
V isual Program m ing Environm ents for
M ulti-D isciplinary D istributed

A pplications

Matthew S. Shields

May 27, 2004

UMI Number: U584687

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584687
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Acknowledgements

The research undertaken toward this Ph.D. thesis during the period from September

1998 to September 2001 was jointly funded by grant number GR/M17327 from the

Engineering and Physical Sciences Research Council and BAE SYSTEMS Ltd.

I ’d like to thank David Golby, Carren Holden, David Rowse and Glen Gapper

from BAE SYSTEMS, and David Walker and Omer Rana from the Department of

Computer Science, Cardiff University, without whose help and encouragement this

work would not have been possible.

My additional thanks go to Roger Philp from the Cardiff Centre for Computa­

tional Science and Engineering, Cardiff University for his help with the analysis of

the Fortran 77 code used during the course of this research.

The prototype software was developed using the Java programming language

[61], the Orbacus CORBA ORB [59] and the third party Java packages, JDOM [64],

the Colt Distribution [54], SGT [27] and JC hart [91]. The Java “arrow” drawing

code in the prototype user interface is courtesy of Ian Wang.

This document was prepared with Dlj^X2£ te lgX distribution [31] and input by

hand using the “Vi Improved” (Vim) editor [80] and the I^jXShop environment [69].

My unending gratitude and admiration to all those who contribute to the not-for-

profit software movement.

Finally a thank you to those people who nagged, cajoled and encouraged me to

finish this thesis: My wife Ruth, Ian Taylor, Daniel, Julie and Margaret Shields.

Abstract

A Problem Solving Environment is a complete, integrated computing environment

for composing, compiling and running applications in a specific problem area or

domain. A Visual Programming Environment is one possible front end to a problem

solving environment. It applies the visual programming paradigms of “point and

click” and “drag and drop” , via a Graphical User Interface, to the various constituent

components that are used to assemble an application. The aim of the problem solving

environment presented here is to provide the ability to build up scientific applications

by connecting, or plugging, software components together and to provide an intuitive

way to construct scientific applications.

Problem solving environments promise a totally new user environment for com­

putational scientists and engineers. In this new paradigm, individual programs com­

bined to solve a problem in their given area of expertise, are wrapped as components

within an integrated system that is both powerful and easy to use. This thesis aims

to address: problems in code reuse; the combination of different codes in new ways;

and problems with underlying system familiarity and distribution. This is achieved

by abstracting application composition using visual programming techniques.

The work here focuses on a prototype environment using a number of demon­

IV

stration problems from multi-disciplinary problem domains to illustrate some of the

main difficulties in building problem solving environments and some possible solu­

tions. A novel approach to code wrapping, component definition and application

specification is shown, together with timing and usage comparisons tha t illustrate

th a t this approach can be used successfully to help scientists and engineers in their

daily work.

v

Contents

1 Introduction 1

1.1 Introduction to a Problem Solving E nv ironm en t..................................... 1

1.2 M otivation... 3

1.3 H ypothesis.. 4

1.4 Questions Asked in this T hesis ... 4

1.5 Research A chievem ents... 5

1.6 Project H is to r y ... 6

1.7 Thesis O u tlin e .. 6

2 R elated W ork 9

2.1 In tro d u c tio n ... 9

2.2 Related W o r k .. 10

2.3 Visual P ro g ra m m in g .. 11

2.4 Parallel Computing and C O R B A ... 14

2.5 PSE Requirements and A s p e c ts ... 16

2.5.1 Use Case S cen ario s ... 16

2.5.2 User C ateg o ries ... 17

2.5.3 Functional M o d es .. 18

2.5.4 Resource S tea lin g .. 18

CONTENTS

2.5.5 Aspects of P S E s ... 19

2.5.6 Wrapping Legacy Codes as CORBA O b je c ts 20

2.5.7 S u m m a ry ... 21

3 Software Engineering and th e D evelopm ent C ycle 22

3.1 In troduction ... 22

3.2 Use Case A nalysis.. 23

3.3 P ro to ty p in g ... 23

3.4 Tracer Code and Iterative D e s ig n ... 24

3.5 Design P a t te rn s .. 26

3.6 Unified Modelling L a n g u a g e ... 27

3.7 Summary .. 27

4 Problem Solving Environm ent A rchitecture 28

4.1 In tro d u c tio n ... 28

4.1.1 Visual Programming and

Visual Programming E n v iro n m en ts .. 29

4.1.2 C om ponents.. 30

4.1.3 Task Graphs and Work F low ... 31

4.2 Prototype Implementations ... 32

4.2.1 A Simple Arithmetic Equation B u i ld e r .. 32

4.2.2 Arithmetic Equation Builder - Version 2 35

4.3 Visual Component Composition E n v iro n m e n t.. 37

4.3.1 Features of the V C C E .. 37

4.4 VCCE C om ponents.. 40

4.4.1 XML within the V C C E .. 41

4.4.2 XML Component M o d e l ... 42

4.4.3 Component Model Sum m ary ... 51

4.4.4 XML Task Graph M o d e l... 52

4.4.5 Compound C o m p o n e n ts ... 54

4.5 VCCE Component Im p lem en ta tio n ... 55

4.5.1 Proxy In te r fa c e .. 55

CONTENTS

4.5.2 Execution In te rface .. 57

4.6 VCCE Im plem entation .. 62

4.6.1 Component Factories and XML Parsing 63

4.6.2 Event M odel... 65

4.6.3 Internal Task Graph Scheduling and Execution 68

4.7 S u m m a ry ... 71

5 Sim ple Solver C om ponent 73

5.1 BE2D Solver... 73

5.1.1 Simple Wrapped Fortran V e r s io n ... 74

5.1.2 A Java V e rs io n .. 78

5.1.3 CORBA Wrapped Fortran Version .. 83

5.2 The Graph Viewer Component ... 86

5.3 Using the P S E .. 86

5.4 Component Instantiation and Graph E x e c u t io n 87

5.5 Summary and C onclusions... 88

6 Control and Loop C om ponents 90

6.1 The Use C a s e ... 90

6.2 Control C o m p o n e n ts ... 91

6.3 Loop Constructs ... 92

6.4 Control Im p le m en ta tio n .. 94

6.4.1 XML Task Graph Language E xtensions...................................... 95

6.4.2 Loop Component Im plem entation .. 97

6.4.3 ControlExecutionGraph:
An Improved Scheduling A lg o rith m .. 99

6.5 Summary and C om parison.. 103

7 B E 3D , FE3D - Parallel C om ponents 104

7.1 The Parallel Solver C o d e s ... 104

7.2 CORBA Wrappers and the Action F a c to ry ...107

7.2.1 Action Factory Component Im p lem en ta tio n 107

CONTENTS

7.3 Cost Benefit A nalysis..115

8 D esign O f Experim ents 117

8.1 The Simplex M e th o d .. 118

8.2 Penalty Functions...121

8.3 Penalty Function Im plem entation 122

8.3.1 Evaluation Function with Simple P e n a lty ...122

8.3.2 Function with FMC P e n a l ty .. 124

8.4 Simplex Component ..128

8.4.1 Simplex Algorithm Im plem entation ...128

8.4.2 Simplex Component Im p lem en ta tio n .. 131

8.4.3 Simplex Component U sag e ..134

8.4.4 Search R esu lts ..135

8.5 Conclusion... 136

9 R ecent R elated W ork 138

9.1 Advances in Middleware:

The Advent of Grid C o m p u tin g .. 138

9.2 Grid Computing Environments and P o r ta ls ..140

9.3 Component and Work Flow M o d e ls ...143

9.4 PSEs in Science and Engineering .. 145

10 Conclusion and Future W ork 148

10.1 In troduction ..148

10.2 Critical E v a lu a tio n ...149

10.2.1 VCCE P ro to ty p e ..149

10.2.2 XML-Based Component M o d e l ... 150

10.2.3 Distributed Middleware ...152

10.2.4 Non-Linear Optimisation T e ch n iq u es ... 153

10.3 Other users of the V C C E ...153

10.4 Other Issues and Future W o rk ...154

10.5 Summary ...160

CONTENTS

A Publications 161

B C ode L istings 163

B .l Code from Chapter 4:

Problem Solving Environment A rchitecture...163

B.1.1 Number Display B e a n 163

B.1.2 Operator B e a n ...164

B.1.3 Example XML D ata Analysis D e f in itio n 166

B.1.4 Example Component Interface Described in X M L167

B.1.5 Example XML Task Graph ... 168

B.1.6 VCCE Proxy Component I n te r f a c e ..170

B.1.7 ExecutionG raph.. 172

B.2 Code from Chapter 5:

BE2D - Industrial D em onstrator...174

B.2.1 Command Line Execution C o m p o n e n t... 174

B.2.2 BE2D Model D ata Java In te r fa c e ... 175

B.2.3 BE2D Control D ata Java I n te r f a c e ..176

B.3 Code from Chapter 6:

Control and Loop Components ...177

B.3.1 XML Task Graph with Loop C o n s tru c ts 177

B.3.2 Loop Control In te rfa c e ...180

B.4 Code from Chapter 8:

Design of E x p e rim en ts .. 181

B.4.1 Downhill S im p lex ...181

B.4.2 Simplex Component XML D e f in itio n .. 187

List of Figures

4.1 Simple Arithmetic Equation Builder User I n te r f a c e 33

4.2 Visual Arithmetic Equation Builder Interface... 36

4.3 The XML-Based Component model... 51

5.1 VCCE with BE2D Task Graph ... 87

5.2 Graph of BE2D Solver O u tp u t.. 88

6.1 A Work Flow Graph with Loop C om ponen ts.. 93

8.1 — Xi2 — X22 Plot with C o n s tra in ts .. 122

8.2 Choosing the Function on the Simplex Component134

8.3 Completed Simplex with Visualisation ...136

Listings

4.1 Example Component H ead er.. 45

4.2 Simple Port X M L .. 45

4.3 Example HREF Port X M L ... 45

4.4 Example File Port X M L ... 46

4.5 Example Execution Tag X M L ... 47

4.6 Example Help Tag X M L ... 47

4.7 Example Event X M L .. 48

4.8 Example Event Listener X M L ... 49

4.9 Example Non-Steering Port X M L ... 50

4.10 Example Steering Component X M L ... 50

4.11 Example Task Graph C o n n e c tio n ... 53

4.12 Execution Method for JavaExecution C om ponent................................. 58

4.13 Execution Method for Ext ended JavaExecution C o m p o n e n t..................61

4.14 Execution Event Publishing In te rfa c e .. 66

4.15 Execution Event Listener Interface ... 66

4.16 Execution Event C l a s s .. 67

4.17 addNode Method from AbstractExecutionGraph 70

4.18 executionPerf ormed Method Implementation in ExecutionGraph . . 71

5.1 The XML Component Definition for the BE2D Solver.......................... 76

LISTINGS

6.1 XML Task Graph Extension for Control S t ru c tu r e s 96

6.2 Loop Control Halting C ond ition .. 98

7.1 Example Action Factory Function C a l l ... 108

7.2 Example Action Factory XML D efin ition .. 110

7.3 ActionFactoryExecution instantiate Method Ill
7.4 A ctionFactoryExecution execute Method ... 113

8.1 Evaluation Function In te r fa c e ..121

8.2 Implementation of Evaluation Function with P e n a l t y123

8.3 Implementation of the Objective with a Fiacco-McCormick Penalty . 127

8.4 Evaluating the S im plex .. 132

List of Algorithms

4.1 Simple Scheduling Algorithm ... 70

6.1 Extended Scheduling A lg o rith m .. 100

xiv

CHAPTER 1

Introduction

1.1 Introduction to a Problem Solving Environment

“A Problem Solving Environment is a computational system that provides

a complete and convenient set of high level tools for solving problems from

a specific domain. The PSE allows users to define and m,odify problems,

choose solution strategies, interact with and manage appropriate hard­

ware and software resources, visualise and analyse results, and record

and co-ordinate extended problem solving tasks. A user communicates

with a PSE in the language of the problem, not in the language of a par­

ticular operating system, programming language, or network protocol. ”

Com puter as T h inker/D oer, G allopoulos, H oustis and R ice [44]

The concept of the PSE promises to revolutionise the way in which computa­

tional scientists and engineers work with their computing tools and resources by

abstracting away the underlying, often irrelevant, complexity of their computing

environments, leaving them free to concentrate on using their domain expertise in

solving problems. Details such as operating system specifics, data migration and

I

1.1 Introduction to a Problem Solving Environment

application execution are often a complicated, yet unrelated, part of a scientists

working environment which PSE implementations aim to remove or at least allevi­

ate. To realise a useful PSE, the user must have the ability to construct scientific

applications by connecting, or plugging, software components together in an intuitive

way and hide the underlying system complexities.

PSEs have been available for several years for certain specific domains, but most

of these have supported different phases of application development, and cannot be

used co-operatively to improve a programmer’s productivity. The primary factors

that prevent this are the lack of frameworks for tool integration and ease-of-use

considerations. Extensions to current scientific programs such as Matlab, Maple,

and Mathematica are particular pertinent examples of this scenario. Developing

extensions to such environments enables the reuse of existing code, but may severely

restrict the ability to integrate routines tha t are developed in other ways or using

other applications. Multi-Matlab [79] is an example of one such extension for parallel

computing platforms.

The modern concept of a PSE for computational science [45] is based on the avail­

ability of high performance computing resources, coupled with advances in software

tools and infrastructure which make the creation of such PSEs a practical goal. PSEs

have the potential to greatly improve the productivity of scientists and engineers,

particularly with the advent of Internet-based technologies, such as CORBA and

Java for accessing remote computers, databases and other resources. At a 1995 NSF

workshop on PSEs [97], the need to develop and evaluate PSE infrastructure and

tools was stressed. Subsequently, a number of prototype PSEs have been developed.

Many early PSEs focus on linear algebra computations and the solution of Partial

Differential Equations (PDEs), and as yet only a few prototype PSEs have been de­

veloped especially for science and engineering applications. However, this is likely to

change over the next few years. Tools for building specific types of PSEs have been

developed and more generic infrastructures for building PSEs are also under devel­

opment, ranging from fairly simple Remote Procedure Call (RPC) based tools for

controlling remote execution to more ambitious and sophisticated systems such as

2

1.2 Motivation

Globus [34] and Legion [50] for integrating geographically distributed computational

and information resources. However, most of these PSEs lack the ability to build up

scientific applications by connecting and plugging software components together.

Component-Based Software Engineering (CBSE) [13] is receiving increasing in­

terest in the software engineering community. The goal of CBSE is to reduce de­

velopment costs and improve software reuse. The question of how to apply the

technologies involved in CBSE to the construction of an effective framework for

PSEs is becoming increasingly important and is considered in this work.

Web Services are a recent development in the distributed computing field, how­

ever they are only considered in this thesis in the recent related work, chapter 9 and

future work, chapter 10.

In this thesis a CORBA-based domain-independent problem solving environment

for scientific computations and large-scale simulations is considered. In this PSE, a

user can visually construct domain specific applications by plugging together soft­

ware components which are independent of location, programming language and

platform.

1.2 Motivation

The main motivation for developing PSEs is tha t they provide software tools and

expert assistance to the computational scientist in a user-friendly environment, al­

lowing rapid prototyping of ideas and higher research productivity. By relieving the

scientist of the burdens associated with the inessential and often arcane details of

specific hardware and software systems, the PSE leaves the scientist free to con­

centrate on the science. PSEs form a central component of both the Accelerated

Strategic Computing Initiative (ASCI) currently underway in the United States, and

recently formed e-Science program in the United Kingdom.

3

1.3 Hypothesis

1.3 Hypothesis

To produce a general purpose Problem Solving Environment (PSE) for industry.

The PSE can be used in various problem domains and with various “legacy” soft­

ware components. It will provide an environment for executing software, that is

easily configured, easily adapted for different users and user scenarios, and is not

prohibitively expensive in terms of execution overhead. Techniques based around

commodity hardware and software will be used to deal with the complexity of de­

veloping such a system.

The PSE will attem pt to help BAE SYSTEMS, the industrial partner, in over­

coming difficulties in areas such as the interaction between different scientists with

differing specialities and multiple existing or envisioned software requirements. The

need for software environments such as this is particularly pertinent in industry

where the research scientist may not be a computer scientist, with expertise in sys­

tems and software other than those used on a daily basis, but a person trying to do a

particular job. It is believed tha t in situations such as this the software environment

produced will be of benefit to the scientists in their day-to-day work.

This research will concentrate on the prototype Visual Component Composi­

tion Environment (VCCE) and its use within a number of problem areas at BAE

SYSTEMS, Cardiff University and Southampton University. The demonstration

problems include a molecular-dynamics simulation, an electromagnetic wave scat­

tering simulation and the use of the PSE within a Design Of Experiments (DOE)

controlling the execution of a Computational Fluid Dynamics (CFD) code multiple

times in an optimisation of aircraft wing design.

1.4 Questions Asked in this Thesis

• How can a PSE be built?

• What is the overhead of using the PSE?

4

1.5 Research Achievements

• What are the advantages to the scientist of using the P SE ?

• Do the advantages of using the PSE outweigh the disadvantages ?

• What is the cost of converting existing or “legacy ” software to work within the

PSE?

1.5 Research Achievements

There are a number of novel aspects to this work. They are covered in the following

chapters and where applicable are substantiated by published papers and compared

to related work. The full list of papers is given in appendix A, page 161. The novel

aspects of this work include:

A n infrastructure for application developm ent

The prototype provides an environment that allows a user to construct appli­

cations from “legacy” software wrapped as CORBA components. See chapters

5,7 and papers 3 and 4 in appendix A.

A n extensib le X M L-based com ponent m odel

Used to specify all of the components used within the PSE. It can be extended

to represent the differing components used within the system and also the

work flow graph relationship between the components in a constructed appli­

cation. Pervasive throughout the whole thesis, including chapters 4, 5, 6, 7,

first described in the paper 1 appendix A.

Loop and control com ponents

Can be inserted into constructed work flows to allow the user to control ap­

plication components in new combinations, for instance performing repeated

execution or decision-based branching. Chapter 6.

Integration of optim isation and search algorithm s

An extension to the control/loop mechanism that allows the user to insert an

5

1.6 Project History

algorithm as a loop component to give a more intelligent iterative control flow.

Chapter 8

A working prototype

Important from a software engineering point of view. The software prototype

was actually usable and is still being used in a limited fashion. Addition­

ally many of the ideas prototyped in this work have been incorporated into a

production PSE, used by many people in many different research specialities.

This aspect of the work is not directly pertinent to this thesis, since it was

carried out after the period of research but before this document was finished.

However, it is discussed as part of the Conclusion and Future Work chapter,

chapter 10.

1.6 Project History

The work considered in this thesis was carried out during the period from September

1998 to September 2001. This area of research is a particularly fast moving one

with advances made in many areas including middleware infrastructure. Although

the author is fully aware of work since the end of 2001, this document discusses the

research hypothesis in the context of that period. Where available novel features are

time stamped and compared to work of the same period. For completeness related

work from 2002 to date is discussed, with reference to the research presented in this

dissertation, in chapter 9, current and future work is discussed in the conclusion

chapter.

1.7 Thesis Outline

The remainder of this thesis is as follows:

Chapter 2 - R elated W ork

In this chapter, the concept and architecture of the modern PSE is examined

6

1.7 Thesis Outline

together with the infrastructure needed to build one. Previous work closely

related to these efforts is also outlined.

C hapter 3 - Software Engineering

A short overview of software engineering techniques and best practises and

how they were used in this research to develop the prototype.

C hapter 4 - P SE A rchitecture

This chapter contains a description of the architecture, the design and building

of the current prototype tool. A standard component model and definition

language is introduced. Design decisions are analysed and previous prototypes

examined.

C hapter 5 - U se Case 1, Sim ple Solver C om ponent

The first of the industrial demonstrators, a two-dimensional boundary element

code written in FORTRAN that performs an electromagnetic wave scattering

simulation. Included are details of different wrapping techniques for the legacy

code: simple executable calling; conversion from FORTRAN to Java; simple

CORBA wrapper.

C hapter 6 - Control and Loop C om ponents

Extensions to the prototype and definition language to include simple loop

controls to allow users to perform param eter runs on solver codes.

C hapter 7 - B E 3D , FE3D

In this chapter, two more industrial demonstrators that are real production

codes and consequently substantially more complicated are discussed. The

two large parallel solvers are wrapped using a more complicated and flexible

CORBA wrapper; extensions to the component definition language for the

CORBA components.

Chapter 8 - D esign O f E xperim ents

This chapter examines a different use case for a PSE. The PSE is used to control

an industry “Design of Experiments” process. First a generic domain space

7

1.7 Thesis Outline

search component is outlined; this is used to control the execution parameters

of other components, in an example domain space search case.

Chapter 9 - R elated W ork post VC C E

The work detailed in this thesis finished at the end of 2001, however the field is

fast moving. This chapter relates important work since tha t time to the work

contained herein and provides a comparison.

C hapter 10 - C onclusion and Future Work

This chapter concludes the thesis. The hypothesis is evaluated, drawing con­

clusions from each of the use case examples. The achievements and contribu­

tions are discussed and the approach taken here is compared to those of similar

projects. Areas where this work can be used in future projects and research is

also discussed.

8

CHAPTER 2

Related Work

2.1 Introduction

The current concept of a PSE for computational science has its origins in an April

1991 workshop funded by the U.S. National Science Foundation (NSF) [44, 45]. The

workshop found that the availability of high performance computing resources, cou­

pled with advances in software tools and infrastructure, made the creation of PSEs

for computational science a practical goal, and th a t these PSEs would greatly im­

prove the productivity of scientists and engineers. This goal is even more pertinent

today with the advent of web-based technologies, such as CORBA and Java, for

accessing remote computers and databases and the emerging promise of “computa­

tional grids” [35].

A second NSF-funded workshop on Scalable Scientific Software Libraries and

Problem-Solving Environments was held in September 1995 [97]. This workshop

assessed the status of PSE research and made a number of recommendations for

future development. One particular recommendation was the need to develop PSE

infrastructure and tools and to evaluate these in complete scientific PSEs.

9

2.2 Related Work

Since the 1991 workshop, PSE research has been mainly directed at implementing

prototype PSEs and at developing the software infrastructure, or middleware, for

constructing PSEs.

PSEs come in many forms from the simplest, which could consist of sets of simple

scripts for executing binary programs with data dependencies in the form of file based

data. For example, the situation described in section 7.1, where a mathematical

modeller wants to run a three dimensional boundary element solver. The input to

the solver is a mesh file that itself is generated by a mesh generator program and

an input file. The output from the solver is another data file which is passed to yet

another piece of software for either post-processing or visualisation. The scientist

may write a set of scripts th a t run each of the constituent programs in turn moving

the output file to the location expected as input by the next program. At the

other end of the scale there are large functionally complex PSEs with complicated

graphical user interfaces and visualisation tools.

2.2 Related Work

There are a number of groups working on related and complementary work, in areas

of PSEs such as middleware, seamless access to compute resources, user interfaces

and visualisation techniques. Much of this work has been presented in a recent

book by Houstis et al. [57]. In many ways, a PSE can be seen as a mechanism

to integrate different software construction and management tools, and application

specific libraries, within a particular problem domain. One can therefore have a PSE

for financial markets [17], for gas turbine engines [33], etc. Focus on implementing

PSEs is based on the observation tha t previously, scientists using computational

methods wrote and managed all of their own computer programs. However now

computational scientists must use libraries and packages from a variety of sources,

those packages might be w ritten in many different computer languages. Initially,

many of the prototype PSEs th a t were developed focused on linear algebra compu­

tations, for instance NetSolve [20], or the solution of partial differential equations

10

2.3 Visual Programming

(PDEs), for instance ELLPACK [56]. More recently prototype PSEs have been de­

veloped specifically for science and engineering applications Seismic Tomography

[24], Application Engineering [26], Computational Chemistry [66], and Modelling

and Simulation [108]. Tools for building specific types of PSEs, have been devel­

oped: PDELab [118], a system for building PSEs for solving PDEs; PSEWare [11],

a toolkit for building PSEs focused on symbolic computations. More generic infras­

tructure for building PSEs is also under development. This infrastructure ranges

from fairly simple Remote Procedure Call (RPC-based) tools for controlling remote

execution, SCIDDLE [7] and Ninf [104], to more ambitious and sophisticated sys­

tems, such as Legion [50] and Globus [34], for integrating geographically distributed

computing and information resources.

The Virtual Distributed Computing Environment (VDCE) [109] developed at

Syracuse University is broadly similar to the PSE software architecture described in

section 4.3. However, components in the VDCE are not hierarchical, which simplifies

the scheduling of components. Also, the transfer of data between components in

VDCE is not handled using CORBA, but instead is the responsibility of a Data

Manager that uses sockets. The Application-Level Scheduler (AppLeS) [10] and

the Network Weather Service [121] developed at the University of California, San

Diego are scheduling systems, both make use of application performance models and

dynamically gathered resource information.

2.3 Visual Programming

A Visual Programming Environment (VPE) is one possible front end to a PSE. Oth­

ers range from simple command line interfaces to internet-based portal environments.

Visual programming based on the specification of applications and algorithms with

directed graphs is the basis of the Heterogeneous Network Computing Environment

(HeNCE) [9] and the Computationally Oriented Display Environment (CODE) [86].

Browne et al. [14] have reviewed the use of visual programming in parallel computing

and compared the approaches of HeNCE and CODE. Though a similar approach

11

2.3 Visual Programming

is used by the Visual Component Composition Environment (VCCE) described in

section 4.3 of this thesis, HeNCE and CODE were designed for use at a finer level

of algorithm design; thus, they require a greater degree of sophistication in their

design. SCIRun [101] is a PSE for parallel scientific computing th a t also uses di­

rected graphs to visually construct applications and has been designed to support

visual steering of large-scale applications. SCIRun is a large PSE developed by the

University of Utah mainly for medical problem solving, it has a large number of

components for medical modelling and three dimensional visualisation and medical

imaging. It is also part of the ambitious human body modelling project.

The basic functionality of the VCCE environment is similar to th a t of other

modular visualisation environments such as AVS [78], IBM D ata Explorer [1], IRIS

Explorer [37], and Khoros [123]. An article by Wright et al. [122] has reviewed these

types of modular visualisation environments. The VCCE differs from these envi­

ronments through its use of an XML-based component model; an event model that

is able to support check pointing; control constructs such as loops and condition­

als. In addition the VCCE is open source and platform independent, written in the

Java programming language, a major consideration for the industrial partner in this

research.

The Gateway project [40] introduces a similar idea to the system being developed

in this thesis. It is a component-based system implemented using JavaBeans [62]

and utilising data flow techniques to represent the meta-application, the application

comprised from components, as a directed graph. Unlike the prototype system in

this thesis, which uses XML to define both the interface to all components within the

system and the task graph that describes the constructed application, the Gateway

system chooses to use the Abstract Task Descriptor (ATD) as its lowest level of

granularity of instruction and to build up the instructions th a t define the application.

The Adaptive Distributed Virtual Computing Environment (ADViCE) [52] pro­

ject is another system tha t provides a graphical user interface that enables a user

to develop distributed applications and specify the computing and communication

requirements of each task within the task graph. Unlike the Gateway system, but

1 2

2.3 Visual Programming

similar to the work here, the ADViCE system has its own scheduler that allocates

tasks to resources at run time.

The Arcade project [22] uses a slightly different approach in tha t the system

has a three tier architecture. The first tier consisting of a number of Java Applets

that are used individually to specify the tasks, either visually or through a scripting

language, to specify resource needs, and to provide monitoring and steering. Each

of these Applets then interacts with a CORBA interface which in turn interacts

with the final execution user modules distributed over a heterogeneous computing

environment.

The UNICORE project [111, 30] is a science and engineering grid making re­

sources available over the Internet. UNICORE has a graphical user interface that

allows a user to compose jobs consisting of multiple dependant tasks, submit those

jobs and monitor them on the available resources. Dependencies between tasks, in

the same manner as this work, indicates a temporal relationship or a data transfer.

To create a seamless environment, tasks and resources are represented in abstract

terms. A UNICORE server translates the abstract jobs and resource requests into

platform-specific operations prior to execution, and schedules tasks according to

dependencies. For each task, the input and output files are automatically import­

ed/exported from /to the user’s file space or transferred from earlier tasks in the same

job. Explicit transfer tasks handle the high-speed data transfer between different

sites. The UNICORE servers select the most efficient mechanism for each transfer.

Work similar to the component model presented in this work, see paper 1 in

appendix A, was presented at the International Symposium on Generative and

Component-Based Software Engineering [16]. The work presented, similar to the

model in this thesis, addresses the shortcomings of traditional component models

such as the JavaBeans framework. These component models have no capacity to

define non-interface properties of components, such as license requirements, hard­

ware/software requirements or performance models. The difference between the

two, is that the work in this dissertation uses an XML-based model to define the

non-functional requirements, whereas the other uses BCOOPL, a concurrent, object-

13

2.4 Parallel Computing and CORBA

oriented language.

In the Gateway system, the Abstract Task Definition (ATD) forms the lowest

level instruction, and all components must be defined in terms of ATDs. There is

therefore no straightforward way of wrapping legacy codes, or providing for existing

executables. The presented here provides an XML wrapper, which requires far less

effort from a user than developing ATD definitions. However, both systems share

the general design objective of constructing applications by linking sequential and

parallel components. The ADViCE system is a visual composition tool above all,

and provides little support for legacy applications. ADViCE does enable automatic

selection of components from a library, based on particular parallel libraries being

available to a user, i.e. PVM, MPI etc., and then sends this to a resource scheduler.

The Arcade project requires the construction of specialised Applets, and can be

restrictive due to security requirements of the Java sandbox. The approach for the

VCCE is more generic, in that XML is adopted for specifying an interface to a

component, and for encoding the connectivity graph. Also provided is an interface

to a scheduling system.

2.4 Parallel Computing and CORBA

In chapter 7, CORBA is used to wrap two large parallel codes. CORBA was not

originally intended to support parallelism within an object. However, some CORBA

implementations provide support for multi-threading which enables a programmer

to make more effective use of several simultaneous processors sharing a physical

memory within a single computer, such as in the TAO ORB [99]. However, the

sharing of a single physical memory does not support a large number of proces­

sors, since it could create memory contention. There are very few projects aimed

at supporting coarse-grain parallelism in CORBA. The PARDIS [67] environment

and Cobra [93, 28] being the most advanced projects in this direction, both of which

extend the CORBA specification and add parallelism to CORBA objects based on a

SPMD (Single Program Multiple Data) execution model. PARDIS designers propose

14

2.4 Parallel Computing and CORBA

a new kind of object they call a SPMD object and Cobra designers provide paral­

lel CORBA objects. SPMD objects represent parallel applications which roughly

adhere to the SPMD style of computation. To support data distribution among

different threads associated with a SPMD object, PARDIS provides a generalisa­

tion of the CORBA sequence called a d is t r ib u te d sequence. However, this new

argument type requires a modification to the standard IDL compiler.

In the Cobra system, a parallel object belongs to a collection of objects and its

interface must be defined in a particular system, for instance:

i n t e r f a c e [*]
2 Test { . . . }

where the object T est is a parallel object and belongs to a collection of objects.

The * symbol signifies that the number of objects belonging to the collection is not

specified in the interface, and defines a polymorphic type. The PARDIS system

provides a mechanism to invoke operations on objects asynchronously, based on the

concept of a fu tu re message. In the Cobra system, asynchronous invocations of

services is handled by an extension of the Asynchronous Method Invocation (AMI)

which is a core part of the CORBA messaging specification in CORBA 3.0.

The approach taken in this dissertation is quite different from the previous two.

In wrapping the MPI-based legacy code as one or more components (CORBA ob­

jects), neither the CORBA specification nor any IDL compilers are modified. Hence,

any CORBA system may be used with the techniques demonstrated here, whereas

with PARDIS and Cobra additional software must be downloaded and installed.

The MPI runtime is combined within the CORBA environment, using the MPI run­

time to manage the intra-communications of components, and the CORBA ORB

to manage inter-communications of components. Each component is composed of

two parts: one is the wrapper which can be invoked by a client, the other is the

execution unit of the component.

15

2.5 PSE Requirements and Aspects

2.5 PSE Requirements and Aspects

During the initial phases of this work, due to the fact tha t part of the funding

was from an industrial partner, looking for a solution to a problem, there were

a number of requirements gathering discussion sessions. Out of these discussions

came a number of functional requirements, “use case” scenarios and other aspects

and ideas that could possibly be included in the design and implementation of a

PSE. These ideas help in categorising common functionality and allow clarification

of some of the design ideas for the PSE. Not all of these ideas would be implemented

as part of this work, as this would in all probability require far too much time.

2.5.1 Use Case Scenarios

“Use Case” scenarios are a concept that has come out of the Software Engineering

community. It is a way of specifying functionality in a system through the interaction

of that system with a user. The user may or may not be an actual person. The

technique is discussed further in section 3.2 in the software engineering chapter. The

“Use Cases” tha t defined here are:

R unning a legacy application as a w rapped com ponent.

The granularity of the wrapping can vary, dependant upon a number of factors

such as availability of source code. The code can be treated as a black box with

input and output typically through files, or interfaces can be written to allow

the interoperability of the code directly. The application may be a sequential

code, or may contain internal parallelism using MPI or PVM.

Perform ing param eter runs.

Running existing or new applications multiple times with varying input pa­

rameters, to study the effect of parameter ranges on the result or to try and

find an optimal solution for a problem.

Com bining com ponents.

Combine various wrapped third party or internal components to generate a

16

2.5 PSE Requirements and Aspects

new application. The application can itself be stored as a separate component

in a Component Repository, this is known as hierarchical composition.

Searching for suitable com ponents.

Search for a component by name or functionality in various repositories main­

tained on the local machine or via the internet at a remote site, where each

component is defined in some common component definition language.

A utom atic application generation.

Developing a new application, using some form of automated mechanism to

either select new components, or migrate an application to a different platform.

In the latter case, the mechanism would be used to analyse effects of platform

constraints on a given application code or set of components.

V isualising results.

The ability to visualise the results of an application either on a local machine

or remotely using appropriate tools and techniques.

C om putational Steering.

Enabling and supporting Computational Steering where the scientist can di­

rectly affect the running of an application by providing guidance in the form

of modified data.

2.5.2 User Categories

In addition to the use cases, two categories of users could be identified for a PSE:

A pplication Users.

Such as physicists, chemists or biologists who are not interested in creating

new components, other than compound components.

A pplication D evelopers.

Mainly computational scientists, who create new components both for their

own use and for other Application Developers and Users.

17

2.5 PSE Requirements and Aspects

2.5.3 Functional Modes

In the requirements specification, the PSE should provide two modes of execution:

Edit M ode.

The mode that enables components to be assembled together by selecting and

connecting them visually into a work flow graph.

Execution M ode.

The constructed task graph is sent to the IRMS. The user has the option to

visualise execution of components, and thereby perform computational steer­

ing.

2.5.4 Resource Stealing

W ith the explosive growth of the Internet and the emerging promise of computational

grids, there are many unused or under-utilised computational resources. These can

include different PSEs and libraries on the Internet th a t may be reused. A user who

wants to utilise these resources must look for the appropriate library or set of libraries

needed for his specific computational problems. Usually, such libraries can be found

in established repositories. A well known repository for mathematical software, for

example, is Netlib [15], which is maintained through the collaborative efforts of

several institutions and universities. Once the appropriate library has been located,

it must be downloaded and installed. This process depends on the nature of the

software, as a lot of freely distributed software is not fully portable. Some software

may need to be re-compiled and re-linked, which is a time-consuming task if the user

does not have prior experience in software installation. A Distributed PSE (DPSE)

should provide different interfaces to different computational resources. Based on

the problem descriptions submitted by users, DPSEs can match good solutions for

the problems through a performance model. Future PSEs may be less generic and

more problem-specific in the software resources they provide. However, the user of

a PSE may submit a task and wait for the results without worrying about how to

18

2.5 PSE Requirements and Aspects

download and install components within the PSE. Web Services are beginning to

provide functionality along these lines.

2.5.5 Aspects of PSEs

Most modern software applications are built in a modular fashion and PSEs are no

different. A clear distinction can be made between those potential modules of a PSE

that are generic and hence could be used in constructing other PSEs, and those that

are specific to one application domain. The following parts of a PSE, as defined

from the requirements, are specific:

The C om ponents in a C om ponent R epository. These are mostly specific, al­

though some may have broad applicability, for example graphing components,

generic filters, or data movement tools.

Expert A ssistance. To aid a user in various aspects of application building and

component selection.

Input W izards. Tools tha t help with specific components.

Perform ance H istory D atabase. Records the performance of components under

different circumstances.

The remaining modules listed here are more generic and could be used across mul­

tiple application domains:

C om ponent C onnection and C om m unication Framework. The mechanism

by which data is passed between components and how components communi­

cate with the environment itself.

Scheduling and W ork Flow Engine. The mechanism by which components are

allocated to compute resources and the control of execution of those compo­

nents on their resources.

19

2.5 PSE Requirements and Aspects

D ata M anagem ent and Inp u t/ O utput Some aspects of data input and output

such as file reading and writing or data streaming can potentially be generalised

into a number of re-usable components.

User Interface. The overall interface to a PSE, be it VPE, Portal or simple com­

mand line is abstract enough to be reused across problem domains.

It is not necessary to use all of the above modules in any one PSE, those used will

depend on the level of functionality required and how sophisticated the system is

going to be.

2.5.6 W rapping Legacy Codes as CORBA Objects

Legacy codes are existing codes that often possess the following features:

• They are domain-specific, typically written for a specific purpose.

• They are not reusable in any format other than their original use.

• They are still useful. Unused or no longer required codes will fall into disuse

and will eventually be lost or deleted.

• They are large, complex monoliths. Older, purpose built codes were rarely

written with modularity in mind.

Wrapping legacy codes as CORBA objects is a method of encapsulation that pro­

vides clients with well-known interfaces for accessing these objects. The principal

advantage is that behind the interface, the client need not know the exact implemen­

tation. Wrapping can be accomplished at multiple levels, around data, individual

modules, subsystems, or the entire system. The ability to wrap legacy codes is often

affected by the access to the source code. If no access to source code is available, for

instance because the code is proprietary or even has been lost, then the wrapping can

only really be done at application level. Whereas if full access to source is obtained

then it is possible to wrap the code at many different levels and even re-engineer

2 0

2.5 PSE Requirements and Aspects

the code to become more modular. An example of this explained in further detail

in chapter 5. After being wrapped as CORBA objects, these legacy codes can be

reused as components in the prototype PSE.

2.5.7 Summary

This chapter has provided a review of related work, including: other PSEs from ap­

plication specific areas such as PDE solving, computational chemistry and financial

markets; infrastructure upon which PSEs can be built; visual programming environ­

ments and techniques; component models. Also outlined are a series of “use case”

scenarios and classifications which will be used throughout the dissertation. The

following chapter is a brief discussion of software engineering techniques.

2 1

CHAPTER 3

Software Engineering and the Development Cycle

3.1 Introduction

For any modern software development project it is becoming increasingly important

that best practises and good software engineering techniques are followed if the

project is to fulfil its requirements and deadlines. This chapter briefly outlines

relevant techniques, design principles and practises used during the course of this

research. It is not intended to be a comprehensive review of the subject, more a list

from various resources tha t the author finds useful.

Although the work undertaken in building the prototype for this research was not

strictly a software engineering project there are enough similarities, that good soft­

ware engineering techniques could and should be used. Like a lot of software projects

it was not obvious from the outset of the project what the final software would look

like. BAE SYSTEMS, the industrial sponsors, provided an idea of what the user

interface should look and behave like based upon an existing software system, but

the architecture was not clear.

22

3.2 Use Case Analysis

3.2 Use Case Analysis

Use Case Analysis is a requirements gathering and software engineering technique,

first discussed in [60], that specifies software in terms of the interactions between the

software and its users. The user concerned, may or may not be human. A particular

interaction may be between:

• A human operator and the software.

• Another piece of software and the specified software.

• A piece of equipment, such as a sensor, and the software.

In thinking about how the software would interact within its environment there

is a completely different view from that specified by a functional view. Examining

the interactions will highlight who or what the software needs to have contact with

as opposed to the functional view of what actions it should perform. Both views are

needed for a detailed requirements analysis.

3.3 Prototyping

Prototypes are used in many industries to try out ideas, as prototyping is much

cheaper than full production. For example car manufacturers may make a clay

model for wind tunnel testing or computer model for safety test simulation, building

prototypes to examine specific aspects of a design or try out new ideas.

Software engineering is no different. Prototypes are built in the same fashion and

for similar reasons - to analyse and expose risk, and to be able to make corrections

before the process has gone to far. A prototype can be targeted to test one or more

specific aspects of the design. Prototypes are designed to examine a small aspect of

the overall design and so are quicker to develop than a full production application.

The prototype can ignore details tha t are unimportant at the moment.

23

3.4 Tracer Code and Iterative Design

One thing that is important with prototyping is that the code written should be

disposable. Prototypes are designed to be thrown away once their purpose has been

fulfilled.

3.4 Tracer Code and Iterative Design

The term “tracer code” or “tracer bullets” was coined in the software engineering

book, The Pragmatic Programmer [58]. I t ’s an analogy to tracer bullets loaded on

the ammunition belt of a machine gun. When fired, their phosphorous ignites and

leaves a pyrotechnic trail from the gun to whatever they hit. This trail gives an

instant feed back and because they operate in the same environment as the real

bullets, external effects are minimised.

This analogy can be applied as a technique to the domain of software engineer­

ing, especially when attempting to build something th a t hasn’t been built before.

Requirements may be vague and languages, libraries and techniques may be un­

familiar. Rather than specifying the system in minute detail and producing large

amounts of requirements, the tracer code method is to look for something that gets

us from a requirement to some aspect of the final system quickly and in a repeatable

manner.

Unlike prototypes, tracer code is not disposable. It contains all of the error

checking, structure, documentation th a t any production code has, it is not fully

functional. Once an end-to-end connection has been achieved among the components

of the system, a check can be made to determine how close to the target the solution

is, adjusting if necessary. Once on target adding functionality is easy.

Tracer development is consistent with the ideas of iterative design. A project is

never finished, there will always be changes to make or functionality to add. Unlike

the traditional approach where development is broken down into modules and sub-

assemblies which are built in isolation and not assembled into the application until

they are all ready.

24

3.4 Tracer Code and Iterative Design

Tracer code has a number of advantages:

• Users get to see something early and the developers have something to demon­

strate.

• Developers build a structure to work in and have an integrated platform.

• All concerned parties have a better feeling for progress.

Prototype code is disposable. Tracer code is basic but complete and will form the

framework for the final system. Prototyping is done before tracer coding and can

be thought of as the basic requirements gathering.

Software engineers have for a long time tried to formalise design methodologies

and processes. The classical approach was known as the waterfall method. In this

method the developer starts with requirements gathering which leads into analysis

and design, then coding, through to debugging and finally maintenance. At this

stage the software is deemed stable and finished, software maintenance is the only

stage left and this continues for the remaining useful life of the software. This model

is very static and not workable in modern systems. Typically programmers will

iterate around the design, code and debug stages many times until happy with the

software.

Iterative Design is a modern methodology. It allows for a more flexible approach

to designing software. The programmer designs and codes small pieces of functional­

ity testing as the process goes. Functionality is added iteratively to the application

through small design and code stages until the full functionality of the application

is achieved.

Iterative design is very useful when the full extent of the functionality of the

application is not known at the outset.

25

3.5 Design Patterns

3.5 Design Patterns

Patterns in design processes have long been recognised in various disciplines such as

architecture. Christopher Alexander and his colleagues proposed the idea of using a

pattern language to architect buildings and cities. In recent years these ideas have

migrated into the software engineering community, for a good discussion on how

these ideas came into the domain of Computer Science see [68]. The seminal book

cataloguing software design patterns is Design P atterns [46] by the “Gang of Four” ,

known herewith as GOF. This book outlines and explains a series of commonly

occurring patterns in object oriented software engineering. Java in Practise [117]

is a Java-based pattern book that gives good examples of patterns in coding Java

applications.

A brief list of some of the design patterns used in the VCCE prototype follow,

their relevant page reference in the “Gang of Four” book is listed together with

a brief description of their purpose. They will be referred back to in some of the

following chapters where their specific use within the prototype will be explained.

Factory M ethod GOF page 107

Define an interface for creating an object, but let subclasses decide which class

to instantiate. Factory Method lets a class defer instantiation to subclasses.

Proxy GOF page 207

Provide a surrogate or placeholder for another object to control access to it.

V isitor GOF page 331

Represent an operation to be performed on the elements of an object structure.

Visitor defines a new operation without changing the classes of the elements

on which it operates.

Singleton GOF page 127

Ensure a class only has one instance, and provide a global point of access to

it.

26

3.6 Unified Modelling Language

O b se rv e r GOF page 293

Define a one-to-many relationship between objects so that when one object

changes state, all its dependants are notified and updated automatically.

3.6 Unified Modelling Language

The Unified Modelling Language, or UML for short, is a notation for describing the

design of an object oriented software system. UML is a convergence of the three main

notations that are used in the software engineering methodologies of Booch, OMT,

and OOSE. UML is a general purpose notational language for the specification,

documentation and aid to visualisation of the separate parts tha t make up an object

oriented software system. The language is very extensive but the UML used in

this document, as a concise means of describing relevant sections of the prototype

software, is mainly limited to class diagrams and object interaction diagrams. For a

description of the diagrams used see a good UML book, for example UML Distilled

[38].

3.7 Summary

The software development th a t forms the basis of this research was approached with

“best practises” in mind. As is the case with most research projects it was impossible

to specify the software at the outset. The nature of research is such that mistakes

will often be made and “dead ends” followed. Traditional software approaches are

too static to be useful. Iterative design, prototyping and tracer bullet coding will

provide a much more flexible environment in which to work.

27

CHAPTER 4

Problem Solving Environment Architecture

4.1 Introduction

This chapter covers the design, architecture and building of the prototype PSE. It

takes the requirements specification and uses prototyping and “tracer” code tech­

niques to iterate through designs. The chapter is broken up into different sections

each covering aspects of the PSE including the component model, user interface,

job scheduling and implementation. Not all aspects of the requirements were imple­

mented and where this occurs in the chapter it is indicated, however these unfinished

aspects are included for completeness.

Looking at a high level point of view of the prototype from the requirements,

there are three im portant design considerations.

• For the front end of the system: an intuitive graphical user interface for visual

programming.

• To represent the individual algorithmic parts used to compose an application:

a component model.

28

4.1 Introduction

• To choreograph the interaction between the components in the application: a

data flow, work flow or task graph model.

4.1.1 Visual Programming and

Visual Programming Environments

Graphical or visual programming environments have been in common use for many

years, their use within parallel computing is reviewed in. a technical report by Don-

garra et. al. [14]. The form tha t these programming environments take is now fairly

standardised at some level. The majority of systems are component-based with: a

repository where the components are stored, browsed and selected; a composition

area where the selected components are placed and joined together; and an underly­

ing computation engine that performs the actual work of the system and generates

the output that the user expects. The functionality of components within the system

dictate the type of computation engine.

In an environment such as a programmer's Rapid Application Development

(RAD) tool the aim is to generate computer code for an application by selecting

the components tha t make up the user interface visually, rather than writing the

application code by hand. The application programmer places components and then

uses the environment to generate the code. The repository is a “widget” set com­

prising a selection of user interface components such as buttons and text boxes. The

composition area is a blank user interface on which the user interface “widgets”

are arranged and their interactions defined. The computation engine is the code

generator and language compiler, with the end result being the finished compiled

application executable.

In the PSE described in this dissertation, the aim is to build an application

by selecting components from a repository and visually connecting them together,

rather than taking individual codes and tools and either running them manually or

through a script. The computation engine is an execution engine that is capable

of scheduling and running the individual tools and choreographing the control and

29

4.1 Introduction

data flow between them.

4.1.2 Components

In general, a component is a procedural or functional abstraction defined by its input

and output interfaces and its semantics.

Components within the RAD tool example would be functional user interface

components which would be defined their properties. For example a text field com­

ponent would have some input text as a property, the semantics might include the

other components that it can be placed on or attached to, and state change events

that it can publish or subscribe to.

In the prototype PSE in this thesis, the input and output interfaces to com­

ponents are the data types that are accepted as input and provided as output. A

components semantics are the problem domain th a t it is used in and a description

of the transformation process that it provides to tu rn input data into output. Each

component is specified using the XML language, see section 4.4.2.

The Common Component Architecture (CCA) [21] is a community effort to

standardise component programming for high performance computing. From its

technical specification document the definition for a CCA is:

A CCA consists of three types of entities: Ports, Components and Frame­

works. Components are the basic units of software that are composed

together to form applications. Instances of components are created and

managed within a Framework which also provides the basic services that

components use to operate and communicate with other components.

Ports are the fully abstract interfaces of components which are managed

by the framework in the composition process. A component is a piece of

code, a port is an agreement between the authors, standard-compliant

frameworks are the road to enable component exchange and reuse.

30

4.1 Introduction

4.1.3 Task Graphs and Work Flow

The concept of work flow is not unique to the domain of computer science. It is used

in areas as diverse as business processes and chemistry. Work flow and data flow are

similar in terms of usage within computer science. They both allow the specification

for the interaction between processes, either through the flow of control or flow of

data from process to process.

There are multiple ways of representing the network of processes and the data

or control connections between them, including petri nets and graphs. The network

of components and the connections between them can be thought of in the mathe­

matical model of a graph, specifically a Directed Cyclic Graph (DCG) or Directed

Acyclic Graph (DAG). The components or processes are vertices and the connec­

tions between them arcs. As the data flows only one way through a component,

each has an input and output, the graph is directed, i.e. data flows along arcs one

way only. Also given a network of two components A and B, where output from

component A is input to component B, if the output from component B is input to

component A, the network is cyclic. If the output from B is not allowed back into

the input to A then the graph is acyclic.

The computation engine of the Visual Component Composition Environment

(VCCE), the prototype PSE discussed in this thesis, is a data flow execution model.

The components are data driven with one or more input data types being processed

by a component and the results being output as one or more output data types.

So execution flows from component to component based on the connections be­

tween them. The data flow task graph is encoded in XML, see section 4.4.4, in a

similar fashion to the components themselves. In fact the data flow task graph is

really a compound component and can be represented as a component in the logical

programming model. The XML representation consists of a series of component

definitions for the components within the task graph and the connections between

them represented as pairs of “parent/child” relationships. The parent in the pair is

the start point in a data flow connection and the child is the end point. Thus given

31

4.2 Prototype Implementations

a full set of these pairs it is possible represent a complete data flow task graph. The

task graph can either be sent to a resource manager for executing the application

on a workstation cluster, or a heterogeneous environment made of workstations and

high performance parallel machines, or executed by the simple internal scheduler in

the prototype.

4.2 Prototype Implementations

To explore the requirements for the visual programming front-end to the PSE and the

component model several different prototypes were built. Each of these experiments

helped to clarify the design process and lead to the final prototype explained in this

work. Problems and solutions to different aspects of PSE design and execution were

found using this prototyping process.

4.2.1 A Simple Arithmetic Equation Builder

The first prototype discussed here is a visual arithmetic equation builder. To simplify

the process of building a PSE, a deliberately limited application domain was chosen.

The equation builder is limited to the four simple operators: addition, subtraction,

multiplication and division; and a simple integer or floating point operand. The

prototype has a component repository from which components can be selected and

a “scratch pad” tha t allows the components to be connected. The components

consist of:

A display com ponent

An instance of the display component has one function, to represent a value,

it can be either a source or a destination component within an equation.

A n operator com ponent

. An instance of the operator component takes two input values, performs one of

the four simple arithmetic operations on the inputs and calculates an output

32

4.2 Prototype Implementations

value.

Using these components it is possible to build simple arithmetic equations of an ar­

bitrary length. The user selects the components, connecting them together starting

with at least two display components that provide the input into an operator com­

ponent. The starting values of the top most components in the graph are set and

when the graph is executed the data propagates down through the graph resulting

in the final value being displayed in the display component at the base of the tree.

The equation and the interface are hard coded into a test class for this first

prototype. This initial version is designed to examine the look of the user interface

and test the potential use of JavaBeans as the component model. As can be seen

f t f t f t Test Bed

10.0 5.5

add

15.5

Figure 4.1: Simple Arithmetic Equation Builder User Interface

from figure 4.1, the user interface at this stage consists of the components on a pad.

There is no component repository or a graphical way of connecting the components.

The test class that builds the equation has a main set-up function that contains four

variables representing the two operands, the operator and the result.

p u b l i c NumberDisplayBean opl = n u l l ;
2 p u b l i c NumberDisplayBean op2 = n u l l ;

p u b l i c O peratorB ean calc = n u l l ;

33

4.2 Prototype Implementations

a \ p u b l i c N u m b e r D i s p l a y B e a n a n s = n u l l ;

The variables are all JavaBeans and are instantiated using the standard Java-

Bean constructor mechanism1 of the java.beans.Beans class. The full listings for

NumberDisplayBean and OperatorBean can be seen in appendix B sections B.1.1,

B.1.2.

o p l = (N u m b e r D i s p l a y B e a n) Be a n s . i n s t a n t i a t e (null , "
NumberDisplayBean") ;

2 op2 = (N u m b e r D i s p l a y B e a n) B e a n s . i n s t a n t i a t e (null , "
NumberDisplayBean") ;

c a l c = (O p e r a t o r B e a n) B e a n s . i n s t a n t i a t e (null , "OperatorBean");
4 a n s — (N u m b e r D i s p l a y B e a n) B e a n s . i n s t a n t i a t e (null , "

NumberDisplayBean");

The values of each operand and the operator are set and the result calculated.

o p l . s e t V a l u e ((f l o a t) 1 0) ;
2 op2 . s e t V a l u e ((f l o a t) 5 . 5) ;

c a l c . s e t O p e r a t o r (O p e r a t o r B e a n .ADD) ;
4 c a l c , c a l c u l a t e () ;

To perform the execution flow from the two operand components through the op­

erator and finally to the result the publish/subscribe2 paradigm in Java is used. A

PropertyChangeListener listens to the component upstream in the work flow and

fires an event to the component downstream when the particular property changes.

In this way when the calc component answer value changes the value is communi­

cated to the ans component. The code that perform this operation can be seen in

the following code segment:

p u b l i c c l a s s A n s w e r C h a n g e L i s t e n e r im p le m e n ts
P r o p e r t y C h a n g e L i s t e n e r {

2 p r o t e c t e d N u m b e r D i s p l a y B e a n n d B e a n = n u l l ;

4 p u b l i c A n s w e r C h a n g e L i s t e n e r (N u m b e r D i s p l a y B e a n i n p B e a n) {
ndB ean = i n p B e a n ;

}

*A static Factory Method, see page 26
2Another name for the Observer design pattern, see page 27

34

4.2 Prototype Implementations

s p u b l i c v o i d p r o p e r t y C l i a n g e (P r o p e r t y C h a n g c E v e i i t p e e) {
i f (n d Be a n ! = n u l l) {

o ndB ean . s e t V a l u e (((F l o a t) p e e . g e t N e w V a l u e ()) .
f l o a t V a l u e ()) ;

}
2 }

_}___

An instance of the class is created and subscribed to the ca lc component using

c a l c . a d d P r o p e r t y C h a n g e L i s t e n e r (" answer " , n e w A n s w e r C h a n g e L i s t e n e r
(a n s)) ;

and when the value changes the value is set on the ans component and displayed.

The location on the user interface for each “Bean” component is set using the

standard AWT3 se tL o ca tio n method.

g e t C o n t e n t P a n e () . a d d (o p l) ;
2 o p l . s e t L o c a t i o n ((i n t) 1 0 , (i n t) 1 0) ;

None of the standard Java AWT layout components are capable of simply set­

ting components at a point location on a window so a custom layout is used,

B u ile t inLayout4.

This initial prototype helped to explore the use of JavaBeans as a visual compo­

nent model. Although the functionality is totally static, it is extended in the next

version.

4.2.2 Arithmetic Equation Builder - Version 2

The next iteration of the prototype is an extension to the functionality of the visual

arithmetic equation builder from the previous section. As is good practise when

prototyping the previous prototype was discarded, apart from the ideas and the

lessons learnt with the new technology. This new prototype has some simple dynamic

3AWT: Java Abstract Window Toolkit is the standard Java user interface widget set
4 BulletinLayout was written by David Geary, it lays out components as though they were pinned

to a bulletin board

35

4.2 Prototype Implementations

functionality that is capable of performing a specific set of functions. The prototype

now has a component repository and a “Scratch Pad” , seen here in figure 4.2, on to

which components in the component repository can be instantiated by pressing the

component “buttons” in the repository to add an instance of the chosen component.

AWTapp

4 .5 5.05.7

s u badd

8 .7 0 .5

add

8.2

Figure 4.2: Visual Arithmetic Equation Builder Interface

The prototype illustrates three initial problems that arise in attempting to pro­

vide a dynamic environment in which the scientist can work. The first is to provide a

mechanism by which the environment can discover the properties, methods, inports

and out ports that a component provides at design time. The second is to provide a

mechanism that can be used to dynamically create links between components. The

third is to provide dynamic method invocation on particular components within the

environment.

One solution using the Java programming language, provides the ability for the

system to discover a component’s properties at design time and display them via a

simple “Object Inspector.” This can be seen in figure 4.2 as a small floating window.

Thus, for a display component the value that is set for the component is shown as

an editable string, and for an operator component the two input values are shown

36

4.3 Visual Component Composition Environment

as editable strings, and the operator as a selection from a “drop-down list” . The

system can also dynamically create links between two components and use these

links to call “set methods” to update the properties of a given component instance.

In this way the execution flow of the task graph cascades down the nodes of the

graph as each node triggers the next down stream by calling the “set method” with

the resultant value from its operation.

The main results of this simple prototype are from a user interface point of view.

Building this clarified the way that the interface should proceed and confirmed

that the ideas of having a component repository and “scratch pad” for task graph

composition provided a reasonably intuitive environment in which to work. On the

negative side it was also obvious that prototype architecture would not be flexible

enough for a real general purpose tool. So this prototype was discarded as a starting

point and the next version would be designed and written from scratch.

4.3 Visual Component Composition Environment

The main prototype developed during this research is called the Visual Component

Composition Environment (VCCE). It is used primarily to construct applications

from software components of a more complex nature than the previous simple exam­

ple. In this context, an application is merely seen as a high-level component. The

VCCE is used to construct components in the form of a data flow graph. Once a

complete application has been constructed, it can either be passed to the Intelligent

Resource Management System (IRMS) to be scheduled on the distributed computing

systems available on the network or executed using the built in scheduling system.

4.3.1 Features of the VCCE

The VCCE should have the following features, some of which are improved versions

of functionality from the equation builder:

37

4.3 Visual Component Composition Environment

1. A graphical user interface for the hierarchical construction of components by

connecting an outport of one component to an inport of another component.

2. A facility for building new components from scratch in some appropriate pro­

gramming language, and wrapping them as Java beans. Presently supported

are components written in C, Fortran and Java.

3. A facility for building inports and outports from a component’s input and out­

put interfaces. Although a component’s interface cannot be changed, inports

and outports can be constructed out of the data objects comprising the input

or output interface. It should also be possible to replicate and merge chan­

nels. Each component has a set of default inports and outports defined by the

author of the component.

4. A composition notation, or scripting language, providing control constructs

such as loops and conditionals for managing the flow of execution of compo­

nents. Conditional behaviour is not supported within the present implemen­

tation, however the user has the capability to specify a predefined number of

iterations through the code using XML tags, as described in section 4.4.2, and

an extension to the implementation to include looping is discussed in chapter

6 .

5. A facility for displaying and hiding the hierarchical structure of a component.

6. A facility for viewing documentation on a component giving, for example, its

purpose, the algorithm used, the meaning of the input and output arguments,

etc. This documentation may be linked to an HTML document, or other

sources of information outside of the PSE.

The major sub-systems of the VCCE are as follows:

1. A Component Repository, containing a hierarchical set of folders for storing

components th a t may be used in constructing other higher-level components

38

4.3 Visual Component Composition Environment

and/or applications. The component access permissions determine which com­

ponents a particular user is able to see in the repository. Specific and generic

components are indicated by different colours.

2. A Composition Tool, that acts as a canvas, or “scratch pad” where components

are joined together by channels connecting inports and outports. The compo­

sition tool will allow an outport to be connected to an inport only if they are

compatible. The resulting higher-level components and applications may be

inserted into the Component Repository, and at this stage access permissions

are set, and optional performance model and explanatory information may be

associated with the component.

3. An internal scheduling system. In cases where an external scheduler is available

the VCCE can delegate execution to tha t system, otherwise it is necessary for

the VCCE to be able to execute the composed task graph itself.

In the PSE prototype, a user can visually construct scientific applications by

connecting together components, which can range in granularity from simple matrix

manipulation routines, to complete application programs. Each component has an

XML interface described using a common data model described in further detail in

section 4.4.2.

The main module of the VCCE is the Program Composition Tool (PCT). This

is a visual tool that enables a user to build and edit applications by plugging to­

gether components, by inserting application components into predefined templates,

or by replacing application components in existing programs. The PCT allows a

user to connect two components only if their interfaces are compatible. The PCT

also enables a user to create new application components and place them in the

Application Component Repository (ACR). The Program Execution Tool (PET)

develops the task graph generated for each application, encodes this into XML (de­

scribed in section 4.4.4), and passes the graph to the internal or external scheduler

for execution.

39

4.4 VCCE Components

4.4 VCCE Components

Components in the prototype PSE have the following properties:

• Components have a unique name or ID. This does not have to be globally

unique, only locally, as the notion of “name space” can be used together with

the local unique name to create a globally unique name.

• Components may be Java or CORBA objects. They may be sequential codes

written in Java, Fortran, or C; they may be parallel codes tha t make use

of message passing libraries such as MPI; or they may exploit array-based

parallelism through language extensions such as HP Java [19]. Legacy codes,

in Fortran for instance, can be wrapped as components.

• Components themselves may be hierarchical, i.e. constructed from other com­

ponents, and be of arbitrary granularity. Thus, a component may perform a

simple task, such as finding the average of a set of input values, or it may be

a complete application for solving a complex problem.

• Each component is represented by a well-defined model specified in XML, as

described in section 4.4.2.

• Information is passed from one component to another via unidirectional typed

channels. A channel connects an outport of one component to an inport of

another component. A component may have zero or more inports. The set of

data objects referenced by the channels connected to a component’s inports

together define its input interface. Similarly, a component may have zero or

more outports, and the set of data objects referenced by the channels connected

to a component’s outports together define its output interface.

• A set of constraints may be associated with each component, indicating on

what platforms it can be run, and whether it requires generic software, such

as MPI or the BLAS, or specific software versions such as JDK version or

CORBA ORB, in order to run.

40

4.4 VCCE Components

• Information 0 1 1 a component’s purpose, the algorithms it uses, and other per­

tinent explanatory data is optionally associated with a component in the form

of help files.

4.4.1 XML within the VCCE

XML (extensible Markup Language) [113] is a subset of the document formatting

language SGML (Standard General Markup Language). It was devised, among other

things, for developing documents for the Web, and is acknowledged by the W3C

standards organisation. One objective of XML is to enable stored data intended for

human use to also be manipulated by a machine, such as a search engine. XML

defines standard tags used to express the structure of a document, in terms of a

Document Type Definition (DTD) scheme. Hence, a DTD must be defined for

every document that uses tags within a particular context, and the validity of a

document is confirmed with reference to a particular DTD.

Various DTDs have been defined for particular application domains, such as the

Biolnformatic Sequence Markup Language (BSML), Weather Observation Markup

Language (OML), the Extensible Log Format (XLF) for logging information gen­

erated by Web servers, Chemical Markup Language (CML) among others. The

approach closest to the work described here is Open Software Description (OSD)

[114], submitted to WC3 August 1997, for defining component models that can

facilitate the automatic updating of components. Using OSD, “push-based” appli­

cations can automatically trigger the download of particular software components

as new versions are developed. Hence, a component within a data flow may be

automatically downloaded and installed when a new or enhanced version of the

component is created. XML does not define the semantics associated with a given

tag, only the positioning of a tag with respect to other tags. However, one must

associate and define semantic actions when parsing an XML document that cause

particular actions to take place when particular tags are encountered. These actions

can range from displaying the content of a document in a particular way, to running

programs that are triggered as a result of reaching a particular tag.

41

4.4 VCCE Components

XML was chosen as the language of choice for two main reasons.

• XML is computing language and platform agnostic. This is very important

if a PSE is to be platform independent and components are to be language

independent.

• There are a number of high quality open source XML language parsers for

many programming languages. For example, Xerces [6] from the Jakarta-

Apaclie group, and Java API libraries for manipulating and generating XML

documents, such as JDOM [64] and JAXP [63].

These reasons suggest that XML is an appropriate way of creating component inter­

faces within a PSE. The use of XML also enables the generation of context-sensitive

help and leads to the development of self-cataloguing components.

4.4.2 XML Component Model

Each component used within the VCCE must currently, although not necessarily,

be either a Java or CORBA object. Components are self-documenting, with their

interfaces defined in XML, which: enables a user to search for components suitable

to a particular application; enables a component to be configured when instantiated;

enables each component to register with an event listener; and facilitates the sharing

of components between repositories. XML tags may be used to automatically derive

help on particular components already present in the repository, or they may be

used to query the availability of particular types of components. User supplied

components must also have their interfaces defined in XML.

The XML-based component model ensures uniformity across all components,

and helps to abstract component structure and implementation from component

interface. The XML definition used within the prototype, enables the division of

a component interface into a set of sections, where each section is enclosed within

predefined tags. A parser capable of understanding the structure of such a document

can identify and match components which meet this interface. The DTD identifying

42

4.4 VCCE Components

valid tags does not need to be placed with each interface, as it can be obtained from

a URL reference placed in the document header, and identified by the h re f tag.

The XML definition can be used to perform information integrity, such as the total

number of inports and outports, check the suitability of a component, the types of

platforms that may support the component and internal component structure when

available.

The component model was first described in a paper [95] in 1999 and was in­

fluenced by IBM’s BeanML [119] and W 3C’s OSD [114] XML-based frameworks.

BeanML is a component configuration and connection language. Unlike the lan­

guage presented here or OSD, it is designed for use exclusively with the JavaBean

component model. The BeanML script is executed by an interpreter and provides

functionality for: the creation of new beans; accessing of existing beans; configura­

tion of beans by setting/getting their properties and/or fields; binding of events from

some beans to other beans; and calling of arbitrary methods in beans. Although

comprehensive BeanML is not suitable for the data flow model presented in this

thesis.

OSD is another component language with a specific purpose, in this case it is for

describing software packages and their dependencies for use in automated software

distribution environments. As with BeanML, OSD is not suitable for data flow

modelling. The OSD idea of dependencies was used in this work to model the parent

child relationship between nodes in a task graph and some of the implementation

specification such as operating system version were used in specifying the executable

part of the component. The idea from BeanML of registering events from one bean

with another is adapted here and used.

The tags in the component language are divided into the following functional

sections:

• con tex t and header details

• input and output p o r ts

• execu tion specific detail, such as whether the component contains MPI code

43

4.4 VCCE Components

• a user specified help file for the component

• a c o n fig u ra tio n file for initialising a component

• a performance model identifying costs of executing the component, for the

resource manager

• an event handler, which enables registering or recording of particular types of

events.

A component may also contain specialised constraint or semantic tags in addition

to the mandatory requirements identified above. Constraints can include security or

licence constraints, where a component is required to run on a particular machine

or cluster.

Some of the tags specified in the following sections are based 0 1 1 either BeanML or

OSD. Component naming is common to both schemes but the work in this thesis has

a more detailed description in the context and header tags, section 4.4.2.1. Neither

scheme has the notion of data flow so the inport and outport tag specification, section

4.4.2.2, is unique to this work, at least at this date. The execution tags, section

4.4.2.3 are loosely based on OSD’s IMPLEMENTATION tag set. The configuration tags,

section 4.4.2.5, and the help file tags, section 4.4.2.4, are similar in style to OSD’s

CODEBASE tag although they are used for different purposes. The performance model

tags, section 4.4.2.6, do not occur in either scheme, but the event mechanism tag,

section 4.4.2.7, is similar to BeanML’s event mechanism for registering components

or JavaBeans as listeners to another component’s events.

4.4.2.1 Context and Header Tags

Context and header tags are used to identify a component and the types of PSEs

that a component may be usefully employed in. The component name must be

uniquely identifiable within the scope it is being used, a “name space” defining the

local scope can be used where the component is not locally unique. A component

also has an alternative alphanumeric identifier and an “ID” which can be used to

44

4.4 VCCE Components

differentiate between instances of the same component. Any number of PSEs may

be specified. These details are grouped under the preface tag. The h ie ra rc h y tag

is used to identify parent and child components, and works in a similar way to the

Java package definition. A component can have one parent, and multiple children.

In the code segment 4.1 taken from example B.1.3, appendix B, ‘DA01’ has no

children, indicating that it is at the bottom of the hierarchy. The component name,

alternative name and ID can be seen clearly together with the PSE type which is

Generic.

< p r e f a c e >
2 Cname a l t =" D A" id="DA01 " > D a t a A n a l y s e r < / n a m e >

< p s e —t y p e > G e n e r i c < / p s e —t y p e >
4 C h i e r a r c h y i d = " p a r e n t " > T o o l s . D a t a . D a t a A n a l y s e r < / h i e r a r c h y >

< h i e r a r c h y i d = " c h i l d " x / h i e r a r c h y >
6 < / p r e f a c e >

Listing 4.1: Example Component Header

4.4.2.2 Port Tags

Ports tags are used to identify the number of input and output ports, and their

types. An input port can accept multiple data types and this can be specified in a

number of ways by the user. For example

C i n p o r t i d = " 3 " p a r a m e t e r = " L a m b d a " t y p e = " f l o a t " v a l u e = " 0 . 5 " >
2 < / i n p o r t >

Listing 4.2: Simple Port XML

Input and output to a component can also come from and go to other types of

sources, such as files or network streams. In this case, the inport and outport ports

need to define an h re f tag, rather than a specific data type. The h re f definition is

standardised to account for various scenarios where it may be employed, such as:

< p o r t s >
2 < i n p o r t i d = " l " p a r a m e t e r ^ " r e g r e s s i o n " t y p e = " s t r e a m " v a l u e = "

NIL ">
< p a r a m e t e r = " r e g r e s s i o n " v a l u e r " NIL" / >

45

4.4 VCCE Components

a c l i re f nam e="http : / /www . cs . cf . ac . u k / P S E / " value=" t e s t . t x t "
>

< / in p o rt>
6 < / p o rts>

Listing 4.3: Example HREF Port XML

or when reading data from a file, the h re f tag is changed to:

< p o r t s >
2 C i n p o r t i d = " l " p a r a m e t e r ^ " r e g r e s s i o n " t y p e = " s t r e a m " v a l u e = "

NIL ">
< p a r a m e t e r = " r e g r e s s i o n " v a l u e = " N I L " / >

4 < h r e f n a m e = " f i l e : / h o m e / p s e / t e s t . t x t " v a l u e = " N I L " >
< / i n p o r t >

6 < / p o r t s >

Listing 4.4: Example File Port XML

This gives a user much more flexibility in defining data sources, and using compo­

nents in a distributed environment. The user may also define more complex input

types, such as a m atrix , stream or an a rray in a similar way.

4.4.2.3 Execution Tags

A component may have execution specific details associated with it, such as whether

it contains MPI code, if it contains internal parallelism, etc. If only a binary version

of a component is available, then this must be specified by the user also. Such com­

ponent specific details may be enclosed in any number of type tags. The execution

tag is divided into a softw are part and a p la tfo rm part. The former is used to

identify the internal properties of the component, while the latter is used to identify

a suitable execution platform or a performance model.

46

4.4 VCCE Components

For example

< e x e c u t i o n i d = " s o f t w a r e " t y p e = " b y t e c o d e " v a l u e —" e x t e n d e d ">
< t y p e i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l " / >
< t y p e i d = " c l a s s " v a l u e = " c o m . b a e s y s t e m s . c o m p o n e n t s .

S i mp 1 e x C o m p o n e n t " / >
< t y p e i d = " s o u r c e " v a l u e = " f i l e : / / / h o m e / c o m p d a t a / C a r d i f f /

p r o j e c t / s r c / c o m / b a e s y s t e r n s / c o m p o n e n t s / S i m p 1 e x C o m p o n e n t .
j a v a " / >

C t y p e i d = " c l a s s p a t h " v a l u e = " / h o m e / c o m p d a t a / p r o j e c t / c l a s s e s " / >
< / e x e c u t i o n >

Listing 4.5: Example Execution Tag XML

4.4.2.4 Help Tags

A user can specify an external file containing help on a particular component. The

help tags contains con tex t options which enables the association of a particular

file with a particular option, to enable display of a specified help file at particular

points in application construction. The contexts are predefined, and all component

interfaces must use these. Alternatively, the user may leave the co n tex t held empty,

suggesting that the same hie is used every time help is requested on a particular

component. If no help hie is specihed, the XML dehnition of the component is used

to display component properties to a user. Help hies can be kept locally, or they

may be cross references using a URL. One or more help hies may be invoked within

a particular context, some of which may be local.

< h e l p c o n t e x t = " a p i d o c ">
< h r e f n a m e = " f i l e : / / f : \ \ C a r d i f f \ \ p r o j e c t \ \ d o c s \ \ b e 2 d d o c s \ \

i n d e x . h t m l " v a l u e = " N I L " / >
< / h e l p >

Listing 4.6: Example Help Tag XML

4.4.2.5 Configuration Tags

Conhguration tags are similar to the he lp tag. A user can specify a co n fig u ra tio n

tag, which enables a component to load predehned values from a hie, from a network

file:///home/compdata/Cardiff/
file://f://Cardiff//proj

4.4 VCCE Components

address or by using a customiser or wizard program. This enables a component to

be configured within a given context, to perform a given action when a component

is created or destroyed, for instance. The c o n f ig u ra tio n tag is particularly useful

when the same component needs to be used in different applications, enabling a user

to share parts of a hierarchy, while defining local variations within a given context.

4.4.2.6 Performance Tags

Each component can have an associated performance model, and this can be specified

in a file, using a similar approach to component configuration defined above. A

performance model is enclosed in the perform ance tag, and may range from being

a numerical cost of running the component on a given architecture, to being a

parameterised model that can account for the range and types of data it deals with

to more complex models that are specified analytically.

4.4.2.7 Event Model Tags

Each component supports an event listener. Hence, if a source component can

generate an event of type XEvent , than any listener or target must implement an

Xlistener interface. Listeners can either be separate components that perform a well

defined action, such as handling exceptions, or can be more general and support

methods that are invoked when the given event occurs. An event tag is used to

bind an event to a method identifier on a particular component.

< e v e n t t a r g e t = " ComponA " t y p e = " o u t p u t " name=" o v e r f l o w " f i l t e r = "
f i l t e r ">

2 C c o m p o n e n t i d=" XX" > . . . < / c o m p o n e n t >
< / e v e n t >

Listing 4.7: Example Event XML

The ta rg e t identifies the component to initiate when an event of a given type occurs

on component with identity id, as defined in the p re face tag of a component. The

name tag is used to differentiate different events of the same type, and the f i l t e r

tag is a place-holder for Java property change and vetoable property change events

48

4.4 VCCE Components

support. Also, the filter attribute is used to indicate a specific method in the listener

interface using which the event must be received for a particular method to be

invoked.

Event handling may either be performed internally within a component, where

an event listener needs to be implemented for each component that is placed in the

PSE. This is a useful addition to a component model for handling exceptions, and

makes each component self-contained. Alternatively, for legacy codes wrapped as

components, separate event listeners may be implemented as components, and which

may be shared between components within the same PSE. Components that contain

internal structure, and support hierarchy, must be able to register their events at

the highest level in the hierarchy, if separate event listeners are to be implemented.

An simple example of an event listener is as follows:

< p r e f ac.e>
<name a l t = " D A" i d = " D A 0 2 " > D a t a E x t r a c t o r < / n a m e >
< p s e —t y p e > G e n e r i c < / p s e —t y p e >
< h i e r a r c h y i d = " p a r e n t " > T o o l s . D a t a . D a t a _ E x t r a c t o r < / h i e r a r c h y >
< h i e r a r c h y i d = " c h i l d " x / h i e r a r c h y >

< / p r e f a c e >

< e v e n t t y p e = " i n i t i a l i s e " n a m e = " s t a r t " f i l t e r = " " >
< s c r i p t >

< c a l l — me t h o d t a r g e t = " D A 0 1 " n a m e = " b a y e s i a n " >
< / s c r i p t >

< / e v e n t >

Listing 4.8: Example Event Listener XML

The s c r ip t tags are used to specify the method to invoke in another component,

when the given event occurs.

4.4.2.8 Computational Steering Tags

A component can be tagged to indicate that it can be steered via the user interface.

In order to achieve this, the input/output to/from a component must be obtainable

from a user interface. W ith a steer able component, the in p o rts and o u tp o rts

of a component must have a specialised tag to identify this. For a conventional

4.4 VCCE Components

component without steer-ability, the ports definition is:

< p o r t s >
< i n p o r t i d = " l " t y p e = " s t r e a m ">

< p a r a m e t e r t y p e = " v e l o c i t y " v a l u e —" 1 0 . 2 " / >
< / i n p o r t >

Listing 4.9: Example Non-Steering Port XML

For a steerable component, the following definition would be used:

< p o r t s >
< s t e e r a b l e >

C i n p o r t i d = " l " t y p e = " s t r e a m ">
< p a r a m e t e r t y p e = " v e l o c i t y " v a l u e = " 1 0 . 2 " / >

< / i n p o r t >
< / s t e e r a b l e >

Listing 4.10: Example Steering Component XML

This will automatically produce an additional input port over which interactive

inputs can be sent to the component, with the input being of the same type as in

the non-steerable version of the component.

Additional tags not part of the component model may be specified by the user

toward the end of each section.

< a d d > . . . < \ a d d >

Variable tags are not supported in the first version of the prototype.

4.4.2.9 A Data Analysis Component Example

A data analysis component within the repository may be described by the XML

code B.1.3. page 166.

Another example component interface B.1.4 in XML can be seen in Appendix B,

page 167.

50

4.4 VCCE Components

XML

Component
Repository

Python
OutputScheme

Output
To

Resource CORBA-IDL

VCCE

XML

Representation

Web Pages Manager Output

Figure 4.3: The XML-Based Component model.

4.4.3 Component Model Summary

All applications that employ the PSE prototype must adhere to the above component

model. A user may specify the component model using tags, or may have it encoded

using a component model editor, not implemented here, which also acts as a wizard

and enables customisation. The editor would work in a similar manner to an HTML

editor, where a user is presented with a menu-based choice of available tags, and

can either choose one of these predefined tags or, different from an HTML editor,

may define their own.

The Component Model in XML forms the interface between the VCCE and other

parts of the PSE, and is used to store components in the repository. Various query

approaches may be employed within the VCCE to obtain components with given

characteristics or components at a particular hierarchy. The XML representation is

therefore pervasive throughout the PSE, and links the VCCE to the IRMS or internal

scheduler. Various representations could be obtained from the XML description in

Scheme, Python, Per/, CORBA-IDL etc, for connection to other systems that may

be attached to the PSE, see figure 4.3.

The use of tags enables component definitions to be exchanged as web documents,

with the structure available at either a single or at particular certified sites. Hence,

changes to the DTD can be made without requiring changes to component definitions

51

4.4 VCCE Components

held by application developers, and will be propagated the next time a user utilises

a component interface.

The use of the component model also requires that each component has a unique

identifier across the PSE workspace, and is registered with a component repository.

This is particularly significant when handling events, as event types will need to be

based on component identities and their particular position in the data flow.

4.4.4 XML Task Graph Model

As explained in section 4.1.3, the prototype PSE used in this work uses a data flow

representation for the relationship between the processes in a constructed applica­

tion. Connectivity between components in the VCCE, like the component interface

definitions, is specified in XML in the form of a directed graph.

Component dependencies are enclosed in connection tags and consist of the

constructs, p a ren t and ch ild . Distant relationships can be constructed from the

recursive applications of these two basic types. Each connection between a pair of

components is treated separately, however a single component can participate in

more that one connection relationship allowing all pair wise combinations of: One

to One; One to Many, and Many to Many relationships to be represented.

The input and output ports participating in the connection between two compo­

nents are not specified explicitly in the XML representation. The Java implemen­

tation of the VCCE software attempts to match input port to output port by port

parameter name in the first instance. If no match is found then the order of the ports

in the component definition is used, i.e. the first connection to or from a component

is connected to the first defined port. On reflection, this implicit rule is limiting

to the taskgraph representation. It can cause a dependency on the order in which

components are connected by the user in the graphical environment. In the case

where input and output port names from the two participating components do not

match, the order of their connection decides the particular ports to be connected.

A solution to this problem is to include a full description of the participating ports

52

4.4 VCCE Components

as part of the connection description. This is the case in more recent task graph

representation languages such as that used by Triana, based on the work here.

In addition to the connection relationships, a representation of the start point

or points for a task graph is needed. For this a start tag is used that labels one

or more components as starting points for execution. While it is possible to simply

examine all components in the task graph to find those with no parent connection,

giving the start points, it makes the scheduling algorithms simpler and quicker to

know in advance the start points specified by the user.

4.4.4.1 Example XML Task Graph

In the example XML task graph in B.1.5, page 168. there are four components:

be2dData; be2d] curView; and rcsView. The start point is labelled in the graph as

being be2dData, the connections are be2dData to be2d, be2d to curView and be2d to

res View. The start point and one connection from the example can be seen below.

< s t a r t >
Cname alt="be2dData" id = " b e2d D ata01 " i n s t = " 7065019 ">be2d d ata

< / name>
< / s t a r t >
< c o n n e c t i o n >

< p a r e n t >
<name alt .="be2dData" id=" b e 2 d D a t a 0 1 " i n s t = " 7065019 ">be2d

da ta < /n a m e >
< / p a r e n t >
< c h i l d >

Cname a l t= " b e 2 d " id = " b e 2d 01" i n s t = " 6 6 7 0 3 2 6 ">be2d</name>
< / c h i l d >

Listing 4.11: Example Task Graph Connection

So in this example there are examples of “One to One” and “One to Many” con­

nections. This example is from a real application and is explained in context in

chapter 5.

4.4 VCCE Components

4.4.5 Compound Components

One; useful mechanism specified in the requirements document for the VCCE is

the ability for a user to create composite components from a number of existing

components. These composite or compound components once created behave exactly

like a simple component, in that it has a number of input and output ports and can

be connected into a task graph like any other component.

The compound component is really a construct for the user of the system as

opposed to something the system needs itself. It enables a user to logically group

components into larger more complicated systems for re-use and sharing with other

users, or to enable very large complicated systems to be viewed at a coarser level so

that it can be seen in its entirety more easily. The grouping of components will not

affect the execution of the completed application as the atomic components have

not actually been changed in any way.

In terms of the XML representation of a compound component, it can be seen

as a partial task graph. A compound component consists of a list of constituent

components and a set of connection relationships, the same as a task graph. But,

in addition the compound component will have the header, p o r t and optionally

help tag sections that a normal component would have. The header and help

tags are specified by the user building the compound component. The p o rt tags

representing the input and output ports map to the corresponding ports on the

outermost components in the group. For example, given a simple group with two

components then the inputs to the group would be the input ports on the inner

component with no parent connection and the output ports to the group would be

the output ports on the inner component with no children. So given a compound

component made up of a number of sub components, the number and type of the

input ports would be the sum of all the input ports of all components which are not

connected internally; the number and type of the output ports would be the sum of

all output ports of all components which are not connected internally.

When a connection is made in a task graph between a component and a com­

54

4.5 VCCE Component Implementation

pound component, the actual connection is mapped through to the corresponding

internal component.

4.5 VCCE Component Implementation

Components in the prototype PSE do not perform any computation in their own

right, they are merely representations or proxy components, for an underlying com­

putational code, see page 26. A VCCE component provides a number of services for

its computational code:

• A visual representation of the code within a GUI environment.

• An optional custom user interface for the code.

• Input ports that direct incoming input data in a form tha t the code can use

and provide a visual representation of the port.

• Configuration for the code.

• A mechanism to execute the code.

• Output ports that take the code output and make it available in a form that

can be passed to the next component in the application.

The VCCE component design is based on the ideas developed in the previous

two prototypes examined in sections 4.2.1 and 4.2.2. Each component is defined by

an XML definition file which contains the various values for name, executable, help

files etc, defined in section 4.4.2. When the VCCE is started, each component in

the repository is loaded from its XML definition and a proxy created.

4.5.1 Proxy Interface

Using sound software engineering principles everything is written to well defined

interface classes, hence every proxy component implements a single main interface,

55

4.5 VCCE Component Implementation

Proxy In te rfa c e . The interface is a full representation in Java of all of the values

obtained from the XML definition. The full listing can be seen in appendix B.1.6.

For example, the component header tag values from section 4.4.2.1 are represented

by the methods,

/ / Returns the i n t e r n a l system name.
public S t r i n g g e t l n t e r n a l N a m e () ;

/ / Returns the a l t e r n a t i v e name.
public S t r i n g g e t A l t N a m e () ;

/ / Returns the ex t er na l name r e p r e s e n t a t i o n .
public S t r i n g g e t E x t e r n a l N a m e () ;

/ / Returns the ins t ance ID (un ique)
public S t r i n g g e t l n s t a n c e l D () ;

/ / Sets the ins t ance ID (should be machine g ener at ed and unique)
public void s e t l n s t a n c e l D (S t r i n g I n s t l D S t r) ;

/ / Returns the type of PSE the component can be used w i t h i n .
public P se T y p e g e t P s e T y p e () ;

/ / Returns the parent component, in a compound component .
public S t r i n g g e t P a r e n t Q ;

/ / Returns an i t e r a t o r con t ai ni ng the ch i ld components in a
compound component .

public P r o x y l t e r a t o r g e t C h i l d r e n () ;

As can be seen above, there is a corresponding getter method for each value in

the tag set. The responsibility for setting those values from the XML definition

is delegated to the implementing classes, in this case A bstractProxy, an abstract

class that contains a number of common utility methods and SimpleProxy, the

actual proxy class.

There is an interface to represent input and output port objects, P o r t ln te r f ace.

This has methods to set and get: the value of the data object coming in or going out

of the proxy component; the name of the port; an optional URL href; and the type

of the port which could be one of the following values - Stream, F ile , S trin g , Short,

F loa t, Double or Object. In the Proxy In te r fa c e there are methods, g e tln p o rtsQ

56

4.5 VCCE Component Implementation

and getOutportsO which return sets of these Portlnterf aces.

The visual representation of the proxy component is handled by another Java

class called SimpleVisualComponent. In its simplest form this just displays a box

representing the component with the component name displayed as text. Each visual

component is constructed with a Proxylnterf ace so tha t there is a one-to-one map­

ping from a proxy to its graphical representation. It is the SimpleVisualComponent,
a subclass of a Java JPanel, that gets displayed in the VCCE user interface explained

in section 4.6.

4.5.2 Execution Interface

The proxy design up to this point has been relatively straightforward but in this

section is a description of the part of the proxy tha t is responsible for the actual

executable computation code, the Executionlnterf ace. The underlying computa­

tional unit could take many forms from a simple Java code to a parallel Fortran code,

as described in section 4.4. The execution proxy needs to be flexible and extensible

to take this fact into account. As before a general interface is developed first and

then code written to implement that. The Executionlnterf ace has two important

methods.

/ / Perform any necessary i n s t a n t i a t i o n f u n c t i o n s when a
2 / / component is added to the c o n t a i n e r p r i o r to e x e c u t i o n .

public void in s t a n t i a t e () ;
4

/ / Execute the under ly ing s u b j e c t process , and n o t i f y any
e / / l i s t e n e r s on c o m p l e t i o n .

public void execu te () ;

All implementing Execution classes must included these methods. The first is a “set­

up” method which is called by the VCCE when a proxy component is instantiated

by the user. Implementing classes should use this method to perform pre-execution

tasks. This might include contacting a Name Server in the case of a CORBA com­

ponent implementation. The second method implementations perform the actual

task of executing the underlying computational code.

57

4.5 VCCE Component Implementation

In the simplest implementation of the Executionlnterf ace, where the compu­

tational code is written in Java or is a simple command line executable, there are two

implementing classes, the JavaExecution or ExtendedJavaExecution proxy. Later

chapters in this dissertation examine more complicated implementations. These

proxies are very similar, they can both be used to run Java-based components within

the VCCE.

4.5.2.1 Java Execution Component

The first implementation, JavaExecution, executes a command line instruction to

run the computational code. The instantiate O method in this simple case is a

“no-op” empty method, there is no set up functionality to perform. The class has

variables to represent the classpath, the classname and argument for the computa­

tional code. It makes use of the Java Runtime, exec functionality, line 10 below, to

execute a command string as if it were a command line from a user.

p u b l i c v o id e x e c u t e () {
S t r i n g B u f f e r e x e c u t e S t r B f r = n e w S t r i n g B u f f e r (" j a v a u -

c l a s s p a t h u ") ;
e x e c u t e S t r B f r . a p p e n d (g e t C l a s s P a t h ()) ;
e x e c u t e S t r B f r . a p p e n d (" u ") ;
e x e c u t e S t r B f r . a p p e n d (g e t C l a s s N a m e ()) ;
e x e c u t e S t r B f r . a p p e n d ("u") ;
e x e c u t e S t r B f r . a p p e n d (g e t A r g u e m e n t ()) ;
t r y {

S y stem . o u t . p r i n t l n (e x e c u t e S t r B f r . t o S t r i n g ()) ;
P r o c e s s p r o c e s s = R u n t i m e . g e t R u n t i m e () . e x e c (e x e c u t e S t r B f r

. t o S t r i n g ()) ;
/ / once execu t i on is f i n i s h e d p ub l i s h the f a c t
t r y {

p r o c e s s . w a i t F o r () ;
} c a t c h (I n t e r r u p t e d E x c e p t i o n e) {

S y s te m . e r r . p r i n t l n (" b e 2du e x e c u t i o n u f a i l u r e ") ;
e . p r i n t S t a c k T r a c e (S y s te m . o u t) ;

}
n o t i f y E x e c u t i o n () ;

} c a t c h (I O E x c e p t i o n e) {
e . p r i n t S t a c k T r a c e (S y s te m . o u t) ;

}
}

58

4.5 VCCE Component Implementation

i--1

Listing 4.12: Execution Method for JavaExecution Component

This simple case has no facility for handling input and output directly, this must

be handled in other ways. For example in the case of large number of legacy codes

their input and output is file-based and has to exist in specific places. Handling

these files would be the job of other assistant components.

4.5.2.2 Extended Java Execution Component

The second implementation of the Executionlnterf ace, ExtendedJavaExecution,
instantiates and runs the Java computational code in the same Java Virtual Machine

as the running VCCE. This implementation extends the simple JavaExecution case

from the previous section and is more fully featured and also more complicated.

The instantiate0 method implementation, called when the user instantiates

the proxy component onto the VCCE GUI, checks the system classpath and appends

the proxy classpath if necessary. It also attem pts to instantiate an executable object

from the class.

C l a s s c l a s s . = C l a s s . fo rN am e (g e t C l a s s N a m e ()) ;
2 O b j e c t r u n n a b l e A p p . = c l a s s _ . n e w l n s t a n c e () ;

If this fails then the VCCE is able to advise the user that the component cannot

be instantiated. It is more useful for this failure to be apparent at the point of

assembling the application than at runtime where nothing can be done.

The execute () method implementation is also more complicated as it performs

three functions:

1. set input values for the computational code object from the values in the proxy

2. execute the instantiated code object

3. set the output values on the proxy from the values in the computational code

object.

59

4.5 VCCE Component Implementation

The proxy knows nothing about the computational code object apart from the de­

tails contained in the XML definition which have been used to generate the proxy

component.

The main information about the classname and classpath which will be used to

instantiate and execute the object is inherited from JavaExecution, section 4.5.2.1,

and is set at proxy creation. The proxy has a set of input and output P o r t ln te r f ace

objects that represent the input and output ports for the proxy and hence the

computational code itself. Each of these P o r t ln te r f ace objects has a name, value

and value data type. The JavaBean technique of using a strict naming convention for

parameter names and the methods in the containing computational object that set

and get the values of those parameters is used. The method names are the parameter

names prefixed by either s e t or get. For example if in the XML input tag section

for a given Java computational component there is the parameter definition, below

60

4.5 VCCE Component Implementation

< in p o r t id="3" parameter^"Lambda" t y p e = " f l o a t " v a lu e = " 0 .5 " >
< / in p o r t>

then in the computational class there must be corresponding methods to set and

return the values of that parameter.

p u b l i c v o id setLambda (f l o a t v a l u e) ;
p u b l i c f l o a t getLambda() ;

Java reflection5 is used to dynamically discover these methods on an object and call

the set parameter methods on the computational object before execution, and the

get parameter methods after execution. For example, in the code listing 4.13 below

on line 6 there is an Iterator for the set of input ports, on line 8 the method name

for the set method is constructed, line 10 uses reflection to return the Method object

for the given name and parameter method signature and finally line 12 invokes that

method with the input port value from the proxy on the instantiated computational

object to set the input value.

The main method on the computational object tha t performs the work of the

code is also discovered and called using reflection, lines 19 and 20. Finally in a

reverse of the manner in which the input values are set on the code object, the

return values after execution are passed onto the proxy object in the listing lines 25

to 30.

public void e x e c u t e () {
/ / set al l i n p o r t s in the i n s t a n t i a t e d ob j ec t using method
/ / i nv oc a t i on and r e f l e c t i o n
C l a s s [] p a r a m e t e r T y p e = n e w C l a s s []{ O b j e c t . c la s s } ;
O b j e c t [] p a r a m e t e r V a l u e = n e w O b j e c t [1] ;
for (P o r t l t e r a t o r i t = g e tO w n e r () . g e t l n p o r t s () ; i t . h a s N e x t Q

;) {
P o r t l n t e r f a c e p o r t = i t . n e x t () ;
S t r i n g m ethodN am e = "set" + p o r t . g e t P a r a m e t e r () ;
try {

M eth o d s e t t e r = c l a s s . . g e t D e c l a r e d M e t h o d (m ethodN am e ,
p a r a m e t e r T y p e) ;

p a r a m e t e r V a l u e [0] = p o r t . g e t V a l u e () ;
s e t t e r . i n v o k e (r u n n a b l e A p p . , p a r a m e t e r V a l u e) ;

5A mechanism for dynamically discovering and executing an objects methods at runtime

61

4.6 VCCE Implementation

} catch (E x c e p t i o n e) {
e . p r i n t S t a c k T r a c e (S y s te m . o u t) ;

}
}
/ / Invoke the execute method
t r y {

M ethod e x e c u t e = cl a s s g e t D e c l a r e d M e t h o d (" e x e c u t e " , new
C l a s s [0]) ;

e x e c u t e . i n v o k e (r u n n a b l e A p p . , n e w O b j e c t [0]) ;
} catch (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e (S y s t e m . o u t) ;

}
/ / update al l the outpor t s
f o r (P o r t l t e r a t o r i t = g e tO w n e r () . g e t O u t p o r t s () ; i t . h a s N e x t ()

;) {
P o r t l n t e r f a c e p o r t = i t . n e x t () ;
S t r i n g m ethodN am e = " g e t " + p o r t . g e t P a r a m e t e r () ;
t r y {

M ethod g e t t e r = c l a s s _ . g e t D e c l a r e d M e t h o d (m ethodN am e ,
new C l a s s [0]) ;

p o r t . s e t V a l u e (g e t t e r . i n v o k e (r u n n a b l e A p p . , n e w O b j e c t
[0])) ;

} catch (E x c e p t i o n e) {
e . p r i n t S t a c k T r a c e (S y s tem . o u t) ;

}
}
n o t i f y E x e c u t i o n () ;

Listing 4.13: Execution Method for ExtendedJavaExecution Component

This more advanced implementation of the E x e c u tio n ln te rfa c e can handle

parameter values coming into and going out of the proxy object. The proxy is re­

sponsible for the interaction between components and passes information and control

to the underlying computational code. In the next section, the VCCE framework is

discussed in more detail and working examples of proxies can be seen in the following

“use case” chapters, 5, 6, 7 and 8.

4.6 VCCE Implementation

The implementation of the third prototype, the Visual Component Composition

Environment (VCCE) is discussed here. This prototype is a fully functional visual

62

4.6 VCCE Implementation

programming environment that is used in the demonstration chapters to examine

the behaviour of the PSE with regard to specific user cases. A full description of the

implementation would be out of scope for this thesis. Instead this section focuses on

certain aspects of the implementation, ignoring less interesting facets. Included here

are the mechanisms by which proxy components, described in section 4.5, are created

from their XML definitions, how connections between components are created to

build an application and how tha t application is scheduled and executed by the

local execution system. This section does not include a large amount of detail with

regard to the VCCE GUI as this is really Java Swing6 programming and not of

particular interest here. The user interfaces discussed in the previous prototypes in

sections 4.2.1 and 4.2.2 cover most of the concepts used here.

4.6.1 Component Factories and XML Parsing

Section 4.5 described the structure and implementation of the proxy components

that provide a placeholder for the real underlying computational component within

the VCCE framework. It described the fact tha t the proxy is created from an XML

component definition. That process is described here.

The construction of similar objects with a common interface, i.e. the Proxy-
Interface, but different implementations, i.e. JavaExecution versus Extended-
JavaExecution, is a commonly found software engineering problem and is cov­

ered by the Factory Method design pattern, see page 26. A factory class called

ComponentFactory is used, to which is delegated the parsing of the component XML

definition files and creation of various objects of type Proxylnterf ace. “Polymor­

phism” is used to handle the different implementations of the proxy components in

a common manner.

The ComponentFactory class is an object factory responsible for building the

proxy components based on XML component definition files. These files are found

6Java Swing is the Java platform independent graphical component library used to build Java

GUIs.

63

4.6 VCCE Implementation

and loaded by the VCCE in a special component directory denoted by the XML_DIR

property. This property comes from the S e tt in g s class, a singleton class, see page

26, that loads a user defined properties file. For example:

S t r i n g com pD ir = S e t t i n g s . g e t l n s t a n c e () . g e t P r o p e r t y ("WORKING_DIR"
)

2 com pD ir + = S e t t i n g s . g e t l n s t a n c e () . g e t P r o p e r t y (" XML_DIR") ;
F i l e c o m p o n e n t D i r e c t o r y _ = new F i l e (c o m p D i r) ;

The ComponentFactory makes use of the open source JDOM API7 which pro­

vides a much more “Java-centric” view of XML documents than the W3C Document

Object Model (DOM). It provides, among other things, list-based access to nodes

in a parsed XML tree. JDOM can use a number of XML parsers but the one used

here is the open source Xerc.es8 Java parser, part of the Apache XML Project.

An example of ComponentFactory use to return a set of components parsed

from the XML files contained in the “component” directory can be seen in the code

below.

V e c t o r c o m p o n e n t s . = new V e c t o r () ;
2 f a c t o r y . = new C o m p o n e n t F a c t o r y () ;

w h ile (! f a c t o r y _. a l l C o m p o n e n t s L o a d e d ()) {
4 c o m p o n e n t s . . add (f a c t o r y . , g e t N e x t C o m p o n e n t ()) ;

_}___

Each XML definition complies with the standard document format, section 4.4.2,

the ComponentFactory uses the XML parser and the JDOM API to retrieve values

for parameters from the document and sets them in an internally created proxy

object. Currently the factory handles one type of proxy, SimpleProxy, with multiple

execution models. If the proxy model were to be extended, then the beauty of a

factory model solution is th a t there is no need to change any code in the application

apart from inside the factory itself.

The preface, port and help tag sections have a similar structure for all compo­

nents. Preface values are assigned as direct attributes of the proxy object, port and

7 http ://w w w .jdom .org
8 h t t p : //x m l. apache. o rg /x e rc e s - j / in d e x .html

64

http://www.jdom.org
http://xml.apache.org/xerces-j/index.html

4.6 VCCE Implementation

help values are represented by Abstract Port implementations Inport, Outport
and SimpleHelp objects respectively. These objects are simply Java class repre­

sentations of the XML component data together with “setter” , “getter” and utility

methods. The objects are created with the values from the XML interface and added

as attributes or “sets” of attributes to the proxy object.

The final section of tags represent the execution definition. Depending on

the values of these tags the ComponentFactory will create objects from different

implementations of the Executionlnterf ace. As more execution models are added

to the system, this section of the factory object can be extended to include these

new implementations. For instance in chapter 7 a new execution model that uses

CORBA is added, the Executionlnterf ace implementation for this model is in a

class called ActionFactoryExecution. The ComponentFactory currently supports

three execution type tag values.

< ex ecu tio n id=" s o f t w a r e " type=" b y t e c o d e ">

which causes the JavaExecution class to be used

< e x e c u t i o n i d = " s o f t w a r e " t y p e = " b y t e c o d e " v a l u e = " e x t e n d e d ">

which specifies ExtendedJavaExecution to be used and

< ex ecu tio n id=" software " type=" corba">

which tells the factory tha t the execution model should be an instance of Action­
FactoryExecution.

4.6.2 Event Model

The execution of multiple components in the VCCE relies upon the framework

knowing when the execution of any given component has completed. The framework

starts components in a specific order but doesn’t monitor their progress directly.

Each component makes use of the Observer design pattern, page 27, to notify all

“interested” parties once its execution is complete.

65

4.6 VCCE Implementation

The main interested parties are:

• The scheduling system, so th a t it can complete dependencies in the task graph

and execute the next component.

• The SimpleVisualComponent which provides the GUI representation of a

proxy object, so that it can provide user feedback about the state of execution.

For this prototype visual components turn from grey to red on completion of

execution.

The VCCE project source contains a package called v c c e . event which contains

two interfaces and a class which provide the functionality for the event mechanism.

The E x e cu tio n P u b lish e rln te rf ace is the producer interface that all classes which

wish to publish execution events must implement. It contains three methods to:

add listeners; remove listeners; and notify listeners of events.

public in te r fa c e E x e c u t i o n P u b l i s h e r l n t e r f a c e {
/ / Add an execut ion l i s t e n e r to the implement ing o b j ec t .
public void a d d E x ec u t i o n Li s t en e r (E x e c u t i o n L i s t e n e r l n t e r f a c e

l i s t e n e r) ;

/ / Remove an e xecu t ion l i s t e n e r f rom the implement ing ob j ec t .
public void r e mo veExecu t i onL i s t ene r (

E x e c u t i o n L i s t e n e r l n t e r f a c e l i s t e n e r) ;

/ / Not i f y al l i n t e r e s t e d l i s t e n e r s of an execu t ion event .
public void n o t i f y E x e c u t i o n () ;

}___

Listing 4.14: Execution Event Publishing Interface

The E x e c u tio n L is te n e r ln te rfa c e is implemented by all classes that wish to reg­

ister themselves to receive execution events, it contains a single method called by

the event publisher.

public in te r fa c e E x e c u t i o n L i s t e n e r l n t e r f a c e extends Even tLi s t ener
{
/ / Method ca l l ed by the execu t ion event p u b l i sh er to n o t i f y

the i mplement ing ob jec t of an execut ion event ac t ion.
public void execu t ionPer fo r med (Execut ionEvent e) ;

}

4.6 VCCE Implementation

Listing 4.15: Execution Event Listener Interface

The final class in the package is the ExecutionEvent class itself. This is a simple

object that contains a reference to the sending source proxy from which the event

came.

public c la ss E x e c u t i o n E v e n t exten d s E v e n t O b j e c t {
2 / / Construc tor tha t takes the source of the event as i t s only

p ar a me te r .
public E x e c u t i o n E v e n t (O b j e c t s o u r c e) {

4 su p er (s o u r c e) ;
}

6_}___

Listing 4.16: Execution Event Class

Both the listener interface and the event class inherit from the Java event mechanism

classes.

Since the event mechanism is designed to report the completion of compo­

nent execution, the implementation of the publishing interface is in the execu­

tion component. To be exact, the implementation is in an abstract class called

AbstractExecution which implements Executionlnterf ace which in turn extends

ExecutionPublisherlnterf ace. This abstract class implements some of the meth­

ods common to all execution components, including the event publishing mecha­

nism. The class has, as an attribute, a list of all registered listeners. It imple­

ments: the addExecutionListener method by adding the listener to the list; the

removeExecutionListener method by removing the listener from the list; and the

notifyExecution method by calling the executionPerformed method on all the

listeners in the list.

Each concrete implementation of the Executionlnterf ace must call the in­

herited notifyExecution method from the abstract super class at the end of the

execute method to “fire” the event mechanism. See the JavaExecution listing line

18 on page 58 or ExtendedJavaExecution listing line 35 on page 61.

The implementation of the listener interface is in the two places specified at

67

4.6 VCCE Implementation

the beginning of this section. The internal scheduler implementation which needs

to be notified on component execution is discussed in the next section, 4.6.3. The

SimpleVisualComponent implementation of the executionPerf ormed method sets

the background of the visual component to red to signify to the user that execution

on that component has completed.

4.6.3 Internal Task Graph Scheduling and Execution

Task graph scheduling within the VCCE revolves around Java implementations of

the XML task graph from section 4.4.4. As with the component model implemen­

tation, an effort has been made to keep the design both flexible and extensible. To

that end the implementation has an abstract base class with the common function­

ality and concrete implementations tha t can use different algorithms to execute the

connected components.

The representation of a task graph is encoded in the abstract base class called

AbstractExecutionGraph. This class consists of a collection of networked “nodes”

represented by the class ExecutionGraphNode. The task graph class has methods

common to all task graph implementations such as: add nodes, remove nodes, con­

nect nodes; and an abstract method, execute which starts the execution of the task

graph. The implementation of the execute method is algorithm specific and is con­

tained in concrete classes. The class also contains some utility methods to return a

node by its content and to return typed node iterators tha t are used to traverse the

nodes in the graph.

ExecutionGraphNode is a “wrapper” class tha t represents a proxy component,

see section 4.5.1. It provides the functionality for the parent/child relationships

between components in a task graph. Each ExecutionGraphNode node maintains

a list of parent nodes and child nodes. Nodes are added when connections are

made between nodes in the encompassing task graph. This is shown in the method

connectNodes in AbstractExecutionGraph which is called when a connection is

made between two components on the user interface.

6 8

4.6 VCCE Implementation

public void c o n n e c t N o d e s (E x e c u t i o n G r a p h N o d e p a r e n t ,
E x e c u t i o n G r a p h N o d e c h i l d) {

2 p a r e n t . a d d C h i l d (c h i l d) ;
c h i l d . a d d P a r e n t (p a r e n t) ;

<[}___

As can be seen above, the parent node is added as a parent to the child and vice

versa. In the ExecutionGraphNode implementation of these methods the nodes are

added to the respective lists. The class also contains “delegation” methods that pass

the method call straight through to the contained proxy component. These include

methods to handle ports and execution, and utility methods that are used to check

for the existence of descendants in the child list. The existence check is recursive,

calling the check method in all children. This check is used in execution algorithms

to check for the presence of loops in a graph.

4.6.3.1 Execution Graph: A Simple Scheduling Algorithm

A concrete implementation of the AbstractExecutionGraph is ExecutionGraph.
This class contains a scheduling algorithm th a t takes a completed task graph and

executes it. The algorithm can be seen in algorithm 4.1.

This algorithm uses a naive approach to scheduling the components for execu­

tion by analysing the connections between them and producing a linear execution

order. This ordered list of components is then executed with the next node in the

list being performed on notification of the previous node’s completion. This first

scheduling algorithm makes certain assumptions: a single start point in the task

graph; no cyclic relationships; no parallelism in the execution. Although limited,

this algorithm works for simple task graph cases and is enough to test the function­

ality of the VCCE. Later chapters will expand this area and add new algorithms,

but because of the design based on abstract classes and concrete implementations,

new implementations of algorithms can be added to the framework without changing

any other code.

The full implementation of the algorithm in the class ExecutionGraph can be

69

4.6 VCCE Implementation

s ta r t <= starting node for taskgraph
nodecount 4= number of nodes in taskgraph
children 4= children of s ta r t node
for i = 0 to number of elements in children -1 do

add children element at i to execution lis t
end for
i 4= 0
current <= element i in executionlist
while number of nodes in execution list < nodecount do

children <= children of current
for j = 0 to number elements in children do

child <= children element at j
if child is not in executionlist th en

add child to executionlist
end if
i <= i + 1
current <= element i in executionlist

end for
end while
for i = 0 to number of elements in execution lis t do

execute element i in executionlist
end for

A lgorithm 4.1: Simple Scheduling Algorithm

seen in appendix B.1.7. Once the execution order of the components in the graph has

been decided using the deriveOrderOf Execution method the components in the list

are executed in turn by calling the execute method on each proxy. This execution

algorithm uses the event mechanism, section 4.6.2, to trigger the execution of the

next component in the list. In the abstract super class, AbstractExecutionGraph,
the implementation for the addNode method adds a node to the task graph and

registers the task graph class as a listener to the proxy component. See listing 4.17.

p u b l i c E x e c u t i o n G r a p h N o d e a d d N o d e (P r o x y l n t e r f a c e n o d e) {
E x e c u t i o n G r a p h N o d e g r a p h N o d e = n u l l ;
g r a p h N o d e = new E x e c u t i o n G r a p h N o d e (n o d e) ;
node . g e t E x e c u t i o n () . a d d E x e c u t i o n L i s t e n e r (t h i s) ;
n o d e s . . a d d (g r a p h N o d e) ;
r e tu r n g r a p h N o d e ;

Listing 4.17: addNode Method from AbstractExecutionGraph

4.7 Summary

When a component has executed it calls the n o tify E x ecu tio n method which in turn

calls the execu tionP erf ormed method on the object that is registered as a listener.

The implementation of this method is abstract in the A bstractExecutionG raph

class with the implementation delegated to concrete subclasses. In ExecutionGraph

the method is used is used to trigger the execution of the next component in the

ordered list. See listing 4.18.

public void e x e c u t i o n P e r f o r m e d (E x e c u t i o n E v e n t e v t) {
e x e c u t i o n I n d e x _ + + ;
i f (h a s M o r e T o E x e c u t e ()) {

T r a n s f e r P o r t D a t a () ;
e x e c u t e N e x t () ;

}
}___

Listing 4.18: executionPerform ed Method Implementation in ExecutionGraph

4.7 Summary

This chapter has outlined some of the im portant design and implementation ideas

for the prototype PSE used throughout this thesis. It has explained the component

model from the XML interface definition to the proxy component and execution

model. Also shown was the mechanism by which components are loaded into the

VCCE and how instantiated components are scheduled and executed using the in­

ternal scheduling mechanism with a simple scheduling example.

Two simple initial prototypes were discussed. The early prototypes were used

to examine programming techniques and design options. Some ideas from the early

prototypes have been carried through to the final design but prototype code, follow­

ing sound software engineering principles, was discarded.

The remainder of the thesis is concerned with the use of a PSE as opposed to the

design. Further design and architecture ideas are discussed in the post-related work

and conclusion chapters (chapters 9 & 10) together with some implementations that

have come about since the end of this work. The next chapter, takes the prototype

4.7 Summary

VCCE and starts to use it with a simple “use case” .

72

CHAPTER 5

Simple Solver Component

This chapter covers the first use case for the prototype PSE, a simple solver compo­

nent. As an initial demonstrator for the prototype VCCE, BAE SYSTEMS provided

a relatively small two dimensional boundary element solver written in Fortran 77.

Because of the relatively straightforward nature of this code it was possible to de­

velop different versions of components tha t could provide the functionality of the

code within the prototype PSE. Using different granularities of wrapping techniques

and language conversion, enabled experimentation and provided comparisons be­

tween the native Fortran version and various other implementations. It would not

be practical to perform experiments of this nature with the very much larger codes

that are covered in chapter 7.

5.1 BE2D Solver

The boundary element code described in this chapter is called BE2D. The code is

a two dimensional boundary element simulation code for the analysis of electro­

magnetic wave scattering. The main inputs to the program are a closed two dimen­

sional contour and a control file defining the characteristics of the incident wave.

73

5.1 BE2D Solver

The contour file consists of a series of x, y coordinate pairs and is generated by a

separate mesh generation program. The control file is a series of property values for

the wave and consists of values for the wave frequency in Hertz, the wave direction

in radians and a complex number representing the amplitude and phase. For the

computation of the matrix elements, the code uses a two dimensional formulation of

Ran- Wilton-Glisson elements [96]. The outer integrations use one-point quadrature,

while the inner integrations use two-point quadrature. A direct LU decomposition1

solver is used for computing the field.

The output, once the code has executed, takes the form of two files, one that

represents a Radar Cross Section (res) and the other a Current (cur). Generally in

order for an engineer or scientist to be able to use these files they must be viewed

in a graphing tool such as GNUplot [120] or similar.

To make the code easier to use within the PSE and also to provide some run­

time speed experiments between component granularities and versions, the code was

converted using several different techniques outlined in the remainder of the chapter.

To use the BE2D code within the VCCE would either require wrapping both

the BE2D code itself and the simple mesh generation program as components, or

assumptions need to be made about the presence of the required input files. Where

these assumptions have been made they are indicated.

5.1.1 Simple W rapped Fortran Version

The simplest way to execute Fortran or any other native code from within a Java

program such as the VCCE is to use Java’s built in Runtime Execution mechanism.

The runtime execution mechanism allows a Java program to run an executable

program as if that program were executing from the command line, calling the

1LU decomposition (n.) a technique where a matrix A is represented as the product of a lower

triangular matrix, L, and an upper triangular matrix U. This decomposition can be made unique

either by stipulating that the diagonal elements of L be unity, or that the diagonal elements of L

and U be correspondingly identical. [53]

74

5.1 BE2D Solver

executable with any required input arguments as parameters. The major advantage

of this over other forms of wrapping techniques, is that the source code is not needed,

the binary executable program. The runtime execution mechanism also gives the

programmer the ability to trap the command line standard output and standard

error message displays so that the calling program can display information to the

user or recover from errors in the native code execution.

The execution of the BE2D code is very simple as it takes no parameters it looks

for the model data file called “model” in the running directory. For example:

Process myProcess = Runtime . getRunt ime () . exec ("be2d") ;

The Process object can be used in Java: to block the Java program execution until

the native code has finished; to trap “standard out” and “standard error” messages

from the operating system. In most programs, including these components, this

function call is surrounded by code that blocks the Java program and traps the

error and output messages and does something sensible with them. For example in

the simple version:

P r o c e s s p r o c e s s = R u n t i m e . g e t R u n t i m e () . e x e c (e x e c S t r) ;

/ / Process output
B u f f e r e d R e a d e r s t d o u t . = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (

p r o c e s s . g e t l n p u t S t r e a m ())) ;
/ / Do something with the s tandard output
s t d o u t . c l o s e () ;

/ / Process Errors
B u f f e r e d R e a d e r e r r o r = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (

p r o c e s s . g e t E r r o r S t r e a m ())) ;
/ / Do something with the s tandard errors
e r r o r . c l o s e () ;

/ / Wait f o r the na t ive process to f i n i s h
t r y {

p r o c e s s . w a i t F o r () ;
}
c a tc h (I n t e r r u p t e d E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e (S y s t e m . o u t) ;
}

5.1 BE2D Solver

Using this simple direct execution mechanism both the BE2D solver binary and the

corresponding mesh generation program are wrapped as separate components in the

VCCE.

The execution of the binaries is handled by the component CommandLineExec-

u tio n , listed in Appendix B, page 174. This component is a generalised component

that takes a system specific command line string including optional parameters and

executes it using the code in the example above. To create a specific instance of the

CommandLineExecution component, that will run the BE2D solver and the mesh

generator codes, a component definition is created in the XML-based language, as

specified in section 4.4.2. The component definition can be seen in listing 5.1.

4

6

8

10

12

14

16

18

20

22

<?xm l version=" 1 . 0 " ?>
<PSE>

< p r e f a c e >
Cnam e a l t = " n a t i v e B e 2 D " i d = " b e 2 d 0 1 " > N a t i v e B e2D < /nam e>
< p s e —t y p e > G e n e r i c < / p s e —t y p e >
< h i e r a r c h y i d = " p a r e n t " x / h i e r a r c h y >
C h i e r a r c h y i d = " c h i l d " x / h i e r a r c h y >

< / p r e f a c e >
< p o r t s >
< i n p o r t n u m > l < / i n p o r t n u r n >
< o u t p o r t n u m > 2 < / o u t p o r t n u m >

C i n p o r t i d = " l " p a r a m e t e r ^ " Command" t y p e = " s t r i n g " v a l u e r " /
h o m e / p r o j e c t / f o r t r a n / b e 2 d / e l l i p s e / b e 2 d " >

< / i n p o r t >
C o u t p o r t i d = " l " p a r a m e t e r —" D a t a F i l e " t y p e = " f i l e " v a l u e = " /

h o m e / p r o j e c t / f o r t r a n / b e 2 d / d a t a / r c s ">
< / o u t p o r t >
< o u t p o r t i d = " 2 " p a r a m e t e r = " D a t a F i l e " t y p e = " f i l e " v a l u e —" /

h o m e / p r o j e c t / f o r t r a n / b e 2 d / d a t a / c u r ">
< / o u t p o r t >

< / p o r t s >
< e x e c u t i o n i d = " s o f t w a r e " t y p e = " b y t e c o d e " v a l u e r " e x t e n d e d " >

< t y p e i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l " / >
C t y p e i d = " c l a s s " v a l u e = " c o m . b a e s y s t e m s . c o m p o n e n t s .

C o m m a n d L i n e E x e c u t i o n " / >
< t y p e i d = " s o u r c e " v a l u e = " f i l e : / / / h o m e / c o m p d a t a / C a r d i f f /

p r o j e c t / s r c / c o m / b a e s y s t e m s / c o m p o n e n t s /
C o m m a n d L i n e E x e c u t i o n . j a v a " / >

< t y p e i d = " c l a s s p a t h " v a l u e —" / h o m e / c o m p d a t a / p r o j e c t /
c l a s s e s " / >

< / e x e c u t i o n >
< e x e c u t i o n i d = " p l a t f o r m " >

76

file:///home/compdata/Cardiff/

5.1 BE2D Solver

<type id=" java" v a l u e = " j d k l . 2 " / >
< / execut ion>
<help c o n t e x t = " a p i d o c ">

< h re f name="f i l e : / / / home/ scmmss/proj e c t / d o c s / b e 2 d d o c s /
i n d e x . h t m l "

value="NIL" />
< /he l p>

</PSE>

Listing 5.1: The XML Component Definition for the BE2D Solver

The key sections of the component definition are:

• The command line string which specifies the path to the executable that

the component will call. This is passed as a named input parameter to the

CommandLineExecution component.

< i n p o r t i d=" l" parameter=" Command" t y p e = " s t r i n g " va lue=" /
h o m e / p r o j e c t / f o r t r a n / b e 2d/ e l l i p s e / b e 2d">

2 < / i npor t>

• The output data files specified as file paths. These are defined as named output

parameters.

C o u t p o r t i d = " l " p a r a m e t e r ^ " D a t a F i l e " t y p e = " f i l e " v a l u e = " /
h o m e / p r o j e c t / f o r t r a n / b e 2 d / d a t a / r c s ">

2 < / ou tpor t >
< o u t p o r t i d = " 2 " p a r a m e t e r ^ " D a t a F i l e " t y p e = " f i l e " v a l u e = " /

h o m e / p r o j e c t / f o r t r a n / b e 2 d / d a t a / c u r ">
4 < / ou t por t>

• The class name of the component th a t the proxy will execute, together with

some execution details. It can be seen from line 1 that the execution model is

software with type bytecode and value extended. From section 4.6.1, this causes

the ComponentFactory to instantiate the ExtendedJavaExecution model, sec­

tion 4.5.2.2, which will execute the component in the same JVM and handle

the input and output parameters.

<execut ion i d = " s o f t w a r e " t yp e= " by te c od e" value=" ex t ended">
2 <type i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l "/>

file:///home/scmmss/proj

5.1 BE2D Solver

Ctype id=" class" value="com.baesystems.components.
CommandLineExecution" />

4 </execution>

With codes wrapped as components in this fashion there is no configuration from

within the VCCE. All the variables are set in the XML component files. The use of

all of the components in this chapter is explained in section 5.3. In the next section

a different version of the BE2D code converted from Fortran into Java is considered.

5.1.2 A Java Version

With any component-based system, whether computer-based or not, it is necessary

for the components and the framework to have a common language. Where there

are different languages, as for example with the BE2D code written in Fortran and

the VCCE framework written in Java, mechanisms such as the simple wrapper in

the previous section can be used to provide a common point of reference.

For new components it is generally advisable to write the component in the

same language as the framework unless there is a good reason not to, i.e. speed of

execution. For small or well understood components it is often quicker and easier

to rewrite the algorithm in the language of the framework. The BE2D solver code,

although not very small, was small enough that it would be worth converting for

comparison cases, where larger codes would require too much effort.

To convert the Fortran code into Java, the use of automated language converters

such as Fortran to Java converters were considered but abandoned fairly quickly at

the time because of a number of factors. These included the fact that most of the

converters had problems with the lack of support for complex numbers which are

a major part of BE2D and a large number of scientific codes. Complex numbers

caused a number of problems in converting the code, not least because of the fact

that they are primitive types in Fortran, but are not even supported in the current

standard Java API. A third party implementation of complex numbers for Java was

found and used, Visual Numerics JNL [112].

78

5.1 BE2D Solver

Complex number arithmetic proved to be more than a straight translation from

the Fortran code to its Java equivalent. As complex numbers in Java are objects and

Java does not yet support operator overloading, the complex number objects have

to use their operator methods, add, multiply, subtract and divide. These methods

are either unary or binary, taking a single argument which is used to modify the

object calling the method or taking two arguments on a static class method that

creates a new result without any modification side effects. For example the binary

divide method:

C om plex a = new C om plex (0 . 0 , 1 . 0) ;
2 C om plex b = new C om plex (0 . 0 , 2 . 0) ;

C om plex r e s u l t = C om plex . d i v i d e (a , b) ;

returns a new Complex object result, as opposed to the unary divide:

C om plex a = new C om plex (0 . 0 , 1 . 0) ;
2 C om plex b = new C om plex (0 . 0 , 2 . 0) ;

C om plex r e s u l t = a . d i v i d e (a , b) ;

where the method modifies the object a with the result of the division and assigns a
to result. In other words in the first case there are three complex number objects

the two original numbers and a new one which contains the result of the calculation.

In the second two complex number values result from the calculation, discarding the

original value of a. Thus calculations involving more than an arbitrary number of

parameters become far more complicated in Java than their Fortran equivalents.

For example the Fortran code snippet

i n t e g e r iap , iam , ian
complex caa , cax , cay
d im en s ion caa (iam, iam) , cax (iam) , cay (iam) , iap (iam)
i n t e g e r i
complex clsum
clsum = czero
c a x (i) = (c a y (i a p (i)) — clsum) / c a a (i a p (i) >0

becomes the Java code

79

5.1 BE2D Solver

C om plex [] [] c a a , C om plex [] c a x , C om plex [] c a y ;
i n t [] i a p , i n t i a m , i n t i a n)
C om plex c l s u m ;
c l s u m = new C o m p l e x (c z e r o) ;
cax [i] = C om plex . d i v i d e (C om plex . s u b t r a c t (c a y [i a p [i]] , c l s u m) , c a a

[i] [i a p [i]]) ;___

As can be seen, the Fortran code is much easier for an engineer to understand

when compared to the much more obscure, for this type of programming, language

of the Java code snippet. The Fortran version of the calculation uses standard

mathematical notation and can chain arbitrary numbers of operator/operand pairs

together. The Java version is limited by the fact that the operator methods op­

erate on pairs of operands only, chaining of arbitrary length calculations involves

bracketing each of the methods separately.

The translation of the Fortran code to Java, although time consuming, followed

a pattern. The source for the Fortran code was broken into a number of functional

file sections that were mirrored in an Object Oriented fashion in the Java objects.

The Fortran code consists of the following source files:

be2d.f: The main control program.

bessyO.f, bessjO.f: The respective routines for the yO Bessel and the jO Bessel

functions used in the program. These were taken from Numerical Recipes [92].

inputm .f, inputc.f: The routines for reading the model and control data files.

outcur.f, outrcs.f: The output routines for the res and cur result data.

fill.f: Routine to populate the matrix from the input data.

lu.f: The matrix decomposition and solve routines.

dutil.f, hank.f, sing.f, tutil.f: Various utility and diagnostic functions.

The Java version has a similar structure but transposed to the object world. For the

standalone version there is a class called Be2DTest th a t coordinates the solver func­

tion. Two classes Inputm and Input c read the model and control files respectively

80

5.1 BE2D Solver

and return data objects that implement two interfaces, as is Java “best practise” .

The model interface can be seen in B.2.2, page 175 and the control interface in B.2.3,

page 176.

Be2DTest uses the data from the model and control objects, referenced through

their interfaces to fill the matrix using a static method of the class M a tr ix F ill,

M a t r i x F i l l . f i l l (). The LU decomposition and LU solve functions are again static

functions, this time of the class LUSolver, LUSolver. lud () and LUSolver. l u s O

respectively. Finally the output is generated and written to two files in the cur­

rent directory, cur and res, using the methods to output Out Cur . wr i t e() and

OutRcs.wri te(). The Bessel functions and other utility functions are coded as

static functions of the M a tr ix F ill class.

This particular modular design for the Java version of the code was chosen so

that as well as giving us a standalone Java version, it would be easy to incorporate

the functionality into a component in the VCCE. In addition, separating the I/O

functionality into their own classes allows for the possibility of incorporating a com­

ponent that has Java I/O for ease of use within the VCCE and and native execution

for speed of calculation. To include the native code directly would require two levels

of wrapping, first providing C functions that use the original Fortran solver code,

and then via Java Native Interface (JNI) calls that call the C functions.

The initial standalone version of the Java code took 24.3 seconds but the ex­

ecution time was improved to 15.1 seconds, by profiling the calculations the code

was performing. By replacing the static binary complex number operators by the

unary method wherever there was no side effect problem with modifying the original

number, 9 seconds were taken off the execution time. This is almost entirely down

to the fact that there are substantially less “new” , object creation operations in

the code. Further optimisation could almost certainly be achieved through further

investigation, but that is for future work.

Within the VCCE the BE2D components are executed using one of the execution

proxy classes outlined in chapter 4. As with previous examples, specific instances of

components are created using a generalised proxy interface and an XML properties

81

5.1 BE2D Solver

file. In this case, either the JavaExecution or ExtendedJavaExecution proxy can

be used. These proxies are used to run Java-based components within the VCCE.

The decision on which one to use, since they both perform the same functionality,

is based on whether to run the component in the same JVM or not. See section 4.5.

The component definition file for the Java-based BE2D has a similar structure

to the one for the “native” wrapper version in code segment 5.1. The important

differences, apart from the obvious naming section which is ignored here, are:

• The inputs for this component are file-based, hence the definitions:

< i n p o r t i d = " l " p a r a m e t e r ^ " c o n t r o l " t y p e = " s t r e a m "
2 v a l u e = " N I L " >

< h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /
b e 2 d C o m p o n e n t s / c o n t r o l " v a l u e = " N I L " / >

4 < / i n p o r t >
C i n p o r t i d = " 2 " p a r a m e t e r = " m o d e l " t y p e = " s t r e a m " v a l u e = " N I L " >

e < h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /
b e 2 d C o m p o n e n t s / m o d e l " v a l u e = " N I L " / >

< / i n p o r t >

• The outputs are are also file-based:

< o u t p o r t i d = " l " p a r a m e t e r ^ " c u r " t y p e = " s t r e a m " v a l u e = " NIL ">
2 < h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /

b e 2 d C o m p o n e n t s / c u r " v a l u e = " N I L " / >
< / o u t p o r t >

4 < o u t p o r t i d = " 2 " p a r a m e t e r ^ " r e s " t y p e = " s t r e a m " v a l u e = " N I L " >
< h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /

b e 2 d C o m p o n e n t s / r c s " v a l u e = " N I L" / >
e < / o u t p o r t >

• The execution section lists the class name for the component to run and also

some housekeeping details such as JDK version, source code location and class­

path. In this case the JavaExecution is being used model to execute the

components.

< e x e c u t i o n i d = " s o f t w a r e " t y p e = " b y t e c o d e ">
2 < t y p e i d = " a r c h i t e c t u r e " v a l u e = " s e r i a l " / >

C t y p e i d = " c l a s s " v a l u e = " b e 2 d . b e 2 d C o m p o n e n t s . B e 2 D T e s t " / >
4 < t y p e i d = " s o u r c e " v a l u e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r e /

b e 2 d / b e 2 d C o m p o n e n t s / * . j a v a " / >

82

file:///home/scmmss/project/src/be2d/
file:///home/scmmss/project/src/be2d/
file:///home/scmmss/project/src/be2d/
file:///home/scmmss/proj
file:///home/scmmss/project/sre/

5.1 BE2D Solver

C t y p e id="classpath" value="/home/scmmss/project/classes;/
home/scmmss/local/3rdPartyJava/JNL/Classes"/>

e < / e x e c u t i o n >
< e x e c u t i o n id="platf orm">

s C t y p e id="java" v a l u e = " jdkl.2"/>
< / e x e c u t i o n >

Prom these details the proxy component is able to create an instance of the

Be2DTest class and execute it. Taking input from the specified files and writing the

output to the output files. A comparison between this mechanism and the others in

this chapter follows at the end of the chapter.

5.1.3 CORBA W rapped Fortran Version

The two main industrial wrapped codes described in chapter 7 use CORBA as a

communication mechanism. As a prototype and test case before using the large

codes, which due to access restrictions and hardware requirements can only be run

on machines inside BAE SYSTEMS offices, the BE2D native Fortran executable

was also wrapped as a CORBA component.

The Common Object Request Broker Architecture (CORBA) [106], is an ob­

ject oriented, distributed computing framework. It is language independent with

distributed object interfaces specified in a common Interface Definition Language

(IDL). Systems built with this technology are split into client and server side ob­

jects with object “stubs” on both sides. Methods are invoked by the client side

object discovering a reference to the server side object through a registry and then

calling the method through the use of “helper” code.

To wrap the BE2D code there has to be a server side CORBA object that

executes the solver and a client side object that is represented as a proxy within

the VCCE. The proxy calls the method on the remote server object when it is

executed within a running task graph. The server object is within a running CORBA

server and waits for a message from the component client on the VCCE to start the

execution of the solver. Once the solver has finished execution, the server runs some

83

5.1 BE2D Solver

post processing on the res and cur files using the Awk text processing language to

format the files. The URL location of the files is then returned so the client can

view the data using a graph viewer that can handle H TTP streams.

The CORBA component interface is specified in IDL by the code below

module Be2dComponent {
2 i n t e r f a c e Run {

s t r i n g runBe2d() ;
} ;

};

This simple interface has a single method that runs the solver code and returns

the URL. Prom this interface, the client and server side “stub” code skeletons are

generated and then have to be implemented with code to actually execute the solver.

The client component obtains a CORBA reference to the remote server object. A

named port is used to discover the NamingService registry and using that a generic

CORBA object is created. Then using the helper code the generic object is resolved

to an instance of the remote BE2D object. Executing the remote object method is a

call on the resolved local object which returns a URL to the solver data. The VCCE

client component then displays the data, accessed via the returned URL. This can

be seen in code snippet below.

P r o p e r t i e s p r o p s = new P r o p e r t i e s () ;
2 p r o p s . pu t ■("o r g . omg. CORBA. O R B I n i t i a l P o r t " , " 1 0 5 0 ") ;

ORB o r b = ORB. i n i t (a r g s , p r o p s) ;
4 o r g .omg.CORBA. O b j e c t o b j R e f = o r b . r e s o l v e _ i n i t i a l _ r e f e r e n c e s ("

N a m e S e r v i c e ") ;
N a m i n g C o n t e x t n c R e f = N a m i n g C o n t e x t H e l p e r . n a r r o w (o b j R e f) ;

e N am eCom ponent nc = new N am eC om ponent ("Run" , ;
Nam eCom ponent p a t h [] = { n c } ;

8 Run r u n R e f = R u n H e l p e r . n a r r o w (n c R e f . r e s o l v e (p a t h)) ;
u r l S t r i n g = r u n R e f . r u n B e 2 d () ;

io B e 2 d C l i e n t be2d = new B e 2 d C l i e n t (u r l S t r i n g) ;
be,2 d . show () ;

The server side object has to be started before the client component can call it.

In the server class, the main method that gets called when the class is executed,

first uses the named port to obtain a reference to the NamingService registry. The

84

5.1 BE2D Solver

class that implements the IDL interface, Be2dComponentServant is then bound to a

NamingContext object within the registry so that it can be discovered by the client

code.

2

4

6

8

10

12

14

The code inside this method is the same as the simple native wrapper code in section

5.1.1. It uses Java’s Runtime .getRuntim eO .execO mechanism to execute first the

solver code and then two post processes that format the two output files, suitable

to be returned via HTTP URLs. The directory that contains the files is returned

as a string representation of the URL.

As the CORBA implementation is hidden behind the component interface, the

VCCE uses the generic execution component, ExtendedJavaExecution, to run the

component. The XML component definition is the same as the definition for the

Java-based BE2D solver, in section 5.1.2, apart from the classname of the component

to run, so is not reproduced here.

This initial experiment with CORBA wrappings for components within the

VCCE allowed the testing of ORB implementations, enabled experiments with block-

55

P r o p e r t i e s p r o p s = n e w P r o p e r t i e s () ;
p r o p s . p u t (" o r g . omg. CORBA. O R B I n i t i a l P o r t " , " 1050 ") ;
ORB o r b = ORB. i n i t (a r g s , p r o p s) ;
B e 2 d C o m p o n e n t S e r v a n t b e 2 d C o m p o n e n tR e f = new B e 2 d C o m p o n e n t S e r v a n t

0 ;

o r b . c o n n e c t (b e 2 d C o m p o n e n t R e f) ;
o r g .omg.OORBA. O b j e c t o b j R e f = o r b . r e s o l v e _ i n i t i a l _ r e f e r e n c e s ("

N a m e S e r v i c e ") ;
N a m i n g C o n t e x t n c R e f = N a m i n g C o n t e x t H e l p e r . n a r r o w (o b j R e f) ;
N am eCom ponent nc = new N am eC om ponent("Run" , " ") ;
N am eCom ponent p a t h [] = { nc } ;
n c R e f . r e b i n d (p a t h , b e 2 d C o m p o n e n t R e f) ;
j a v a . l a n g . O b j e c t s y n c = new j a v a . l a n g . O b j e c t () ;
s y n c h r o n i z e d (s y n c) {

s yn c . w a i t () ;
}

The Be2dComponentServant class that the server code uses to delegate the exe­

cution of the BE2D solver implements the method.

S t r ing runBe2d() ;

5.2 The Graph Viewer Component

mg calls and return values, and generally provided a learning curve for using CORBA

with a relatively small and lightweight code.

5.2 The Graph Viewer Component

Visualisation of data is a core requirement for a PSE, as specified in use case 2.5.1

on page 17. The VCCE is no different and for the visualisation of the data from the

BE 2D component, a graph plotting component is needed. Rather than spending

too much time writing a graph plotting library from scratch, a third party library

JChart [91] was used. A component which uses the library was written which can

be used through the proxy mechanism and an XML component definition. A screen

shot of the graph plotter in use can be seen in figure 5.2

5.3 Using the PSE

When the PSE is started, the VCCE first checks in the component directory or

directories for all defined components, in XML files. The directories that the appli­

cation examines are defined in an application properties file. The XML component

definitions are parsed, the proxy components created and added to the component

tree ready to be selected by the user, as illustrated in figure 5.1.

To assemble a set of components into an executable task graph, the user simply

selects a component from the tree with the mouse, and clicks on the scratch pad

to the right of the screen. This intuitive selection process has the same features

as many visual programming or windows-based environments, such as mouse based

selection and “drag and drop” . Once the desired components have been selected

and placed on the scratch pad, they can be connected together using the connection

menu button. The user clicks this button then selects two components, parent first

then child, the PSE then establishes a data flow connection from the parent to the

child. Repeating this process allows the user to connect the components together

8 6

5.4 Component Instantiation and Graph Execution

Visual Component Com position Environment

P PSE C om ponents

Q be2d

Q BE2DAFMesh

Q BE2DAFRCS

Q BE2DAFStore

Q AFTest

Q BE2DAFWave

Q be2dD ata

Q cufView

Q dummy

0 rcSVIew

D Loop

m ® i s i i B

BE2D A FW ave
| BE2D A FM esh

^ J

BE20AFRCS

rcsView

Figure 5.1: VCCE with BE2D Task Graph

into a task graph. The final task the user has to perform before executing the graph

is to assign a start node or nodes. A task graph can have more than one start point,

if there are two initial input generating components for instance. The assembled and

connected BE2D task graph is illustrated in figure 5.1. To execute the completed

task graph the user simply presses the start button to initiate the simulation. The

solver is combined with the graph viewer from section 5.2 and the output generated

from the code can be seen in figure 5.2.

5.4 Component Instantiation and Graph Execution

Upon being dropped on the “scratch pad” the component is instantiated and the

in s t a n t i a t e () method is called. What this method actually does is dependant on

the component programmer. For simple Java components this method will normally

be a no operation method. In the case of CORBA components, such as the simple

CORBA BE2D component described in 5.1.3, the method is used to resolve the

references to the CORBA ORB and the remote CORBA component. Because this

87

5.5 Summary and Conclusions

CURRCS

0.3 J 00372

JChart by R Piola (htlpJ/www ilpiola rtfmbertc)

4.751706

|
I

2078201

0.077m
P x-am

JChart by R Piola (http J»*ww.Hpiola tfrobeito)

Dismiss

Figure 5.2: Graph of BE2D Solver Output

method runs in a separate thread within the VCCE program, this CORBA “hand­

shaking” can be carried out behind the scenes while the user continues to build the

task graph. In this way the possibly time consuming initialising code is done before

the user actually executes the task graph and the whole process appears, to the user,

to be faster.

When a task graph is executed, each of the components in the graph is told to

execute in turn by the scheduler calling the execute () method, starting with the

component or components that have been identified by the user as the starting point

for the graph. After a component has executed it sends back an event to the VCCE

to say that it has finished executing. At this point the VCCE will transfer the

output parameters from the completed component to the input parameters of the

next component to be executed and then call that component’s execute () method.

5.5 Summary and Conclusions

This chapter has demonstrated three different ways in which a code written in For­

tran can be used as a component within a PSE. From the most straightforward

88

5.5 Summary and Conclusions

mechanism where the code is kept in its original binary executable format and ex­

ecuted using Java’s ability to execute external programs; through a version of the

code converted into Java as a pure Java component in the PSE; to the final ver­

sion where the executable is wrapped as a server side CORBA object with a client

side component that calls the server. Each of the methods has its advantages and

disadvantages.

The simple execution method is the simplest method of including a code as a

component. It is also the fastest in terms of execution speed. The main disadvantage

is the inflexibility of this solution, the code needs the input files to be in a set location

and the output is generated as a file in a set location. In order to make use of this

component, file readers and writers will need to be built to act as the input and

output ports for the code.

The native Java version of the code is the most flexible component, it is easy to

provide different input and output mechanisms such as Streams or Sockets. However

it relies on access to the original source code. It is time consuming to convert even

a small code such as this from one language to another, and Java’s lack of primitive

complex number support makes the code hard to write and relatively slow to execute.

The CORBA wrapped code is useful because it provides a distributed client

server architecture which is useful for times when a code may be sensitive and only

allowed to be run on certain computers.

Experimenting with the relatively simple BE2D code has highlighted some useful

ideas for the far more complicated 3D codes to come in chapter 7.

89

CHAPTER 6

Control and Loop Components

This chapter discusses another “use case” for the VCCE. A different way of using

the included codes, known as “parameter runs” is shown. Here the user performs

a number of consecutive executions of a solver while perturbing the input param­

eters to examine the effect on the solution. Typically this technique is used as a

manual domain space search or optimisation. This chapter describes extensions to

the prototype and definition language that include simple loop controls to allow

users to perform parameter runs automatically on component based solver codes.

A new scheduling algorithm is also needed to handle the extensions. Finally the

PSE mechanism is compared to the traditional scripted methods for performing

parameter runs, illustrating the flexibility and ease of use that the VCCE provides.

6.1 The Use Case

The second “use case” , section 2.5.1, defines:

Performing parameter runs on existing or new applications, to study the

effect of parameter ranges on the result. Here an application code is run

90

6.2 Control Components

multiple times in succession with perturbed input parameters in order

to try and find a particular solution for a problem.

Parameter runs are a very common task in scientific and engineering computing. In

the case of an engineering design and manufacturing company, such as the industrial

partner in this work BAE SYSTEMS, an example of this problem could be seen

with the simple BE2D code from chapter 5. The solver is an electro-magnetic wave

scattering simulation and can be used to simulate RADAR waves reflecting off the

surface of an aircraft. One of the input parameters is the angle of incidence of the

wave, which could be used to simulate the difference in wave scattering as an aircraft

flies over the RADAR system. As the aircraft approaches at a distance, the angle

of incidence approaches 90°, overhead, from 0°, the horizon, and then moves off

toward 180°, the opposite horizon. A parameter run would be used to automatically

perturb the angle of incidence input parameter from 0° to 180° in defined increments

for each solver execution and store or display the results for examination.

6.2 Control Components

Until this point the work in this thesis has only been concerned with simple work

flows in the prototype PSE. Execution has flowed from single or multiple start points

down to single or multiple end points. Execution branches have been included where

either multiple inputs enter a component, flow joins, or a component has multiple

outputs, flow splits. Here the concept of control components is introduced, these

allow us to perform flow control operations. These components can be thought

of in programming construct terms, such as for...next loops or if...then branches.

A control construct is a user defined section of work flow that allows the user a

certain degree of control over how that work flow executes. These can allow selective

execution of sub-sections of work flow through conditional branch constructs, or

repeated execution of sub-sections through looping constructs.

The control components discussed here, work in a similar manner to the tradi­

91

6.3 Loop Constructs

tional “for...next” loop in most programming languages, stepping through a series of

values from a start value until an end value is reached incrementing by a set value.

At each iteration of the loop the PSE checks tha t the halting condition has not been

reached and then passes the current loop value to the connected inport of the next

component.

Conditional branching constructs, although im portant are not considered here

as they are out of the scope of the current user requirements. They are mentioned

briefly in the future work, chapter 10. The control construct discussed here is the

loop component.

6.3 Loop Constructs

As in a traditional, non-visual, program languages, there are different types of loop

in VCCE. One loop is discussed here, a simple iterative loop where the loop ex­

ecutes itself and the sub-work flow a fixed number of times over a set value with

a set increment value until a fixed halting condition is reached. In chapter 8 a

more complicated constraint-based loop construct, capable of non-linear iteration is

discussed.

When the control components are introduced into a task graph, by connecting

them to a suitable component, they generate one of the input parameters to that

component. To illustrate the functionality of the control components the BE2D

code parameter run will be used as an example. For this case there are two control

components. One to control the angle of the incidence wave and the other to control

the wave frequency. Using these two controls the BE2D solver is executed a fixed

number of times for defined parameter ranges. The connected task graph can be seen

in figure 6.1. As can be seen in the figure, the simple example from chapter 5 has been

used. There are three components, a wave generator and mesh generator as inputs

to the solver code, and the output from the solver going to a graph component. Now

there have been added two control components that provide the inputs to the wave

component. When these control components are connected to another component,

92

6.3 Loop Constructs

sJjlJ®
^ 3 P S E Components j

Q b e 2 d
Q BE2DAFMesh|

Q BE2DAFRCS

Q BE 2DAF Store

Q AFTest
□ BE2DAFWave |

Q be2dData
Q curView

Q dummy
Q rcsView

□ Loop

Visual Component Composition Environment

lOOP

C urrent S tate
Param eter nam e: Angle

Start: 0 . 0

Stop: 25.0
Increm ent: 1 .0

Current: 0 . 0

.oop
C urrent S ta te

Param eter nam e: Amplitude
Start: 1.0E7
Stop: 1.0E8

Increm ent: 1.0E7
Current: 1.0E7 BE2DAFM esh

BE2DAfW ave

BE2DAFRCS

B E 2)A F Store

Figure 6.1: A Work Flow Graph with Loop Components

the user is prompted with a selection of control input parameters for iteration. In the

case of BE2D, the two input parameters to the wave component are the frequency

and angle of incidence. Since these are floating point values, they are suitable for

iteration and there is a separate control component for each. The user can set the

start, finish and iteration values for each parameter. When the graph executes, the

PSE will loop over the components iterating the input parameters according to the

user defined values.

The top control in the figure changes the named parameter Angle in the wave

component, from the interface it can be seen that the user has entered some values

into the control: start value is 0.0, stop is 25.0 and the increment is 1.0; this means

that this loop will iterate from 0 to 25 in single integer increments. In programming

terms it would be equivalent to

93

6.4 Control Implementation

for (in t i = 0; i <25; i+ +) {
*[}__

The second control iterates the Amplitude parameter from 107 to 108 in 107 steps.

The output node connected to the BE2D solver in this case is a component that

stores the results in a database for later examination.

What happens to the input values from the loop components is controlled by

the functionality of the individual component concerned and is decided by the com­

ponent programmer. In the case of the wave component, the input value is simply

passed straight through to its output parameter, where it becomes one of the input

values for the solver. When, as in this example, there are more than one control

components connected to a single component, the execution is equivalent to a nested

loop and the execution will continue until the halting condition on the outer loop is

reached. The inner loop value is reset to its starting value every time the outer loop

performs an iteration. Again in programming terms the code would look like

for (i n t i = 0 ; i <25; i+ +)
2 for (i n t j = 1 . 0 e + 07; j < 1 .0 e + 08; j + = 1 . 0 e + 0 7) {

}___

Finally, from the figure, there are two connections coming from the storage com­

ponent back up to the two control components completing the loops. This is nec­

essary for the implementation to know what components are contained within the

loop and which are not. It should be clear that the mesh generation component

is outside the loops and therefore is only executed once. Its output value is stored

within the solver component and reused.

6.4 Control Implementation

The implementation of the loop constructs in the VCCE model involved a number

of extensions to the framework as well as the additional components which would

perform the iteration functionality. The task graph XML representation language

94

6.4 Control Implementation

has to be extended to allow the inclusion of loops, this in turn impacts the Java

language representation and the scheduling algorithm. Finally the component model

needs to be extended to create the new type of control component and provide a

user interface representation within the VCCE.

The implementation here illustrates why good software engineering practises are

important in projects such as this. Programming to interfaces enables the creation

of new implementations of ideas such as components or scheduling algorithms with­

out impacting the main framework. This also allows the VCCE prototype to be

backwardly compatible with older components and task graphs.

6.4.1 XML Task Graph Language Extensions

There are two extensions to the XML language representation needed. The first is

the major issue of specifying the loop connection to a specific parameter input port

on a component. The other is a secondary issue th a t appeared as a side effect of

having two loop components in the task graph.

The language extension to include the loop component is only necessary for the

connection. The loop component itself does not have an XML component definition

as it is specific and internal to the VCCE and consequently does not need an external

representation. It is possible to construct a generalised component that can perform

a looping function tha t needs an external XML interface representation but that is

left for future work. The connection definition in the task graph is. extended so that

if the parent in the connection is a loop then there is an extra tag that specifies the

loop parameter and the values. For example, in appendix B.3.1 the full XML task

graph definition for our BE2D parameter run example can be seen. The extension to

the connection tags can be seen in listing 6.1. In this extract the representation for

the outer connection from figure 6.1 where the loop controlling the Angle parameter

is connected to the loop controlling the Amplitude parameter. The second loop

does nothing with this parameter value except pass it straight through as another

output. The extension in line 6 specifies the named parameter together with the

95

6.4 Control Implementation

start, increment and halting values and the type of these values. The type must be

either a valid number type for the increment of the loop to make sense.

< c o n n e c t io n >
2 < p a r e n t >

Cname a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 4 0 8 1 5 2 7 ">
4 Control Loop

< / name>
6 < l o o p p a r a m e t e r ^ " A n g l e " p o r t _ t y p e = " F l o a t " s t a r t = " 0 . 0 " h a l t =

" 2 5 . 0 " i n c r e m e n t ^ " 1. 0 " c u r r e n t = " 3 . 0 " / >
< / p a r e n t >

s < c h i l d >
<name a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 1 9 4 7 1 1 6 ">

io Contro l Loop
< / nam e>

12 < / c h i l d >
< / c o n n e c t io n >

Listing 6.1: XML Task Graph Extension for Control Structures

This code listing together with the full listing in appendix B.3.1 shows that there

is no direct connection between the outer loop control component and the wave

component that it is providing one of the input parameters for. The connection

is implied by the fact that the loop is connected to a second loop that is in turn

connected to the actual component. This will become clear in the implementation

explanation in section 6.4.2 but in effect if a loop receives an input then it is just

passed straight though as an output. Hence, the need for the parameter name and

values to be passed within the connection definition of the task graph.

The cause of the side effect extension to the language can also be seen here. In

the specification of the language, the “name” information for a component consists

of a real name, an alternative name and an ID. In listing 6.1 there are two instances

of the same loop component in a single task graph. The original naming system is

not enough to differentiate between them so the naming system had to be extended

to include an instance ID which is only used within a task graph to differentiate

between to instances of the same component. The instance ID is a guaranteed

unique generated value. In our example here the first loop has been assigned an

instance ID inst="4081527".

96

6.4 Control Implementation

6.4.2 Loop Component Implementation

The loop component like any other component relies on a proxy and implements the

proxy interface. The main proxy class is ControlProxy, and like SimpleProxy this

extends the AbstractProxy abstract class and implements the Proxylnterface,
section 4.5.1. All this means tha t the ControlProxy can be used in the VCCE

framework as the framework relies on interfaces and not implementations.

The control behaviour in ControlProxy is defined in an interface called, not

surprisingly, Controllnterface, the full listing of this can be seen in appendix

B.2.3. The interface has “setter” and “getter” methods for the loop parameters:

start value; halt value; and increment value. The “getter” method returns the

PortType, a constant that represents the data type for the loop. The loop can

iterate over any numerical data type, which could be an actual input parameter

or just an integer for the number of loop steps. To set up the loop connection to

control a specific parameter value on an input port, there are methods to set or add

ports to the control component and to return the parameter name that the loop is

controlling.

4

8

/ / Set the input por t t ha t the loop w i l l i t e r a t e over.
p u b lic void s e t L o o p e d P o r t (P o r t l n t e r f a c e a P o r t) ;

/ / Return the parameter name fo r the s e l e c t e d p o r t .
p u b lic S t r i n g g e t P a r a m e t e r N a m e () ;

/ / Adds an output por t to the c o n t r o l component , used in cases of
loop nes t i ng where the value f rom the outer loop needs to be

propagated through to the i nner loops .
p u b lic void a d d O u t p o r t (P o r t l n t e r f a c e a P o r t) ;

To perform the iteration functionality of the loop, checking the halting condition

and then if appropriate incrementing the current value, there are the methods

/ / Returns the s t a t e of the h a l t i n g co nd i t i on . tru e i f current
value is l ess than the h a l t i n g va l ue , false otherwise .

2 p u b lic boolean h a l t i n g C o n d i t i o n () ;

4 / / Increment the loop.
p u b lic vo id p e r f o r m S t e p () ;

97

6.4 Control Implementation

/ / R e s e t t he l o o p t o i t s s t a r t v a l u e ;
s public void r e s e t L o o p Q ;

The loop proxy, ControlProxy, implements the C o n tro lln te rfa c e but dele­

gates the majority of the work to the execution object within the proxy. The im­

plementation of the E x e c u tio n ln te r f ace, section 4.5.2, in the loop component is

provided by the class C ontro lE xecution . It is this execution object that also im­

plements the C o n tro l ln te r f ace tha t the C ontrolProxy delegates the functionality

to. For example, the implementation of the check halting condition method in

ControlProxy is

public boolean h a l t i n g C o n d i t i o n () {
2 return ((C o n t r o l l n t e r f a c e) e x e c u t i o n .) . h a l t i n g C o n d i t i o n () ;

}

where the object ex ecu tio n , is an instance of C ontro lE xecution . The implemen­

tation in the C ontro lE xecution class is

p u b lic f in a l boo lean h a l t i n g C o n d i t i o n () {
2 i f (g e t P o r t T y p e () = = P o r t T y p e .SHORT) {

r e tu rn (((S h o r t) g e t C u r r e n t V a l u e ()) . c o m p a r e T o ((S h o r t)
h a l t V a l u e .) > = 0) ;

4 } e lse i f (g e t P o r t T y p e () = = P o r t T y p e .FLOAT) {
r e tu rn (((F l o a t) g e t C u r r e n t V a l u e ()) . c o m p a r e T o ((F l o a t)

h a l t V a l u e .) > = 0) ;
e } e lse {

r e tu r n t r u e ;
8 }
_}___

Listing 6.2: Loop Control Halting Condition

In this implementation the current value of the loop is compared to the halting

value, returning the appropriate true or false result. If the haltingCondition is true

then the loop has finished. Note here that the data type of the parameter iterating

is checked using the getPortType method. The comparison needs to be aware of

whether the data is integer or floating point. The perf ormStep method has a similar

implementation, checking the data type and then incrementing the current value by

the appropriate increment value.

98

6.4 Control Implementation

The user interface to the loop component within the VCCE which can be seen in

figure 6.1 is provided by an extension to the SimpleVisualComponent, section 4.5.1.

The new subclass, ControlVisualCom ponent users the “getters” and “setters” in

the C o n tro lln te rf ace to provide the interaction between the user and the loop

component for the start, halt and iteration values.

The new execution model is more complicated than our previous A b strac t-

Execution implementations which just had two methods to call, i n s ta n t ia te and

execute. The C ontro lE xecution implementation of execute is still called, the

method checks the halting condition and performs the loop iteration. However, the

scheduling algorithm has to be aware tha t there is a control component in the task

graph and react accordingly. The new scheduling algorithm and the implementation

is explained in the next section.

6.4.3 ControlExecutionGraph:
An Improved Scheduling Algorithm

The simple scheduling algorithm implementation, ExecutionGraph, introduced in

section 4.6.3.1 was developed before the control components and cannot take advan­

tage of the new methods provided by the control interface. The addition of these

new components requires an extended scheduling implementation. Both the task

graph/scheduler class and the node class th a t wraps the proxy component within

the graph are extended.

ControlGraphNode is the class tha t holds a C ontrolProxy object within the

task graph implementation. It extends ExecutionGraphNode, section 4.6.3, so it

inherits all the functionality providing the parent and child relationships with other

nodes in the graph. The extensions provide access to the internal loop component’s

h a ltin g C o n d itio n method, methods to set and reset the loop values, and methods

to add output ports th a t represent the parameters being iterated over.

In the extension to the task graph representation there are now two types of node,

the original node representing computational components, ExecutionGraphNode

99

6.4 Control Implementation

and the new implementation representing loop components, ControlGraphNode.

The new algorithm can be seen in algorithm 6.1, it works by partitioning the task

graph into sub-graphs and then scheduling each sub-graph individually in a “divide

and conquer” manner.

for all loop components in task graph do
create node lists for each loop component
recursively add any contained loop component children to loop list

end for
for all nodes not in existing list do

create node lists for any blocks of components outside of loops
end for
for all lists in order do

order components in list
repeat

for all components in list do
execute component

end for
until list does not contain loop or halt = true

end for
A lgorithm 6.1: Extended Scheduling Algorithm

It can be seen from the algorithm, th a t at various points a check will need to

be made on components to see if they are loop components and if they are, check

the halting condition. This, together with the task graph partitioning, make up the

major differences between the previous scheduling algorithm.

The implementation is sub-classed from the same abstract base class A b s trac t-

ExecutionGraph as the naive algorithm and so implements the two abstract meth­

ods

public a b stra ct void e x ecu tio n P erfo rm ed (E xecu tionE vent e v t) ;
2 public a b stra ct void execu te () ;

execute runs the composed application and executionPerform ed is the “call back”

function from each component upon completion of its execution. The execute

method

public void ex ecu t e () {
2 scheduleNodes () ;

100

6.4 Control Implementation

Co l l e c t i on s . so r t (g r a p h P a r t i t i o n s . , new Par t i t i onCompar i to rRun
0) ;

4 p a r t i t i o n l t e r a t o r _ = g r a p h P a r t i t i o n s . . l i s t l t e r a t o r () ;
c u r r e n t P a r t i t i o n . = (Vec t or) p a r t i t i o n l t e r a t o r . . next () ;

e n o d e l t e r a t o r _ = c u r r e n t P a r t i t i o n . . l i s t l t e r a t o r () ;
cu r ren tNode . = (Execut ionGraphNode) n o d e l t e r a t o r next () ;

s executeNext () ;

partitions the nodes, sorts the partitions and then sets variables for the current

partition, current node and iterators before calling the executeNext method that

executes the next component in the current partition.

4

6

8

10

12

14

16

18

p rivate void executeNext () {
i f (cu r ren t Node . . i s C o n t r o l ()) {

i f (! ((Cont rolGraphNode) c u r r e n t N o d e .) . h a l t i n g C o n d i t i o n ())
{
t r a n s f e r P o r t D a t a () ;
i f (n o d e i t e r a t o r . . hasN ext ()) {

c u r re n t N o de . = (Execut ionGraphNode) n o d e i t e r a t o r .
. n e x t () ;

executeNext () ;
} e lse i f (p a r t i t i o n l t e r a t o r hasN ext ()) {

c u r r e n t P a r t i t i o n . = (Vec t or) p a r t i t i o n l t e r a t o r . .
n e x t () ;

n o d e i t e r a t o r . = c u r r e n t P a r t i t i o n . . l i s t l t e r a t o r () ;
c u r r e n t N o d e . = (Execut ionGraphNode) n o d e l t e r a t o r _

. n e x t () ;
executeNext () ;

}
} e lse {

cu r re n t N o d e . . execute () ;
}

} e lse {
t r a n s f e r P o r t D a t a () ;
c u r re n t No d e . . execu te () ;

}
}

The executeNext method checks to see if the current node is a control node, if

it is and the halting condition is false then output data from any parent nodes is

transfered using the transferPortData method and the next node in the current

partition or the first node in the next partition is executed. If the current node is

not a control node then the output data from the parent components is transfered to

101

6.4 Control Implementation

the current node’s inports and the component is executed. The transferPortData
method calls the sendOutputToChild method on all the parent components of the

current component.

2

4

p r i v a t e void t r a n s f e r P o r t D a t a () {
for (EGNItera tor i t = c u r r e n t N o d e . . g e t P a r e n t s () ; i t . hasNext ()

;) {
i t . next () . sendOutputToChi ld (c u r r e n t N o d e .) ;

}
}

The sendOutputToChild method is in the ExecutionGraphNode class. The be­

haviour of the method had to be amended to include control components, and is

dependant on whether the child node th a t the data is to be transfered to is a normal

component or a control component.

public void sendOutputToChi ld (Execut ionGraphNode c h i l d) {
i f (! chi ld . i s C o n t r o l ()) {

for (P o r t l t e r a t o r i t = compon en t - . g e t O u t p o r t s () ; i t .
hasNext () ;) {

P o r t l n t e r f a c e por t = i t . n e x t Q ;
chi ld . set Component Inpor t Value (p o r t . get Pa ramete r () ,

por t . ge tValue ()) ;
}

} e lse {
for (P o r t l t e r a t o r i t = component . . g e t O u t p o r t s () ; i t .

hasNext () ;) {
P o r t l n t e r f a c e por t = i t . n e x t Q ;
((Cont rolGraphNode) c h i l d) . setComponentOutport ((

P o r t l n t e r f a c e) por t . c lone ()) ;
}

}
}

If the child component is a standard component then the outport values are set as

inport values on the child component. If the child component is a loop component

then a copy of the outport is added as an outport of the loop component. This

functionality is needed only in the case of a nested loop. The child loop component

does nothing with this input so it is just passed straight through as an output.

102

6.5 Summary and Comparison

6.5 Summary and Comparison

One of the features of the PSE is to provide the ability to perform iterations over

components in a task graph, for example to perform parameter runs on a solver

code. This chapter has examined extensions to our components and framework that

support this ability. The component model has been extended to include a new

control component, and the task graph representation and scheduling algorithm

have been extended to support th a t new component.

There are many scripting languages that can be used to perform the type of pa­

rameter run loop operation described here, from shell scripting through to separate

languages such as Perl or Python. There are advantages to using scripts if the script

is for personal use or is not going to be used by non-programmers. Scripts do not

rely on a large framework such as the VCCE and do not require individual com­

putational codes to be wrapped as components. They also put less of an overhead

on the execution time for the work flow as they are a lot closer to the execution

environment, i.e. the operating system, of the individual codes.

The VCCE simplifies the process of running a complex scientific code, using the

intuitive visual programming paradigm. The application scientist does not need

to configure software components, and can concentrate on undertaking parameter

runs or visualising output from a solver. The work in this chapter has shown a

simple user interface and component framework tha t makes constructing iterative

loops over components in an application a much more intuitive task. The user does

not need to know any details about scripting languages, or similar, and is free to

concentrate on the more im portant details of what they want to do as opposed to

how to do it.

The next chapter examines a “real” industrial code and a different method of

code wrapping using CORBA. The control constructs introduced in this chapter

become more im portant when using real codes and will be revisited again.

103

CHAPTER 7

BE3D, FE3D - Parallel Components

In this chapter, two new solver codes from the client BAE SYSTEMS are discussed,

together with a different mechanism for wrapping and including them as components

within the PSE framework. The two codes here are real “production” solvers that are

commercially sensitive and considerably larger and more complicated than the BE2D

code examined in chapter 5. These codes will provide a more realistic examination of

the VCCE and show tha t this technology can be used by scientists for real work. The

new wrapper mechanisms are compared to the existing methods. Some performance

comparisons with the standalone code and an analysis of the benefits to the user

conclude the chapter.

7.1 The Parallel Solver Codes

The two new solver codes used in this chapter are very similar in usage and form

although the algorithms are very different, hence they are covered as a single chapter.

Both codes are written in Fortran and use the Message Passing Interface (MPI) [81]

to facilitate parallelisation across multiple processors. The codes are complicated,

both in terms of lines of code and in usage, and are also commercially sensitive. The

104

7.1 The Parallel Solver Codes

commercial sensitivity has two direct impacts on the use of the codes as components

within a PSE.

1 . Source code is not available. This means tha t the only possible use within a

PSE is by wrapping the binary executable. Tighter integration will be impos­

sible, and input and output mechanisms are reliant on the original implemen­

tation.

2. Execution environment is limited. The commercial sensitivity of the code

means that installation and execution of the binary is only allowed on a spec­

ified machine or machines. In the case of these particular codes tha t means a

single machine at a BAE SYSTEMS site behind a firewall.

The two codes are called BE3D and FE3D , both codes are simulations for the

analysis of electro-magnetic wave scattering in three dimensions. The first of the

two codes is a three dimensional production version of the BE2D code examined in

chapter 5. The second code uses a finite element algorithm in three dimensions. It

is the addition of the third spatial dimension to the codes tha t make these examples

so much more complicated than the simple BE2D example used previously.

As with the more straight forward two dimensional code, and in common with

the vast majority of simulation codes of this broad type, execution can be broken

down into three distinct stages:

1. Mesh or geometry generation.

2. Execute solver code.

3. Visualise or analyse results.

In addition to these three stages there may be additional intermediary stages to

perform data format translation and data storage tasks. To use both of these codes

in their original form, the user first runs the appropriate mesh generator from the

command line. This produces the file th a t represents the three dimensional data.

105

7.1 The Parallel Solver Codes

The user then runs the solver from the command line, ensuring that the data file and

the wave control file are in the correct directory. The solver produces two output

files, one containing the radar cross section data and the other the surface current.

Computational solver codes generally take input and provide output in very

strict formats. The formats used to represent data are varied and often specific

for a particular code within a particular organisation. Often the mesh generator

that provides the m ajor input to a solver is written specifically for that solver and

its data format. This specificity and the tight coupling between solver and mesh

generator hinders their reuse as individual components within a PSE. Although

there may be many formats for the data, translation may be possible from one to

another. An intermediate component may be able to perform translation between

the format the mesh generator produces and the solver consumes and the format

the solver produces and a data visualiser consumes. These intermediary components

will allow us to connect a mesh generator component to a different solver component

within the PSE.

Data storage at both the end of the solver process and at intermediary stages,

especially in the situation where the user is performing multiple executions in a

parameter run, section 6 .1 , is an im portant aspect of the day-to-day work of a

scientist. Specialised components will provide access to storage repositories which

could be databases or file storage. The decision to store data may depend on the

cost of the individual execution time of a component, some solvers may take weeks

to produce results, or whether the results are likely to be re-used. Intermediary

results may be stored to save some execution time in the computational stage if the

application is re-run. For example, a scientist may run the mesh generation once,

store the generated mesh and then re-use tha t multiple times within a parameter

run.

106

7.2 CORBA Wrappers and the Action Factory

7.2 CORBA Wrappers and the Action Factory

The method used to tu rn the two solvers and their mesh generation and storage

functions into components th a t can be used within the PSE is to wrap the codes as

CORBA components. Functionally the mechanism is similar to that used in section

5.1.3 to wrap the simple BE2D code. Here rather than writing separate CORBA

wrappers unique to each component, a th ird party framework originally provided by

Dassault is used, an industrial partner of BAE SYSTEMS, but now an “open source”

project called Action Factory [25]. The Action Factory system is designed to help

integrators to fill the gap between developers and users, by providing a clean data

flow to object oriented mapping, and enabling a quick and mostly automated way to

build actions and com putational paths on top of existing developer’s components.

The Action Factory provides a single point of access to wrapped codes through

the use of a Remote Procedure Call (RPC) type interface implemented in CORBA

behind which the codes sit.

In practise when the components are instantiated by the PSE upon selection

by the user, the PSE has to establish a connection to the CORBA ORB tha t has a

running instance of the appropriate Action Factory and get a reference to the factory

from that ORB. The XML component definitions contain information about where

to find the factory, the host machine, the port number and the name of the factory

object as well as the CORBA version, in this case Orbacus. The PSE automatically

performs the connection to the ORB and retrieves a reference to the Action Factory

when a proxy component is added to the scratch pad. When the proxy is told to

execute by the PSE, it calls the exec() m ethod on the instance of the factory it

has a reference to, see the previous section on the BE2D code 5.1 for more specific

details.

7.2.1 Action Factory Com ponent Implementation

With the example codes used from within the PSE, various parts of the codes and

data generators are wrapped as CORBA objects. The components that make up

107

7.2 CORBA Wrappers and the Action Factory

the complete assembled application code are:

• The mesh generator, for generating the data which defines the example ‘mesh’

or geometry for the solver code. This is the original mesh generator with a

CORBA wrapper th a t returns a reference to a CORBA object representing

the data set, instead of writing the data to a file.

• Control components th a t define the characteristics of the incidence wave, fre­

quency and angle.

• The BE3D and FE3D solvers. These are the original solvers, modified to ac­

cept input data from CORBA objects and provide output as CORBA objects.

• The database component, for storing the output from the solver. This compo­

nent was not part of the original code. It takes multiple output objects from

the solver and stores them in a database. In this case a specialist scientific

database suitable for storing the large amounts of data generated by the solver

codes.

The Action Factory object is responsible for instantiating and executing each of

these CORBA wrapped components. The PSE does not need to know details about

object instantiation or execution. The Action Factory has a single method execO
which accepts a number of parameters, including the name of the process to execute,

a set of input param eters and some details about the execution of the process, and

returns a result set.

A typical call to the Action Factory from within the execute method of a proxy

component would be:

s h o r t [] r e s u l t = f a c t o r y _. exec (a c t i o n . n a m e . , numBddETag,
parameter , f ac t_machine_name_ , f a c t . o b j . n a m e . ,
f a c t _ p o r t _ n u m b e r _) ;

Listing 7.1: Example Action Factory Function Call

The parameters in this method have the following meanings

108

7.2 CORBA Wrappers and the Action Factory

action_name_
Represents the name of the command to be executed. For instance

ActionReadMesh is an action th a t generates a mesh object, the return

value for which is a reference to a CORBA object representing the mesh.

ActionComputeRCS is the action th a t executes the solver, it returns another

reference to the CORBA object th a t represents the radar cross section result

set.

numBddETag and parameter
Are arrays representing the input data for this component, the value of these

is either a simple data type as in the case of the wave frequency and angle,

represented by parameter, or a reference to a CORBA object in the case of

the mesh, represented by numBddETag. The Action Factory is responsible for

delivering input datasets to the appropriate components to be executed to

complete a given action.

f act_machine_name_, f act_obj_name_ and f act_port-number_
Are values th a t the Action Factory uses to decide what component to execute

and where to run it. They represent the name of the machine the Action

Factory is running on, the object name of the Action Factory to use and the

port number needed to contact the Action Factory.

result
The return value from the function call which will be a reference to a CORBA

object represented as a short value. The reference is internal to the Action

Factory which provides methods to retrieve a CORBA object given the refer­

ence.

All of these param eter values are stored in the XML component definitions, which

are parsed by the PSE and represented by a proxy component. Hence, running a

particular component is achieved by a single function call to the Action Factory

instance, found at component instantiation time, passing in the values stored in the

proxy together with any output parameters from the previous component in the

109

7.2 CORBA Wrappers and the Action Factory

graph.

The execution tags of an example XML component definition which are used to

create a proxy th a t can call the Action Factory can be seen in listing 7.2. In this

definition, lines 9 to 14 contain the definition for the Action Factory server, including:

the CORBA ORB implementation, “orbacus” in this case; the host machine name,

sg20\ the port number; and the name of the CORBA service, emmaAF. This Action

Factory service will provide a number of Action factory instances which in turn

provide a number of actions. This component uses one single action which is defined

in lines 1 to 8 . The definition contains: the name of the specific Action Factory

instance, FE3D which provides the wrappers for the FE3D application; the action

name, A ctionex tractR C S S lice which computes the RCS output for the solver; the

machine name hosting this Factory, which can be different or in this case the same

as the servifce host machine; the Factory object reference name; and the port number

for this Factory instance.

< e x e c u t i o n i d = " s o f t w a r e " t y p e = " c o r b a " >
2 C t y p e i d = " a r c h i t e c t u r e " v a l u e = " p a r a l l e l " / >

< t y p e i d = " a c t i o n F a c t o r y " v a l u e = " F E 3 D " / >
4 C t y p e i d = " a c t i o n . n a m e " v a l u e = " A c t i o n e x t r a c t R C S S l i c e " / >

C t y p e i d = " f a c t . m a c h i n e . n a m e " v a l u e = " s g 2 0 " / >
6 C t y p e i d = " f a c t _ o b j . n a m e " v a l u e = " e m m a O F 2 " / >

C t y p e i d = " f a c t . p o r t . n u m b e r " v a l u e = " 1 3 2 4 " / >
8 </ e x e c u t i o n >

C e x e c u t i o n i d = " p l a t f o r m ">
10 C t y p e i d = " c o r b a " v a l u e = " o r b a c u s " / >

C t y p e i d = " h o s t " v a l u e r " s g 2 0 " / >
12 C t y p e i d = " p o r t " v a l u e = " 1555"/>

C t y p e i d = " server" v a l u e = " emmaAF"/>
14 < / e x e c u t i o n >

Listing 7.2: Example Action Factory XML Definition

These parameter values provide enough information to be able to contact the

CORBA Action Factory, get a specific instance of the Action Factory that provides

the FE3D functionality and call a specific method or action on that factory.

110

7.2 CORBA Wrappers and the Action Factory

To actually execute a function call on the Action Factory, the proxy com­

ponent model needs to be extended again. The execution model of the

components is extended to handle this new component wrapping technique.

ActionFactoryExecution extends AbstractExecution and therefore implements

the Executionlnterf ace, see section 4.5.2. The ComponentFactory is extended to

instantiate an ActionFactoryExecution object if the software type is “corba” , list­

ing 7.2 line 1. The ActionFactoryExecution object has attribute values for each of

the parameter properties defined in the XML component definition and implements

the instantiate and execute methods of the Executionlnterf ace.

The instantiate method is called when the user drops the component onto the

“scratch pad” of the VCCE. For these CORBA wrapped components, the method

performs the pre-execution CORBA initialisation, “hand shaking” and component

reference resolving. The simple CORBA wrapper example described in chapter 4

proved to be useful from a development point of view, shortening substantially the

learning curve when it came to implementing the more complicated Action Factory

examples. The instantiate method can be seen in listing 7.3.

p u b l i c v o i d i n s t a n t i a t e () {
S y s t e m . s e t P r o p e r t y (" EMMAF . h o s t " , h o s t .) ;
S y s t e m . s e t P r o p e r t y (" EMMAF . p o r t " , S t r i n g . v a l u e O f (p o r t _)) ;
S y s tem . s e t P r o p e r t y ("EMMAF . s e r v e r " , s e r v e r .) ;
j a v a . u t i l . P r o p e r t i e s p r o p s = S y s te m . g e t P r o p e r t i e s () ;
p r o p s . p u t (" o r g . omg . CORBA . ORBCl as s " , " com . ooc . CORBA . ORB ") ;
p r o p s . p u t (" o r g . o m g . CORBA. O R B S i n g l e t o n C l a s s " , " c o m. o o c . CORBA.

O R B S i n g l e t o n ") ;
S y s tem . s e t P r o p e r t i e s (p r o p s) ;

S t r i n g i n t e r n a l A r g s [] = { h o s t - , g e t P o r t Q , s e r v e r . } ;
o r g . omg .CORBA. ORB o rb = o rg .om g.CORBA.ORB. i n i t (i n t e r n a l A r g s ,

p r o p s) ;
o r g . omg .CORBA. O b j e c t o b j = ((com . ooc .CORBA. ORB) o r b) ,

g e t . i n e t . o b j e c t (h o s t . , p o r t . , s e r v e r .) ;

t r y {
C l a s s [] p a r a m e t e r T y p e s = n e w C l a s s []{ C l a s s . f o r N a m e (" o r g .

o m g . CORBA. Obj e c t ") } ;
O b j e c t [] p a r a m e t e r s = n e w O b j e c t []{ ob j };
M eth o d [] m e t h o d s = f a c t o r y A c t i o n H e l p e r C l a s s . .

g e t D e c l a r e d M e t h o d s () ;

7.2 CORBA Wrappers and the Action Factory

S t r i ng methodName = f a c t o r y A c t i o n H e l p e r C l a s s _ . getName ()
+ " . n a r r o w ";

Method narrowM ethod = f a c t o r y A c t i o n H e l p e r C l a s s . .
ge tDeclaredMethod (methodName , parameterTypes) ;

f a c t o r y . = (com . SixS . F ac t o r yAc t i on) narrowM ethod . invoke (
f a c t o r y A c t i o n H e l p e r C l a s s . , p a r a m e t e r s) ;

} c a tc h (Excep t i on e) {
e. p r i n t S t a c k T r a c e (System . o u t) ;

}

Listing 7.3: A ctionF acto ryE xecu tion i n s t a n t i a t e Method

lines 1 to 1 2

Instantiate the CORBA ORB on the named host machine and port, first set­

ting some default system properties th a t the CORBA implementation looks

for.

lines 14 to 20

Attempts to return the named Action Factory server object reference. It uses

a generated “helper” class to try and resolve the factory name described in

the XML definition to a reference th a t the CORBA name server recognises.

The value of separating the instantiation functionality from the execution func­

tionality within the execution model can be seen clearly here. The “housekeeping”

details performed in the i n s t a n t i a t e method take a discernible amount of time

from a user perspective, usually in the order of five seconds but dependant on net­

work bandwidth and load. Performing this functionality when the user instantiates

the component, in a separate thread, hides the time it takes as the user can continue

creating the application from the components while the instantiation code executes

in the background. Doing this does not actually make the system any faster but

it will appear to the user as if it is when compared to the other case where both

initialisation and execution are performed in the same method. One other benefit

is that if the initialisation fails at application creation time as opposed to run time

the user can select a replacement component.

The execute m ethod can be seen in listing 7.4.

112

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

7.2 CORBA Wrappers and the Action Factory

p u b l i c v o id e x e c u t e () {
V e c t o r p a r a m e t e r V e c t = n e w V e c t o r () ;
V e c t o r n um B ddE T agV ect = n ew V e c t o r () ;
/ / g e t t i n g i n p o r t v a l u e s
f o r (P o r t l t e r a t o r p i = g e t O w n e r () . g e t l n p o r t s () ; p i . h a s N e x t Q

;) {
P o r t l n t e r f a c e p o r t = p i . n e x t () ;
i f (p o r t . g e t T y p e () = = P o r t T y p e .OBJECT) {

n u m B d d E T a g V e c t. a d d (p o r t . g e t V a l u e ()) ;
} e l s e {

p a r a m e t e r V e c t . a d d (p o r t . g e t V a l u e () . t o S t r i n g ()) ;
}

}
/ / c o n v e r t i n g i n p u t numBddETag t o s h o r t [J
i n t i = 0;
s h o r t [] num B ddETag = n ew s h o r t [n u m B d d E T ag V ec t. s i z e ()] ;
f o r (I t e r a t o r i t = n u m B d d E T a g V e c t. i t e r a t o r () ;

i t . h a s N e x t () ;) {
num BddETag [i] = S h o r t . p a r s e S h o r t ((S t r i n g) i t . n e x t Q) ;
i + + ;

}

i = 0;
/ / c o n v e r t i n g p a r a m e t e r V e c t t o S t r i n g []
S t r i n g [] p a r a m e t e r = n e w S t r i n g [p a r a m e t e r V e c t . s i z e ()] ;
f o r (I t e r a t o r i t = p a r a m e t e r V e c t . i t e r a t o r () ;

i t . h a s N e x t () ;) {
p a r a m e t e r [i] = (S t r i n g) i t . n e x t Q ;
i + + ;

}

s h o r t [] r e s u l t = f a c t o r y _. e x e c (a c t i o n . n a m e . , num B ddETag,
p a r a m e t e r , f a c t _ m a c h i n e _ n a m e _ , f a c t _ o b j . n a m e . ,
f a c t . p o r t . n u m b e r .) ;

/ / s e t t i n g o u t p o r t v a l u e s
f o r (P o r t l t e r a t o r p i = g e t O w n e r () . g e t O u t p o r t s () ; p i . h a s N e x t Q

;) {
S t r i n g v a l u e = n e w S h o r t (r e s u l t [0]) . t o S t r i n g Q ;
P o r t l n t e r f a c e p o r t = p i . n e x t () ;
p o r t . s e t V a l u e (v a l u e) ;

}
g e tO w n e r () . n o t i f y O b s e r v e r s () ;
n o t i f y E x e c u t i o n () ;

L is tin g 7.4: A c t io n F a c to r y E x e c u t io n e x e c u te M eth o d

113

7.2 CORBA Wrappers and the Action Factory

lines 2 to 1 0

Set up the input data to the component action to be called. If the input port

type is of type “object” then assume this is an Action Factory object reference

and it goes in the numBddETagVect object reference array. Otherwise assume it

is one of the standard number or string data types and it goes in the parameter

array.

lines 16 to 2 0

Convert any object reference values from string form to short.

line 32

Calls the Action Factory exec method to run the specified action with the

input parameters, object references and host machine details.

lines 35 to 38

Take the result set from executing the action and place the values on the

output ports of the proxy component.

lines 40 an d 41

Notify that execution has finished on this component to all interested parties.

To include the facility to execute a new method of component wrapping, using

a third party CORBA framework, it has only been necessary to change and extend

the framework in two places. A new execution model was created, that implemented

the core i n s t a n t i a t e and execu te methods and extended the component factory

so that it can create instances of the new execution model where appropriate. The

remainder of the framework including the scheduling algorithm and user interface

was not touched. This again ratifies the decision to spend time creating an extensible

framework in the first place.

114

7.3 Cost Benefit Analysis

7.3 Cost Benefit Analysis

Although there is an obvious overhead in having a legacy code wrapped as a CORBA

object, the cost is not as great as it might appear. Using the Action Factory model

with CORBA, data transfer between components is kept on the server side as much

as possible. When the mesh generator or the solver components are executed the

only value returned to the client proxy component and VCCE is an object reference

to the data set. It is the object reference and not the actual data set that is passed

to the next component in the task graph. This technique of using CORBA as a

control flow rather than a data flow was illustrated with another form of CORBA

component wrapping in the paper at SC 2 0 0 0 [77].

Performance comparisons of wrapped legacy codes on both workstation clusters

and dedicated parallel machines have been tried. The most time consuming part

of using a CORBA object is the initial “handshaking” with the ORB. The VCCE

performs the CORBA connection at component instantiation and not execution

time. The user is still performing the process of building the task graph at this

time, so the cost is not noticeable. Once the graph comes to execution, the CORBA

connections are already in place and the speed of execution is not affected by a

discernible amount compared to the original code executed via the command line.

Execution time is not the only cost involved in using CORBA wrapped codes

as components within the VCCE. Although frameworks such as the Action Fac­

tory and automated “W rapper Generators” help, developing components from large

codes such as the those illustrated in this chapter is a time consuming and skilled

job. The cost of developing the component-based codes will only be justified if the

codes are to be re-used by other, potentially non-programmer or casual, users. The

component wrapping allows the code and the associated components such as mesh

generators, data visualisation tools and data storage tools to be treated as “black

box” components by new users. Components connected visually, help files found

and displayed easily and previously saved task graphs, all help to make the job of

re-using large codes by new or unfamiliar personnel much more straightforward.

115

7.3 Cost Benefit Analysis

The next chapter examines the last use case scenario. The notion of parameter

runs and loop control components is extended to perform a non-linear optimisation

of a problem using a wrapped solver code. A simple case demonstrates how this

technique can be used to perform a “Design of Experiments” .

116

CHAPTER 8

Design Of Experiments

“The central problem in optimization for engineers is the formulation and

execution of problems, rather than the mathematical techniques them­

selves. ”

Optimal E ngineering D esign , Siddall [105]

A common activity in scientific computing and engineering design is that of

optimisation. Searching a domain space using non-linear programming techniques

to minimise or maximise the value of a function over a set of domain variables is a

well researched area. It is not the aim of this work to cover in detail the problem of

optimisation, merely to demonstrate how one well known search algorithm can be

incorporated within the prototype VCCE as a component, and used to control the

flow of execution.

The simple looping component, described in chapter 6 , is sufficient for simple

cases where the user needs to iterate over a fixed range of values for a variable or

variables, so called “param eter runs” . If the user needs to have more control over

when an iteration stops, or how the step changes in relation to some state as is the

case for non-linear minimisation or maximisation, then a more complex method of

117

8.1 The Simplex Method

control is needed.

The VCCE has been used as a front end to a PSE at Southampton University

to look at design optimisation problems [1 0 2]. The work at Southampton was based

around their “Options” suite of search/optimisation programs and various Compu­

tational Fluid Dynamics (CFD) codes with the VCCE providing the user interface

and a CORBA implementation as its middleware.

The intention here is not to repeat tha t work, but demonstrate how optimisation

algorithms can be encoded as control components within the prototype PSE to steer

execution runs for a particular code to a desired optimisation. This is illustrated

with respect to a particular minimisation algorithm, “The Simplex Method” .

8.1 The Simplex Method

The “Downhill Simplex Method in Multi-dimensions” is an algorithm from “Nu­

merical Recipes” [92], due to Nelder and Mead [85], used for multi-dimensional min­

imisation, that is, finding the minimum of a function of one or more independent

variables.

The main concept used by the algorithm is the simplex. A simplex is a geomet­

rical figure consisting, in n dimensions, of n + 1 points (or vertices) and all their

interconnecting line segments, polygonal faces etc. Only non-degenerate figures,

i.e. ones that enclose a finite inner V-dimensional volume, are considered. At each

iteration of the method the objective function, the function being minimised, will

be evaluated at n + 1 points in the N dimensional parameter space. For example,

in two dimensions, where there are two parameters to be estimated, it will evaluate

the function at three points around the current optimum. These three points would

define a triangle; in more than two dimensions, the “figure” produced by these points

is called a simplex. Intuitively, in two dimensions, three points will allow us to de­

termine “which way to go” , th a t is, in which direction in the two dimensional space

to proceed in order to minimise the function. The same principle can be applied to

118

8.1 The Simplex Method

the multi-dimensional param eter space, th a t is, the simplex will “move” downhill;

when the current step sizes become too “crude” to detect a clear downhill direction,

the simplex is too large, and in this case the simplex will “contract” and try again.

An additional strength of this method is th a t when a minimum appears to have

been found, the simplex will again be expanded to a larger size to see whether the

respective minimum is a local minimum. Thus, in a way, the simplex moves like a

smooth single cell organism down the objective function, contracting and expanding

as local minima or significant ridges are encountered.

Termination criteria can be delicate in any multi-dimensional minimisation, and

with the simplex, one “cycle” of the algorithm is identified and the vector distance

covered in that step is measured. When tha t distance is less than a specified toler­

ance then the algorithm halts. It is worth noting that the halting criteria for this

algorithm can be fooled by a single anomaly, therefore it is usually good practise to

restart the minimisation at the point where it claims to have found the minimum.

A common aspect of all estimation procedures is th a t they require the user to

specify some start values, initial step sizes, and a criterion for convergence. All

methods will begin with a particular set of initial estimates, start values, which

will be changed in some systematic manner from iteration to iteration; in the first

iteration, the step size determines by how much the parameters will be moved. The

simplex algorithm is initiated with an initial set of n + 1 parameter sets , the n + 1

vertices of the simplex. All these vertices must lie in the allowed parameter space

constrained by the parameter bounds provided by the user.

A detailed analysis of the particular merits of the algorithm is outside the scope

of this work. The algorithm may not be the best method in terms of efficiency but

it is often used as a “quick and dirty” method when a solution is needed quickly

as the algorithm is relatively straightforward to implement. Although simple it is

still a realistic illustration of how a search mechanism would work within a PSE.

The framework in which it is contained is generic enough for other more efficient

algorithms to be used in its place at a later stage.

119

8.1 The Simplex Method

The original algorithm has been implemented in both the C and Fortran pro­

gramming languages, and was re-implemented here, for use in the VCCE, in Java

using object oriented programming techniques. The benefit of this method as op­

posed to using one of the original implementations wrapped as a component, was to

enable it to be more tightly integrated within the VCCE and to make a pluggable

framework so tha t the evaluation function used by the algorithm can be easily re­

placed. The algorithm itself within the component can also be replaced to make a

completely new control component.

The Java re-implementation of the algorithm, a full listing of which can be seen

in appendix B.4.1, makes use of The Colt Distribution [54], an open source scientific

library for scientific and technical computing in Java. The library has highly opti­

mised and efficient representations for one dimensional and two dimensional matrix

types and also implementations of general purpose function types that can be ap­

plied automatically to the elements in a matrix. This is the “visitor” design pattern,

page 26.

Any function can be used as the evaluation function for the simplex method.

The only criteria are to be able to accept as an input parameter a set of values that

represent a point in the V-dimensional domain space, and return a single value as the

result of the evaluation. The function can be anything from a simple mathematical

penalty function through to an entire complex external solver wrapped to appear as

a penalty function.

In the prototype implementation this is achieved through the use of a Java in­

terface that all evaluation functions must implement. The interface is very simple

with a single method shown in listing 8 .1 , tha t returns a double as the function

evaluation and takes as its input parameter an O bject. This interface comes from

the Colt library and is used so th a t any function implementation based on it can be

applied to the elements of a Colt m atrix object. The input parameter is actually a

vector as described in the simplex algorithm, and the Colt type DoubleMatrixlD, a

one dimensional m atrix type, is used to represent this.

120

8.2 Penalty Functions

4

2

p u b l i c i n t e r f a c e D o u b l e O b j e c t F u n c t i o n {
/ / A p p l i e s t he f u n c t i o n t o an a r g u me n t
p u b l i c d o u b l e ap p ly (O b j e c t argu m en t) ;

Listing 8.1: Evaluation Function Interface

8.2 Penalty Functions

Estimation procedures are generally unconstrained in nature. Therefore, parameters

will move around without any regard for whether or not permissible values result.

When these non-permissible values occur, a penalty can be assigned to the objective

function, in the form of a very large value, to “discourage” the minimisation. As

a result, the various estimation procedures usually move away from the regions

that produce those functions. However, in some circumstances, the estimation will

get stuck, and a very large value of the objective function will result. This could

happen, if for example, the regression equation involves taking the logarithm of an

independent variable which has a value of zero for some cases, in which case the

logarithm cannot be computed.

To constrain a procedure to a specified range, the constraint must be specified in

the objective function as a penalty function. This allows control over the permissible

values of the parameters. For example, taking the simple function

y = ~ x 2 - x 22 (8 .1)

where the two parameters (aq and x 2) are to be constrained by the following bound­

ing conditions

gi = x 2 — 17.0xi 4- 66.0 + x 2 — bx2

g2 = x 2 — 10. Oxi + 41.0 + x 2 — 1 0 x 2

<73 = x 2 — 4.0xi + 45.0 + x 2 — 14x2

(8 .2)

where

gi > 0 and g2 > 0 and g3 > 0

121

8.3 Penalty Function Implementation

K -

O
VS~

o

Figure 8.1: — x 2 — x 22 Plot with Constraints

A large penalty can be assigned to these parameters if this condition is not met. In

graphical form the constraints can be seen as the hemispherical “bites” taken out of

the plot in figure 8.1. This simple example function is used as a demonstration for

the simplex algorithm in section 8.3.

One final aspect to note is that most penalty functions are independent of the

search algorithm which allows us to experiment with these different types of penalty

with the simplex method component.

8.3 Penalty Function Implementation

This section evaluates the implementation of two penalty functions.

8.3.1 Evaluation Function with Simple Penalty

Consider an implementation of the simple case for the function, y = —x 2 — x 2

and the boundary conditions gi, g2 and g3, equations 8.1 and 8.3 defined in section

8 .2 . As can be seen in figure 8 .1 , there is a function where the evaluation is highest

for (X\ = 0 , x2 = 0) as indicated by the dark red colour and three local minima

at approximately, by eye only, (5.0,2.0), (3, 2.5), (2.0,4.0) where the lighter blue

and yellow colours occur. The simplex component can be used with the evaluation

122

8.3 Penalty Function Implementation

function and its penalty cost, implemented using the evaluation function interface

from listing 8 .1 , to attem pt to minimise the function, finding the values for the local

observed minima and determine the global minimum.

package com. baesystem s . o p t im is a t io n . fu n c tio n ;

import cern . c o lt . m a trix . D oubleM atrixlD ;
import cern . c o lt . m a trix . d o u b lea lg o . F o rm a tte r ;
import com. baesystem s . o p t im is a t io n . D ow nhillS im plex ;
import com . b aesy s tem s , o p t im is a t io n , f u n c t io n . D oubleO bject F u n c tio n ;

public f in a l c la s s C om plexE valuationFunk implements
DoubleObj ec tF u n c tio n {

public double apply (O b jec t argum ent) {
D oubleM atrixlD p try = (D oubleM atrixlD) a rg u m en t;
double x l = p t r y . get (0) ;
double x 2 = p t ry . get (1) ;
double g l = x l* x l — 17 .0*xl + 66.0 + x2*x2 — 5*x2;
double g2 = x l* x l — 10 .0*xl + 41.0 + x2*x2 — 10*x2;
double g3 = x l* x l — 4 .0 * x l + 45.0 + x2*x2 — 14*x2;
double y ;

i f (g l < = 0) {
y = 1 0 0 0 0 ;

}
e lse i f (g2 < = 0) {

y - 1 0 0 0 0 ;
}
e lse i f (g3 < = 0) {

y = 1 0 0 0 0 ;
}
e lse {

y = — x l* x l — x 2 *x 2 ;
}
return y;

Listing 8.2: Implementation of Evaluation Function with Penalty

The evaluation function and its penalty can be seen in listing 8 .2 . In lines 13 to

15, the values for e/i, # 2 and gs are first calculated. Lines 18, 21 and 24 compare the

calculated values to zero , if any of the three values are less than or equal to zero

then a penalty value is assigned as the return value, in this case 1 0 0 0 0 , a suitably

high value given the bounds on the function, otherwise the evaluated value of the

123

8.3 Penalty Function Implementation

function itself is returned.

The code illustrates th a t given equations for the evaluation function, equation

8.1, and the penalty function, equation 8.3, the Java function implementation re­

quired for use in the simplex method is straightforward to write and would only

require a simple understanding of the Java programming language. Both the evalu­

ation function and the penalty functions can clearly be recognised in the code. In

the next section 8.3.2 a more complex penalty function is examined.

8.3.2 Function with FMC Penalty

The function with the simple penalty described in section 8.3.1 has one major draw­

back. It does not represent any relationships between the three penalty conditions

gi , <72 and gs - they are all evaluated independently. If any of the conditions fail then

a single penalty value is returned with no indication which of the three caused the

failure and how tha t affected the evaluation function. A more complicated penalty

function might involve interaction between the penalty and evaluation functions.

Such a function is considered in this section.

It is useful at this point to introduce some formal notation for the general case

Design Optimisation Problem. The following expressions are from Optimal Engi­

neering Design [105]. A general form for a simple penalty function to throw up a

barrier or distortion of the original optimisation function and thus forces the search

toward feasibility, can be w ritten as

Up = XJ{x) + r ^ | | + r ^ \ipj\ (8.3)
i 3

where U(x) is an optimisation or objective function set up defining the total value

in terms of the independent variables.

U (x i , x 2, .. •, x n) = maxim um (8.4)

i p i and (f>j are respectively equality and inequality constraints which define feasibility

124

8.3 Penalty Function Implementation

with respect to all possible causes of failure.

^ i { x i , x 2, . . . , x n) = 0 i — 1,771 (8.5)

<t>j(xi ,x 2, . . . ,x n) > 0 j = l ,p (8 .6)

r is some fixed large number, and (a) is an unsatisfied constraint.

(a) = <
a if a < 0

0 if a > 0

(8.7)

In this expression of the penalty function, unsatisfied constraints are weighted

heavily by multiplying the unsatisfied inequality constraints by a large number and

adding them to the objective function value in order to discourage these situations.

Satisfied inequality constraints are ignored by giving them a zero weight. In the

example simple penalty function, equation 8.3, a simpler form of this general case

equation of the penalty function was formed by ignoring the equality constraints in

the equation. The constraints are tested as inequalities greater than zero

This type of general penalty function is severe and it can sometimes cause the

search algorithm to stall especially on a boundary of a constraint. The equation 8.3

is only active when the constraints are violated or the search enters an infeasible

solution region. This class of penalty functions are called exterior penalty functions.

Interior penalty functions are only active within the feasible region, so that the

search is warned when the constraint line is approached.

Another widely used method examined here and implemented as another example

of a penalty function for the simplex component is the Fiacco-McCormick penalty

function [32]. It can be represented by the expression

Up = U(xi, x 2, • • •, x n) + r2 ^ 2 ^ 7 + ~ + ~ ^ (^ h) 2 (8-8)

The symbol {a} has the same meaning in Equation 8.7 and indicates an unsatisfied

constraint, while s indicates a satisfied one. The value of r is different to the value

in the simple penalty function in equation 8.3 where it is simply assigned some fixed

large value. Here the value of r is set to a value between 1 and 0. The usual use

125

8.3 Penalty Function Implementation

of the function is to solve a sequence of optimisation problems where r is reduced

rapidly each time toward 0 .

This function is a mixed penalty function with both interior and exterior con­

straints. Consider the inequality terms of equation 8 . 8 in turn:

r7 01
The first interior term with r equal to one will push the surface up asymptot­

ically1, moving closer and closer but not touching the constraint line. As the

constraint line is approached (f)sk will become smaller, if a false constrained op­

timum point is found, as the value of r is reduced the effect of 1 / 0 | is reduced

and the false constrained optimum point will approach the true one.

<Pi/r

The exterior term has a similar effect for the exterior region, as r is reduced a

false unconstrained optimum will be shifted toward the true optimum. Typi­

cally this reduction of r and the re-evaluation of the function is not expensive

as it rarely takes more than three runs with the starting point of the next run

being the optimised point found by the previous.

The example objective function from equation 8.1 and the penalty functions from

equation 8.3 can be used within the Fiacco-McCormick method. In addition to the

original constraints g\, g2 and g3 some additional boundaries are added that will

constrain the function to positive values of X\ and x 2 between 0 and 7 which can be

seen on the coloured area of the graph in figure 8 . 1 and are represented by <7 4 , #5 , g6

and gj in equation 8.9. As before the constraints are tested as inequalities greater

than zero. Only the inequality elements of the function will be used ignoring the

1 asymptote A line related to a given curve such that the distance from the line to a point on

the surface approaches zero as the distance of the point from an origin increases without bound.

126

8.3 Penalty Function Implementation

last term in the equation 8 .8 .

(8.9)94 = 7 — x\

95 — 7 - x 2

96 = Xl

97 = x 2

where

94 > 0 and

The Java implementation of the Fiacco-McCormick penalty function with the

constraints is shown in listing 8.3. The original constraints, equation 8.3, can be

seen in lines 10 to 12 and the new constraints, equation 8.9, in lines 13 to 16.

The satisfied and unsatisfied inequalities are summed in lines 20 to 27, the penalty

function is evaluated in line 28, the objective function is evaluated in line 29 and

finally, a value of the objective function plus the penalty is returned.

public f in a l c la s s F M C M e th o d E v a lu a tio n F u n k implements
D o u b l e O b j e c t F u n c t i o n {

private s t a t i c f in a l double PARAMJrt — 0.5; / / c o n s t a n t r

public double a p p l y (O b j e c t a r g u m e n t) {
D o u b l e M a t r i x l D p t r y = (D o u b l e M a t r i x l D) a r g u m e n t ;
double x l = p t r y . g e t (0) ;
double x2 = p t r y . g e t (1) ;
double p e n a l t y ;
double [] c o n s t r a i n t s = new double [7] ;
c o n s t r a i n t s [0] = x l * x l — 1 7 . 0 * x l + 6 6 . 0 + x 2 *x2 — 5*x2;
c o n s t r a i n t s [1] = x l * x l — 1 0 . 0 * x l + 4 1 . 0 + x 2 *x2 — 10*x2;
c o n s t r a i n t s [2] = x l * x l — 4 . 0 * x l + 4 5 . 0 + x 2 *x2 — 14*x2;
c o n s t r a i n t s [3] — (7 — x l) ;
c o n s t r a i n t s [4] = (7 — x 2) ;
c o n s t r a i n t s [5] = x l
c o n s t r a i n t s [6] = x2
doub le v i o l a t e d = 0
doub le s a t i s f i e d = 0;

for (in t i = 0; i < c o n s t r a i n t s . l e n g t h ; i + +) {
i f (c o n s t r a i n t s [i] < = 0) {

v i o l a t e d + = c o n s t r a i n t s [i] * c o n s t r a i n t s [i]
}
e l s e {

127

8.4 Simplex Component

s a t i s f i e d + = 1 / c o n s t r a i n t s [i] ;
}

}
p e n a l t y = 1 / PARAM U * v i o l a t e d + PARAM Jt * PARAMJt /

s a t i s f i e d ;
double o b j e c t i v e = — x l * x l — x 2 * x 2 ;
return o b j e c t i v e 4- p e n a l t y ;

}
}

Listing 8.3: Implementation of the Objective with a Fiacco-McCormick Penalty

Like the simple function implementation it can be seen from the code that even

with the more complicated expression of the Fiacco-McCormick function, the Java

implementation is not overly hard to write. The same format could be used with any

arbitrary sets of objective and penalty functions and, given the code in the listing,

even someone not fully conversant with Java would be able to modify the expression

parts of the code to implement a new function without too much difficulty.

8.4 Simplex Component

8.4.1 Simplex Algorithm Implementation

Within the VCCE the simplex component is functionally similar to the loop compo­

nent in chapter 6 . Its inport values are the parameters to be fed into the evaluation

function and the iteration stops when a halting condition is true. In this case this

happens when the new value returned from the evaluation is within a predetermined

5 value of the previous evaluation, the algorithm tolerance. The main algorithm is

implemented as a set of static functions within a class called DownhillSimplex which

can be seen in appendix B.4.1. The class has three main functions.

8.4.1.1 Simplex amoeba function

public s t a t i c f in a l in t a m o e b a (D o u b l e M a t r i x 2 D s im p le x P ,
D o u b l e M a t r i x l D v e c t o r Y , double FTOL, D o u b l e O b j e c t F u n c t i o n f unk

)

128

8.4 Simplex Component

Description

This function is the main function in the multi-dimensional minimisation of the

function func(x) where x is a vector in N dimensions, by the downhill simplex

method of Nelder and Mead. Note: On output simplexP and vectorY will

have been reset to 7V+1 new points all within FTOL, the defined fault tolerance,

of a minimum function value. The function works by first determining which

point is the highest (worse), next-highest, and lowest (best) by looping over

points in the simplex. It then computes the fractional range between the

highest and the lowest, (high — low)/ (high + low) * 2 and returns the number

of iterations if this is lower than the tolerance. If the function is returning,

then the best point and value are put at the front of the vector. If the function

doesn’t finish then a new iteration is begun and repeated until the tolerance

has been met or the number of iterations exceeded. In the iteration, first an

extrapolation by a factor of - 1 through the face of the simplex across from the

high point is performed, i.e. reflect the simplex from the high point, using the

function amoeba in section 8 .4.1 .2 . The same function is used to extrapolate

other contractions and reflections until the halting condition is met.

Parameters

simplexP: a matrix, of dimension (N + 1,N) whose rows are vectors which

are the vertices of the starting simplex.

vectorY: a vector of length TV + 1, whose components must be preinitialised

to the values of the objective function evaluated at the N + 1 vertices (rows)

of simplexP. This initialisation is done by the function in section 8 .4.1.3.

FTOL: the fractional convergence tolerance to be achieved in the function value,

funk: the function to be minimised.

Return value

The number of iterations taken to halt the algorithm either by finding a solu­

tion within tolerance or exceeding the maximum number of iterations.

8.4.1.2 Simplex amoebaTry function

129

8.4 Simplex Component

private s t a t i c double amoebaTry (DoubleM atrix2D sim plexP ,
DoubleM atrixlD v ec to rY , D oubleM atrixlD pSum,
D oubleO bjec.tFunction funk, in t indexHi , double fac)

Description

This function extrapolates by a factor through the face of the simplex across

from the highest point, evaluates the new point with the objective function,

and replaces the highest point if the new point is better.

Parameters

simplexP: a m atrix representing the simplex.

vectorY : the start vector

pSum: the simplex column sum vector

funk: the function to be evaluated

index : the index in vectorY of the highest value

fac: factor of extrapolation

Return value

The computed value of the objective function

8.4.1.3 Simplex i n i t i a l i s e function

public s t a t i c f in a l D oubleM atrix lD i n i t V e c t o r Y (DoubleM atrix2D
s implexP, Dou bleObjec t Func t i on funk)

Description

This function initialises and returns a vector of dimension N + 1 where its

contents are calculated by evaluating the function to be minimising at the

N + 1 vertices (rows) of the simplex. To evaluate the function the code calls

the D oubleO bjectFunction interface function apply on funk.

Parameters

sim plexP: the starting simplex

funk: the objective function to be evaluated

130

8.4 Simplex Component

Return value

An initialised vector Y of size N + 1

8.4.2 Simplex Com ponent Implementation

The static functions from the class DownhillSimplex described in the last section

provide the functionality for executing the simplex algorithm. Embedding that

functionality as a component within the VCCE framework is done by a wrapper

class that uses the static methods. The wrapper class is called SimplexComponent.
SimplexComponent is instantiated and executed from the standard proxy compo­

nent, SimpleProxy, and the Java execution model, Ext ended JavaExe cut ion sec­

tion 4.5.2.2 . The XML component definition can be seen in appendix B.4.2, and the

execution tags that load the SimplexComponent can be seen below

< e x e c u t i o n i d = " s o f t w a r e " t y p e = " b y t e c o d e " v a l u e r " e x t e n d e d ">
2 < t y p e i d = " a r c h i t e c t u r e " v a l u e r " s e r i a l " / >

C t y p e i d = " c l a s s " v a l u e = " c o m . b a e s y s t e m s . c o m p o n e n t s .
S i m p l e x C o m p o n e n t " / >

4 < t y P e i d = " s o u r c e " v a l u e = " f i l e : / / / h o m e / c o m p d a t a / C a r d i f f / p r o j e c t /
s r c / c o m / b a e s y s t e m s / c o m p o n e n t s / S i m p l e x C o m p o n e n t . j a v a " / >

C t y p e i d = " c l a s s p a t h " v a l u e = " / h o m e / c o m p d a t a / p r o j e c t / c l a s s e s " / >
6 C / e x e c u t i o n >

C e x e c u t i o n i d —" p l a t f o r m ">
8 C t y p e i d = " j a v a " v a l u e r " j d k l . 2 " / >

< / e x e c u t i o n >

Line 3 specifies the class name for this new class tha t will get instantiated when the

proxy is created. The execute method implementation within SimplexComponent
which will run the simplex algorithm can be seen in listing 8.4. Lines 5 to 8 create

a unit matrix e th a t is then used to initialise the simplex P using Pi — PO + Ae*

where PO is the start point for the minimisation and A is a “guess” at the problem’s

characteristic length scale, generally a suitable small value such as 5 x 10-3 . Finally

in line 23, the DownhillSimplex method initVectorY is called, section 8 .4.1.3, to

set up the algorithm and in line 24 call the main amoeba method, section 8 .4.1.1, to

perform the minimisation.

131

file:///home/compdata/Cardiff/project/

8.4 Simplex Component

D o u b l e M a t r i x 2 D s i m p l e x P = f a c t o r y 2 D _ . m a k e (3 , 2) ;
D o u b l e M a t r i x l D v e c t o r Y ;

/ / i n i t i a l i s e the u n i t v e c to r e
D o u b l e M a t r i x 2 D u n i t = f a c t o r y 2 D _ . m ake (3 , 2 , 0 . 0) ;
u n i t . s e t (1 , 0 , 1 . 0) ;
u n i t . s e t (2 , 0 , 0 . 5) ;
u n i t , s e t (2 , 1 , M ath . s q r t (0 . 7 5)) ;

/ / Pi = PO + Aei
/ / create each row and s to r e the s t a r t p o in t s in two temp arrays
d o u b le [] s t a r t X = n e w d o u b l e [s i m p l e x P . ro w s ()] ;
d o u b le [] s t a r t Y = n e w d o u b l e [s i m p l e x P . ro w s ()] ;
f o r (i n t i = 0; i < s i m p l e x P . r o ws () ; i + +) {

d o u b le x P o i n t = p 0 _ . g e t (0) + u n i t , g e t (i , 0) * l a m b d a . ;
d o u b le y P o i n t = p 0 _ . g e t (l) + u n i t , g e t (i , 1) * l a m b d a . ;
s i m p l e x P . s e t (i , 0 , x P o i n t) ;
s i m p l e x P . s e t (i , 1 , y P o i n t) ;
s t a r t X [i] = x P o i n t ;
s t a r t Y [i] = y P o i n t ;

}

v e c t o r Y = D o w n h i l l S i m p l e x . i n i t V e c t o r Y (s i m p l e x P , s o l v e F u n k .) ;
i n t i t e r a t i o n s = D o w n h i l l S i m p l e x . a m o e b a (s i m p l e x P , v e c t o r Y

, 0 . 0 0 0 1 , s o l v e F u n k . , m a x l t e r .) ;

Listing 8.4: Evaluating the Simplex

The parameter values defining the lambda value, coordinates of the start point

p0 _ and the maximum number of iterations m a x lte r . are set as input parame­

ters from the XML component definition using the reflection mechanism for pa­

rameters, described in section 4.5.2.2, and corresponding “setter” methods in the

SimplexComponent. For example the parameter lambda in the XML definition can

be seen in the listing below

C i n p o r t i d = " 3 " p a r a m e t e r ^ " L a m b d a " t y p e = " f l o a t " v a l u e = " 0 . 5 " >
< / i n p o r t >

the corresponding “setter” function from SimplexComponent is

pub l ic void s e t L a m b d a (O b j e c t l a m b d a) {
l a m b d a . = ((F l o a t) l a m b d a) . d o u b l e V a l u e () ;

}

132

8.4 Simplex Component

The final input param eter which represents the evaluation function solveFunk-, is

also set in the XML definition but in this case, another feature of the input tag

mechanism which allows us to specify alternatives for the values of the input rather

than a free format value is used. The evaluation function specifies a Java class which

implements the function equation and the DoubleObjectFunction interface. For the

example objective function y = — Xi2—x 22 and the penalty function implementations

the XML can be seen below.

<inport id="l" parameter^"SolveFunction" type="option" value="com
.baesystems.optimisation.function.SimpleEvaluationFunk">

2 <option name="simple" valuer"com.baesystems.optimisation.
function.SimpleEvaluationFunk">

</option>
4 Coption name="complex" value="com.baesystems.optimisation.

function.ComplexEvaluationFunk">
</ option>

6 <option name="Fiacco-McCormick" value="com.baesystems.
optimisation.function.FMCMethodEvaluationFunk">

</ option>
8 < / inport>

This specifies three Java function classes:

SimpleEvaluationFunk
This is a objective function with no constraints, it implements

2 2
y = - x i - x 2 .

ComplexEvaluationFunk
This is the objective function plus the simple constraints, specified in sec­

tion 8.3.1.

FMCMethodEvaluationFunk
This function implements the Fiacco-McCormick function, specified in sec­

tion 8.3.2.

The default value for the options is specified in the inport tag definition, line 1 in

the listing above, and in this case is SimpleEvaluat ionFunk. The corresponding

“setter” function in the SimplexComponent class to set the function can be seen

133

8.4 Simplex Component

below. It uses the Java class loader to instantiate the function object from its string

name representation.

publ i c void s e t S o l v e F u n c t i o n (Object funk) {
i f (S t r i ng . c l a s s . i s l n s t a n c e (f u n k)) {

so lveFunk . = (DoubleObjec tFunct ion)(Class . forName ((St r ing
) f u n k)) . newlns tance () ;

}

8.4.3 Simplex Component Usage

In normal use the simplex algorithm is run multiple times with different values

of PO, the starting point. A single execution may find a minimum given a large

enough number of iterations but better results are found if less steps and multiple

executions are used. For this example the loop component is used to control the

multiple executions of the simplex by looping over either the X\ or x 2 coordinate of

PO. The task graph can be seen in figure 8.2

® Visuai Component Composition Environment . Q j

B I B. ► N h
Q FE3DAFtxtrm ctRCS

Q FEBDAFoptnDB

Q FE3 DAFop en S o lv e r

0 FE3D A F«tortA CS

Q FE3D A Fr*adFarField

Q PM esh

Q w av e

Q fc3dA FR C S

Q b«3dA FRCS

Q J lm p le x

Q Funk

Q 3dA FSlor«

Q tim p le x V le w

Q tc s tF i l tc r

Q F U T E iaunch

Q D O E random

Q D O E teste r

Q DOEkrig

Q F llcM ove

Q Loop !

Loo p

C u r r e n t S ta te

[P a ra m e te r n a m e X2

S ta r t 0 0

S to p 6 0

In c re m e n t. 1 0

C u r r e n t 0 0

| ' I

l $ o l¥ e F u n c tw n sim p le v

I r e s i g n s p a c e f u n c t i o n Fiacco -M cC orm ick

L am bda

X I

c o m p le x

sim p le

x ; 0*

M a x l te r 10

O u t o o r t i

{ S o lu tio n

O e s ig n S p a c e

MIL

NIL

Figure 8.2: Choosing the Function on the Simplex Component

134

8.4 Simplex Component

The figure shows the simplex component, a loop component set to iterate over

the x 2 parameter from 0 to 6 in steps of 1, and a component called simplexView

which is responsible for displaying graphically a two dimensional domain space and

the search path taken by each iteration of the simplex algorithm. The other panel

displayed in the figure is an editor for the param eters in a proxy component, in this

case the SimplexComponent.

ExtendedVisualComponent is an extension to the SimpleVisualComponent, sec­

tion 4.5.1, along the same lines as the ControlVisualCom ponent, section 6.4.2.

Whereas the simple component was only capable of displaying the name of a com­

ponent and its execution state, the extended version provides a simple user interface

for setting and displaying param eter values. Param eters are edited in text fields

apart from parameters with preset options like the evaluation function, these are

represented by “drop down” list components which can be seen in the previous fig­

ure. The ExtendedVisualComponent implementation uses the inports and outports

from the proxy component to dynamically build the user interface for the parameter

values.

8.4.4 Search Results

The complete execution of the simplex algorithm task graph can be seen in figure

8.3. Each time the loop iterates it generates a new start point {x \ ,x2) where X\

is set to 3 and x 2 is controlled by the loop component. The result is a series of

simplex start points PO = (3, 0), (3 ,1) , (3, 5) with the algorithm reset at each

new start point. The visualiser component sim plexViewer keeps track of each

evaluated function value and plots the points as search paths on a graph. The

background is generated by evaluating the objective function at fine intervals for a

range of points and assigning a colour map to the values.

The result of running this task graph can be seen in figure 8.3. It shows the

domain space plot as coloured bands ranging from dark red for high values to lighter

greens and blues for the minimum values. The 6 simplex minimisations can be seen

135

8.5 Conclusion

as a series of trace paths starting from each of the start points. Each simplex can be

seen converging on local minima. To keep the display clear the number of iteration

steps per simplex run has been set very low at 1 0 steps.

ronment ; , , Q j

0 F E 3D A F «x tr»«R C S

Q FEBDAFopenDB

Q FEB D A Fopen S o lv e r

Q FE3D A F*ter*RCS

Q F E 3D A F r*«dF vF ie ld

Q FM esh

Q w x v e

Q f«3dA FR C S

Q beBdA FRCS

Q s im p le x

Q F unk

Q 3dA F S to re

Q s im p lex V tew

Q t t f t F l l t c r

Q FLITEIaunch

Q D O E random

Q D O E teste r

Q DOEkrig

Q FlleM ove

Q l o o p

►J < [»«-

C u r r e n t S ta te

; P a r a m « » r m m t

S t a r t

S to p

In c re m e n t

C u r r e n t

0 o
6 0 !

Figure 8.3: Completed Simplex with Visualisation

8.5 Conclusion

This simple function evaluation with various penalty functions has illustrated how

the simplex algorithm can work as a component within the VCCE. Writing objec­

tive and penalty functions can be straightforward given the function interface and

framework. A scientist could use the mechanism to add their own functions to be

evaluated and this could even be used to wrap a large solver for a more complex

parameter evaluation or design of experiments. For instance, the BE2D solver could

be executed within a function object using the same execution mechanism as the

BE2D component in chapter 5. The input to the function would be a simplex in

three dimensions because there are two inputs, wave incident angle and frequency.

136

8.5 Conclusion

The function would execute the solver and return a fitness value for the objective

function based on some evaluation of solver output.

Other optimisation algorithms could be used within this flexible framework with­

out much work and none of these additions affect the way the main VCCE framework

performs or need additional functionality.

137

CHAPTER 9

Recent Related Work

Although the work presented in this thesis was finished at the end of 2001 the

completion of this dissertation has taken considerably longer, due in part to work

constraints. Since then research in the area of PSEs has moved at a very rapid pace

not least because of the influence of the grid computing community. The research

discussed in relation to this thesis in chapter 2 only covers the time frame of the

original work. This chapter relates advances in research since tha t date to the work

here and puts into the context of current thinking some of the decisions made.

The chapter is broken down into four sections: middleware advances; computing

environments; component models; and PSE usage.

9.1 Advances in Middleware:

The Advent of Grid Computing

The distributed computing middleware field has changed rapidly in the period since

this work was finished. CORBA, the middleware chosen in implementing a dis­

tributed communication framework in this work, is now a mature platform with

138

9.1 Advances in Middleware:
The Advent of Grid Computing

many implementations by different vendors. It is still used widely among industrial

projects but has fallen out of favour with the scientific research community due in

part to its unsuitability for handling large data sets.

Since the publication of Foster and Kesselman’s “Grid Blueprint” [3 5], grid tech­

nologies and in particular Globus [34] have become the middleware of choice for

distributed computing research. The Globus Alliance [47] is developing some of the

technologies needed to build com putational grids. The result of this work is the

Globus Toolkit, a set of services and software libraries to support grids and grid

applications. The Toolkit includes software for: security; information infrastruc­

ture; resource management; da ta management; communication; fault detection; and

portability.

Globus is not the only grid computing platform, UNICORE [111], discussed in

section 2.3, also has m atured and is now widely used across Europe. UNICORE

v3.0 is a Java based grid computing infrastructure for accessing resources over the

Internet. UNICORE Plus is a research project and a commercial product, UNI-

COREpro, th a t intends to extend UNICORE to provide: systems administration;

modelling of resources; application specific extensions; advanced data management

and computational steering.

There are many grid infrastructure projects around the world making use of the

new grid technologies. The EUROGRID Project (Application Testbed for European

GRID Computing) [89] is a project to build a European domain specific grid based

on the UNICORE system and encompassing UNICORE Plus extensions as an al­

ternative to the US based grid projects which mainly use Globus. The main aims

are to develop tools for easy access to HPC resources in the application areas of:

biomolecular simulations; weather forecasting; and mechanical engineering.

The DataGrid project [43] aims to enable new scientific exploration through the

intensive computation and analysis of very large shared databases across distributed

scientific communities. It concentrates on storage facilities for very large data sets in

fields such as: high energy physics; biology and medical imaging; earth observations.

DataGrid makes use of the Globus toolkit and infrastructure.

139

9.2 Grid Computing Environments and Portals

EGEE: Enabling Grids for E-science in Europe [29] is a new project that will

build on the experiences and software developed for the DataGrid project to develop

a robust and reliable grid infrastructure in Europe.

In America, prototypes for the National Technology Grid are being built by the

National Partnership for Advanced Computational Infrastructure (NPACI) [84] and

the National Computational Science Alliance (NCSA) [83]. NASA is using Globus

to build the NASA Information Power Grid [82]. Lawrence Livermore, Los Alamos

and Sandia National Laboratories are using Globus to build a testbed for resource

management under the Accelerated Strategic Computing Initiative (ASCI). As with

the European infrastructure projects outlined here these projects are all attempting

to build computational grids for collaborative scientific computing.

All of these grid infrastructure projects could, and in many cases are, being used

to host component based PSEs such as the one described in this thesis. Replacing

the CORBA middleware layer with a grid solution is discussed in the future work

section of the next chapter.

9.2 Grid Computing Environments and Portals

Engineers and scientists now have a wide choice of computational modules and

systems available, enough so th a t navigating this large design space has become

its own challenge. A survey of twenty eight different PSEs by Fox, Gannon and

Thomas [39], as part of the Global Grid Forum’s Grid Computing Environments

working group, indicates th a t such environments generally provide “some back-end

computational resources, and convenient access to their capabilities” . Furthermore,

work flow features significantly in both of these descriptions. In many cases, access

to data resources is also provided in a similar way to computational ones. Often PSE

and Grid Computing Environment (GCE) is used interchangeably, as PSE research

predates the existence of grid infrastructure.

A number of the PSEs first discussed in chapter 2 are still actively being devel­

140

9.2 Grid Computing Environments and Portals

oped and have now been extended to work within a grid computing infrastructure.

These include SCIRun [65] and Netsolve, (which has become GridSolve [2]), both of

which make use of the Globus Toolkit. Interestingly grid-enabled PSEs are often of

a more hierarchical or layered nature than the PSE built in this work. For example

GridSolve is built upon Globus and provides services which can be used by higher

level environments such as SCIRun.

In addition, there are emerging intermediary level systems that provide access

to low level grid resources and additional functionality on top of those resources.

The Commodity Grid Kit (CoG) [72], is a project which provides different language

implementations of reusable commodity frameworks including Java, Python and

CORBA. These frameworks provide high level programmatic access to low level

grid resources and services, insulating the PSE and portal programmer from a lot

of the low level code.

GridLab [3] is another middleware project th a t is attem pting to provide an ab­

straction layer to grid application programmers, including PSE developers, above the

level of the Globus Toolkit or UNICORE services. GridLab is developing the Grid

Application Toolkit (GAT), an API and services th a t provide a uniform interface to

grid resources and services.

TENT [100] is a distributed work flow management system for engineering appli­

cations, and like the PSE in this thesis it has a graphical user interface for composing

work flows from components. The components are formed by wrapping codes, and

the wrapper, like the proxy components in the work here, is responsible for the trans­

fer of data and control between components using channels. The wrapper allows the

integration of any code without modification so tha t any type of legacy code can be

handled; components are stored in a repository; a user can configure work flow by

moving components from the repository to the editor in a drag-and-drop manner;

work flow can be executed, modified, stored, or restored; the user can set the pa­

rameters of each code, can modify them during the run and thus perform numerical

experiments; results can be visualised by putting appropriate tools into the work

flow. Like GridSolve, TEN T is making use of the CoG kit to provide access to a

141

9.2 Grid Computing Environments and Portals

grid environment.

Li and Baker [76] provide an extensive review of various grid portals currently

available. Based on their definition, a grid portal provides “end users with a cus­

tomised view of software and hardware resources specific to their particular problem

domains” . In some ways, this definition shares common themes with tha t of a GCE.

The focus in their work is primarily on web-based portals which differ from the

focus in the work presented in this thesis, where the focus is on a more graphical

environment. However, they emphasise three generations of portal technologies:

• Generation 1 focuses on a graphical interface and the use of the Globus toolkit,

primarily tightly coupled with Globus-based grid middleware tools.

• Generation 2 portals are aimed at specifying “portlets” , essentially user cus-

tomisable services which can run on top of a web server. Grid Portlets are

intended to be independent components th a t can utilise a number of different

grid middleware toolkits. This is the current state of affairs in portals, with

GridSphere [87] being a commonly used toolkit to support the construction of

such Portlets.

• Generation 3 involves the extension of the Portlet idea with semantic annota­

tions. Our component model supports a concept similar to Portlets, in that

each individual component present within a tool repository has an XML-based

interface. The XML description can also be extended with semantic properties

if required.

The GridLab Portal is implemented using the GridSphere portal framework

which in turn is built using other toolkits and frameworks such as the CoG kit,

Globus toolkit and MyProxy [8 8], a repository framework for handling security cre­

dentials.

Other portals include the Astrophysics Simulation Collaboratory [98] in America

and the AstroGrid [74] portal in the UK. The first is a portal for large scale simu­

lations of relativistic astrophysics and the second is a portal that aims to provide a

142

9.3 Component and Work Flow Models

data-grid to all UK astronomical observatory data.

Based on the surveys above, the VCCE may be classified as a graphical Grid

Computing Environment, both a problem solving and a programming environment.

It provides a user portal to enable the composition of scientific applications from

components and an execution environment built using CORBA as the middleware

layer.

9.3 Component and Work Flow Models

Since this work first identified and published a description of the XML based com­

ponent model [95] in 1999 many other projects have used similar ideas. It is now

almost standard practise for component based systems to define specifications and

interfaces in XML syntax. There are many other prominent projects that use similar

component definitions, not least of which are Web Services and Globus OGSA [36]

grid services which both use an interface definition language called WSDL [115] and

a message protocol called SOAP [116] w ritten in XML.

A recent development in the area of work flows is the addition of a new research

group, Work Flow Management (WFM-RG), in the Global Grid Forum to explore

the application work flows and their execution in a grid environment. An ongoing

survey of scientific work flows [107] has identified the current active work flow re­

search projects and the models and languages they use. One of the goals of the

WFM-RG is to get a consensus on work flow standards.

Current proposed languages for work flow include the Business Process Language

for Web Services (BPEL) [5] and Web Services Flow Language (WSFL) [75] both

of which are work flow languages specifically designed for use with web services

technology. Syntactically they are very similar to the work flow language presented

in this thesis providing specification for services, which can be thought of in terms

of this work as components, and the connections between them.

DAGMan [23] is a work flow meta-scheduling system for the Condor [41] schedul­

143

9.3 Component and Work Flow Models

ing system that can schedule dependant jobs, specified in directed acyclic graph onto

a grid infrastructure. The syntax is not XML based and the dependencies have to

be acyclic unlike the model in this thesis which allows cyclic dependencies.

GSFL [71] is a proposed work flow framework for grid services that will attempt

to leverage advances in web services work flow and adapt them form use in the Open

Grid Services Infrastructure (OGSI).

Triana [110] is a distributed PSE which uses a component and work flow model

based directly on the language definition in this thesis. Unlike the BPEL and WSFL

languages, the model presented here and used in Triana is independent of the un­

derlying middleware technology and in addition allows cyclic dependencies between

tasks. Loops and halting conditions in both BPEL and WSFL are represented in

the language constructs themselves whereas, with the model presented in this work,

these are handled by specific components within the work flow. Triana is discussed

further in the future work chapter as many of the ideas put forward here are imple­

mented in that project.

ICENI [42] is another PSE or work flow environment th a t uses XML pervasively

throughout its work flow specification and component model. The language is similar

to the work presented here and th a t used by many of the other projects in that it

defines components, their properties and the connections between them.

XCAT [70] is a project at Indiana University to implement the Common Compo­

nent Architecture (CCA), first discussed in chapter 4, onto a grid infrastructure. The

CCA specification describes the construction of portable software components that

may be re-used in any CCA compliant runtime framework. There are many different

frameworks envisioned from simple standalone applications to parallel systems. The

XCAT framework is designed to support applications built from components that

are distributed over a com putational grid of resources and distributed services. It

is based on Globus and the CoG kit for its core security and remote task creation,

and it uses RMI over XSOAP for its communication.

144

9.4 PSEs in Science and Engineering

9.4 PSEs in Science and Engineering

Since the work in this thesis was finished PSEs have advanced rapidly and are now

being used for real scientific research. Numerical optimisation techniques within

PSEs such as those described and prototyped in chapter 8 can now be done on a

large scale with PSEs and grid infrastructure.

An example is a grid-based approach to the validation and testing of lubrication

models [49]. This work uses gViz [51], an extension to the Iris Explorer workflow tool

and existing visualisation systems to enable visualisation and computational steering

in grid computing environments. The gViz project use XML in many areas [12]:

data representation; visualisation presentation; visualisation application description;

and audit trail for project history. The experiment performs a parameter space

search, in a similar manner to the design of experiments example in chapter 8 of

this thesis, to optimise a complex lubrication model solver, wrapped as a penalty

function within a simplex algorithm over 36 parameters. The whole experiment is

run across multiple parallel nodes and can be interactively visualised and remotely

steered. This experiment is a realisation of many of the ideas presented here.

The Fraunhofer Research Grid [55] are developing a PSE based on the Fraun­

hofer computing grid. Like the PSE in this work the system is component based

with a set of XML-based definition languages collectively called the Grid Applica­

tion Definition Language (GADL). There are a subset of four languages for: resource

description; job description; software component interfaces; data and data flow de­

scription. Unlike many work flow models, the Fraunhofer work use Petri nets instead

of DAGs to represent the dependencies between components. DAGs model the be­

haviour of a system but not the state, so it is not possible to model a loop directly.

Petri nets allow state to be represented so loops and controls can be modelled di­

rectly. The work in this thesis bypasses this need by delegating control a specific

control components within the work flow.

Taverna [90] is a PSE developed as part of the UK e-Science MyGrid project [48]

to enable in silico experiments in biology on the grid. Taverna is based on the web

145

9.4 PSEs in Science and Engineering

services standards and provides XML-based web services definitions and a work flow

execution environment.

Kepler [4] is a general purpose PSE with a graphical user interface and data flow

model from Ptolemy II [94], a set of Java packages th a t support concurrent mod­

elling and design. Kepler provides a work flow environment, representing work flow

in specific XML syntax called Model Markup Language (MOML). Like the syntax

outlined in this dissertation, work flows can be hierarchical in definition. The focus

of Kepler is actors, where an actor is a re-usable component tha t communicates with

other actors through channels. Kepler works in two domains: either a process net­

work where actors model a series of processes, communicating by messages through

channels; or in a synchronous da ta flow domain where the communication along the

channels is a data flow.

The Chimera Virtual D ata System (VDS) [8] is part of the GriPhyN project.

Chimera has a very da ta centric approach to work flow, choosing to focus on the

result of a computation and working backward generating intermediate virtual data

stages until a point where the actual data is available. At this point the work flow

can be executed to generate the required result. The Chimera system consists of four

primary components: a V irtual D ata Language, used to describe virtual data results;

a Virtual Data Catalogue, used to store virtual data entries; an Abstract Planner,

which resolves all dependencies for a virtual da ta product and forms a location and

existence independent plan; a Concrete Planner, which maps an abstract, logical

plan onto concrete, physical grid resources. The concrete work flow is expressed in

the DAGMan format and scheduled by the Condor scheduling system.

Cactus [18] is a modular, parallel, command line framework for solving systems

of partial differential equations from many disciplines of science and engineering.

As this chapter illustrates the field of PSE research, and in particular distributed

PSEs and computational grids, has moved at a rapid pace over the two and a half

years since the work in this dissertation was completed. Many of the ideas discussed

and prototyped here are now a reality in production systems. The next chapter

concludes this dissertation and focuses on the successes and failures of the work.

146

9.4 PSEs in Science and Engineering

Some of the descriptions in this related work chapter will be discussed with reference

to future work and directions.

147

CHAPTER 10

Conclusion and Future Work

10.1 Introduction

This thesis has examined the use of Problem Solving Environments (PSEs) for cre­

ating scientific work flows for use by scientists and engineers in their day-to-day

working lives. It has emphasised, through the building and use of several prototype

environments, how visual programming and software component-based techniques

can be used to build PSEs. The work has concentrated on XML-based definitions

for both components and a work flow within the environment. This is now accepted

standard practise within the PSE and grid computing communities. Techniques for

wrapping “legacy” codes as components for reuse within work flow and the use of

PSEs for non-linear optim isation were discussed. The use of CORBA as the cho­

sen middleware layer has proved to be unfashionable in the longer term, with PSE

designers now choosing to use grid computing technologies. The component-based

design and visual programming interface of the VCCE can still be reused by building

on top of the new grid computing infrastructure.

The remainder of this final chapter, evaluates each of the major sections discussed

in this work examining the successes and failures. Where areas are lacking possible

148

10.2 Critical Evaluation

solutions are discussed. This chapter also provides the opportunity to assess future

directions, including research groups th a t are still using, or have built on, the work

described in this dissertation.

10.2 Critical Evaluation

10.2.1 VCCE Prototype

The main result of the work undertaken in this thesis is the Visual Component Com­

position Environment (VCCE) prototype PSE and its component based framework.

When this project first started there were a number of different visual programming

tools that potentially could have been used such as AVS, Khoros and Iris Explorer.

None of these were deemed suitable for a number of reasons:

• Although most of these tools run on multiple platforms they are not platform

independent. A different version of each tool would be needed for each sup­

ported platform. The VCCE is written in Java and is platform independent.

• The VCCE is open source and freely available. The other tools are commercial

products and so may have licence restrictions.

• The VCCE has an XML-based component model which can be converted into

other XML model formats through XSLT translations. The component models

of the other tools are proprietary. In addition, moving components from one

operating system platform to another within the same application framework

can be problematic.

The VCCE interface, although simple, is complete enough to be able to perform

most of the functionality needed in composing work flow from components. The

user is able to: select the component from a repository, which is dynamically loaded

at runtime; instantiate the component onto a workspace; connect the component to

other components; and execute the completed work flow via an internal scheduler.

149

10.2 Critical Evaluation

Both simple loops and more complex non-linear loops are supported. A simple

loop allows the user to iterate over a sub-section of the task graph a predetermined

number of times. This loop can be used to perform “param eter runs” , executing a

solver for instance, a number of times so th a t the effect of varying input parameters

can be observed. See chapter 6. A non-linear loop is one th a t does not iterate in a

linear step but rather modifies the step value dependant upon some condition. It is

used in chapter 8 to minimise a m athem atical function.

The process of developing the prototype was iterative with new versions contain­

ing progressively more functionality. Each of the previous prototypes was discarded.

The project adhered to software engineering best practises, which throughout the

length of the development cycle proved worthwhile again and again. Due to the fact

that the framework was w ritten to well defined interfaces, extending the functional­

ity of components and the framework did not require much extra work. For instance,

in chapter 6 the component proxy, SimpleProxy, needed to be replaced with a new

proxy that would provide control functionality for the new loop component. Creat­

ing the new component was simply a m atter of implementing the Proxy Interface
in a new class called ControlProxy. Because both component proxies implement

the same interface they can be used in the same framework without any changes.

The internal scheduler had to be changed to handle the new control component

functionality but because th a t also is w ritten to an interface replacing the scheduler

did not change the framework at all. In fact, the future work, section 10.4, will show

how this extensibility could be leveraged to build components for the VCCE, using

different middleware technologies such as grid computing or web services.

10.2.2 XML-Based C om ponent Model

The XML-based component model is perhaps the single most important idea to

come out of this work. At the tim e this work started, XML was gaining momentum

in the development and research community, as a platform and language indepen­

dent data representation format. There were a number of emerging XML schema

for different purposes, such as mathem atical markup, chemical markup, etc. Two

150

10.2 Critical Evaluation

schema for component definition existed, IBM ’s BeanML and W 3C’s OSD. Both

of these provided definitions for components, but neither could be used as a data

flow language to represent the connecting da ta “channels” between components in

a generic manner. BeanML can be used to represent connections but is JavaBean

specific. The “channel” would have to be a m ethod on the child JavaBean in the

connection. OSD can represent dependencies between software components but is

used to specify software installation and version dependencies.

The component model presented in this thesis took ideas from both languages

to specify a data or work flow language th a t can specify component information

such as: component name and name space scope, alternative name and ID - all of

which can be used to uniquely identify a component and instances of tha t compo­

nent; component input and output interfaces in the form of typed data inports and

outports; a component execution model which helps the PSE to run the component

- this may include the executable name, programming language, dependencies, or in

the case of CORBA host name and name server; component help files.

Using XML as the language for defining the component interfaces has proved

to be a popular decision. XML component models are now widely used across a

large range of software projects. From the smallest software “plugins” to an editor,

through the many PSE projects, to service-based infrastructure projects such as web

services and grid services.

The XML component model presented here, is closely related to the XML-based

formats for specifying web and grid services, W 3C’s WSDL. The data flow model

is very close to the flow languages th a t are used to connect the services such as

BPEL4J, WSFL or GSFL. In fact due to the nature of XML and its roots in SGML

it is relatively straightforward to translate between similar formats. This translation

can be used to connect work and data flows between systems. The future work,

section 10.4, has an example of using this translation.

Development of the component model has not stopped with the end of this

project. It has now been extended and provides the basis for the component defini­

tion and connection language in another PSE project, called Triana.

151

10.2 Critical Evaluation

10.2.3 Distributed Middleware

With the benefit of hindsight and examining recent advances in middleware tech­

nology, see chapter 9, it would appear th a t the choice of CORBA as the middleware

layer was a mistake. These advances in middleware technology inevitably affect the

way the PSE described in this dissertation is viewed, however these should not be

thought of as a conflict. At the start of this project it was not at all obvious that

grid computing, then just at the start of its research, would become the de facto

standard for distributed scientific middleware. W riting the middleware layer from

scratch, in hindsight, was unnecessary but the solution did work. CORBA wrapped

codes such as BE3D and FE3D, chapter 7, ran successfully from within the VCCE

on remote machines. The problems with large data transfer and CORBA were alle­

viated through the use of the Action Factory th a t kept the data on the server side,

only returning a reference to the data to the VCCE client.

The proxy components used to represent the distributed components within

the VCCE were a good solution. Separating the instantiation code from the

execution code made the system appear, to the user at least, to be faster.

The extensibility of the proxy framework allowed the CORBA execution proxy,

A ctionFactoryExcution section 7.2.1, to be created easily and used within the

VCCE. The i n s t a n t i a t i o n of the component included the CORBA name service

handshaking, and reference resolving. The execution was a remote method call on

the resolved distributed component. This example could be extended to use both

web services through a web service invocation solution such as Axis or grid services

through the OGSA framework. The VCCE framework and component model would

not need to be extended to incorporate the new grid-based components, apart from

the issue of security which is discussed in the future work, section 10.4. A discussion

of grid-based PSEs can be found here [73].

152

10.3 Other users of the VCCE

10.2.4 Non-Linear Optimisation Techniques

Chapter 8 provided an interesting use of the VCCE to enable the user to perform

non-linear optimisation within a visual programming environment. A new loop com­

ponent was designed into which optimising algorithms such as the simplex algorithm

can be inserted. The optimising loop evaluates a cost or objective function trying

to minimise that function.

As with the rest of the system, the loop and function code was designed to be ex­

tensible. The simplex algorithm could be replaced by another suitable, more complex

algorithm. The function is an interface with a single method. Any implementation

of that interface can be used in the loop component. The XML component definition

can be used to specify the Java executable class name for the function so it is dynami­

cally loaded at run time. Several simple examples were shown with constraint-based

cost functions and the more complex objective function with Fiacco-McCormick

penalty. An illustration of the loop in use, minimising the function y = —x 2 — X22,

was also shown.

This simple use case can be extended to provide a real solution by wrapping a

complex solver code such as FE3D in a cost function. At each iteration of the loop,

the solver would be executed and a fitness function evaluated over the parameters

the scientist is interested in. This is a common task for engineers in particular. The

industrial partner in this work, BAE SYSTEMS, uses techniques such as this in “de­

sign of experiments” to optimise among other things, airflow over wing calculations

for aircraft models.

10.3 Other users of the VCCE

The VCCE has been used by Southampton University as a visual programming front

end to their engineering PSE in the GEODISE project, see [103, 102].

BAE SYSTEMS continue to use the VCCE with the solver components imple­

mented here and a component th a t was capable of executing command line opera­

153

10.4 Other Issues and Future Work

tions specified in the XML component definition. This is used as a visual scripting

language.

The XML component model has become the basis of the model used in the

GridOneD Triana PSE.

The experience gained in developing the VCCE is being used in a number of

e-Science projects such as GridLab and GridOneD.

10.4 Other Issues and Future Work

This section of the dissertation could easily be as long as the rest of the chapters put

together. The VCCE was the result approximately three “man years” of research

and development. In programming terms this is not a large amount of time so this

work concentrated on certain areas such as component design and PSE use cases.

The areas covered by PSEs today is enormous. A huge amount of effort is going

into PSE research and the closely related subject of grid computing. The current

UK e-Science funding for projects in these areas is evidence of this.

Some of the many issues not addressed in the VCCE include, in no particular or­

der: support for fault tolerance; control branching components; debugging and state

management of components; user authentication and security; component editors;

intelligent advisers; component integrity and version checking; support for multiple

middleware layers and protocols; implementation of hierarchical components; exter­

nal scheduling systems; resource reservation; experiment reproducibility and data

provenance; process monitoring; process migration; scalability; complex component

user interfaces; components as computational services; and complex visualisation

tools.

Fault tolerance is a very im portant aspect of any production system that is to be

used in the real world. The VCCE was only designed to be a prototype and so fault

tolerance was not a design consideration. Fault tolerance can be built into a PSE

at many different levels: the availability of components or services - a component

154

10.4 Other Issues and Future Work

cannot be used if it is not available - where replication of components in multiple

repositories can help; reliability of connections in data channels - error checking on

received data and successfully received messages might be needed; graceful failure -

an error in a single component should not crash the entire work flow.

The VCCE has a control construct for looping but no control construct com­

ponent implementing an if...then logical branch. A branching component is fairly

simple to implement but a decision needs to be made whether the control logic

should be at component level or within the flow connection language itself. Lan­

guages such as WSFL for choreographing the connections between web services have

control such as looping and logical branching at the language level. The Triana PSE

implements the logic in purpose built components. The trade off is tha t support

at the language level does not require special purpose components, but cannot im­

plement all possible constructs, such as while...do, repeat..until or complex if...then

statements, without bloating the language representation. Including the ability for

all control at the language level would tu rn a simple flow language into an almost

complete programming language. This would invalidate one of the main goals of

PSEs, abstraction of complexity.

Debugging of distributed systems is a notoriously complex task. The VCCE has

no support for this but a commonly used method in distributed Java systems is

to use logging. Log messages can have priorities such as debug, warning or error

and can be sent from remote processes to a logging server. State management of

components is also not considered in the VCCE. If a work flow is stopped mid-way

through its execution, either through error or user intervention, then the state of all

the components in the flow could be used to restart the work flow later. Internal

component state requires the component builder to implement checkpointing. This

will only be worth while for components th a t take a long time to run as it may

be quicker to re-run the component than write the checkpointing code. Where

there is no checkpointing implemented, given a work flow where the current point

of execution is known, i.e. which components have been executed already and which

have not, and a data object for the current position in the workflow, a course grained

155

10.4 Other Issues and Future Work

level of checkpointing is available. The work flow can be restarted at the point it

was stopped by passing the data object into the first unexecuted component. This

system has been implemented in Triana.

Security is important in PSEs for a number of reasons: if the PSE is able to

access remote resources then user authentication will be needed; some components

may be of restricted use or contain licence restrictions. Some web services and all

grid services are secured using Grid Security Infrastructure (GSI). This implements

X.509 certification where a user has to generate a credential th a t is used as a token

and passed to the service as a verification of identity. It is possible to implement

security at individual component level through the use of mechanisms such as SSL.

This is not a scalable solution and any production PSE should build security into

the infrastructure.

Support tools such as component editors and wizards for creating components

are a necessary part of a full PSE. In the VCCE components were custom created

by hand using a text editor for the XML definitions. This would not be attractive

in a system that is to be used by someone not familiar with the intricate details,

one of the goals of PSEs. A component model editor would allow a user to specify

the component model using tags, and also act as a wizard and enable customisa­

tion. An editor would work in a similar manner to an HTML editor, where a user

is presented with a menu based choice of available tags, and can either choose one

of these predefined tags or, different from an HTML editor, may define their own.

Component wizards would generate skeleton “boilerplate” code into which the com­

ponent writer can insert an algorithm without having to write component input and

output or control code. A system like this is implemented in Triana.

Many potential PSE users would like the system to have the ability to suggest ap­

propriate components from the repository. This would be helpful for several reasons:

new or novice users would be able to paraphrase their problem and have potential

similar work flow solutions previously used suggested to them; partial composed

work flows would have suitable components suggested - i.e. if a mesh generator is

connected to a non-compatible solver then the system would insert a translation

156

10.4 Other Issues and Future Work

component; domain expert knowledge could be saved in the system and not lost

when the expert is no longer available. An expert adviser could be implemented us­

ing the Java Expert System Shell (JESS) which gives the ability to “plug-in” domain

specific rules into the adviser.

Component integrity and version checking is im portant for scientific validity and

experiment reproducibility. If an in silico experiment run on a PSE produces an

important result then the validity of the components th a t make up the work flow

must be proved. To be able to reproduce the experiment it is not enough to have

the work flow, the correct versions of the valid components must be known.

A flexible PSE should not be reliant on a single middleware implementation. The

PSE should be able to sit above the middleware layer and utilise whatever distribu­

tion mechanisms and services are available. The VCCE implemented an extensible

framework that could be used with multiple middleware such as web services and

grid services. The GridLab GAT, provides a middleware independent layer tha t a

PSE could be built on top of. Dynamically loaded adaptors provide the middleware

capability. The PSE would make a GAT function call which would be dynamically

mapped to an appropriate resource through middleware implementation chosen by

the GAT engine. Triana makes use of this technique to distribute components via

middleware such as web services and peer-to-peer networks.

Hierarchical components are an im portant part of a PSE user interface. In large

task graphs it may be impossible to see every component given a finite screen size.

A user may group components into compound components to make the algorithm

easier to understand. The component model used in the VCCE has support for

compound components as they can be thought of as a component containing sub­

work flows. There was not enough time to implement the user interface aspect of

hierarchical components in the VCCE but it has been implemented in Triana using

the same component model.

The VCCE has several internal scheduling algorithms implemented. In many

cases it may not be possible for a PSE to schedule components itself. Remote re­

sources often have job submission queues to which the PSE must submit component

157

10.4 Other Issues and Future Work

processes for execution. Some of these resources are controlled by schedulers that

have the ability to handle dependencies for jobs, for example Condor. In this case the

PSE would hand the completed work flow to the external scheduler for execution.

This has been implemented in a collaboration between Triana and the DataGrid

project. The internal task graph format must be translated into the format of the

external scheduler prior to execution.

Resource reservation is another interesting aspect of future work. Some real

time applications, such as large detector data signal processing, may require the

PSE to reserve a certain amount of computing resources before the application can

be executed. W hether the PSE implements the reservation request or passes it onto

to a resource management application will be dependant upon the management of

the resources the PSE has available to it.

Experiment reproducibility and data provenance have already been covered by

state management and component integrity and version checking. To reproduce an

experiment, three things are needed: the original input data set; the task graph

specifying the algorithm; and the correct versions of all of the components involved.

Distributed PSEs will have component processes running on multiple resources

on a network or computational grid. The user of the PSE will want the ability

to monitor the various remote processes to discover their state. A heavily loaded

machine may not be able to allocate enough processing to the remote job and so

the user may require th a t particular process be moved to a more suitable location.

Process migration is a complicated research area and may involve checkpointing

if the run time for the process is suitably large. Monitoring information can be

relatively simple to provide but migration is an area of research that is currently not

well implemented, especially for heterogeneous networks where binary compatibility

of components is not supported.

The VCCE was a prototype PSE and consequently cannot be thought of as

being scalable. Large PSEs must be able to handle hundreds if not thousands of

concurrent processes. Many common tasks in scientific simulation are data intensive

and easily implemented as parallel processes, in a SPMD fashion. A PSE should

158

10.4 Other Issues and Future Work

be able to discover available resources and start multiple copies of task graphs and

components on those resources to increase the speed of the data processing. Many

physics and astronomy applications, such as gravitational wave data processing or

the SETI@home radio signal processing, and engineering applications, such as design

of experiments domain searches, can use as many resources as are available. The

data and processes are discrete with no communication needed between processing

resources.

Components in a PSE such as Triana have user interfaces of a much more com­

plex nature than the ones in the VCCE. The VCCE components have the ability

to display the name of the component and an indication of its execution state, the

component turned red once execution was completed. The major reason for PSEs

existence is usability. Components must be able to provide the user with a rich

interface that provides feedback about the component’s state and allows complex

interactions such as com putational steering to take place. Implicit in the rich inter­

face is the existence of fully featured visualisation tools. A PSE without visualisation

is almost like a waggon without wheels. A scientist will want quick ways to visu­

alise intermediate results th a t provide an indication of the state of a simulation.

Visualisation tools should also enable remote access from mobile devices such as

PDAs.

Components within the VCCE are internal to the framework. Increasingly in

research and business, components are being thought of as computational services.

The idea of a component as a computational service tha t can reside anywhere on

the network has now been generalised into the concept of web and grid services

that can be described by an open standard description language, WSDL. The idea

of component and service being interchangeable relies on the fact that both are

basically “black box” processing units th a t provide well defined input and output

interfaces. Service implies a network whereas component is normally thought of as

local. The ultim ate realisation of this is service based work flows where the service

can be implemented using any technology but discovered and communicated with,

using standards-based descriptions, advertisements and protocols.

159

10.5 Summary

10.5 Summary

The goal of a PSE is to support an application scientist in solving a problem within

a given application domain. A PSE should make the task of “problem solving” sim­

pler by abstracting the details of hardware and software. It is natural for a user to

decompose a large problem into smaller problems and a PSE should support this.

The data flow approach taken in this dissertation, where an application is composed

from available com putational components, each with a specific purpose, is perhaps

the most intuitive m ethod of accomplishing this. Visual programming has been used

in other tools to great success and is now the most common way of composing data

or work flow applications. It is shown here to be a very effective way of representing

applications composed from components. The graphical approach to programming

used here is generic and the generated XML task graph can be converted into many

different formats. The VCCE provides support for looping components. These are

used to perform “param eter runs” and non-linear optimisation loops utilising algo­

rithms such as the simplex to minimise functions and provide domain space search

capabilities. Large solvers such as the parallel FE3D are wrapped as monolithic

components within the VCCE. In cases such as this where source code is not avail­

able this may be the only solution. Smaller granularity components such as the

broken down BE2D code can provide more code re-use.

W ith the benefit of hindsight the work involved implementing the CORBA mid­

dleware tha t makes the large solvers available to the VCCE was unnecessary. Grid

computing now enables PSEs to be built on top of a feature rich middleware plat­

form. The modular design of the VCCE allows components to be built on top of

the new technologies.

The XML-based component model described here is also now a very common

feature of most modern PSEs and has been generalised into the notion of components

as services using the standards-based WSDL specification. The component model

is the one thing th a t will live on after this project.

160

APPENDIX A

Publications

Chronological list of conference papers and journal publications associated with this

research.

1. An XM L Based Component Model For Generating Scientific Applications and

Performing Large Scale Simulations in a Meta-Computing Environment,

Matthew S. Shields, David Walker, Omer Rana, Maozhen Li, paper presented

at the International Symposium on Generative and Component Based Software

Engineering (GCSE), Erfurt, Germany, 27-30 October 1999. Proceedings only

available on CD-ROM.

2. Implementing Problem Solving Environments fo r Computational Science,

Omer F. Rana, Maozhen Li, M atthew Shields, David Walker and David Golby,

European Conference on Parallel Processing (EuroPar), Munich, Germany,

August 2000. Springer Verlag.

3. A Java/CO RBA based Visual Program Composition Environment for PSEs,

M. S. Shields, O. F. Rana, David W. Walker, Li Maozhen, David Golby, paper

published Concurrency: Practice and Experience. Volume 12, Issue 8, 2000,

pp687-704. (Special Issue: ACM 1999 Java Grande Conference (Part 3) Issue

161

Edited by Geoffrey Fox.) John Wiley & Sons, Ltd.

4. A Collaborative Code Development Environment for Computational Electro-

Magnetics, M atthew Shields, Omer F. Rana, David W. Walker and David

Golby, Software Architectures for Scientific Computing Applications, 8th work­

ing conference organised by the IFIP Working Group on Numerical Software

(WG 2.5) on behalf of the IFIP Technical Committee on Software: Theory and

Practice, Ottawa, October 2000. Proceedings published The Architecture of

Scientific Software, eds. RF Boisvert and P T P Tang, pub. Kluwer Academic

Publishers, Massachusetts, USA, pp. 119-141, 2001. ISBN 0-7923-7339-1.

5. The Software Architecture o f a Distributed Problem-Solving Environment,

David. W. Walker, M. Li, O .F.Rana, M. S. Shields, and Y. Huang, paper

published Concurrency: Practice and Experience. Volume 12, Issue 15, 2001,

ppl455-1480.

6. Component-based Problem Solving Environments for Computational Science,

Maozhen Li, Omer F. Rana, David W. Walker, M atthew Shields, Yan Huang,

book chapter in “Component-based Software Development” (Ed: Kung-Kiu

Lau), World Scientific Publishing, 2003.

162

APPENDIX B

Code Listings

B .l Code from Chapter 4:

Problem Solving Environment Architecture

B.1.1 Number Display Bean

C ode from se c t io n 4 .2

p u b l i c c l a s s N u m b e r D i s p l a y B e a n e x t e n d s J L a b e l {
p r o t e c t e d f l o a t v a l u e = 0 ;
p r o t e c t e d F l o a t o V a l u e = new F l o a t (v a l u e) ;
p r o t e c t e d P r o p e r t y C h a n g e S u p p o r t l i s t e n e r s = new

P r o p e r t y C h a n g e S u p p o r t (t h i s) ;

/ / O b l i g a t o r y n o a r g u m e n t c o n s t r u c t o r
p u b l i c N u m b e r D i s p l a y B e a n () {

s e t P r e f e r r e d S i z e (new D i m e n s i o n (100 , 1 0 0)) ;
s e t V i s i b l e (t r u e) ;
s e t F o n t (t h i s . g e t F o n t () . d e r i v e F o n t (F o n t .BOLD, (f l o a t) 3 0)) ;
s e t B o r d e r (B o r d e r F a c t o r y . c r e a t e B e v e l B o r d e r (B e v e l B o r d e r .

LOWERED, C o l o r . b l a c k , C o l o r . b l u e)) ;
s e t B a c k g r o u n d (C o l o r . w h i t e) ;
s e t O p a q u e (t r u e) ;
t h i s . s e t H o r i z o n t a l A l i g n m e n t (CENTER) ;

163

B.l Code from Chapter 4:
Problem Solving Environment Architecture

}

/ / Get the value o f value .
p u b l i c f l o a t g e t V a l u e () { r e t u r n v a l u e ; }

/ / Set the value of va l ue .
p u b l i c s y n c h r o n i z e d v o i d s e t V a l u e (f l o a t v) {

i f (v a l u e ! = v) {
v a l u e = v ;
s e t T e x t (n ew F l o a t (v a l u e) . t o S t r i n g Q) ;
r e p a i n t () ;
f i r e V a l u e C h a n g e () ;
}

}

p u b l i c v o i d a d d P r o p e r t y C h a n g e L i s t e n e r (S t r i n g p r o p e r t y N a m e ,
P r o p e r t y C h a n g e L i s t e n e r 1) {

l i s t e n e r s . a d d P r o p e r t y C h a n g e L i s t e n e r (p r o p e r t y N a m e , 1) ;
}

p u b l i c v o i d r e m o v e P r o p e r t y C h a n g e L i s t e n e r (S t r i n g p r o p e r t y N a m e
, P r o p e r t y C h a n g e L i s t e n e r 1) {

1 i s t e n e r s . r e m o v e P r o p e r t y C h a n g e L i s t e n e r (p r o p e r t y N a m e , 1) ;
}

p r o t e c t e d v o i d f i r e V a l u e C h a n g e () {
l i s t e n e r s . f i r e P r o p e r t y C h a n g e ("value " , o Va l u e , o V a l u e =

n e w F l o a t (v a l u e)) ;
}

} / / NumberDisplayBean

B .l .2 Operator Bean

C ode from se c t io n 4 .2

p u b l i c c l a s s O p e r a t o r B e a n e x t e n d s J L a be l {
2 p u b l i c s t a t i c f i n a l S t r i n g ADD = "add" , SUB = "sub" , MLT = "

m l t " , DIV = " d iv " ;
p r o t e c t e d f l o a t o p e r a n d l = 0 , o p e r a n d 2 = 0;

4 p r o t e c t e d S t r i n g o p e r a t o r — ADD;
p r o t e c t e d f l o a t a n s w e r ;

e p r o t e c t e d S t r i n g o O p e r a t o r = new S t r i n g (o p e r a t o r) ;
p r o t e c t e d F l o a t o A n sw e r = new F l o a t (a n s w e r) ;

8 p r o t e c t e d P r o p e r t y C h a n g e S u p p o r t l i s t e n e r s = new
P r o p e r t y C h a n g e S u p p o r t (t h i s) ;

164

J O

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

4 8

50

52

54

B.l Code from Chapter 4:
Problem Solving Environment Architecture

/ / O b l i g a t o r y n o a r g u m e n t c o n s t r u c t o r
p u b l i c O p eratorBean () {

s e t P r e f e r r e d S i z e (new Dim ens ion (100 , 1 0 0)) ;
s e t V i s i b l e (t r u e) ;
s e t F o n t (t h i s . g e t F o n t () . d e r i v e F o n t (F o n t .BOLD, (f l o a t) 3 0)) ;
s e t B o r d e r (B o r d e r F a c t o r y . c r e a t e B e v e l B o r d e r (B e v e l B o r d e r .

LOWERED, C o l o r . b l a c k , C o l o r . b l u e)) ;
s e t B a c k g r o u n d (C o l o r . w h i t e) ;
s e t O p a q u e (t r u e) ;
t h i s . s e t H o r i z o n t a l A l i g n m e n t (CENTER) ;

}

/ / Ge t t h e v a l u e o f o p e r a t o r .
p u b l i c S t r i n g g e t O p e r a t o r () { r e t u r n o p e r a t o r ; }

/ / S e t t h e v a l u e o f o p e r a t o r .
p u b l i c v o i d s e t O p e r a t o r (S t r i n g v) {

o p e r a t o r = v ;
s e t T e x t (o p e r a t o r) ;
r e p a i n t () ;
f i r e O p e r a t o r C h a n g e () ;

}

p u b l i c f l o a t g e t O p e r a n d l () { r e t u r n o p e r a n d l ; }

p u b l i c f l o a t g e t O p e r a n d 2 () { r e t u r n o p e r a n d 2 ; }

p u b l i c v o i d s e t O p e r a n d l (f l o a t v) {
i f (o p e r a n d l ! = v) {

o p e r a n d l = v ;
c a l c u l a t e () ;

}
}

p u b l i c v o i d s e t O p e r a n d 2 (f l o a t v) {
i f (o p e r a n d 2 ! = v) {

o p e r a n d 2 = v ;
c a l c u l a t e () ;

}
}

p u b l i c v o i d a d d P r o p e r t y C h a n g e L i s t e n e r (S t r i n g p r o p e r t y N a m e ,
P r o p e r t y C h a n g e L i s t e n e r 1) {

l i s t e n e r s . a d d P r o p e r t y C h a n g e L i s t e n e r (p r o p e r t y N a m e , 1) ;

}
p u b l i c v o i d r e m o v e P r o p e r t y C h a n g e L i s t e n e r (S t r i n g p r o p e r t y N a m e

, P r o p e r t y C h a n g e L i s t e n e r 1) {

165

B.l Code from Chapter 4:
Problem Solving Environment Architecture

l i s t e n e r s . r e m o v e P r o p e r t y C h a n g e L i s t e n e r (p r o p e r t y N a m e , 1) ;
}

protected void f i r e O p e r a t o r C h a n g e () {
l i s t e n e r s . f i r e P r o p e r t y C h a n g e (" o p e r a t o r " , oO p e r a t o r ,

o O p e r a t o r = new S t r i n g (o p e r a t o r)) ;
}

protected void f i r e A n s w e r C h a n g e () {
1 i s t e n e r s . f i r e P r o p e r t y C h a n g e (" a n s w e r " , oA nsw er , oAns wer

= new F l o a t (a n s w e r)) ;
}
protected synchronized void c a l c u l a t e () {

try {
i f (o p e r a t o r = = ADD) {

a n s w e r = o p e r a n d l + o p e r a n d 2
} e l s e i f (o p e r a t o r = = SUB) {

a n s w e r = o p e r a n d l — o p e r a n d 2
} e l s e i f (o p e r a t o r = = MLT) {

a n s w e r = o p e r a n d l * o p e r a n d 2
} e l s e i f (o p e r a t o r = = DIV) {

a n s w e r = o p e r a n d l / o p e r a n d 2
}
f i r e A n s w e r C h a n g e () ;

} catch (E x c e p t i o n e) {
S y s t e m . o u t . p r i n t l n (e . t o S t r i n g () + } u ’ + new F l o a t (

o p e r a n d l) . t o S t r i n g () + ’ u ’ + new F l o a t (o p e r a n d 2)
t o S t r i n g () + *u } + o p e r a t o r) ;

}
}

public S t r i n g t o S t r i n g () {
return "O p e r a t o r B e a n " ;

}
} / / OperatorBean

B.1.3 Example XML Data Analysis Definition

C od e from s e c t io n 4 .4 .2 .9 , p a g e 50

<?xml v e r s i o n —" 1. 0 " ?>
2 < p r e f a c e >

< nam e a l t = " D A " i d=" DA01 " > D a t a A n a l y s e r < / n a m e >
4 < p s e —t y p e > G e n e r i c < / p s e —t y p e >

166

B.l Code from Chapter 4:
Problem Solving Environment Architecture

< h i e r a r c h y i d = " p a r e n t " > T o o l s . D a t a . D a t a A n a l y s e r < / h i e r a r c h y >
< h i e r a r c h y i d = " c h i l d " x / h i e r a r c h y >

< / p r e f a c . e >

< p o r t s >
< i n p o r t n u m > 2 < / i n p o r t n u m >
< o u t p o r t n u m > l < / o u t p u t n u m >
< i n p o r t y p e i d = " l " > f l o a t c / i n p o r t y p e >
C i n p o r t i d = " l " t y p e = " r e a l " >

< p a r a m e t e r n a m e = "regression" v a l u e = " NIL " / >
< / i n p o r t >
C i n p o r t i d = " 2 " t y p e = " float">

C p a r a m e t e r name="bayesian" v a l u e = " N I L " / >
< / i n p o r t >
< o u t p o r t y p e > r e a l < / o u t p o r t y p e >

< / p o r t s >

C e x e c u t i o n i d = " software ">
< t y p e > p a r a l l e l < / t y p e >
< t y p e > M P I < / t y p e >
< ty p e > S P M D < /ty p e >
< t y p e > b i n a r y < / t y p e >

< / e x e c u t i o n >

C e x e c u t i o n i d = " p l a t f o r m " >
C t y p e X / t y p e >

< / e x e c u t i o n >

C h e l p c o n t e x t ^ " instantiate ">
C h r e f n a m e = "file:/home/pse/help/data-analyser.txt " v a l u e = " N I L

" >

C / h e l p >

B .l .4 Example C om ponent Interface Described in XML

C ode from se c t io n 4 .4 .2 .9 , p a g e 50

C?xml version=" 1. 0 " ?>
2 cPSE>

C p r e f a c e >
4 Cnaine a lt= "b e 2 d " id="be2d01 ">be2dc/nam e>

C p s e — t y p e > G e n e r i c C / p s e —t y p e >
e C h i e r a r c h y id=" p a r e n t ">be2d . be2dComponents . Be2D Testc/

h i e r a r c h y >
C h i e r a r c h y i d = " c h i l d " x / h i e r a r c h y >

167

B.l Code from Chapter 4:
Problem Solving Environment Architecture

10

12

14

16

18

20

22

24

26

28

30

32

34

< / p r e f a c e >
< p o r t s >

C i n p o r t n u m > 2 < / i n p o r t n u m >
< o u t p o r t n u m > 2 < / o u t p o r t n u m >
< i n p o r t i d = " l " p a r a m e t e r ^ " c o n t r o l " t y p e = " s t r e a m " v a l u e = " N I L " >

< h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /
b e 2 d C o m p o n e n t s / c o n t r o l " v a l u e = " N I L " / >

< / i n p o r t >
< i n p o r t i d = " 2 " p a r a m e t e r = " m o d e l " t y p e = " s t r e a m " v a l u e = " N I L " >

< h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /
b e 2 d C o m p o n e n t s / m o d e l " v a l u e = " N I L " / >

< / i n p o r t >
C o u t p o r t i d = " l " p a r a m e t e r = " c u r " t y p e = " s t r e a m " v a l u e r " N I L ">

< h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /
b e 2 d C o m p o n e n t s / c u r " v a l u e = " N I L " / >

< / o u t p o r t >
< o u t p o r t i d = " 2 " p a r a m e t e r ^ " r e s " t y p e = " s t r e a m " v a l u e = " N I L " >

< h r e f n a m e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2 d /
b e 2 d C o m p o n e n t s / r e s " v a l u e = " N I L " / >

< / o u t p o r t >
< / p o r t s >
< e x e c u t i o n i d = " s o f t w a r e " t y p e = " b y t e c o d e ">

< t y p e i d = " a r c h i t e c t u r e " v a l u e r " s e r i a l " / >
< t y p e i d = " c l a s s " v a l u e r " b e 2 d . b e 2 d C o m p o n e n t s . B e 2 D T e s t " / >
C t y p e i d = " s o u r c e " v a l u e = " f i l e : / / / h o m e / s c m m s s / p r o j e c t / s r c / b e 2d

/ b e 2 d C o m p o n e n t s / * . j a v a " / >
< t y p e i d = " c l a s s p a t h " v a l u e = " ~ / p r o j e c t / c l a s s e s ; / ~ / l o c a l / 3

r d P a r t y J a v a / J N L / C l a s s e s " / >
< / e x e c u t i o n >
< e x e c u t i o n i d = " p l a t f o rm ">

< t y p e i d = " j a v a " v a l u e = " j d k l . 2 " / >
< / e x e c u t i o n >
< h e l p c o n t e x t = " a p i d o c ">

< h r e f nam e= " f i l e : / / / h o m e / s c m m s s / p r o j e c t / d o c s / b e 2 d d o c s / i n d e x .
h t m l " v a l u e = " N I L " / >

< / h e l p >
</PSE>

B.1.5 Example XML Task Graph

C od e from se c t io n 4 .4 .4 , p a g e 52

< ? x m l v e r s i o n ^ " 1. 0 " e n c o d i n g = " U T F - 8 " ? >
2 < P S E t a s k g r a p h t y p e = " s e r i a l i z e d " >

< c o m p o n e n t >

168

file:///home/scmmss/project/src/be2d/
file:///home/scmmss/project/src/be2d/
file:///home/scmmss/project/src/be2d/

B.l Code from Chapter 4:
Problem Solving Environment Architecture

C nam e a l t = ” b e 2 d D a t a " i d = " b e 2 d D a t a 0 1 " i n s t = " 7 0 6 5 0 1 9 M> b e 2 d
d a t a < / n a m e >

< l o c a t i o n x c o o r d = " 2 0 7 . 0 " y c o o r d = " 9 7 . 0 " / >
< / c o m p o n e n t
< c o m p o n e n t >

C nam e a l t = " b e 2 d " i d = " b e 2 d 0 1 " i n s t = " 6 6 7 0 3 2 6 " > b e 2 d c /n a m e >
< l o c a t i o n x c o o r d = " 2 4 2 . 0 " y c o o r d = " 2 1 2 . 0 " / >

< / c o m p o n e n t >
< c o m p o n e n t >

Cname a l t = " c u r V i e w " i d = " c u r V i e w O l " i n s t = " 6 3 2 6 1 3 9 " > c u r
v i e w e r < / n a m e >

C l o c a t i o n x c o o r d = " 1 3 7 . 0 " y c o o r d = " 3 6 6 . 0 " / >
< / c o m p o n e n t >
< c o m p o n e n t >

Cname a l t = " r c s V i e w " i d = " r c s V i e w O l " i n s t = " 2 4 3 3 7 0 2 " > r c s
v i e w e r c / n a m e >

C l o c a t i o n x c o o r d = " 2 9 3 . 0 " y c o o r d = " 3 5 8 . 0 " / >
< / c o m p o n e n t >
C s t a r t >

Cname a l t = " b e 2 d D a t a " i d = " b e 2 d D a t a 0 1 " i n s t = " 7 0 6 5 0 1 9 " > b e 2 d
d a t a c / n a m e >

< / s t a r t >
C c o n n e c t i o n >

C p a r e n t >
Cname a l t = " b e 2 d D a t a " i d = " b e 2 d D a t a O 1 " i n s t = " 7 0 6 5 0 1 9 ">

be2 d d a t a c / n a m e >
< / p a r e n t >
C c h i l d >

Cna m e a l t = " b e 2 d " i d = " b e 2 d 0 1 " i n s t = " 6 6 7 0 3 2 6 " > b e 2 d c /
n a m e >

< / c h i l d >
</ c o n n e c t i o n >
C c o n n e c t i o n >

C p a r e n t >
Cna m e a l t = nb e 2 d " i d = " b e 2 d 0 1 " i n s t = " 6 6 7 0 3 2 6 " > b e 2 d c /

n a m e >
< / p a r e n t >
C c h i l d >

Cname a l t = " c u r V i e w " i d = " c u r V i e w O l " i n s t = " 6 3 2 6 1 3 9 ">cu r
v i e w e r c / n a m e >

< / c h i l d >
</ c o n n e c t i o n >
C c o n n e c t i o n >

C p a r e n t >
C n a m e a l t = " b e 2 d " i d = " b e 2 d 0 1 " i n s t = " 6 6 7 0 3 2 6 " > b e 2 d c /

na m e >
< / p a r e n t >
C c h i l d >

C n a m e a l t = " r c s V i e w " i d = " r c s V i e w O l " i n s t = " 2 4 3 3 7 0 2 " > r c s

169

B.l Code from Chapter 4:
Problem Solving Environment Architecture

v i e w e r < / n a m e >
< / c h i l d >

< / c o n n e c t i o n >
< / P S E t a s k g r a p h >

B.1.6 VCCE Proxy C om ponent Interface

C od e from 4 .5 , p a g e 55

/ * *
* C o p y r i g h t & c o p y 2 0 0 0 C a r d i f f U n i v e r s i t y & B A E S Y S T E M S L t d , A l l
* r i g h t s r e s e r v e d .
* @ a u t h o r M a t t h e w S . S h i e l d s

* /
package v c c e . v i s u a l p r o x y ;

import j a v a . a w t . * ;
import v c c e . o b s e r v e r . * ;

/ * *
* The p u b l i c i n t e r f a c e t o a l l p r o x y c o m p o n e n t s w i t h i n t h e VCCE.
* I m p l e m e n t s t h e P r o x y p a t t e r n , p p 2 0 7 — 2 1 7 D e s i g n P a t t e r n s ,
* Gamma e t a I .

* /
public i n t e r f a c e P r o x y l n t e r f a c e extends S u b j e c t l n t e r f a c e {

/ / R e t u r n s t h e i n t e r n a l s y s t e m n a m e .
public S t r i n g g e t l n t e r n a l N a m e () ;

/ / R e t u r n s t h e a l t e r n a t i v e n a m e .
public S t r i n g g e t A l t N a m e () ;

/ / R e t u r n s t h e e x t e r n a l n a m e r e p r e s e n t a t i o n .
public S t r i n g g e t E x t e r n a l N a m e () ;

/ / R e t u r n s t h e i n s t a n c e I D (u n i q u e)
public S t r i n g g e t l n s t a n c e l D () ;

/ / S e t s t h e i n s t a n c e I D (s h o u l d be m a c h i n e g e n e r a t e d a n d
u n i q u e) .

public void s e t l n s t a n c e l D (S t r i n g I n s t l D S t r) ;

/ / R e t u r n s t h e t y p e o f P S E t h e c o m p o n e n t c a n be u s e d w i t h i n .
public P s e T y p e g e t P s e T y p e () ;

/ / R e t u r n s t h e p a r e n t c o m p o n e n t , i n a c o m p o u n d c o m p o n e n t .

170

B.l Code from Chapter 4:
Problem Solving Environment Architecture

public S t r i n g g e t P a r e n t () ;

/ / R e t u r n s a n i t e r a t o r c o n t a i n i n g t h e c h i l d c o m p o n e n t s i n a
c o m p o u n d c o m p o n e n t .

public P r o x y l t e r a t o r g e t C h i l d r e n () ;

/ / R e t u r n s a n i t e r a t o r o f i n p u t p o r t s .
public P o r t l t e r a t o r g e t l n p o r t s () ;

/ / R e t u r n s a s t r i n g r e p r e s e n t a t i o n o f t h i s c o m p o n e n t s i n p u t
v a l u e s .

public S t r i n g i n p o r t s T o S t r i n g () ;

/ / R e t u r n s t h e n u m b e r o f i n p u t p o r t s
public in t i n p o r t C o u n t () ;

/ / R e t u r n s t h e n u m b e r o f o u t p u t p o r t s
public in t o u t p o r t C o u n t () ;

/ / R e t u r n s a n i t e r a t o r o f o u t p u t p o r t s .
public P o r t l t e r a t o r g e t O u t p o r t s () ;

/ / R e t u r n s t h e e x e c u t a b l e c o m p o n e n t o f t h e p r o x y .
public E x e c u t i o n l n t e r f a c e g e t E x e c u t i o n () ;

/ / R e t u r n s a n i t e r a t o r o f t h e h e l p c o m p o n e n t s .
public H e l p l t e r a t o r g e t H e l p s Q ;

/ / R e t u r n s d e e p c l o n e o f t h e p r o x y , e x c l u d i n g h e l p c o m p o n e n t s
/ / w h i c h a r e s h a r e d b e t w e e n p r o x y i n s t a n c e s .
public O b j e c t c l o n e () ;

/ / D i s p l a y a p a r t i c u l a r h e l p c o m p o n e n t , b a s e d on c o n t e x t .
public void d i s p l a y H e l p (H e l p C o n t e x t c o n t e x t) ;

/ / R e t u r n s t h e v a l u e o f a g i v e n o u t p u t p o r t , i d e n t i f i e d by
/ / p a r a m e t e r s t r i n g .
public O b j e c t g e t O u t p o r t V a l u e (S t r i n g p a r a m e t e r) ;

/ / S e t s t h e v a l u e o f a n i n p u t p o r t i d e n t i f i e d by t h e
p a r a m e t e r s t r i n g .

public void s e t l n p o r t V a l u e (S t r i n g p a r a m e t e r , O b j e c t v a l u e) ;

/ / S e t s t h e v a l u e o f t h e i n p o r t b a s e d o n a u s e r s e l e c t e d
v a l u e .

public void s e t l n p o r t O p t i o n (S t r i n g p a r a m e t e r , S t r i n g o p t i o n) ;

/ / R e s e t t h e s t a t e o f t h e c o m p o n e n t .
public void r e s e t C o m p o n e n t () ;

B.l Code from Chapter 4:
Problem Solving Environment Architecture

} / / E n d o f P r o x y I n t e r f a c e I n t e r f a c e

B.1.7 ExecutionGraph

C ode from 4 .6 .3 .1 , p a g e 69

public c la s s E x e c u t i o n G r a p h ex ten d s A b s t r a c t E x e c u t i o n G r a p h {

/ / An array o f i n t e g e r s cor r e s pond i ng to the order in which
the nodes in the graph m ust be e xe cu t ed .

p r iv a te in t [] e x e c u t i o n O r d e r _ ;

/ / I ndex to the c u r r e n t node in the ex e c u t i o n order .
p r iva te in t e x e c u t i o n l n d e x . ;

/ / I mp l e me n t a t i o n of a b s t r a c t method, c a l l ed by a node on
compl e t i on of i t ’s e x e c u t i o n . I f t here are more nodes to
execut e in the graph t h i s f u n c t i o n ca l l s the executeNext
me t hod .

public void e x e c u t i o n P e r f o r m e d (E x e c u t i o n E v e n t e v t) {
e x e c u t i o n I n d e x _ + + ;
i f (h a s M o r e T o E x e c u t e ()) {

T r a n s f e r P o r t D a t a () ;
e x e c u t e N e x t () ;

}

/ / I mp l e me n t a t i o n o f a b s t r ac t , r e s p o n s i b l e f o r de t ermi n i ng
the order of e x e c u t i o n and s t a r t i n g the f i r s t node in the
g r a p h .

public void e x e c u t e () {
d e r i v e O r d e r O f E x e c u t i o n () ;
e x e c u t i o n I n d e x _ = 0;
e x e c u t e N e x t () ;

}

/ / Pr i v a t e u t i l i t y method, r e t u r n s True i f t here are more
nodes l e f t to e x e c u t e , False o t h e r wi s e .

p r iv a te boolean h a s M o r e T o E x e c u t e () {
return (e x e c u t i o n l n d e x . < e x e c u t i o n O r d e r _ . l e n g t h) ;

}
/ / Pr i v a t e u t i l i t y m,ethod to execut e the next node in the

o r d e r .
p r iv a te void e x e c u t e N e x t () {

E x e c u t i o n G r a p h N o d e aN ode = g e t N o d e F r o m O r d e r (

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

B.l Code from Chapter 4:
Problem Solving Environment Architecture

e x e c u t i o n l n d e x .) ;
a N o d e . e x e c u t e () ;

}

p r iv a te v o id T r a n s f e r P o r t D a t a () {
E x e c u t i o n G r a p h N o d e c u r r e n t = g e t N o d e F r o m O r d e r (

e x e c u t i o n l n d e x .) ;
f o r (E G N I t e r a t o r i t = c u r r e n t . g e t P a r e n t s () ; i t . h a s N e x t Q

;) {
i t . n e x t () . s e n d O u t p u t T o C h i l d (c u r r e n t) ;

}

p r i v a t e E x e c u t i o n G r a p h N o d e g e t N o d e F r o m O r d e r (i n t i n d e x) {
r e t u r n ((E x e c u t i o n G r a p h N o d e) n o d e s . . e l e m e n t A t (

e x e c u t i o n O r d e r . [i n d e x])) ;
}

/ / Pr i v a t e u t i l i t y method t ha t ana l y se s the nodes in the
graph and de r i v e s a s t r a i g h t f orward l i s t in order of
e x e c u t i o n .

p r i v a t e v o i d d e r i v e O r d e r O f E x e c u t i o n () {
i n t i = 0;
i n t c u r r e n t = 0;
e x e c u t i o n O r d e r . — n e w i n t [n o d e s . . s i z e ()] ;
f o r (E G N I t e r a t o r i t = s t a r t g e t C h i l d r e n () ; i t . h a s N e x t Q

;) {
e x e c u t i o n O r d e r . [c u r r e n t] = n o d e s . . i n d e x O f (i t . n e x t ()) ;
c u r r e n t + + ;

}
w h i l e (c u r r e n t < e x e c u t i o n O r d e r . . l e n g t h) {

E x e c u t i o n G r a p h N o d e tem p N o d e = (E x e c u t i o n G r a p h N o d e)
n o d e s . . e l e m e n t A t (

e x e c u t i o n O r d e r . [i]) ;
f o r (E G N I t e r a t o r i t = tempNode . g e t C h i l d r e n () ;

i t . hasN ext () ;) {
i n t c h i l d l n d e x = n o d e s . . indexOf (i t . next ()) ;
b o o le an found = f a l s e ;
f o r (i n t x = 0; x < c u r r e n t ; x++) {

i f (e x e c u t i o n O r d e r . [x] = = c h i l d l n d e x) {
f o u n d = t r u e ;

}
}
i f (! f o u n d) {

e x e c u t i o n O r d e r . [c u r r e n t] = c h i l d l n d e x ;
c u r r e n t + + ;

}
i + + ;

}

173

B.2 Code from Chapter 5:
BE2D - Industrial Demonstrator

B.2 Code from Chapter 5:

BE2D - Industrial Demonstrator

B.2.1 Command Line Execution Com ponent

C ode from s e c t io n 5 .1 .1 , p a g e 74

/ / C o n c r e t e i m p l e m e n t a t i o n o f a n A b s t r a c t E x e c u t i o n . T h i s c l a s s
/ / e n c a p s u l a t e s a C o m m a n d L in e e x e c u t a b l e c o m p o n e n t .
public c la s s Com m andLineExecution {

/ / C om m and L i n e
p r iva te S tr in g command. =

/ / C om m and l i n e a r g u m e n t , i f r e q u i r e d .
p r iv a te S tr in g a rg u m e n t. =

p r iv a te S tr in g d a t a . =

/ / S e t t e r s
public void set A rgum ent (O bject a rg u m e n tS tr) {

a rg u m en t. = (S tr in g) a rg u m e n tS tr ;
}

public void setCom m and(O bject command) {
command. = (S tr in g) command;

}

public void s e tD a ta F i le (O bject o u tp u t) {
d a ta . = (S tr in g) o u tp u t ;

}

/ / G e t t e r s
public S tr in g g e tD a ta F i le () {

return d a t a . ;
}

publ ic void e x e c u te () {
S tr in g e x e c S tr = command. + "u " + a rg u m en t.;
try {

174

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

B.2 Code from Chapter 5:
BE2D - Industrial Demonstrator

P ro c e ss p ro c e ss = Runtim e . getR untim e () . exec (exec.Str) ;
/ / P r o c e s s o u t p u t
B u ffe re d R e a d e r s td o u t = new B ufferedR eader (new

In p u t S tream R ead er (p ro c e s s . get In p u t S tream ())) ;
S tr in g o u tS tr = "
w h ile (o u tS t r != n u l l) {

o u tS tr = s td o u t . read L in e () ;
i f (o u tS t r != n u l l) {

System . ou t . p r in t l n (" p ro c e s s uniessage : u " +
o u tS tr) ;

}
}
s t d o u t . c l o s e () ;
/ / P r o c e s s E r r o r s
B u ffe red R ea d e r e r ro r = new B u ffe red R ead er (new

In p u tS tre a m R e a d e r (p ro c e ss . g e tE rro rS tre a m ())) ;
S tr in g e r r S t r = " " ;
w h ile (e r r S t r != n u l l) {

e r r S t r = e r r o r . read L in e () ;
i f (e r r S t r != n u l l) {

System . o u t . p r i n t l n (" p ro c e s s u e r r o r :" + e r r S t r) ;
}

}
e r ro r . c lo se () ;

t r y {
p ro c e ss . w ait F or () ;

}
c a tc h (I n te r r u p te d E x c e p t io n e) {

e . p r in tS ta c k T ra c e (System . o u t) ;
}

}
c a tc h (IO E x c e p tio n e) {

e . p r in tS ta c k T ra c e (System . o u t) ;
}

}

p u b lic v o id r e s e t () {
/ / n o - o p

}
} / / E n d o f C o m m a n d L i n e E x e c u t i o n C l a s s

B.2.2 BE2D Model D ata Java Interface

C o d e from s e c t io n 5 .1 .2 , p a g e 78

175

B.2 Code from Chapter 5:
BE2D - Industrial Demonstrator

4

6

8

10

/ / I n t e r f a c e to the model obj ect , p r ov i de s r e ad - on l y access to
/ / the o b j e c t r e p r e s e n t a t i o n of the m.odel f i l e which de f i ne s the
/ / 2D boundary f o r the s i m u l a t i o n .
p u b l i c i n t e r f a c e Model {

/ / Re t ur ns number o f c o - o r d i n a t e pa i r s in the model .
p u b l i c i n t ” 0 ;

/ / Re t ur ns array o f i n t e g e r s c o n t a i n i n g the x c o - o r d i n a t e s .
p u b l i c d o u b l e [] x () ;

/ / Re t urns array o f i n t e g e r s c on t a i n i n g the y c o - o r d i n a t e s .
p u b l i c d o u b l e [] y () ;

} / / End of Model I n t e r f a c e

B.2.3 BE2D Control D ata Java Interface

C ode from s e c t io n 5 .1 .2 , p a g e 78

/ / I n t e r f a c e t o t h e c o n t r o l o b j e c t , p r o v i d e s r e a d - o n l y a c c e s s t o
/ / t h e o b j e c t r e p r e s e n t a t i o n o f t h e c o n t r o l p a r a m e t e r s f i l e .
public i n t e r f a c e C o n tro l {

/ / R e t u r n s a s t r i n g d e f i n i n g t h e n a m e o f t h e c u r r e n t p r o b l e m
public S tr in g g e t T i t l e () ;

/ / R e t u r n s t h e f r e q u e n c y o f t h e i n c i d e n t w a v e i n Hz
public double g e tF () ;

/ / R e t u r n s d i r e c t i o n t h e w a v e i s t r a v e l l i n g f r o m i n r a d i a n s
public double g e tB e ta () ;

/ / R e t u r n s t h e c o m p l e x a m p l i t u d e o f t h e w a v e
public Complex ge tE com pQ ;

/ / R e t u r n s b o o l e a n f l a g l e u r . I f t r u e c u r o u t p u t w r i t t e n t o
/ / t h e d e f a u l t f i l e ” c u r ” i n t h e c u r r e n t d i r e c t o r y
public boolean g e tL c u rQ ;

/ / R e t u r n s b o o l e a n f l a g I r e s . I f t r u e r e s o u t p u t w r i t t e n t o
/ / t h e d e f a u l t f i l e ” r e s ” i n t h e c u r r e n t d i r e c t o r y
publ ic boolean g e tL r c s () ;

/ / R e t u r n s t h e r e s o u t p u t f i l e o b j e c t , o r n u l l i f n o t v a l i d
publ ic F ile g e tR c s F ile () ;

/ / R e t u r n s t h e c u r o u t p u t f i l e o b j e c t , o r n u l l i f n o t v a l i d

176

B.3 Code from Chapter 6:
Control and Loop Components

public F ile g e tC u rF ile () ;

/ / Re t urns res ou t p u t s t r eam URL object , nul l
public URL getRcsU RL() ;

/ / Re t urns cur ou t p u t s t r eam URL obj ec t , nu l l
public URL getCurU RLQ ;

} / / End of Cont ro l I n t e r f a c e

B-3 Code from Chapter 6:

Control and Loop Components

B.3.1 XML Task Graph with Loop Constructs

C od e from s e c t io n 6 .4 .1 , p a g e 95

< ? x m l v e r s i o n = " 1. 0 " e n c o d i n g = " U T F - 8 " ?>
< P S E t a s k g r a p h t y p e = " s e r i a l i z e d " >

< c o m p o n e n t >
< n a m e a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 4 0 8 1 5 2 7 1

C o n t r o l L oop
< / n a m e >
< l o c a t i o n x c o o r d = " 3 6 . 0 " y c o o r d = " 4 0 . 0 " / >

< / c o m p o n e n t >
< c o m p o n e n t >

< n a m e a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 1 9 4 7 1 1 6 '
C o n t r o l L o o p

< / n a m e >
C l o c a t i o n x c o o r d - ' 1 0 3 . 0 " y c o o r d = " 2 0 1 . 0 " / >

< / c o m p o n e n t
< c o m p o n e n t >

Cnam e a l t . = " BE2DAFMesh" i d = " b e 2 d A F 0 3 " i n s t = '
b e 2 d a c t i o n f a c t o r y m esh

c / n a m e >
C l o c a t i o n x c o o r d - 14 3 4 . 0 " y c o o r d = " 2 2 5 . 0 " / >

< / c o m p o n e n t >
C c o m p o n e n t >

C nam e a l t = " B E 2 D A F W a v e " i d = " b e 2 d A F 0 2 " i n s t = '
b e 2 d a c t i o n f a c t o r y w ave

C / n a m e >
C l o c a t i o n x c o o r d - ' 2 3 4 . 0 " y c o o r d = " 3 7 7 . 0 " / >

c / c o m p o n e n t >

i f not val i d

i f not val i d

>

>

6 0 4 4 0 3 9 ">

3 3 2 5 2 8 5 " >

177

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

B.3 Code from Chapter 6:
Control and Loop Components

< c o m p o n e n t >
C nam e a l t = " B E 2 D A F R C S " i d = " b e 2 d A F 0 4 " i n s t = " 2 1 0 2 9 6 0 " >

b e 2 d a c t i o n f a c t o r y r e s
< / nam e>
C l o c a t i o n x c o o r d = " 3 5 2 . 0 " y c o o r d = " 4 5 3 . 0 " / >

< / c o m p o n e n t
C c o m p o n e n t >

Cname a l t = " B E 2 D A F S t o r e " i d = " b e 2 d A F 0 5 " i n s t = " 4 6 8 6 7 8 9 " >
b e 2 d a c t i o n f a c t o r y s t o r e

C / nam e>
C l o c a t i o n x c o o r d = " 3 7 9 . 0 " y c o o r d = " 5 4 8 . 0 " / >

< / c o m p o n e n t >
C s t a r t >

Cname a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 4 0 8 1 5 2 7 ">
C o n t r o l Loop

C / n a m e >
< / s t a r t >
C s t a r t >

Cname a l t = " B E 2 D A F M e s h " i d = " b e 2 d A F 0 3 " i n s t = " 6 0 4 4 0 3 9 " >
b e 2 d a c t i o n f a c t o r y m esh

C / nam e>
< / s t a r t >
C c o n n e c t i o n >

C p a r e n t >
C n a m e a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 4 0 8 1 5 2 7 ">

C o n t r o l Loop
C / n a m e >
C l o o p p a r a m e t e r ^ " A n g l e " p o r t _ t y p e = " F l o a t " s t a r t = " 0 . 0 "

h a l t —" 2 5 . 0 " i n c r e m e n t ^ " 1. 0 " c u r r e n t ^ " 3 . 0 " / >
< / p a r e n t >
C c h i l d >

C n a m e a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 1 9 4 7 1 1 6 ">
C o n t r o l Loop

C / n a m e >
</ c h i l d >

< / c o n n e c t i o n >
C c o n n e c t i o n >

C p a r e n t >
C n a m e a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 19 4 7 1 1 6 ">

C o n t r o l Loop
C / n a m e >
C l o o p p a r a m e t e r = " A m p l i t u d e " p o r t _ t y p e = " F l o a t "

s t a r t = " 1 . 0 e + 07" h a l t = " 1. 0 e + 0 8 " i n c r e m e n t = " 1. 0e+ 07
II

c u r r e n t ^ " 1 . 0 e + 0 8 " / >
< / p a r e n t >
C c . h i l d >

C n a m e a l t ^ " BE2DAFWave " i d —" be 2 d A F 0 2 " i n s t —" 3 3 2 5 2 8 5 ">
b e 2 d a c t i o n f a c t o r y w ave

178

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

B.3 Code from Chapter 6:
Control and Loop Components

< / n a m e >
< / c h i l d >

</ c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
C nam e a l t = " B E 2 D A F M e s h " i d = " b e 2 d A F 0 3 " i n s t = " 6 0 4 4 0 3 9 " >

b e 2 d a c t i o n f a c t o r y mesh
< / na m e >

< / p a r e n t >
< c h i l d >

< n a m e a l t="BE2DA FRCS " i d —" b e 2 d A F 0 4 " i n s t —" 2 1 0 2 9 6 0 " >
b e 2 d a c t i o n f a c t o r y r e s

< / na m e >
< / c h i l d >

< / c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
< n a m e a l t = " B E 2 D A F W a v e " i d = " b e 2 d A F 0 2 " i n s t = " 3 3 2 5 2 8 5 ">

b e 2 d a c t i o n f a c t o r y wave
< / n a m e >

< / p a r e n t >
< c h i l d >

< n a m e a l t="BE2DAFRCS " i d = " b e 2 d A F 0 4 " i n s t = " 2 1 0 2 9 6 0 M>
b e 2 d a c t i o n f a c t o r y r e s

< / n a m e >
< / c h i l d >

< / c o n n e c t i o n >
< c , o n n e c t i o n >

< p a r e n t >
c n a m e a l t = " B E 2 D A F R C S " i d = " b e 2 d A F 0 4 " i n s t = " 2 1 0 2 9 6 0 ">

b e 2 d a c t i o n f a c t o r y r e s
< / n a m e >

< / p a r e n t >
< c h i l d >

C nam e a l t = " B E 2 D A F S t o r e " i d = " b e 2 d A F 0 5 " i n s t = " 4 6 8 6 7 8 9 " >
b e 2 d a c t i o n f a c t o r y s t o r e

< / n a m e >
< / c h i l d >

< / c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
Cna m e a l t = " B E 2 D A F S t o r e " i d = " b e 2 d A F 0 5 " i n s t = " 4 6 8 6 7 8 9 " >

b e 2 d a c t i o n f a c t o r y s t o r e
C / n a m e >

< J p a r e n t >
C c h i l d >

C n a m e a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 1947 1 1 6 ">
C o n t r o l Loop

c / n a m e >

179

B.3 Code from Chapter 6:
Control and Loop Components

</ c h ild >
< / c o n n e c t i o n >
< c o n n e c t i o n >

< p a r e n t >
< n a m e a l t = " B E 2 D A F S t o r e " i d = " b e 2 d A F 0 5 " i n s t =

b e 2 d a c t i o n f a c t o r y s t o r e
< / n a m e >

< / p a r e n t >
< c h i l d >

< n a m e a l t = " L o o p " i d = " l o o p 0 1 " i n s t = " 4 0 8 1 5 2 7 "
C o n tro l Loop

< / na m e >
< / c h i l d >

< / c o n n e c t i o n >
< / P S E t a s k g r a p h >

B.3.2 Loop Control Interface

C ode from 6 .4 .2 , p a g e 97

public i n t e r f a c e C o n t r o l l n t e r f a c e {
/ / Re t urns a c o n s t a n t data t ype f o r t h i s loop
public P o r t T y p e g e t P o r t T y p e () ;

/ / Re t urns the i n i t i a l loop va l ue .
public O b j e c t g e t l n i t V a l u e () ;

/ / Set s the i n i t i a l loop va l ue .
public void s e t l n i t V a l u e (O b j e c t v a l u e) ;

/ / Re t urns the h a l t i n g value f o r the loop.
public O b j e c t g e t H a l t V a l u e () ;

/ / Set s the h a l t i n g value f o r the l oop.
public void s e t H a l t V a l u e (O b j e c t v a l u e) ;

/ / Re t ur ns the c u r r e n t loop va l ue .
public O b j e c t g e t C u r r e n t V a l u e () ;

/ / Re t urns the loop i nc r eme n t va l ue .
publ ic O b j e c t g e t ! n c r e m e n t () ;

/ / Se t s the loop i n c r e men t val ue .
publ ic void s e t l n c r e m e n t (O b j e c t v a l u e) ;

" 4 6 8 6 7 8 9 " >

>

180

B.4 Code from Chapter 8:
Design of Experiments

}

/ / Re t ur ns true i f c u r r e n t value is l e s s than the h a l t i ng
value , false o t h e r wi s e .

public boolean h a l t in g C o n d i t io n () ;

/ / I nc r e me n t the loop .
public void p e rfo rm S tep () ;

/ / Set the i n p u t p o r t t ha t the loop wi l l i t e r a t e over.
public void se tL o o p e d P o rt (P o r t l n t e r f a c e a P o r t) ;

/ / Return the par a me t e r name f o r the s e l e c t e d por t .
public St r in g ge tP aram eterN am e () ;

/ / Rese t the loop to i t ’s s t a r t va l ue ;
public void r e s e tL o o p Q ;

/ / Adds an ou t p u t p o r t to the c o n t r o l component , used in
loop n e s t i n g where the value f rom the out er loop needs to

be p r o paga t ed t hrough to i n n e r l oops .
public void a d d O u tp o rt (P o r t l n t e r f a c e a P o r t) ;

B.4 Code from Chapter 8:

Design of Experiments

B.4.1 Downhill Simplex

C od e from s e c t io n 8 .4 , p a g e 128

/ * *
C o p y r i g h t & c o p y 2 0 0 1 C a r d i f f U n i v e r s i t y & B A E S Y S T E M S L t d ,
A l l r i g h t s r e s e r v e d .

A l g o r i t h m : D o w n h i l l S i m p l e x M e t h o d i n M u l t i d i m e n s i o n s , a d a p t e d
f r o m N u m e r i c a l R e c i p e s (F O R T R A N 7 7 v e r s i o n) , P r e s s , F l a n n e r y ,
T e u k o l s k y , V e t t e r l i n g , s e c t i o n 1 0 - 4 , p p 2 8 9 — 2 9 3 .

@ a u t h o r M a t t h e w S . S h i e l d s

* /
package com. b a e s y s t e m s . o p t i m i s a t i o n ;

im p o rt c e r n . c o l t . f u n c t i o n . D o u b le C o m p a r a t o r ;

181

14

16

18

20

22

24

26

28

30

32

34

36

38

4 0

42

44

46

48

5 0

52

B.4 Code from Chapter 8:
Design of Experiments

i m p o r t c e r n . c o l t . m a t r i x . D o u b l e F a e t o r y I D ;
i m p o r t c e r n . c o l t . m a t r i x . D o u b l e M a t r i x l D ;
i m p o r t c e r n . c o l t . m a t r i x . D o u b l e M a t r i x 2 D ;
i m p o r t c e r n . c o l t . m a t r i x . d o u b l e a l g o . F o r m a t t e r ;
i m p o r t c e r n . j e t . m a t h . F u n c t i o n s ;
i m p o r t com . b a e s y s t e m s . o p t i m i s a t i o n . f u n c t i o n . D o u b l e O b j e c t F u n c t i o n ;
i m p o r t j a v a . u t i l . V e c t o r ;

/ * *
* S t a t i c l i b r a r y c l a s s f o r o p t i m i s a t i o n f u n c t i o n s

* /
p u b l i c f i n a l c l a s s D o w n h i l l S i m p l e x {

p r i v a t e s t a t i c i n t IT-MAX = 1 0 0 ; / / Ma x i t e r a t i o n s

p r i v a t e s t a t i c f i n a l D o u b l e F a c t o r y l D f a c t o r y l D _ =
D o u b l e F a c t o r y l D . d e n s e ;

/ / h e l p e r f u n c t i o n s e t s t h e m a x i t e r a t i o n s a n d c a l l s t h e r e a l
a m o e b a .

p u b l i c s t a t i c f i n a l i n t a m o e b a (D o u b l e M a t r i x 2 D s i m p l e x P ,
D o u b l e M a t r i x l D v e c t o r Y , d o u b l e FTOL, D o u b l e O b j e c t F u n c t i o n
f u n k , i n t m a x l t e r) {
IT-MAX — m a x l t e r ;
r e t u r n a m o e b a (s i m p l e x P , v e c t o r Y , FTOL, f u n k) ;

}

/ * *
M u l t i d i m e n s i o n a l m i n i m i s a t i o n o f t h e f u n c t i o n func(x) w h e r e
x i s a v e c t o r i n N d i m e n s i o n s , by t h e d o w n h i l l s i m p l e x
m e t h o d o f N e l d e r a n d Me a d .
N o t e : On o u t p u t s i m p l e x P a n d v e c t o r Y w i l l h a v e b e e n r e s e t t o
N + l n e w p o i n t s a l l w i t h i n F T O L o f a m in im u m f u n c t i o n v a l u e .

@ param s i m , p l e x P A m a t r i x , o f d i m e n s i o n (N + l , N) w h o s e r o w s
a r e v e c t o r s w h i c h a r e t h e v e r t i c e s o f t h e s t a r t i n g
s i m p l e x .

@ param v e c t o r Y A v e c t o r o f l e n g t h N + l , w h o s e c o m p o n e n t s
m u s t s be p r e — i n i t i a l i s e d t o t h e v a l u e s o f ’’f u n k ”
e v a l u a t e d a t t h e N + l v e r t i c e s (r o w s) o f s i m p l e x P .

@ param F T O L T h e f r a c t i o n a l c o n v e r g e n c e t o l e r a n c e t o be
a c h i e v e d i n t h e f u n c t i o n v a l u e .

@ param f u n k T h e f u n c t i o n t o be m i n i m i s e d .
@ r e t u r n T h e n u m b e r o f i t e r a t i o n s t a k e n .

* /
p u b l i c s t a t i c f i n a l i n t a m o e b a (D o u b l e M a t r i x 2 D s i m p l e x P ,

D o u b l e M a t r i x l D v e c t o r Y , d o u b l e FTOL, D o u b l e O b j e c t F u n c t i o n
f u n k) {

D o u b l e M a t r i x l D p S u m ; / / c o lu m n su m v a l u e s

182

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

9 0

92

94

B.4 Code from Chapter 8:
Design of Experiments

i n t i n d e x H i ; / / i n d e x o f t h e h i g h e s t p o i n t i n v e c t o r Y
i n t i n d e x N e x t ; / / i n d e x o f t h e n e x t h i g h e s t p o i n t
i n t i n d e x L o ; / / i n d e x o f t h e l o w e s t p o i n t
d o u b l e RTOL; / / t h e f r a c t i o n a l r a n g e
d o u b l e y T r y ; / / t h e v a l u e r e t u r n e d f r o m f u n k
d o u b l e y S a v e ; / / t h e v a l u e r e t u r n e d f r o m f u n k
i n t i t e r a t i o n s = 0;

pSum = g e t C o l u m n S u m V e c t o r (s i m p l e x P) ;
f o r (; ;) {

/ / F i r s t we m u s t d e t e r m i n e h i g h e s t (w o r s e) , n e x t -
h i g h e s t , a n d l o w e s t (b e s t) p o i n t s i n t h e s i m p l e x .

i n d e x L o = 0;
i f (v e c t o r Y . g e t (0) > v e c t o r Y . g e t (1)) {

i n d e x H i = 0;
i n d e x N e x t = 1;

}
e l s e {

i n d e x H i = 1;
i n d e x N e x t = 0;

}
f o r (i n t i = 0; i < v e c t o r Y . s i z e () ; i + +) {

i f (v e c t o r Y . g e t (i) < = v e c t o r Y . g e t (i n d e x L o)) {
i n d e x L o = i ;

}
i f (v e c t o r Y . g e t (i) > v e c t o r Y . g e t (i n d e x H i)) {

i n d e x N e x t = i n d e x H i ;
i n d e x H i = i ;

}
e l s e i f ((v e c t o r Y . g e t (i) > v e c t o r Y . g e t (i n d e x N e x t)

) && (i ! = i n d e x H i)) {
i n d e x N e x t = i ;

}
}

/ / C o m p u te t h e f r a c t i o n a l r a n g e b e t w e e n t h e h i g h e s t
a n d t h e l o w e s t a n d r e t u r n i f s a t i s f a c t o r y . I f
r e t u r n i n g , p u t b e s t p o i n t a n d v a l u e i n s l o t 0 .

RTOL = 2 . 0 * M a t h . a b s (v e c t o r Y . g e t (i n d e x H i) — v e c t o r Y .
g e t (i n d e x L o)) / (M a th . a b s (v e c t o r Y . g e t (i n d e x H i)) +
M a t h . a b s (v e c t o r Y . g e t (i n d e x L o))) ;

i f (RTOL < FTOL) {
d o u b l e s w a p = v e c t o r Y . g e t (0) ;
v e c t o r Y . s e t (0 , v e c t o r Y . g e t (i n d e x L o)) ;
v e c t o r Y . s e t (i n d e x L o , s w a p) ;
f o r (i n t i = 0; i < s i m p l e x P . c o l u m n s () ; i + +) {

s w a p = s i m p l e x P . g e t (0 , i) ;
s i m p l e x P . s e t (0 , i , s i m p l e x P . g e t (i n d e x L o , i)) ;
s i m p l e x P . s e t (i n d e x L o , i , s w a p) ;

183

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

B.4 Code from Chapter 8:
Design of Experiments

}

}
/ / a m o e b a f o u n d s o l u t i o n w i t h i n t o l e r a n c e
r e t u r n i t e r a t i o n s ;

i f (i t e r a t i o n s > = IT_MAX) {
/ / amoeba exceeded max i t e r a t i o n s
r e t u r n i t e r a t i o n s ;

}
i t e r a t i o n s + = 2;

/ / Begin a new i t e r a t i o n . F i r s t e x t r a p o l a t e by a
f a c t o r o f — 1 through the f ac e of the s implex
across f rom the high p o i n t , i . e . r e f l e c t the
s i mp l e x f rom the high p o i n t .

yTry = am oebaTry (sim plexP , v ec to rY , pSum, fu n k ,
indexH i , —1 .0) ;

i f (yT ry < = vecto rY . ge t (indexLo)) {
/ / g i v e s a r e s u l t b e t t e r than the best p o i n t , so

t r y an a d d i t i o n a l e x t r ap o l a t i o n by a f a c t o r of
2 .

yTry = am oebaT ry(sim plexP , v e c to rY , pSum, funk ,
indexH i , 2 .0) ;

}
e ls e i f (yT ry > = vecto rY . get (in d e x N ex t)) {

/ / The r e f l e c t e d p o i n t is worse than the second-
h i g h e s t , so look f o r an i n t e r me d i a t e lower
p o i n t , i . e . do a one—di mens i ona l c o n t r a c t i o n .

ySave = vec to rY . get (in d e x H i) ;
yTry = am oebaTry (sim plexP , vectorY , pSum , funk ,

indexH i , 0 . 5) ;
i f (y T ry > = ySave) {

/ / C a n ’t seem, to get r id of the high p o i n t .
B e t t e r c o n t r a c t around the l owes t (b e s t)
p o i n t .

fo r (i n t i = 0; i < sim plexP . rows () ; i++) {
i f (i ! = in d ex L o) {

fo r (i n t j = 0; j < sim plexP . columns
() ; j+ +) {
d o u b le v a lu e = 0.5 *

(sim plexP . get (i , j) +
sim plexP . get (indexLo , j)) ;

p S u m .s e t (j , v a lu e) ;
sim plexP . se t (i , j , value) ;

}
vectorY . se t (i , funk . apply (pSum)) ;

}
}

184

1 32

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

BA Code from Chapter 8:
Design of Experiments

/ / Keep t r ack of f u n c t i o n e va l ua t i ons and
recomput e PSum

i t e r a t i o n s + = sim plexP . columns () ;
pSum = getColum nSum V ector (sim plexP) ;

}
e ls e {

/ / c o r r e c t the e v a l u a t i o n count
i t e r a t i o n s ;

}
}

}
}

*
I n i t i a l i s e and r e t u r n a v e c t o r Y of di mens ion N+l where i t ’s
component s are c a l c u l a t e d by e v a l u a t i n g the f u n c t i o n funk at
the N+l v e r t i c e s (rows) of the s i mp l ex .

@ param s i m p l e x P t h e s t a r t i n g s i m p l e x
@ param t h e o b j e c t i v e f u n c t i o n t o be e v a l u a t e d
@ r e t u r n a n i n i t i a l i s e d v e c t o r Y o f s i z e N + l

* /
p u b l i c s t a t i c f i n a l D o u b l e M a t r i x l D i n i t V e c t o r Y (D o u b l e M a t r i x 2 D

s i m p l e x P , D o u b l e O b j e c t F u n c t i o n f u n k) {
D o u b l e M a t r i x l D v e c t o r Y = f a c t o r y l D _ . m a k e (s i m p l e x P . r o w s ())

fo r (i n t i = 0; i < s i m p l e x P . r o w s () ; i + +) {
d o u b l e y T r y = f u n k . a p p l y (s i m p l e x P . vi ewRow (i)) ;
v e c t o r Y . s e t (i , y T r y) ;

}
r e t u r n v e c t o r Y ;

}

/ * *
E x t r a p o l a t e s by a f a c t o r fac t h r o u g h t h e f a c e o f t h e s i m p l e x
a c r o s s f r o m t h e h i g h p o i n t , t r i e s i t , a n d r e p l a c e s t h e h i g h
p o i n t i f t h e n e w p o i n t i s b e t t e r .

@ param s i m p l e x P A m a t r i x r e p r e s e n t i n g t h e s i m p l e x .
@ param v e c t o r Y t h e s t a r t v e c t o r
@ param p S u m t h e s i m p l e x c o lu m n su m v e c t o r
@ param f u n k T h e f u n c t i o n t o be m i n i m i s e d .
@ param i n d e x t h e i n d e x i n v e c t o r Y o f t h e h i g h e s t v a l u e
@ param f a c f a c t o r o f e x t r a p o l a t i o n
@ r e t u r n t h e c a l c u l a t e d v a l u e o f f u n k

* /
p r i v a t e s t a t i c d o u b l e a m o e b a T r y (D o u b l e M a t r i x 2 D s i m p l e x P ,

D o u b l e M a t r i x l D v e c t o r Y , D o u b l e M a t r i x l D p S u m ,
D o u b l e O b j e c t F u n c t i o n f u n k , i n t i n d e x H i , d o u b le f a c) {

185

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

2 08

2 10

212

214

B.4 Code from Chapter 8:
Design of Experiments

d o u b l e y T r y ;
d o u b l e f a c l = (1 .0 — f a c) / s i m p l e x P . c o l u m n s () ;
d o u b l e f a c 2 = f a c l —f a c ;

D o u b l e M a t r i x l D p T r y = f a c t o r y l D _ . m a k e (s i m p l e x P . c o l u m n s ())

f o r (i n t i = 0; i < s i m p l e x P . c o l u m n s () ; i + +) {
d o u b l e p T r y E l e m = p S u m . g e t (i) * f a c 1 — s i m p l e x P . g e t (

i n d e x H i , i) * f a c 2 ;
p T r y . s e t (i , p T r y E l e m) ;

}

/ / Ev a l ua t e the f u n c t i o n at the t r i a l po i n t
y T r y = f u n k . a p p l y (p T r y) ;

/ / I f i t ’s b e t t e r t han the h i ghe s t , then replace the
h i g h e s t

i f (y T r y < v e c t o r Y . g e t (i n d e x H i)) {
v e c t o r Y . s e t (i n d e x H i , y T r y) ;
f o r (i n t i = 0; i < s i m p l e x P . c o l u m n s () ; i + +) {

d o u b l e pS u m E lem = p S u m . g e t (i) — s i m p l e x P . g e t (
i n d e x H i , i) + p T r y . g e t (i) ;

p S u m . s e t (i , p S u m E l e m) ;
s i m p l e x P . s e t (i n d e x H i , i , p T r y . g e t (i)) ;

}
}
r e t u r n y T r y ;

}
/ * *

Cal cu l a t e the sums o f the columns in the s i mpl ex and re turn
them as a v e c t o r .

@param s i mpl ex P the s i mp l e x whose column sums we are
c a l c u l a t i n g

@return A v e c t o r c o n t a i n i n g the column sums
* /

p r i v a t e s t a t i c D o u b l e M a t r i x l D g e t C o l u m n S u m V e c t o r (
D o u b l e M a t r i x 2 D s i m p l e x P) {

D o u b l e M a t r i x l D pSum = f a c t o r y 1D _ . m ake (s i m p l e x P . c o l u m n s ())

f o r (i n t i = 0; i < s i m p l e x P . c o l u m n s () ; i + +) {
pS um . s e t (i , (s i m p l e x P . v i e w C o l u m n (i)) . z S u m ()) ;

}
r e t u r n pSum ;

}
} / / End of Do wn h i l l S i mp l e x Class

186

BA Code from Chapter 8:
Design of Experiments

B.4.2 Simplex C om ponent XML Definition

C od e from 8 .4 , p a g e 128

<?xml version=" 1. 0 " ?>
<PSE>

<preface>
Cname alt=" simplex " id=" simplex ">simplex method</name>
<pse— type>Generic</pse— type>
<hierarchy id=" parent " X / hierarchy>
<hierarchy id=" child " x / hierarchy>

< / preface>
<ports>

<inportnum>6</inportnum>
<outportnum>2</out port n u m >
<inport id="l" parameter="SolveFunction" type=" option"

value="com.baesystems.optimisation.function.
SimpleEvaluat ionFunk ">
Coption name=" simple " value=" com . baesystems .

optimisation.function.SimpleEvaluationFunk ">
</ option>
Coption name=" complex " value=" com . baesystems .

optimisation.function.ComplexEvaluationFunk">
</ option>
Coption name="Fiacco-McCormick" value=" com . baesystems

.optimisation.function.FMCMethodEvaluationFunk ">
</ option>

C/inport>
Cinport id="2" parameter^"DesignSpaceFunction" type="

option" value="com.baesystems.optimisation.function .
SimpleEvaluationFunk">
Coption name=" simple " value=" com . baesystems .

optimisation . function . SimpleEvaluationFunk">
c/option>
Coption name="complex" value="com.baesystems.

optimisation.function.ComplexEvaluationFunk ">
< / option>
Coption name="Fiacco-McCormick" value="com.baesystems

. optimisation . function . FMCMethodEvaluationFunk">
</ option>

< / inport>
Cinport id="3" parameter^"Lambda" type="float" value="0.5

" >

</ inport>
Cinport id="4" parameter="Xl" type="float" value="3">
< / inport>
Cinport id="5" parameter^"X2" type="float" value="0">
C/ inport>

B.4 Code from Chapter 8:
Design of Experiments

36

38

40

42

44

46

48

50

< in p o r t id —"6" p a ram e te r= " Maxlt er " type=" short " value="10
">

< / in p o r t>
< o u tp o r t id=" 1" p a ram e te r= " S o lu t io n " type=" o b je c t " value=

"NIL">
< / o u tp o r t>
< o u tp o r t id="l" p a ram e te r= " DesignSpace " type=" obiect"

valuer" NIL ">
< / o u tp o r t>

< / p o r ts>
< e x e c u tio n id="software " type= " bytecode" v a lu e = "extended">

C type id=" architecture " v a lu e r " serial"/>
< ty p e id —"class" v a lu e = "com.baesystems.components.

Simp1exComponent"/>
< ty p e id="source" v a lu e = "file:///home/compdata/cardiff/

proj ect/src/com/baesystems/components/Simp1exComponent
.j ava"/>

< ty p e id = " classpath" v a lu e r " /home/compdata/project/
classes"/>

< / e x e c u tio n >
< e x e c u tio n i d = " p l a t f orm">

< ty p e id="java" v a lu e = "jdkl.2"/>
< / e x e c u tio n >
< help c ,on tex t= " apidoc ">

< h re f nam e="file://f:\\cardiff\\proj ect\\docs\\be2ddocs\\
index.html" v a lu e = "NIL"/>

< /h e lp >
</PSE>

188

file:///home/compdata/cardiff/
file://f://cardiff//proj

Bibliography

[1] G. Abram and L. Treinish. An Extended Data-Flow Architecture for Data

Analysis and Visualization. Computer Graphics, 29(2): 17-21, 1995.

[2] S. Agrawal, J. Dongarra, K. Seymour, and S. Vadhiyar. NetSolve: Past,

Present, and Future - A Look at a Grid Enabled Server. In F. Berman,

G. Fox, and A. Hey, editors, Making the Global Infrastructure a Reality. Wiley

Publishing, 2003.

[3] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis,

Tom Goodale, Thilo Kielmann, Andre Merzky, Jarek Nabrzyski, Juliusz

Pukacki, Thomas Radke, Michael Russell, Ed Seidel, John Shalf, and Ian Tay­

lor. Enabling Applications on the Grid: A Gridlab Overview. International

Journal o f High Performance Computing Applications: Special issue on Grid

Computing: Infrastructure and Applications, 2003.

[4] I. Alt int as, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Ke­

pler: An Extensible System for Design and Execution of Scientific Workflows.

In 16th Intl. Conference on Scientific and Statistical Database Management

(SSDBM), 2004.

189

BIBLIOGRAPHY

[5] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes

Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,

Ivana Trickovic, and Sanjiva Weerawarana. Business Process Execution Lan­

guage for Web Services Version 1.1.

[6] Apache XML Project. Xerces XML Parser.

See web site at: h t t p : / /x m l . ap ach e . o rg /.

[7] P. Arbenz, C. Sprenger, H. P. Liithi, and S. Vogel. SCIDDLE: A Tool for

Large-Scale D istributed Computing. Technical report, Institute for Scientific

Computing, ETH Zurich, 1994.

[8] A. Arbree, P. Avery, D. Bourilkov, R. Cavanaugh, S. Katageri, J. Rodriguez,

G. Graham, J. Vockler, and M. Wilde. V irtual D ata in CMS Productions.

Technical report, GriPhyN, 2003.

[9] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam.

Graphical Development Tools for Network-Based Concurrent Supercomput­

ing. In Proceedings of Supercomputing 91, pages 435—444, 1991.

[10] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application Level

Scheduling on D istributed Heterogeneous Networks. In Proceeding of Super­

computing 1996, Pittsburgh, Pennsylvania, 1996.

[11] R. Bramley and D. Gannon. PSEW are.

See web site at: h ttp ://w w w .e x tre m e .in d ia n a .e d u /p se w a re .

[12] K.W. Brodlie, J. Wood, D.A. Duce, J.R. Gallop, D. Gavaghan, M. Giles,

S. Hague, J. W alton, M. Rudgyard, B. Collins, J. Ibbotson, and A. Knox.

XML for Visualization. In EuroWeb 2002, 2002.

[13] Alan W. Brown and K urt C. Wallnau. The Current State of CBSE. IEEE

Software, Septem ber 1998.

[14] J. C. Browne, S. I. Hyder, J. J. Dongarra, K. Moore, and P. Newton. Vi­

sual Program m ing and Debugging for Parallel Computing. Technical report,

Departm ent of Com puter Sciences, University of Texas at Austin, 1994.

190

http://www.extreme.indiana.edu/pseware

BIBLIOGRAPHY

[15] S. Browne. The Netlib M athematical Software Repository. D-lib Magazine,

September 1995.

[16] H. de Bruin. A Grey—Box Approach to Component Composition. In Pro­

ceedings o f the International Symposium, on Generative and Component Based

Software Engineering (GCSE), 1999.

[17] O. Bunin, Y. Guo, and J. Darlington. Design of Problem Solving Environment

for Contingent Claim Valuation. In EuroPar. Springer Verlag, 2001.

[18] The Cactus M aintainers. The Cactus Com putational Toolkit.

See web site at: http: //www. cactus code. org.

[19] B. Carpenter, Y-J. Chang, G. Fox, D. Leskiw, and X. Li. Experiments with

‘HP Java’. Concurrency: Practice and Experience, 9(6):633—648, June 1997.

[20] H. Casanova and J. J. Dongarra. NetSolve: A Network-Enabled Server for

Solving Com putational Science Problems. Int. Journal o f Supercomputing Ap­

plications, 11(3), 1997.

[21] CCA Forum. The Common Component Architecture Technical Specification -

version 0.5. Technical report, Common Component Architecture Forum, 2001.

[22] Zhikai Chen, K urt Maly, Piyush M ehrotra, and Mohammad Zubair. Arcade:

A W eb-Java Based Framework for D istributed Computing.

See web site at: http : //www. icase. edu : 8080/.

[23] Condor Team. DAGMan: A Directed Acyclic Graph Manager.

See website at http: //www. cs. wise. edu/condor/dagman/.

[24] J. E. Cuny, R. A. Dunn, S. T. Hackstadt, C. W. Harrop, H. H. Hersey, A. D.

Malony, and D. R. Toomey. Building Domain-Specific Environments for Com­

putational Science: A Case Study in Seismic Tomography. Int. J. Supercom­

puting Appl., 11(3):179-196, 1997.

[25] Dassault Aviation. Action Factory.

See website at http://actionfactory.sourceforge.net.

191

http://actionfactory.sourceforge.net

BIBLIOGRAPHY

[26] K. M. Decker and B. J. N. Wylie. Software Tools for Scalable Multilevel Ap­

plication Engineering. IE E E Computational Science and Engineering, 11(3),

1997.

[27] Donald W. Denbo. SGT: The Scientific Graphics Toolkit.

See web site at: http://www.epic.noaa.gov/java/sgt/index.html.

[28] A. Denis, C. Perez, and T. Priol. Portable Parallel CORBA Objects: an

Approach to Combine Parallel and Distributed Programming for Grid Com­

puting. In Proceedings Euro-Par2001, pages 835-844. Springer, 2001.

[29] EGEE: Enabling Grids for E-science in Europe.

See website at http://public.eu-egee.org/.

[30] D. Erwin and D. Snelling. UNICORE: A Grid Computing Environment. In

Euro-Par 2001, pages pp 825-834, 2001.

[31] Thomas Esser. teTeX: a complete T eX distribution for UNIX compatible sys­

tems. See website at http: //www. tug. org/teTeX/.

[32] A. V. Fiacco and G. P. McCormick. Non-Linear Programming: Sequential and

Unconstrained M inim isation Techniques. Wiley, 1968.

[33] S. Fleeter, E. Houstis, J. Rice, C. Zhou, and A. Catlin. GasTurbnLab: A

Problem Solving Environment for Simulating Gas Turbines. In Proceedings of

W h IM A C S World Congress, 2000.

[34] I. Foster and C. Kesselman. Globus: A M etacomputing Infrastructure Toolkit.

Int. Journal o f Supercomputing Applications, 11 (2): 115—128, 1997.

[35] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computer

Infrastructure. M organ-Kaufmann, 1999.

[36] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems Integra­

tion. Technical report, Open Grid Service Infrastructure WG, Global Grid

Forum, 2002.

192

http://www.epic.noaa.gov/java/sgt/index.html
http://public.eu-egee.org/

BIBLIOGRAPHY

[37] D. Foulser. IRIS Explorer: A Framework for Investigation. Computer Graph­

ics, 29(2):13—16, 1995.

[38] M. Fowler and K. Scott. UML Distilled. Addison-Wesley, 1997.

[39] G. Fox, D. Gannon, and M. Thomas. A Summary of Grid Computing Envi­

ronments. Concurrency and Computation: Practise and Experience (Special

Issue), 2003.

[40] Geoffrey Fox, Tomasz H aupt, Erol Akarsu, Alexey Kalinichenko, Kang-Seok

Kim, Praveen Sheethalnath, and Choon-Han Youn. The Gateway System:

Uniform Web Based Access to Remote Resources. Proceedings o f JavaGrande

Conference, 1999.

[41] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven Tuecke.

Condor-G: A Com putation Management Agent for M ulti-Institutional Grids.

In Proceedings o f the 10th IEE E International Symposium on High Perfor­

mance Distributed Computing (H PCD -’Ol), 2001.

[42] N. Furmento, W. Lee, A. Meyer, S. Newhouse, and J. Darlington. ICENI: An

Open Grid Service A rchitcture Implemented with Jini. In Super Computing

’02, 2002 .

[43] Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. European

DataGrid Project: Experiences of deploying a large scale Testbed for e-Science

applications. In Performance 2002 Tutorial Lectures Book ‘Performance Eval­

uations of Complex Systems: Techniques and Tools”, 2002.

[44] E. Gallopoulos, E. N. Houstis, and J. R. Rice. Computer as Thinker/Doer

:Problem-Solving Environments for Com putational Science. IEEE Computa­

tional Science and Engineering, 1(2): 11-23, 1994.

[45] E. Gallopoulos, E. N. Houstis, and J. R. Rice. Workshop on Problem-Solving

Environment: Findings and Recommendations. ACM Computing Surveys,

27(2), 1994.

193

BIBLIOGRAPHY

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements o f Reusable Object-Oriented Software. Addison-Wesley,

Massachusetts, 1995.

[47] The Globus Alliance. See website at h ttp ://w w w .g lo b u s .o rg .

[48] C.A. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Knowledge Integra­

tion: In silico Experim ents in Bioinformatics. In The Grid: Blueprint for a

New Computing Infrastructure Second Edition. Morgan Kaufmann, 2003.

[49] C.E. Goodyer, M. Berzins, P.K. Jimack, and L.E. Scales. Grid-Based Nu­

merical Optim isation in a Problem Solving Environment. In S.J. Cox, editor,

Proceedings o f Second UK E-Science All-Hands Meeting, Nottingham , 2003.

[50] A. S. Grimshaw, A. Nguyen-Tuong, M. J. Lewis, and M. Hyett. Campus-

Wide Computing: Early Results Using Legion at the University of Virginia.

Int. J. Supercomputing Appl., 11 (2): 129-143, 1997.

[51] gViz: Visualization Middleware for e-Science.

See website at h t tp : / /w w w .v is u a l iz a t io n .le e d s .a c .u k /g V iz / .

[52] Salim Hariri, Haluk Topcuoglu, W ojtek Furmanski, Dongmin Kim, Yoonhee

Kim, Ilkyeun Ra, Xue Bing, Bouqing Ye, and Jon Valente. Problem Solving

Environments, chapter A Problem Solving Environment for Network Comput­

ing. IEEE Com puter Society, 1998.

[53] Ken Hawick, Gregory V. Wilson, et al. High Performance Computing and

Communications Glossary.

See website at h t t p : / / n h s e .n p a c . s y r . ed u /h p ccg lo ss /.

[54] Wolfgang Hocheck, Cay S. Horstmann, Gary Cornell, Paul Houle, Doug Lea,

M atthew Austern, and Alexander Stepanov. The Colt Distribution. Open

Source Libraries for High Performance Scientific and Technical Computing in

Java.

See web site at: h t tp : / / t i ld e - h o s c h e k .h o m e .c e rn .c h / h o sch ek /c o lt/.

194

http://www.globus.org
http://www.visualization.leeds.ac.uk/gViz/
http://tilde-hoschek.home.cern.ch/

BIBLIOGRAPHY

[55] Andreas Hoheisel and Uwe Der. An XML-based Framework for Loosely Cou­

pled Applications on Grid Environments. In Lecture Notes in Computer Sci­

ence, pages 245-254. Springer Verlag, 2003.

[56] E. N. Houstis, S. B. Kim, P. Wu S. Markus, N. E. Houstis, A. C. Catlin,

S. Weerawarana, and T. S. Papatheodorou. Parallel ELLPACK Elliptic PDE

Solvers. In Proceedings o f the Intel Supercomputer Users Group Conference,

1995.

[57] E. N. Houstis, J. R. Rice, E. Gallopoulos, and R. Bramley. Enabling Technolo­

gies for Computational Science: Frameworks, Middleware, and Environments.

Kluwer Academic Publishers, 2000.

[58] Andrew Hunt and David Thomas. The Pragmatic Programmer. Addison-

Wesley, 2000.

[59] IONA. ORBacus CORBA ORB.

See web site at: http: //www. iona. com/products/orbacus-home. htm.

[60] Ivar Jacobson. Object-Oriented Software Engineering. ACM Press, 1992.

[61] The Java Programming Language™. See web site at: http://java.sun.com.

[62] The JavaBeans Framework.

See website at http://java.sun.com/products/javabeans/.

[63] Java API for XML Processing (JAXP).

See website a t http: //j ava. sun. com/xml/j axp.

[64] The JDOM Project. See web site at: http://www.jdom.org.

[65] C.R. Johnson, S. Parker, D. Weinstein, and S. Heffernan. Component-Based

Problem Solving Environments for Large-Scale Scientific Computing. Journal

on Concurrency and Computation: Practice and Experience, 14(Grid Com­

puting Environments Special Issue 13-14): 1337—1349, 2002.

195

http://java.sun.com
http://java.sun.com/products/javabeans/
http://www.jdom.org

BIBLIOGRAPHY

[66] D. R. Jones, D. K. Gracio, H. Taylor, T. L. Keller, and K. L. Schuchardt.

Extensible Com putational Chemistry Environment (ECCE) Data-Centered

Framework for Scientific Research. In Domain-Specific Application Frame­

works: Manufacturing, Networking, Distributed Systems, and Software Devel­

opment, chapter 24. Wiley, 1999.

[67] K atarzyna Keahey and Dennis Gannon. PARDIS: CORBA-based Architecture

for Application-Level PARallel D istribu ted Computation. In Proceedings of

Super Computing ’97, November 1997.

[68] Rohit Khare. On the diffusion of Christopher Alexander’s ‘A Pattern Lan­

guage’ into Software Architecture, 1995.

[69] Richard Koch, Dirk Olmes, et al. TeXShop.

See website at h t t p : //www. u o reg o n . edu / k o c h /te x sh o p /te x sh o p . html.

[70] Sriram Krishnan and Dennis Gannon. XCAT3: A Framework for CCA Com­

ponents as OGSA Services. In roceedings of HIPS 2004, 9th International

Workshop on High-Level Parallel Programming Models and Supportive Envi­

ronments, 2004.

[71] Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL: A

Workflow Framework for Grid Services, 2002.

[72] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. A Java

Commodity Grid Kit. Concurrency and Computation: Practice and Experi­

ence, 13(8-9):643-662, 2001.

[73] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, and

Mike Russell. Designing Grid-based Problem Solving Environments and Por­

tals. In 34th Hawaiian International Conference on System Science, Maui,

Hawaii, 3-6 2001.

[74] Andy Lawrence. AstroGrid: the UK’s Virtual Observatory. In S. J. Cox,

editor, Proceedings o f Second UK E-Science All-Hands Meeting, Nottingham,

2003.

196

BIBLIOGRAPHY

[75] Frank Leyinan. Web Services Flow Language (WSFL) 1.1. Technical report,

IBM Software Group, 2001.

[76] Li and Baker. A Review of Grid Portal Technology. In Jose Cunha and O.F.

Rana, editors, Grid Computing: Software Environments and Tools. Springer

Verlag, 2004.

[77] M. Li, O. F. Rana, M. S. Shields, and D. W. Walker. A W rapper Generator

for W rapping High Performance Legacy Codes as Java/CORBA Components.

In Proceedings o f Super Computing ’00. Super Computing 2000, 2000.

[78] H. D. Lord. Improving the Application Environment with Modular Visualiza­

tion Environments. Computer Graphics, 29(2): 10-12, 1995.

[79] Vijay Menon and Anne E. Trefethen. MultiMATLAB: Integrating MATLAB

with High-Performance Parallel Computing. Proceedings of Super Computing

’97, 1997.

[80] Bram Moolenaar. Vim the editor. See website at h t t p : / /w w . vim . org.

[81] MPI Forum. MPI: A Message-Passing Interface Standard. Technical report,

Message Passing Interface Forum, 1995.

See web site at: h ttp ://w w w .m p i-fo ru m .o rg .

[82] NASA Information Power Grid.

See website at h t t p : //www. n a s . n a s a . gov /A bou t/IP G /ipg . html.

[83] National Com putational Science Alliance.

See website at h t tp : / /w w w .v c s a .u iu c .e d u /P ro je c ts /A ll ia n c e .

[84] National Partnership for Advanced Computational Infrastructure.

See website at h ttp ://w w w .n p a c i.e d u .

’ [85] J.A. Nelder and R. Mead. A Simplex Method for Function Minimization.

Computer Journal, 7:308—313, 1965.

197

http://ww
http://www.mpi-forum.org
http://www.vcsa.uiuc.edu/Projects/Alliance
http://www.npaci.edu

BIBLIOGRAPHY

[86] P. Newton and J. C. Browne. The CODE 2.0 Graphical Parallel Programming

Language. In Proceedings o f the AC M International Conference on Super

Computing ’92, 1992.

[87] J. Novotny, M. Russell, and O. Wehrens. GridSphere: A Portal Framework

for Building Collaborations. In 1st International Workshop on Middleware for

Grid Computing (at A C M /IF IP /U S E N IX Middleware 2003), 2003.

[88] J. Novotny, S. Tuecke, and V. Welch. An Online Credential Repository for

the Grid: My Proxy. In Proceedings o f the Tenth International Symposium on

High Performance Distributed Computing (HPDC-10). IEEE Press, 2001.

[89] K. Nowinski, B. Lesyng, M. Niezgodka, and P. Bala. Project EUROGRID. In

PIONIER 2001 Conference Proceedings, pages 187-191, 2001.

[90] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, A. Wipat,

and P. Li. Taverna: A tool for the composition and enactment of bioinformatics

workflows. Bioinformatics Journal, 2004.

[91] Roberto Piola. JC hart, Java Charting Component.

See web site at: h t tp : / /w w w .i lp io la . i t / r o b e r to / jc h a r t / in d e x _ e .h tm l .

[92] Press, Flannery, et al. Numerical Recipes in C: The Art of Scientific Comput­

ing, chapter 10, pages 408-412. Cambridge University Press, 1992.

[93] T. Priol and C. Ren. Cobra: A CORBA-Compliant Programming Environ­

ment for High-Performance Computing. In Proceedings of Euro-Par’98, 1998.

[94] Ptolemy II.

See website at h t tp : / /p to le m y .e e c s .b e rk e le y .e d u /p to le m y I I .

[95] Omer F. Rana, Maozhen Li, David W. Walker, and Matthew Shields. An XML

Based Component Model for Generating Scientific Applications and Perform­

ing Large Scale Simulations in a M eta-Computing Environment. In Interna­

tional Symposium on Generative and Component Based Software Engineering

(GCSE), Erfurt, Germany. Proceedings available on CD-ROM, 1999.

198

http://www.ilpiola.it/roberto/jchart/index_e.html
http://ptolemy.eecs.berkeley.edu/ptolemyII

BIBLIOGRAPHY

[96] S.M. Rao, D. R. W ilton, and A. W. Glisson. Electromagnetic Scattering by

Surfaces of A rbitrary Shape. IEEE Trans. Antennas Propagat., AP-30:409—

418, 1982.

[97] J. R. Rice and R. F. Boisvert. From Scientific Software Libraries to Problem-

Solving Environments. IE E E Computational Science and Engineering, 3(3),

1996.

[98] Michael Russell, Gabrielle Allen, Ian Foster, Ed Seidel, Jason Novotny, John

Shalf, Gregor von Laszewski, and Greg Daues. The Astrophysics Simulation

Collaboratory: A Science Portal Enabling Community Software Development.

Journal on Cluster Computing, 5(3):297-304, 2002.

[99] Douglas C. Schmidt. Evaluating Architectures for M ultithreaded Object Re­

quest Brokers. Communications of the ACM, 41(10):54-60, 1998.

[100] Andreas Schreiber. The Integrated Simulation Environment TENT. Concur­

rency and Computation: Practice and Experience, 14(Grid Computing Envi­

ronments Special Issue 13-14), 2002.

[101] SCIRun: A Scientific Computing Problem Solving Environment. Scientific

Computing and Imaging Institu te (SCI),

http://software.sci.Utah.edu/scirun.html, 2002.

[102] A. D. Scurr and A. J. Keane. The Development of a Grid Based Engineering

Design Problem Solving Environment. In Peter M. A. Sloot, Chih Jeng Ken­

neth Tan, Jack Dongarra, and Alfons G. Hoekstra, editors, International Con­

ference on Computational Science, volume 2329 of Lecture Notes in Computer

Science, pages 881-889. Springer, 2002.

[103] A. D. Scurr, A. J. Keane, and S. J. Cox. Data-Centric Approach to a Grid

Based Engineering Design Problem Solving Environment, 2001.

[104] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf: A

Network-Based Information Library for Globally High Performance Comput­

199

http://software.sci.Utah.edu/scirun.html

BIBLIOGRAPHY

ing. In Proceedings o f the 1996 Parallel Object-Oriented Methods and Appli­

cations Conference, February 1996.

[105] James N. Siddall. Optimal Engineering Design, Principles and Applications.

Marcel Dekker, Inc., New York and Basel, 1982.

[106] Jon Siegel. OMG overview: CORBA and the OMG in enterprise computing.

Communications of the AC M , 41(10):37-43, 1998.

[107] Aleksander Slominski and Gregor von Laszewski. Scientific Workflows Survey.

See website at http: //www. extreme. indiana. edu/swf-survey/.

[108] G. Spezzano, D. Talia, S. Di Gregorio, R. Rongo, and W. Spataro. A Parallel

Cellular Tool for Interactive Modeling and Simulation. IEEE Computational

Science and Engineering, 3(3):33-43, 1996.

[109] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y. Kim,

X. Bing, and B. Ye. The Software Architecture of a Virtual Distributed Com­

puting Environment. In Proceedings of the Sixth IEEE International Sympo­

sium on High Performance Distributed Computing (HPDC-6), 1997.

[110] The Triana Project. See web site at: http://www.trianacode.org.

[111] The UNICORE Forum. UNICORE: UNiform Interface to COmputing RE-

sources. See website at http: //www . u n i core . org.

[112] Visual Numerics. Java Numerical Library.

See web site at: http://www.vni.com/products/wpd/jnl.

[113] W3C. extensible M arkup Language.

See web site at: http://w3.org/XML/.

[114] W3C. OSD: The Open Software Description Format, 1997.

See web site at: http: //www. w 3 . org/TR/NOTE-OSD.

[115] W3C. Web Services Description Language (WSDL) 1.1. Technical report,

W3C, 2001.

200

http://www.trianacode.org
http://www.vni.com/products/wpd/jnl
http://w3.org/XML/

BIBLIOGRAPHY

[116] W3C. Simple Object Access Protocol (SOAP) 1.2. Technical report, W3C,

2003.

[117] Nigel W arren and Philip Bishop. Java in Practice: Design Styles and Idioms

for Effective Java. Addison-Wesley, 1999.

[118] S. Weerawarana, E. Houstis, J. Rice, et al. PDELab: an object-oriented frame­

work for building problem solving environments for PDE based applications.

Technical Report 94-21, Computer Sciences Department, Purdue University,

1994.

[119] Sanjiva Weerawarana, Joseph Kesselman, and M atthew J. Duftler. Bean

Markup Language (BeanML), 1999. IBM T J Watson Research Center,

Hawthorne, NY 10532.

[120] Thomas Williams et al. Gnuplot: command-driven interactive function plot­

ting program. See website at h t tp : / /w w w .g n u p lo t . in fo / .

[121] R. Wolski, N. T. Spring, and J. Hayes. The Network W eather Service: A

Distributed Resource Performance Forecasting Service for Metacomputing.

Future Generation Computer System s, 15:757—768, 1999.

[122] H. Wright, K. Brodlie, J. Wood, and J. Procter. Problem Solving Environem-

nts: Extending the Role of Visualization Systems. In Proceedings of the Eu­

ropean Conference on Parallel Computing (EuroPar 2000), 2000.

[123] M. Young, D. Argiro, and S. Kubica. Cantata: Visual Programming Environ­

ment for the Khoros System. Computer Graphics, 29(2):22—24, 1995.

201

http://www.gnuplot.info/

