefSum == suffSum:
return pivot
prefSum += arr[pivot]
# There is no equilibrium point
return -1
if __name__ == "__main__":
arr = [1, 7, 3, 6, 5, 6]
result = equilibriumPoint(arr)
print(result)
C#
// C# program to find equilibrium index of an array
// using prefix sum and suffix sum variables
using System;
class GfG {
static int equilibriumPoint(int[] arr) {
int prefSum = 0, total = 0;
// Calculate the array sum
foreach (int ele in arr) {
total += ele;
}
// Iterate pivot over all the elements of the array
for (int pivot = 0; pivot < arr.Length; pivot++) {
int suffSum = total - prefSum - arr[pivot];
if (prefSum == suffSum) {
return pivot;
}
prefSum += arr[pivot];
}
// There is no equilibrium point
return -1;
}
static void Main(string[] args) {
int[] arr = {1, 7, 3, 6, 5, 6};
Console.WriteLine(equilibriumPoint(arr));
}
}
JavaScript
// JavaScript program to find equilibrium index of an array
// using prefix sum and suffix sum variables
function equilibriumPoint(arr) {
let prefSum = 0;
let total = arr.reduce((sum, ele) => sum + ele, 0);
// Iterate pivot over all the elements of the array
for (let pivot = 0; pivot < arr.length; pivot++) {
let suffSum = total - prefSum - arr[pivot];
if (prefSum === suffSum) {
return pivot;
}
prefSum += arr[pivot];
}
// There is no equilibrium point
return -1;
}
// Driver code
const arr = [1, 7, 3, 6, 5, 6];
console.log(equilibriumPoint(arr));
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem