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Abstract

A Problem Solving Environment is a complete, integrated computing environment 

for composing, compiling and running applications in a specific problem area or 

domain. A Visual Programming Environment is one possible front end to a problem 

solving environment. It applies the visual programming paradigms of “point and 

click” and “drag and drop” , via a Graphical User Interface, to the various constituent 

components that are used to assemble an application. The aim of the problem solving 

environment presented here is to provide the ability to build up scientific applications 

by connecting, or plugging, software components together and to provide an intuitive 

way to construct scientific applications.

Problem solving environments promise a totally new user environment for com­

putational scientists and engineers. In this new paradigm, individual programs com­

bined to solve a problem in their given area of expertise, are wrapped as components 

within an integrated system that is both powerful and easy to use. This thesis aims 

to address: problems in code reuse; the combination of different codes in new ways; 

and problems with underlying system familiarity and distribution. This is achieved 

by abstracting application composition using visual programming techniques.

The work here focuses on a prototype environment using a number of demon­
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stration problems from multi-disciplinary problem domains to illustrate some of the 

main difficulties in building problem solving environments and some possible solu­

tions. A novel approach to code wrapping, component definition and application 

specification is shown, together with timing and usage comparisons tha t illustrate 

th a t this approach can be used successfully to help scientists and engineers in their 

daily work.
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CHAPTER 1

Introduction

1.1 Introduction to a Problem Solving Environment

“A Problem Solving Environment is a computational system that provides 

a complete and convenient set of high level tools for solving problems from  

a specific domain. The PSE allows users to define and m,odify problems, 

choose solution strategies, interact with and manage appropriate hard­

ware and software resources, visualise and analyse results, and record 

and co-ordinate extended problem solving tasks. A user communicates 

with a PSE in the language of the problem, not in the language of a par­

ticular operating system, programming language, or network protocol. ” 

Com puter as T h inker/D oer, G allopoulos, H oustis and R ice [44]

The concept of the PSE promises to revolutionise the way in which computa­

tional scientists and engineers work with their computing tools and resources by 

abstracting away the underlying, often irrelevant, complexity of their computing 

environments, leaving them free to concentrate on using their domain expertise in 

solving problems. Details such as operating system specifics, data migration and

I



1.1 Introduction to a Problem Solving Environment

application execution are often a complicated, yet unrelated, part of a scientists 

working environment which PSE implementations aim to remove or at least allevi­

ate. To realise a useful PSE, the user must have the ability to construct scientific 

applications by connecting, or plugging, software components together in an intuitive 

way and hide the underlying system complexities.

PSEs have been available for several years for certain specific domains, but most 

of these have supported different phases of application development, and cannot be 

used co-operatively to improve a programmer’s productivity. The primary factors 

that prevent this are the lack of frameworks for tool integration and ease-of-use 

considerations. Extensions to current scientific programs such as Matlab, Maple, 

and Mathematica are particular pertinent examples of this scenario. Developing 

extensions to such environments enables the reuse of existing code, but may severely 

restrict the ability to integrate routines tha t are developed in other ways or using 

other applications. Multi-Matlab [79] is an example of one such extension for parallel 

computing platforms.

The modern concept of a PSE for computational science [45] is based on the avail­

ability of high performance computing resources, coupled with advances in software 

tools and infrastructure which make the creation of such PSEs a practical goal. PSEs 

have the potential to greatly improve the productivity of scientists and engineers, 

particularly with the advent of Internet-based technologies, such as CORBA and 

Java for accessing remote computers, databases and other resources. At a 1995 NSF 

workshop on PSEs [97], the need to develop and evaluate PSE infrastructure and 

tools was stressed. Subsequently, a number of prototype PSEs have been developed. 

Many early PSEs focus on linear algebra computations and the solution of Partial 

Differential Equations (PDEs), and as yet only a few prototype PSEs have been de­

veloped especially for science and engineering applications. However, this is likely to 

change over the next few years. Tools for building specific types of PSEs have been 

developed and more generic infrastructures for building PSEs are also under devel­

opment, ranging from fairly simple Remote Procedure Call (RPC) based tools for 

controlling remote execution to more ambitious and sophisticated systems such as

2



1.2 Motivation

Globus [34] and Legion [50] for integrating geographically distributed computational 

and information resources. However, most of these PSEs lack the ability to build up 

scientific applications by connecting and plugging software components together.

Component-Based Software Engineering (CBSE) [13] is receiving increasing in­

terest in the software engineering community. The goal of CBSE is to reduce de­

velopment costs and improve software reuse. The question of how to apply the 

technologies involved in CBSE to the construction of an effective framework for 

PSEs is becoming increasingly important and is considered in this work.

Web Services are a recent development in the distributed computing field, how­

ever they are only considered in this thesis in the recent related work, chapter 9 and 

future work, chapter 10.

In this thesis a CORBA-based domain-independent problem solving environment 

for scientific computations and large-scale simulations is considered. In this PSE, a 

user can visually construct domain specific applications by plugging together soft­

ware components which are independent of location, programming language and 

platform.

1.2 Motivation

The main motivation for developing PSEs is tha t they provide software tools and 

expert assistance to the computational scientist in a user-friendly environment, al­

lowing rapid prototyping of ideas and higher research productivity. By relieving the 

scientist of the burdens associated with the inessential and often arcane details of 

specific hardware and software systems, the PSE leaves the scientist free to con­

centrate on the science. PSEs form a central component of both the Accelerated 

Strategic Computing Initiative (ASCI) currently underway in the United States, and 

recently formed e-Science program in the United Kingdom.

3



1.3 Hypothesis

1.3 Hypothesis

To produce a general purpose Problem Solving Environment (PSE) for industry. 

The PSE can be used in various problem domains and with various “legacy” soft­

ware components. It will provide an environment for executing software, that is 

easily configured, easily adapted for different users and user scenarios, and is not 

prohibitively expensive in terms of execution overhead. Techniques based around 

commodity hardware and software will be used to deal with the complexity of de­

veloping such a system.

The PSE will attem pt to help BAE SYSTEMS, the industrial partner, in over­

coming difficulties in areas such as the interaction between different scientists with 

differing specialities and multiple existing or envisioned software requirements. The 

need for software environments such as this is particularly pertinent in industry 

where the research scientist may not be a computer scientist, with expertise in sys­

tems and software other than those used on a daily basis, but a person trying to do a 

particular job. It is believed tha t in situations such as this the software environment 

produced will be of benefit to the scientists in their day-to-day work.

This research will concentrate on the prototype Visual Component Composi­

tion Environment (VCCE) and its use within a number of problem areas at BAE 

SYSTEMS, Cardiff University and Southampton University. The demonstration 

problems include a molecular-dynamics simulation, an electromagnetic wave scat­

tering simulation and the use of the PSE within a Design Of Experiments (DOE) 

controlling the execution of a Computational Fluid Dynamics (CFD) code multiple 

times in an optimisation of aircraft wing design.

1.4 Questions Asked in this Thesis

• How can a PSE be built?

• What is the overhead of using the PSE?

4



1.5 Research Achievements

• What are the advantages to the scientist of using the P SE ?

• Do the advantages of using the PSE outweigh the disadvantages ?

• What is the cost of converting existing or “legacy ” software to work within the 

PSE?

1.5 Research Achievements

There are a number of novel aspects to this work. They are covered in the following 

chapters and where applicable are substantiated by published papers and compared 

to related work. The full list of papers is given in appendix A, page 161. The novel 

aspects of this work include:

A n infrastructure for application developm ent

The prototype provides an environment that allows a user to construct appli­

cations from “legacy” software wrapped as CORBA components. See chapters

5,7 and papers 3 and 4 in appendix A.

A n extensib le X M L-based com ponent m odel

Used to specify all of the components used within the PSE. It can be extended 

to represent the differing components used within the system and also the 

work flow graph relationship between the components in a constructed appli­

cation. Pervasive throughout the whole thesis, including chapters 4, 5, 6, 7, 

first described in the paper 1 appendix A.

Loop and control com ponents

Can be inserted into constructed work flows to allow the user to control ap­

plication components in new combinations, for instance performing repeated 

execution or decision-based branching. Chapter 6.

Integration of optim isation  and search algorithm s

An extension to the control/loop mechanism that allows the user to insert an

5
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algorithm as a loop component to give a more intelligent iterative control flow. 

Chapter 8

A working prototype

Important from a software engineering point of view. The software prototype 

was actually usable and is still being used in a limited fashion. Addition­

ally many of the ideas prototyped in this work have been incorporated into a 

production PSE, used by many people in many different research specialities. 

This aspect of the work is not directly pertinent to this thesis, since it was 

carried out after the period of research but before this document was finished. 

However, it is discussed as part of the Conclusion and Future Work chapter, 

chapter 10.

1.6 Project History

The work considered in this thesis was carried out during the period from September 

1998 to September 2001. This area of research is a particularly fast moving one 

with advances made in many areas including middleware infrastructure. Although 

the author is fully aware of work since the end of 2001, this document discusses the 

research hypothesis in the context of that period. Where available novel features are 

time stamped and compared to work of the same period. For completeness related 

work from 2002 to date is discussed, with reference to the research presented in this 

dissertation, in chapter 9, current and future work is discussed in the conclusion 

chapter.

1.7 Thesis Outline

The remainder of this thesis is as follows:

Chapter 2 - R elated  W ork

In this chapter, the concept and architecture of the modern PSE is examined

6



1.7 Thesis Outline

together with the infrastructure needed to build one. Previous work closely 

related to these efforts is also outlined.

C hapter 3 - Software Engineering

A short overview of software engineering techniques and best practises and 

how they were used in this research to develop the prototype.

C hapter 4 - P SE  A rchitecture

This chapter contains a description of the architecture, the design and building 

of the current prototype tool. A standard component model and definition 

language is introduced. Design decisions are analysed and previous prototypes 

examined.

C hapter 5 - U se Case 1, Sim ple Solver C om ponent

The first of the industrial demonstrators, a two-dimensional boundary element 

code written in FORTRAN that performs an electromagnetic wave scattering 

simulation. Included are details of different wrapping techniques for the legacy 

code: simple executable calling; conversion from FORTRAN to Java; simple 

CORBA wrapper.

C hapter 6 - Control and Loop C om ponents

Extensions to the prototype and definition language to include simple loop 

controls to allow users to perform param eter runs on solver codes.

C hapter 7 - B E 3D , FE3D

In this chapter, two more industrial demonstrators that are real production 

codes and consequently substantially more complicated are discussed. The 

two large parallel solvers are wrapped using a more complicated and flexible 

CORBA wrapper; extensions to the component definition language for the 

CORBA components.

Chapter 8 - D esign  O f E xperim ents

This chapter examines a different use case for a PSE. The PSE is used to control 

an industry “Design of Experiments” process. First a generic domain space

7



1.7 Thesis Outline

search component is outlined; this is used to control the execution parameters 

of other components, in an example domain space search case.

Chapter 9 - R elated  W ork post VC C E

The work detailed in this thesis finished at the end of 2001, however the field is 

fast moving. This chapter relates important work since tha t time to the work 

contained herein and provides a comparison.

C hapter 10 - C onclusion and Future Work

This chapter concludes the thesis. The hypothesis is evaluated, drawing con­

clusions from each of the use case examples. The achievements and contribu­

tions are discussed and the approach taken here is compared to those of similar 

projects. Areas where this work can be used in future projects and research is 

also discussed.

8



CHAPTER 2

Related Work

2.1 Introduction

The current concept of a PSE for computational science has its origins in an April 

1991 workshop funded by the U.S. National Science Foundation (NSF) [44, 45]. The 

workshop found that the availability of high performance computing resources, cou­

pled with advances in software tools and infrastructure, made the creation of PSEs 

for computational science a practical goal, and th a t these PSEs would greatly im­

prove the productivity of scientists and engineers. This goal is even more pertinent 

today with the advent of web-based technologies, such as CORBA and Java, for 

accessing remote computers and databases and the emerging promise of “computa­

tional grids” [35].

A second NSF-funded workshop on Scalable Scientific Software Libraries and 

Problem-Solving Environments was held in September 1995 [97]. This workshop 

assessed the status of PSE research and made a number of recommendations for 

future development. One particular recommendation was the need to develop PSE 

infrastructure and tools and to evaluate these in complete scientific PSEs.
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2.2 Related Work

Since the 1991 workshop, PSE research has been mainly directed at implementing 

prototype PSEs and at developing the software infrastructure, or middleware, for 

constructing PSEs.

PSEs come in many forms from the simplest, which could consist of sets of simple 

scripts for executing binary programs with data  dependencies in the form of file based 

data. For example, the situation described in section 7.1, where a mathematical 

modeller wants to run a three dimensional boundary element solver. The input to 

the solver is a mesh file that itself is generated by a mesh generator program and 

an input file. The output from the solver is another data  file which is passed to yet 

another piece of software for either post-processing or visualisation. The scientist 

may write a set of scripts th a t run each of the constituent programs in turn moving 

the output file to the location expected as input by the next program. At the 

other end of the scale there are large functionally complex PSEs with complicated 

graphical user interfaces and visualisation tools.

2.2 Related Work

There are a number of groups working on related and complementary work, in areas 

of PSEs such as middleware, seamless access to compute resources, user interfaces 

and visualisation techniques. Much of this work has been presented in a recent 

book by Houstis et al. [57]. In many ways, a PSE can be seen as a mechanism 

to integrate different software construction and management tools, and application 

specific libraries, within a particular problem domain. One can therefore have a PSE 

for financial markets [17], for gas turbine engines [33], etc. Focus on implementing 

PSEs is based on the observation tha t previously, scientists using computational 

methods wrote and managed all of their own computer programs. However now 

computational scientists must use libraries and packages from a variety of sources, 

those packages might be w ritten in many different computer languages. Initially, 

many of the prototype PSEs th a t were developed focused on linear algebra compu­

tations, for instance NetSolve [20], or the solution of partial differential equations

10



2.3 Visual Programming

(PDEs), for instance ELLPACK [56]. More recently prototype PSEs have been de­

veloped specifically for science and engineering applications Seismic Tomography 

[24], Application Engineering [26], Computational Chemistry [66], and Modelling 

and Simulation [108]. Tools for building specific types of PSEs, have been devel­

oped: PDELab [118], a system for building PSEs for solving PDEs; PSEWare [11], 

a toolkit for building PSEs focused on symbolic computations. More generic infras­

tructure for building PSEs is also under development. This infrastructure ranges 

from fairly simple Remote Procedure Call (RPC-based) tools for controlling remote 

execution, SCIDDLE [7] and Ninf [104], to more ambitious and sophisticated sys­

tems, such as Legion [50] and Globus [34], for integrating geographically distributed 

computing and information resources.

The Virtual Distributed Computing Environment (VDCE) [109] developed at 

Syracuse University is broadly similar to the PSE software architecture described in 

section 4.3. However, components in the VDCE are not hierarchical, which simplifies 

the scheduling of components. Also, the transfer of data  between components in 

VDCE is not handled using CORBA, but instead is the responsibility of a Data 

Manager that uses sockets. The Application-Level Scheduler (AppLeS) [10] and 

the Network Weather Service [121] developed at the University of California, San 

Diego are scheduling systems, both make use of application performance models and 

dynamically gathered resource information.

2.3 Visual Programming

A Visual Programming Environment (VPE) is one possible front end to a PSE. Oth­

ers range from simple command line interfaces to internet-based portal environments. 

Visual programming based on the specification of applications and algorithms with 

directed graphs is the basis of the Heterogeneous Network Computing Environment 

(HeNCE) [9] and the Computationally Oriented Display Environment (CODE) [86]. 

Browne et al. [14] have reviewed the use of visual programming in parallel computing 

and compared the approaches of HeNCE and CODE. Though a similar approach
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is used by the Visual Component Composition Environment (VCCE) described in 

section 4.3 of this thesis, HeNCE and CODE were designed for use at a finer level 

of algorithm design; thus, they require a greater degree of sophistication in their 

design. SCIRun [101] is a PSE for parallel scientific computing th a t also uses di­

rected graphs to visually construct applications and has been designed to support 

visual steering of large-scale applications. SCIRun is a large PSE developed by the 

University of Utah mainly for medical problem solving, it has a large number of 

components for medical modelling and three dimensional visualisation and medical 

imaging. It is also part of the ambitious human body modelling project.

The basic functionality of the VCCE environment is similar to th a t of other 

modular visualisation environments such as AVS [78], IBM D ata Explorer [1], IRIS 

Explorer [37], and Khoros [123]. An article by Wright et al. [122] has reviewed these 

types of modular visualisation environments. The VCCE differs from these envi­

ronments through its use of an XML-based component model; an event model that 

is able to support check pointing; control constructs such as loops and condition­

als. In addition the VCCE is open source and platform independent, written in the 

Java programming language, a major consideration for the industrial partner in this 

research.

The Gateway project [40] introduces a similar idea to the system being developed 

in this thesis. It is a component-based system implemented using JavaBeans [62] 

and utilising data flow techniques to represent the meta-application, the application 

comprised from components, as a directed graph. Unlike the prototype system in 

this thesis, which uses XML to define both the interface to all components within the 

system and the task graph that describes the constructed application, the Gateway 

system chooses to use the Abstract Task Descriptor (ATD) as its lowest level of 

granularity of instruction and to build up the instructions th a t define the application.

The Adaptive Distributed Virtual Computing Environment (ADViCE) [52] pro­

ject is another system tha t provides a graphical user interface that enables a user 

to develop distributed applications and specify the computing and communication 

requirements of each task within the task graph. Unlike the Gateway system, but
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similar to the work here, the ADViCE system has its own scheduler that allocates 

tasks to resources at run time.

The Arcade project [22] uses a slightly different approach in tha t the system 

has a three tier architecture. The first tier consisting of a number of Java Applets 

that are used individually to specify the tasks, either visually or through a scripting 

language, to specify resource needs, and to provide monitoring and steering. Each 

of these Applets then interacts with a CORBA interface which in turn  interacts 

with the final execution user modules distributed over a heterogeneous computing 

environment.

The UNICORE project [111, 30] is a science and engineering grid making re­

sources available over the Internet. UNICORE has a graphical user interface that 

allows a user to compose jobs consisting of multiple dependant tasks, submit those 

jobs and monitor them on the available resources. Dependencies between tasks, in 

the same manner as this work, indicates a temporal relationship or a data transfer. 

To create a seamless environment, tasks and resources are represented in abstract 

terms. A UNICORE server translates the abstract jobs and resource requests into 

platform-specific operations prior to execution, and schedules tasks according to 

dependencies. For each task, the input and output files are automatically import­

ed/exported from /to the user’s file space or transferred from earlier tasks in the same 

job. Explicit transfer tasks handle the high-speed data  transfer between different 

sites. The UNICORE servers select the most efficient mechanism for each transfer.

Work similar to the component model presented in this work, see paper 1 in 

appendix A, was presented at the International Symposium on Generative and 

Component-Based Software Engineering [16]. The work presented, similar to the 

model in this thesis, addresses the shortcomings of traditional component models 

such as the JavaBeans framework. These component models have no capacity to 

define non-interface properties of components, such as license requirements, hard­

ware/software requirements or performance models. The difference between the 

two, is that the work in this dissertation uses an XML-based model to define the 

non-functional requirements, whereas the other uses BCOOPL, a concurrent, object-
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oriented language.

In the Gateway system, the Abstract Task Definition (ATD) forms the lowest 

level instruction, and all components must be defined in terms of ATDs. There is 

therefore no straightforward way of wrapping legacy codes, or providing for existing 

executables. The presented here provides an XML wrapper, which requires far less 

effort from a user than developing ATD definitions. However, both systems share 

the general design objective of constructing applications by linking sequential and 

parallel components. The ADViCE system is a visual composition tool above all, 

and provides little support for legacy applications. ADViCE does enable automatic 

selection of components from a library, based on particular parallel libraries being 

available to a user, i.e. PVM, MPI etc., and then sends this to a resource scheduler. 

The Arcade project requires the construction of specialised Applets, and can be 

restrictive due to security requirements of the Java sandbox. The approach for the 

VCCE is more generic, in that XML is adopted for specifying an interface to a 

component, and for encoding the connectivity graph. Also provided is an interface 

to a scheduling system.

2.4 Parallel Computing and CORBA

In chapter 7, CORBA is used to wrap two large parallel codes. CORBA was not 

originally intended to support parallelism within an object. However, some CORBA 

implementations provide support for multi-threading which enables a programmer 

to make more effective use of several simultaneous processors sharing a physical 

memory within a single computer, such as in the TAO ORB [99]. However, the 

sharing of a single physical memory does not support a large number of proces­

sors, since it could create memory contention. There are very few projects aimed 

at supporting coarse-grain parallelism in CORBA. The PARDIS [67] environment 

and Cobra [93, 28] being the most advanced projects in this direction, both of which 

extend the CORBA specification and add parallelism to CORBA objects based on a 

SPMD (Single Program Multiple Data) execution model. PARDIS designers propose
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a new kind of object they call a SPMD object and Cobra designers provide paral­

lel CORBA objects. SPMD objects represent parallel applications which roughly 

adhere to the SPMD style of computation. To support data distribution among 

different threads associated with a SPMD object, PARDIS provides a generalisa­

tion of the CORBA sequence called a d is t r ib u te d  sequence. However, this new 

argument type requires a modification to the standard IDL compiler.

In the Cobra system, a parallel object belongs to a collection of objects and its 

interface must be defined in a particular system, for instance:

i n t e r f a c e [*]
2 Test { . . .  }

where the object T est is a parallel object and belongs to a collection of objects. 

The * symbol signifies that the number of objects belonging to the collection is not 

specified in the interface, and defines a polymorphic type. The PARDIS system 

provides a mechanism to invoke operations on objects asynchronously, based on the 

concept of a fu tu re  message. In the Cobra system, asynchronous invocations of 

services is handled by an extension of the Asynchronous Method Invocation (AMI) 

which is a core part of the CORBA messaging specification in CORBA 3.0.

The approach taken in this dissertation is quite different from the previous two. 

In wrapping the MPI-based legacy code as one or more components (CORBA ob­

jects), neither the CORBA specification nor any IDL compilers are modified. Hence, 

any CORBA system may be used with the techniques demonstrated here, whereas 

with PARDIS and Cobra additional software must be downloaded and installed. 

The MPI runtime is combined within the CORBA environment, using the MPI run­

time to manage the intra-communications of components, and the CORBA ORB 

to manage inter-communications of components. Each component is composed of 

two parts: one is the wrapper which can be invoked by a client, the other is the 

execution unit of the component.
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2.5 PSE Requirements and Aspects

During the initial phases of this work, due to the fact tha t part of the funding 

was from an industrial partner, looking for a solution to a problem, there were 

a number of requirements gathering discussion sessions. Out of these discussions 

came a number of functional requirements, “use case” scenarios and other aspects 

and ideas that could possibly be included in the design and implementation of a 

PSE. These ideas help in categorising common functionality and allow clarification 

of some of the design ideas for the PSE. Not all of these ideas would be implemented 

as part of this work, as this would in all probability require far too much time.

2.5.1 Use Case Scenarios

“Use Case” scenarios are a concept that has come out of the Software Engineering 

community. It is a way of specifying functionality in a system through the interaction 

of that system with a user. The user may or may not be an actual person. The 

technique is discussed further in section 3.2 in the software engineering chapter. The 

“Use Cases” tha t defined here are:

R unning a legacy application as a w rapped com ponent.

The granularity of the wrapping can vary, dependant upon a number of factors 

such as availability of source code. The code can be treated as a black box with 

input and output typically through files, or interfaces can be written to allow 

the interoperability of the code directly. The application may be a sequential 

code, or may contain internal parallelism using MPI or PVM.

Perform ing param eter runs.

Running existing or new applications multiple times with varying input pa­

rameters, to study the effect of parameter ranges on the result or to try  and 

find an optimal solution for a problem.

Com bining com ponents.

Combine various wrapped third party or internal components to generate a
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new application. The application can itself be stored as a separate component 

in a Component Repository, this is known as hierarchical composition.

Searching for suitable com ponents.

Search for a component by name or functionality in various repositories main­

tained on the local machine or via the internet at a remote site, where each 

component is defined in some common component definition language.

A utom atic application generation.

Developing a new application, using some form of automated mechanism to 

either select new components, or migrate an application to a different platform. 

In the latter case, the mechanism would be used to analyse effects of platform 

constraints on a given application code or set of components.

V isualising results.

The ability to visualise the results of an application either on a local machine 

or remotely using appropriate tools and techniques.

C om putational Steering.

Enabling and supporting Computational Steering where the scientist can di­

rectly affect the running of an application by providing guidance in the form 

of modified data.

2.5.2 User Categories

In addition to the use cases, two categories of users could be identified for a PSE:

A pplication Users.

Such as physicists, chemists or biologists who are not interested in creating 

new components, other than compound components.

A pplication D evelopers.

Mainly computational scientists, who create new components both for their 

own use and for other Application Developers and Users.
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2.5.3 Functional Modes

In the requirements specification, the PSE should provide two modes of execution: 

Edit M ode.

The mode that enables components to be assembled together by selecting and 

connecting them visually into a work flow graph.

Execution M ode.

The constructed task graph is sent to the IRMS. The user has the option to 

visualise execution of components, and thereby perform computational steer­

ing.

2.5.4 Resource Stealing

W ith the explosive growth of the Internet and the emerging promise of computational 

grids, there are many unused or under-utilised computational resources. These can 

include different PSEs and libraries on the Internet th a t may be reused. A user who 

wants to utilise these resources must look for the appropriate library or set of libraries 

needed for his specific computational problems. Usually, such libraries can be found 

in established repositories. A well known repository for mathematical software, for 

example, is Netlib [15], which is maintained through the collaborative efforts of 

several institutions and universities. Once the appropriate library has been located, 

it must be downloaded and installed. This process depends on the nature of the 

software, as a lot of freely distributed software is not fully portable. Some software 

may need to be re-compiled and re-linked, which is a time-consuming task if the user 

does not have prior experience in software installation. A Distributed PSE (DPSE) 

should provide different interfaces to different computational resources. Based on 

the problem descriptions submitted by users, DPSEs can match good solutions for 

the problems through a performance model. Future PSEs may be less generic and 

more problem-specific in the software resources they provide. However, the user of 

a PSE may submit a task and wait for the results without worrying about how to
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download and install components within the PSE. Web Services are beginning to 

provide functionality along these lines.

2.5.5 Aspects of PSEs

Most modern software applications are built in a modular fashion and PSEs are no 

different. A clear distinction can be made between those potential modules of a PSE 

that are generic and hence could be used in constructing other PSEs, and those that 

are specific to one application domain. The following parts of a PSE, as defined 

from the requirements, are specific:

The C om ponents in a C om ponent R epository. These are mostly specific, al­

though some may have broad applicability, for example graphing components, 

generic filters, or data movement tools.

Expert A ssistance. To aid a user in various aspects of application building and 

component selection.

Input W izards. Tools tha t help with specific components.

Perform ance H istory D atabase. Records the performance of components under 

different circumstances.

The remaining modules listed here are more generic and could be used across mul­

tiple application domains:

C om ponent C onnection and C om m unication Framework. The mechanism 

by which data is passed between components and how components communi­

cate with the environment itself.

Scheduling and W ork Flow  Engine. The mechanism by which components are 

allocated to compute resources and the control of execution of those compo­

nents on their resources.
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D ata M anagem ent and Inp u t/ O utput Some aspects of data input and output 

such as file reading and writing or data streaming can potentially be generalised 

into a number of re-usable components.

User Interface. The overall interface to a PSE, be it VPE, Portal or simple com­

mand line is abstract enough to be reused across problem domains.

It is not necessary to use all of the above modules in any one PSE, those used will 

depend on the level of functionality required and how sophisticated the system is 

going to be.

2.5.6 W rapping Legacy Codes as CORBA Objects

Legacy codes are existing codes that often possess the following features:

• They are domain-specific, typically written for a specific purpose.

•  They are not reusable in any format other than  their original use.

• They are still useful. Unused or no longer required codes will fall into disuse 

and will eventually be lost or deleted.

•  They are large, complex monoliths. Older, purpose built codes were rarely 

written with modularity in mind.

Wrapping legacy codes as CORBA objects is a method of encapsulation that pro­

vides clients with well-known interfaces for accessing these objects. The principal 

advantage is that behind the interface, the client need not know the exact implemen­

tation. Wrapping can be accomplished at multiple levels, around data, individual 

modules, subsystems, or the entire system. The ability to wrap legacy codes is often 

affected by the access to the source code. If no access to source code is available, for 

instance because the code is proprietary or even has been lost, then the wrapping can 

only really be done at application level. Whereas if full access to source is obtained 

then it is possible to wrap the code at many different levels and even re-engineer
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the code to become more modular. An example of this explained in further detail 

in chapter 5. After being wrapped as CORBA objects, these legacy codes can be 

reused as components in the prototype PSE.

2.5.7 Summary

This chapter has provided a review of related work, including: other PSEs from ap­

plication specific areas such as PDE solving, computational chemistry and financial 

markets; infrastructure upon which PSEs can be built; visual programming environ­

ments and techniques; component models. Also outlined are a series of “use case” 

scenarios and classifications which will be used throughout the dissertation. The 

following chapter is a brief discussion of software engineering techniques.
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CHAPTER 3

Software Engineering and the Development Cycle

3.1 Introduction

For any modern software development project it is becoming increasingly important 

that best practises and good software engineering techniques are followed if the 

project is to fulfil its requirements and deadlines. This chapter briefly outlines 

relevant techniques, design principles and practises used during the course of this 

research. It is not intended to be a comprehensive review of the subject, more a list 

from various resources tha t the author finds useful.

Although the work undertaken in building the prototype for this research was not 

strictly a software engineering project there are enough similarities, that good soft­

ware engineering techniques could and should be used. Like a lot of software projects 

it was not obvious from the outset of the project what the final software would look 

like. BAE SYSTEMS, the industrial sponsors, provided an idea of what the user 

interface should look and behave like based upon an existing software system, but 

the architecture was not clear.
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3.2 Use Case Analysis

Use Case Analysis is a requirements gathering and software engineering technique, 

first discussed in [60], that specifies software in terms of the interactions between the 

software and its users. The user concerned, may or may not be human. A particular 

interaction may be between:

• A human operator and the software.

• Another piece of software and the specified software.

•  A piece of equipment, such as a sensor, and the software.

In thinking about how the software would interact within its environment there 

is a completely different view from that specified by a functional view. Examining 

the interactions will highlight who or what the software needs to have contact with 

as opposed to the functional view of what actions it should perform. Both views are 

needed for a detailed requirements analysis.

3.3 Prototyping

Prototypes are used in many industries to try  out ideas, as prototyping is much 

cheaper than full production. For example car manufacturers may make a clay 

model for wind tunnel testing or computer model for safety test simulation, building 

prototypes to examine specific aspects of a design or try  out new ideas.

Software engineering is no different. Prototypes are built in the same fashion and 

for similar reasons - to analyse and expose risk, and to be able to make corrections 

before the process has gone to far. A prototype can be targeted to test one or more 

specific aspects of the design. Prototypes are designed to examine a small aspect of 

the overall design and so are quicker to develop than a full production application. 

The prototype can ignore details tha t are unimportant at the moment.
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One thing that is important with prototyping is that the code written should be 

disposable. Prototypes are designed to be thrown away once their purpose has been 

fulfilled.

3.4 Tracer Code and Iterative Design

The term “tracer code” or “tracer bullets” was coined in the software engineering 

book, The Pragmatic Programmer [58]. I t ’s an analogy to tracer bullets loaded on 

the ammunition belt of a machine gun. When fired, their phosphorous ignites and 

leaves a pyrotechnic trail from the gun to whatever they hit. This trail gives an 

instant feed back and because they operate in the same environment as the real 

bullets, external effects are minimised.

This analogy can be applied as a technique to the domain of software engineer­

ing, especially when attempting to build something th a t hasn’t  been built before. 

Requirements may be vague and languages, libraries and techniques may be un­

familiar. Rather than specifying the system in minute detail and producing large 

amounts of requirements, the tracer code method is to  look for something that gets 

us from a requirement to some aspect of the final system quickly and in a repeatable 

manner.

Unlike prototypes, tracer code is not disposable. It contains all of the error 

checking, structure, documentation th a t any production code has, it is not fully 

functional. Once an end-to-end connection has been achieved among the components 

of the system, a check can be made to determine how close to the target the solution 

is, adjusting if necessary. Once on target adding functionality is easy.

Tracer development is consistent with the ideas of iterative design. A project is 

never finished, there will always be changes to make or functionality to add. Unlike 

the traditional approach where development is broken down into modules and sub- 

assemblies which are built in isolation and not assembled into the application until 

they are all ready.
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Tracer code has a number of advantages:

• Users get to see something early and the developers have something to demon­

strate.

• Developers build a structure to work in and have an integrated platform.

• All concerned parties have a better feeling for progress.

Prototype code is disposable. Tracer code is basic but complete and will form the 

framework for the final system. Prototyping is done before tracer coding and can 

be thought of as the basic requirements gathering.

Software engineers have for a long time tried to formalise design methodologies 

and processes. The classical approach was known as the waterfall method. In this 

method the developer starts with requirements gathering which leads into analysis 

and design, then coding, through to debugging and finally maintenance. At this 

stage the software is deemed stable and finished, software maintenance is the only 

stage left and this continues for the remaining useful life of the software. This model 

is very static and not workable in modern systems. Typically programmers will 

iterate around the design, code and debug stages many times until happy with the 

software.

Iterative Design is a modern methodology. It allows for a more flexible approach 

to designing software. The programmer designs and codes small pieces of functional­

ity testing as the process goes. Functionality is added iteratively to the application 

through small design and code stages until the full functionality of the application 

is achieved.

Iterative design is very useful when the full extent of the functionality of the 

application is not known at the outset.
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3.5 Design Patterns

Patterns in design processes have long been recognised in various disciplines such as 

architecture. Christopher Alexander and his colleagues proposed the idea of using a 

pattern language to architect buildings and cities. In recent years these ideas have 

migrated into the software engineering community, for a good discussion on how 

these ideas came into the domain of Computer Science see [68]. The seminal book 

cataloguing software design patterns is Design P atterns  [46] by the “Gang of Four” , 

known herewith as GOF. This book outlines and explains a series of commonly 

occurring patterns in object oriented software engineering. Java in Practise [117] 

is a Java-based pattern book that gives good examples of patterns in coding Java 

applications.

A brief list of some of the design patterns used in the VCCE prototype follow, 

their relevant page reference in the “Gang of Four” book is listed together with 

a brief description of their purpose. They will be referred back to in some of the 

following chapters where their specific use within the prototype will be explained.

Factory M ethod  GOF page 107

Define an interface for creating an object, but let subclasses decide which class 

to instantiate. Factory Method lets a class defer instantiation to subclasses.

Proxy GOF page 207

Provide a surrogate or placeholder for another object to control access to it.

V isitor GOF page 331

Represent an operation to be performed on the elements of an object structure. 

Visitor defines a new operation without changing the classes of the elements 

on which it operates.

Singleton GOF page 127

Ensure a class only has one instance, and provide a global point of access to 

it.
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O b se rv e r  GOF page 293

Define a one-to-many relationship between objects so that when one object 

changes state, all its dependants are notified and updated automatically.

3.6 Unified Modelling Language

The Unified Modelling Language, or UML for short, is a notation for describing the 

design of an object oriented software system. UML is a convergence of the three main 

notations that are used in the software engineering methodologies of Booch, OMT, 

and OOSE. UML is a general purpose notational language for the specification, 

documentation and aid to visualisation of the separate parts tha t make up an object 

oriented software system. The language is very extensive but the UML used in 

this document, as a concise means of describing relevant sections of the prototype 

software, is mainly limited to class diagrams and object interaction diagrams. For a 

description of the diagrams used see a good UML book, for example UML Distilled

[38].

3.7 Summary

The software development th a t forms the basis of this research was approached with 

“best practises” in mind. As is the case with most research projects it was impossible 

to specify the software at the outset. The nature of research is such that mistakes 

will often be made and “dead ends” followed. Traditional software approaches are 

too static to be useful. Iterative design, prototyping and tracer bullet coding will 

provide a much more flexible environment in which to work.
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CHAPTER 4

Problem Solving Environment Architecture

4.1 Introduction

This chapter covers the design, architecture and building of the prototype PSE. It 

takes the requirements specification and uses prototyping and “tracer” code tech­

niques to iterate through designs. The chapter is broken up into different sections 

each covering aspects of the PSE including the component model, user interface, 

job scheduling and implementation. Not all aspects of the requirements were imple­

mented and where this occurs in the chapter it is indicated, however these unfinished 

aspects are included for completeness.

Looking at a high level point of view of the prototype from the requirements, 

there are three im portant design considerations.

•  For the front end of the system: an intuitive graphical user interface for visual 

programming.

•  To represent the individual algorithmic parts used to compose an application: 

a component model.
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• To choreograph the interaction between the components in the application: a 

data flow, work flow or task graph model.

4.1.1 Visual Programming and

Visual Programming Environments

Graphical or visual programming environments have been in common use for many 

years, their use within parallel computing is reviewed in. a technical report by Don- 

garra et. al. [14]. The form tha t these programming environments take is now fairly 

standardised at some level. The majority of systems are component-based with: a 

repository where the components are stored, browsed and selected; a composition 

area where the selected components are placed and joined together; and an underly­

ing computation engine that performs the actual work of the system and generates 

the output that the user expects. The functionality of components within the system 

dictate the type of computation engine.

In an environment such as a programmer's Rapid Application Development 

(RAD) tool the aim is to generate computer code for an application by selecting 

the components tha t make up the user interface visually, rather than writing the 

application code by hand. The application programmer places components and then 

uses the environment to generate the code. The repository is a “widget” set com­

prising a selection of user interface components such as buttons and text boxes. The 

composition area is a blank user interface on which the user interface “widgets” 

are arranged and their interactions defined. The computation engine is the code 

generator and language compiler, with the end result being the finished compiled 

application executable.

In the PSE described in this dissertation, the aim is to build an application 

by selecting components from a repository and visually connecting them together, 

rather than taking individual codes and tools and either running them manually or 

through a script. The computation engine is an execution engine that is capable 

of scheduling and running the individual tools and choreographing the control and
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data flow between them.

4.1.2 Components

In general, a component is a procedural or functional abstraction defined by its input 

and output interfaces and its semantics.

Components within the RAD tool example would be functional user interface 

components which would be defined their properties. For example a text field com­

ponent would have some input text as a property, the semantics might include the 

other components that it can be placed on or attached to, and state change events 

that it can publish or subscribe to.

In the prototype PSE in this thesis, the input and output interfaces to com­

ponents are the data types that are accepted as input and provided as output. A 

components semantics are the problem domain th a t it is used in and a description 

of the transformation process that it provides to tu rn  input data into output. Each 

component is specified using the XML language, see section 4.4.2.

The Common Component Architecture (CCA) [21] is a community effort to 

standardise component programming for high performance computing. From its 

technical specification document the definition for a CCA is:

A CCA consists of three types of entities: Ports, Components and Frame­

works. Components are the basic units of software that are composed 

together to form applications. Instances of components are created and 

managed within a Framework which also provides the basic services that 

components use to operate and communicate with other components.

Ports are the fully abstract interfaces of components which are managed 

by the framework in the composition process. A component is a piece of 

code, a port is an agreement between the authors, standard-compliant 

frameworks are the road to enable component exchange and reuse.
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4.1.3 Task Graphs and Work Flow

The concept of work flow is not unique to the domain of computer science. It is used 

in areas as diverse as business processes and chemistry. Work flow and data flow are 

similar in terms of usage within computer science. They both allow the specification 

for the interaction between processes, either through the flow of control or flow of 

data from process to process.

There are multiple ways of representing the network of processes and the data 

or control connections between them, including petri nets and graphs. The network 

of components and the connections between them can be thought of in the mathe­

matical model of a graph, specifically a Directed Cyclic Graph (DCG) or Directed 

Acyclic Graph (DAG). The components or processes are vertices and the connec­

tions between them arcs. As the data flows only one way through a component, 

each has an input and output, the graph is directed, i.e. data  flows along arcs one 

way only. Also given a network of two components A and B, where output from 

component A is input to component B, if the output from component B is input to 

component A, the network is cyclic. If the output from B is not allowed back into 

the input to A then the graph is acyclic.

The computation engine of the Visual Component Composition Environment 

(VCCE), the prototype PSE discussed in this thesis, is a data flow execution model. 

The components are data driven with one or more input data types being processed 

by a component and the results being output as one or more output data types. 

So execution flows from component to component based on the connections be­

tween them. The data  flow task graph is encoded in XML, see section 4.4.4, in a 

similar fashion to the components themselves. In fact the data flow task graph is 

really a compound component and can be represented as a component in the logical 

programming model. The XML representation consists of a series of component 

definitions for the components within the task graph and the connections between 

them represented as pairs of “parent/child” relationships. The parent in the pair is 

the start point in a data  flow connection and the child is the end point. Thus given
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a full set of these pairs it is possible represent a complete data flow task graph. The 

task graph can either be sent to a resource manager for executing the application 

on a workstation cluster, or a heterogeneous environment made of workstations and 

high performance parallel machines, or executed by the simple internal scheduler in 

the prototype.

4.2 Prototype Implementations

To explore the requirements for the visual programming front-end to the PSE and the 

component model several different prototypes were built. Each of these experiments 

helped to clarify the design process and lead to the final prototype explained in this 

work. Problems and solutions to different aspects of PSE design and execution were 

found using this prototyping process.

4.2.1 A Simple Arithmetic Equation Builder

The first prototype discussed here is a visual arithmetic equation builder. To simplify 

the process of building a PSE, a deliberately limited application domain was chosen. 

The equation builder is limited to the four simple operators: addition, subtraction, 

multiplication and division; and a simple integer or floating point operand. The 

prototype has a component repository from which components can be selected and 

a “scratch pad” tha t allows the components to be connected. The components 

consist of:

A display com ponent

An instance of the display component has one function, to represent a value, 

it can be either a source or a destination component within an equation.

A n operator com ponent

. An instance of the operator component takes two input values, performs one of 

the four simple arithmetic operations on the inputs and calculates an output
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value.

Using these components it is possible to build simple arithmetic equations of an ar­

bitrary length. The user selects the components, connecting them together starting 

with at least two display components that provide the input into an operator com­

ponent. The starting values of the top most components in the graph are set and 

when the graph is executed the data propagates down through the graph resulting 

in the final value being displayed in the display component at the base of the tree.

The equation and the interface are hard coded into a test class for this first 

prototype. This initial version is designed to examine the look of the user interface 

and test the potential use of JavaBeans as the component model. As can be seen

f t  f t  f t  Test Bed

10.0 5.5

add

15.5

Figure 4.1: Simple Arithmetic Equation Builder User Interface

from figure 4.1, the user interface at this stage consists of the components on a pad. 

There is no component repository or a graphical way of connecting the components. 

The test class that builds the equation has a main set-up function that contains four 

variables representing the two operands, the operator and the result.

p u b l i c  NumberDisplayBean opl = n u l l  ;
2 p u b l i c  NumberDisplayBean op2 = n u l l ; 

p u b l i c  O peratorB ean calc = n u l l ;
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a \ p u b l i c  N u m b e r D i s p l a y B e a n  a n s  =  n u l l  ;

The variables are all JavaBeans and are instantiated using the standard Java- 

Bean constructor mechanism1 of the java.beans.Beans class. The full listings for 

NumberDisplayBean and OperatorBean can be seen in appendix B sections B.1.1, 

B.1.2.

o p l  =  ( N u m b e r D i s p l a y B e a n )  Be a n s  . i n s t a n t i a t e  ( null , "
NumberDisplayBean") ;

2 op2 =  ( N u m b e r D i s p l a y B e a n )  B e a n s  . i n s t a n t i a t e  ( null , "
NumberDisplayBean") ; 

c a l c  =  ( O p e r a t o r B e a n )  B e a n s  . i n s t a n t i a t e  ( null  , "OperatorBean"); 
4 a n s  — ( N u m b e r D i s p l a y B e a n )  B e a n s  . i n s t a n t i a t e  ( null  , "

NumberDisplayBean");

The values of each operand and the operator are set and the result calculated.

o p l  . s e t  V a l u e  ((  f l o a t  ) 1 0 ) ;
2 op2 . s e t  V a l u e  ((  f l o a t ) 5 . 5 )  ;

c a l c  . s e t O p e r a t o r  ( O p e r a t o r B e a n  .ADD) ; 
4 c a l c ,  c a l c u l a t e  ( ) ;

To perform the execution flow from the two operand components through the op­

erator and finally to the result the publish/subscribe2 paradigm in Java is used. A 

PropertyChangeListener listens to the component upstream in the work flow and 

fires an event to the component downstream when the particular property changes. 

In this way when the calc component answer value changes the value is communi­

cated to the ans component. The code that perform this operation can be seen in 

the following code segment:

p u b l i c  c l a s s  A n s w e r C h a n g e L i s t e n e r  im p le m e n ts  
P r o p e r t y C h a n g e L i s t e n e r  {

2 p r o t e c t e d  N u m b e r D i s p l a y B e a n  n d B e a n  =  n u l l  ;

4 p u b l i c  A n s w e r C h a n g e L i s t e n e r  ( N u m b e r D i s p l a y B e a n  i n p B e a n )  {
ndB ean  =  i n p B e a n  ;

}

*A static Factory Method, see page 26
2Another name for the Observer design pattern, see page 27
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s p u b l i c  v o i d  p r o p e r t y C l i a n g e  ( P r o p e r t y C h a n g c E v e i i t  p e e )  {
i f  ( n d Be a n  ! =  n u l l )  { 

o ndB ean  . s e t V a l u e  ( ( (  F l o a t ) p e e  . g e t N e w V a l u e  () ) .
f l o a t  V a l u e  () ) ;

}
2 }

_}_____________________________________________________________________________________

An instance of the class is created and subscribed to the ca lc  component using

c a l c  . a d d P r o p e r t y C h a n g e L i s t e n e r  ( " answer " , n e w  A n s w e r C h a n g e L i s t e n e r  
( a n s ) ) ;

and when the value changes the value is set on the ans component and displayed.

The location on the user interface for each “Bean” component is set using the 

standard AWT3 se tL o ca tio n  method.

g e t C o n t e n t P a n e  () . a d d ( o p l )  ;
2 o p l . s e t L o c a t i o n ( ( i n t )  1 0 ,  ( i n t ) 1 0 ) ;

None of the standard Java AWT layout components are capable of simply set­

ting components at a point location on a window so a custom layout is used, 

B u ile t inLayout4.

This initial prototype helped to explore the use of JavaBeans as a visual compo­

nent model. Although the functionality is totally static, it is extended in the next 

version.

4.2.2 Arithmetic Equation Builder - Version 2

The next iteration of the prototype is an extension to the functionality of the visual

arithmetic equation builder from the previous section. As is good practise when

prototyping the previous prototype was discarded, apart from the ideas and the

lessons learnt with the new technology. This new prototype has some simple dynamic

3AWT: Java Abstract Window Toolkit is the standard Java user interface widget set
4 BulletinLayout was written by David Geary, it lays out components as though they were pinned

to a bulletin board

35



4.2 Prototype Implementations

functionality that is capable of performing a specific set of functions. The prototype 

now has a component repository and a “Scratch Pad” , seen here in figure 4.2, on to 

which components in the component repository can be instantiated by pressing the 

component “buttons” in the repository to add an instance of the chosen component.

AWTapp

4 .5 5.05.7

s u badd

8 .7 0 .5

add

8.2

Figure 4.2: Visual Arithmetic Equation Builder Interface

The prototype illustrates three initial problems that arise in attempting to pro­

vide a dynamic environment in which the scientist can work. The first is to provide a 

mechanism by which the environment can discover the properties, methods, inports 

and out ports that a component provides at design time. The second is to provide a 

mechanism that can be used to dynamically create links between components. The 

third is to provide dynamic method invocation on particular components within the 

environment.

One solution using the Java programming language, provides the ability for the 

system to discover a component’s properties at design time and display them via a 

simple “Object Inspector.” This can be seen in figure 4.2 as a small floating window. 

Thus, for a display component the value that is set for the component is shown as 

an editable string, and for an operator component the two input values are shown
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as editable strings, and the operator as a selection from a “drop-down list” . The 

system can also dynamically create links between two components and use these 

links to call “set methods” to update the properties of a given component instance. 

In this way the execution flow of the task graph cascades down the nodes of the 

graph as each node triggers the next down stream by calling the “set method” with 

the resultant value from its operation.

The main results of this simple prototype are from a user interface point of view. 

Building this clarified the way that the interface should proceed and confirmed 

that the ideas of having a component repository and “scratch pad” for task graph 

composition provided a reasonably intuitive environment in which to work. On the 

negative side it was also obvious that prototype architecture would not be flexible 

enough for a real general purpose tool. So this prototype was discarded as a starting 

point and the next version would be designed and written from scratch.

4.3 Visual Component Composition Environment

The main prototype developed during this research is called the Visual Component 

Composition Environment (VCCE). It is used primarily to construct applications 

from software components of a more complex nature than the previous simple exam­

ple. In this context, an application is merely seen as a high-level component. The 

VCCE is used to construct components in the form of a data flow graph. Once a 

complete application has been constructed, it can either be passed to the Intelligent 

Resource Management System (IRMS) to be scheduled on the distributed computing 

systems available on the network or executed using the built in scheduling system.

4.3.1 Features of the  VCCE

The VCCE should have the following features, some of which are improved versions 

of functionality from the equation builder:
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1. A graphical user interface for the hierarchical construction of components by 

connecting an outport of one component to an inport of another component.

2. A facility for building new components from scratch in some appropriate pro­

gramming language, and wrapping them as Java beans. Presently supported 

are components written in C, Fortran and Java.

3. A facility for building inports and outports from a component’s input and out­

put interfaces. Although a component’s interface cannot be changed, inports 

and outports can be constructed out of the data  objects comprising the input 

or output interface. It should also be possible to replicate and merge chan­

nels. Each component has a set of default inports and outports defined by the 

author of the component.

4. A composition notation, or scripting language, providing control constructs 

such as loops and conditionals for managing the flow of execution of compo­

nents. Conditional behaviour is not supported within the present implemen­

tation, however the user has the capability to specify a predefined number of 

iterations through the code using XML tags, as described in section 4.4.2, and 

an extension to the implementation to include looping is discussed in chapter 

6 .

5. A facility for displaying and hiding the hierarchical structure of a component.

6. A facility for viewing documentation on a component giving, for example, its 

purpose, the algorithm used, the meaning of the input and output arguments, 

etc. This documentation may be linked to an HTML document, or other 

sources of information outside of the PSE.

The major sub-systems of the VCCE are as follows:

1. A Component Repository, containing a hierarchical set of folders for storing 

components th a t may be used in constructing other higher-level components
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and/or applications. The component access permissions determine which com­

ponents a particular user is able to see in the repository. Specific and generic 

components are indicated by different colours.

2. A Composition Tool, that acts as a canvas, or “scratch pad” where components 

are joined together by channels connecting inports and outports. The compo­

sition tool will allow an outport to be connected to an inport only if they are 

compatible. The resulting higher-level components and applications may be 

inserted into the Component Repository, and at this stage access permissions 

are set, and optional performance model and explanatory information may be 

associated with the component.

3. An internal scheduling system. In cases where an external scheduler is available 

the VCCE can delegate execution to tha t system, otherwise it is necessary for 

the VCCE to be able to execute the composed task graph itself.

In the PSE prototype, a user can visually construct scientific applications by 

connecting together components, which can range in granularity from simple matrix 

manipulation routines, to complete application programs. Each component has an 

XML interface described using a common data model described in further detail in 

section 4.4.2.

The main module of the VCCE is the Program Composition Tool (PCT). This 

is a visual tool that enables a user to build and edit applications by plugging to­

gether components, by inserting application components into predefined templates, 

or by replacing application components in existing programs. The PCT allows a 

user to connect two components only if their interfaces are compatible. The PCT 

also enables a user to create new application components and place them in the 

Application Component Repository (ACR). The Program Execution Tool (PET) 

develops the task graph generated for each application, encodes this into XML (de­

scribed in section 4.4.4), and passes the graph to the internal or external scheduler 

for execution.
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4.4 VCCE Components

Components in the prototype PSE have the following properties:

• Components have a unique name or ID. This does not have to be globally 

unique, only locally, as the notion of “name space” can be used together with 

the local unique name to create a globally unique name.

• Components may be Java or CORBA objects. They may be sequential codes 

written in Java, Fortran, or C; they may be parallel codes tha t make use 

of message passing libraries such as MPI; or they may exploit array-based 

parallelism through language extensions such as HP Java [19]. Legacy codes, 

in Fortran for instance, can be wrapped as components.

• Components themselves may be hierarchical, i.e. constructed from other com­

ponents, and be of arbitrary granularity. Thus, a component may perform a 

simple task, such as finding the average of a set of input values, or it may be 

a complete application for solving a complex problem.

• Each component is represented by a well-defined model specified in XML, as 

described in section 4.4.2.

• Information is passed from one component to another via unidirectional typed 

channels. A channel connects an outport of one component to an inport of 

another component. A component may have zero or more inports. The set of 

data objects referenced by the channels connected to a component’s inports 

together define its input interface. Similarly, a component may have zero or 

more outports, and the set of data objects referenced by the channels connected 

to a component’s outports together define its output interface.

• A set of constraints may be associated with each component, indicating on 

what platforms it can be run, and whether it requires generic software, such 

as MPI or the BLAS, or specific software versions such as JDK version or 

CORBA ORB, in order to run.
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• Information 0 1 1  a component’s purpose, the algorithms it uses, and other per­

tinent explanatory data is optionally associated with a component in the form 

of help files.

4.4.1 XML within the VCCE

XML (extensible Markup Language) [113] is a subset of the document formatting 

language SGML (Standard General Markup Language). It was devised, among other 

things, for developing documents for the Web, and is acknowledged by the W3C 

standards organisation. One objective of XML is to enable stored data intended for 

human use to also be manipulated by a machine, such as a search engine. XML 

defines standard tags used to express the structure of a document, in terms of a 

Document Type Definition (DTD) scheme. Hence, a DTD must be defined for 

every document that uses tags within a particular context, and the validity of a 

document is confirmed with reference to a particular DTD.

Various DTDs have been defined for particular application domains, such as the 

Biolnformatic Sequence Markup Language (BSML), Weather Observation Markup 

Language (OML), the Extensible Log Format (XLF) for logging information gen­

erated by Web servers, Chemical Markup Language (CML) among others. The 

approach closest to the work described here is Open Software Description (OSD) 

[114], submitted to WC3 August 1997, for defining component models that can 

facilitate the automatic updating of components. Using OSD, “push-based” appli­

cations can automatically trigger the download of particular software components 

as new versions are developed. Hence, a component within a data flow may be 

automatically downloaded and installed when a new or enhanced version of the 

component is created. XML does not define the semantics associated with a given 

tag, only the positioning of a tag with respect to other tags. However, one must 

associate and define semantic actions when parsing an XML document that cause 

particular actions to take place when particular tags are encountered. These actions 

can range from displaying the content of a document in a particular way, to running 

programs that are triggered as a result of reaching a particular tag.
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XML was chosen as the language of choice for two main reasons.

• XML is computing language and platform agnostic. This is very important 

if a PSE is to be platform independent and components are to be language 

independent.

• There are a number of high quality open source XML language parsers for 

many programming languages. For example, Xerces [6] from the Jakarta- 

Apaclie group, and Java API libraries for manipulating and generating XML 

documents, such as JDOM [64] and JAXP [63].

These reasons suggest that XML is an appropriate way of creating component inter­

faces within a PSE. The use of XML also enables the generation of context-sensitive 

help and leads to the development of self-cataloguing components.

4.4.2 XML Component Model

Each component used within the VCCE must currently, although not necessarily, 

be either a Java or CORBA object. Components are self-documenting, with their 

interfaces defined in XML, which: enables a user to search for components suitable 

to a particular application; enables a component to be configured when instantiated; 

enables each component to register with an event listener; and facilitates the sharing 

of components between repositories. XML tags may be used to automatically derive 

help on particular components already present in the repository, or they may be 

used to query the availability of particular types of components. User supplied 

components must also have their interfaces defined in XML.

The XML-based component model ensures uniformity across all components, 

and helps to abstract component structure and implementation from component 

interface. The XML definition used within the prototype, enables the division of 

a component interface into a set of sections, where each section is enclosed within 

predefined tags. A parser capable of understanding the structure of such a document 

can identify and match components which meet this interface. The DTD identifying
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valid tags does not need to be placed with each interface, as it can be obtained from 

a URL reference placed in the document header, and identified by the h re f  tag. 

The XML definition can be used to perform information integrity, such as the total 

number of inports and outports, check the suitability of a component, the types of 

platforms that may support the component and internal component structure when 

available.

The component model was first described in a paper [95] in 1999 and was in­

fluenced by IBM’s BeanML [119] and W 3C’s OSD [114] XML-based frameworks. 

BeanML is a component configuration and connection language. Unlike the lan­

guage presented here or OSD, it is designed for use exclusively with the JavaBean 

component model. The BeanML script is executed by an interpreter and provides 

functionality for: the creation of new beans; accessing of existing beans; configura­

tion of beans by setting/getting their properties and/or fields; binding of events from 

some beans to other beans; and calling of arbitrary methods in beans. Although 

comprehensive BeanML is not suitable for the data flow model presented in this 

thesis.

OSD is another component language with a specific purpose, in this case it is for 

describing software packages and their dependencies for use in automated software 

distribution environments. As with BeanML, OSD is not suitable for data flow 

modelling. The OSD idea of dependencies was used in this work to model the parent 

child relationship between nodes in a task graph and some of the implementation 

specification such as operating system version were used in specifying the executable 

part of the component. The idea from BeanML of registering events from one bean 

with another is adapted here and used.

The tags in the component language are divided into the following functional 

sections:

• con tex t and header details

• input and output p o r ts

• execu tion  specific detail, such as whether the component contains MPI code
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• a user specified help  file for the component

• a c o n fig u ra tio n  file for initialising a component

• a performance model identifying costs of executing the component, for the 

resource manager

• an event handler, which enables registering or recording of particular types of 

events.

A component may also contain specialised constraint or semantic tags in addition 

to the mandatory requirements identified above. Constraints can include security or 

licence constraints, where a component is required to run on a particular machine 

or cluster.

Some of the tags specified in the following sections are based 0 1 1  either BeanML or 

OSD. Component naming is common to both schemes but the work in this thesis has 

a more detailed description in the context and header tags, section 4.4.2.1. Neither 

scheme has the notion of data flow so the inport and outport tag specification, section 

4.4.2.2, is unique to this work, at least at this date. The execution tags, section 

4.4.2.3 are loosely based on OSD’s IMPLEMENTATION tag set. The configuration tags, 

section 4.4.2.5, and the help file tags, section 4.4.2.4, are similar in style to OSD’s 

CODEBASE tag although they are used for different purposes. The performance model 

tags, section 4.4.2.6, do not occur in either scheme, but the event mechanism tag, 

section 4.4.2.7, is similar to BeanML’s event mechanism for registering components 

or JavaBeans as listeners to another component’s events.

4.4.2.1 Context and Header Tags

Context and header tags are used to identify a component and the types of PSEs 

that a component may be usefully employed in. The component name must be 

uniquely identifiable within the scope it is being used, a “name space” defining the 

local scope can be used where the component is not locally unique. A component 

also has an alternative alphanumeric identifier and an “ID” which can be used to
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differentiate between instances of the same component. Any number of PSEs may 

be specified. These details are grouped under the preface tag. The h ie ra rc h y  tag 

is used to identify parent and child components, and works in a similar way to the 

Java package definition. A component can have one parent, and multiple children.

In the code segment 4.1 taken from example B.1.3, appendix B, ‘DA01’ has no 

children, indicating that it is at the bottom of the hierarchy. The component name, 

alternative name and ID can be seen clearly together with the PSE type which is 

Generic.

< p r  e f  a c e >
2 Cname a l t =" D A"  id="DA01 " > D a t a  A n a l y s e r < / n a m e >

< p s e —t y p e > G e n e r i c < / p s e —t y p e >
4 C h i e r a r c h y  i d = " p a r e n t  " > T o o l s  . D a t a  . D a t a A n a l y s e r < / h i e r a r c h y >  

< h i e r a r c h y  i d = "  c h i l d " x  /  h i e r a r c h y >
6 < / p r e f a c e >

Listing 4.1: Example Component Header

4.4.2.2 Port Tags

Ports tags are used to identify the number of input and output ports, and their 

types. An input port can accept multiple data types and this can be specified in a 

number of ways by the user. For example

C i n p o r t  i d = " 3 "  p a r a m e t e r = " L a m b d a " t y p e = " f l o a t " v a l u e = " 0 . 5 " >
2 < / i n p o r t >

Listing 4.2: Simple Port XML

Input and output to a component can also come from and go to other types of 

sources, such as files or network streams. In this case, the inport and outport ports 

need to define an h re f  tag, rather than a specific data type. The h re f  definition is 

standardised to account for various scenarios where it may be employed, such as:

< p o r t s >
2 < i n p o r t  i d = " l "  p a r a m e t e r ^ " r e g r e s s i o n "  t y p e = "  s t r e a m " v a l u e = "  

NIL ">
< p a r a m e t e r = "  r e g r e s s i o n "  v a l u e r "  NIL" / >
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a c l i re f  nam e="http  : / /www . cs . cf . ac . u k / P S E / " value=" t e s t  . t x t "
>

< / in p o rt>
6 < / p o rts>

Listing 4.3: Example HREF Port XML 

or when reading data from a file, the h re f  tag is changed to:

< p o r t s >
2 C i n p o r t  i d = " l "  p a r a m e t e r ^ " r e g r e s s i o n " t y p e = " s t r e a m " v a l u e = "

NIL ">
< p a r a m e t e r = "  r e g r e s s i o n "  v a l u e = " N I L " / >

4 < h r e f  n a m e = " f i l e : / h o m e / p s e / t e s t . t x t " v a l u e = " N I L " >
< / i n p o r t >

6 < / p o r t s >

Listing 4.4: Example File Port XML

This gives a user much more flexibility in defining data sources, and using compo­

nents in a distributed environment. The user may also define more complex input 

types, such as a m atrix , stream  or an a rray  in a similar way.

4.4.2.3 Execution Tags

A component may have execution specific details associated with it, such as whether 

it contains MPI code, if it contains internal parallelism, etc. If only a binary version 

of a component is available, then this must be specified by the user also. Such com­

ponent specific details may be enclosed in any number of type tags. The execution 

tag is divided into a softw are part and a p la tfo rm  part. The former is used to 

identify the internal properties of the component, while the latter is used to identify 

a suitable execution platform or a performance model.
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For example

< e x e c u t i o n  i d = " s o f t w a r e " t y p e = " b y t e c o d e  " v a l u e —" e x t e n d e d ">
< t y p e  i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l " / >
< t y p e  i d = " c l a s s "  v a l u e = " c o m . b a e s y s t e m s . c o m p o n e n t s .

S i mp 1 e x C o m p o n e n t " / >
< t y p e  i d = " s o u r c e "  v a l u e = " f i l e : / / / h o m e / c o m p d a t a / C a r d i f f /

p r o j  e c t / s r c / c o m / b a e s y s t e r n s / c o m p o n e n t s / S i m p 1 e x C o m p o n e n t . 
j  a v a " / >

C t y p e  i d = " c l a s s p a t h "  v a l u e = " / h o m e / c o m p d a t a / p r o j  e c t / c l a s s e s " / >
< / e x e c u t i o n >

Listing 4.5: Example Execution Tag XML

4.4.2.4 Help Tags

A user can specify an external file containing help on a particular component. The 

help  tags contains con tex t options which enables the association of a particular 

file with a particular option, to enable display of a specified help file at particular 

points in application construction. The contexts are predefined, and all component 

interfaces must use these. Alternatively, the user may leave the co n tex t held empty, 

suggesting that the same hie is used every time help is requested on a particular 

component. If no help hie is specihed, the XML dehnition of the component is used 

to display component properties to a user. Help hies can be kept locally, or they 

may be cross references using a URL. One or more help hies may be invoked within 

a particular context, some of which may be local.

< h e l p  c o n t e x t = " a p i d o c ">
< h r e f  n a m e = " f i l e : / / f : \ \ C a r d i f f \ \ p r o j  e c t \ \ d o c s \ \ b e 2 d d o c s \ \  

i n d e x . h t m l "  v a l u e = " N I L " / >
< /  h e l p >

Listing 4.6: Example Help Tag XML

4.4.2.5 Configuration Tags

Conhguration tags are similar to the he lp  tag. A user can specify a co n fig u ra tio n  

tag, which enables a component to load predehned values from a hie, from a network

file:///home/compdata/Cardiff/
file://f://Cardiff//proj
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address or by using a customiser or wizard program. This enables a component to 

be configured within a given context, to perform a given action when a component 

is created or destroyed, for instance. The c o n f ig u ra tio n  tag is particularly useful 

when the same component needs to be used in different applications, enabling a user 

to share parts of a hierarchy, while defining local variations within a given context.

4.4.2.6 Performance Tags

Each component can have an associated performance model, and this can be specified 

in a file, using a similar approach to component configuration defined above. A 

performance model is enclosed in the perform ance tag, and may range from being 

a numerical cost of running the component on a given architecture, to being a 

parameterised model that can account for the range and types of data it deals with 

to more complex models that are specified analytically.

4.4.2.7 Event Model Tags

Each component supports an event listener. Hence, if a source component can 

generate an event of type XEvent , than any listener or target must implement an 

Xlistener interface. Listeners can either be separate components that perform a well 

defined action, such as handling exceptions, or can be more general and support 

methods that are invoked when the given event occurs. An event tag is used to 

bind an event to a method identifier on a particular component.

< e v e n t  t a r g e t = "  ComponA " t y p e = " o u t p u t " name="  o v e r f l o w " f i l t e r = "  
f i l t e r  ">

2 C c o m p o n e n t  i d=" XX" > . . .  < / c o m p o n e n t >
< / e v e n t >

Listing 4.7: Example Event XML

The ta rg e t  identifies the component to initiate when an event of a given type occurs 

on component with identity id, as defined in the p re face  tag of a component. The 

name tag is used to differentiate different events of the same type, and the f i l t e r  

tag is a place-holder for Java property change and vetoable property change events
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support. Also, the filter attribute is used to indicate a specific method in the listener 

interface using which the event must be received for a particular method to be 

invoked.

Event handling may either be performed internally within a component, where 

an event listener needs to be implemented for each component that is placed in the 

PSE. This is a useful addition to a component model for handling exceptions, and 

makes each component self-contained. Alternatively, for legacy codes wrapped as 

components, separate event listeners may be implemented as components, and which 

may be shared between components within the same PSE. Components that contain 

internal structure, and support hierarchy, must be able to register their events at 

the highest level in the hierarchy, if separate event listeners are to be implemented. 

An simple example of an event listener is as follows:

< p r  e f  ac.e>
<name  a l t = " D A"  i d = " D A 0 2 " > D a t a  E x t r a c t o r < / n a m e >
< p s e —t y p e > G e n e r i c < / p s e —t y p e >
< h i e r a r c h y  i d = " p a r e n t  " > T o o l s  . D a t a .  D a t a _ E x t r a c t o r < /  h i e r a r c h y >  
< h i e r a r c h y  i d = "  c h i l d  " x /  h i e r a r c h y >

< / p r e f a c e >

< e v e n t  t y p e = " i n i t i a l i s e " n a m e = " s t a r t "  f i l t e r = " " >
< s c r i p t >

< c a l l — me t h o d  t a r g e t = " D A 0 1 " n a m e = " b a y e s i a n " >
< / s c r i p t >

< / e v e n t >

Listing 4.8: Example Event Listener XML

The s c r ip t  tags are used to specify the method to invoke in another component, 

when the given event occurs.

4.4.2.8 Computational Steering Tags

A component can be tagged to indicate that it can be steered via the user interface. 

In order to achieve this, the input/output to/from  a component must be obtainable 

from a user interface. W ith a steer able component, the in p o rts  and o u tp o rts  

of a component must have a specialised tag to identify this. For a conventional
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component without steer-ability, the ports definition is:

< p o r t s >
< i n p o r t  i d = " l " t y p e = " s t r e a m ">

< p a r a m e t e r t y p e = " v e l o c i t y " v a l u e —" 1 0 . 2 " / >
< / i n p o r t >

Listing 4.9: Example Non-Steering Port XML

For a steerable component, the following definition would be used:

< p o r t s >
< s t e e r a b l e >

C i n p o r t  i d = " l " t y p e = " s t r e a m ">
< p a r a m e t e r t y p e = " v e l o c i t y " v a l u e = " 1 0 . 2 " / >

< /  i n p o r t >
< / s t e e r a b l e >

Listing 4.10: Example Steering Component XML

This will automatically produce an additional input port over which interactive 

inputs can be sent to the component, with the input being of the same type as in 

the non-steerable version of the component.

Additional tags not part of the component model may be specified by the user 

toward the end of each section.

< a d d >  . . .  < \ a d d >

Variable tags are not supported in the first version of the prototype.

4.4.2.9 A Data Analysis Component Example

A data analysis component within the repository may be described by the XML 

code B.1.3. page 166.

Another example component interface B.1.4 in XML can be seen in Appendix B, 

page 167.
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Figure 4.3: The XML-Based Component model.

4.4.3 Component Model Summary

All applications that employ the PSE prototype must adhere to the above component 

model. A user may specify the component model using tags, or may have it encoded 

using a component model editor, not implemented here, which also acts as a wizard 

and enables customisation. The editor would work in a similar manner to an HTML 

editor, where a user is presented with a menu-based choice of available tags, and 

can either choose one of these predefined tags or, different from an HTML editor, 

may define their own.

The Component Model in XML forms the interface between the VCCE and other 

parts of the PSE, and is used to store components in the repository. Various query 

approaches may be employed within the VCCE to obtain components with given 

characteristics or components at a particular hierarchy. The XML representation is 

therefore pervasive throughout the PSE, and links the VCCE to the IRMS or internal 

scheduler. Various representations could be obtained from the XML description in 

Scheme, Python, Per/, CORBA-IDL etc, for connection to other systems that may 

be attached to the PSE, see figure 4.3.

The use of tags enables component definitions to be exchanged as web documents, 

with the structure available at either a single or at particular certified sites. Hence, 

changes to the DTD can be made without requiring changes to component definitions
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held by application developers, and will be propagated the next time a user utilises 

a component interface.

The use of the component model also requires that each component has a unique 

identifier across the PSE workspace, and is registered with a component repository. 

This is particularly significant when handling events, as event types will need to be 

based on component identities and their particular position in the data flow.

4.4.4 XML Task Graph Model

As explained in section 4.1.3, the prototype PSE used in this work uses a data flow 

representation for the relationship between the processes in a constructed applica­

tion. Connectivity between components in the VCCE, like the component interface 

definitions, is specified in XML in the form of a directed graph.

Component dependencies are enclosed in connection  tags and consist of the 

constructs, p a ren t and ch ild . Distant relationships can be constructed from the 

recursive applications of these two basic types. Each connection between a pair of 

components is treated separately, however a single component can participate in 

more that one connection relationship allowing all pair wise combinations of: One 

to One; One to Many,  and Many to Many relationships to be represented.

The input and output ports participating in the connection between two compo­

nents are not specified explicitly in the XML representation. The Java implemen­

tation of the VCCE software attempts to match input port to output port by port 

parameter name in the first instance. If no match is found then the order of the ports 

in the component definition is used, i.e. the first connection to or from a component 

is connected to the first defined port. On reflection, this implicit rule is limiting 

to the taskgraph representation. It can cause a dependency on the order in which 

components are connected by the user in the graphical environment. In the case 

where input and output port names from the two participating components do not 

match, the order of their connection decides the particular ports to be connected. 

A solution to this problem is to include a full description of the participating ports

52



4.4 VCCE Components

as part of the connection description. This is the case in more recent task graph 

representation languages such as that used by Triana, based on the work here.

In addition to the connection relationships, a representation of the start point 

or points for a task graph is needed. For this a start tag is used that labels one 

or more components as starting points for execution. While it is possible to simply 

examine all components in the task graph to find those with no parent connection, 

giving the start points, it makes the scheduling algorithms simpler and quicker to 

know in advance the start points specified by the user.

4.4.4.1 Example XML Task Graph

In the example XML task graph in B.1.5, page 168. there are four components: 

be2dData; be2d] curView; and rcsView. The start point is labelled in the graph as 

being be2dData, the connections are be2dData to be2d, be2d to curView and be2d to 

res View. The start point and one connection from the example can be seen below.

< s t a r t >
Cname alt="be2dData" id = " b e2d D ata01 " i n s t = "  7065019  ">be2d d ata  

< /  name>
< / s t  a r t >
< c o n n e c t i o n >

< p a r e n t >
<name alt .="be2dData" id=" b e 2 d D a t a 0 1 " i n s t  =  " 7065019  ">be2d 

da ta < /n a m e >
< / p a r e n t >
< c h i l d >

Cname a l t= " b e 2 d "  id = " b e 2d 01"  i n s t = "  6 6 7 0 3 2 6  ">be2d</name>
< /  c h i l d >

Listing 4.11: Example Task Graph Connection

So in this example there are examples of “One to One” and “One to Many” con­

nections. This example is from a real application and is explained in context in 

chapter 5.
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4.4.5 Compound Components

One; useful mechanism specified in the requirements document for the VCCE is 

the ability for a user to create composite components from a number of existing 

components. These composite or compound components once created behave exactly 

like a simple component, in that it has a number of input and output ports and can 

be connected into a task graph like any other component.

The compound component is really a construct for the user of the system as 

opposed to something the system needs itself. It enables a user to logically group 

components into larger more complicated systems for re-use and sharing with other 

users, or to enable very large complicated systems to be viewed at a coarser level so 

that it can be seen in its entirety more easily. The grouping of components will not 

affect the execution of the completed application as the atomic components have 

not actually been changed in any way.

In terms of the XML representation of a compound component, it can be seen 

as a partial task graph. A compound component consists of a list of constituent 

components and a set of connection relationships, the same as a task graph. But, 

in addition the compound component will have the header, p o r t  and optionally 

help  tag sections that a normal component would have. The header and help  

tags are specified by the user building the compound component. The p o rt tags 

representing the input and output ports map to the corresponding ports on the 

outermost components in the group. For example, given a simple group with two 

components then the inputs to the group would be the input ports on the inner 

component with no parent connection and the output ports to the group would be 

the output ports on the inner component with no children. So given a compound 

component made up of a number of sub components, the number and type of the 

input ports would be the sum of all the input ports of all components which are not 

connected internally; the number and type of the output ports would be the sum of 

all output ports of all components which are not connected internally.

When a connection is made in a task graph between a component and a com­
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pound component, the actual connection is mapped through to the corresponding 

internal component.

4.5 VCCE Component Implementation

Components in the prototype PSE do not perform any computation in their own 

right, they are merely representations or proxy components, for an underlying com­

putational code, see page 26. A VCCE component provides a number of services for 

its computational code:

• A visual representation of the code within a GUI environment.

• An optional custom user interface for the code.

• Input ports that direct incoming input data in a form tha t the code can use 

and provide a visual representation of the port.

• Configuration for the code.

• A mechanism to execute the code.

• Output ports that take the code output and make it available in a form that 

can be passed to the next component in the application.

The VCCE component design is based on the ideas developed in the previous 

two prototypes examined in sections 4.2.1 and 4.2.2. Each component is defined by 

an XML definition file which contains the various values for name, executable, help 

files etc, defined in section 4.4.2. When the VCCE is started, each component in 

the repository is loaded from its XML definition and a proxy created.

4.5.1 Proxy Interface

Using sound software engineering principles everything is written to well defined 

interface classes, hence every proxy component implements a single main interface,
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Proxy In te rfa c e . The interface is a full representation in Java of all of the values 

obtained from the XML definition. The full listing can be seen in appendix B.1.6. 

For example, the component header tag values from section 4.4.2.1 are represented 

by the methods,

/ /  Returns  the i n t e r n a l  system name.  
public S t r i n g  g e t l n t e r n a l N a m e  ()  ;

/ /  Returns the a l t e r n a t i v e  name. 
public S t r i n g  g e t A l t N a m e  () ;

/ /  Returns the ex t er na l  name r e p r e s e n t a t i o n  . 
public S t r i n g  g e t E x t e r n a l N a m e  ()  ;

/ /  Returns the ins t ance  ID ( un ique)  
public S t r i n g  g e t l n s t a n c e l D  () ;

/ /  Sets  the ins t ance  ID (should  be machine g ener at ed  and unique)  
public void s e t l n s t a n c e l D  ( S t r i n g  I n s t l D S t r ) ;

/ /  Returns the type of  PSE the component can be used w i t h i n .  
public P se T y p e  g e t P s e T y p e  () ;

/ /  Returns  the parent  component,  in a compound component .  
public S t r i n g  g e t P a r e n t Q ;

/ /  Returns an i t e r a t o r  con t ai ni ng  the ch i ld  components in a 
compound component . 

public P r o x y l t e r a t o r  g e t C h i l d r e n  ()  ;

As can be seen above, there is a corresponding getter method for each value in 

the tag set. The responsibility for setting those values from the XML definition 

is delegated to the implementing classes, in this case A bstractProxy, an abstract 

class that contains a number of common utility methods and SimpleProxy, the 

actual proxy class.

There is an interface to represent input and output port objects, P o r t ln te r f  ace. 

This has methods to set and get: the value of the data object coming in or going out 

of the proxy component; the name of the port; an optional URL href; and the type 

of the port which could be one of the following values - Stream, F ile , S trin g , Short, 

F loa t, Double or Object. In the Proxy In te r fa c e  there are methods, g e tln p o rtsQ
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and getOutportsO which return sets of these Portlnterf aces.

The visual representation of the proxy component is handled by another Java 

class called SimpleVisualComponent. In its simplest form this just displays a box 

representing the component with the component name displayed as text. Each visual 

component is constructed with a Proxylnterf ace so tha t there is a one-to-one map­

ping from a proxy to its graphical representation. It is the SimpleVisualComponent, 
a subclass of a Java JPanel, that gets displayed in the VCCE user interface explained 

in section 4.6.

4.5.2 Execution Interface

The proxy design up to this point has been relatively straightforward but in this 

section is a description of the part of the proxy tha t is responsible for the actual 

executable computation code, the Executionlnterf ace. The underlying computa­

tional unit could take many forms from a simple Java code to a parallel Fortran code, 

as described in section 4.4. The execution proxy needs to be flexible and extensible 

to take this fact into account. As before a general interface is developed first and 

then code written to implement that. The Executionlnterf ace has two important 

methods.

/ /  Perform any necessary  i n s t a n t i a t i o n  f u n c t i o n s  when a 
2 / /  component is added to the c o n t a i n e r  p r i o r  to e x e c u t i o n . 

public void in s t  a n t i a t e  () ;
4

/ /  Execute the under ly ing  s u b j e c t  process  , and n o t i f y  any 
e / /  l i s t e n e r s  on c o m p l e t i o n . 

public void execu te  () ;

All implementing Execution classes must included these methods. The first is a “set­

up” method which is called by the VCCE when a proxy component is instantiated 

by the user. Implementing classes should use this method to perform pre-execution 

tasks. This might include contacting a Name Server in the case of a CORBA com­

ponent implementation. The second method implementations perform the actual 

task of executing the underlying computational code.
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In the simplest implementation of the Executionlnterf ace, where the compu­

tational code is written in Java or is a simple command line executable, there are two 

implementing classes, the JavaExecution or ExtendedJavaExecution proxy. Later 

chapters in this dissertation examine more complicated implementations. These 

proxies are very similar, they can both be used to run Java-based components within 

the VCCE.

4.5.2.1 Java Execution Component

The first implementation, JavaExecution, executes a command line instruction to 

run the computational code. The instantiate O  method in this simple case is a 

“no-op” empty method, there is no set up functionality to perform. The class has 

variables to represent the classpath, the classname and argument for the computa­

tional code. It makes use of the Java Runtime, exec functionality, line 10 below, to 

execute a command string as if it were a command line from a user.

p u b l i c  v o id  e x e c u t e  () {
S t r i n g B u f f e r  e x e c u t e S t r B f r  =  n e w  S t r i n g B u f f e r  ( "  j a v a u -  

c l a s s p a t h u " ) ;  
e x e c u t e S t r B f r  . a p p e n d  ( g e t C l a s s P a t h  ()  ) ; 
e x e c u t e S t r B f r . a p p e n d ( " u " ) ; 
e x e c u t e S t r B f r  . a p p e n d  ( g e t C l a s s N a m e  () ) ; 
e x e c u t e S t r B f r . a p p e n d ( "u"  ) ; 
e x e c u t e S t r B f r  . a p p e n d  ( g e t A r g u e m e n t  ()  ) ; 
t r y  {

S y stem  . o u t  . p r i n t l n  ( e x e c u t e S t r B f r  . t o S t r i n g  ()  ) ;
P r o c e s s  p r o c e s s  =  R u n t i m e  . g e t R u n t i m e  ( ) .  e x e c  ( e x e c u t e S t r B f r  

. t o S t r i n g  ()  ) ;
/ /  once execu t i on  is f i n i s h e d  p ub l i s h  the f a c t  
t r y  {

p r o c e s s  . w a i t F o r  ()  ;
} c a t c h  ( I n t e r r u p t e d E x c e p t i o n  e )  {

S y s te m  . e r r . p r i n t l n ( " b e 2du e x e c u t i o n u f a i l u r e " ) ;  
e . p r i n t S t a c k T r a c e  ( S y s te m  . o u t ) ;

}
n o t i f y E x e c u t i o n  () ;

} c a t c h  ( I O E x c e p t i o n  e )  {
e .  p r i n t S t a c k T r a c e  ( S y s te m  . o u t ) ;

}
}
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i------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1

Listing 4.12: Execution Method for JavaExecution Component

This simple case has no facility for handling input and output directly, this must 

be handled in other ways. For example in the case of large number of legacy codes 

their input and output is file-based and has to exist in specific places. Handling 

these files would be the job of other assistant components.

4.5.2.2 Extended Java Execution Component

The second implementation of the Executionlnterf ace, ExtendedJavaExecution, 
instantiates and runs the Java computational code in the same Java Virtual Machine 

as the running VCCE. This implementation extends the simple JavaExecution case 

from the previous section and is more fully featured and also more complicated.

The instantiate0  method implementation, called when the user instantiates 

the proxy component onto the VCCE GUI, checks the system classpath and appends 

the proxy classpath if necessary. It also attem pts to instantiate an executable object 

from the class.

C l a s s  c l a s s .  =  C l a s s  . fo rN am e  ( g e t C l a s s N a m e  ( ) )  ;
2 O b j e c t  r u n n a b l e A p p .  =  c l  a s s  _ . n e w l n s t a n c e  ()  ;

If this fails then the VCCE is able to advise the user that the component cannot 

be instantiated. It is more useful for this failure to be apparent at the point of 

assembling the application than at runtime where nothing can be done.

The execute () method implementation is also more complicated as it performs 

three functions:

1. set input values for the computational code object from the values in the proxy

2. execute the instantiated code object

3. set the output values on the proxy from the values in the computational code 

object.
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The proxy knows nothing about the computational code object apart from the de­

tails contained in the XML definition which have been used to generate the proxy 

component.

The main information about the classname and classpath which will be used to 

instantiate and execute the object is inherited from JavaExecution, section 4.5.2.1, 

and is set at proxy creation. The proxy has a set of input and output P o r t ln te r f  ace 

objects that represent the input and output ports for the proxy and hence the 

computational code itself. Each of these P o r t ln te r f  ace objects has a name, value 

and value data type. The JavaBean technique of using a strict naming convention for 

parameter names and the methods in the containing computational object that set 

and get the values of those parameters is used. The method names are the parameter 

names prefixed by either s e t  or get. For example if in the XML input tag section 

for a given Java computational component there is the parameter definition, below
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< in p o r t  id="3" parameter^"Lambda" t y p e = " f l o a t "  v a lu e = " 0 .5 " >  
< /  in p o r t>

then in the computational class there must be corresponding methods to set and 

return the values of that parameter.

p u b l i c  v o id  setLambda ( f l o a t  v a l u e ) ;  
p u b l i c  f l o a t  getLambda() ;

Java reflection5 is used to dynamically discover these methods on an object and call 

the set parameter methods on the computational object before execution, and the 

get parameter methods after execution. For example, in the code listing 4.13 below 

on line 6 there is an Iterator for the set of input ports, on line 8 the method name 

for the set method is constructed, line 10 uses reflection to return the Method object 

for the given name and parameter method signature and finally line 12 invokes that 

method with the input port value from the proxy on the instantiated computational 

object to set the input value.

The main method on the computational object tha t performs the work of the 

code is also discovered and called using reflection, lines 19 and 20. Finally in a 

reverse of the manner in which the input values are set on the code object, the 

return values after execution are passed onto the proxy object in the listing lines 25 

to 30.

public void e x e c u t e  ()  {
/ /  set  al l  i n p o r t s  in the i n s t a n t i a t e d  ob j ec t  using method 
/ /  i nv oc a t i on  and r e f l e c t i o n
C l a s s  [] p a r a m e t e r T y p e  =  n e w  C l a s s  []{ O b j e c t  . c la s s  } ;
O b j e c t  [] p a r a m e t e r V a l u e  =  n e w  O b j e c t  [ 1 ] ;
for ( P o r t l t e r a t o r  i t  =  g e tO w n e r  () . g e t l n p o r t s  ()  ; i t . h a s N e x t Q  

;) {
P o r t l n t e r f a c e  p o r t  =  i t . n e x t ( ) ;
S t r i n g  m ethodN am e =  "set" +  p o r t  . g e t P a r a m e t e r  () ; 
try  {

M eth o d  s e t t e r  =  c l a s s .  . g e t D e c l a r e d M e t h o d  (m ethodN am e , 
p a r a m e t e r T y p e )  ; 

p a r a m e t e r V a l u e  [0] =  p o r t  . g e t V a l u e  ()  ; 
s e t t e r  . i n v o k e  ( r u n n a b l e A p p .  , p a r a m e t e r V a l u e )  ;

5A mechanism for dynamically discovering and executing an objects methods at runtime
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} catch ( E x c e p t i o n  e )  {
e .  p r i n t S t a c k T r a c e (  S y s te m  . o u t ) ;

}
}
/ /  Invoke the execute method 
t r y  {

M ethod e x e c u t e  =  cl  a s s  g e t D e c l a r e d M e t h o d  ("  e x e c u t e  " , new 
C l a s s [ 0 ] )  ;

e x e c u t e  . i n v o k e  ( r u n n a b l e A p p .  , n e w  O b j e c t  [ 0 ] ) ;
} catch ( E x c e p t i o n  e)  {

e . p r i n t S t a c k T r a c e  ( S y s t e m  . o u t ) ;

}
/ /  update al l  the outpor t s
f o r  ( P o r t l t e r a t o r  i t  =  g e tO w n e r  ()  . g e t O u t p o r t s  ()  ; i t . h a s N e x t ( )  

;) {
P o r t l n t e r f a c e  p o r t  =  i t . n e x t ( ) ;
S t r i n g  m ethodN am e =  " g e t "  +  p o r t  . g e t P a r a m e t e r  () ; 
t r y  {

M ethod g e t t e r  =  c l a s s _  . g e t D e c l a r e d M e t h o d  (m ethodN am e , 
new  C l a s s [0 ])  ; 

p o r t  . s e t V a l u e  ( g e t t e r  . i n v o k e  ( r u n n a b l e A p p .  , n e w  O b j e c t  
[ 0 ] ) ) ;

} catch ( E x c e p t i o n  e )  {
e .  p r i n t S t a c k T r a c e  ( S y s tem  . o u t ) ;

}
}
n o t i f y E x e c u t i o n  () ;

Listing 4.13: Execution Method for ExtendedJavaExecution Component

This more advanced implementation of the E x e c u tio n ln te rfa c e  can handle 

parameter values coming into and going out of the proxy object. The proxy is re­

sponsible for the interaction between components and passes information and control 

to the underlying computational code. In the next section, the VCCE framework is 

discussed in more detail and working examples of proxies can be seen in the following 

“use case” chapters, 5, 6, 7 and 8.

4.6 VCCE Implementation

The implementation of the third prototype, the Visual Component Composition 

Environment (VCCE) is discussed here. This prototype is a fully functional visual
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programming environment that is used in the demonstration chapters to examine 

the behaviour of the PSE with regard to specific user cases. A full description of the 

implementation would be out of scope for this thesis. Instead this section focuses on 

certain aspects of the implementation, ignoring less interesting facets. Included here 

are the mechanisms by which proxy components, described in section 4.5, are created 

from their XML definitions, how connections between components are created to 

build an application and how tha t application is scheduled and executed by the 

local execution system. This section does not include a large amount of detail with 

regard to the VCCE GUI as this is really Java Swing6 programming and not of 

particular interest here. The user interfaces discussed in the previous prototypes in 

sections 4.2.1 and 4.2.2 cover most of the concepts used here.

4.6.1 Component Factories and XML Parsing

Section 4.5 described the structure and implementation of the proxy components 

that provide a placeholder for the real underlying computational component within 

the VCCE framework. It described the fact tha t the proxy is created from an XML 

component definition. That process is described here.

The construction of similar objects with a common interface, i.e. the Proxy- 
Interface, but different implementations, i.e. JavaExecution versus Extended- 
JavaExecution, is a commonly found software engineering problem and is cov­

ered by the Factory Method design pattern, see page 26. A factory class called 

ComponentFactory is used, to which is delegated the parsing of the component XML 

definition files and creation of various objects of type Proxylnterf ace. “Polymor­

phism” is used to handle the different implementations of the proxy components in 

a common manner.

The ComponentFactory class is an object factory responsible for building the 

proxy components based on XML component definition files. These files are found

6Java Swing is the Java platform independent graphical component library used to build Java 

GUIs.

63



4.6 VCCE Implementation

and loaded by the VCCE in a special component directory denoted by the XML_DIR 

property. This property comes from the S e tt in g s  class, a singleton class, see page 

26, that loads a user defined properties file. For example:

S t r i n g  com pD ir =  S e t t i n g s  . g e t l n s t a n c e  ( ) .  g e t P r o p e r t y  ( "WORKING_DIR"
)

2 com pD ir + =  S e t t i n g s  . g e t l n s t a n c e  ()  . g e t P r o p e r t y ( "  XML_DIR" ) ;
F i l e  c o m p o n e n t D i r e c t o r y _  =  new F i l e  ( c o m p D i r ) ;

The ComponentFactory makes use of the open source JDOM API7 which pro­

vides a much more “Java-centric” view of XML documents than the W3C Document 

Object Model (DOM). It provides, among other things, list-based access to nodes 

in a parsed XML tree. JDOM can use a number of XML parsers but the one used 

here is the open source Xerc.es8 Java parser, part of the Apache XML Project.

An example of ComponentFactory use to return a set of components parsed 

from the XML files contained in the “component” directory can be seen in the code 

below.

V e c t o r  c o m p o n e n t s .  =  new V e c t o r  ()  ;
2 f a c t o r y .  =  new C o m p o n e n t F a c t o r y  ()  ;

w h ile  (! f a c t o r y _.  a l l C o m p o n e n t s L o a d e d  ()  ) {
4 c o m p o n e n t s .  . add  ( f a c t o r y . ,  g e t N e x t C o m p o n e n t  ()  ) ;

_}_____________________________________________________________________________________

Each XML definition complies with the standard document format, section 4.4.2, 

the ComponentFactory uses the XML parser and the JDOM API to retrieve values 

for parameters from the document and sets them in an internally created proxy 

object. Currently the factory handles one type of proxy, SimpleProxy, with multiple 

execution models. If the proxy model were to be extended, then the beauty of a 

factory model solution is th a t there is no need to change any code in the application 

apart from inside the factory itself.

The preface, port and help tag sections have a similar structure for all compo­

nents. Preface values are assigned as direct attributes of the proxy object, port and

7 http ://w w w .jdom .org
8 h t t p : //x m l. apache. o rg /x e rc e s - j / in d e x .html
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help values are represented by Abstract Port implementations Inport, Outport 
and SimpleHelp objects respectively. These objects are simply Java class repre­

sentations of the XML component data together with “setter” , “getter” and utility 

methods. The objects are created with the values from the XML interface and added 

as attributes or “sets” of attributes to  the proxy object.

The final section of tags represent the execution definition. Depending on 

the values of these tags the ComponentFactory will create objects from different 

implementations of the Executionlnterf ace. As more execution models are added 

to the system, this section of the factory object can be extended to include these 

new implementations. For instance in chapter 7 a new execution model that uses 

CORBA is added, the Executionlnterf ace implementation for this model is in a 

class called ActionFactoryExecution. The ComponentFactory currently supports 

three execution type tag values.

< ex ecu tio n  id=" s o f t w a r e  " type=" b y t e c o d e  "> 

which causes the JavaExecution class to be used

< e x e c u t i o n  i d = "  s o f t w a r e " t y p e = " b y t e c o d e " v a l u e = "  e x t e n d e d ">

which specifies ExtendedJavaExecution to  be used and 

< ex ecu tio n  id=" software " type=" corba">

which tells the factory tha t the execution model should be an instance of Action­
FactoryExecution.

4.6.2 Event Model

The execution of multiple components in the VCCE relies upon the framework 

knowing when the execution of any given component has completed. The framework 

starts components in a specific order but doesn’t monitor their progress directly. 

Each component makes use of the Observer design pattern, page 27, to notify all 

“interested” parties once its execution is complete.
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The main interested parties are:

• The scheduling system, so th a t it can complete dependencies in the task graph 

and execute the next component.

•  The SimpleVisualComponent which provides the GUI representation of a 

proxy object, so that it can provide user feedback about the state of execution. 

For this prototype visual components turn  from grey to red on completion of 

execution.

The VCCE project source contains a package called v c c e . event which contains 

two interfaces and a class which provide the functionality for the event mechanism. 

The E x e cu tio n P u b lish e rln te rf  ace is the producer interface that all classes which 

wish to publish execution events must implement. It contains three methods to: 

add listeners; remove listeners; and notify listeners of events.

public in te r fa c e  E x e c u t i o n P u b l i s h e r l n t e r f a c e  {
/ /  Add an execut ion  l i s t e n e r  to the implement ing  o b j ec t .  
public void a d d E x ec u t i o n Li s t en e r  ( E x e c u t i o n L i s t e n e r l n t e r f a c e  

l i s t e n e r  ) ;

/ /  Remove an e xecu t ion  l i s t e n e r  f rom the implement ing ob j ec t .  
public void r e mo veExecu t i onL i s t ene r  (

E x e c u t i o n L i s t e n e r l n t e r f a c e  l i s t e n e r )  ;

/ /  Not i f y  al l  i n t e r e s t e d  l i s t e n e r s  of  an execu t ion  event .  
public void n o t i f y E x e c u t i o n  () ;

}_____________________________________________________________________________________

Listing 4.14: Execution Event Publishing Interface

The E x e c u tio n L is te n e r ln te rfa c e  is implemented by all classes that wish to reg­

ister themselves to receive execution events, it contains a single method called by 

the event publisher.

public in te r fa c e  E x e c u t i o n L i s t e n e r l n t e r f a c e  extends Even tLi s t ener  
{
/ /  Method ca l l ed  by the execu t ion  event  p u b l i sh er  to n o t i f y  

the i mplement ing  ob jec t  of  an execut ion  event  ac t ion.  
public void  execu t ionPer fo r med  ( Execut ionEvent  e) ;

}
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Listing 4.15: Execution Event Listener Interface

The final class in the package is the ExecutionEvent class itself. This is a simple 

object that contains a reference to the sending source proxy from which the event 

came.

public c la ss  E x e c u t i o n E v e n t  exten d s E v e n t O b j e c t  {
2 / /  Construc tor  tha t  takes  the source of  the event  as i t s  only

p ar a me te r .
public E x e c u t i o n E v e n t  ( O b j e c t  s o u r c e )  {

4 su p er ( s o u r c e ) ;
}

6_}_____________________________________________________________________________________

Listing 4.16: Execution Event Class

Both the listener interface and the event class inherit from the Java event mechanism 

classes.

Since the event mechanism is designed to report the completion of compo­

nent execution, the implementation of the publishing interface is in the execu­

tion component. To be exact, the implementation is in an abstract class called 

AbstractExecution which implements Executionlnterf ace which in turn extends 

ExecutionPublisherlnterf ace. This abstract class implements some of the meth­

ods common to all execution components, including the event publishing mecha­

nism. The class has, as an attribute, a list of all registered listeners. It imple­

ments: the addExecutionListener method by adding the listener to the list; the 

removeExecutionListener method by removing the listener from the list; and the 

notifyExecution method by calling the executionPerformed method on all the 

listeners in the list.

Each concrete implementation of the Executionlnterf ace must call the in­

herited notifyExecution method from the abstract super class at the end of the 

execute method to “fire” the event mechanism. See the JavaExecution listing line 

18 on page 58 or ExtendedJavaExecution listing line 35 on page 61.

The implementation of the listener interface is in the two places specified at
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the beginning of this section. The internal scheduler implementation which needs 

to be notified on component execution is discussed in the next section, 4.6.3. The 

SimpleVisualComponent implementation of the executionPerf ormed method sets 

the background of the visual component to  red to signify to the user that execution 

on that component has completed.

4.6.3 Internal Task Graph Scheduling and Execution

Task graph scheduling within the VCCE revolves around Java implementations of 

the XML task graph from section 4.4.4. As with the component model implemen­

tation, an effort has been made to keep the design both flexible and extensible. To 

that end the implementation has an abstract base class with the common function­

ality and concrete implementations tha t can use different algorithms to execute the 

connected components.

The representation of a task graph is encoded in the abstract base class called 

AbstractExecutionGraph. This class consists of a collection of networked “nodes” 

represented by the class ExecutionGraphNode. The task graph class has methods 

common to all task graph implementations such as: add nodes, remove nodes, con­

nect nodes; and an abstract method, execute which starts the execution of the task 

graph. The implementation of the execute method is algorithm specific and is con­

tained in concrete classes. The class also contains some utility methods to return a 

node by its content and to return typed node iterators tha t are used to traverse the 

nodes in the graph.

ExecutionGraphNode is a “wrapper” class tha t represents a proxy component, 

see section 4.5.1. It provides the functionality for the parent/child relationships 

between components in a task graph. Each ExecutionGraphNode node maintains 

a list of parent nodes and child nodes. Nodes are added when connections are 

made between nodes in the encompassing task graph. This is shown in the method 

connectNodes in AbstractExecutionGraph which is called when a connection is 

made between two components on the user interface.
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public void c o n n e c t N o d e s  ( E x e c u t i o n G r a p h N o d e  p a r e n t ,  
E x e c u t i o n G r a p h N o d e  c h i l d )  {

2 p a r e n t  . a d d C h i l d  ( c h i l d  ) ;
c h i l d  . a d d P a r e n t  ( p a r e n t ) ;

<[}_____________________________________________________________________________________

As can be seen above, the parent node is added as a parent to the child and vice 

versa. In the ExecutionGraphNode implementation of these methods the nodes are 

added to the respective lists. The class also contains “delegation” methods that pass 

the method call straight through to the contained proxy component. These include 

methods to handle ports and execution, and utility methods that are used to check 

for the existence of descendants in the child list. The existence check is recursive, 

calling the check method in all children. This check is used in execution algorithms 

to check for the presence of loops in a graph.

4.6.3.1 Execution Graph: A Simple Scheduling Algorithm

A concrete implementation of the AbstractExecutionGraph is ExecutionGraph. 
This class contains a scheduling algorithm th a t takes a completed task graph and 

executes it. The algorithm can be seen in algorithm 4.1.

This algorithm uses a naive approach to scheduling the components for execu­

tion by analysing the connections between them and producing a linear execution 

order. This ordered list of components is then executed with the next node in the 

list being performed on notification of the previous node’s completion. This first 

scheduling algorithm makes certain assumptions: a single start point in the task 

graph; no cyclic relationships; no parallelism in the execution. Although limited, 

this algorithm works for simple task graph cases and is enough to test the function­

ality of the VCCE. Later chapters will expand this area and add new algorithms, 

but because of the design based on abstract classes and concrete implementations, 

new implementations of algorithms can be added to the framework without changing 

any other code.

The full implementation of the algorithm in the class ExecutionGraph can be
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s ta r t  <= starting node for taskgraph  
nodecount 4= number of nodes in taskgraph  
children  4= children of s ta r t  node 
for i =  0 to number of elements in children  -1 do 

add children  element at i to execution lis t  
end for 
i 4= 0
current <= element i in executionlist  
while number of nodes in execution list <  nodecount do 

children <= children of current  
for j  = 0 to number elements in children  do 

child <= children  element at j  
if child is not in executionlist th en  

add child to executionlist  
end if 
i <= i +  1
current <= element i in executionlist  

end for 
end while
for i =  0 to number of elements in execution lis t  do 

execute element i in executionlist 
end for

A lgorithm  4.1: Simple Scheduling Algorithm

seen in appendix B.1.7. Once the execution order of the components in the graph has 

been decided using the deriveOrderOf Execution method the components in the list 

are executed in turn by calling the execute method on each proxy. This execution 

algorithm uses the event mechanism, section 4.6.2, to trigger the execution of the 

next component in the list. In the abstract super class, AbstractExecutionGraph, 
the implementation for the addNode method adds a node to the task graph and 

registers the task graph class as a listener to the proxy component. See listing 4.17.

p u b l i c  E x e c u t i o n G r a p h N o d e  a d d N o d e ( P r o x y l n t e r f a c e  n o d e )  { 
E x e c u t i o n G r a p h N o d e  g r a p h N o d e  =  n u l l  ; 
g r a p h N o d e  =  new E x e c u t i o n G r a p h N o d e  ( n o d e )  ; 
node  . g e t E x e c u t i o n ( )  . a d d E x e c u t i o n L i s t e n e r  ( t h i s  ) ; 
n o d e s .  . a d d  ( g r a p h N o d e ) ; 
r e tu r n  g r a p h N o d e  ;

Listing 4.17: addNode Method from AbstractExecutionGraph
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When a component has executed it calls the n o tify E x ecu tio n  method which in turn 

calls the execu tionP erf ormed method on the object that is registered as a listener. 

The implementation of this method is abstract in the A bstractExecutionG raph 

class with the implementation delegated to concrete subclasses. In ExecutionGraph 

the method is used is used to trigger the execution of the next component in the 

ordered list. See listing 4.18.

public void e x e c u t i o n P e r f o r m e d  ( E x e c u t i o n E v e n t  e v t ) { 
e x e c u t i o n I n d e x _ + + ;  
i f  ( h a s M o r e T o E x e c u t e  () ) {

T r a n s f e r P o r t D a t a  () ; 
e x e c u t e N e x t  () ;

}
}_____________________________________________________________________________________

Listing 4.18: executionPerform ed Method Implementation in ExecutionGraph

4.7 Summary

This chapter has outlined some of the im portant design and implementation ideas 

for the prototype PSE used throughout this thesis. It has explained the component 

model from the XML interface definition to the proxy component and execution 

model. Also shown was the mechanism by which components are loaded into the 

VCCE and how instantiated components are scheduled and executed using the in­

ternal scheduling mechanism with a simple scheduling example.

Two simple initial prototypes were discussed. The early prototypes were used 

to examine programming techniques and design options. Some ideas from the early 

prototypes have been carried through to the final design but prototype code, follow­

ing sound software engineering principles, was discarded.

The remainder of the thesis is concerned with the use of a PSE as opposed to the 

design. Further design and architecture ideas are discussed in the post-related work 

and conclusion chapters (chapters 9 & 10) together with some implementations that 

have come about since the end of this work. The next chapter, takes the prototype
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VCCE and starts to use it with a simple “use case” .
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CHAPTER 5

Simple Solver Component

This chapter covers the first use case for the prototype PSE, a simple solver compo­

nent. As an initial demonstrator for the prototype VCCE, BAE SYSTEMS provided 

a relatively small two dimensional boundary element solver written in Fortran 77. 

Because of the relatively straightforward nature of this code it was possible to de­

velop different versions of components tha t could provide the functionality of the 

code within the prototype PSE. Using different granularities of wrapping techniques 

and language conversion, enabled experimentation and provided comparisons be­

tween the native Fortran version and various other implementations. It would not 

be practical to perform experiments of this nature with the very much larger codes 

that are covered in chapter 7.

5.1 BE2D Solver

The boundary element code described in this chapter is called BE2D. The code is 

a two dimensional boundary element simulation code for the analysis of electro­

magnetic wave scattering. The main inputs to the program are a closed two dimen­

sional contour and a control file defining the characteristics of the incident wave.
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The contour file consists of a series of x, y coordinate pairs and is generated by a 

separate mesh generation program. The control file is a series of property values for 

the wave and consists of values for the wave frequency in Hertz, the wave direction 

in radians and a complex number representing the amplitude and phase. For the 

computation of the matrix elements, the code uses a two dimensional formulation of 

Ran- Wilton-Glisson elements [96]. The outer integrations use one-point quadrature, 

while the inner integrations use two-point quadrature. A direct LU decomposition1 

solver is used for computing the field.

The output, once the code has executed, takes the form of two files, one that 

represents a Radar Cross Section (res) and the other a Current (cur). Generally in 

order for an engineer or scientist to be able to use these files they must be viewed 

in a graphing tool such as GNUplot [120] or similar.

To make the code easier to use within the PSE and also to provide some run­

time speed experiments between component granularities and versions, the code was 

converted using several different techniques outlined in the remainder of the chapter.

To use the BE2D code within the VCCE would either require wrapping both 

the BE2D code itself and the simple mesh generation program as components, or 

assumptions need to be made about the presence of the required input files. Where 

these assumptions have been made they are indicated.

5.1.1 Simple W rapped Fortran Version

The simplest way to execute Fortran or any other native code from within a Java 

program such as the VCCE is to use Java’s built in Runtime Execution mechanism.

The runtime execution mechanism allows a Java program to run an executable 

program as if that program were executing from the command line, calling the

1LU decomposition (n.) a technique where a matrix A is represented as the product of a lower 

triangular matrix, L, and an upper triangular matrix U. This decomposition can be made unique 

either by stipulating that the diagonal elements of L be unity, or that the diagonal elements of L 

and U be correspondingly identical. [53]
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executable with any required input arguments as parameters. The major advantage 

of this over other forms of wrapping techniques, is that the source code is not needed, 

the binary executable program. The runtime execution mechanism also gives the 

programmer the ability to trap the command line standard output and standard 

error message displays so that the calling program can display information to the 

user or recover from errors in the native code execution.

The execution of the BE2D code is very simple as it takes no parameters it looks 

for the model data file called “model” in the running directory. For example:

Process  myProcess = Runtime . getRunt ime ( ) .  exec ( "be2d" ) ;

The Process object can be used in Java: to block the Java program execution until 

the native code has finished; to trap “standard out” and “standard error” messages 

from the operating system. In most programs, including these components, this 

function call is surrounded by code that blocks the Java program and traps the 

error and output messages and does something sensible with them. For example in 

the simple version:

P r o c e s s  p r o c e s s  =  R u n t i m e  . g e t R u n t i m e  ( ) .  e x e c  ( e x e c S t r  ) ;

/ /  Process output
B u f f e r e d R e a d e r  s t d o u t .  =  new B u f f e r e d R e a d e r  (new I n p u t S t r e a m R e a d e r  ( 

p r o c e s s  . g e t l n p u t S t r e a m  () ) ) ;
/ /  Do something with the s tandard  output  
s t d o u t . c l o s e ( ) ;

/ /  Process Errors
B u f f e r e d R e a d e r  e r r o r  =  new B u f f e r e d R e a d e r  (new I n p u t S t r e a m R e a d e r  ( 

p r o c e s s  . g e t E r r o r S t r e a m  ()  ) ) ;
/ /  Do something with the s tandard  errors  
e r r o r  . c l o s e  () ;

/ /  Wait f o r  the na t ive  process  to f i n i s h  
t r y  {

p r o c e s s  . w a i t F o r  ()  ;
}
c a tc h  ( I n t e r r u p t e d E x c e p t i o n  e )  { 

e . p r i n t S t a c k T r a c e (  S y s t e m  . o u t ) ;
}
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Using this simple direct execution mechanism both the BE2D  solver binary and the 

corresponding mesh generation program are wrapped as separate components in the 

VCCE.

The execution of the binaries is handled by the component CommandLineExec- 

u tio n , listed in Appendix B, page 174. This component is a generalised component 

that takes a system specific command line string including optional parameters and 

executes it using the code in the example above. To create a specific instance of the 

CommandLineExecution component, that will run the BE2D  solver and the mesh 

generator codes, a component definition is created in the XML-based language, as 

specified in section 4.4.2. The component definition can be seen in listing 5.1.
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<?xm l version=" 1 . 0 " ?>
<PSE>

< p r e f a c e >
Cnam e a l t = " n a t i v e B e 2 D "  i d = " b e 2 d 0 1  " > N a t i v e  B e2D < /nam e>  
< p s e —t y p e > G e n e r i c < / p s e —t y p e >
< h i e r a r c h y  i d = " p a r e n t  " x /  h i e r a r c h y >
C h i e r a r c h y  i d = "  c h i l d " x /  h i e r a r c h y >

< / p r e f a c e >
< p o r t s >
< i n p o r t n u m > l < / i n p o r t n u r n >
< o u t p o r t n u m > 2 < / o u t p o r t n u m >

C i n p o r t  i d = " l "  p a r a m e t e r ^ "  Command" t y p e = "  s t r i n g " v a l u e r " /  
h o m e / p r o j  e c t / f o r t r a n / b e 2 d / e l l i p s e / b e 2 d " >

< / i n p o r t >
C o u t p o r t  i d = " l "  p a r a m e t e r —" D a t a F i l e " t y p e = " f i l e "  v a l u e = " /  

h o m e / p r o j e c t / f o r t r a n / b e 2 d / d a t a / r c s ">
< / o u t p o r t >
< o u t p o r t  i d = " 2 "  p a r a m e t e r = " D a t a F i l e  " t y p e = " f i l e "  v a l u e —" /  

h o m e / p r o j  e c t / f o r t r a n / b e 2 d / d a t a / c u r ">
< / o u t p o r t >

< / p o r t s >
< e x e c u t i o n  i d = "  s o f t w a r e " t y p e = " b y t e c o d e " v a l u e r " e x t e n d e d " >  

< t y p e  i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l " / >
C t y p e  i d = " c l a s s "  v a l u e = " c o m . b a e s y s t e m s . c o m p o n e n t s .

C o m m a n d L i n e E x e c u t i o n " / >
< t y p e  i d = " s o u r c e "  v a l u e = " f i l e : / / / h o m e / c o m p d a t a / C a r d i f f /  

p r o j  e c t / s r c / c o m / b a e s y s t e m s / c o m p o n e n t s /  
C o m m a n d L i n e E x e c u t i o n . j a v a " / >

< t y p e  i d = " c l a s s p a t h "  v a l u e —" / h o m e / c o m p d a t a / p r o j e c t /  
c l a s s e s " / >

< /  e x e c u t i o n >
< e x e c u t i o n  i d = " p l a t f o r m " >
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<type id=" java"  v a l u e = " j d k l . 2 " / >
< /  execut ion>
<help c o n t e x t = " a p i d o c ">

< h re f  name="f i l e : / / / home/ scmmss/proj  e c t / d o c s / b e 2 d d o c s /  
i n d e x . h t m l " 

value="NIL" />
< /he l p>

</PSE>

Listing 5.1: The XML Component Definition for the BE2D Solver

The key sections of the component definition are:

• The command line string which specifies the path to the executable that 

the component will call. This is passed as a named input parameter to the 

CommandLineExecution component.

< i n p o r t  i d=" l"  parameter=" Command" t y p e = " s t r i n g " va lue=" /  
h o m e / p r o j e c t / f o r t r a n / b e 2d/ e l l i p s e / b e 2d">

2 < / i npor t>

• The output data files specified as file paths. These are defined as named output 

parameters.

C o u t p o r t  i d = " l "  p a r a m e t e r ^ "  D a t a F i l e  " t y p e = " f i l e "  v a l u e = " /  
h o m e / p r o j  e c t / f o r t r a n / b e 2 d / d a t a / r c s ">

2 < / ou tpor t >
< o u t p o r t  i d = " 2 "  p a r a m e t e r ^ "  D a t a F i l e " t y p e = " f i l e "  v a l u e = " /  

h o m e / p r o j e c t / f o r t r a n / b e 2 d / d a t a / c u r ">
4 < / ou t por t>

• The class name of the component th a t the proxy will execute, together with 

some execution details. It can be seen from line 1 that the execution model is 

software with type bytecode and value extended. From section 4.6.1, this causes 

the ComponentFactory to instantiate the ExtendedJavaExecution model, sec­

tion 4.5.2.2, which will execute the component in the same JVM and handle 

the input and output parameters.

<execut ion  i d = " s o f t w a r e " t yp e= " by te c od e" value=" ex t ended">
2 <type  i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l "/>
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Ctype id=" class" value="com.baesystems.components. 
CommandLineExecution" />

4 </execution>

With codes wrapped as components in this fashion there is no configuration from 

within the VCCE. All the variables are set in the XML component files. The use of 

all of the components in this chapter is explained in section 5.3. In the next section 

a different version of the BE2D code converted from Fortran into Java is considered.

5.1.2 A Java Version

With any component-based system, whether computer-based or not, it is necessary 

for the components and the framework to have a common language. Where there 

are different languages, as for example with the BE2D code written in Fortran and 

the VCCE framework written in Java, mechanisms such as the simple wrapper in 

the previous section can be used to provide a common point of reference.

For new components it is generally advisable to write the component in the 

same language as the framework unless there is a good reason not to, i.e. speed of 

execution. For small or well understood components it is often quicker and easier 

to rewrite the algorithm in the language of the framework. The BE2D solver code, 

although not very small, was small enough that it would be worth converting for 

comparison cases, where larger codes would require too much effort.

To convert the Fortran code into Java, the use of automated language converters 

such as Fortran to Java converters were considered but abandoned fairly quickly at 

the time because of a number of factors. These included the fact that most of the 

converters had problems with the lack of support for complex numbers which are 

a major part of BE2D and a large number of scientific codes. Complex numbers 

caused a number of problems in converting the code, not least because of the fact 

that they are primitive types in Fortran, but are not even supported in the current 

standard Java API. A third party implementation of complex numbers for Java was 

found and used, Visual Numerics JNL [112].
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Complex number arithmetic proved to be more than a straight translation from 

the Fortran code to its Java equivalent. As complex numbers in Java are objects and 

Java does not yet support operator overloading, the complex number objects have 

to use their operator methods, add, multiply, subtract and divide. These methods 

are either unary or binary, taking a single argument which is used to modify the 

object calling the method or taking two arguments on a static class method that 

creates a new result without any modification side effects. For example the binary 

divide method:

C om plex a =  new  C om plex  ( 0 . 0 ,  1 . 0 ) ;
2 C om plex b =  new  C om plex  ( 0 . 0 ,  2 . 0 ) ;

C om plex r e s u l t  =  C om plex  . d i v i d e  ( a , b )  ;

returns a new Complex object result, as opposed to the unary divide:

C om plex a =  new  C om plex  ( 0 . 0 ,  1 . 0 ) ;
2 C om plex b =  new  C om plex  ( 0 . 0 ,  2 . 0 ) ;

C om plex  r e s u l t  =  a . d i v i d e  ( a , b )  ;

where the method modifies the object a with the result of the division and assigns a 
to result. In other words in the first case there are three complex number objects 

the two original numbers and a new one which contains the result of the calculation. 

In the second two complex number values result from the calculation, discarding the 

original value of a. Thus calculations involving more than an arbitrary number of 

parameters become far more complicated in Java than their Fortran equivalents.

For example the Fortran code snippet

i n t e g e r  iap , iam , ian
complex caa , cax , cay
d im en s ion  caa ( iam,  iam) , cax ( iam) , cay ( iam)  , iap (iam)
i n t e g e r  i
complex clsum
clsum =  czero
c a x ( i )  =  ( c a y ( i a p ( i ) )  — clsum) /  c a a ( i a p ( i ) >0

becomes the Java code
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C om plex [ ] [ ]  c a a ,  C om plex [] c a x ,  C om plex  [] c a y ;  
i n t  [] i a p ,  i n t  i a m ,  i n t  i a n )
C om plex  c l s u m ;
c l s u m =  new C o m p l e x ( c z e r o  ) ;
cax  [ i ] =  C om plex . d i v i d e  ( C om plex  . s u b t r a c t  ( c a y  [ i a p  [ i ] ] , c l s u m )  , c a a  

[ i ] [ i a p [ i ] ] )  ;_________________________________________________________________

As can be seen, the Fortran code is much easier for an engineer to understand 

when compared to the much more obscure, for this type of programming, language 

of the Java code snippet. The Fortran version of the calculation uses standard 

mathematical notation and can chain arbitrary numbers of operator/operand pairs 

together. The Java version is limited by the fact that the operator methods op­

erate on pairs of operands only, chaining of arbitrary length calculations involves 

bracketing each of the methods separately.

The translation of the Fortran code to Java, although time consuming, followed 

a pattern. The source for the Fortran code was broken into a number of functional 

file sections that were mirrored in an Object Oriented fashion in the Java objects.

The Fortran code consists of the following source files: 

be2d.f: The main control program.

bessyO.f, bessjO.f: The respective routines for the yO Bessel and the jO Bessel 

functions used in the program. These were taken from Numerical Recipes [92].

inputm .f, inputc.f: The routines for reading the model and control data files.

outcur.f, outrcs.f: The output routines for the res and cur result data.

fill.f: Routine to populate the matrix from the input data.

lu.f: The matrix decomposition and solve routines.

dutil.f, hank.f, sing.f, tutil.f: Various utility and diagnostic functions.

The Java version has a similar structure but transposed to the object world. For the 

standalone version there is a class called Be2DTest th a t coordinates the solver func­

tion. Two classes Inputm and Input c read the model and control files respectively
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and return data objects that implement two interfaces, as is Java “best practise” . 

The model interface can be seen in B.2.2, page 175 and the control interface in B.2.3, 

page 176.

Be2DTest uses the data from the model and control objects, referenced through 

their interfaces to fill the matrix using a static method of the class M a tr ix F ill, 

M a t r i x F i l l . f  i l l  (). The LU decomposition and LU solve functions are again static 

functions, this time of the class LUSolver, LUSolver. lud ( )  and LUSolver. l u s O  

respectively. Finally the output is generated and written to two files in the cur­

rent directory, cur and res, using the methods to output Out Cur . wr i t e() and 

OutRcs.wri te(). The Bessel functions and other utility functions are coded as 

static functions of the M a tr ix F ill class.

This particular modular design for the Java version of the code was chosen so 

that as well as giving us a standalone Java version, it would be easy to incorporate 

the functionality into a component in the VCCE. In addition, separating the I/O  

functionality into their own classes allows for the possibility of incorporating a com­

ponent that has Java I/O  for ease of use within the VCCE and and native execution 

for speed of calculation. To include the native code directly would require two levels 

of wrapping, first providing C functions that use the original Fortran solver code, 

and then via Java Native Interface (JNI) calls that call the C functions.

The initial standalone version of the Java code took 24.3 seconds but the ex­

ecution time was improved to 15.1 seconds, by profiling the calculations the code 

was performing. By replacing the static binary complex number operators by the 

unary method wherever there was no side effect problem with modifying the original 

number, 9 seconds were taken off the execution time. This is almost entirely down 

to the fact that there are substantially less “new” , object creation operations in 

the code. Further optimisation could almost certainly be achieved through further 

investigation, but that is for future work.

Within the VCCE the BE2D components are executed using one of the execution 

proxy classes outlined in chapter 4. As with previous examples, specific instances of 

components are created using a generalised proxy interface and an XML properties
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file. In this case, either the JavaExecution or ExtendedJavaExecution proxy can 

be used. These proxies are used to run Java-based components within the VCCE. 

The decision on which one to use, since they both perform the same functionality, 

is based on whether to run the component in the same JVM or not. See section 4.5.

The component definition file for the Java-based BE2D  has a similar structure 

to the one for the “native” wrapper version in code segment 5.1. The important 

differences, apart from the obvious naming section which is ignored here, are:

• The inputs for this component are file-based, hence the definitions:

< i n p o r t  i d = " l "  p a r a m e t e r ^ "  c o n t r o l " t y p e = "  s t r e a m "
2 v a l u e = " N I L " >

< h r e f  n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /  
b e 2 d C o m p o n e n t s / c o n t r o l "  v a l u e = " N I L " / >

4 < / i n p o r t >
C i n p o r t  i d = " 2 "  p a r a m e t e r = " m o d e l " t y p e = "  s t r e a m "  v a l u e = " N I L " >  

e < h r e f  n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /  
b e 2 d C o m p o n e n t s / m o d e l " v a l u e = " N I L " / >

< / i n p o r t >

• The outputs are are also file-based:

< o u t p o r t  i d = " l "  p a r a m e t e r ^ "  c u r  " t y p e = "  s t r e a m "  v a l u e = "  NIL "> 
2 < h r e f  n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /  

b e 2 d C o m p o n e n t s / c u r " v a l u e = " N I L " / >
< / o u t p o r t >

4 < o u t p o r t  i d = " 2 "  p a r a m e t e r ^ " r e s " t y p e = " s t r e a m "  v a l u e = " N I L " >  
< h r e f  n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j  e c t / s r c / b e 2 d /  

b e 2 d C o m p o n e n t s / r c s " v a l u e = "  N I L" / >  
e < / o u t p o r t >

• The execution section lists the class name for the component to run and also 

some housekeeping details such as JDK version, source code location and class­

path. In this case the JavaExecution is being used model to execute the 

components.

< e x e c u t i o n  i d = "  s o f t w a r e  " t y p e = " b y t e c o d e ">
2 < t y p e  i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l " / >

C t y p e  i d = " c l a s s "  v a l u e = " b e 2 d . b e 2 d C o m p o n e n t s . B e 2 D T e s t " / >
4 < t y p e  i d = " s o u r c e "  v a l u e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r e /  

b e 2 d / b e 2 d C o m p o n e n t s / * . j  a v a "  / >
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C t y p e  id="classpath" value="/home/scmmss/project/classes;/ 
home/scmmss/local/3rdPartyJava/JNL/Classes"/>

e < / e x e c u t i o n >
< e x e c u t i o n  id="platf orm"> 

s C t y p e  id="java" v a l u e = " jdkl.2"/>
< / e x e c u t i o n >

Prom these details the proxy component is able to create an instance of the 

Be2DTest class and execute it. Taking input from the specified files and writing the 

output to the output files. A comparison between this mechanism and the others in 

this chapter follows at the end of the chapter.

5.1.3 CORBA W rapped Fortran Version

The two main industrial wrapped codes described in chapter 7 use CORBA as a 

communication mechanism. As a prototype and test case before using the large 

codes, which due to access restrictions and hardware requirements can only be run 

on machines inside BAE SYSTEMS offices, the BE2D native Fortran executable 

was also wrapped as a CORBA component.

The Common Object Request Broker Architecture (CORBA) [106], is an ob­

ject oriented, distributed computing framework. It is language independent with 

distributed object interfaces specified in a common Interface Definition Language 

(IDL). Systems built with this technology are split into client and server side ob­

jects with object “stubs” on both sides. Methods are invoked by the client side 

object discovering a reference to the server side object through a registry and then 

calling the method through the use of “helper” code.

To wrap the BE2D code there has to be a server side CORBA object that 

executes the solver and a client side object that is represented as a proxy within 

the VCCE. The proxy calls the method on the remote server object when it is 

executed within a running task graph. The server object is within a running CORBA 

server and waits for a message from the component client on the VCCE to start the 

execution of the solver. Once the solver has finished execution, the server runs some
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post processing on the res and cur files using the Awk text processing language to 

format the files. The URL location of the files is then returned so the client can 

view the data using a graph viewer that can handle H TTP  streams.

The CORBA component interface is specified in IDL by the code below

module Be2dComponent {
2 i n t e r f a c e  Run {

s t r i n g  runBe2d() ;  
} ;

};

This simple interface has a single method that runs the solver code and returns 

the URL. Prom this interface, the client and server side “stub” code skeletons are 

generated and then have to be implemented with code to actually execute the solver.

The client component obtains a CORBA reference to the remote server object. A 

named port is used to discover the NamingService registry and using that a generic 

CORBA object is created. Then using the helper code the generic object is resolved 

to an instance of the remote BE2D object. Executing the remote object method is a 

call on the resolved local object which returns a URL to the solver data. The VCCE 

client component then displays the data, accessed via the returned URL. This can 

be seen in code snippet below.

P r o p e r t i e s  p r o p s  =  new P r o p e r t i e s  () ;
2 p r o p s . pu t ■("o r g . omg. CORBA. O R B I n i t i a l P o r t " , " 1 0 5 0 " ) ;

ORB o r b  =  ORB. i n i t  ( a r g s  , p r o p s  ) ;
4 o r g  .omg.CORBA. O b j e c t  o b j R e f  =  o r b  . r e s o l v e _ i n i t i a l _ r e f e r e n c e s  ( " 

N a m e S e r v i c e ")  ;
N a m i n g C o n t e x t  n c R e f  =  N a m i n g C o n t e x t H e l p e r  . n a r r o w  ( o b j R e f ) ; 

e N am eCom ponent nc =  new N am eC om ponent ( "Run"  , ;
Nam eCom ponent p a t h  [] =  { n c } ;

8 Run r u n R e f  =  R u n H e l p e r  . n a r r o w  ( n c R e f  . r e s o l v e  ( p a t h ) )  ;
u r l S t r i n g  =  r u n R e f . r u n B e 2 d  () ; 

io B e 2 d C l i e n t  be2d  =  new B e 2 d C l i e n t  ( u r l S t r i n g  ) ; 
be,2 d . show () ;

The server side object has to be started before the client component can call it. 

In the server class, the main method that gets called when the class is executed, 

first uses the named port to obtain a reference to the NamingService registry. The
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class that implements the IDL interface, Be2dComponentServant is then bound to a 

NamingContext object within the registry so that it can be discovered by the client 

code.

2

4

6

8

10

12

14

The code inside this method is the same as the simple native wrapper code in section 

5.1.1. It uses Java’s Runtime .getRuntim eO .execO mechanism to execute first the 

solver code and then two post processes that format the two output files, suitable 

to be returned via HTTP URLs. The directory that contains the files is returned 

as a string representation of the URL.

As the CORBA implementation is hidden behind the component interface, the 

VCCE uses the generic execution component, ExtendedJavaExecution, to run the 

component. The XML component definition is the same as the definition for the 

Java-based BE2D solver, in section 5.1.2, apart from the classname of the component 

to run, so is not reproduced here.

This initial experiment with CORBA wrappings for components within the 

VCCE allowed the testing of ORB implementations, enabled experiments with block-
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P r o p e r t i e s  p r o p s  =  n e w P r o p e r t i e s  () ;
p r o p s . p u t ( " o r g . omg. CORBA. O R B I n i t i a l P o r t " , " 1050 " ) ;
ORB o r b  =  ORB. i n i t  ( a r g s  , p r o p s )  ;
B e 2 d C o m p o n e n t S e r v a n t  b e 2 d C o m p o n e n tR e f =  new  B e 2 d C o m p o n e n t S e r v a n t  

0 ;

o r b  . c o n n e c t  ( b e 2 d C o m p o n e n t R e f ) ;
o r g  .omg.OORBA. O b j e c t  o b j R e f  =  o r b  . r e s o l v e _ i n i t i a l _ r e f e r e n c e s  ( " 

N a m e S e r v i c e  ")  ;
N a m i n g C o n t e x t  n c R e f  =  N a m i n g C o n t e x t H e l p e r  . n a r r o w  ( o b j R e f ) ; 
N am eCom ponent nc =  new  N am eC om ponent( "Run" , " " ) ;
N am eCom ponent p a t h  [] =  { nc } ; 
n c R e f . r e b i n d  ( p a t h  , b e 2 d C o m p o n e n t R e f ) ; 
j a v a  . l a n g  . O b j e c t  s y n c  =  new j a v a  . l a n g  . O b j e c t  () ; 
s y n c h r o n i z e d  ( s y n c ) { 

s yn c  . w a i t  () ;
}

The Be2dComponentServant class that the server code uses to delegate the exe­

cution of the BE2D solver implements the method.

S t r ing runBe2d() ;
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mg calls and return values, and generally provided a learning curve for using CORBA 

with a relatively small and lightweight code.

5.2 The Graph Viewer Component

Visualisation of data is a core requirement for a PSE, as specified in use case 2.5.1 

on page 17. The VCCE is no different and for the visualisation of the data from the 

BE 2D component, a graph plotting component is needed. Rather than spending 

too much time writing a graph plotting library from scratch, a third party library 

JChart [91] was used. A component which uses the library was written which can 

be used through the proxy mechanism and an XML component definition. A screen 

shot of the graph plotter in use can be seen in figure 5.2

5.3 Using the PSE

When the PSE is started, the VCCE first checks in the component directory or 

directories for all defined components, in XML files. The directories that the appli­

cation examines are defined in an application properties file. The XML component 

definitions are parsed, the proxy components created and added to the component 

tree ready to be selected by the user, as illustrated in figure 5.1.

To assemble a set of components into an executable task graph, the user simply 

selects a component from the tree with the mouse, and clicks on the scratch pad 

to the right of the screen. This intuitive selection process has the same features 

as many visual programming or windows-based environments, such as mouse based 

selection and “drag and drop” . Once the desired components have been selected 

and placed on the scratch pad, they can be connected together using the connection 

menu button. The user clicks this button then selects two components, parent first 

then child, the PSE then establishes a data flow connection from the parent to the 

child. Repeating this process allows the user to connect the components together
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Visual Component Com position Environment

P  PSE C om ponents 

Q  be2d

Q  BE2DAFMesh 

Q  BE2DAFRCS 

Q  BE2DAFStore 
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Q  cufView 

Q  dummy 

0  rcSVIew 

D  Loop

m ®  i s i i B

BE2D A FW ave
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Figure 5.1: VCCE with BE2D Task Graph

into a task graph. The final task the user has to perform before executing the graph 

is to assign a start node or nodes. A task graph can have more than one start point, 

if there are two initial input generating components for instance. The assembled and 

connected BE2D task graph is illustrated in figure 5.1. To execute the completed 

task graph the user simply presses the start button to initiate the simulation. The 

solver is combined with the graph viewer from section 5.2 and the output generated 

from the code can be seen in figure 5.2.

5.4 Component Instantiation and Graph Execution

Upon being dropped on the “scratch pad” the component is instantiated and the 

in s t a n t i a t e () method is called. What this method actually does is dependant on 

the component programmer. For simple Java components this method will normally 

be a no operation method. In the case of CORBA components, such as the simple 

CORBA BE2D component described in 5.1.3, the method is used to resolve the 

references to the CORBA ORB and the remote CORBA component. Because this
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Figure 5.2: Graph of BE2D Solver Output

method runs in a separate thread within the VCCE program, this CORBA “hand­

shaking” can be carried out behind the scenes while the user continues to build the 

task graph. In this way the possibly time consuming initialising code is done before 

the user actually executes the task graph and the whole process appears, to the user, 

to be faster.

When a task graph is executed, each of the components in the graph is told to 

execute in turn by the scheduler calling the execute () method, starting with the 

component or components that have been identified by the user as the starting point 

for the graph. After a component has executed it sends back an event to the VCCE 

to say that it has finished executing. At this point the VCCE will transfer the 

output parameters from the completed component to the input parameters of the 

next component to be executed and then call that component’s execute () method.

5.5 Summary and Conclusions

This chapter has demonstrated three different ways in which a code written in For­

tran can be used as a component within a PSE. From the most straightforward

88



5.5 Summary and Conclusions

mechanism where the code is kept in its original binary executable format and ex­

ecuted using Java’s ability to execute external programs; through a version of the 

code converted into Java as a pure Java component in the PSE; to the final ver­

sion where the executable is wrapped as a server side CORBA object with a client 

side component that calls the server. Each of the methods has its advantages and 

disadvantages.

The simple execution method is the simplest method of including a code as a 

component. It is also the fastest in terms of execution speed. The main disadvantage 

is the inflexibility of this solution, the code needs the input files to be in a set location 

and the output is generated as a file in a set location. In order to make use of this 

component, file readers and writers will need to be built to act as the input and 

output ports for the code.

The native Java version of the code is the most flexible component, it is easy to 

provide different input and output mechanisms such as Streams or Sockets. However 

it relies on access to the original source code. It is time consuming to convert even 

a small code such as this from one language to another, and Java’s lack of primitive 

complex number support makes the code hard to write and relatively slow to execute.

The CORBA wrapped code is useful because it provides a distributed client 

server architecture which is useful for times when a code may be sensitive and only 

allowed to be run on certain computers.

Experimenting with the relatively simple BE2D code has highlighted some useful 

ideas for the far more complicated 3D codes to come in chapter 7.
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CHAPTER 6

Control and Loop Components

This chapter discusses another “use case” for the VCCE. A different way of using 

the included codes, known as “parameter runs” is shown. Here the user performs 

a number of consecutive executions of a solver while perturbing the input param­

eters to examine the effect on the solution. Typically this technique is used as a 

manual domain space search or optimisation. This chapter describes extensions to 

the prototype and definition language that include simple loop controls to allow 

users to perform parameter runs automatically on component based solver codes. 

A new scheduling algorithm is also needed to handle the extensions. Finally the 

PSE mechanism is compared to the traditional scripted methods for performing 

parameter runs, illustrating the flexibility and ease of use that the VCCE provides.

6.1 The Use Case

The second “use case” , section 2.5.1, defines:

Performing parameter runs on existing or new applications, to study the 

effect of parameter ranges on the result. Here an application code is run
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multiple times in succession with perturbed input parameters in order 

to try and find a particular solution for a problem.

Parameter runs are a very common task in scientific and engineering computing. In 

the case of an engineering design and manufacturing company, such as the industrial 

partner in this work BAE SYSTEMS, an example of this problem could be seen 

with the simple BE2D code from chapter 5. The solver is an electro-magnetic wave 

scattering simulation and can be used to simulate RADAR waves reflecting off the 

surface of an aircraft. One of the input parameters is the angle of incidence of the 

wave, which could be used to simulate the difference in wave scattering as an aircraft 

flies over the RADAR system. As the aircraft approaches at a distance, the angle 

of incidence approaches 90°, overhead, from 0°, the horizon, and then moves off 

toward 180°, the opposite horizon. A parameter run would be used to automatically 

perturb the angle of incidence input parameter from 0° to 180° in defined increments 

for each solver execution and store or display the results for examination.

6.2 Control Components

Until this point the work in this thesis has only been concerned with simple work 

flows in the prototype PSE. Execution has flowed from single or multiple start points 

down to single or multiple end points. Execution branches have been included where 

either multiple inputs enter a component, flow joins, or a component has multiple 

outputs, flow splits. Here the concept of control components is introduced, these 

allow us to perform flow control operations. These components can be thought 

of in programming construct terms, such as for...next loops or if...then branches. 

A control construct is a user defined section of work flow that allows the user a 

certain degree of control over how that work flow executes. These can allow selective 

execution of sub-sections of work flow through conditional branch constructs, or 

repeated execution of sub-sections through looping constructs.

The control components discussed here, work in a similar manner to the tradi­
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tional “for...next” loop in most programming languages, stepping through a series of 

values from a start value until an end value is reached incrementing by a set value. 

At each iteration of the loop the PSE checks tha t the halting condition has not been 

reached and then passes the current loop value to the connected inport of the next 

component.

Conditional branching constructs, although im portant are not considered here 

as they are out of the scope of the current user requirements. They are mentioned 

briefly in the future work, chapter 10. The control construct discussed here is the 

loop component.

6.3 Loop Constructs

As in a traditional, non-visual, program languages, there are different types of loop 

in VCCE. One loop is discussed here, a simple iterative loop where the loop ex­

ecutes itself and the sub-work flow a fixed number of times over a set value with 

a set increment value until a fixed halting condition is reached. In chapter 8 a 

more complicated constraint-based loop construct, capable of non-linear iteration is 

discussed.

When the control components are introduced into a task graph, by connecting 

them to a suitable component, they generate one of the input parameters to that 

component. To illustrate the functionality of the control components the BE2D 

code parameter run will be used as an example. For this case there are two control 

components. One to control the angle of the incidence wave and the other to control 

the wave frequency. Using these two controls the BE2D solver is executed a fixed 

number of times for defined parameter ranges. The connected task graph can be seen 

in figure 6.1. As can be seen in the figure, the simple example from chapter 5 has been 

used. There are three components, a wave generator and mesh generator as inputs 

to the solver code, and the output from the solver going to a graph component. Now 

there have been added two control components that provide the inputs to the wave 

component. When these control components are connected to another component,
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Figure 6.1: A Work Flow Graph with Loop Components

the user is prompted with a selection of control input parameters for iteration. In the 

case of BE2D, the two input parameters to the wave component are the frequency 

and angle of incidence. Since these are floating point values, they are suitable for 

iteration and there is a separate control component for each. The user can set the 

start, finish and iteration values for each parameter. When the graph executes, the 

PSE will loop over the components iterating the input parameters according to the 

user defined values.

The top control in the figure changes the named parameter Angle in the wave 

component, from the interface it can be seen that the user has entered some values 

into the control: start value is 0.0, stop is 25.0 and the increment is 1.0; this means 

that this loop will iterate from 0 to 25 in single integer increments. In programming 

terms it would be equivalent to
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for ( in t  i =  0; i <25;  i+ + )  {
*[}____________________________________________________________________________________

The second control iterates the Amplitude parameter from 107  to 108  in 107  steps. 

The output node connected to the BE2D  solver in this case is a component that 

stores the results in a database for later examination.

What happens to the input values from the loop components is controlled by 

the functionality of the individual component concerned and is decided by the com­

ponent programmer. In the case of the wave component, the input value is simply 

passed straight through to its output parameter, where it becomes one of the input 

values for the solver. When, as in this example, there are more than one control 

components connected to a single component, the execution is equivalent to a nested 

loop and the execution will continue until the halting condition on the outer loop is 

reached. The inner loop value is reset to its starting value every time the outer loop 

performs an iteration. Again in programming terms the code would look like

for ( i n t  i = 0 ;  i <25; i+ + )
2 for  ( i n t  j = 1 . 0 e  +  07; j < 1 .0 e  +  08; j + = 1 . 0 e + 0 7 )  {

}_______________________________________________________________________________

Finally, from the figure, there are two connections coming from the storage com­

ponent back up to the two control components completing the loops. This is nec­

essary for the implementation to know what components are contained within the 

loop and which are not. It should be clear that the mesh generation component 

is outside the loops and therefore is only executed once. Its output value is stored 

within the solver component and reused.

6.4 Control Implementation

The implementation of the loop constructs in the VCCE model involved a number 

of extensions to the framework as well as the additional components which would 

perform the iteration functionality. The task graph XML representation language
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has to be extended to allow the inclusion of loops, this in turn impacts the Java 

language representation and the scheduling algorithm. Finally the component model 

needs to be extended to create the new type of control component and provide a 

user interface representation within the VCCE.

The implementation here illustrates why good software engineering practises are 

important in projects such as this. Programming to interfaces enables the creation 

of new implementations of ideas such as components or scheduling algorithms with­

out impacting the main framework. This also allows the VCCE prototype to be 

backwardly compatible with older components and task graphs.

6.4.1 XML Task Graph Language Extensions

There are two extensions to the XML language representation needed. The first is 

the major issue of specifying the loop connection to a specific parameter input port 

on a component. The other is a secondary issue th a t appeared as a side effect of 

having two loop components in the task graph.

The language extension to include the loop component is only necessary for the 

connection. The loop component itself does not have an XML component definition 

as it is specific and internal to the VCCE and consequently does not need an external 

representation. It is possible to construct a generalised component that can perform 

a looping function tha t needs an external XML interface representation but that is 

left for future work. The connection definition in the task graph is. extended so that 

if the parent in the connection is a loop then there is an extra tag that specifies the 

loop parameter and the values. For example, in appendix B.3.1 the full XML task 

graph definition for our BE2D  parameter run example can be seen. The extension to 

the connection tags can be seen in listing 6.1. In this extract the representation for 

the outer connection from figure 6.1 where the loop controlling the Angle parameter 

is connected to the loop controlling the Amplitude parameter. The second loop 

does nothing with this parameter value except pass it straight through as another 

output. The extension in line 6  specifies the named parameter together with the
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start, increment and halting values and the type of these values. The type must be 

either a valid number type for the increment of the loop to make sense.

< c o n n e c t io n >
2 < p a r e n t >

Cname a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = " 4 0 8 1 5 2 7 ">
4 Control  Loop

< /  name>
6 < l o o p  p a r a m e t e r ^ "  A n g l e " p o r t _ t y p e = " F l o a t " s t a r t = " 0 . 0 "  h a l t =

" 2 5 . 0 "  i n c r e m e n t ^ "  1.  0 " c u r r e n t = "  3 . 0 " / >
< / p a r e n t >  

s < c h i l d >
<name a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = " 1 9 4 7 1 1 6  "> 

io Contro l  Loop
< /  nam e>

12 < /  c h i l d >
< /  c o n n e c t io n >

Listing 6.1: XML Task Graph Extension for Control Structures

This code listing together with the full listing in appendix B.3.1 shows that there 

is no direct connection between the outer loop control component and the wave 

component that it is providing one of the input parameters for. The connection 

is implied by the fact that the loop is connected to a second loop that is in turn 

connected to the actual component. This will become clear in the implementation 

explanation in section 6.4.2 but in effect if a loop receives an input then it is just 

passed straight though as an output. Hence, the need for the parameter name and 

values to be passed within the connection definition of the task graph.

The cause of the side effect extension to the language can also be seen here. In 

the specification of the language, the “name” information for a component consists 

of a real name, an alternative name and an ID. In listing 6.1 there are two instances 

of the same loop component in a single task graph. The original naming system is 

not enough to differentiate between them so the naming system had to be extended 

to include an instance ID which is only used within a task graph to differentiate 

between to instances of the same component. The instance ID is a guaranteed 

unique generated value. In our example here the first loop has been assigned an 

instance ID inst="4081527".
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6.4.2 Loop Component Implementation

The loop component like any other component relies on a proxy and implements the 

proxy interface. The main proxy class is ControlProxy, and like SimpleProxy this 

extends the AbstractProxy abstract class and implements the Proxylnterface, 
section 4.5.1. All this means tha t the ControlProxy can be used in the VCCE 

framework as the framework relies on interfaces and not implementations.

The control behaviour in ControlProxy is defined in an interface called, not 

surprisingly, Controllnterface, the full listing of this can be seen in appendix 

B.2.3. The interface has “setter” and “getter” methods for the loop parameters: 

start value; halt value; and increment value. The “getter” method returns the 

PortType, a constant that represents the data type for the loop. The loop can 

iterate over any numerical data type, which could be an actual input parameter 

or just an integer for the number of loop steps. To set up the loop connection to 

control a specific parameter value on an input port, there are methods to set or add 

ports to the control component and to return the parameter name that the loop is 

controlling.

4

8

/ /  Set the input  por t  t ha t  the loop w i l l  i t e r a t e  over.  
p u b lic  void s e t L o o p e d P o r t  ( P o r t l n t e r f a c e  a P o r t ) ;

/ /  Return the parameter  name fo r  the s e l e c t e d  p o r t .  
p u b lic  S t r i n g  g e t P a r a m e t e r N a m e  ()  ;

/ /  Adds an output  por t  to the c o n t r o l  component , used in cases of  
loop nes t i ng  where the value f rom the outer  loop needs to be 

propagated through to the i nner  loops .  
p u b lic  void  a d d O u t p o r t  ( P o r t l n t e r f a c e  a P o r t ) ;

To perform the iteration functionality of the loop, checking the halting condition 

and then if appropriate incrementing the current value, there are the methods

/ /  Returns  the s t a t e  of  the h a l t i n g  co nd i t i on  . tru e  i f  current  
value is l ess  than the h a l t i n g  va l ue ,  false otherwise .

2 p u b lic  boolean  h a l t i n g C o n d i t i o n  ()  ;

4 / /  Increment  the loop.  
p u b lic  vo id  p e r f o r m S t e p  () ;
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/ /  R e s e t  t he  l o o p  t o i t s  s t a r t  v a l u e ;  
s public void r e s e t L o o p Q  ;

The loop proxy, ControlProxy, implements the C o n tro lln te rfa c e  but dele­

gates the majority of the work to the execution object within the proxy. The im­

plementation of the E x e c u tio n ln te r f  ace, section 4.5.2, in the loop component is 

provided by the class C ontro lE xecution . It is this execution object that also im­

plements the C o n tro l ln te r f  ace tha t the C ontrolProxy delegates the functionality 

to. For example, the implementation of the check halting condition method in 

ControlProxy is

public boolean h a l t i n g C o n d i t i o n  () {
2 return ((  C o n t r o l l n t e r f a c e  ) e x e c u t i o n .  ) .  h a l t i n g C o n d i t i o n  () ;

}

where the object ex ecu tio n , is an instance of C ontro lE xecution . The implemen­

tation in the C ontro lE xecution  class is

p u b lic  f in a l  boo lean  h a l t i n g C o n d i t i o n  ()  {
2 i f  ( g e t P o r t T y p e  () = =  P o r t  T y p e  .SHORT) {

r e tu rn  ( ( ( S h o r t )  g e t C u r r e n t  V a l u e  () ) . c o m p a r e T o  ((  S h o r t ) 
h a l t V a l u e . )  > =  0 ) ;

4 } e lse  i f  ( g e t P o r t T y p e  ()  = =  P o r t T y p e  .FLOAT) {
r e tu rn  ( ( ( F l o a t )  g e t C u r r e n t  V a l u e  ( ) ) .  c o m p a r e T o  ((  F l o a t )

h a l t V a l u e . )  > =  0 ) ;  
e } e lse  {

r e tu r n  t r u e  ;
8 }
_}___________________________________________________________________

Listing 6.2: Loop Control Halting Condition

In this implementation the current value of the loop is compared to the halting 

value, returning the appropriate true or false result. If the haltingCondition is true 

then the loop has finished. Note here that the data type of the parameter iterating 

is checked using the getPortType method. The comparison needs to be aware of 

whether the data is integer or floating point. The perf ormStep method has a similar 

implementation, checking the data type and then incrementing the current value by 

the appropriate increment value.
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The user interface to the loop component within the VCCE which can be seen in 

figure 6.1 is provided by an extension to the SimpleVisualComponent, section 4.5.1. 

The new subclass, ControlVisualCom ponent users the “getters” and “setters” in 

the C o n tro lln te rf  ace to provide the interaction between the user and the loop 

component for the start, halt and iteration values.

The new execution model is more complicated than our previous A b strac t-  

Execution implementations which just had two methods to call, i n s ta n t ia te  and 

execute. The C ontro lE xecution  implementation of execute is still called, the 

method checks the halting condition and performs the loop iteration. However, the 

scheduling algorithm has to be aware tha t there is a control component in the task 

graph and react accordingly. The new scheduling algorithm and the implementation 

is explained in the next section.

6.4.3 ControlExecutionGraph:
An Improved Scheduling Algorithm

The simple scheduling algorithm implementation, ExecutionGraph, introduced in 

section 4.6.3.1 was developed before the control components and cannot take advan­

tage of the new methods provided by the control interface. The addition of these 

new components requires an extended scheduling implementation. Both the task 

graph/scheduler class and the node class th a t wraps the proxy component within 

the graph are extended.

ControlGraphNode is the class tha t holds a C ontrolProxy object within the 

task graph implementation. It extends ExecutionGraphNode, section 4.6.3, so it 

inherits all the functionality providing the parent and child relationships with other 

nodes in the graph. The extensions provide access to the internal loop component’s 

h a ltin g C o n d itio n  method, methods to set and reset the loop values, and methods 

to add output ports th a t represent the parameters being iterated over.

In the extension to the task graph representation there are now two types of node, 

the original node representing computational components, ExecutionGraphNode
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and the new implementation representing loop components, ControlGraphNode. 

The new algorithm can be seen in algorithm 6.1, it works by partitioning the task 

graph into sub-graphs and then scheduling each sub-graph individually in a “divide 

and conquer” manner.

for all loop components in task graph do 
create node lists for each loop component
recursively add any contained loop component children to loop list 

end for
for all nodes not in existing list do

create node lists for any blocks of components outside of loops 
end for
for all lists in order do 

order components in list 
repeat

for all components in list do 
execute component 

end for
until list does not contain loop or halt = true 

end for
A lgorithm  6.1: Extended Scheduling Algorithm

It can be seen from the algorithm, th a t at various points a check will need to 

be made on components to see if they are loop components and if they are, check 

the halting condition. This, together with the task graph partitioning, make up the 

major differences between the previous scheduling algorithm.

The implementation is sub-classed from the same abstract base class A b s trac t-  

ExecutionGraph as the naive algorithm and so implements the two abstract meth­

ods

public a b stra ct void  e x ecu tio n P erfo rm ed  ( E xecu tionE vent e v t ) ; 
2 public a b stra ct void  execu te  () ;

execute runs the composed application and executionPerform ed is the “call back” 

function from each component upon completion of its execution. The execute 

method

public void ex ecu t e  () { 
2 scheduleNodes  () ;
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Co l l e c t i on s  . so r t  ( g r a p h P a r t i t i o n s .  , new Par t i t i onCompar i to rRun 
0 ) ;

4 p a r t i t i o n l t e r a t o r _ = g r a p h P a r t i t i o n s .  . l i s t l t e r a t o r  () ;
c u r r e n t P a r t i t i o n .  =  (Vec t or )  p a r t i t i o n l t e r a t o r .  . next  () ;

e n o d e l t e r a t o r _ = c u r r e n t P a r t i t i o n .  . l i s t l t e r a t o r  () ;
cu r ren tNode .  = (Execut ionGraphNode)  n o d e l t e r  a t o r  next  () ; 

s executeNext  () ;

partitions the nodes, sorts the partitions and then sets variables for the current 

partition, current node and iterators before calling the executeNext method that 

executes the next component in the current partition.

4

6

8

10

12

14

16

18

p rivate  void executeNext  () {
i f  ( cu r ren t Node .  . i s C o n t r o l  () ) {

i f  ( ! ( (  Cont rolGraphNode) c u r r e n t N o d e . ) .  h a l t i n g C o n d i t i o n  () )
{
t r a n s f e r P o r t D a t a  () ;
i f  ( n o d e i t e r a t o r .  . hasN ext () ) {

c u r re n t N o de .  = (Execut ionGraphNode)  n o d e i t e r a t o r .
. n e x t ( ) ;  

executeNext  () ;
} e lse  i f  ( p a r t i t i o n l t e r  a t o r  hasN ext () ) {

c u r r e n t P a r t i t i o n .  =  (Vec t or )  p a r t i t i o n l t e r a t o r .  . 
n e x t ( ) ;

n o d e i t e r a t o r .  =  c u r r e n t P a r t i t i o n .  . l i s t l t e r a t o r  () ; 
c u r r e n t N o d e .  = (Execut ionGraphNode)  n o d e l t e r  a t o r  _ 

. n e x t ( ) ;  
executeNext  () ;

}
} e lse  {

cu r re n t N o d e .  . execute  () ;
}

} e lse  {
t r a n s f e r P o r t D a t a  () ; 
c u r re n t No d e .  . execu te  () ;

}
}

The executeNext method checks to see if the current node is a control node, if 

it is and the halting condition is false then output data from any parent nodes is 

transfered using the transferPortData method and the next node in the current 

partition or the first node in the next partition is executed. If the current node is 

not a control node then the output data from the parent components is transfered to
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the current node’s inports and the component is executed. The transferPortData 
method calls the sendOutputToChild method on all the parent components of the 

current component.

2

4

p r i v a t e  void  t r a n s f e r P o r t D a t  a () {
for  ( EGNItera tor  i t  =  c u r r e n t N o d e .  . g e t P a r e n t s  () ; i t .  hasNext () 

;) {
i t  . next  () . sendOutputToChi ld  ( c u r r e n t N o d e . )  ;

}
}

The sendOutputToChild method is in the ExecutionGraphNode class. The be­

haviour of the method had to be amended to include control components, and is 

dependant on whether the child node th a t the data  is to be transfered to is a normal 

component or a control component.

public void sendOutputToChi ld ( Execut ionGraphNode c h i l d )  { 
i f  (! chi ld  . i s C o n t r o l  () ) {

for ( P o r t l t e r a t o r  i t  = compon en t - . g e t O u t p o r t s  () ; i t .  
hasNext () ;) {

P o r t l n t e r f a c e  por t  =  i t . n e x t Q ;
chi ld  . set Component  Inpor t  Value ( p o r t  . get Pa ramete r  () , 

por t  . ge tValue  () ) ;
}

} e lse  {
for ( P o r t l t e r a t o r  i t  = component .  . g e t O u t p o r t s  () ; i t .  

hasNext () ;) {
P o r t l n t e r f a c e  por t  = i t . n e x t Q ;
( (Cont rolGraphNode)  c h i l d )  . setComponentOutport  (( 

P o r t l n t e r f a c e )  por t  . c lone ( ) )  ;
}

}
}

If the child component is a standard component then the outport values are set as 

inport values on the child component. If the child component is a loop component 

then a copy of the outport is added as an outport of the loop component. This 

functionality is needed only in the case of a nested loop. The child loop component 

does nothing with this input so it is just passed straight through as an output.
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6.5 Summary and Comparison

One of the features of the PSE is to provide the ability to perform iterations over 

components in a task graph, for example to perform parameter runs on a solver 

code. This chapter has examined extensions to our components and framework that 

support this ability. The component model has been extended to include a new 

control component, and the task graph representation and scheduling algorithm 

have been extended to support th a t new component.

There are many scripting languages that can be used to perform the type of pa­

rameter run loop operation described here, from shell scripting through to separate 

languages such as Perl or Python. There are advantages to using scripts if the script 

is for personal use or is not going to be used by non-programmers. Scripts do not 

rely on a large framework such as the VCCE and do not require individual com­

putational codes to be wrapped as components. They also put less of an overhead 

on the execution time for the work flow as they are a lot closer to the execution 

environment, i.e. the operating system, of the individual codes.

The VCCE simplifies the process of running a complex scientific code, using the 

intuitive visual programming paradigm. The application scientist does not need 

to configure software components, and can concentrate on undertaking parameter 

runs or visualising output from a solver. The work in this chapter has shown a 

simple user interface and component framework tha t makes constructing iterative 

loops over components in an application a much more intuitive task. The user does 

not need to know any details about scripting languages, or similar, and is free to 

concentrate on the more im portant details of what they want to do as opposed to 

how to do it.

The next chapter examines a “real” industrial code and a different method of 

code wrapping using CORBA. The control constructs introduced in this chapter 

become more im portant when using real codes and will be revisited again.
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CHAPTER 7

BE3D, FE3D - Parallel Components

In this chapter, two new solver codes from the client BAE SYSTEMS are discussed, 

together with a different mechanism for wrapping and including them as components 

within the PSE framework. The two codes here are real “production” solvers that are 

commercially sensitive and considerably larger and more complicated than the BE2D 

code examined in chapter 5. These codes will provide a more realistic examination of 

the VCCE and show tha t this technology can be used by scientists for real work. The 

new wrapper mechanisms are compared to the existing methods. Some performance 

comparisons with the standalone code and an analysis of the benefits to the user 

conclude the chapter.

7.1 The Parallel Solver Codes

The two new solver codes used in this chapter are very similar in usage and form 

although the algorithms are very different, hence they are covered as a single chapter. 

Both codes are written in Fortran and use the Message Passing Interface (MPI) [81] 

to facilitate parallelisation across multiple processors. The codes are complicated, 

both in terms of lines of code and in usage, and are also commercially sensitive. The
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commercial sensitivity has two direct impacts on the use of the codes as components 

within a PSE.

1 . Source code is not available. This means tha t the only possible use within a 

PSE is by wrapping the binary executable. Tighter integration will be impos­

sible, and input and output mechanisms are reliant on the original implemen­

tation.

2. Execution environment is limited. The commercial sensitivity of the code 

means that installation and execution of the binary is only allowed on a spec­

ified machine or machines. In the case of these particular codes tha t means a 

single machine at a BAE SYSTEMS site behind a firewall.

The two codes are called BE3D  and FE3D , both codes are simulations for the 

analysis of electro-magnetic wave scattering in three dimensions. The first of the 

two codes is a three dimensional production version of the BE2D  code examined in 

chapter 5. The second code uses a finite element algorithm in three dimensions. It 

is the addition of the third spatial dimension to the codes tha t make these examples 

so much more complicated than  the simple BE2D  example used previously.

As with the more straight forward two dimensional code, and in common with 

the vast majority of simulation codes of this broad type, execution can be broken 

down into three distinct stages:

1. Mesh or geometry generation.

2. Execute solver code.

3. Visualise or analyse results.

In addition to these three stages there may be additional intermediary stages to 

perform data format translation and data  storage tasks. To use both of these codes 

in their original form, the user first runs the appropriate mesh generator from the 

command line. This produces the file th a t represents the three dimensional data.
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The user then runs the solver from the command line, ensuring that the data file and 

the wave control file are in the correct directory. The solver produces two output 

files, one containing the radar cross section data  and the other the surface current.

Computational solver codes generally take input and provide output in very 

strict formats. The formats used to represent data  are varied and often specific 

for a particular code within a particular organisation. Often the mesh generator 

that provides the m ajor input to a solver is written specifically for that solver and 

its data format. This specificity and the tight coupling between solver and mesh 

generator hinders their reuse as individual components within a PSE. Although 

there may be many formats for the data, translation may be possible from one to 

another. An intermediate component may be able to perform translation between 

the format the mesh generator produces and the solver consumes and the format 

the solver produces and a data  visualiser consumes. These intermediary components 

will allow us to connect a mesh generator component to a different solver component 

within the PSE.

Data storage at both the end of the solver process and at intermediary stages, 

especially in the situation where the user is performing multiple executions in a 

parameter run, section 6 .1 , is an im portant aspect of the day-to-day work of a 

scientist. Specialised components will provide access to storage repositories which 

could be databases or file storage. The decision to  store data may depend on the 

cost of the individual execution time of a component, some solvers may take weeks 

to produce results, or whether the results are likely to be re-used. Intermediary 

results may be stored to save some execution time in the computational stage if the 

application is re-run. For example, a scientist may run the mesh generation once, 

store the generated mesh and then re-use tha t multiple times within a parameter 

run.
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7.2 CORBA Wrappers and the Action Factory

The method used to tu rn  the two solvers and their mesh generation and storage 

functions into components th a t can be used within the PSE is to wrap the codes as 

CORBA components. Functionally the mechanism is similar to that used in section 

5.1.3 to wrap the simple BE2D  code. Here rather than writing separate CORBA 

wrappers unique to each component, a th ird  party framework originally provided by 

Dassault is used, an industrial partner of BAE SYSTEMS, but now an “open source” 

project called Action Factory [25]. The Action Factory system is designed to help 

integrators to fill the gap between developers and users, by providing a clean data 

flow to object oriented mapping, and enabling a quick and mostly automated way to 

build actions and com putational paths on top of existing developer’s components. 

The Action Factory provides a single point of access to wrapped codes through 

the use of a Remote Procedure Call (RPC) type interface implemented in CORBA 

behind which the codes sit.

In practise when the components are instantiated by the PSE upon selection 

by the user, the PSE has to establish a connection to the CORBA ORB tha t has a 

running instance of the appropriate Action Factory and get a reference to the factory 

from that ORB. The XML component definitions contain information about where 

to find the factory, the host machine, the port number and the name of the factory 

object as well as the CORBA version, in this case Orbacus. The PSE automatically 

performs the connection to the ORB and retrieves a reference to the Action Factory 

when a proxy component is added to  the scratch pad. When the proxy is told to 

execute by the PSE, it calls the exec()  m ethod on the instance of the factory it 

has a reference to, see the previous section on the BE2D code 5.1 for more specific 

details.

7.2.1 Action Factory Com ponent Implementation

With the example codes used from within the PSE, various parts of the codes and 

data generators are wrapped as CORBA objects. The components that make up
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the complete assembled application code are:

•  The mesh generator, for generating the data  which defines the example ‘mesh’ 

or geometry for the solver code. This is the original mesh generator with a 

CORBA wrapper th a t returns a reference to a CORBA object representing 

the data set, instead of writing the data  to a file.

• Control components th a t define the characteristics of the incidence wave, fre­

quency and angle.

• The BE3D  and FE3D  solvers. These are the original solvers, modified to ac­

cept input data  from CORBA objects and provide output as CORBA objects.

• The database component, for storing the output from the solver. This compo­

nent was not part of the original code. It takes multiple output objects from 

the solver and stores them  in a database. In this case a specialist scientific 

database suitable for storing the large amounts of data  generated by the solver 

codes.

The Action Factory object is responsible for instantiating and executing each of 

these CORBA wrapped components. The PSE does not need to know details about 

object instantiation or execution. The Action Factory has a single method execO 
which accepts a number of parameters, including the name of the process to execute, 

a set of input param eters and some details about the execution of the process, and 

returns a result set.

A typical call to  the Action Factory from within the execute method of a proxy 

component would be:

s h o r t  [] r e s u l t  =  f a c t o r y  _. exec ( a c t i o n . n a m e .  , numBddETag,
parameter  , f ac t_machine_name_ , f a c t . o b j . n a m e .  ,
f a c t _ p o r t _ n u m b e r _ ) ;

Listing 7.1: Example Action Factory Function Call 

The parameters in this method have the following meanings
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action_name_
Represents the name of the command to be executed. For instance 

ActionReadMesh is an action th a t generates a mesh object, the return 

value for which is a reference to a CORBA object representing the mesh. 

ActionComputeRCS is the action th a t executes the solver, it returns another 

reference to the CORBA object th a t represents the radar cross section result 

set.

numBddETag and parameter
Are arrays representing the input data  for this component, the value of these 

is either a simple data  type as in the case of the wave frequency and angle, 

represented by parameter, or a reference to a CORBA object in the case of 

the mesh, represented by numBddETag. The Action Factory is responsible for 

delivering input datasets to  the appropriate components to be executed to 

complete a given action.

f  act_machine_name_, f  act_obj_name_ and f  act_port-number_
Are values th a t the Action Factory uses to decide what component to execute 

and where to run it. They represent the name of the machine the Action 

Factory is running on, the object name of the Action Factory to use and the 

port number needed to  contact the Action Factory.

result
The return value from the function call which will be a reference to a CORBA 

object represented as a short value. The reference is internal to the Action 

Factory which provides methods to retrieve a CORBA object given the refer­

ence.

All of these param eter values are stored in the XML component definitions, which 

are parsed by the PSE and represented by a proxy component. Hence, running a 

particular component is achieved by a single function call to the Action Factory 

instance, found at component instantiation time, passing in the values stored in the 

proxy together with any output parameters from the previous component in the
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graph.

The execution tags of an example XML component definition which are used to 

create a proxy th a t can call the Action Factory can be seen in listing 7.2. In this 

definition, lines 9 to 14 contain the definition for the Action Factory server, including: 

the CORBA ORB implementation, “orbacus” in this case; the host machine name, 

sg20\ the port number; and the name of the CORBA service, emmaAF. This Action 

Factory service will provide a number of Action factory instances which in turn 

provide a number of actions. This component uses one single action which is defined 

in lines 1 to 8 . The definition contains: the name of the specific Action Factory 

instance, FE3D which provides the wrappers for the FE3D  application; the action 

name, A ctionex tractR C S S lice  which computes the RCS output for the solver; the 

machine name hosting this Factory, which can be different or in this case the same 

as the servifce host machine; the Factory object reference name; and the port number 

for this Factory instance.

< e x e c u t i o n i d = " s o f t w a r e " t y p e = "  c o r b a " >
2 C t y p e i d = " a r c h i t e c t u r e " v a l u e = " p a r a l l e l " / >

< t y p e i d = " a c t i o n F a c t o r y " v a l u e = " F E 3 D " / >
4 C t y p e i d = " a c t i o n . n a m e " v a l u e = " A c t i o n e x t r a c t R C S S l i c e " / >

C t y p e i d = " f a c t . m a c h i n e . n a m e " v a l u e = " s g 2 0 " / >
6 C t y p e i d = " f a c t _ o b j . n a m e " v a l u e = " e m m a O F 2 " / >

C t y p e i d = " f a c t . p o r t . n u m b e r " v a l u e = "  1 3 2 4 " / >
8 </  e x e c u t i o n >

C e x e c u t i o n i d = " p l a t f o r m ">
10 C t y p e i d = " c o r b a "  v a l u e = " o r b a c u s " / >

C t y p e i d = " h o s t "  v a l u e r " s g 2 0 " / >
12 C t y p e i d = " p o r t "  v a l u e = " 1555"/>

C t y p e i d = "  server" v a l u e = " emmaAF"/>
14 < / e x e c u t i o n >

Listing 7.2: Example Action Factory XML Definition

These parameter values provide enough information to be able to contact the 

CORBA Action Factory, get a specific instance of the Action Factory that provides 

the FE3D functionality and call a specific method or action on that factory.
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To actually execute a function call on the Action Factory, the proxy com­

ponent model needs to be extended again. The execution model of the 

components is extended to handle this new component wrapping technique. 

ActionFactoryExecution extends AbstractExecution and therefore implements 

the Executionlnterf ace, see section 4.5.2. The ComponentFactory is extended to 

instantiate an ActionFactoryExecution object if the software type is “corba” , list­

ing 7.2 line 1. The ActionFactoryExecution object has attribute values for each of 

the parameter properties defined in the XML component definition and implements 

the instantiate and execute methods of the Executionlnterf ace.

The instantiate method is called when the user drops the component onto the 

“scratch pad” of the VCCE. For these CORBA wrapped components, the method 

performs the pre-execution CORBA initialisation, “hand shaking” and component 

reference resolving. The simple CORBA wrapper example described in chapter 4 

proved to be useful from a development point of view, shortening substantially the 

learning curve when it came to implementing the more complicated Action Factory 

examples. The instantiate method can be seen in listing 7.3.

p u b l i c  v o i d  i n s t a n t i a t e  ()  {
S y s t e m . s e t P r o p e r t y ( "  EMMAF . h o s t " ,  h o s t . ) ;
S y s t e m . s e t P r o p e r t y  ( "  EMMAF . p o r t  " , S t r i n g  . v a l u e O f  ( p o r t _  ) )  ;
S y s tem  . s e t P r o p e r t y  ( "EMMAF . s e r v e r "  , s e r v e r . ) ;
j a v a  . u t i l  . P r o p e r t i e s  p r o p s  =  S y s te m  . g e t P r o p e r t i e s  ( )  ;
p r o p s  . p u t  ( " o r g  . omg . CORBA . ORBCl as s  " , " com . ooc  . CORBA . ORB " ) ;
p r o p s  . p u t  ( " o r g . o m g . CORBA. O R B S i n g l e t o n C l a s s " , " c o m. o o c . CORBA.

O R B S i n g l e t o n " ) ;
S y s tem  . s e t P r o p e r t i e s  ( p r o p s )  ;

S t r i n g  i n t e r n a l A r g s  [] =  { h o s t - ,  g e t P o r t Q  , s e r v e r . } ;  
o r g  . omg .CORBA. ORB o rb  =  o rg  .om g.CORBA.ORB. i n i t  ( i n t e r n a l A r g s  , 

p r o p s ) ;
o r g  . omg .CORBA. O b j e c t  o b j  =  ( ( com . ooc  .CORBA. ORB) o r b ) ,  

g e t . i n e t . o b j e c t ( h o s t . , p o r t . ,  s e r v e r . ) ;

t r y  {
C l a s s  [] p a r a m e t e r T y p e s  =  n e w  C l a s s  []{ C l a s s  . f o r N a m e ( " o r g  .

o m g . CORBA. Obj  e c t  " ) } ;
O b j e c t  [] p a r a m e t e r s  =  n e w  O b j e c t  [ ]{ ob j  };
M eth o d  [] m e t h o d s  =  f a c t o r y A c t i o n H e l p e r C l a s s .  . 

g e t D e c l a r e d M e t h o d s  ()  ;
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S t r i ng  methodName = f a c t o r y A c t i o n H e l p e r C l a s s _  . getName () 
+  " . n a r r o w ";

Method narrowM ethod =  f a c t o r y A c t i o n H e l p e r C l a s s . .
ge tDeclaredMethod (methodName , parameterTypes  ) ; 

f a c t o r y .  =  (com . SixS . F ac t o r yAc t i on  ) narrowM ethod . invoke ( 
f a c t o r y A c t i o n H e l p e r C l a s s .  , p a r a m e t e r s ) ;

} c a tc h  ( Excep t i on  e) {
e.  p r i n t S t a c k T r a c e (  System . o u t ) ;

}

Listing 7.3: A ctionF acto ryE xecu tion  i n s t a n t i a t e  Method

lines 1  to  1 2

Instantiate the CORBA ORB on the named host machine and port, first set­

ting some default system properties th a t the CORBA implementation looks 

for.

lines 14 to  20

Attempts to return the named Action Factory server object reference. It uses 

a generated “helper” class to try  and resolve the factory name described in 

the XML definition to a reference th a t the CORBA name server recognises.

The value of separating the instantiation functionality from the execution func­

tionality within the execution model can be seen clearly here. The “housekeeping” 

details performed in the i n s t a n t i a t e  method take a discernible amount of time 

from a user perspective, usually in the order of five seconds but dependant on net­

work bandwidth and load. Performing this functionality when the user instantiates 

the component, in a separate thread, hides the time it takes as the user can continue 

creating the application from the components while the instantiation code executes 

in the background. Doing this does not actually make the system any faster but 

it will appear to the user as if it is when compared to the other case where both 

initialisation and execution are performed in the same method. One other benefit 

is that if the initialisation fails at application creation time as opposed to run time 

the user can select a replacement component.

The execute m ethod can be seen in listing 7.4.
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p u b l i c  v o id  e x e c u t e  ()  {
V e c t o r  p a r a m e t e r V e c t  =  n e w  V e c t o r  ( ) ;
V e c t o r  n um B ddE T agV ect =  n ew  V e c t o r  ( ) ;
/ /  g e t t i n g  i n p o r t  v a l u e s
f o r  ( P o r t l t e r a t o r  p i  =  g e t O w n e r  ()  . g e t l n p o r t s  () ; p i . h a s N e x t Q  

;) {
P o r t l n t e r f a c e  p o r t  =  p i . n e x t ( ) ;  
i f  ( p o r t  . g e t T y p e  ()  = =  P o r t T y p e  .OBJECT) { 

n u m B d d E T a g V e c t. a d d  ( p o r t  . g e t  V a l u e  ()  ) ;
} e l s e  {

p a r a m e t e r V e c t  . a d d (  p o r t  . g e t  V a l u e  ()  . t o S t r i n g  () ) ;
}

}
/ /  c o n v e r t i n g  i n p u t  numBddETag t o s h o r t  [J 
i n t  i =  0;
s h o r t  [] num B ddETag =  n ew  s h o r t  [n u m B d d E T ag V ec t. s i z e  ()  ] ; 
f o r  ( I t e r a t o r  i t  =  n u m B d d E T a g V e c t. i t e r a t o r  ()  ; 

i t  . h a s N e x t  ( )  ;)  {
num BddETag [ i ] =  S h o r t  . p a r s e S h o r t  ( (  S t r i n g  ) i t . n e x t Q ) ;  
i + + ;

}

i =  0;
/ /  c o n v e r t i n g  p a r a m e t e r V e c t  t o S t r i n g  [ ]
S t r i n g  [] p a r a m e t e r  =  n e w  S t r i n g  [ p a r a m e t e r V e c t  . s i z e  ( ) ]  ; 
f o r  ( I t e r a t o r  i t  =  p a r a m e t e r V e c t  . i t e r a t o r  ()  ; 

i t  . h a s N e x t  ( )  ;) {
p a r a m e t e r  [ i ] =  ( S t r i n g )  i t . n e x t Q ;  
i + + ;

}

s h o r t  [] r e s u l t  =  f a c t o r y _.  e x e c  ( a c t i o n . n a m e .  , num B ddETag, 
p a r a m e t e r  , f a c t _ m a c h i n e _ n a m e _  , f a c t _ o b j . n a m e .  , 
f a c t . p o r t . n u m b e r . )  ;

/ /  s e t t i n g  o u t p o r t  v a l u e s
f o r  ( P o r t l t e r a t o r  p i  =  g e t O w n e r  ( ) .  g e t O u t p o r t s  ()  ; p i . h a s N e x t Q  

;) {
S t r i n g  v a l u e  =  n e w  S h o r t ( r e s u l t  [ 0 ] )  . t o S t r i n g Q  ; 
P o r t l n t e r f a c e  p o r t  =  p i  . n e x t  () ; 
p o r t  . s e t V a l u e ( v a l u e )  ;

}
g e tO w n e r () . n o t i f y  O b s e r v e r s  ()  ; 
n o t i f y E x e c u t i o n  ()  ;

L is tin g  7.4: A c t io n F a c to r y E x e c u t io n  e x e c u te  M eth o d
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lines 2  to  1 0

Set up the input data  to the component action to be called. If the input port 

type is of type “object” then assume this is an Action Factory object reference 

and it goes in the numBddETagVect object reference array. Otherwise assume it 

is one of the standard number or string data types and it goes in the parameter 

array.

lines 16 to  2 0

Convert any object reference values from string form to short. 

line 32

Calls the Action Factory exec method to run the specified action with the 

input parameters, object references and host machine details.

lines 35 to  38

Take the result set from executing the action and place the values on the 

output ports of the proxy component.

lines 40 an d  41

Notify that execution has finished on this component to all interested parties.

To include the facility to execute a new method of component wrapping, using 

a third party CORBA framework, it has only been necessary to change and extend 

the framework in two places. A new execution model was created, that implemented 

the core i n s t a n t i a t e  and execu te  methods and extended the component factory 

so that it can create instances of the new execution model where appropriate. The 

remainder of the framework including the scheduling algorithm and user interface 

was not touched. This again ratifies the decision to spend time creating an extensible 

framework in the first place.
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7.3 Cost Benefit Analysis

Although there is an obvious overhead in having a legacy code wrapped as a CORBA 

object, the cost is not as great as it might appear. Using the Action Factory model 

with CORBA, data transfer between components is kept on the server side as much 

as possible. When the mesh generator or the solver components are executed the 

only value returned to the client proxy component and VCCE is an object reference 

to the data set. It is the object reference and not the actual data set that is passed 

to the next component in the task graph. This technique of using CORBA as a 

control flow rather than a data flow was illustrated with another form of CORBA 

component wrapping in the paper at SC 2 0 0 0  [77].

Performance comparisons of wrapped legacy codes on both workstation clusters 

and dedicated parallel machines have been tried. The most time consuming part 

of using a CORBA object is the initial “handshaking” with the ORB. The VCCE 

performs the CORBA connection at component instantiation and not execution 

time. The user is still performing the process of building the task graph at this 

time, so the cost is not noticeable. Once the graph comes to execution, the CORBA 

connections are already in place and the speed of execution is not affected by a 

discernible amount compared to the original code executed via the command line.

Execution time is not the only cost involved in using CORBA wrapped codes 

as components within the VCCE. Although frameworks such as the Action Fac­

tory and automated “W rapper Generators” help, developing components from large 

codes such as the those illustrated in this chapter is a time consuming and skilled 

job. The cost of developing the component-based codes will only be justified if the 

codes are to be re-used by other, potentially non-programmer or casual, users. The 

component wrapping allows the code and the associated components such as mesh 

generators, data visualisation tools and data storage tools to be treated as “black 

box” components by new users. Components connected visually, help files found 

and displayed easily and previously saved task graphs, all help to make the job of 

re-using large codes by new or unfamiliar personnel much more straightforward.

115



7.3 Cost Benefit Analysis

The next chapter examines the last use case scenario. The notion of parameter 

runs and loop control components is extended to perform a non-linear optimisation 

of a problem using a wrapped solver code. A simple case demonstrates how this 

technique can be used to perform a “Design of Experiments” .
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CHAPTER 8

Design Of Experiments

“The central problem in optimization for engineers is the formulation and 

execution of problems, rather than the mathematical techniques them­

selves. ”

Optimal E ngineering D esign , Siddall [105]

A common activity in scientific computing and engineering design is that of 

optimisation. Searching a domain space using non-linear programming techniques 

to minimise or maximise the value of a function over a set of domain variables is a 

well researched area. It is not the aim of this work to cover in detail the problem of 

optimisation, merely to demonstrate how one well known search algorithm can be 

incorporated within the prototype VCCE as a component, and used to control the 

flow of execution.

The simple looping component, described in chapter 6 , is sufficient for simple 

cases where the user needs to iterate over a fixed range of values for a variable or 

variables, so called “param eter runs” . If the user needs to have more control over 

when an iteration stops, or how the step changes in relation to some state as is the 

case for non-linear minimisation or maximisation, then a more complex method of

117



8.1 The Simplex Method

control is needed.

The VCCE has been used as a front end to a PSE at Southampton University 

to look at design optimisation problems [1 0 2 ]. The work at Southampton was based 

around their “Options” suite of search/optimisation programs and various Compu­

tational Fluid Dynamics (CFD) codes with the VCCE providing the user interface 

and a CORBA implementation as its middleware.

The intention here is not to repeat tha t work, but demonstrate how optimisation 

algorithms can be encoded as control components within the prototype PSE to steer 

execution runs for a particular code to a desired optimisation. This is illustrated 

with respect to a particular minimisation algorithm, “The Simplex Method” .

8.1 The Simplex Method

The “Downhill Simplex Method in Multi-dimensions” is an algorithm from “Nu­

merical Recipes” [92], due to Nelder and Mead [85], used for multi-dimensional min­

imisation, that is, finding the minimum of a function of one or more independent 

variables.

The main concept used by the algorithm is the simplex. A simplex is a geomet­

rical figure consisting, in n  dimensions, of n  +  1  points (or vertices) and all their 

interconnecting line segments, polygonal faces etc. Only non-degenerate figures, 

i.e. ones that enclose a finite inner V-dimensional volume, are considered. At each 

iteration of the method the objective function, the function being minimised, will 

be evaluated at n  +  1 points in the N  dimensional parameter space. For example, 

in two dimensions, where there are two parameters to be estimated, it will evaluate 

the function at three points around the current optimum. These three points would 

define a triangle; in more than  two dimensions, the “figure” produced by these points 

is called a simplex. Intuitively, in two dimensions, three points will allow us to de­

termine “which way to go” , th a t is, in which direction in the two dimensional space 

to proceed in order to minimise the function. The same principle can be applied to
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the multi-dimensional param eter space, th a t is, the simplex will “move” downhill; 

when the current step sizes become too “crude” to detect a clear downhill direction, 

the simplex is too large, and in this case the simplex will “contract” and try again.

An additional strength of this method is th a t when a minimum appears to have 

been found, the simplex will again be expanded to a larger size to see whether the 

respective minimum is a local minimum. Thus, in a way, the simplex moves like a 

smooth single cell organism down the objective function, contracting and expanding 

as local minima or significant ridges are encountered.

Termination criteria can be delicate in any multi-dimensional minimisation, and 

with the simplex, one “cycle” of the algorithm is identified and the vector distance 

covered in that step is measured. When tha t distance is less than a specified toler­

ance then the algorithm halts. It is worth noting that the halting criteria for this 

algorithm can be fooled by a single anomaly, therefore it is usually good practise to 

restart the minimisation at the point where it claims to have found the minimum.

A common aspect of all estimation procedures is th a t they require the user to 

specify some start values, initial step sizes, and a criterion for convergence. All 

methods will begin with a particular set of initial estimates, start values, which 

will be changed in some systematic manner from iteration to iteration; in the first 

iteration, the step size determines by how much the parameters will be moved. The 

simplex algorithm is initiated with an initial set of n  +  1  parameter sets , the n +  1  

vertices of the simplex. All these vertices must lie in the allowed parameter space 

constrained by the parameter bounds provided by the user.

A detailed analysis of the particular merits of the algorithm is outside the scope 

of this work. The algorithm may not be the best method in terms of efficiency but 

it is often used as a “quick and dirty” method when a solution is needed quickly 

as the algorithm is relatively straightforward to implement. Although simple it is 

still a realistic illustration of how a search mechanism would work within a PSE. 

The framework in which it is contained is generic enough for other more efficient 

algorithms to be used in its place at a later stage.
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The original algorithm has been implemented in both the C and Fortran pro­

gramming languages, and was re-implemented here, for use in the VCCE, in Java 

using object oriented programming techniques. The benefit of this method as op­

posed to using one of the original implementations wrapped as a component, was to 

enable it to be more tightly integrated within the VCCE and to make a pluggable 

framework so tha t the evaluation function used by the algorithm can be easily re­

placed. The algorithm itself within the component can also be replaced to make a 

completely new control component.

The Java re-implementation of the algorithm, a full listing of which can be seen 

in appendix B.4.1, makes use of The Colt Distribution [54], an open source scientific 

library for scientific and technical computing in Java. The library has highly opti­

mised and efficient representations for one dimensional and two dimensional matrix 

types and also implementations of general purpose function types that can be ap­

plied automatically to the elements in a matrix. This is the “visitor” design pattern, 

page 26.

Any function can be used as the evaluation function for the simplex method. 

The only criteria are to be able to accept as an input parameter a set of values that 

represent a point in the V-dimensional domain space, and return a single value as the 

result of the evaluation. The function can be anything from a simple mathematical 

penalty function through to an entire complex external solver wrapped to appear as 

a penalty function.

In the prototype implementation this is achieved through the use of a Java in­

terface that all evaluation functions must implement. The interface is very simple 

with a single method shown in listing 8 .1 , tha t returns a double as the function 

evaluation and takes as its input parameter an O bject. This interface comes from 

the Colt library and is used so th a t any function implementation based on it can be 

applied to the elements of a Colt m atrix object. The input parameter is actually a 

vector as described in the simplex algorithm, and the Colt type DoubleMatrixlD, a 

one dimensional m atrix type, is used to represent this.
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4

2

p u b l i c  i n t e r f a c e  D o u b l e O b j e c t F u n c t i o n  {
/ /  A p p l i e s  t he  f u n c t i o n  t o an a r g u me n t  
p u b l i c  d o u b l e  ap p ly  (O b j e c t  argu m en t) ;

Listing 8.1: Evaluation Function Interface

8.2 Penalty Functions

Estimation procedures are generally unconstrained in nature. Therefore, parameters 

will move around without any regard for whether or not permissible values result. 

When these non-permissible values occur, a penalty can be assigned to the objective 

function, in the form of a very large value, to “discourage” the minimisation. As 

a result, the various estimation procedures usually move away from the regions 

that produce those functions. However, in some circumstances, the estimation will 

get stuck, and a very large value of the objective function will result. This could 

happen, if for example, the regression equation involves taking the logarithm of an 

independent variable which has a value of zero for some cases, in which case the 

logarithm cannot be computed.

To constrain a procedure to a specified range, the constraint must be specified in 

the objective function as a penalty function. This allows control over the permissible 

values of the parameters. For example, taking the simple function

y = ~ x 2 -  x 22 (8 .1)

where the two parameters (aq and x 2) are to be constrained by the following bound­

ing conditions

gi = x 2 — 17.0xi 4- 66.0 +  x 2 — bx2 

g2 = x 2 — 10. Oxi +  41.0 +  x 2 — 1 0 x 2  

<73 =  x 2 — 4.0xi +  45.0 +  x 2 — 14x2

(8 .2)

where

gi > 0  and g2 > 0  and g3 > 0
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Figure 8.1: — x 2 — x 22 Plot with Constraints

A large penalty can be assigned to these parameters if this condition is not met. In 

graphical form the constraints can be seen as the hemispherical “bites” taken out of 

the plot in figure 8.1. This simple example function is used as a demonstration for 

the simplex algorithm in section 8.3.

One final aspect to note is that most penalty functions are independent of the 

search algorithm which allows us to experiment with these different types of penalty 

with the simplex method component.

8.3 Penalty Function Implementation

This section evaluates the implementation of two penalty functions.

8.3.1 Evaluation Function with Simple Penalty

Consider an implementation of the simple case for the function, y = —x 2 — x 2 

and the boundary conditions gi, g2 and g3, equations 8.1 and 8.3 defined in section

8 .2 . As can be seen in figure 8 .1 , there is a function where the evaluation is highest 

for (X\ =  0 , x2 =  0 ) as indicated by the dark red colour and three local minima 

at approximately, by eye only, (5.0,2.0), (3, 2.5), (2.0,4.0) where the lighter blue 

and yellow colours occur. The simplex component can be used with the evaluation
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function and its penalty cost, implemented using the evaluation function interface 

from listing 8 .1 , to attem pt to minimise the function, finding the values for the local 

observed minima and determine the global minimum.

package com. baesystem s . o p t im is a t io n  . fu n c tio n  ;

import cern . c o lt  . m a trix  . D oubleM atrixlD  ;
import cern . c o lt . m a trix  . d o u b lea lg o  . F o rm a tte r  ;
import com. baesystem s . o p t im is a t io n  . D ow nhillS im plex ;
import com . b aesy s tem s , o p t im is a t io n ,  f u n c t io n .  D oubleO bject F u n c tio n ;

public f in a l  c la s s  C om plexE valuationFunk implements
DoubleObj ec tF u n c tio n  { 

public double apply  (O b jec t argum ent) {
D oubleM atrixlD  p try  = ( D oubleM atrixlD  ) a rg u m en t; 
double x l = p t r y .  get ( 0 ) ;
double x 2  = p t ry .  get ( 1 ) ;
double g l = x l* x l  — 17 .0*xl +  66.0 +  x2*x2 — 5*x2;
double g2 = x l* x l  — 10 .0*xl +  41.0 +  x2*x2 — 10*x2;
double g3 = x l* x l — 4 .0 * x l +  45.0 +  x2*x2 — 14*x2;
double y ;

i f  (g l < =  0 ) { 
y = 1 0 0 0 0 ;

}
e lse  i f  ( g2 < =  0) { 

y -  1 0 0 0 0 ;
}
e lse  i f  ( g3 < =  0) { 

y = 1 0 0 0 0 ;
}
e lse  {

y = — x l* x l — x 2 *x 2 ;
}
return y;

Listing 8.2: Implementation of Evaluation Function with Penalty

The evaluation function and its penalty can be seen in listing 8 .2 . In lines 13 to 

15, the values for e/i, # 2  and gs are first calculated. Lines 18, 21 and 24 compare the 

calculated values to zero , if any of the three values are less than or equal to zero 

then a penalty value is assigned as the return value, in this case 1 0 0 0 0 , a suitably 

high value given the bounds on the function, otherwise the evaluated value of the
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function itself is returned.

The code illustrates th a t given equations for the evaluation function, equation 

8.1, and the penalty function, equation 8.3, the Java function implementation re­

quired for use in the simplex method is straightforward to write and would only 

require a simple understanding of the Java programming language. Both the evalu­

ation function and the penalty functions can clearly be recognised in the code. In 

the next section 8.3.2 a more complex penalty function is examined.

8.3.2 Function with FMC Penalty

The function with the simple penalty described in section 8.3.1 has one major draw­

back. It does not represent any relationships between the three penalty conditions 

gi , <72 and gs -  they are all evaluated independently. If any of the conditions fail then 

a single penalty value is returned with no indication which of the three caused the 

failure and how tha t affected the evaluation function. A more complicated penalty 

function might involve interaction between the penalty and evaluation functions. 

Such a function is considered in this section.

It is useful at this point to introduce some formal notation for the general case 

Design Optimisation Problem. The following expressions are from Optimal Engi­

neering Design [105]. A general form for a simple penalty function to throw up a 

barrier or distortion of the original optimisation function and thus forces the search 

toward feasibility, can be w ritten as

Up = XJ{x) + r ^  | | +  r  ^  \ipj\ (8.3)
i  3

where U(x) is an optimisation or objective function set up defining the total value 

in terms of the independent variables.

U ( x i , x 2, .. •, x n) = maxim um  (8.4)

i p i  and (f>j are respectively equality and inequality constraints which define feasibility
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with respect to all possible causes of failure.

^ i { x i , x 2, . . .  , x n) = 0 i — 1,771 (8.5)

<t>j(xi ,x 2, . . .  ,x n) >  0  j  =  l ,p  (8 .6 )

r  is some fixed large number, and (a) is an unsatisfied constraint.

(a) =  <
a  if a  <  0  

0  if a  > 0

(8.7)

In this expression of the penalty function, unsatisfied constraints are weighted 

heavily by multiplying the unsatisfied inequality constraints by a large number and 

adding them to the objective function value in order to discourage these situations. 

Satisfied inequality constraints are ignored by giving them a zero weight. In the 

example simple penalty function, equation 8.3, a simpler form of this general case 

equation of the penalty function was formed by ignoring the equality constraints in 

the equation. The constraints are tested as inequalities greater than zero

This type of general penalty function is severe and it can sometimes cause the 

search algorithm to stall especially on a boundary of a constraint. The equation 8.3 

is only active when the constraints are violated or the search enters an infeasible 

solution region. This class of penalty functions are called exterior penalty functions. 

Interior penalty functions are only active within the feasible region, so that the 

search is warned when the constraint line is approached.

Another widely used method examined here and implemented as another example 

of a penalty function for the simplex component is the Fiacco-McCormick penalty 

function [32]. It can be represented by the expression

Up = U(xi,  x 2, • • •, x n) +  r2 ^ 2  ^ 7  +  ~ +  ~ ^ ( ^ h ) 2  (8-8)

The symbol {a} has the same meaning in Equation 8.7 and indicates an unsatisfied 

constraint, while s indicates a satisfied one. The value of r is different to the value 

in the simple penalty function in equation 8.3 where it is simply assigned some fixed 

large value. Here the value of r is set to a value between 1  and 0. The usual use
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of the function is to solve a sequence of optimisation problems where r is reduced 

rapidly each time toward 0 .

This function is a mixed penalty function with both interior and exterior con­

straints. Consider the inequality terms of equation 8 . 8  in turn:

r7 01
The first interior term  with r equal to one will push the surface up asymptot­

ically1, moving closer and closer but not touching the constraint line. As the 

constraint line is approached (f)sk will become smaller, if a false constrained op­

timum point is found, as the value of r is reduced the effect of 1 / 0 |  is reduced 

and the false constrained optimum point will approach the true one.

<Pi/r

The exterior term has a similar effect for the exterior region, as r  is reduced a 

false unconstrained optimum will be shifted toward the true optimum. Typi­

cally this reduction of r and the re-evaluation of the function is not expensive 

as it rarely takes more than three runs with the starting point of the next run 

being the optimised point found by the previous.

The example objective function from equation 8.1 and the penalty functions from

equation 8.3 can be used within the Fiacco-McCormick method. In addition to the

original constraints g\, g2 and g3  some additional boundaries are added that will

constrain the function to positive values of X\ and x 2 between 0 and 7 which can be

seen on the coloured area of the graph in figure 8 . 1  and are represented by <7 4 , #5 , g6

and gj in equation 8.9. As before the constraints are tested as inequalities greater

than zero. Only the inequality elements of the function will be used ignoring the

1 asymptote A line related to a given curve such that the distance from the line to a point on 

the surface approaches zero  as the distance of the point from an origin increases without bound.
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last term in the equation 8 .8 .

(8.9)94 = 7 — x\

95 — 7 -  x 2

96 =  Xl

97 = x 2

where

94 > 0  and

The Java implementation of the Fiacco-McCormick penalty function with the 

constraints is shown in listing 8.3. The original constraints, equation 8.3, can be 

seen in lines 10 to 12 and the new constraints, equation 8.9, in lines 13 to 16. 

The satisfied and unsatisfied inequalities are summed in lines 20 to 27, the penalty 

function is evaluated in line 28, the objective function is evaluated in line 29 and 

finally, a value of the objective function plus the penalty is returned.

public f in a l  c la s s  F M C M e th o d E v a lu a tio n F u n k  implements 
D o u b l e O b j e c t F u n c t i o n  { 

private s t a t i c  f in a l  double PARAMJrt — 0.5; / /  c o n s t a n t  r

public double a p p l y  ( O b j e c t  a r g u m e n t )  {
D o u b l e M a t r i x l D  p t r y  =  ( D o u b l e M a t r i x l D  ) a r g u m e n t ; 
double x l  =  p t r y .  g e t  ( 0 ) ;  
double x2 =  p t r y .  g e t  ( 1 ) ;  
double p e n a l t y  ;
double [] c o n s t r a i n t s  =  new double [ 7 ] ;
c o n s t r a i n t s  [0] =  x l * x l  — 1 7 . 0 * x l  +  6 6 . 0  +  x 2 *x2  — 5*x2;
c o n s t r a i n t s [1] =  x l * x l  — 1 0 . 0 * x l  +  4 1 . 0  +  x 2 *x2  — 10*x2;
c o n s t r a i n t s  [2] =  x l * x l  — 4 . 0 * x l  +  4 5 . 0  +  x 2 *x2  — 14*x2;  
c o n s t r a i n t s  [3] — (7 — x l ) ;
c o n s t r a i n t s [ 4 ]  =  (7 — x 2 )  ;
c o n s t r a i n t s [5] =  x l
c o n s t r a i n t s [6] =  x2
doub le  v i o l a t e d  =  0 
doub le  s a t i s f i e d  =  0;

for ( in t  i =  0;  i <  c o n s t r a i n t s  . l e n g t h  ; i + + )  { 
i f  ( c o n s t r a i n t s  [ i ] < =  0) {

v i o l a t e d  + =  c o n s t r a i n t s  [ i ] * c o n s t r a i n t s  [ i ]
}
e l s e  {

127



8.4 Simplex Component

s a t i s f i e d  +  =  1 /  c o n s t r a i n t s  [ i ] ;
}

}
p e n a l t y  =  1 /  PARAM U * v i o l a t e d  +  PARAM Jt * PARAMJt /

s a t i s f i e d  ; 
double o b j e c t i v e  =  — x l * x l  — x 2 * x 2 ;  
return o b j e c t i v e  4- p e n a l t y  ;

}
}

Listing 8.3: Implementation of the Objective with a Fiacco-McCormick Penalty

Like the simple function implementation it can be seen from the code that even 

with the more complicated expression of the Fiacco-McCormick function, the Java 

implementation is not overly hard to write. The same format could be used with any 

arbitrary sets of objective and penalty functions and, given the code in the listing, 

even someone not fully conversant with Java would be able to modify the expression 

parts of the code to implement a new function without too much difficulty.

8.4 Simplex Component

8.4.1 Simplex Algorithm Implementation

Within the VCCE the simplex component is functionally similar to the loop compo­

nent in chapter 6 . Its inport values are the parameters to be fed into the evaluation 

function and the iteration stops when a halting condition is true. In this case this 

happens when the new value returned from the evaluation is within a predetermined 

5 value of the previous evaluation, the algorithm tolerance. The main algorithm is 

implemented as a set of static functions within a class called DownhillSimplex which 

can be seen in appendix B.4.1. The class has three main functions.

8.4.1.1 Simplex amoeba function

public s t a t i c  f in a l  in t  a m o e b a ( D o u b l e M a t r i x 2 D  s im p le x P  ,
D o u b l e M a t r i x l D  v e c t o r Y  , double FTOL, D o u b l e O b j e c t F u n c t i o n  f unk

)
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Description

This function is the main function in the multi-dimensional minimisation of the 

function func(x)  where x  is a vector in N  dimensions, by the downhill simplex 

method of Nelder and Mead. Note: On output simplexP and vectorY will 

have been reset to 7V+1 new points all within FTOL, the defined fault tolerance, 

of a minimum function value. The function works by first determining which 

point is the highest (worse), next-highest, and lowest (best) by looping over 

points in the simplex. It then computes the fractional range between the 

highest and the lowest, (high — low)/ (high +  low) * 2  and returns the number 

of iterations if this is lower than the tolerance. If the function is returning, 

then the best point and value are put at the front of the vector. If the function 

doesn’t finish then a new iteration is begun and repeated until the tolerance 

has been met or the number of iterations exceeded. In the iteration, first an 

extrapolation by a factor of - 1  through the face of the simplex across from the 

high point is performed, i.e. reflect the simplex from the high point, using the 

function amoeba in section 8 .4.1 .2 . The same function is used to extrapolate 

other contractions and reflections until the halting condition is met.

Parameters

simplexP: a matrix, of dimension (N  +  1,N)  whose rows are vectors which 

are the vertices of the starting simplex.

vectorY: a vector of length TV +  1, whose components must be preinitialised 

to the values of the objective function evaluated at the N  + 1 vertices (rows) 

of simplexP. This initialisation is done by the function in section 8 .4.1.3. 

FTOL: the fractional convergence tolerance to be achieved in the function value, 

funk: the function to be minimised.

Return value

The number of iterations taken to halt the algorithm either by finding a solu­

tion within tolerance or exceeding the maximum number of iterations.

8.4.1.2 Simplex amoebaTry function
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private  s t a t i c  double amoebaTry ( DoubleM atrix2D sim plexP , 
DoubleM atrixlD  v ec to rY , D oubleM atrixlD  pSum, 
D oubleO bjec.tFunction funk,  in t  indexHi , double fac)

Description

This function extrapolates by a factor through the face of the simplex across 

from the highest point, evaluates the new point with the objective function, 

and replaces the highest point if the new point is better.

Parameters

simplexP: a m atrix representing the simplex.

vectorY : the start vector

pSum: the simplex column sum vector

funk: the function to be evaluated

index : the index in vectorY of the highest value

fac:  factor of extrapolation

Return value

The computed value of the objective function

8.4.1.3 Simplex i n i t i a l i s e  function

public s t a t i c  f in a l  D oubleM atrix lD  i n i t V e c t o r Y  (DoubleM atrix2D 
s implexP,  Dou bleObjec t Func t i on  funk)

Description

This function initialises and returns a vector of dimension N  +  1 where its 

contents are calculated by evaluating the function to be minimising at the 

N  +  1 vertices (rows) of the simplex. To evaluate the function the code calls 

the D oubleO bjectFunction interface function apply on funk.

Parameters

sim plexP: the starting simplex

funk: the objective function to be evaluated
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Return value

An initialised vector Y  of size N  + 1

8.4.2 Simplex Com ponent Implementation

The static functions from the class DownhillSimplex described in the last section 

provide the functionality for executing the simplex algorithm. Embedding that 

functionality as a component within the VCCE framework is done by a wrapper 

class that uses the static methods. The wrapper class is called SimplexComponent. 
SimplexComponent is instantiated and executed from the standard proxy compo­

nent, SimpleProxy, and the Java execution model, Ext ended JavaExe cut ion sec­

tion 4.5.2.2 . The XML component definition can be seen in appendix B.4.2, and the 

execution tags that load the SimplexComponent can be seen below

< e x e c u t i o n  i d = "  s o f t w a r e  " t y p e = " b y t e c o d e " v a l u e r "  e x t e n d e d ">
2 < t y p e  i d = " a r c h i t e c t u r e " v a l u e r " s e r i a l " / >

C t y p e  i d = "  c l a s s "  v a l u e = " c o m . b a e s y s t e m s . c o m p o n e n t s . 
S i m p l e x C o m p o n e n t " / >

4 < t y P e i d = " s o u r c e "  v a l u e = " f i l e : / / / h o m e / c o m p d a t a / C a r d i f f / p r o j e c t /  
s r c / c o m / b a e s y s t e m s / c o m p o n e n t s / S i m p l e x C o m p o n e n t . j  a v a " / >

C t y p e  i d = " c l a s s p a t h "  v a l u e = " / h o m e / c o m p d a t a / p r o j e c t / c l a s s e s " / >
6 C / e x e c u t i o n >

C e x e c u t i o n  i d —" p l a t f o r m  ">
8 C t y p e  i d = " j a v a "  v a l u e r " j d k l . 2 " / >

< / e x e c u t i o n >

Line 3 specifies the class name for this new class tha t will get instantiated when the 

proxy is created. The execute method implementation within SimplexComponent 
which will run the simplex algorithm can be seen in listing 8.4. Lines 5 to 8  create 

a unit matrix e th a t is then used to initialise the simplex P  using Pi — PO +  Ae* 

where PO is the start point for the minimisation and A is a “guess” at the problem’s 

characteristic length scale, generally a suitable small value such as 5  x 10-3 . Finally 

in line 23, the DownhillSimplex method initVectorY is called, section 8 .4.1.3, to 

set up the algorithm and in line 24 call the main amoeba method, section 8 .4.1.1, to 

perform the minimisation.
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D o u b l e M a t r i x 2 D  s i m p l e x P  =  f a c t o r y 2 D _  . m a k e ( 3  , 2 ) ;
D o u b l e M a t r i x l D  v e c t o r Y  ;

/ /  i n i t i a l i s e  the u n i t  v e c to r  e
D o u b l e M a t r i x 2 D  u n i t  =  f a c t o r y 2 D _  . m ake (3  , 2 ,  0 . 0 ) ;
u n i t  . s e t  (1 , 0 , 1 . 0 ) ;
u n i t  . s e t  ( 2 ,  0 ,  0 . 5 ) ;
u n i t ,  s e t  ( 2 ,  1 ,  M ath  . s q r t  (0  . 7 5 )  ) ;

/ /  Pi = PO + Aei
/ /  create each row and s to r e  the s t a r t  p o in t s  in two temp arrays  
d o u b le  [] s t a r t X  =  n e w  d o u b l e  [ s i m p l e x P  . ro w s ( ) ]  ; 
d o u b le  [] s t a r t  Y  =  n e w  d o u b l e  [ s i m p l e x P  . ro w s  ( ) ]  ; 
f o r  ( i n t  i =  0;  i <  s i m p l e x P  . r o ws  ()  ; i + + )  {

d o u b le  x P o i n t  =  p 0 _ . g e t ( 0 )  +  u n i t ,  g e t  ( i ,  0)  * l a m b d a . ;
d o u b le  y P o i n t  =  p 0 _ . g e t ( l )  +  u n i t ,  g e t  ( i ,  1)  * l a m b d a . ;
s i m p l e x P  . s e t  ( i , 0 , x P o i n t ) ;
s i m p l e x P  . s e t  ( i , 1 , y P o i n t ) ;
s t a r t X  [ i ]  =  x P o i n t ;
s t a r t Y [ i ]  =  y P o i n t ;

}

v e c t o r Y  =  D o w n h i l l S i m p l e x  . i n i t V e c t o r Y  ( s i m p l e x P  , s o l v e F u n k . ) ;  
i n t  i t e r a t i o n s  =  D o w n h i l l S i m p l e x  . a m o e b a ( s i m p l e x P  , v e c t o r Y  

, 0 . 0 0 0 1 ,  s o l v e F u n k . ,  m a x l t e r . )  ;

Listing 8.4: Evaluating the Simplex

The parameter values defining the lambda value, coordinates of the start point 

p0 _ and the maximum number of iterations m a x lte r . are set as input parame­

ters from the XML component definition using the reflection mechanism for pa­

rameters, described in section 4.5.2.2, and corresponding “setter” methods in the 

SimplexComponent. For example the parameter lambda in the XML definition can 

be seen in the listing below

C i n p o r t  i d = " 3 "  p a r a m e t e r ^ " L a m b d a "  t y p e = " f l o a t "  v a l u e = " 0 . 5 " >  
< /  i n p o r t >

the corresponding “setter” function from SimplexComponent is

pub l ic  void  s e t L a m b d a (  O b j e c t  l a m b d a )  {
l a m b d a .  =  ( (  F l o a t ) l a m b d a )  . d o u b l e V a l u e  ()  ;

}
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The final input param eter which represents the evaluation function solveFunk-, is 

also set in the XML definition but in this case, another feature of the input tag 

mechanism which allows us to specify alternatives for the values of the input rather 

than a free format value is used. The evaluation function specifies a Java class which 

implements the function equation and the DoubleObjectFunction interface. For the 

example objective function y =  — Xi2—x 22 and the penalty function implementations 

the XML can be seen below.

<inport id="l" parameter^"SolveFunction" type="option" value="com 
.baesystems.optimisation.function.SimpleEvaluationFunk">

2 <option name="simple" valuer"com.baesystems.optimisation. 
function.SimpleEvaluationFunk">

</option>
4 Coption name="complex" value="com.baesystems.optimisation. 

function.ComplexEvaluationFunk">
</ option>

6 <option name="Fiacco-McCormick" value="com.baesystems. 
optimisation.function.FMCMethodEvaluationFunk">

</ option>
8 < / inport>

This specifies three Java function classes:

SimpleEvaluationFunk
This is a objective function with no constraints, it implements

2 2 
y  =  - x i  -  x 2 .

ComplexEvaluationFunk
This is the objective function plus the simple constraints, specified in sec­

tion 8.3.1.

FMCMethodEvaluationFunk
This function implements the Fiacco-McCormick function, specified in sec­

tion 8.3.2.

The default value for the options is specified in the inport tag definition, line 1  in 

the listing above, and in this case is SimpleEvaluat ionFunk. The corresponding 

“setter” function in the SimplexComponent class to set the function can be seen
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below. It uses the Java class loader to instantiate the function object from its string 

name representation.

publ i c  void s e t S o l v e F u n c t i o n  ( Object  funk) { 
i f  ( S t r i ng  . c l a s s  . i s l n s t a n c e  ( f u n k ) ) {

so lveFunk .  = ( DoubleObjec tFunct ion )(  Class . forName (( St r ing 
) f u n k )) . newlns tance  () ;

}

8.4.3 Simplex Component Usage

In normal use the simplex algorithm is run multiple times with different values 

of PO, the starting point. A single execution may find a minimum given a large 

enough number of iterations but better results are found if less steps and multiple 

executions are used. For this example the loop component is used to control the 

multiple executions of the simplex by looping over either the X\ or x 2 coordinate of 

PO. The task graph can be seen in figure 8.2
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Figure 8.2: Choosing the Function on the Simplex Component
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The figure shows the simplex component, a loop component set to iterate over 

the x 2 parameter from 0 to  6  in steps of 1, and a component called simplexView 

which is responsible for displaying graphically a two dimensional domain space and 

the search path taken by each iteration of the simplex algorithm. The other panel 

displayed in the figure is an editor for the param eters in a proxy component, in this 

case the SimplexComponent.

ExtendedVisualComponent is an extension to the SimpleVisualComponent, sec­

tion 4.5.1, along the same lines as the ControlVisualCom ponent, section 6.4.2. 

Whereas the simple component was only capable of displaying the name of a com­

ponent and its execution state, the extended version provides a simple user interface 

for setting and displaying param eter values. Param eters are edited in text fields 

apart from parameters with preset options like the evaluation function, these are 

represented by “drop down” list components which can be seen in the previous fig­

ure. The ExtendedVisualComponent implementation uses the inports and outports 

from the proxy component to  dynamically build the user interface for the parameter 

values.

8.4.4 Search Results

The complete execution of the simplex algorithm task graph can be seen in figure

8.3. Each time the loop iterates it generates a new start point {x \ ,x2) where X\ 

is set to 3 and x 2 is controlled by the loop component. The result is a series of 

simplex start points PO =  (3, 0), ( 3 ,1 ) , . . . .  (3, 5) with the algorithm reset at each 

new start point. The visualiser component sim plexViewer keeps track of each 

evaluated function value and plots the points as search paths on a graph. The 

background is generated by evaluating the objective function at fine intervals for a 

range of points and assigning a colour map to the values.

The result of running this task graph can be seen in figure 8.3. It shows the 

domain space plot as coloured bands ranging from dark red for high values to lighter 

greens and blues for the minimum values. The 6  simplex minimisations can be seen
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as a series of trace paths starting from each of the start points. Each simplex can be 

seen converging on local minima. To keep the display clear the number of iteration 

steps per simplex run has been set very low at 1 0  steps.
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Figure 8.3: Completed Simplex with Visualisation

8.5 Conclusion

This simple function evaluation with various penalty functions has illustrated how 

the simplex algorithm can work as a component within the VCCE. Writing objec­

tive and penalty functions can be straightforward given the function interface and 

framework. A scientist could use the mechanism to add their own functions to be 

evaluated and this could even be used to wrap a large solver for a more complex 

parameter evaluation or design of experiments. For instance, the BE2D solver could 

be executed within a function object using the same execution mechanism as the 

BE2D component in chapter 5. The input to the function would be a simplex in 

three dimensions because there are two inputs, wave incident angle and frequency.
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The function would execute the solver and return a fitness value for the objective 

function based on some evaluation of solver output.

Other optimisation algorithms could be used within this flexible framework with­

out much work and none of these additions affect the way the main VCCE framework 

performs or need additional functionality.
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CHAPTER 9

Recent Related Work

Although the work presented in this thesis was finished at the end of 2001 the 

completion of this dissertation has taken considerably longer, due in part to work 

constraints. Since then research in the area of PSEs has moved at a very rapid pace 

not least because of the influence of the grid computing community. The research 

discussed in relation to this thesis in chapter 2  only covers the time frame of the 

original work. This chapter relates advances in research since tha t date to the work 

here and puts into the context of current thinking some of the decisions made. 

The chapter is broken down into four sections: middleware advances; computing 

environments; component models; and PSE usage.

9.1 Advances in Middleware:

The Advent of Grid Computing

The distributed computing middleware field has changed rapidly in the period since 

this work was finished. CORBA, the middleware chosen in implementing a dis­

tributed communication framework in this work, is now a mature platform with
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many implementations by different vendors. It is still used widely among industrial 

projects but has fallen out of favour with the scientific research community due in 

part to its unsuitability for handling large data  sets.

Since the publication of Foster and Kesselman’s “Grid Blueprint” [3 5 ], grid tech­

nologies and in particular Globus [34] have become the middleware of choice for 

distributed computing research. The Globus Alliance [47] is developing some of the 

technologies needed to build com putational grids. The result of this work is the 

Globus Toolkit, a set of services and software libraries to support grids and grid 

applications. The Toolkit includes software for: security; information infrastruc­

ture; resource management; da ta  management; communication; fault detection; and 

portability.

Globus is not the only grid computing platform, UNICORE [111], discussed in 

section 2.3, also has m atured and is now widely used across Europe. UNICORE 

v3.0 is a Java based grid computing infrastructure for accessing resources over the 

Internet. UNICORE Plus is a research project and a commercial product, UNI- 

COREpro, th a t intends to  extend UNICORE to provide: systems administration; 

modelling of resources; application specific extensions; advanced data management 

and computational steering.

There are many grid infrastructure projects around the world making use of the 

new grid technologies. The EUROGRID Project (Application Testbed for European 

GRID Computing) [89] is a project to build a European domain specific grid based 

on the UNICORE system and encompassing UNICORE Plus extensions as an al­

ternative to the US based grid projects which mainly use Globus. The main aims 

are to develop tools for easy access to HPC resources in the application areas of: 

biomolecular simulations; weather forecasting; and mechanical engineering.

The DataGrid project [43] aims to enable new scientific exploration through the 

intensive computation and analysis of very large shared databases across distributed 

scientific communities. It concentrates on storage facilities for very large data sets in 

fields such as: high energy physics; biology and medical imaging; earth observations. 

DataGrid makes use of the Globus toolkit and infrastructure.
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EGEE: Enabling Grids for E-science in Europe [29] is a new project that will 

build on the experiences and software developed for the DataGrid project to develop 

a robust and reliable grid infrastructure in Europe.

In America, prototypes for the National Technology Grid are being built by the 

National Partnership for Advanced Computational Infrastructure (NPACI) [84] and 

the National Computational Science Alliance (NCSA) [83]. NASA is using Globus 

to build the NASA Information Power Grid [82]. Lawrence Livermore, Los Alamos 

and Sandia National Laboratories are using Globus to build a testbed for resource 

management under the Accelerated Strategic Computing Initiative (ASCI). As with 

the European infrastructure projects outlined here these projects are all attempting 

to build computational grids for collaborative scientific computing.

All of these grid infrastructure projects could, and in many cases are, being used 

to host component based PSEs such as the one described in this thesis. Replacing 

the CORBA middleware layer with a grid solution is discussed in the future work 

section of the next chapter.

9.2 Grid Computing Environments and Portals

Engineers and scientists now have a wide choice of computational modules and 

systems available, enough so th a t navigating this large design space has become 

its own challenge. A survey of twenty eight different PSEs by Fox, Gannon and 

Thomas [39], as part of the Global Grid Forum’s Grid Computing Environments 

working group, indicates th a t such environments generally provide “some back-end 

computational resources, and convenient access to their capabilities” . Furthermore, 

work flow features significantly in both of these descriptions. In many cases, access 

to data resources is also provided in a similar way to computational ones. Often PSE 

and Grid Computing Environment (GCE) is used interchangeably, as PSE research 

predates the existence of grid infrastructure.

A number of the PSEs first discussed in chapter 2 are still actively being devel­
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oped and have now been extended to work within a grid computing infrastructure. 

These include SCIRun [65] and Netsolve, (which has become GridSolve [2 ]), both of 

which make use of the Globus Toolkit. Interestingly grid-enabled PSEs are often of 

a more hierarchical or layered nature than the PSE built in this work. For example 

GridSolve is built upon Globus and provides services which can be used by higher 

level environments such as SCIRun.

In addition, there are emerging intermediary level systems that provide access 

to low level grid resources and additional functionality on top of those resources. 

The Commodity Grid Kit (CoG) [72], is a project which provides different language 

implementations of reusable commodity frameworks including Java, Python and 

CORBA. These frameworks provide high level programmatic access to low level 

grid resources and services, insulating the PSE and portal programmer from a lot 

of the low level code.

GridLab [3] is another middleware project th a t is attem pting to provide an ab­

straction layer to grid application programmers, including PSE developers, above the 

level of the Globus Toolkit or UNICORE services. GridLab is developing the Grid 

Application Toolkit (GAT), an API and services th a t provide a uniform interface to 

grid resources and services.

TENT [100] is a distributed work flow management system for engineering appli­

cations, and like the PSE in this thesis it has a graphical user interface for composing 

work flows from components. The components are formed by wrapping codes, and 

the wrapper, like the proxy components in the work here, is responsible for the trans­

fer of data and control between components using channels. The wrapper allows the 

integration of any code without modification so tha t any type of legacy code can be 

handled; components are stored in a repository; a user can configure work flow by 

moving components from the repository to the editor in a drag-and-drop manner; 

work flow can be executed, modified, stored, or restored; the user can set the pa­

rameters of each code, can modify them during the run and thus perform numerical 

experiments; results can be visualised by putting appropriate tools into the work 

flow. Like GridSolve, TEN T is making use of the CoG kit to provide access to a
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grid environment.

Li and Baker [76] provide an extensive review of various grid portals currently 

available. Based on their definition, a grid portal provides “end users with a cus­

tomised view of software and hardware resources specific to their particular problem 

domains” . In some ways, this definition shares common themes with tha t of a GCE. 

The focus in their work is primarily on web-based portals which differ from the 

focus in the work presented in this thesis, where the focus is on a more graphical 

environment. However, they emphasise three generations of portal technologies:

• Generation 1  focuses on a graphical interface and the use of the Globus toolkit, 

primarily tightly coupled with Globus-based grid middleware tools.

• Generation 2  portals are aimed at specifying “portlets” , essentially user cus- 

tomisable services which can run on top of a web server. Grid Portlets are 

intended to be independent components th a t can utilise a number of different 

grid middleware toolkits. This is the current state of affairs in portals, with 

GridSphere [87] being a commonly used toolkit to support the construction of 

such Portlets.

• Generation 3 involves the extension of the Portlet idea with semantic annota­

tions. Our component model supports a concept similar to Portlets, in that 

each individual component present within a tool repository has an XML-based 

interface. The XML description can also be extended with semantic properties 

if required.

The GridLab Portal is implemented using the GridSphere portal framework 

which in turn  is built using other toolkits and frameworks such as the CoG kit, 

Globus toolkit and MyProxy [8 8 ], a repository framework for handling security cre­

dentials.

Other portals include the Astrophysics Simulation Collaboratory [98] in America 

and the AstroGrid [74] portal in the UK. The first is a portal for large scale simu­

lations of relativistic astrophysics and the second is a portal that aims to provide a
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data-grid to all UK astronomical observatory data.

Based on the surveys above, the VCCE may be classified as a graphical Grid 

Computing Environment, both a problem solving and a programming environment. 

It provides a user portal to  enable the composition of scientific applications from 

components and an execution environment built using CORBA as the middleware 

layer.

9.3 Component and Work Flow Models

Since this work first identified and published a description of the XML based com­

ponent model [95] in 1999 many other projects have used similar ideas. It is now 

almost standard practise for component based systems to define specifications and 

interfaces in XML syntax. There are many other prominent projects that use similar 

component definitions, not least of which are Web Services and Globus OGSA [36] 

grid services which both use an interface definition language called WSDL [115] and 

a message protocol called SOAP [116] w ritten in XML.

A recent development in the area of work flows is the addition of a new research 

group, Work Flow Management (WFM-RG), in the Global Grid Forum to explore 

the application work flows and their execution in a grid environment. An ongoing 

survey of scientific work flows [107] has identified the current active work flow re­

search projects and the models and languages they use. One of the goals of the 

WFM-RG is to  get a consensus on work flow standards.

Current proposed languages for work flow include the Business Process Language 

for Web Services (BPEL) [5] and Web Services Flow Language (WSFL) [75] both 

of which are work flow languages specifically designed for use with web services 

technology. Syntactically they are very similar to the work flow language presented 

in this thesis providing specification for services, which can be thought of in terms 

of this work as components, and the connections between them.

DAGMan [23] is a work flow meta-scheduling system for the Condor [41] schedul­
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ing system that can schedule dependant jobs, specified in directed acyclic graph onto 

a grid infrastructure. The syntax is not XML based and the dependencies have to 

be acyclic unlike the model in this thesis which allows cyclic dependencies.

GSFL [71] is a proposed work flow framework for grid services that will attempt 

to leverage advances in web services work flow and adapt them form use in the Open 

Grid Services Infrastructure (OGSI).

Triana [110] is a distributed PSE which uses a component and work flow model 

based directly on the language definition in this thesis. Unlike the BPEL and WSFL 

languages, the model presented here and used in Triana is independent of the un­

derlying middleware technology and in addition allows cyclic dependencies between 

tasks. Loops and halting conditions in both BPEL and WSFL are represented in 

the language constructs themselves whereas, with the model presented in this work, 

these are handled by specific components within the work flow. Triana is discussed 

further in the future work chapter as many of the ideas put forward here are imple­

mented in that project.

ICENI [42] is another PSE or work flow environment th a t uses XML pervasively 

throughout its work flow specification and component model. The language is similar 

to the work presented here and th a t used by many of the other projects in that it 

defines components, their properties and the connections between them.

XCAT [70] is a project at Indiana University to implement the Common Compo­

nent Architecture (CCA), first discussed in chapter 4, onto a grid infrastructure. The 

CCA specification describes the construction of portable software components that 

may be re-used in any CCA compliant runtime framework. There are many different 

frameworks envisioned from simple standalone applications to parallel systems. The 

XCAT framework is designed to support applications built from components that 

are distributed over a com putational grid of resources and distributed services. It 

is based on Globus and the CoG kit for its core security and remote task creation, 

and it uses RMI over XSOAP for its communication.
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9.4 PSEs in Science and Engineering

Since the work in this thesis was finished PSEs have advanced rapidly and are now 

being used for real scientific research. Numerical optimisation techniques within 

PSEs such as those described and prototyped in chapter 8  can now be done on a 

large scale with PSEs and grid infrastructure.

An example is a grid-based approach to the validation and testing of lubrication 

models [49]. This work uses gViz [51], an extension to the Iris Explorer workflow tool 

and existing visualisation systems to enable visualisation and computational steering 

in grid computing environments. The gViz project use XML in many areas [12]: 

data representation; visualisation presentation; visualisation application description; 

and audit trail for project history. The experiment performs a parameter space 

search, in a similar manner to the design of experiments example in chapter 8  of 

this thesis, to optimise a complex lubrication model solver, wrapped as a penalty 

function within a simplex algorithm over 36 parameters. The whole experiment is 

run across multiple parallel nodes and can be interactively visualised and remotely 

steered. This experiment is a realisation of many of the ideas presented here.

The Fraunhofer Research Grid [55] are developing a PSE based on the Fraun­

hofer computing grid. Like the PSE in this work the system is component based 

with a set of XML-based definition languages collectively called the Grid Applica­

tion Definition Language (GADL). There are a subset of four languages for: resource 

description; job description; software component interfaces; data and data flow de­

scription. Unlike many work flow models, the Fraunhofer work use Petri nets instead 

of DAGs to represent the dependencies between components. DAGs model the be­

haviour of a system but not the state, so it is not possible to model a loop directly. 

Petri nets allow state  to  be represented so loops and controls can be modelled di­

rectly. The work in this thesis bypasses this need by delegating control a specific 

control components within the work flow.

Taverna [90] is a PSE developed as part of the UK e-Science MyGrid project [48] 

to enable in silico experiments in biology on the grid. Taverna is based on the web
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services standards and provides XML-based web services definitions and a work flow 

execution environment.

Kepler [4] is a general purpose PSE with a graphical user interface and data flow 

model from Ptolemy II [94], a set of Java packages th a t support concurrent mod­

elling and design. Kepler provides a work flow environment, representing work flow 

in specific XML syntax called Model Markup Language (MOML). Like the syntax 

outlined in this dissertation, work flows can be hierarchical in definition. The focus 

of Kepler is actors, where an actor is a re-usable component tha t communicates with 

other actors through channels. Kepler works in two domains: either a process net­

work where actors model a series of processes, communicating by messages through 

channels; or in a synchronous da ta  flow domain where the communication along the 

channels is a data flow.

The Chimera Virtual D ata System (VDS) [8 ] is part of the GriPhyN project. 

Chimera has a very da ta  centric approach to work flow, choosing to focus on the 

result of a computation and working backward generating intermediate virtual data 

stages until a point where the actual data  is available. At this point the work flow 

can be executed to generate the required result. The Chimera system consists of four 

primary components: a V irtual D ata Language, used to describe virtual data results; 

a Virtual Data Catalogue, used to store virtual data  entries; an Abstract Planner, 

which resolves all dependencies for a virtual da ta  product and forms a location and 

existence independent plan; a Concrete Planner, which maps an abstract, logical 

plan onto concrete, physical grid resources. The concrete work flow is expressed in 

the DAGMan format and scheduled by the Condor scheduling system.

Cactus [18] is a modular, parallel, command line framework for solving systems 

of partial differential equations from many disciplines of science and engineering.

As this chapter illustrates the field of PSE research, and in particular distributed 

PSEs and computational grids, has moved at a rapid pace over the two and a half 

years since the work in this dissertation was completed. Many of the ideas discussed 

and prototyped here are now a reality in production systems. The next chapter 

concludes this dissertation and focuses on the successes and failures of the work.
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Some of the descriptions in this related work chapter will be discussed with reference 

to future work and directions.
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CHAPTER 10

Conclusion and Future Work

10.1 Introduction

This thesis has examined the use of Problem Solving Environments (PSEs) for cre­

ating scientific work flows for use by scientists and engineers in their day-to-day 

working lives. It has emphasised, through the building and use of several prototype 

environments, how visual programming and software component-based techniques 

can be used to build PSEs. The work has concentrated on XML-based definitions 

for both components and a work flow within the environment. This is now accepted 

standard practise within the PSE and grid computing communities. Techniques for 

wrapping “legacy” codes as components for reuse within work flow and the use of 

PSEs for non-linear optim isation were discussed. The use of CORBA as the cho­

sen middleware layer has proved to  be unfashionable in the longer term, with PSE 

designers now choosing to use grid computing technologies. The component-based 

design and visual programming interface of the VCCE can still be reused by building 

on top of the new grid computing infrastructure.

The remainder of this final chapter, evaluates each of the major sections discussed 

in this work examining the successes and failures. Where areas are lacking possible
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solutions are discussed. This chapter also provides the opportunity to assess future 

directions, including research groups th a t are still using, or have built on, the work 

described in this dissertation.

10.2 Critical Evaluation

10.2.1 VCCE Prototype

The main result of the work undertaken in this thesis is the Visual Component Com­

position Environment (VCCE) prototype PSE and its component based framework. 

When this project first started there were a number of different visual programming 

tools that potentially could have been used such as AVS, Khoros and Iris Explorer. 

None of these were deemed suitable for a number of reasons:

• Although most of these tools run on multiple platforms they are not platform 

independent. A different version of each tool would be needed for each sup­

ported platform. The VCCE is written in Java and is platform independent.

• The VCCE is open source and freely available. The other tools are commercial 

products and so may have licence restrictions.

•  The VCCE has an XML-based component model which can be converted into 

other XML model formats through XSLT translations. The component models 

of the other tools are proprietary. In addition, moving components from one 

operating system platform to another within the same application framework 

can be problematic.

The VCCE interface, although simple, is complete enough to be able to perform 

most of the functionality needed in composing work flow from components. The 

user is able to: select the component from a repository, which is dynamically loaded 

at runtime; instantiate the component onto a workspace; connect the component to 

other components; and execute the completed work flow via an internal scheduler.
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Both simple loops and more complex non-linear loops are supported. A simple 

loop allows the user to iterate over a sub-section of the task graph a predetermined 

number of times. This loop can be used to perform “param eter runs” , executing a 

solver for instance, a number of times so th a t the effect of varying input parameters 

can be observed. See chapter 6. A non-linear loop is one th a t does not iterate in a 

linear step but rather modifies the step value dependant upon some condition. It is 

used in chapter 8 to minimise a m athem atical function.

The process of developing the prototype was iterative with new versions contain­

ing progressively more functionality. Each of the previous prototypes was discarded. 

The project adhered to software engineering best practises, which throughout the 

length of the development cycle proved worthwhile again and again. Due to the fact 

that the framework was w ritten to well defined interfaces, extending the functional­

ity of components and the framework did not require much extra work. For instance, 

in chapter 6 the component proxy, SimpleProxy, needed to be replaced with a new 

proxy that would provide control functionality for the new loop component. Creat­

ing the new component was simply a m atter of implementing the Proxy Interface 
in a new class called ControlProxy. Because both component proxies implement 

the same interface they can be used in the same framework without any changes. 

The internal scheduler had to be changed to  handle the new control component 

functionality but because th a t also is w ritten to an interface replacing the scheduler 

did not change the framework at all. In fact, the future work, section 10.4, will show 

how this extensibility could be leveraged to build components for the VCCE, using 

different middleware technologies such as grid computing or web services.

10.2.2 XML-Based C om ponent Model

The XML-based component model is perhaps the single most important idea to 

come out of this work. At the tim e this work started, XML was gaining momentum 

in the development and research community, as a platform and language indepen­

dent data representation format. There were a number of emerging XML schema 

for different purposes, such as mathem atical markup, chemical markup, etc. Two
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schema for component definition existed, IBM ’s BeanML and W 3C’s OSD. Both 

of these provided definitions for components, but neither could be used as a data 

flow language to represent the connecting da ta  “channels” between components in 

a generic manner. BeanML can be used to  represent connections but is JavaBean 

specific. The “channel” would have to be a m ethod on the child JavaBean in the 

connection. OSD can represent dependencies between software components but is 

used to specify software installation and version dependencies.

The component model presented in this thesis took ideas from both languages 

to specify a data or work flow language th a t can specify component information 

such as: component name and name space scope, alternative name and ID - all of 

which can be used to uniquely identify a component and instances of tha t compo­

nent; component input and output interfaces in the form of typed data  inports and 

outports; a component execution model which helps the PSE to run the component 

- this may include the executable name, programming language, dependencies, or in 

the case of CORBA host name and name server; component help files.

Using XML as the language for defining the component interfaces has proved 

to be a popular decision. XML component models are now widely used across a 

large range of software projects. From the smallest software “plugins” to an editor, 

through the many PSE projects, to service-based infrastructure projects such as web 

services and grid services.

The XML component model presented here, is closely related to the XML-based 

formats for specifying web and grid services, W 3C’s WSDL. The data flow model 

is very close to the flow languages th a t are used to connect the services such as 

BPEL4J, WSFL or GSFL. In fact due to the nature of XML and its roots in SGML 

it is relatively straightforward to  translate between similar formats. This translation 

can be used to connect work and data  flows between systems. The future work, 

section 10.4, has an example of using this translation.

Development of the component model has not stopped with the end of this 

project. It has now been extended and provides the basis for the component defini­

tion and connection language in another PSE project, called Triana.
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10.2.3 Distributed Middleware

With the benefit of hindsight and examining recent advances in middleware tech­

nology, see chapter 9, it would appear th a t the choice of CORBA as the middleware 

layer was a mistake. These advances in middleware technology inevitably affect the 

way the PSE described in this dissertation is viewed, however these should not be 

thought of as a conflict. At the start of this project it was not at all obvious that 

grid computing, then just at the start of its research, would become the de facto 

standard for distributed scientific middleware. W riting the middleware layer from 

scratch, in hindsight, was unnecessary but the solution did work. CORBA wrapped 

codes such as BE3D and FE3D, chapter 7, ran successfully from within the VCCE 

on remote machines. The problems with large data  transfer and CORBA were alle­

viated through the use of the Action Factory th a t kept the data  on the server side, 

only returning a reference to the data  to the VCCE client.

The proxy components used to represent the distributed components within 

the VCCE were a good solution. Separating the instantiation code from the 

execution code made the system appear, to the user at least, to be faster. 

The extensibility of the proxy framework allowed the CORBA execution proxy, 

A ctionFactoryExcution section 7.2.1, to be created easily and used within the 

VCCE. The i n s t a n t i a t i o n  of the component included the CORBA name service 

handshaking, and reference resolving. The execution was a remote method call on 

the resolved distributed component. This example could be extended to use both 

web services through a web service invocation solution such as Axis or grid services 

through the OGSA framework. The VCCE framework and component model would 

not need to be extended to incorporate the new grid-based components, apart from 

the issue of security which is discussed in the future work, section 10.4. A discussion 

of grid-based PSEs can be found here [73].
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10.2.4 Non-Linear Optimisation Techniques

Chapter 8 provided an interesting use of the VCCE to enable the user to perform 

non-linear optimisation within a visual programming environment. A new loop com­

ponent was designed into which optimising algorithms such as the simplex algorithm 

can be inserted. The optimising loop evaluates a cost or objective function trying 

to minimise that function.

As with the rest of the system, the loop and function code was designed to be ex­

tensible. The simplex algorithm could be replaced by another suitable, more complex 

algorithm. The function is an interface with a single method. Any implementation 

of that interface can be used in the loop component. The XML component definition 

can be used to specify the Java executable class name for the function so it is dynami­

cally loaded at run time. Several simple examples were shown with constraint-based 

cost functions and the more complex objective function with Fiacco-McCormick 

penalty. An illustration of the loop in use, minimising the function y = —x 2 — X22, 

was also shown.

This simple use case can be extended to provide a real solution by wrapping a 

complex solver code such as FE3D in a cost function. At each iteration of the loop, 

the solver would be executed and a fitness function evaluated over the parameters 

the scientist is interested in. This is a common task for engineers in particular. The 

industrial partner in this work, BAE SYSTEMS, uses techniques such as this in “de­

sign of experiments” to  optimise among other things, airflow over wing calculations 

for aircraft models.

10.3 Other users of the VCCE

The VCCE has been used by Southampton University as a visual programming front 

end to their engineering PSE in the GEODISE project, see [103, 102].

BAE SYSTEMS continue to use the VCCE with the solver components imple­

mented here and a component th a t was capable of executing command line opera­
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tions specified in the XML component definition. This is used as a visual scripting 

language.

The XML component model has become the basis of the model used in the 

GridOneD Triana PSE.

The experience gained in developing the VCCE is being used in a number of 

e-Science projects such as GridLab and GridOneD.

10.4 Other Issues and Future Work

This section of the dissertation could easily be as long as the rest of the chapters put 

together. The VCCE was the result approximately three “man years” of research 

and development. In programming terms this is not a large amount of time so this 

work concentrated on certain areas such as component design and PSE use cases. 

The areas covered by PSEs today is enormous. A huge amount of effort is going 

into PSE research and the closely related subject of grid computing. The current 

UK e-Science funding for projects in these areas is evidence of this.

Some of the many issues not addressed in the VCCE include, in no particular or­

der: support for fault tolerance; control branching components; debugging and state 

management of components; user authentication and security; component editors; 

intelligent advisers; component integrity and version checking; support for multiple 

middleware layers and protocols; implementation of hierarchical components; exter­

nal scheduling systems; resource reservation; experiment reproducibility and data 

provenance; process monitoring; process migration; scalability; complex component 

user interfaces; components as computational services; and complex visualisation 

tools.

Fault tolerance is a very im portant aspect of any production system that is to be 

used in the real world. The VCCE was only designed to be a prototype and so fault 

tolerance was not a design consideration. Fault tolerance can be built into a PSE 

at many different levels: the availability of components or services - a component
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cannot be used if it is not available - where replication of components in multiple 

repositories can help; reliability of connections in data channels - error checking on 

received data and successfully received messages might be needed; graceful failure - 

an error in a single component should not crash the entire work flow.

The VCCE has a control construct for looping but no control construct com­

ponent implementing an if...then logical branch. A branching component is fairly 

simple to implement but a decision needs to be made whether the control logic 

should be at component level or within the flow connection language itself. Lan­

guages such as WSFL for choreographing the connections between web services have 

control such as looping and logical branching at the language level. The Triana PSE 

implements the logic in purpose built components. The trade off is tha t support 

at the language level does not require special purpose components, but cannot im­

plement all possible constructs, such as while...do, repeat..until or complex if...then 

statements, without bloating the language representation. Including the ability for 

all control at the language level would tu rn  a simple flow language into an almost 

complete programming language. This would invalidate one of the main goals of 

PSEs, abstraction of complexity.

Debugging of distributed systems is a notoriously complex task. The VCCE has 

no support for this but a commonly used method in distributed Java systems is 

to use logging. Log messages can have priorities such as debug, warning or error 

and can be sent from remote processes to a logging server. State management of 

components is also not considered in the VCCE. If a work flow is stopped mid-way 

through its execution, either through error or user intervention, then the state of all 

the components in the flow could be used to restart the work flow later. Internal 

component state requires the component builder to implement checkpointing. This 

will only be worth while for components th a t take a long time to run as it may 

be quicker to re-run the component than write the checkpointing code. Where 

there is no checkpointing implemented, given a work flow where the current point 

of execution is known, i.e. which components have been executed already and which 

have not, and a data  object for the current position in the workflow, a course grained
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level of checkpointing is available. The work flow can be restarted at the point it 

was stopped by passing the data object into the first unexecuted component. This 

system has been implemented in Triana.

Security is important in PSEs for a number of reasons: if the PSE is able to 

access remote resources then user authentication will be needed; some components 

may be of restricted use or contain licence restrictions. Some web services and all 

grid services are secured using Grid Security Infrastructure (GSI). This implements 

X.509 certification where a user has to generate a credential th a t is used as a token 

and passed to the service as a verification of identity. It is possible to implement 

security at individual component level through the use of mechanisms such as SSL. 

This is not a scalable solution and any production PSE should build security into 

the infrastructure.

Support tools such as component editors and wizards for creating components 

are a necessary part of a full PSE. In the VCCE components were custom created 

by hand using a text editor for the XML definitions. This would not be attractive 

in a system that is to be used by someone not familiar with the intricate details, 

one of the goals of PSEs. A component model editor would allow a user to specify 

the component model using tags, and also act as a wizard and enable customisa­

tion. An editor would work in a similar manner to an HTML editor, where a user 

is presented with a menu based choice of available tags, and can either choose one 

of these predefined tags or, different from an HTML editor, may define their own. 

Component wizards would generate skeleton “boilerplate” code into which the com­

ponent writer can insert an algorithm without having to write component input and 

output or control code. A system like this is implemented in Triana.

Many potential PSE users would like the system to have the ability to suggest ap­

propriate components from the repository. This would be helpful for several reasons: 

new or novice users would be able to paraphrase their problem and have potential 

similar work flow solutions previously used suggested to them; partial composed 

work flows would have suitable components suggested - i.e. if a mesh generator is 

connected to a non-compatible solver then the system would insert a translation
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component; domain expert knowledge could be saved in the system and not lost 

when the expert is no longer available. An expert adviser could be implemented us­

ing the Java Expert System Shell (JESS) which gives the ability to “plug-in” domain 

specific rules into the adviser.

Component integrity and version checking is im portant for scientific validity and 

experiment reproducibility. If an in silico experiment run on a PSE produces an 

important result then the validity of the components th a t make up the work flow 

must be proved. To be able to reproduce the experiment it is not enough to have 

the work flow, the correct versions of the valid components must be known.

A flexible PSE should not be reliant on a single middleware implementation. The 

PSE should be able to sit above the middleware layer and utilise whatever distribu­

tion mechanisms and services are available. The VCCE implemented an extensible 

framework that could be used with multiple middleware such as web services and 

grid services. The GridLab GAT, provides a middleware independent layer tha t a 

PSE could be built on top of. Dynamically loaded adaptors provide the middleware 

capability. The PSE would make a GAT function call which would be dynamically 

mapped to an appropriate resource through middleware implementation chosen by 

the GAT engine. Triana makes use of this technique to distribute components via 

middleware such as web services and peer-to-peer networks.

Hierarchical components are an im portant part of a PSE user interface. In large 

task graphs it may be impossible to see every component given a finite screen size. 

A user may group components into compound components to make the algorithm 

easier to understand. The component model used in the VCCE has support for 

compound components as they can be thought of as a component containing sub­

work flows. There was not enough time to implement the user interface aspect of 

hierarchical components in the VCCE but it has been implemented in Triana using 

the same component model.

The VCCE has several internal scheduling algorithms implemented. In many 

cases it may not be possible for a PSE to schedule components itself. Remote re­

sources often have job submission queues to which the PSE must submit component
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processes for execution. Some of these resources are controlled by schedulers that 

have the ability to handle dependencies for jobs, for example Condor. In this case the 

PSE would hand the completed work flow to the external scheduler for execution. 

This has been implemented in a collaboration between Triana and the DataGrid 

project. The internal task graph format must be translated into the format of the 

external scheduler prior to  execution.

Resource reservation is another interesting aspect of future work. Some real 

time applications, such as large detector data signal processing, may require the 

PSE to reserve a certain amount of computing resources before the application can 

be executed. W hether the PSE implements the reservation request or passes it onto 

to a resource management application will be dependant upon the management of 

the resources the PSE has available to it.

Experiment reproducibility and data  provenance have already been covered by 

state management and component integrity and version checking. To reproduce an 

experiment, three things are needed: the original input data set; the task graph 

specifying the algorithm; and the correct versions of all of the components involved.

Distributed PSEs will have component processes running on multiple resources 

on a network or computational grid. The user of the PSE will want the ability 

to monitor the various remote processes to discover their state. A heavily loaded 

machine may not be able to allocate enough processing to the remote job and so 

the user may require th a t particular process be moved to a more suitable location. 

Process migration is a complicated research area and may involve checkpointing 

if the run time for the process is suitably large. Monitoring information can be 

relatively simple to provide but migration is an area of research that is currently not 

well implemented, especially for heterogeneous networks where binary compatibility 

of components is not supported.

The VCCE was a prototype PSE and consequently cannot be thought of as 

being scalable. Large PSEs must be able to handle hundreds if not thousands of 

concurrent processes. Many common tasks in scientific simulation are data intensive 

and easily implemented as parallel processes, in a SPMD fashion. A PSE should
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be able to discover available resources and start multiple copies of task graphs and 

components on those resources to increase the speed of the data processing. Many 

physics and astronomy applications, such as gravitational wave data processing or 

the SETI@home radio signal processing, and engineering applications, such as design 

of experiments domain searches, can use as many resources as are available. The 

data and processes are discrete with no communication needed between processing 

resources.

Components in a PSE such as Triana have user interfaces of a much more com­

plex nature than the ones in the VCCE. The VCCE components have the ability 

to display the name of the component and an indication of its execution state, the 

component turned red once execution was completed. The major reason for PSEs 

existence is usability. Components must be able to provide the user with a rich 

interface that provides feedback about the component’s state and allows complex 

interactions such as com putational steering to take place. Implicit in the rich inter­

face is the existence of fully featured visualisation tools. A PSE without visualisation 

is almost like a waggon without wheels. A scientist will want quick ways to visu­

alise intermediate results th a t provide an indication of the state of a simulation. 

Visualisation tools should also enable remote access from mobile devices such as 

PDAs.

Components within the VCCE are internal to the framework. Increasingly in 

research and business, components are being thought of as computational services. 

The idea of a component as a computational service tha t can reside anywhere on 

the network has now been generalised into the concept of web and grid services 

that can be described by an open standard description language, WSDL. The idea 

of component and service being interchangeable relies on the fact that both are 

basically “black box” processing units th a t provide well defined input and output 

interfaces. Service implies a network whereas component is normally thought of as 

local. The ultim ate realisation of this is service based work flows where the service 

can be implemented using any technology but discovered and communicated with, 

using standards-based descriptions, advertisements and protocols.
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10.5 Summary

The goal of a PSE is to support an application scientist in solving a problem within 

a given application domain. A PSE should make the task of “problem solving” sim­

pler by abstracting the details of hardware and software. It is natural for a user to 

decompose a large problem into smaller problems and a PSE should support this. 

The data flow approach taken in this dissertation, where an application is composed 

from available com putational components, each with a specific purpose, is perhaps 

the most intuitive m ethod of accomplishing this. Visual programming has been used 

in other tools to  great success and is now the most common way of composing data 

or work flow applications. It is shown here to be a very effective way of representing 

applications composed from components. The graphical approach to programming 

used here is generic and the generated XML task graph can be converted into many 

different formats. The VCCE provides support for looping components. These are 

used to perform “param eter runs” and non-linear optimisation loops utilising algo­

rithms such as the simplex to minimise functions and provide domain space search 

capabilities. Large solvers such as the parallel FE3D are wrapped as monolithic 

components within the VCCE. In cases such as this where source code is not avail­

able this may be the only solution. Smaller granularity components such as the 

broken down BE2D code can provide more code re-use.

W ith the benefit of hindsight the work involved implementing the CORBA mid­

dleware tha t makes the large solvers available to the VCCE was unnecessary. Grid 

computing now enables PSEs to be built on top of a feature rich middleware plat­

form. The modular design of the VCCE allows components to be built on top of 

the new technologies.

The XML-based component model described here is also now a very common 

feature of most modern PSEs and has been generalised into the notion of components 

as services using the standards-based WSDL specification. The component model 

is the one thing th a t will live on after this project.

160



APPENDIX A

Publications

Chronological list of conference papers and journal publications associated with this 

research.

1. An XM L Based Component Model For Generating Scientific Applications and 

Performing Large Scale Simulations in a Meta-Computing Environment, 

Matthew S. Shields, David Walker, Omer Rana, Maozhen Li, paper presented 

at the International Symposium on Generative and Component Based Software 

Engineering (GCSE), Erfurt, Germany, 27-30 October 1999. Proceedings only 

available on CD-ROM.

2. Implementing Problem Solving Environments fo r  Computational Science, 

Omer F. Rana, Maozhen Li, M atthew Shields, David Walker and David Golby, 

European Conference on Parallel Processing (EuroPar), Munich, Germany, 

August 2000. Springer Verlag.

3. A Java/CO RBA based Visual Program Composition Environment for PSEs, 

M. S. Shields, O. F. Rana, David W. Walker, Li Maozhen, David Golby, paper 

published Concurrency: Practice and Experience. Volume 12, Issue 8, 2000, 

pp687-704. (Special Issue: ACM 1999 Java Grande Conference (Part 3) Issue

161



Edited by Geoffrey Fox.) John Wiley & Sons, Ltd.

4. A Collaborative Code Development Environment for Computational Electro- 

Magnetics, M atthew Shields, Omer F. Rana, David W. Walker and David 

Golby, Software Architectures for Scientific Computing Applications, 8th work­

ing conference organised by the IFIP Working Group on Numerical Software 

(WG 2.5) on behalf of the IFIP  Technical Committee on Software: Theory and 

Practice, Ottawa, October 2000. Proceedings published The Architecture of 

Scientific Software, eds. RF Boisvert and P T P  Tang, pub. Kluwer Academic 

Publishers, Massachusetts, USA, pp. 119-141, 2001. ISBN 0-7923-7339-1.

5. The Software Architecture o f a Distributed Problem-Solving Environment, 

David. W. Walker, M. Li, O .F.Rana, M. S. Shields, and Y. Huang, paper 

published Concurrency: Practice and Experience. Volume 12, Issue 15, 2001, 

ppl455-1480.

6. Component-based Problem Solving Environments for Computational Science, 

Maozhen Li, Omer F. Rana, David W. Walker, M atthew Shields, Yan Huang, 

book chapter in “Component-based Software Development” (Ed: Kung-Kiu 

Lau), World Scientific Publishing, 2003.

162



APPENDIX B

Code Listings

B .l Code from Chapter 4: 

Problem Solving Environment Architecture

B.1.1 Number Display Bean

C ode from  se c t io n  4 .2

p u b l i c  c l a s s  N u m b e r D i s p l a y B e a n  e x t e n d s  J L a b e l  { 
p r o t e c t e d  f l o a t  v a l u e  =  0 ;
p r o t e c t e d  F l o a t  o V a l u e  =  new F l o a t  ( v a l u e ) ; 
p r o t e c t e d  P r o p e r t y C h a n g e S u p p o r t  l i s t e n e r s  =  new  

P r o p e r t y C h a n g e S u p p o r t  ( t h i s  ) ;

/ /  O b l i g a t o r y  n o  a r g u m e n t  c o n s t r u c t o r  
p u b l i c  N u m b e r D i s p l a y B e a n  ()  {

s e t P r e f e r r e d S i z e  (new D i m e n s i o n  ( 100 , 1 0 0 ) ) ;  
s e t V i s i b l e  ( t r u e )  ;
s e t  F o n t  ( t h i s  . g e t  F o n t  ()  . d e r i v e F  o n t  ( F o n t  .BOLD, ( f l o a t ) 3 0 ) )  ; 
s e t B o r d e r (  B o r d e r  F a c t o r y  . c r e a t e B e v e l B o r d e r (  B e v e l B  o r d e r  .

LOWERED, C o l o r  . b l a c k  , C o l o r  . b l u e ) )  ; 
s e t B a c k g r o u n d  ( C o l o r  . w h i t e  ) ; 
s e t O p a q u e  ( t r u e ) ;
t h i s  . s e t H o r i z o n t a l A l i g n m e n t  (CENTER) ;
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B.l Code from Chapter 4:
Problem Solving Environment Architecture

}

/ /  Get the value o f  value .
p u b l i c  f l o a t  g e t V a l u e ( )  { r e t u r n  v a l u e ; }

/ /  Set  the value of  va l ue .
p u b l i c  s y n c h r o n i z e d  v o i d  s e t  V a l u e  ( f l o a t  v)  {

i f  ( v a l u e  ! =  v )  { 
v a l u e  =  v ;
s e t  T e x t  (n ew  F l o a t  ( v a l u e )  . t o S t r i n g Q )  ; 
r e p a i n t  ()  ; 
f i r e V a l u e C h a n g e  ( )  ;
}

}

p u b l i c  v o i d  a d d P r o p e r t y C h a n g e L i s t e n e r  ( S t r i n g  p r o p e r t y N a m e  , 
P r o p e r t y C h a n g e L i s t e n e r  1 ) { 

l i s t e n e r s  . a d d P r o p e r t y C h a n g e L i s t e n e r  ( p r o p e r t y N a m e  , 1) ;
}

p u b l i c  v o i d  r e m o v e P r o p e r t y C h a n g e L i s t e n e r  ( S t r i n g  p r o p e r t y N a m e  
, P r o p e r t y C h a n g e L i s t e n e r  1) {

1 i s t  e n e r s . r e m o v e P r o p e r t y C h a n g e L i s t e n e r  ( p r o p e r t y N a m e ,  1 ) ;
}

p r o t e c t e d  v o i d  f i r e  V a l u e C h a n g e  ()  {
l i s t e n e r  s . f i r e P r o p e r t y  C h a n g e  ( "value " , o Va l u e  , o V a l u e  =  

n e w  F l o a t  ( v a l u e  ) )  ;
}

} / /  NumberDisplayBean

B .l .2 Operator Bean

C ode from  se c t io n  4 .2

p u b l i c  c l a s s  O p e r a t o r B e a n  e x t e n d s  J L a  be l  {
2 p u b l i c  s t a t i c  f i n a l  S t r i n g  ADD =  "add" , SUB =  "sub" , MLT =  "

m l t " , DIV =  " d iv "  ; 
p r o t e c t e d  f l o a t  o p e r a n d l  =  0 ,  o p e r a n d 2  =  0;

4 p r o t e c t e d  S t r i n g  o p e r a t o r  — ADD;
p r o t e c t e d  f l o a t  a n s w e r ; 

e p r o t e c t e d  S t r i n g  o O p e r a t o r  =  new S t r i n g  ( o p e r a t o r ) ;
p r o t e c t e d  F l o a t  o A n sw e r  =  new F l o a t  ( a n s w e r ) ;

8 p r o t e c t e d  P r o p e r t y C h a n g e S u p p o r t  l i s t e n e r s  =  new
P r o p e r t y C h a n g e S u p p o r t  ( t h i s ) ;
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/ /  O b l i g a t o r y  n o  a r g u m e n t  c o n s t r u c t o r  
p u b l i c  O p eratorBean  () {

s e t P r e f e r r e d S i z e  (new  Dim ens ion  (100  , 1 0 0 ) ) ;  
s e t V i s i b l e  ( t r u e ) ;
s e t F o n t  ( t h i s  . g e t F o n t  ()  . d e r i v e F o n t  ( F o n t  .BOLD, ( f l o a t ) 3 0 ) )  ; 
s e t B o r d e r  ( B o r d e r F a c t o r y  . c r e a t e B e v e l B o r d e r  ( B e v e l B o r d e r  .

LOWERED, C o l o r  . b l a c k  , C o l o r  . b l u e  ) )  ; 
s e t B a c k g r o u n d  ( C o l o r  . w h i t e )  ; 
s e t O p a q u e  ( t r u e ) ;
t h i s  . s e t H o r i z o n t a l A l i g n m e n t  (CENTER) ;

}

/ /  Ge t  t h e  v a l u e  o f  o p e r a t o r .
p u b l i c  S t r i n g  g e t O p e r a t o r  ( )  { r e t u r n  o p e r a t o r ; }

/ /  S e t  t h e  v a l u e  o f  o p e r a t o r .  
p u b l i c  v o i d  s e t O p e r a t o r  ( S t r i n g  v )  { 

o p e r a t o r  =  v ;  
s e t T e x t  ( o p e r a t o r  ) ; 
r e p a i n t  ()  ;
f i r e O p e r a t o r C h a n g e  ()  ;

}

p u b l i c  f l o a t  g e t O p e r a n d l  ()  { r e t u r n  o p e r a n d l ; }  

p u b l i c  f l o a t  g e t O p e r a n d 2  ()  { r e t u r n  o p e r a n d 2 ; }

p u b l i c  v o i d  s e t O p e r a n d l  ( f l o a t  v)  {
i f  ( o p e r a n d l  ! =  v )  { 

o p e r a n d l  =  v ;  
c a l c u l a t e ( ) ;

}
}

p u b l i c  v o i d  s e t O p e r a n d 2  ( f l o a t  v)  {
i f  ( o p e r a n d 2  ! =  v )  { 

o p e r a n d 2  =  v ;  
c a l c u l a t e ( ) ;

}
}

p u b l i c  v o i d  a d d P r o p e r t y C h a n g e L i s t e n e r  ( S t r i n g  p r o p e r t y N a m e ,  
P r o p e r t y C h a n g e L i s t e n e r  1) { 

l i s t e n e r s  . a d d P r o p e r t y C h a n g e L i s t e n e r  ( p r o p e r t y N a m e  , 1) ;

}
p u b l i c  v o i d  r e m o v e P r o p e r t y C h a n g e L i s t e n e r  ( S t r i n g  p r o p e r t y N a m e  

, P r o p e r t y C h a n g e L i s t e n e r  1) {
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l i s t e n e r s  . r e m o v e P r o p e r t y C h a n g e L i s t e n e r  ( p r o p e r t y N a m e  , 1) ;
}

protected  void f i r e O p e r a t o r C h a n g e  ()  {
l i s t e n e r s .  f i r e P r o p e r t y C h a n g e ( "  o p e r a t o r "  , oO p e r  a t  o r ,  

o O p e r a t o r  =  new S t r i n g  ( o p e r a t o r  ) )  ;
}

protected  void  f i r e A n s w e r C h a n g e  ()  {
1 i s t  e n e r  s . f i r e P r o p e r t y C h a n g e  ( "  a n s w e r  " , oA nsw er , oAns wer  

= new F l o a t  ( a n s w e r ) )  ;
}
protected  synchronized  void c a l c u l a t e  ()  { 

try  {
i f  ( o p e r a t o r  =  =  ADD) {

a n s w e r  =  o p e r a n d l  +  o p e r a n d 2  
} e l s e  i f  ( o p e r a t o r  = =  SUB) {

a n s w e r  =  o p e r a n d l  — o p e r a n d 2  
} e l s e  i f  ( o p e r a t o r  = =  MLT) {

a n s w e r  =  o p e r a n d l  * o p e r a n d 2  
} e l s e  i f  ( o p e r a t o r  = =  DIV ) {

a n s w e r  =  o p e r a n d l  /  o p e r a n d 2
}
f i r e A n s w e r C h a n g e  ()  ;

} catch ( E x c e p t i o n  e )  {
S y s t e m  . o u t  . p r i n t l n  ( e  . t o S t r i n g  ()  +  } u ’ +  new F l o a t  ( 

o p e r a n d l ) .  t o S t r i n g  ()  +  ’ u ’ +  new F l o a t  ( o p e r a n d 2  ) 
t o S t r i n g ( )  +  *u } +  o p e r a t o r ) ;

}
}

public S t r i n g  t o S t r i n g  ()  { 
return "O p e r a t o r B e a n " ;

}
} / /  OperatorBean

B.1.3 Example XML Data Analysis Definition

C od e from  s e c t io n  4 .4 .2 .9 , p a g e  50

<?xml v e r s i o n —" 1. 0 " ?>
2 < p r e f a c e >

< nam e a l t = " D A "  i d=" DA01  " > D a t a A n a l y s e r < / n a m e >  
4 < p s e —t y p e > G e n e r i c < / p s e —t y p e >
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< h i e r a r c h y  i d = " p a r e n t  " > T o o l s  . D a t a  . D a t a  A n a l y s e r < / h i e r a r c h y >
< h i e r a r c h y  i d = "  c h i l d  " x / h i e r a r c h y >

< / p r e f a c . e >

< p o r t s >
< i n p o r t n u m > 2 < / i n p o r t  n u m >
< o u t p o r t n u m > l < / o u t p u t n u m >
< i n p o r t y p e  i d = "  l " > f l o a t c / i n p o r t y p e >
C i n p o r t  i d = " l "  t y p e = " r e a l " >

< p a r a m e t e r  n a m e = "regression" v a l u e = "  NIL " / >
< /  i n p o r t >
C i n p o r t  i d = " 2 "  t y p e = "  float">

C p a r a m e t e r  name="bayesian" v a l u e = " N I L  " / >
< / i n p o r t >
< o u t p o r t y p e > r e a l < / o u t p o r t y p e >

< / p o r t s >

C e x e c u t i o n  i d = "  software ">
< t y p e > p a r a l l e l < / t y p e >
< t y p e > M P I < / t y p e >
< ty p e > S P M D < /ty p e >
< t y p e > b i n a r y < / t y p e >

< /  e x e c u t i o n >

C e x e c u t i o n  i d = " p l a t f o r m " >
C t y p e X / t y p e >

< / e x e c u t i o n >

C h e l p  c o n t e x t ^ " instantiate ">
C h r e f  n a m e = "file:/home/pse/help/data-analyser.txt " v a l u e = " N I L  

" >

C / h e l p >

B .l .4 Example C om ponent Interface Described in XML

C ode from  se c t io n  4 .4 .2 .9 , p a g e  50

C?xml version=" 1. 0 " ?>
2 cPSE>

C p r e f a c e >
4 Cnaine a lt= "b e 2 d "  id="be2d01 ">be2dc/nam e>

C p s e — t y p e > G e n e r i c C / p s e —t y p e >  
e C h i e r a r c h y  id=" p a r e n t  ">be2d . be2dComponents . Be2D Testc/

h i e r a r c h y >
C h i e r a r c h y  i d = "  c h i l d " x /  h i e r a r c h y >
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< / p r e f a c e >
< p o r t s >

C i n p o r t  n u m > 2 < / i n p o r t n u m >
< o u t p o r t n u m > 2 < / o u t  p o r t  n u m >
< i n p o r t  i d = " l "  p a r a m e t e r ^ " c o n t r o l " t y p e = "  s t r e a m "  v a l u e = " N I L " >  

< h r e f  n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /  
b e 2 d C o m p o n e n t s / c o n t r o l " v a l u e = "  N I L " / >

< /  i n p o r t >
< i n p o r t  i d = " 2 "  p a r a m e t e r = " m o d e l "  t y p e = "  s t r e a m "  v a l u e = " N I L " >  

< h r e f  n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /  
b e 2 d C o m p o n e n t s / m o d e l " v a l u e = " N I L " / >

< /  i n p o r t >
C o u t p o r t  i d = " l "  p a r a m e t e r = "  c u r  " t y p e = " s t r e a m " v a l u e r " N I L "> 

< h r e f  n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /  
b e 2 d C o m p o n e n t s / c u r " v a l u e = " N I L " / >

< / o u t p o r t >
< o u t p o r t  i d = " 2 "  p a r a m e t e r ^ " r e s " t y p e = " s t r e a m "  v a l u e = " N I L " >  

< h r e f  n a m e = " f  i l e : / / / h o m e / s c m m s s / p r o j  e c t / s r c / b e 2 d /  
b e 2 d C o m p o n e n t s / r e s "  v a l u e = " N I L " / >

< / o u t p o r t >
< / p o r t s >
< e x e c u t i o n  i d = " s o f t w a r e " t y p e = " b y t e c o d e ">

< t y p e  i d = " a r c h i t e c t u r e " v a l u e r " s e r i a l " / >
< t y p e  i d = " c l a s s "  v a l u e r " b e 2 d . b e 2 d C o m p o n e n t s . B e 2 D T e s t " / >
C t y p e  i d = " s o u r c e " v a l u e = " f  i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e  2d 

/ b e 2 d C o m p o n e n t s / * . j  a v a " / >
< t y p e  i d = " c l a s s p a t h "  v a l u e = " ~ / p r o j e c t / c l a s s e s ; / ~ / l o c a l / 3  

r d P a r t y J a v a / J N L / C l a s s e s " / >
< / e x e c u t i o n >
< e x e c u t i o n  i d = "  p l a t f  o rm ">

< t y p e  i d = " j a v a "  v a l u e = " j d k l . 2 " / >
< /  e x e c u t i o n >
< h e l p  c o n t e x t = " a p i d o c  ">

< h r e f  nam e= " f  i l e : / / / h o m e / s c m m s s / p r o j  e c t / d o c s / b e 2 d d o c s / i n d e x  . 
h t m l "  v a l u e = " N I L " / >

< / h e l p >
</PSE>

B.1.5 Example XML Task Graph

C od e from  se c t io n  4 .4 .4 , p a g e  52

< ? x m l v e r s i o n ^ "  1.  0 " e n c o d i n g = " U T F - 8 " ? >  
2 < P S E t a s k g r a p h  t y p e = "  s e r i a l i z e d " >  

< c o m p o n e n t >
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C nam e  a l t = ” b e 2 d D a t a " i d = " b e 2 d D a t a 0 1 " i n s t = " 7 0 6 5 0 1 9 M> b e 2 d  
d a t a < / n a m e >

< l o c a t i o n  x c o o r d = " 2 0 7 . 0 "  y c o o r d = " 9 7 . 0 "  / >
< / c o m p o n e n t  
< c o m p o n e n t >

C nam e a l t = " b e 2 d "  i d = " b e 2 d 0 1 "  i n s t = "  6 6 7 0 3 2 6  " > b e 2 d c /n a m e >  
< l o c a t i o n  x c o o r d = " 2 4 2 . 0 "  y c o o r d = " 2 1 2 . 0 "  / >

< / c o m p o n e n t >
< c o m p o n e n t >

Cname a l t = "  c u r V i e w  " i d = " c u r V i e w O l  " i n s t = " 6 3 2 6 1 3 9 " > c u r  
v i e w e r < / n a m e >

C l o c a t i o n  x c o o r d = " 1 3 7 . 0 "  y c o o r d = " 3 6 6 . 0 "  / >
< / c o m p o n e n t >
< c o m p o n e n t >

Cname a l t = " r c s V i e w "  i d = " r c s V i e w O l  " i n s t = " 2 4 3 3 7 0 2 " > r c s  
v i e w e r c / n a m e >

C l o c a t i o n  x c o o r d = " 2 9 3 . 0 "  y c o o r d = " 3 5 8 . 0 "  / >
< / c o m p o n e n t >
C s t  a r t >

Cname a l t = " b e 2 d D a t a "  i d = " b e 2 d D a t a 0 1 " i n s t = "  7 0 6 5 0 1 9 " > b e 2 d  
d a t a c / n a m e >

< / s t  a r t >
C c o n n e c t i o  n >

C p a r e n t >
Cname a l t = "  b e 2 d D a t a " i d = " b e 2 d D a t a O 1 " i n s t = " 7 0 6 5 0 1 9  "> 

be2 d  d a t a c / n a m e >
< / p a r e n t >
C c h i l d >

Cna m e  a l t = " b e 2 d "  i d = " b e 2 d 0 1 "  i n s t = "  6 6 7 0 3 2 6  " > b e 2 d c /  
n a m e >

< /  c h i l d >
</  c o n n e c t i o n >
C c o n n e c t i o n >

C p a r e n t >
Cna m e  a l t = nb e 2 d "  i d = " b e 2 d 0 1 "  i n s t = "  6 6 7 0 3 2 6  " > b e 2 d c /  

n a m e >
< / p a r e n t >
C c h i l d >

Cname a l t = " c u r V i e w " i d = "  c u r V i e w O l " i n s t = " 6 3 2 6 1 3 9 ">cu r  
v i e w e r c / n a m e >

< / c h i l d >
</  c o n n e c t  i o n >
C c o n n e c t i o n >

C p a r e n t >
C n a m e  a l t = " b e 2 d "  i d = " b e 2 d 0 1 "  i n s t = "  6 6 7 0 3 2 6  " > b e 2 d c /  

na m e >
< / p a r e n t >
C c h i l d >

C n a m e  a l t = "  r c s V i e w  " i d = " r c s V i e w O l " i n s t = "  2 4 3 3 7 0 2  " > r c s
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v i e w e r < / n a m e >
< /  c h i l d >

< /  c o n n e c t i o n >  
< / P S E t a s k g r a p h >

B.1.6 VCCE Proxy C om ponent Interface

C od e from  4 .5 , p a g e  55

/ *  *
* C o p y r i g h t  & c o p y  2 0 0 0  C a r d i f f  U n i v e r s i t y  & B A E  S Y S T E M S  L t d , A l l
* r i g h t s  r e s e r v e d .
* @ a u t h o r  M a t t h e w  S .  S h i e l d s  

* /
package v c c e . v i s u a l p r o x y  ;

import j a v a . a w t . * ;  
import v c c e  . o b s e r v e r  . * ;

/ *  *
* The  p u b l i c  i n t e r f a c e  t o  a l l  p r o x y  c o m p o n e n t s  w i t h i n  t h e  VCCE.
* I m p l e m e n t s  t h e  P r o x y  p a t t e r n  , p p 2 0 7  — 2 1 7  D e s i g n  P a t t e r n s ,
* Gamma e t  a I .

* /
public i n t e r f a c e  P r o x y l n t e r f a c e  extends  S u b j e c t l n t e r f a c e  {

/ /  R e t u r n s  t h e  i n t e r n a l  s y s t e m  n a m e .  
public  S t r i n g  g e t l n t e r n a l N a m e  ()  ;

/ /  R e t u r n s  t h e  a l t e r n a t i v e  n a m e .  
public  S t r i n g  g e t A l t N a m e  ()  ;

/ /  R e t u r n s  t h e  e x t e r n a l  n a m e  r e p r e s e n t a t i o n .  
public  S t r i n g  g e t E x t e r n a l N a m e  ( )  ;

/ /  R e t u r n s  t h e  i n s t a n c e  I D  ( u n i q u e )  
public  S t r i n g  g e t l n s t a n c e l D  ()  ;

/ /  S e t s  t h e  i n s t a n c e  I D  ( s h o u l d  be m a c h i n e  g e n e r a t e d  a n d  
u n i q u e  )  .

public  void  s e t l n s t a n c e l D  ( S t r i n g  I n s t l D S t r ) ;

/ /  R e t u r n s  t h e  t y p e  o f  P S E  t h e  c o m p o n e n t  c a n  be u s e d  w i t h i n .  
public  P s e T y p e  g e t P s e T y p e  ()  ;

/ /  R e t u r n s  t h e  p a r e n t  c o m p o n e n t , i n  a c o m p o u n d  c o m p o n e n t .
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public  S t r i n g  g e t P a r e n t ( ) ;

/ /  R e t u r n s  a n  i t e r a t o r  c o n t a i n i n g  t h e  c h i l d  c o m p o n e n t s  i n  a 
c o m p o u n d  c o m p o n e n t .  

public  P r o x y l t e r a t o r  g e t C h i l d r e n  ()  ;

/ /  R e t u r n s  a n  i t e r a t o r  o f  i n p u t  p o r t s .  
public  P o r t l t e r a t o r  g e t l n p o r t s  ()  ;

/ /  R e t u r n s  a s t r i n g  r e p r e s e n t a t i o n  o f  t h i s  c o m p o n e n t s  i n p u t  
v a l u e s  .

public  S t r i n g  i n p o r t s T o S t r i n g  ()  ;

/ /  R e t u r n s  t h e  n u m b e r  o f  i n p u t  p o r t s  
public  in t  i n p o r t C o u n t  ()  ;

/ /  R e t u r n s  t h e  n u m b e r  o f  o u t p u t  p o r t s  
public  in t  o u t p o r t C o u n t  ()  ;

/ /  R e t u r n s  a n  i t e r a t o r  o f  o u t p u t  p o r t s .  
public  P o r t l t e r a t o r  g e t O u t p o r t s  ()  ;

/ /  R e t u r n s  t h e  e x e c u t a b l e  c o m p o n e n t  o f  t h e  p r o x y .  
public  E x e c u t i o n l n t e r f a c e  g e t E x e c u t i o n  ()  ;

/ /  R e t u r n s  a n  i t e r a t o r  o f  t h e  h e l p  c o m p o n e n t s . 
public  H e l p l t e r a t o r  g e t H e l p s Q ;

/ /  R e t u r n s  d e e p  c l o n e  o f  t h e  p r o x y  , e x c l u d i n g  h e l p  c o m p o n e n t s  
/ /  w h i c h  a r e  s h a r e d  b e t w e e n  p r o x y  i n s t a n c e s . 
public  O b j e c t  c l o n e  ( ) ;

/ /  D i s p l a y  a p a r t i c u l a r  h e l p  c o m p o n e n t , b a s e d  on  c o n t e x t .  
public  void d i s p l a y H e l p  ( H e l p C o n t e x t  c o n t e x t ) ;

/ /  R e t u r n s  t h e  v a l u e  o f  a g i v e n  o u t p u t  p o r t ,  i d e n t i f i e d  by  
/ /  p a r a m e t e r  s t r i n g  .
public  O b j e c t  g e t O u t p o r t V a l u e  ( S t r i n g  p a r a m e t e r ) ;

/ /  S e t s  t h e  v a l u e  o f  a n  i n p u t  p o r t  i d e n t i f i e d  by t h e  
p a r a m e t e r  s t r i n g .  

public  void s e t l n p o r t  V a l u e  ( S t r i n g  p a r a m e t e r ,  O b j e c t  v a l u e ) ;

/ /  S e t s  t h e  v a l u e  o f  t h e  i n p o r t  b a s e d  o n  a u s e r  s e l e c t e d  
v a l u e  .

public  void  s e t l n p o r t  O p t i o n  ( S t r i n g  p a r a m e t e r ,  S t r i n g  o p t i o n ) ;

/ /  R e s e t  t h e  s t a t e  o f  t h e  c o m p o n e n t . 
public  void  r e s e t C o m p o n e n t  ()  ;



B.l Code from Chapter 4:
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} / /  E n d  o f  P r o x y  I n t e r f a c e  I n t e r f a c e

B.1.7 ExecutionGraph 

C ode from  4 .6 .3 .1 , p a g e  69

public c la s s  E x e c u t i o n G r a p h  ex ten d s  A b s t r a c t E x e c u t i o n G r a p h  {

/ /  An array o f  i n t e g e r s  cor r e s pond i ng  to the order  in which 
the nodes in the graph m ust be e xe cu t ed .

p r iv a te  in t  [] e x e c u t i o n O r d e r _  ;

/ /  I ndex to the c u r r e n t  node in the ex e c u t i o n  order .
p r iva te  in t  e x e c u t i o n l n d e x .  ;

/ /  I mp l e me n t a t i o n  of  a b s t r a c t  method,  c a l l ed  by a node on 
compl e t i on  of  i t  ’s e x e c u t i o n  . I f  t here  are more nodes to 
execut e  in the graph t h i s  f u n c t i o n  ca l l s  the executeNext  
me t hod .

public  void e x e c u t i o n P e r f o r m e d  ( E x e c u t i o n E v e n t  e v t ) { 
e x e c u t i o n I n d e x _ + + ;  
i f  ( h a s M o r e T o E x e c u t e  ()  ) {

T r a n s f e r P o r t D a t a  ()  ; 
e x e c u t e N e x t  ()  ;

}

/ /  I mp l e me n t a t i o n  o f  a b s t r ac t  , r e s p o n s i b l e  f o r  de t ermi n i ng  
the order  of  e x e c u t i o n  and s t a r t i n g  the f i r s t  node in the 
g r a p h .

public  void e x e c u t e  ()  {
d e r i v e O r d e r O f E x e c u t i o n  ( )  ; 
e x e c u t i o n I n d e x _  =  0;  
e x e c u t e N e x t  ()  ;

}

/ /  Pr i v a t e  u t i l i t y  method,  r e t u r n s  True i f  t here  are more 
nodes l e f t  to e x e c u t e ,  False o t h e r wi s e .

p r iv a te  boolean h a s M o r e T o E x e c u t e  ()  {
return ( e x e c u t i o n l n d e x .  <  e x e c u t i o n O r d e r _  . l e n g t h  ) ;

}
/ /  Pr i v a t e  u t i l i t y  m,ethod to execut e  the next  node in the 

o r d e r .
p r iv a te  void  e x e c u t e N e x t  ()  {

E x e c u t i o n G r a p h N o d e  aN ode  =  g e t N o d e F r o m O r d e r  (
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e x e c u t i o n l n d e x . ) ; 
a N o d e . e x e c u t e ( ) ;

}

p r iv a te  v o id  T r a n s f e r P o r t D a t a  ()  {
E x e c u t i o n G r a p h N o d e  c u r r e n t  =  g e t N o d e F r o m O r d e r  ( 

e x e c u t i o n l n d e x . )  ; 
f o r  ( E G N I t e r a t o r  i t  =  c u r r e n t  . g e t P a r e n t s  ()  ; i t . h a s N e x t Q  

;) {
i t  . n e x t  ()  . s e n d  O u t  p u t  T o C h i l d  ( c u r r e n t )  ;

}

p r i v a t e  E x e c u t i o n G r a p h N o d e  g e t N o d e F r o m O r d e r  ( i n t  i n d e x )  { 
r e t u r n  ( ( E x e c u t i o n G r a p h N o d e )  n o d e s .  . e l e m e n t  A t  ( 

e x e c u t i o n O r d e r .  [ i n d e x ] )  ) ;
}

/ /  Pr i v a t e  u t i l i t y  method t ha t  ana l y se s  the nodes in the 
graph and de r i v e s  a s t r a i g h t  f orward  l i s t  in order of  
e x e c u t i o n  .

p r i v a t e  v o i d  d e r i v e O r d e r O f E x e c u t i o n  ()  { 
i n t  i =  0;
i n t  c u r r e n t  =  0;
e x e c u t i o n O r d e r .  — n e w  i n t  [ n o d e s .  . s i z e  ( ) ]  ;
f o r  ( E G N I t e r a t o r  i t  =  s t  a r t  g e t  C h i l d r e n  ()  ; i t . h a s N e x t Q  

;) {
e x e c u t i o n O r d e r .  [ c u r r e n t  ] =  n o d e s .  . i n d e x O f  ( i t  . n e x t  ( ) )  ; 
c u r r e n t + + ;

}
w h i l e  ( c u r r e n t  <  e x e c u t i o n O r d e r .  . l e n g t h ) {

E x e c u t i o n G r a p h N o d e  tem p N o d e  =  ( E x e c u t i o n G r a p h N o d e )  
n o d e s .  . e l e m e n t  A t  (

e x e c u t i o n O r d e r .  [ i ] ) ; 
f o r  ( E G N I t e r a t o r  i t  =  tempNode . g e t C h i l d r e n  () ; 

i t . hasN ext () ;) { 
i n t  c h i l d l n d e x  =  n o d e s .  . indexOf  ( i t  . next  ( ) )  ; 
b o o le an  found =  f a l s e  ; 
f o r  ( i n t  x =  0; x < c u r r e n t ;  x++) {

i f  ( e x e c u t i o n O r d e r .  [x] = =  c h i l d l n d e x )  { 
f o u n d  =  t r u e  ;

}
}
i f  (! f o u n d  ) {

e x e c u t i o n O r d e r .  [ c u r r e n t  ] =  c h i l d l n d e x ;  
c u r r e n t + + ;

}
i + + ;

}
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B.2 Code from Chapter 5: 

BE2D - Industrial Demonstrator

B.2.1 Command Line Execution Com ponent

C ode from  s e c t io n  5 .1 .1 , p a g e  74

/ /  C o n c r e t e  i m p l e m e n t a t i o n  o f  a n  A b s t r a c t E x e c u t i o n  . T h i s  c l a s s  
/ /  e n c a p s u l a t e s  a C o m m a n d L in e  e x e c u t a b l e  c o m p o n e n t .  
public c la s s  Com m andLineExecution {

/ /  C om m and L i n e
p r iva te  S tr in g  command. =

/ /  C om m and l i n e  a r g u m e n t ,  i f  r e q u i r e d .
p r iv a te  S tr in g  a rg u m e n t. =

p r iv a te  S tr in g  d a t a .  =

/ /  S e t t e r s
public  void  set A rgum ent ( O bject a rg u m e n tS tr)  { 

a rg u m en t. =  ( S tr in g  ) a rg u m e n tS tr  ;
}

public  void setCom m and( O bject command) { 
command. =  ( S tr in g  ) command;

}

public  void s e tD a ta F i le  ( O bject o u tp u t)  { 
d a ta .  =  ( S tr in g  ) o u tp u t ;

}

/ /  G e t t e r s
public  S tr in g  g e tD a ta F i le  () { 

return d a t a .  ;
}

publ ic  void e x e c u te  () {
S tr in g  e x e c S tr  =  command. +  "u " +  a rg u m en t.; 
try  {
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P ro c e ss  p ro c e ss  =  Runtim e . getR untim e ( ) .  exec ( exec.Str ) ; 
/ /  P r o c e s s  o u t p u t
B u ffe re d R e a d e r  s td o u t  =  new B ufferedR eader (new 

In p u t S tream R ead er (p ro c e s s  . get In p u t S tream  () ) ) ; 
S tr in g  o u tS tr  =  " 
w h ile  ( o u tS t r  !=  n u l l )  {

o u tS tr  =  s td o u t  . read L in e  () ; 
i f  ( o u tS t r  !=  n u l l )  {

System  . ou t . p r in t l n  ( " p ro c e s s uniessage : u " + 
o u tS tr  ) ;

}
}
s t d o u t . c l o s e ( ) ;
/ /  P r o c e s s  E r r o r s
B u ffe red R ea d e r e r ro r  =  new B u ffe red R ead er ( new

In p u tS tre a m R e a d e r  ( p ro c e ss  . g e tE rro rS tre a m  () ) ) ; 
S tr in g  e r r S t r  =  " " ; 
w h ile  ( e r r S t r  != n u l l )  {

e r r S t r  =  e r r o r . read L in e  () ; 
i f  ( e r r S t r  !=  n u l l )  {

System  . o u t . p r i n t l n ( " p ro c e s s u e r r o r :" +  e r r S t r ) ;
}

}
e r ro r  . c lo se  () ;

t r y  {
p ro c e ss  . w ait F or () ;

}
c a tc h  ( I n te r r u p te d E x c e p t io n  e) {

e . p r in tS ta c k T ra c e  (System  . o u t ) ;
}

}
c a tc h  (IO E x c e p tio n  e) {

e . p r in tS ta c k T ra c e  ( System  . o u t ) ;
}

}

p u b lic  v o id  r e s e t  () {
/ / n o - o p

}
} / /  E n d  o f  C o m m a n d L i n e E x e c u t i o n  C l a s s

B.2.2 BE2D Model D ata  Java Interface

C o d e from  s e c t io n  5 .1 .2 , p a g e  78
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6

8

10

/ /  I n t e r f a c e  to the model  obj ect  , p r ov i de s  r e ad - on l y  access  to 
/ /  the o b j e c t  r e p r e s e n t a t i o n  of  the m.odel f i l e  which de f i ne s  the 
/ /  2D boundary f o r  the s i m u l a t i o n  . 
p u b l i c  i n t e r f a c e  Model {

/ /  Re t ur ns  number o f  c o - o r d i n a t e  pa i r s  in the model .  
p u b l i c  i n t  ” 0 ;

/ /  Re t ur ns  array o f  i n t e g e r s  c o n t a i n i n g  the x c o - o r d i n a t e s . 
p u b l i c  d o u b l e  [] x ( ) ;

/ /  Re t urns  array o f  i n t e g e r s  c on t a i n i n g  the y c o - o r d i n a t e s .  
p u b l i c  d o u b l e  [] y ( ) ;

} / /  End of  Model  I n t e r f a c e

B.2.3 BE2D Control D ata Java Interface

C ode from  s e c t io n  5 .1 .2 , p a g e  78

/ /  I n t e r f a c e  t o  t h e  c o n t r o l  o b j e c t  , p r o v i d e s  r e a d - o n l y  a c c e s s  t o  
/ /  t h e  o b j e c t  r e p r e s e n t a t i o n  o f  t h e  c o n t r o l  p a r a m e t e r s  f i l e .  
public i n t e r f a c e  C o n tro l {

/ /  R e t u r n s  a s t r i n g  d e f i n i n g  t h e  n a m e o f  t h e  c u r r e n t  p r o b l e m  
public  S tr in g  g e t T i t l e ( ) ;

/ /  R e t u r n s  t h e  f r e q u e n c y  o f  t h e  i n c i d e n t  w a v e  i n  Hz  
public  double  g e tF ( ) ;

/ /  R e t u r n s  d i r e c t i o n  t h e  w a v e  i s  t r a v e l l i n g  f r o m  i n  r a d i a n s  
public  double g e tB e ta ( ) ;

/ /  R e t u r n s  t h e  c o m p l e x  a m p l i t u d e  o f  t h e  w a v e  
public  Complex ge tE com pQ ;

/ /  R e t u r n s  b o o l e a n  f l a g  l e u r . I f  t r u e  c u r  o u t p u t  w r i t t e n  t o  
/ /  t h e  d e f a u l t  f i l e  ” c u r ” i n  t h e  c u r r e n t  d i r e c t o r y  
public  boolean g e tL c u rQ ;

/ /  R e t u r n s  b o o l e a n  f l a g  I r e s  . I f  t r u e  r e s  o u t p u t  w r i t t e n  t o  
/ /  t h e  d e f a u l t  f i l e  ” r e s  ” i n  t h e  c u r r e n t  d i r e c t o r y  
publ ic  boolean g e tL r c s ( ) ;

/ /  R e t u r n s  t h e  r e s  o u t p u t  f i l e  o b j e c t ,  o r  n u l l  i f  n o t  v a l i d  
publ ic  F ile  g e tR c s F ile  () ;

/ /  R e t u r n s  t h e  c u r  o u t p u t  f i l e  o b j e c t  , o r  n u l l  i f  n o t  v a l i d
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public  F ile  g e tC u rF ile  () ;

/ /  Re t urns  res  ou t p u t  s t r eam URL object  , nul l
public  URL getRcsU RL() ;

/ /  Re t urns  cur  ou t p u t  s t r eam URL obj ec t  , nu l l
public  URL getCurU RLQ  ;

} / /  End of  Cont ro l  I n t e r f a c e

B-3 Code from Chapter 6: 

Control and Loop Components

B.3.1 XML Task Graph with Loop Constructs

C od e from  s e c t io n  6 .4 .1 , p a g e  95

< ? x m l  v e r s i o n = "  1.  0 " e n c o d i n g = " U T F - 8 "  ?> 
< P S E t a s k g r a p h  t y p e = "  s e r i a l i z e d " >

< c o m p o n e n t >
< n a m e  a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = "  4 0 8 1 5 2 7  1 

C o n t r o l  L oop  
< / n a m e >
< l o c a t i o n  x c o o r d = " 3 6 . 0 "  y c o o r d = " 4 0 . 0 "  / >  

< / c o m p o n e n t >
< c o m p o n e n t >

< n a m e  a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = "  1 9 4 7 1 1 6 '  
C o n t r o l  L o o p  

<  /  n a m e >
C l o c a t i o n  x c o o r d - '  1 0 3 . 0 " y c o o r d = " 2 0 1 . 0 "  / >  

< / c o m p o n e n t  
< c o m p o n e n t >

Cnam e a l t . = "  BE2DAFMesh" i d = " b e 2 d A F 0 3 " i n s t = '  
b e 2 d  a c t i o n  f a c t o r y  m esh  

c / n a m e >
C l o c a t i o n  x c o o r d - 14 3 4 . 0 "  y c o o r d = " 2 2 5 . 0 "  / >  

< / c o m p o n e n t >
C c o m p o n e n t >

C nam e  a l t = " B E 2 D A F W a v e " i d = " b e 2 d A F 0 2 " i n s t = '  
b e 2 d  a c t i o n  f a c t o r y  w ave  

C /  n a m e >
C l o c a t i o n  x c o o r d - '  2 3 4 . 0 "  y c o o r d = " 3 7 7 . 0 "  / >  

c / c o m p o n e n t >

i f  not  val i d

i f  not  val i d

>

>

6 0 4 4 0 3 9  ">

3 3 2 5 2 8 5 " >
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< c o m p o n e n t >
C nam e a l t = " B E 2 D A F R C S " i d = " b e 2 d A F 0 4 " i n s t = "  2 1 0 2 9 6 0 " >  

b e 2 d  a c t i o n  f a c t o r y  r e s  
<  /  nam e>
C l o c a t i o n  x c o o r d = "  3 5 2 . 0  " y c o o r d = " 4 5 3 . 0 "  / >

< / c o m p o n e n t  
C c o m p o n e n t >

Cname a l t = " B E 2 D A F S t o r e " i d = " b e 2 d A F 0 5 " i n s t = " 4 6 8 6 7 8 9 " >  
b e 2 d  a c t i o n  f a c t o r y  s t o r e  

C /  nam e>
C l o c a t i o n  x c o o r d = " 3 7 9 . 0  " y c o o r d = " 5 4 8 . 0  " / >

< / c o m p o n e n t >
C s t a r t >

Cname a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = " 4 0 8 1 5 2 7  ">
C o n t r o l  Loop  

C / n a m e >
< / s t  a r t >
C s t  a r t >

Cname a l t = " B E 2 D A F M e s h "  i d = " b e 2 d A F 0 3 " i n s t = " 6 0 4 4 0 3 9 " >  
b e 2 d  a c t i o n  f a c t o r y  m esh  

C /  nam e>
< / s t  a r t >
C c o n n e c t i o n >

C p a r e n t >
C n a m e  a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = "  4 0 8 1 5 2 7  ">

C o n t r o l  Loop  
C /  n a m e >
C l o o p  p a r a m e t e r ^ "  A n g l e " p o r t _ t y p e = " F l o a t " s t a r t = " 0 . 0 "

h a l t —" 2 5 . 0 "  i n c r e m e n t ^ "  1.  0 " c u r r e n t ^ "  3 . 0 " / >
< / p a r e n t >
C c h i l d >

C n a m e  a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = "  1 9 4 7 1 1 6  ">
C o n t r o l  Loop

C /  n a m e >
</  c h i l d >

< / c o n n e c t  i o n >
C c o n n e c t i o n >

C p a r e n t >
C n a m e  a l t = "  L o o p "  i d = " l o o p 0 1 "  i n s t = "  19 4 7 1 1 6  ">

C o n t r o l  Loop  
C /  n a m e >
C l o o p  p a r a m e t e r = "  A m p l i t u d e "  p o r t _ t y p e = " F l o a t  "

s t a r t = "  1 .  0 e  + 07"  h a l t = "  1.  0 e + 0 8 " i n c r e m e n t = "  1. 0e+ 07
II

c u r r e n t ^ " 1 . 0 e + 0 8 " / >
< / p a r e n t >
C c . h i l d >

C n a m e  a l t ^ "  BE2DAFWave " i d —" be 2 d A F 0 2  " i n s t —" 3 3 2 5 2 8 5  "> 
b e 2 d  a c t i o n  f a c t o r y  w ave
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<  /  n a m e >
< /  c h i l d >

</  c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
C nam e  a l t = " B E 2 D A F M e s h " i d = " b e 2 d A F 0 3 " i n s t = "  6 0 4 4 0 3 9 " >  

b e 2 d  a c t i o n  f a c t o r y  mesh
<  /  na m e >

< / p a r e n t >
< c h i l d >

< n a m e  a l t="BE2DA FRCS " i d —" b e 2 d A F 0 4  " i n s t —" 2 1 0 2 9 6 0 " >  
b e 2 d  a c t i o n  f a c t o r y  r e s

<  /  na m e >
< /  c h i l d >

< /  c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
< n a m e  a l t = " B E 2 D A F W a v e " i d = " b e 2 d A F 0 2 " i n s t = " 3 3 2 5 2 8 5  "> 

b e 2 d  a c t i o n  f a c t o r y  wave
< / n a m e >

< / p a r e n t >
< c h i l d >

< n a m e  a l t="BE2DAFRCS " i d = " b e 2 d A F 0 4  " i n s t = " 2 1 0 2 9 6 0 M>  
b e 2 d  a c t i o n  f a c t o r y  r e s

<  /  n a m e >
< / c h i l d >

< /  c o n n e c t i o n >
< c , o n n e c t i o n >

< p a r e n t >
c n a m e a l t = " B E 2 D A F R C S " i d = " b e 2 d A F 0 4 " i n s t = " 2 1 0 2 9 6 0  "> 

b e 2 d  a c t i o n  f a c t o r y  r e s
<  /  n a m e >

< / p a r e n t >
< c h i l d >

C nam e  a l t = " B E 2 D A F S t o r e " i d = " b e 2 d A F 0 5 " i n s t = " 4 6 8 6 7 8 9 " >  
b e 2 d  a c t i o n  f a c t o r y  s t o r e

<  /  n a m e >
< /  c h i l d >

< / c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
Cna m e  a l t = " B E 2 D A F S t o r e  " i d = " b e 2 d A F 0 5 " i n s t = "  4 6 8 6 7 8 9 " >  

b e 2 d  a c t i o n  f a c t o r y  s t o r e
C /  n a m e >

< J p a r e n t >
C c h i l d >

C n a m e  a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = "  1947 1 1 6  ">
C o n t r o l  Loop

c / n a m e >
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</  c h ild >
< / c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
< n a m e  a l t  =  " B E 2 D A F S t o r e " i d = " b e 2 d A F 0 5 " i n s t  =  

b e 2 d  a c t i o n  f a c t o r y  s t o r e
<  /  n a m e >

< / p a r e n t >
< c h i l d >

< n a m e  a l t = " L o o p "  i d = " l o o p 0 1 "  i n s t = " 4 0 8 1 5 2 7 "  
C o n tro l Loop

<  /  na m e >
< /  c h i l d >

< /  c o n n e c t i o n >
< / P S E t a s k g r a p h >

B.3.2 Loop Control Interface

C ode from  6 .4 .2 , p a g e  97

public i n t e r f a c e  C o n t r o l l n t e r f a c e  {
/ /  Re t urns  a c o n s t a n t  data t ype f o r  t h i s  loop 
public  P o r t T y p e  g e t P o r t T y p e  ()  ;

/ /  Re t urns  the i n i t i a l  loop va l ue .
public  O b j e c t  g e t l n i t  V a l u e  ()  ;

/ /  Set s  the i n i t i a l  loop va l ue .  
public  void s e t l n i t  V a l u e  ( O b j e c t  v a l u e ) ;

/ /  Re t urns  the h a l t i n g  value f o r  the loop.
public  O b j e c t  g e t H a l t V a l u e  ()  ;

/ /  Set s  the h a l t i n g  value f o r  the l oop.  
public  void s e t H a l t  V a l u e  ( O b j e c t  v a l u e ) ;

/ /  Re t ur ns  the c u r r e n t  loop va l ue .
public  O b j e c t  g e t C u r r e n t V a l u e  ()  ;

/ /  Re t urns  the loop i nc r eme n t  va l ue .
publ ic  O b j e c t  g e t ! n c r e m e n t  ( ) ;

/ /  Se t s  the loop i n c r e men t  val ue .  
publ ic  void  s e t l n c r e m e n t  ( O b j e c t  v a l u e ) ;

" 4 6 8 6 7 8 9 " >

>
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}

/ /  Re t ur ns  true i f  c u r r e n t  value is l e s s  than the h a l t i ng  
value , false o t h e r wi s e  . 

public  boolean h a l t in g C o n d i t io n  () ;

/ /  I nc r e me n t  the loop . 
public  void  p e rfo rm S tep  () ;

/ /  Set  the i n p u t  p o r t  t ha t  the loop wi l l  i t e r a t e  over.
public  void  se tL o o p e d P o rt ( P o r t l n t e r f a c e  a P o r t ) ;

/ /  Return the par a me t e r  name f o r  the s e l e c t e d  por t .  
public  St r in g  ge tP aram eterN am e () ;

/ /  Rese t  the loop to i t  ’s s t a r t  va l ue ;  
public  void  r e s e tL o o p Q ;

/ /  Adds an ou t p u t  p o r t  to the c o n t r o l  component , used in
loop n e s t i n g  where the value f rom the out er  loop needs to

be p r o paga t ed  t hrough to i n n e r  l oops .
public  void  a d d O u tp o rt ( P o r t l n t e r f a c e  a P o r t ) ;

B.4 Code from Chapter 8: 

Design of Experiments

B.4.1 Downhill Simplex

C od e from  s e c t io n  8 .4 , p a g e  128

/ *  *
C o p y r i g h t  & c o p y  2 0 0 1  C a r d i f f  U n i v e r s i t y  & B A E  S Y S T E M S  L t d ,
A l l  r i g h t s  r e s e r v e d  .

A l g o r i t h m :  D o w n h i l l  S i m p l e x  M e t h o d  i n  M u l t i d i m e n s i o n s  , a d a p t e d  
f r o m  N u m e r i c a l  R e c i p e s  (F O R T R A N 7 7  v e r s i o n )  , P r e s s ,  F l a n n e r y ,  
T e u k o l s k y  , V e t t e r l i n g  , s e c t i o n  1 0 - 4  , p p 2 8 9  — 2 9 3 .

@ a u t h o r  M a t t h e w  S .  S h i e l d s  

* /
package com. b a e s y s t e m s  . o p t i m i s a t i o n  ; 

im p o rt c e r n  . c o l t  . f u n c t i o n  . D o u b le C o m p a r a t o r  ;
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i m p o r t  c e r n  . c o l t  . m a t r i x  . D o u b l e F a e t o r y I D  ;
i m p o r t  c e r n  . c o l t  . m a t r i x  . D o u b l e M a t r i x l D  ;
i m p o r t  c e r n  . c o l t  . m a t r i x  . D o u b l e M a t r i x 2 D  ;
i m p o r t  c e r n  . c o l t  . m a t r i x  . d o u b l e a l g o  . F o r m a t t e r  ;
i m p o r t  c e r n  . j e t  . m a t h  . F u n c t i o n s  ;
i m p o r t  com . b a e s y  s t e m s  . o p t i m i s a t i o n  . f u n c t i o n  . D o u b l e O b j e c t F u n c t i o n  ; 
i m p o r t  j a v a  . u t  i l  . V e c t o r  ;

/ *  *
* S t a t i c  l i b r a r y  c l a s s  f o r  o p t i m i s a t i o n  f u n c t i o n s  

* /
p u b l i c  f i n a l  c l a s s  D o w n h i l l S i m p l e x  {

p r i v a t e  s t a t i c  i n t  IT-MAX =  1 0 0 ;  / /  Ma x  i t e r a t i o n s

p r i v a t e  s t a t i c  f i n a l  D o u b l e F a c t o r y l D  f a c t o r y l D _  =  
D o u b l e F a c t o r y l D  . d e n s e  ;

/ /  h e l p e r  f u n c t i o n  s e t s  t h e  m a x  i t e r a t i o n s  a n d  c a l l s  t h e  r e a l  
a m o e b a .

p u b l i c  s t a t i c  f i n a l  i n t  a m o e b a ( D o u b l e M a t r i x 2 D  s i m p l e x P  ,
D o u b l e M a t r i x l D  v e c t o r Y  , d o u b l e  FTOL, D o u b l e O b j e c t F u n c t i o n  
f u n k ,  i n t  m a x l t e r )  {
IT-MAX — m a x l t e r  ;
r e t u r n  a m o e b a  ( s i m p l e x P  , v e c t o r Y ,  FTOL, f u n k ) ;

}

/ *  *
M u l t i d i m e n s i o n a l  m i n i m i s a t i o n  o f  t h e  f u n c t i o n  func(x) w h e r e  
x  i s  a v e c t o r  i n  N  d i m e n s i o n s  , by  t h e  d o w n h i l l  s i m p l e x  
m e t h o d  o f  N e l d e r  a n d  Me a d .
N o t e :  On  o u t p u t  s i m p l e x P  a n d  v e c t o r Y  w i l l  h a v e  b e e n  r e s e t  t o  
N + l  n e w  p o i n t s  a l l  w i t h i n  F T O L  o f  a m in im u m  f u n c t i o n  v a l u e .

@ param s i m , p l e x P  A  m a t r i x ,  o f  d i m e n s i o n  ( N + l ,  N )  w h o s e  r o w s  
a r e  v e c t o r s  w h i c h  a r e  t h e  v e r t i c e s  o f  t h e  s t a r t i n g  
s i m p l e x  .

@ param  v e c t o r Y  A  v e c t o r  o f  l e n g t h  N + l ,  w h o s e  c o m p o n e n t s  
m u s t s  be p r e — i n i t i a l i  s e d t o  t h e  v a l u e s  o f  ’’f u n k ” 
e v a l u a t e d  a t  t h e  N + l  v e r t i c e s  ( r o w s )  o f  s i m p l e x P .

@ param F T O L  T h e  f r a c t i o n a l  c o n v e r g e n c e  t o l e r a n c e  t o  be 
a c h i e v e d  i n  t h e  f u n c t i o n  v a l u e .

@ param  f u n k  T h e  f u n c t i o n  t o  be m i n i m i s e d .
@ r e t u r n  T h e  n u m b e r  o f  i t e r a t i o n s  t a k e n .

* /
p u b l i c  s t a t i c  f i n a l  i n t  a m o e b a ( D o u b l e M a t r i x 2 D  s i m p l e x P  ,

D o u b l e M a t r i x l D  v e c t o r Y  , d o u b l e  FTOL, D o u b l e O b j e c t F u n c t i o n  
f u n k )  {

D o u b l e M a t r i x l D  p S u m ; / /  c o lu m n  su m  v a l u e s
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i n t  i n d e x H i  ; / /  i n d e x  o f  t h e  h i g h e s t  p o i n t  i n  v e c t o r Y
i n t  i n d e x N e x t  ; / /  i n d e x  o f  t h e  n e x t  h i g h e s t  p o i n t
i n t  i n d e x L o  ; / /  i n d e x  o f  t h e  l o w e s t  p o i n t
d o u b l e  RTOL; / /  t h e  f r a c t i o n a l  r a n g e
d o u b l e  y T r y ; / /  t h e  v a l u e  r e t u r n e d  f r o m  f u n k
d o u b l e  y S a v e  ; / /  t h e  v a l u e  r e t u r n e d  f r o m  f u n k
i n t  i t e r a t i o n s  =  0;

pSum =  g e t C o l u m n S u m V e c t o r  ( s i m p l e x P  ) ; 
f o r  ( ; ; )  {

/ /  F i r s t  we  m u s t  d e t e r m i n e  h i g h e s t  ( w o r s e )  , n e x t -
h i g h e s t  , a n d  l o w e s t  ( b e s t )  p o i n t s  i n  t h e  s i m p l e x .

i n d e x L o  =  0;
i f  ( v e c t o r Y  . g e t  ( 0 )  >  v e c t o r Y  . g e t  (1 )  ) { 

i n d e x H i  =  0; 
i n d e x N e x t  =  1;

}
e l s e  {

i n d e x H i  =  1; 
i n d e x N e x t  =  0;

}
f o r  ( i n t  i =  0;  i <  v e c t o r Y . s i z e  ( )  ; i + + )  {

i f  ( v e c t o r Y  . g e t  ( i ) < =  v e c t o r Y  . g e t  ( i n d e x L o  ) ) { 
i n d e x L o  =  i ;

}
i f  ( v e c t o r Y  . g e t  ( i ) >  v e c t o r Y  . g e t  ( i n d e x H i ) ) { 

i n d e x N e x t  =  i n d e x H i  ; 
i n d e x H i  =  i ;

}
e l s e  i f  ( (  v e c t o r Y  . g e t  ( i ) >  v e c t o r Y  . g e t  ( i n d e x N e x t ) 

) && ( i  ! =  i n d e x H i ) )  { 
i n d e x N e x t  =  i ;

}
}

/ /  C o m p u te  t h e  f r a c t i o n a l  r a n g e  b e t w e e n  t h e  h i g h e s t  
a n d  t h e  l o w e s t  a n d  r e t u r n  i f  s a t i s f a c t o r y  . I f  
r e t u r n i n g  , p u t  b e s t  p o i n t  a n d  v a l u e  i n  s l o t  0 . 

RTOL =  2 . 0  * M a t h  . a b s  ( v e c t o r Y  . g e t  ( i n d e x H i ) — v e c t o r Y .  
g e t  ( i n d e x L o  ) ) /  ( M a th  . a b s  ( v e c t o r Y  . g e t  ( i n d e x H i ) )  +
M a t h  . a b s  ( v e c t o r Y  . g e t  ( i n d e x L o  ) ) )  ; 

i f  (RTOL <  FTOL) {
d o u b l e  s w a p  =  v e c t o r Y  . g e t  ( 0 )  ; 
v e c t o r Y  . s e t  (0  , v e c t o r Y  . g e t  ( i n d e x L o ) ) ; 
v e c t o r Y  . s e t  ( i n d e x L o  , s w a p ) ;
f o r  ( i n t  i =  0;  i <  s i m p l e x P  . c o l u m n s  () ; i + + )  { 

s w a p  =  s i m p l e x P  . g e t  (0  , i ) ;
s i m p l e x P  . s e t  ( 0  , i ,  s i m p l e x P  . g e t  ( i n d e x L o  , i ) ) ; 
s i m p l e x P  . s e t  ( i n d e x L o  , i ,  s w a p ) ;
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}

}
/ /  a m o e b a  f o u n d  s o l u t i o n  w i t h i n  t o l e r a n c e  
r e t u r n  i t e r a t i o n s  ;

i f  ( i t e r a t i o n s  > =  IT_MAX) {
/ /  amoeba exceeded max i t e r a t i o n s  
r e t u r n  i t e r a t i o n s  ;

}
i t e r a t i o n s  + =  2;

/ /  Begin a new i t e r a t i o n  . F i r s t  e x t r a p o l a t e  by a 
f a c t o r  o f  — 1 through the f ac e  of  the s implex  
across  f rom the high p o i n t ,  i . e .  r e f l e c t  the 
s i mp l e x  f rom the high p o i n t .  

yTry =  am oebaTry ( sim plexP , v ec to rY , pSum, fu n k , 
indexH i , —1 .0 ) ;

i f  (yT ry  < =  vecto rY  . ge t ( indexLo ) ) {
/ /  g i v e s  a r e s u l t  b e t t e r  than the best  p o i n t ,  so 

t r y  an a d d i t i o n a l  e x t r ap  o l a t i o n  by a f a c t o r  of  
2 .

yTry =  am oebaT ry( sim plexP  , v e c to rY , pSum, funk , 
indexH i , 2 .0 ) ;

}
e ls e  i f  (yT ry  > =  vecto rY  . get ( in d e x N ex t)) {

/ /  The r e f l e c t e d  p o i n t  is worse than the second-  
h i g h e s t  , so look f o r  an i n t e r me d i a t e  lower
p o i n t ,  i . e .  do a one—di mens i ona l  c o n t r a c t i o n .

ySave =  vec to rY  . get ( in d e x H i) ;
yTry =  am oebaTry ( sim plexP  , vectorY  , pSum , funk , 

indexH i , 0 . 5 ) ;  
i f  (y T ry  > =  ySave) {

/ /  C a n ’t seem, to get  r id of  the high p o i n t .  
B e t t e r  c o n t r a c t  around the l owes t  ( b e s t ) 
p o i n t  .

fo r  ( i n t  i =  0; i < sim plexP  . rows () ; i++) {
i f  ( i ! =  in d ex L o ) {

fo r  ( i n t  j =  0; j < sim plexP . columns
() ; j+ + ) {
d o u b le  v a lu e  =  0.5 *

( sim plexP . get ( i , j )  +
sim plexP  . get ( indexLo , j )) ; 

p S u m .s e t ( j ,  v a lu e ) ;  
sim plexP  . se t ( i , j , value ) ;

}
vectorY  . se t ( i , funk . apply (pSum)) ;

}
}
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/ /  Keep t r ack  of  f u n c t i o n  e va l ua t i ons  and 
recomput e  PSum 

i t e r a t i o n s  + =  sim plexP  . columns () ; 
pSum =  getColum nSum V ector ( sim plexP ) ;

}
e ls e  {

/ /  c o r r e c t  the e v a l u a t i o n  count  
i t e r a t i o n s  ;

}
}

}
}

*
I n i t i a l i s e  and r e t u r n  a v e c t o r  Y  of  di mens ion N+l  where i t  ’s 
component s  are c a l c u l a t e d  by e v a l u a t i n g  the f u n c t i o n  funk at 
the N+l  v e r t i c e s  ( rows)  of  the s i mp l ex .

@ param s i m p l e x P  t h e  s t a r t i n g  s i m p l e x  
@ param t h e  o b j e c t i v e  f u n c t i o n  t o  be e v a l u a t e d  
@ r e t u r n  a n  i n i t i a l i s e d  v e c t o r  Y  o f  s i z e  N + l  

* /
p u b l i c  s t a t i c  f i n a l  D o u b l e M a t r i x l D  i n i t V e c t o r Y  ( D o u b l e M a t r i x 2 D  

s i m p l e x P ,  D o u b l e O b j e c t F u n c t i o n  f u n k )  {
D o u b l e M a t r i x l D  v e c t o r Y  =  f a c t o r y l D _  . m a k e (  s i m p l e x P  . r o w s  () )

fo r  ( i n t  i =  0; i <  s i m p l e x P  . r o w s  ()  ; i + + )  {
d o u b l e  y T r y  =  f u n k  . a p p l y  ( s i m p l e x P  . vi ewRow ( i ) )  ; 
v e c t o r Y  . s e t  ( i , y T r y ) ;

}
r e t u r n  v e c t o r Y  ;

}

/ *  *
E x t r a p o l a t e s  by  a f a c t o r  fac t h r o u g h  t h e  f a c e  o f  t h e  s i m p l e x
a c r o s s  f r o m  t h e  h i g h  p o i n t , t r i e s  i t ,  a n d  r e p l a c e s  t h e  h i g h
p o i n t  i f  t h e  n e w  p o i n t  i s  b e t t e r .

@ param s i m p l e x P  A  m a t r i x  r e p r e s e n t i n g  t h e  s i m p l e x .
@ param v e c t o r Y  t h e  s t a r t  v e c t o r
@ param p S u m  t h e  s i m p l e x  c o lu m n  su m  v e c t o r
@ param f u n k  T h e  f u n c t i o n  t o  be m i n i m i s e d .
@ param i n d e x  t h e  i n d e x  i n  v e c t o r Y  o f  t h e  h i g h e s t  v a l u e  
@ param f a c  f a c t o r  o f  e x t r a p o l a t i o n  
@ r e t u r n  t h e  c a l c u l a t e d  v a l u e  o f  f u n k

* /
p r i v a t e  s t a t i c  d o u b l e  a m o e b a T r y ( D o u b l e M a t r i x 2 D  s i m p l e x P  , 

D o u b l e M a t r i x l D  v e c t o r Y ,  D o u b l e M a t r i x l D  p S u m ,
D o u b l e O b j  e c t F u n c t i o n  f u n k ,  i n t  i n d e x H i  , d o u b le  f a c )  {
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212

214
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d o u b l e  y T r y ;
d o u b l e  f a c l  =  ( 1 .0  — f a c  ) / s i m p l e x P  . c o l u m n s  () ; 
d o u b l e  f a c 2  =  f a c l —f a c ;

D o u b l e M a t r i x l D  p T r y  =  f a c t o r y l D _  . m a k e (  s i m p l e x P  . c o l u m n s  () )

f o r  ( i n t  i =  0;  i <  s i m p l e x P  . c o l u m n s  () ; i + + )  {
d o u b l e  p T r y E l e m  =  p S u m . g e t  ( i ) * f a c  1 — s i m p l e x P  . g e t  ( 

i n d e x H i  , i ) * f a c 2 ;  
p T r y . s e t ( i ,  p T r y E l e m )  ;

}

/ /  Ev a l ua t e  the f u n c t i o n  at the t r i a l  po i n t  
y T r y  =  f u n k  . a p p l y  ( p T r y )  ;

/ /  I f  i t  ’s b e t t e r  t han the h i ghe s t  , then replace  the 
h i g h e s t

i f  ( y T r y  <  v e c t o r Y  . g e t  ( i n d e x H i ) ) { 
v e c t o r Y  . s e t  ( i n d e x H i  , y T r y ) ;
f o r  ( i n t  i =  0;  i <  s i m p l e x P  . c o l u m n s  ()  ; i + + )  {

d o u b l e  pS u m E lem  =  p S u m . g e t ( i )  — s i m p l e x P  . g e t  ( 
i n d e x H i ,  i )  +  p T r y . g e t ( i ) ;  

p S u m . s e t  ( i , p S u m E l e m ) ;
s i m p l e x P  . s e t  ( i n d e x H i  , i , p T r y  . g e t  ( i ) ) ;

}
}
r e t u r n  y T r y ;

}
/ * *

Cal cu l a t e  the sums o f  the columns in the s i mpl ex  and re turn  
them as a v e c t o r .

@param s i mpl ex P the s i mp l e x  whose column sums we are 
c a l c u l a t i n g

@return A v e c t o r  c o n t a i n i n g  the column sums 
* /

p r i v a t e  s t a t i c  D o u b l e M a t r i x l D  g e t C o l u m n S u m V e c t o r  ( 
D o u b l e M a t r i x 2 D  s i m p l e x P )  {

D o u b l e M a t r i x l D  pSum  =  f a c t o r y  1D _  . m ake  ( s i m p l e x P  . c o l u m n s  ()  )

f o r  ( i n t  i =  0;  i <  s i m p l e x P  . c o l u m n s  ()  ; i + + )  {
pS um .  s e t  ( i , ( s i m p l e x P  . v i e w C o l u m n  ( i ) ) . z S u m ( )  ) ;

}
r e t u r n  pSum ;

}
} / /  End of  Do wn h i l l S i mp l e x  Class

186



BA Code from Chapter 8:
Design of Experiments

B.4.2 Simplex C om ponent XML Definition

C od e from  8 .4 , p a g e  128

<?xml version=" 1. 0 " ?>
<PSE>

<preface>
Cname alt=" simplex " id=" simplex ">simplex method</name> 
<pse— type>Generic</pse— type>
<hierarchy id=" parent " X /  hierarchy>
<hierarchy id=" child " x /  hierarchy>

< / preface>
<ports>

<inportnum>6</inportnum>
<outportnum>2</out port n u m >
<inport id="l" parameter="SolveFunction" type=" option" 

value="com.baesystems.optimisation.function. 
SimpleEvaluat ionFunk ">
Coption name=" simple " value=" com . baesystems .

optimisation.function.SimpleEvaluationFunk ">
</ option>
Coption name=" complex " value=" com . baesystems .

optimisation.function.ComplexEvaluationFunk">
</ option>
Coption name="Fiacco-McCormick" value=" com . baesystems 

.optimisation.function.FMCMethodEvaluationFunk ">
</ option>

C/inport>
Cinport id="2" parameter^"DesignSpaceFunction" type=" 

option" value="com.baesystems.optimisation.function . 
SimpleEvaluationFunk">
Coption name=" simple " value=" com . baesystems .

optimisation . function . SimpleEvaluationFunk"> 
c/option>
Coption name="complex" value="com.baesystems.

optimisation.function.ComplexEvaluationFunk ">
< / option>
Coption name="Fiacco-McCormick" value="com.baesystems 

. optimisation . function . FMCMethodEvaluationFunk">
</ option>

< / inport>
Cinport id="3" parameter^"Lambda" type="float" value="0.5 

" >

</ inport>
Cinport id="4" parameter="Xl" type="float" value="3">
< / inport>
Cinport id="5" parameter^"X2" type="float" value="0">
C/ inport>
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36

38

40

42

44

46

48

50

< in p o r t  id —"6" p a ram e te r= "  Maxlt er " type=" short " value="10 
">

< /  in p o r t>
< o u tp o r t  id=" 1" p a ram e te r= "  S o lu t io n  " type=" o b je c t " value=  

"NIL">
< / o u tp o r t>
< o u tp o r t  id="l" p a ram e te r= "  DesignSpace " type=" obiect" 

valuer" NIL ">
< / o u tp o r t>

< / p o r ts>
< e x e c u tio n  id="software " type= " bytecode" v a lu e = "extended"> 

C type id=" architecture " v a lu e r " serial"/>
< ty p e  id —"class" v a lu e = "com.baesystems.components.

Simp1exComponent"/>
< ty p e  id="source" v a lu e = "file:///home/compdata/cardiff/ 

proj ect/src/com/baesystems/components/Simp1exComponent 
.j ava"/>

< ty p e  id = " classpath" v a lu e r " /home/compdata/project/ 
classes"/>

< / e x e c u tio n >
< e x e c u tio n  i d = " p l a t f orm">

< ty p e  id="java" v a lu e = "jdkl.2"/>
< / e x e c u tio n >
< help  c ,on tex t= " apidoc ">

< h re f  nam e="file://f:\\cardiff\\proj ect\\docs\\be2ddocs\\ 
index.html" v a lu e = "NIL"/>

< /h e lp >
</PSE>
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