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Abstract

Racing Demons: Malware Detection in Early Execution

Malicious software (malware) causes increasingly devastating social and financial losses

each year. As such, academic and commercial research has been directed towards

automatically sorting malicious software from benign software. Machine learning (ML)

has been widely proposed to address this challenge in an attempt to move away from

the time consuming practice of hand-writing detection rules. Building on the promising

results of previous ML malware detection research, this thesis focuses on the use of

dynamic behavioural data captured frommalware activity, arguing that dynamic models

are more robust to attacker evasion techniques than code-based detection methods.

This thesis seeks to address some of the open problems that security practition-

ers may face in adopting dynamic behavioural automatic malware detection. First, the

reliability in performance of different data sources and algorithms when translating lab-

oratory results into real-world use; this has not been analysed in previous dynamic

detection literature. After highlighting that the best-performing data and algorithm in

the laboratory may not be the best-performing in the real world, the thesis turns to one

of the main criticisms of dynamic data: the time taken to collect it. In previous research,

dynamic detection is often conducted for several minutes per sample, making it incom-

patible with the speed of code-based detection. This thesis presents the first model

of early-stage malware prediction using just a few seconds of collected data. Finally,

building on early-stage detection in an isolated environment, real-time detection on a
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live machine in use is simulated. Real-time detection further reduces the computational

costs of dynamic analysis. This thesis further presents the first results of the damage

prevention using automated malware detection and process killing during normal ma-

chine use.
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Chapter 1

Introduction

1.1 The Need for the Research

Opportunities for cybercrime are growing as the world becomes increasingly digitised.

Malicious software (malware) in particular has been judged the most financially dam-

aging form of cybercrime [119]. In recent years destructiveware, software which dam-

ages digital artefacts, has taken public health services and government entities hostage

[55, 56, 94, 111, 198] and is an increasing concern at company board level [38].

The serious consequences of a successful malware attack have led to awell-populated

antivirus (AV) and endpoint protection market [138]. Endpoint protection refers to the

mitigation and prevention of damage to client devices on a network. These technolo-

gies are constantly challenged by malware authors, who are highly motivated to evade

detection. As such, the prevention of malicious attacks is both a compelling and com-

plicated problem.

One of the greatest challenges in malware detection is responding to the volume of

new unseen samples that appear each day; which frequently exceeds onemillion on the

malware analysis platform, VirusTotal [203]. Automated malware detection is essential

to handle this volume of samples since humans cannot be the sentries of every digital

device being used globally, there being more of the latter than of the former.

1
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1.2 Automatic Malware Detection

Historically, AVs have used hand-written rules to detect malware by matching software

against elements of known malicious code, known as signatures. Signature-based de-

tection is still used today [27]. This approach is well-suited to stopping known malware

but may be bypassed by code obfuscation techniques and is unable (92% of the time

according to [84]) to detect new malicious samples. This is a significant limitation as

the malware landscape evolves over time in response to new opportunities for attackers

[150, 204].

Machine learning (ML), a process of deriving a rule set through iterative exposure

to relevant examples, has been widely proposed as a means to automatically detect

malware e.g. [64, 179, 217]. This method may replace or complement hand-written

rules with the key advantage being that ML rules can be automatically generated when

the malware landscape or defensive environment changes.

One limitation of ML is that it can also learn incidental patterns betweenmalware and

benignware which do not relate to the core malicious functionality. Incidental patterns

are those data trends which correlate with the two classes but are not true indicators of

being malicious or benign and therefore may cause issues for machine learning accu-

racy if the trends shift alignment with the binary classification problem. In some cases,

this may not be evident if the model is performing well in detection trials. But if these

incidental patterns do not align with the malware/benignware split in the general popu-

lation of samples, there is likely to be a degradation in model performance known as a

‘generalisation error’ or ‘out-of-sample error’ [130]. Due to the huge volume of malware

and its changeability, it is very difficult to obtain a representative sample of the entire

malware ecosystem. Moreover, malware families and benignware may vary in different

contexts. The types of malware seen in different industry verticals, in different technol-

ogy stacks, and even different geographic locations may vary [119]. For instance, the

financial industry may see a higher proportion of credential-stealing malware whilst bio-
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tech and engineering start ups may see more data exfiltration malware trying to steal

intellectual property.

ML-based detection requires data in order to learn detection rules. Within the do-

main of malware detection, there is considerable debate as to which attributes of soft-

ware should form the basis of these rules [47, 89, 217]. Dynamic data is behavioural

data captured whilst a malware sample is executing and is difficult to manipulate since

the attacker must leave some behavioural footprint of their activity; this is in contrast to

static data which is extracted directly from code and can therefore be obfuscated using

various techniques such as inserting junk code to mislead a classifier [108, 221]. Code

based approaches are often preferred however due to the speed of data collection and

low computational overheads [57, 100, 135, 179, 218].

This thesis investigates the use of dynamic data for automated malware detection

and automated malicious process killing, addressing the slowness of dynamic data

capture in particular.

1.3 Dynamic Malware Detection

Whilst dynamic malware detection using machine learning has been demonstrated to

be a promising approach with high (>99%) detection accuracy (percentage of correct

predictions) [45, 48, 87]. There are many different data sources and kinds of machine

learning algorithms and a number of these have been used with success by security

researchers.

Though algorithms and data vary, the use of virtual machines (VMs) for data col-

lection is common to many dynamic detection models [3, 7, 54]. A VM is an emulated

computer running on another host computer that uses software-defined resources in-

stead of using underlying hardware resources. An isolated VM, also called a sandbox,

is a VM that is disconnected from the communication network. Sandboxes are typically

used for dynamic software analysis to protect the wider network from potentially mali-
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cious software. The use of VMs incurs both computational overheads [170] and may

enable attackers to hide malicious behaviour [176]. For example, malware may wait

for a specific calendar date to initiate malicious behaviour as was observed with the

Shamoon malware attacking Saudi Arabian oil company, Aramco, launched during Ra-

madan [51] or a malware variant which only attacks computers with certain keyboards

installed [132]. Thus the behaviour in the VM would not be indicative of the damage on

the endpoint. The only way to ensure that the real-world behaviour is observed is to

replicate the necessary requirements for damage, which requires the analyst to know

what the necessary requirements are (e.g. for it to be a certain date). Therefore, the

simplest way to do this is to observe behaviour on the target endpoint. This removes

the possibility that monitored behaviour in the VM could deviate from the real-world

behaviour. Monitoring the behaviour on the target is known as real-time detection as

it must occur in real-time. Real-time detection monitors software live on the endpoint

being protected, thus removing the need for an isolated machine and its associated

computational costs as well as eliminating a means for malware to disguise itself. Rel-

atively little research has been conducted in this domain likely due to the risk incurred

by running malware on the endpoint that is supposed to be protected. This thesis pur-

sues the viability of real-time detection due to the reduced computational overheads

and the alignment of the data used for analysis and observed in the real world.

An analysis of the recent work in this domain has revealed the following gaps when

considering how these models could be used to prevent malware attacks in practice:

1.4 Gaps in the Knowledge

1.4.1 Robustness

There is a lack of analysis into the robustness of different dynamic data sources and

machine learning algorithms with respect to laboratory performance and ‘real-world’
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performance. This is a problem because many research papers report high classifica-

tion accuracy metrics [45, 48, 87] but if this does not hold in reality users of the detection

model may have no way of knowing that malware is passing to the endpoint undetected,

potentially causing serious damage and disruption.

Testing robustness is necessary but not sufficient to address the challenges to

adopting dynamic analysis.

1.4.2 Early Stage Dynamic Detection

Previous work has not sought to address one of the biggest limitations to using dynamic

data as part of endpoint protection - the time taken to collect this data. Code-based

(static) data is sometimes preferred over dynamic data due to speed of collection [4, 61]

but static data can easily be manipulated since a single program can be written many

ways to achieve the same goal [220, 221]. If dynamic data can be made competitive

with static data, this could reduce adversaries’ ability to circumvent malware detection

software. This thesis makes an implicit assumption that 5 minute analysis time is one of

the reasons that static analysis is preferred over dynamic, as stated by recent literature

[100, 125, 153], but also notes that much dynamic analysis work does not justify the time

used for data recording e.g. [29, 135], therefore seeks to investigate whether several

minutes are necessary to collect sufficient data for a model to discriminate between

malware and benignware.

The dynamic malware detection paradigm is rooted in the use of VMs, which con-

sume computational resources andmay not always coax malicious behaviour frommal-

ware samples. For example, if a different operating system version is used in the virtual

environment which does not have the security vulnerability that a user’s machine has.

Real-time detection whereby data is collected on the user’s machine would address

this issue, but there has been limited work in this field to date.
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1.4.3 Early Stage Real-time Detection

Within the existing literature, real-time malware detection literature has not addressed

the need for sufficiently fast automated defensive measures such as process blocking

as a means to prevent damage to the endpoint. If malware is detected on a real end-

point, as would be the case with real-time detection, humans are unlikely to be quick

enough to respond to prevent damage since this can occur in seconds [43], therefore if

malware damage is to be prevented rather than simply detected the response needs to

be automatic. Some work has been conducted towards process killing (see Sun et al.

[188]) but has not evaluated whether it truly prevents damage. As well as using early

data, an algorithm with a quick processing time, or low latency, may also help to reduce

the time malware has to cause damage.

1.4.4 Process Killing for Damage-prevention

Real-time detection research has not considered damage-preventing automated de-

fence in the context of the background noise created by normal machine use. In typical

dynamic analysis, a single sample is executed in a sandbox [87, 89, 177]; but in real-

world use many benign programs are also running - this introduces a signal separation

problem between benignware and malware which must now be analysed at the process

level rather than looking at the overall impact of a single application on a machine as

can be done in a sandbox. This raises a wider philosophical question around the abil-

ity to distinguish benignware and malware when the subprocesses being used may be

very similar, or even identical. Some initial research has been conducted in this sphere

but only using a maximum of 5 simultaneous applications [188]. As more computational

resources are consumed by a user’s legitimate processes, the workload on the detec-

tion model increases, which could delay malicious process killing and therefore allow

more damage to be caused. It is therefore important to trial a more realistic number of

applications.
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In addition to the number of concurrent processes, existing work [188] has waited

one minute for programs to execute when it is known that destructiveware can impact

100,000 files in 17 seconds [43]. Whilst one may assume that the sooner a malicious

process is killed, the better, cross-comparison of time across machines may not be ap-

propriate where hardware is different. Increased processing power allow malware to

cause more damage more quickly. In addition to this, the monitoring and killing sys-

tem itself should have a low computational impact in order not to interfere with user

activity and consume too many resources. Thus the work on process killing in this the-

sis measures damage partly through files destroyed and considers the computational

complexity of the detection algorithms.

1.5 Research Questions

Given these gaps in previous literature identified above, this thesis seeks to address

the following research questions which are raised in response:

• RQ1: To what extent do dynamic data and algorithm choices impact the robust-

ness of malware detection accuracy across different datasets?

• RQ2: Is it possible to predict that software is malicious from its early stages of

execution?

• RQ3: Does the use of lower latency algorithms impact upon the speed of accurate

malware detection?

• RQ4: Is it possible to separate the signals of tens of simultaneous benign and

malicious processes?

• RQ5: Is it possible to detect and kill malicious processes early enough to prevent

malicious damage?
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1.6 Contributions

The broad contribution of this thesis to the field of malware detection is to demonstrate

that it is possible to detect malicious software from incomplete behavioural traces within

a far shorter time scale than has previously been reported. The specific contributions

are:

• C1: A demonstration that the most accurate type of dynamic data in laboratory

testing may not be the best-performing or most robust data type when tested on

data of a different provenance.

This finding was first published in [158]

M Rhode, L. Tuson, P. Burnap, and K. Jones. Lab to soc: Robust features for

dynamic malware detection. In 2019 49th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks–Industry Track, pages 13–16. IEEE,

2019

• C2: The first model to predict whether or not software is malicious based on its

early behaviour.

This was first published in [156]

M. Rhode, P. Burnap, and K. Jones. Early-stage malware prediction using recur-

rent neural networks. Computers & Security, 77:578–594, 2018.

• C3: Real-time malware detection against a significantly larger number of user

background applications than have previously been investigated with analysis of

the impact of the increase

• C4: The first model to try and mitigate malware damage in real-time using mali-

cious process detection and killing

C3 and C4 are related contributions and currently under review for publication; a

preprint of the paper can be found here [157].
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1.7 Thesis Structure

This chapter has introduced the domain, set out the research questions, and indicated

the key contributions of this research. This thesis is structured as follows to establish

the research context, methods used, results, discussion, key findings, conclusion and

indicators for future work.

Chapter 2 - Background

This chapter aims to provide the primitives to the field of automated malware detec-

tion as well as a literature review and gap analysis of the domain and an overview of the

thesis scope. Within the subsequent three chapters (3,4,5), which outline methodolo-

gies and experimental results, there is a short literature review of concepts that relate

directly to the topic of that chapter.

Chapter 3 - Robust Models

This chapter explores the practical challenges to malware detection accuracy when

transferring a machine learning model into industrial use. A generic malware detec-

tion ML framework is presented followed by an analysis of the most common elements

used for dynamic malware detection. The experimental methodology and experimental

results are detailed together with an analysis of the results and their implications for se-

curity practitioners. The experiments reveal that the most commonly used behavioural

attributes for executable files do in fact have the highest accuracy in the lab but are out-

performed by continuous numeric machine data when tested with real-world industrial

data in support of contribution C1.

Chapter 4 - Early stage prediction

This chapter presents the arguments for early-stage prediction using behavioural

data and reports the results of extensive experiments using different machine learning

algorithms, time windows, and the ability of such models to classify previously unseen

(zero-day) malware families in support of contribution C2.

Chapter 5 - Real-time Malware detection and process killing
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This chapter explores the more difficult problem of classifying and automatically

blocking malware on-the-fly on a machine in use. The experiments in this chapter

simulate real machine use and try to detect and kill malware as early in execution as

possible. Further results are presented on the damage prevented by this model in

practice using a live trial in support of contributions C3 and C4.

Chapter 6 - Limitations, Future Work, Conclusions

Finally, this chapter concludes the thesis by summarising the contributions to the

field of automated malware detection, the limitations of these contributions and the

questions that have arisen from this research.



Chapter 2

Background: Literature Review and

Research Methodologies

Cybercrime leaves progressively larger economic and social footprints each year [123].

A 2019 report [119] from consultancy firm, Accenture, records that the average cost of

cybercrime to an organisation is $13m per annum, with malware claiming the largest

portion of this sum at $2.6m. This figure rises to $3.3m when ransomware, a type of

malware which extorts victims, is included [119]. A 2020 report from anti-virus vendor,

Sophos, [185] notes that the average cost to remediate a ransomware attack is $750K.

These costs describe the immediate financial impact of regulatory fines, business im-

pact, technological recovery and investigation and not the long-term implications of

reputation damage, intellectual property loss, or economic impact to the wider supply

chain.

Malware is a broad term describing any code which ‘causes harm to users, software

or networks’ [180]. Historically, the rate at which newmalware appeared was sufficiently

low [124] that expert reverse engineers could analyse each new malicious sample and

develop ad-hoc defences.

Today, the volume of newmalware presents a significant challenge for security prac-

titioners. VirusTotal [202], which offers a free platform to aggregate the verdicts of

11



Background: Literature Review and Research Methodologies 12

around 60 commercial anti-virus engines for a given file or website address, routinely

receives more than one million new distinct files for analysis in a single day1. This large

volume makes it difficult for small teams of experts to match the pace of analysis to the

volume of new files, as each instance may take a few minutes to determine whether

or not it is malicious. Even if all reverse engineers shared data globally, malware au-

thors could respond by flooding the ecosystem with slight variants in order to make their

workload impossible.

Automated detection of malware is necessary to combat the sheer volume of both

known and unknown files seen by an organisation on a daily basis. Automated detection

can be carried out at any time of day, it is not dependent on human availability.

An additional challenge to detecting malware, beyond the sheer volume, is the in-

centive for malware authors to evade detection. Approaches to automated detection

vary, and some are more difficult to bypass than others.

Malware detection on the endpoint aims to detect malicious software before it is

able to cause damage. In this context an endpoint refers to any user device or server,

but within the scope of this thesis, typically an ’endpoint’ is a Windows PC user ma-

chine since this is the most commonly used device within business contexts [138]. This

chapter presents a skeleton of the minimal components required for automatic malware

detection in Section 2.1 followed by a brief discussion about different types of malware

in Section 2.2 and the importance and likelihood of detecting different varieties. A lit-

erature review and analysis of the data types used in previous work is outlined in Sec-

tion 2.3 and of the methodologies used to devise detection rules in Section 2.4. Sec-

tion 2.5 outlines the challenges that practitioners face in trying to adopt this research for

malware detection. Sections 2.6, 2.7 and 2.8 discuss some of the unanswered ques-

tions relating to using current research as part of an automated defensive system and

the research questions arising from these gaps. Section 2.9 describes the scope of

the thesis, in particular, the key filetype and operating system considered. Finally, Sec-
11,131,484 new distinct files uploaded to VirusTotal on 21st March 2020 [203]
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tion 2.10 concludes this chapter, summarising the contributions of this thesis to the field

of automatic malware detection research.

2.1 Automatic Malware Detection Skeleton

Figure 2.1: Minimum essential elements of an automatic malware detection engine

Automatic malware detection is now essential to handle the rate of previously un-

seen software samples requiring analysis. Figure 2.1 illustrates the minimal compo-

nents required for an automatic malware detection model. Some information is col-

lected from incoming samples, which is then filtered through a set of rules to give a

verdict of ‘malicious’ or ‘benign’. Additional components may be added to this pipeline

but taking just the essential elements, there are two necessary modelling decisions

which can be taken from a wide set of possibilities many of which perform well, as the

next sections will elaborate.

The first modelling decision is selecting which data to use. A variety of data can be

collected from a software sample. The choice of data may confer advantages or limi-

tations onto the detection model with respect to analysis time, robustness in detecting

future malware variants and families, and the types of attacks that the model is more

likely to detect. For example, a key debate surrounds the use of static (code-based)

and dynamic (behavioural) data [47, 89], the former is quicker to obtain but more vul-
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nerable to evasion techniques while the latter tends to take longer to collect but is more

difficult to evade [179]. The behaviour of malware is closely aligned with the goals of

the software and is therefore difficult to obfuscate without compromising the malicious

activity itself.

The second compulsory modelling decision is selecting the mechanism for generat-

ing rules to parse the data. This choice impacts the ease with which the model can be

updated, the resources required for a single analysis, and other characteristics. Anti-

virus engines (AVs) have used blacklists of known malicious files, hand-written rules

and, more recently, automatically learned rules. Machine learning (ML) describes the

process of automatic rule induction from data. This has benefits for domains like asmal-

ware detection where the rule set is likely to need updating as new malware families

come into being.

Machine learning for automatic malware detection seems promising with some work

demonstrating >99% detection accuracy [45, 48, 87]. However, there are some open

questions when one considers how these models might be adopted in practice.

2.2 Malware Types and Ease of Detection

Whilst this thesis is not concerned with one particular type of malware over another and

assumes that all malware are undesirable, it is worth mentioning that there are some

malware which may be easier to detect with automated detection than others and some

which may be more important to detect than others.

It is important to note that malware are diverse in the damage they cause and the

ease with which they can be detected. The detection of malware on an endpoint is a

means to preventing damage to that endpoint, rather than an end in itself. There are

various malware types and there can be different consequences for each victim of the

same malware attack e.g. a difference in the value of data stolen to the victim. As

well as the malware type, the security posture of the victim also influences the impact
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of malware, whereby those with a suitable recovery plan may suffer less than those

without e.g. recently backed-up data to remediate the consequences of ransomware.

For some malware families, it is debated whether they even cause damage. There

is an entire group of software that is acknowledged as occupying a grey-area between

malware and benignware. These software are known as potentially unwanted applica-

tions or programs (PUAs or PUPs) which are downloaded alongside wanted software

[199] and may carry out undesirable activities like tracking user data without notifying

the user. PUPs are often forms of adware [199] which is malware that generates rev-

enue from showing advertisements to users. Unlike legitimate adverts, however, it may

do so without gaining appropriate user consent. The impact on the user in practice is

similar to legitimate advertising software for which the user may have been required to

agree to some terms and conditions in order to gain access to a particular software or

platform. Ransomware, by contrast, can cause a lot of damage, as noted above, since

it can lead to huge financial losses [141] and potentially loss of life when one considers

the impact on healthcare services [123].

The ease of detection also varies. One of the more challenging types to detect are

those malware which form part of an Advanced Persistent Threat (APT). APT attacks

and APT groups, as the name implies, launch advanced and persistent attempts to

access an endpoint or network andmay be bespoke to a particular target [169]. As such

they may share fewer behavioural or code attributes with other malware. Research into

APT malware detection often uses data generated by researchers rather than using

real-world examples since the real examples may require a high fidelity representation

of the target victim’s infrastructure [67, 79]. This limitation on data collection makes

it difficult to collect a realistic dataset, which is the foundation from which ML models

learn [72]. Code reuse by malware authors as well as wide propagation of malware

makes it more likely that amachine learningmodel will infer similarity betweenmalicious

samples. Uniqueness makes malware more difficult to detect automatically, since the

rules (ML- or human-generated) must distinguish malware and benignware either using
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broad strokes or specific attributes, such that if the malware behaves unusually or has

never been seen before it is difficult to create a rule that will capture it without some

kind of clairvoyance. Though some work by David and Netanyahu has been done to

try and automatically generate malware signatures to this end [50].

The purpose of this discussion is to highlight that there are many different forms

of malware and that detecting them may be both more or less valuable (relating to

damage) and more or less difficult (relating to novelty and uniqueness). This thesis will

return to the detection of ransomware since its behaviour is not unique (it has been

observed in the wild many times [151]) and it is highly destructive and therefore well-

suited to the task of automated detection.

Overall this thesis is concerned with detecting all varieties of malware since a new

variant may appear at any time, and these often cause the most damage since there are

not adequate defences in place [123]. Therefore it is important to select a data source

which is capable of capturing software attributes common to existing and, hopefully,

future malware. The next section will discuss data types used for malware detection in

depth.

2.3 Data Types

In analysing a piece of music, one can read the score, play it at full speed or step

through each note one by one. Each of these may be considered a different kind of

data. Similarly, software can be read (static analysis), played (dynamic analysis) or

stepped through (disassembly).

Data are the basis upon which an automatic malware detection system distinguishes

between malicious and benign samples. Numerous data types can be collected from

software. These types can be broadly categorised as either static or dynamic data

sources. Static data are collected from code without executing a sample, dynamic data

are collected whilst a sample executes. Both static and dynamic data continue to be
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widely used by researchers as there are advantages and disadvantages to both; with

some research using a combination of the two as a hybrid approach. The following

section will introduce the use of static, dynamic and hybrid data in malware detection

literature.

2.3.1 Static Data

Static data is data stored in the file(s) comprising a piece of software, including code

that never runs, developer comments, and file metadata. In the case of executables,

these files are stored in compiled machine code, designed to be read by computers not

by humans. Despite this code not being friendly to human readers, all the information

required to produce the desired functionality is still contained in the binary and as such

static data has the potential to reveal the functionality of software.

This section lists some static data sources used in recent works and their respective

strengths and weaknesses for automated malware detection.

File hashes

The string of bytes comprising a file can be used to generate unique cryptographic

hashes using one-way strong hashing [58], meaning that the hashing is irreversible

(one-way) and that the likelihood of two distinct strings giving the same hash is very

low [163]. This allows automatic malware detection tools to recognise duplicate file

contents even if the files have different names. Hashes can then be stored in blacklists

(never allowed to run) or whitelists (only these files may run). Whitelists are impractical

for most users and modern businesses as it requires administrative authorisation to run

any new file [143]. Blacklisting is an efficient way to rule out known malware but can be

thwarted by manipulating a single byte of a known malware to make it appear unknown

[58].
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Fuzzy Hashing, Import Hashing and Imports

Fuzzy hashing seeks to mitigate this weakness, at least for malware belonging to a

known family or variant [133]. Fuzzy hashing is a technique typically whereby a file is

split into smaller pieces which are then hashed; these constitute the fuzzy hash. An

algorithm then compares the fuzzy hash of two programs to determine how similar they

are, high similarity indicates that the two may be variants of the same malware.

Import hashing can similarly be used forWindows executable files to identify variants

of the samemalware as it creates a hash of the imported functions from other files (such

as operating system libraries) and the order of these imports used by the malware and

ignores the rest of the code [133]. Changing an import or the order of imports will alter

this feature so that variants no longer match.

A number of recent malware detection papers have used imported functions data

to automatically detect malware e.g. [117, 140, 218]. This static data can be extracted

quickly but can also be evaded by dynamically loading imports at run-time, for example

using packing and unpacking techniques[180]. Packing is a method used to compress

files which can make static analysis much more difficult (see Figure 2.2) since only

the wrapper code for unpacking the malware may be visible prior to unpacking the

code. Some packed malware may be unpacked automatically, but when coupled with

obfuscation techniques such as dynamic loading of imports manual analysis is required

to reveal the source code; rarer and custom-build packers also tend to require manual

analysis. Dynamic analysis on the other hand resolve many of these difficulties by

allowing the malware to unpack itself in the virtual machine (VM).
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(a) Typical PE file (b) Typical packed PE file

Figure 2.2: Structure of Windows Portable Executable (PE) files

API Calls - Statically Extracted

Some approaches to malware detection look specifically at the Application Program-

ming Interface (API) calls made to the operating system themselves rather than library

imports (e.g. [1, 104, 149, 165, 224]. These API calls enable the program to obtain

resources and permissions from the host operating system and perform a wide variety

of actions. Using debugging software (on unpacked malware) it is possible to pick out

every instance of an API call in code, including those that are never called in practice.

API calls can also be collected with dynamic analysis, which shows only those that

are actually called. The order in which API calls are made may help identify certain

malicious behaviours [169] and this can be extracted from static code to generate call

graphs [57, 101, 104, 121, 224]. These are graphical representations of the API calls

made by software. Call graphs are constructed using debugging tools; debuggers allow
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analysts to introspect code instruction-by-instruction if necessary.

Malware authors may try to prevent analysts from discovering the code’s function-

ality using a debugger. Anti-debugging refers to the practice of trying to make reverse

engineering more difficult. Anti-virtualisation attempts to hide malicious functionality if

the sample detects that it is being executed in a virtual environment. Anti-debugging

practices are as prevalent if not more prevalent than anti-virtualisation tools. Chen et al.

[33] find that 3% of malware samples analysed use anti-virtualisation techniques whilst

40% use anti-debugging and Branco et al. [22] find that 81% use anti-virtualisation with

43% using anti-debugging. There are ways to circumvent anti-debugging techniques

just as there are methods for disarming anti-VM manoeuvres. However, the use of a

debugger to construct call graphs can be a time-consuming manual process [154].

Strings

Another static feature, which works best with unpackedmalware, is simply analysing the

human-readable strings in a file. Several researchers have used printable string data

as part of automatic detection models (e.g. [100, 178]). Automatic detection systems

may look for patterns matching API calls, domain names, shell code instructions or

cryptocurrency wallet addresses [65] for example. This can be a powerful attribution

tool but may be easily obfuscated or changed as the malware author seeks to evade

bring fingerprinted.

Bytecode

Previous work has used histograms (frequency representations) of bytes in a file [192]

or created grayscale images from bytes [122], [153] to distinguish malicious and benign

software or different malware families. Encrypted malware could thwart this approach

as a strong encryption mechanism should give no information away about the origi-

nal plain-text such that the characters of the ciphertext appear randomly generated,
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though some structural elements of the file such as the size may still be visible. There

are some computational overhead costs to encryption but even if the attacker did not

use encryption, recent research into adversarial samples by Kolosnjaji et al. [108] has

demonstrated that a state of the art machine learning classifier using bytecode can be

fooled by simply manipulating the bytes in the padding of a file. With less than 1% of

bytes being altered the detection accuracy of the tool falls by 50%.

Static Signatures

Signature-based detection is the catch-all term for hand-written rules used to distinguish

malicious files from other files [133]. These rules are pattern-matching requirements (of-

ten strings or bytecode) often combined together with logical operators. Signatures can

be a computationally efficient way to detect known attacks and some variants of these

attacks. Their detection efficacy on unseen variants depends on the pattern matching

filters written by cyber analysts and the sophistication of variant generation used by

malware authors. Signature-based methods are not generally well-suited to detecting

zero-day attacks. Holm [84] argued that signature-based intrusion detection systems

(IDS) may still be able to detect some zero-day attacks due to the prevalence of code

reuse among malware authors. The results of the author’s research estimated that

the signature-based IDS tested, Snort [39], was able to detect just 8.2% of zero-day

attacks.

Strengths and Weaknesses

Static data can be a computationally efficient way to evaluate a piece of software and

may be carried out in a very short time since data is simply collected directly from code.

Despite the advantage of speed, static data is vulnerable to obfuscation techniques.

In essence, this is because it is possible to write software with identical or equivalent

functionality in an infinite number of ways, since junk or useless non-executing code
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can always be appended. Small manipulations to code can render known malware

unrecognisable to some antivirus engines [12]. In some cases obfuscated malware

can be de-obfuscated as in [101, 104] but this requires manual inspection, which is

incompatible with the goal of automation. Bacci et al. [12] demonstrated an advan-

tage of dynamic analysis; that it can process obfuscated and non-obfuscated samples

uniformly. The authors found that using dynamic data, an automated detection model

achieved comparable detection rates across obfuscated and non-obfuscated samples

whilst ‘static analysis-based detection is essentially ineffective on obfuscated malware’.

With this in mind, the next section considers dynamic data types.

2.3.2 Dynamic Data

Dynamic data captures behavioural information about software as it executes. This

data is more difficult to obfuscate than static data becausemalicious functionality cannot

avoid leaving a footprint of its activity. For example, data exfiltration malware cannot

help moving or copying data in order to achieve its goals. Obfuscation of behaviours

can alter the time taken for functionality to occur or overlay ‘decoy’ behaviours on top

of the malicious functionality but the underlying behaviour cannot be removed without

changing the nature of the malware itself.

Dynamic Signatures

Malware analysts have expert knowledge of the common techniques used by malicious

software. Some researchers leverage their knowledge of malicious behaviours to look

for pre-defined events [120, 196, 206]. This can be considered behavioural signature

detection. For example, a pre-defined event may be ‘Internet explorer is launched’.

These behavioural signatures must be hand-chosen by an expert whilst other data

sources can be collected and selected automatically when retraining is required.
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Network Traffic

Many common behaviours of malware will use network communication. Command

and control centres, botnets and data exfiltration all require network activity. For this

reason, a significant proportion of malware detection research has relied either wholly or

partially on network traffic data (see Table 2.1 below). Sometimes this traffic is extracted

from raw packet capture (PCAP) files. Other approaches take higher-level data from

network flows [134], others still use content-based data such as the size of packets

being sent [211]. One approach uses entire traffic traces and converts these to images

for classification with a convolutional neural network [206]. Network traffic may be a

strong indicator of many types of malware but it is not necessary for malware to cause

irreparable damage. For example, malware that is designed to operate in air-gapped

environments or destructiveware can cause significant damage without contacting out

of the network.

API Calls - Dynamically Collected

API calls are the most commonly used dynamic data source in previous literature for

malware detection (see Table 2.1 below). Unlike statically collected API calls, dynamic

API calls capture those loaded at run-time. Dynamic API call data can be augmented

using the inputs passed to the calls [80] and the return values of the calls [15], thus

giving more information to the detection tool about how they were used. API calls are

discrete events which may or may not be invoked by a given software [158] and can

be represented in a number of different ways. Over time the way in which API calls are

used may change due to depreciation of the API call or trends in software development.

Pendlebury et. al [150] found that a state of the art Android malware detection model

using API calls as a data source saw a fall from a 0.85 f1-score to 0.62 when the

data is divided according to date. Some API call models have been demonstrated

theoretically vulnerable to adversarial attacks [85, 88] but this was validated using only
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feature manipulation and not through the generation of actual malicious samples.

Machine Metrics

Machine metrics is an umbrella term used in this thesis to refer to measurements of

hardware and virtual resources being used by malware at a given time. Examples of

these resources include CPU usage, RAM usage, and power consumption. These

resources are typically being used by all programs constantly. This contrasts with API

calls and expert-defined events which are discrete data points that may or may not

appear for a given sample. Previous work has used hardware performance counters

[13] and memory read-write counts [139]. Some work, including that presented in this

thesis, uses processor and memory usage together with read-write counters [25, 28,

156, 158].

Memory Images

Malware must load data into memory in order to run. Memory images are commonly

used in forensic investigations but can also be used for automated analysis. Mosli et

al. [131] used data from memory images following an infection to inspect API calls and

loaded libraries (often dynamic link libraries (DLLs) in Windows) as well as changes to

the system registry. The authors argue that using memory images enables memory-

onlymalware, also known as filelessmalware, to be detected. The drawback ofmemory-

image based detection is that the data remaining at the time of the image capture is all

the data that can be used, caches may have been cleared that contained evidence of

malicious activity. One way around this problem is to take periodic memory images of

the endpoint.
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User Behaviour

Some automated malware detection systems incorporate data about user behaviour.

Saracino et al. [167] create an anomaly detection model to detect malicious Android

applications using user behaviour as a metric. Typically, user behaviour is only used in

anomaly detection models, those which flag deviations from some baseline of normal

behaviour. This is because benign user behaviour is typically bespoke to individual

users or subgroups of users. One of the drawbacks of anomaly detection models is

that they usually require human investigation to differentiate the innocuous anomalies

from the malicious ones, meaning that the system is not fully automated and is there-

fore exploitable by attackers through flooding a tool with anomalous activity to create a

smokescreen for the desired malicious payload.

Dynamic Data use in Previous Work
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2007 [14] X X X
2008 [205] X
2008 [21] X
2008 [159] X
2009 [4] X
2009 [15] X
2010 [194] X
2010 [144] X
2010 [61] X
2011 [135] X X
2011 [160] X
2011 [24] X
2011 [10] X
2011 [93] X
2011 [32] X
2012 [175] X X
2012 [96] X
2012 [60] X
2013 [3] X
2013 [92] X X
2013 [166] X X
2013 [109] X X X
2013 [134] X
2013 [28] X
2013 [45] X
2014 [13] X
2014 [164] X
2014 [193] X
2014 [214] X X
2015 [98] X
2015 [90] X
2015 [139] X
2015 [145] X
2015 [49] X
2015 [178] X
2015 [206] X X X X
2016 [211] X X
2016 [223] X X
2016 [219] X
2016 [177] X
2016 [105] X
2016 [106] X
2016 [80] X X
2016 [87] X
2016 [131] X X X
2016 [196] X
2016 [48] X
2017 [188] X
2017 [7] X
2017 [207] X
2017 [47] X X
2017 [208] X
2017 [161] X
2018 [120] X X
2018 [167] X X X X
2018 [191] X
2018 [99] X
2018 [85] X
2018 [25] X
2018 [171] X
2018 [170] X
2018 [54] X
2019 [215] X
2019 [88] X

Total 43 2 6 3 1 1 6 4 6 3 1 1 2 4 1 1 1
% of 64
refer-
ences

67% 3% 9% 5% 2% 2% 9% 6% 9% 5% 2% 2% 3% 6% 2% 2% 2%

Table 2.1: Dynamic data sources used in 64 malware detection and classification pa-
pers. N.B. Percentages sum to more than 100 as some research uses more than one
data source.
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Table 2.1 shows the dynamic data sources for 64 papers surveyed (64 of 97 sur-

veyed use dynamic data) and gives the percentage of papers for each data source.

Some of these attributes were not mentioned in the previous section due to their ob-

scurity; the following list gives a brief description of all data types in the table:

• API calls: Operating system API calls

• DLL = Dynamic Link Libraries

• Dynamic API-based events: user-defined events based on API calls

• Machine: execution data relating tomachine statistics e.g. hardware performance

counters, CPU use, I/O operation data

• Memory: data relating to memory addresses or memory images during or follow-

ing software execution

• Network: data relating to network traffic

• Opcodes: machine code instruction

• Dynamic API-based events: user-defined events based on API calls

• Dynamic events: user-defined events during execution

• Dynamic Logs: custom logging from a software provider e.g. operating system

logs, AV engine logs, sandbox logs

• File containment relationship graph: graph of contents of compressed file

• File System changes: differences in the file system before and after software

activity

• Prefetch files: Temporary files to cache real-time data about software

• Process behaviour: activity relating to individual software processes
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• Static API calls: system calls collected without executing software

• Static Bytes: bytecode data collected from static files

• Static artefacts: user-defined static elements of interest

• User behaviour: data relating to user activity

67% of the papers surveyed use API call data with the joint second being expert-

defined dynamic events, machine data and network data (9%). As indicated by the

publication dates of the paper in the table, the use of API calls has been prevalent from

2008 through to 2019, Machine data on the other hand was used first in 2018 by three

separate publications and previously not since 2012/2013. This codification broadly

groups the data types but API calls are the most commonly used throughout the 10

year span analysed.

Some papers have compared dynamic data sources. Mosli et al. [131], for example,

found that memory image data outperformed API calls and DLLs but existing research is

not conclusive as to whether one dynamic data source consistently outperforms others.

Strengths and Weaknesses

One criticism of dynamic analysis, by comparison with static analysis, is that collecting

the data whilst software executes in a sandbox takes (typically several minutes [156])

longer than scraping data from code. The time required for analysis may not matter

depending on the use case of the tool. If the tool is intended to be used by analysts as

part of an investigation after the file has already executed on an endpoint, then waiting

several minutes is not significantly worse than waiting several seconds. If detection

is taking place pre-attack rather than post-attack, the time taken for a verdict is more

critical as it has the potential to slow business processes or frustrate users.

A second criticism of dynamic analysis is that using a sandbox creates significant

computational overheads by comparison with extracting static data. Malware must be



Background: Literature Review and Research Methodologies 29

allowed to run in order to collect dynamic behavioural data. In order to protect real-world

networks and endpoints, malware is often executed in a sandbox. A sandbox is a virtual

machine isolated from the internet and other local networks. Sandboxes can consume

equivalent resources to a normal endpoint, which some argue is too expensive and

unrealistic for private users [139, 170].

A third criticism is that a sandbox may not elicit malicious behaviour. This can occur

if the running conditions of the software have not been met; for example, if only a

specific version of the software is vulnerable to the exploit used by the malware and

that software version is not installed in the sandbox, the malware will not exhibit (all of)

its behaviours. Malware authors may also try to detect whether malware is running in

a VM and if so, hide the malicious behaviour to avoid analysis.

Turning to the strengths of dynamic data models, these approaches have been

shown effective at detecting new malware families. The ability to detect malware that

exploits new (publicly unknown) vulnerabilities, known as ‘zero-days’, in particular, is

highly prized [73, 84]. Malware detection models use data from known malware to

try and detect unknown malware. This has been demonstrated using both static (e.g.

[34, 100, 121]) and dynamic (e.g. [120, 140, 211]) data sources. Once a malicious

file is known, its unique hash can be computed and referenced and tell-tale signatures

extracted in order to block it in the future. Malicious actors make changes to existing

malware in order to alter the hash and evade signature detection, this is evident in

analysis from organisations like PolySwarm who count thousands of variants per week

belonging to a single ransomware family (see Fig 2.3).

Less often, an entirely new type of malware appears or becomes prevalent. Whilst

dynamic malware behaviours can be diverse, the total possible set of behaviours is

far smaller than the total number of ways that malware can be represented in code.

Dynamic or behavioural attributes are more likely to be common to different malware

families than code components. New malware may well use familiar injection mech-

anisms, techniques for hiding execution [137], or malicious behaviours such as data
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Figure 2.3: Figure of trending malware samples reproduced with permission from
PolySwarm [151] e-Newsletter 15th April 2021 showing thousands of samples of the
same malware families observed in a single week.
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exfiltration. Conversely, the code to achieve a particular behaviour can be written in an

infinite number of ways.

It is possible to set some objectives of a dynamic detection model based on these

weaknesses including (i) quick to run (ii) low computational complexity and (iii) gener-

ates useful data for distinguishing malware and (iv) is able to detect new variants and

families. This thesis will tackle (i, ii) and (iv) with (iii) being out of scope but critical future

work to this research field.

2.3.3 Hybrid Approaches

Hybrid approaches combine both static and dynamic data. Using both static and dy-

namic data is often justified by arguing that more data will produce a better-performing

model [92, 166, 167, 178, 206, 219, 223]. This argument seems reasonable, but by us-

ing both data sources, researcher are often introducing the problems associated with

both static and dynamic data into a model. Hybrid approaches which include static

strings [92, 178] do not account for adversaries compiling strings during real-time, and

static approaches can easily be manipulated [108]. The addition of dynamic data will

not necessarily mitigate these weaknesses. Machine learning models often find the

shortest route to solving a problem; if there is a static single string that is highly corre-

lated with the presence of malware but can easily be obfuscated but there are also a

set of dynamic behaviours that are well-correlated, the model does not know to prefer

the dynamic behaviours over the string since all data is presented equally to the model.

The introduction of dynamic data will however introduce temporal and computational

overheads, the absence of which is one of the key advantages of using static data.

Multi-stage approaches, which mimic a defence-in-depth security architecture. may

use static analysis to filter out known malware variants followed by dynamic analysis.

This model of hybrid analysis better harnesses the respective strengths of each data

type [136, 177]. Sequential approaches reduce the mean time required for data collec-
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tion whilst maintaining in-depth analysis for those samples which require further exam-

ination, but these approaches still take several minutes to perform dynamic analysis by

comparison with several seconds for static analysis. Some researchers have attempted

to prove the benefits of hybrid approaches but the results have been inconclusive, as

the following section describes.

2.3.4 Empirical Comparisons

The choice of data used for automatic malware detection is arguably more important

than the choice of rule-making procedure (machine- or human-generated) as, without

useful data, rules will struggle to make distinctions between malicious and benign soft-

ware. This subsection briefly outlines why existing literature comparing dynamic, static

and hybrid approaches cannot be used to draw a conclusion about which is best and

explains that the frequency with which static data is used may be due to the relative

ease of collection.

Empirical results (see Table 2.2) could be used to try and determine which approach

is best but this is contingent on using the same test set for all experiments and not

drawing unsubstantiated conclusions. For example, Islam et al. [92] argue that using

dynamic and static data used together creates a more robust model. The authors test

their ML model, trained with data from 2003-2007 and then with data from 2009-2010

and find that there is only a small decrease in classification accuracy percentage with

accurate labels. However, the authors do not compare these results against static-only

and dynamic-only data which makes it difficult to conclude that the hybrid model ismore

robust even if it performs well. Some research has directly compared static, dynamic

and hybrid results on the same set of samples [47, 92, 166, 178, 223].

4 of the 5 papers (Santos et al. [166], Islam et al. [92], Yuan et al. [223], and

Shijo and Salim [178] all find that the hybrid combination of static and dynamic data

produces better results than static or dynamic alone; reporting between 1 and 6.5 per-
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Ref. Detection Accuracy (%) Data Type Test Samples
Ratio Metric notes

Static Dynamic Hybrid Static Dynamic Hybrid Malware :
Benignware

Damodaran et al.
[47] 87.43* 98.11* 81.02* Opcode +

API calls
Opcode + API
calls

train on
dynamic
test on
static to
save time

745:40 (approx
13:1)

Weighted
AUC-ROC
average used,
accuracy not
reported

Islam et al. [92] 87.8 90.4 97.01

function
length
frequency
and
printable
string in-
formation

API calls and
parameters
frequency

combined
s

2400:541
(approx 5:1)

weighted
accuracy results
to reflect class
imbalance, FNR
and FPR rank
reflected in
accuracy
rankings

Shijo and Salim
[178] 95.88 97.16 98.71

printable
string in-
formation

API-[3 and
4]-grams combined 997:490 (approx

2:1)

model ranking
the same for
FNRs and FPRs

Santos et al. [166] 95.9 77.26 96.6
opcode
se-
quences

Author-defined
behaviours
from API call
data

combined 1:1

All models
achive a high
TPR but the
dynamic model
has a
significantly
higher FNR

Yuan et al. [223] 89.03 59.09 96.76

Pre-
defined
sensitive
API calls
and per-
missions

Pre-defined
sensitive API
calls

combined 1:1

Hybrid has
highest TPR and
lowest FNR,
Static has
slightly higher
FNR but also
much higher
TPR

Table 2.2: Reported accuracies, data types and test samples ratio for 5 papers compar-
ing of static, dynamic and hybrid data. *=Area Under the Curve of Receiver Operating
Characteristic multiplied by 100 reported instead of accuracy. Metric notes column
comments on the metrics used to evaluate the classification, especially when using
unbalanced dataset. None of these papers reports F1 but all except [47] report FNR
(false negative rate) and FPR (false positive rate) or inverse metrics (true rates).

centage point detection accuracy increase. Damodaran et al. [47] and Ye et al. [219]

report dynamic and static data respectively to achieve the highest classification accu-

racy. This appears to make a strong case for the use of hybrid methods in order to

produce maximum detection accuracy. However, this thesis argues that the inclusion

of any static features introduces vulnerabilities through manipulation of static data, es-

pecially when used by machine learning models due to the threat of adversarial ML, as

argued above.

Of all 5 papers, 3 [47, 92, 178] report that dynamic data achieves better results than

static and 2 [166, 223] report the reverse. Nataraj et al. [135] do not attempt hybrid clas-

sification but compare static binary texture analysis to dynamic forensic image data and

find that the dynamic data outperforms the static data for malware family classification

(98% vs 95%), though dynamic analysis takes 4,000 times longer.
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Although the research summarised in Table 2.2 uses the same test data, it is difficult

to draw conclusions about which data type performs better. Each paper has chosen

different static and dynamic data features for comparison, thus the conclusions are that

feature set A (which happens to use static data) is better than feature set B (which

happens to use dynamic data) for the given test set, but it may be that feature set A

uses highly indicative static features and set B particularly poor dynamic features or

vice versa.

Themetrics alsomake comparison difficult. Accuracy and true/false positive/negative

rates are the most commonly reported (see Table 2.2 caption) but even these do not

see consistent results in comparing static and dynamic data.

The Convenience of Static Data

In selecting a type of data, it should be noted that static data is less resource-intensive

for researchers to collect. More data is widely acknowledged to increase the perfor-

mance of machine learning models (to a point) [226] as the model is more likely to form

rules based on trends that apply to the general population of cases rather than just

those of the dataset. To summarise: more data leads to better machine learning per-

formance on external test sets and given a fixed time period and fixed resources more

static data can be collected than dynamic. A number of papers criticising dynamic data

also infer that the use of dynamic data is desirable in future work [100, 125, 153]. This

may be taken as an indication that dynamic data collection is seen as a more involved

or arduous process but a valuable one, as Raff et al. [153] explain: ‘[the] dynamic

analysis component is likely to be an important component for a long term solution, we

avoid it at this time due to time complexity’.

Figure 2.4 shows the number of benign and malicious samples used by 97 malware

detection and malware family classification papers. Some use all malicious datasets

as these papers are attempting to cluster malware into families or groups of similar

behaviour. Though this is not the focus of this thesis, many of themethods used to group
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Figure 2.4: Number of samples used in 92 papers (Only 92 of 97 report number of
software samples) coded by use of self-collected dynamic data. N.B. The penultimate
two papers use the same dataset.
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malware families are similar to those used for malware detection and thus relevant to

the discussion. Figure 2.4 gives an overview of the number of samples used by a

number of recent papers. A logarithmic scale is required to present this data since

the smallest dataset uses just 5 samples [175] (though the number of benign samples

used by the authors appears to be missing from the paper), whilst the largest uses 6.5

million samples [87], with the median size for dynamic data being less than 2,000. It

is clear that the papers using static data tend towards the right-hand side of the graph,

i.e. using more data.

Dataset size

Data type # papers
reviewed minimum maximum median mean

Uses dynamic data 58 5 6,500,000 1,916 219,058
Static data only 31 314 477,349 19,987 50,693
Pre-collected dynamic data 3 32,078 1,647,000 131,650 603,576

Table 2.3: Dataset size statistics for 92 papers (Only 92 of 97 report number of software
samples) using dynamic data (includes hybrid approaches), static data only, and those
papers using dynamic data that was pre-collected prior to the research paper being
presented.
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There is a negative correlation between the use of dynamic data and dataset size.

Table 2.3 records statistics around the dataset sizes for 92 malware detection and mal-

ware classification papers. The three largest datasets (6.5m, 2.6m and 2.6m samples)

all use dynamic data, but these papers [45, 87, 96] were all published by Microsoft’s re-

search labs and are anomalously large (6.5m, 2.6m and 2.6m) by comparison with other

commercial and academic dataset sizes ; the mean is 220K with Microsoft datasets in-

cluded and more than 10 times less at 19K with these datasets excluded. To illustrate

how these outliers skew the mean, the table reports the median dataset sizes. The me-

dian size when dynamic data is included is 20% of the size of datasets only using static

data. Since more static data can be collected in a given time period per computational

resource, larger datasets can be generated.

2.3.5 Focus on Dynamic Data

This thesis focuses on dynamic malware detection based on the analysis of relevant

literature above. This thesis argues that dynamic data would be a valuable addition

to endpoint protection if it were as fast and easy to deploy as static analysis. Funda-

mentally, it is more difficult for malware authors to obfuscate the behaviour of malware

than the source code. However, this is not reflected in the popularity of static malware

detection; as discussed in the previous section.

The computational and time resources required for collecting dynamic data are cer-

tainly greater than for static data which means that (1) static malware detection has

been researched more often and (2) dynamic detection is part of a deeper layer when

used in a defence-in-depth model. Defence-in-depth is a cyber security concept re-

ferring to the ‘enclosure of an asset by a succession of barriers, all of which must be

penetrated for the asset to be acquired’ [181], these obstacles may promote any and

all of the detection, delay and mitigation of a cyber attack [181] through their diversity,

such that the attacker cannot bypass more than one using the same technique. All lay-
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ers of a defence-in-depth model add security to the endpoint, with the strongest models

seeing each layer complement the weaknesses of the other layers. Therefore this the-

sis is concerned with dynamic data for malware detection and the robustness of this

data in a number of respects which have not yet been addressed by existing work and

are elaborated in Sections 2.6 2.7 and 2.8. Before describing these gaps in detail, the

next section analyses the second fundamental aspect of automatic malware detection:

the rules.

2.4 Detection Rules

The rules used formalware detectionmay be signature-based or heuristic [179]. Signature-

based detection uses the existence or absence of specific attributes, sometimes to-

gether with logical operators to identify malware. In practice, signatures are an efficient

way to filter out known malware variants and are widely used (e.g. [8]) but are unlikely

to capture new variants and require manual effort to update.

Heuristic approaches do not depend on specific attributes of known malicious soft-

ware but instead depend on broader patterns delineating malicious and benign soft-

ware. As such, heuristic rule sets are usually better-suited to detecting unknown mal-

ware variants and families [179]. Machine learning (ML) is one automated method to

generate heuristic rule sets.

Rules may be created using expert human knowledge, statistics, an algorithm or

some combination of the above.

2.4.1 Human-generated Rules

Some researchers have used expert knowledge to craft the rules used to distinguish

malware and benignware. Isohara et al. [93] use hand-written regular expressions to

find matches in the dynamic behavioural logs collected during software execution. This
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approach found suspicious activity in a significant proportion of the 230 applications

tested by the researchers, but the results did not indicate the usefulness of such an

approach in the wild since the authors do not verify whether any of the suspicious ap-

plications are actually malicious. Hand-written rules can be highly effective but may not

be suited to detecting new threats. For example, the market value of cryptocurrency

has led to an increase in cryptomining malware but this malware may not be captured

by filters written prior to cryptominers being a prevalent type of malware. ML-generated

rules may also fail to detect cryptominers if they have not been exposed to them during

training, but it is possible to retrain the model (generate a new set of rules) in minutes

and without using up the time of experts.

2.4.2 Automatically-generated Rules

ML is a sub-field of artificial intelligence that uses an algorithm and data to generate the

rules required to solve a given problem. The same algorithm can be employed to tackle

different tasks by changing the underlying dataset rather than explicitly programming

rules for each problem. A machine learning algorithm approximates complex functions

in order to solve a particular task. The tasks can be varied but include classification

(e.g. malware or benignware), anomaly detection, and clustering[72].

ML algorithms automatically generate rules from data to map inputs to outputs. For

malware detection, software collected from data is mapped via (a series of) rules onto

a label of malicious or benign. These rules are typically mathematical expressions and

can be difficult to explain in easily interpretable language [126]. Over 60% of 2019

papers in a search of the Google Scholar archive mentioning ‘malware detection’ also

mentioned ‘machine learning’, ‘deep learning’ or ‘neural networks’ (see Fig.2.5). Many

papers cite the success of machine learning and deep learning in other fields as reason

enough to apply it to malware detection (e.g. [87, 107, 145]). Others such as Hardy

et al. [81] and Zhang et al. [224] proffer that ML can be a solution to obfuscation and
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polymorphic techniques.

The rules that are generated depend not only on the data but the problem that the

algorithm is trying to solve.

2.4.3 Types of Machine Learning Problem

MLmodels take data as input and output some value. Models undergo a training (learn-

ing) phase, which is usually followed by a testing (inference) phase. During the training

phase, the parameters of the algorithm are updated with respect to some optimisa-

tion expression e.g. for malware detection the greatest overall agreement between the

algorithm’s labels of malware or benignware and the ground truth as to whether the

software is malicious or benign. The models may undergo subsequent training with

new data after the initial training phase has concluded, e.g. to update the model with

new data.

MLmodels can be categorised according to the feedback provided to the adjustment

algorithm: supervised, unsupervised and reinforcement learning all describe different

methods for rating the output of a model during training.

Supervised learning

Supervised learning occurs when the ML algorithm has access to the ground-truth la-

bels associated with the training data.

Supervised learning algorithms iteratively adjust the parameters of the model to

minimise the disparity between the ground truth labels and the output of the model. In

the case of supervised learning for malware detection, the inputs are data collected

from software and the output is a label of ‘malicious’ or ‘benign’.
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Unsupervised learning

Unsupervised learning does not use any labels and semi-supervised learning uses a

combination of labelled and unlabelled data.

Unsupervised learning algorithms may have some other goal such as clustering

similar data together. At some point (e.g. number of times the data has been parsed or

a certain error rate), the training of the model stops and testing begins. During testing

new, unseen data is fed to the model to generate an output, to mimic the real-world

performance of model inference on unseen data. The outputs of unsupervised learn-

ing models can be numeric indications of how unusual a sample is or how closely it

resembles (a subset of) the training data.

Reinforcement Learning

Reinforcement learning (RL) uses a reward function to assign a positive or negative

value to a (sequence of) actions within an environment e.g. the points scored in a

computer game environment can be used to reinforce the likelihood of repeating the

actions preceding the score if the model finds itself in similar circumstances again.

Malware detection as a Machine learning problem

The volume of data produced by the hundreds of thousands of new malware each day

[203] presents a challenge for analysts. One way to address this problem is to use

machine learning to draw out patterns from a large quantity of data.

Malware detection is typically framed as a supervised (is this malicious or benign?)

or unsupervised learning problem (how anomalous is this compared with benignware?).

Supervised learning required the labelling of samples, which can be labour intensive,

though many researchers use VirusTotal as a proxy labelling oracle for research e.g.

[25, 87]. Unsupervised learning does not require labelling but it does require the model

creator to select a baseline and a threshold of deviation from that baseline over which



Background: Literature Review and Research Methodologies 42

a sample is judged to be malicious. Deciding the threshold presents a number of chal-

lenges if labelling is not used otherwise how can it be certain that the baseline dataset

does not contain any malware. Both approaches have been used in previous work.

2.4.4 Machine Learning for Malware Detection

Figure 2.5: Approximate number of search matches per annum reported by Google
Scholar [118] in academic texts between 2009 and 2019 for
‘malware detection’ only
‘malware detection’ and (‘machine learning’ or ‘neural network’ or neural networks’ or
‘deep learning’ )
‘malware detection’ and ‘machine learning’
‘malware detection’ and (‘neural network’ or neural networks’ )
‘malware detection’ and ‘deep learning’

Machine learning has become an increasingly popular tool for malware detection as
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in other domains. Figure 2.5 illustrates the year-on-year increase in papers using the

term ‘malware detection’ with papers containing both ‘malware detection’ and ‘machine

learning’ from the Google Scholar [118] archive. This is a crude metric since papers

containing the term will not always have malware detection as a research topic but it

is possible to see a linear increase in the number of ‘malware detection’ papers but a

growing rate for those papers containing both ‘malware detection’ and ‘machine learn-

ing’. In 2009 24% of papers containing the term ‘malware detection’ also contained the

term ‘machine learning’, in 2019 this figure was 61%.

The reason that more malware detection publications are using (or referring to) ma-

chine learning may be explained by the changing problem of malware detection and/or

the recent ubiquity of machine learning.

Machine learning addresses a number of the challenges in automatic malware de-

tection. The volume of newmalware is too great for humans to parse but MLmodels are

capable of drawing out patterns from very large datasets, as demonstrated by [45, 86].

The two categories ‘malicious’ and ‘benign’ describe a wide variety of software; mal-

ware is often sub-categorised into families or types. Malicious software is any software

that causes harm; this describes a very broad spectrum of software behaviour. Be-

nignware is any software that is not malware; an even broader set of behaviours. It

is very difficult to hand-write a set of rules to make a binary distinction between these

internally heterogeneous groups. As malware evolves over time in response to new

vulnerabilities and anti-malware techniques, this rule-set may need to be rewritten or

augmented. The expertise required to reverse engineer a program is rare and as such

it is valuable and expensive. ML offers a quick and cheap means to generate a new

rule set.

Benefits of Machine Learning for Malware Detection

In academic research, ML is a popular mechanism to generate rules for malware detec-

tion e.g. [5, 25, 34, 47, 57, 76, 81, 85, 100, 100, 131, 140, 153, 167, 196, 208, 215, 218],
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but it is difficult to know if AV engines are making use of this technology due to com-

mercial secrecy.

Fleshman et al. [62] tried to partially answer this question by comparing 2MLmodels

against 4 AV products. The AV products were significantly worse at detecting these

unseen malware despite good detection on their known counterparts, by comparison

with the ML models; 13%-78% error rate for AVs, 0.003% and 0.02% for ML models.

Not only does it appear that the AVs tested are not making use of the technology used

by ML models but that the detection mechanisms being used are not able to detect new

variants easily.

Despite the large number of publications, and perhaps this is one reason why there

are so many, there is a lack of consensus for how best to tackle the problem.

2.4.5 Algorithm Choice in Recent Work
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Figure 2.6: Algorithms used by 97 recent malware detection papers. NN=neural net-
work, SVM = support vector machine, RF = random forest, DT = decision tree, KNN =
K-nearest neighbours, LR = logistic regression, HMM = Hidden Markov Model, Human
= human-generated rules. The ensemble algorithms may use a number of techniques
to combine the predictions of different models.
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Figure 2.7: Total papers using neural networks (NN), support vector machines (SVM)
and random forests (RF) in 97 recent malware detection papers by year
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There are many different ML algorithms, and many of them have been applied to the

problem of malware detection. Common considerations in the choice of the algorithm

are the error rate and computational overhead during training and inference. Despite

the wide range of ML algorithms available, some are more prevalent than others. In an

extension of the work published in [158], a survey of the algorithms and data used by

97 recent malware detection and malware family classification papers has been con-

ducted. Figure 2.6 summarises the most popular algorithms used by the papers in the

survey. Some papers compare multiple algorithms, in which case the best-performing

algorithm is selected according to the evaluation criteria set by the paper authors. There

are more algorithms than papers as some approaches use the output of one algorithm

to feed into another for a final decision (e.g. Burnap et al. [25] use a self-organising

feature map together with a logistic regression). Any algorithms appearing in only one

paper have been grouped together as ‘other’. The three most popular algorithms used

for malware detection are NNs, support vector machines and random forests. Fig-

ure 2.7 shows a significant increase in the popularity of neural networks since 2015.

Support vector machines (SVM) have fallen in popularity by contrast, whilst random

forests (RF) have seen a steady appearance in the literature since 2010. It is possible

to speculate that the rise of deep learning, which is often attributed to developments

in accelerating hardware making training on large datasets possible [127], has led to

a preference for the use of large datasets where possible. More data often means

that a wider sub sample of the population data is captured and therefore the model

will generalise well. SVMs on the other hand do not handle large datasets well due to

their training complexity since the separating hyperplane must take more data points

into account [30]. Random Forests and gradient boosting machines (thanks to efficient

implementations [59]) on the other hand still train quickly with large datasets.
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Neural Networks

The most popular algorithm by far is the neural network, but this is partly because

neural networks describe a range of diverse architectures including but not limited to:

long-short-term memory networks, convolutional neural networks and autoencoders.

Perceptrons are counted separately in Figure 2.6, but these are also a type of (fully

connected feed-forward) neural network. Neural networks are general function approx-

imators, which map input data to outputs through a network of connected neurons. First

conceived of in the 1950s, NNs are resource-intensive to train by comparison with many

other ML models. The advancement of computer hardware and greater accessibility to

this hardware has allowed these algorithms to realise their many uses. It is possible

that the increase in the proportion of malware detection papers using machine learning

can be attributed to the wider adoption of neural networks following their success in

other domains such as computer vision e.g. [110], natural language processing e.g.

[46], and game-playing e.g. [128] amongst others. Some malware detection research

has explicitly borrowed approaches from computer vision papers, e.g. turning malware

into images prior to classification [122, 219], but there are domain-specific challenges

in malware detection that do not translate from computer vision problems, one of which

is that labelling software as malicious or benign requires expertise that is more difficult

to come by than the expertise required to label benchmark image datasets.

Comparison with Wider Algorithm Choice

Whilst this survey is not exhaustive, its findings are consistent with the general popular-

ity of these algorithms as mirrored in Goldblum’s analysis [70] of the most commonly-

used winning algorithms in machine learning competitions hosted by Kaggle [91] with

the exception of Gradient Boosted Machines (GBM), of which XGBoost is one. Figure

2.8, from Goldblum’s analysis, shows that the algorithms chosen for malware detection

mirror the wider trends in machine learning. This may indicate that there are a limited
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Figure 2.8: Most popular algorithms winning Kaggle machine learning competitions to
2016 [70]

number of data types or classification problems and that the optimal algorithm depends

on which category the problem falls into, rather than the problem space. Whilst there

are trends, there is not a best algorithm for malware detection, the best-performing al-

gorithm depends on the input data, both the features chosen and the specific samples

in the dataset. This makes it difficult for practitioners to know how to adopt one of these

proposed models in practice.

2.5 Practitioner Choice

ML for automated malware detection is motivated by a desire to prevent the destructive

impacts of malware. Imagine a practitioner wanting to adopt an automated malware

detection model using dynamic data to complement existing static antivirus tools - how

will she choose which of the many proposed approaches to adopt?

Unlike other popular machine learning domains such as computer vision, bench-

mark datasets for malware detection are not readily available. The lack of benchmark

datasets makes it difficult to compare approaches. The changing landscape of real-
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world malware is a fundamental challenge to overcoming the issue of benchmarking.

Researchers can reasonably argue that a more up-to-date dataset should be used than

was used by previous work.

The composition of the testing and training set can artificially inflate the reported

performance of a model by making the classification problem slightly easier. The details

of datasets are not always reported but one can imagine that if malware and benignware

are delineated on other grounds e.g. all the benignware is pre-2010 and the malware is

post-2015 or the malware is almost all from just one family, the model may be learning

to distinguish software by date rather than malware and benignware. Often grouping is

incidental to the fact that malware is collected from one source and benignware another

(an argument in favour of honeypots or commercial datasets). As an example, some

papers (e.g. [71, 98, 173, 188, 225]) derive all of the benign samples in the dataset

from the operating system being defended. This is likely to limit the diversity of benign

samples that the model learns for detecting malware. Furthermore, if the samples used

to test themodel are also from this pool, the reported accuracymetrics of themodel may

be artificially high by comparison with how it will perform in classifying benign software

created by other software developers.

The test set can comprise any combination of the millions of malware not in the train-

ing set. In order to try and gauge real-world performance, the test set(s) should mimic

the conditions under which it will be used. This can be challenging if it is intended for

use in many different environments. Furthermore, the test set should comprise sam-

ples created after all the training set samples - this is because a training set including

malware from after the test set samples may have leaked information to the model

about future malware behaviours, even if they belong to different families. Pendlebury

et. al [150] have demonstrated the exaggerated accuracy metrics of android malware

detection models that can be achieved when tested with samples created before or dur-

ing the creation times of the training set. Whilst separating the data according to date

approximates some of the conditions that the tool will be subject to in live deployment
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but it does not help the problem of direct comparison between approaches.

To judge whether a model has learned anything at all and in order to compare ap-

proaches on the same dataset, empirical evaluations are reported, and are used by

every paper in this literature review. However, they are not always used consistently.

2.5.1 Evaluation Metrics

All malware detection papers report some kind of accuracy metric. Different metrics are

used by different papers and the datasets are often also distinct, making these numbers

virtually impossible to compare. Some papers use highly imbalanced datasets (many

more malicious than benign samples or vice-versa) which changes the usefulness of

different metrics. A dataset comprising 90% benignware and 10% malware can class

all samples as benign and report 90% accuracy (percentage with correct labels) on this

dataset since accuracy is simply the percentage of correct classifications over the whole

test set but in reality, the model is useless at distinguishing benignware and malware.

The murkiness of the accuracy metric can be illuminated by reporting the false posi-

tive (misclassified benignware) and false negative (misclassified malware) rates. In the

real-world software ecosystem, there is often a higher percentage of benignware than

of malware [150]. A high false-positive rate could hinder user experience if it means

that benign programs are often blocked or have to be investigated by human analysts.

A low false-negative rate may be difficult to achieve in practice if there are only two

malware samples in one month, failing to detect one will yield a false negative rate of

50%, even though only a single sample was undetected.

Comparing more than one metric can make it difficult to ascertain which of several

models is the best. A number of metrics try to account for imbalance and still report a

single figure.

Often the F-Score metric, also known as F1-Score or F1, is used to describe the

accuracy of predictions on an unbalanced dataset. F-Score gives the harmonic mean
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of precision ( # true positives
# positive predictions

) and recall ( # true positives
# positive samples

) so the true positive rate dom-

inates the true negative rate for this metric (see Table 2.4). In the case of malware

detection, it is generally true that if no malware is detected, the model is not perform-

ing well, therefore the F-Score is used along with other metrics in this thesis when the

dataset is imbalanced.

Predictions for dataset:

+ + - - Text description

Accuracy
(% with
correct
labels)

F-Score

+ + - - True labels 100% 1
+ + + + All positive 50% 0.67
- - - - All negative 50% 0

Table 2.4: F-Scores vs. percentage with correct labels (accuracy) for three sets of
predictions on a dataset of 4 samples (2 positive, 2 negative)

Often papers will report multiple metrics to try and capture the strengths and weak-

nesses of the proposed models over previous works but these metrics are somewhat

irrelevant for comparing papers unless the same dataset is used and may also fail to

reflect performance on an unseen test set drawn from a different environment for the

reasons given above.

2.6 Model Robustness

Metrics are not uniform across papers and good performance on one dataset does not

necessarily imply good detection accuracy on another. This is a crucial problem for

practitioners seeking to adopt these models since ultimately they are interested in how

well a model will perform in their environment.

Testing a model on multiple datasets gives additional confidence that a model may

perform well on another dataset. Some researchers have tested this [135] but, this has

only been conducted with static malware data. Nataraj et al. [135] test a binary texture
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analysis approach on 4 separate datasets for malware family classification (not detec-

tion) and observer varying results (72% to 97% accurate labels assigned); the authors

also retrain the (k-nearest neighbour) models on each dataset rather than deploying

pre-trained models. Dovom et al. [57] look at static malware family classification, rather

than detection, as well as malware detection and see a detection accuracy variance be-

tween 93 and 100% accuracy across 4 distinct datasets. Pendlebury et al. [150] test

the impact of splitting datasets strictly by date and the impact of altering the percentage

of malware in the training and testing set on accuracy metrics, across three different

algorithms, but these experiments use static features and do not compare datasets

form different sources in during testing. McLaughlin et al. [125] also test a static anal-

ysis approach, this time using three datasets (one collected by the researchers and

two provided by a commercial entity). The authors observe very good results on the

researcher-collected dataset (98% accuracy, 0.97 F1-score) but poorer results when

tested on the commercial dataset (80% accuracy, 0.78 F-Score), finding that another

method gives more stable accuracy results across the two datasets. The researchers

investigate the use of different data sources but not different algorithms.

Previous work has not conducted this kind of multi-dataset analysis for dynamic

malware detection; perhaps owing to the effort of collecting dynamic data. McLaughlin

et al.’s [125] work indicates that the best-performing model on one dataset may not per-

form so well on another. For the benefit of researchers and practitioners, it is important

to understand whether results are likely to be stable across datasets. This presents an

open question in dynamic malware detection literature:

RQ1: To what extent do dynamic data and algorithm choices impact the robustness

of malware detection accuracy across different datasets?

Following this question around the robustness of dynamic malware detection mod-
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els between lab and real-world environments, there are additional barriers to adopting

dynamic data models. One of these is time; the processing required to collect dynamic

data is much more intensive than that required for static detection.

2.7 Detection Time

After looking at the performance and robustness of different algorithms and dynamic

data types in various contexts, practitioners may still resist dynamic data collection due

to the time required to process a sample.

Ref. Reported time collecting dynamic data
Malware Detection

[195] 30 seconds
[164] 2 minutes
[161] 2 minutes
[98] 2 minutes
[80] 3.33 minutes (200 seconds)
[135] 3 to 5 minutes
[196] 5 minutes
[214] 5 minutes
[29] 9 minutes
[211] 10 minutes
[134] 15 minutes
[47] Fixed time and 5-10 minutes mentioned but overall

time cap not explicitly stated
[145] At least 15 steps - exact time unreported
[159] No time cap specified but ‘The samples are executed

for a limited time’
[61] No time cap mentioned - implicit full execution
[4] No time cap mentioned - implicit full execution
[87] No time cap mentioned - implicit full execution

Malware family classification
[107] No time cap mentioned - implicit full execution
[59] No time cap mentioned - implicit full execution

Table 2.5: Reported data sample sizes and times collecting dynamic behavioural data
per sample

Table 2.5 outlines the dataset sizes and reported recording time for several dynamic

detection papers. The shortest time used is 30 seconds, the longest is 15 minutes,
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others are measured in the number of instructions, API calls or other discrete events

carried out by the malware. Many papers do not report this data at all [4, 59, 87, 107].

Previous dynamic malware detection work has used data recording times chosen

for experimental convenience [47, 196] or for the time deemed long enough by the

researchers for malware to enact its payload [4, 61]. Researchers have not asked how

long malware needs to distinguish itself from benignware because the goal of these

works was not to conduct analysis in a short period of time.

To fully leverage the usefulness of dynamic detection in order to prevent the execu-

tion of harmful code, this thesis argues that it should be used before malware is able to

cause harm. This leads to the second research question:

RQ2: Is it possible to predict that software is malicious from its early stages of exe-

cution?

If it is possible to predict that a file is malicious based on the early stages of execu-

tion, this could be a viable malware detection model to challenge the speed with which

static data can be collected and use dynamic detection as part of front-line defence

mechanisms rather than for post-infection analysis, which, as highlighted earlier could

save a several million-euro remediation cost[141]. Even if the time is reduced to a few

seconds of analysis, there is an easily-exploited weakness in early detection models,

as explained below.

Looking to the future, it is important to consider likely vulnerabilities of any new

approach to malware detection. Using a very short behavioural trace could be cir-

cumvented by ‘sleeping’ the program or running a benignware program for a specific

amount of time. Logic bombs, by which a certain condition must be met before the ma-

licious payload is triggered are well-documented in malware and difficult to detect [95].

If malware is allowed to run indefinitely, e.g. to allow for a logic bomb that releases the

payload only at 2AM, this defeats the early prediction model. Some malware will only
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execute when there is no user activity, some in the middle of the night, some only if

it is connected to the internet. There are ways to try and convince the malware these

conditions have been met despite the true conditions and continue analysis in a VM

but this is time-consuming and requires human analysis on a case-by-case basis and

is therefore incompatible with quick, dynamic malware detection.

One way to ensure that the behaviour exhibited by malware is representative of the

damage it could inflict on a target endpoint is to run the malware on said target endpoint

and examine the sample as it executes. This is known as online, run-time, on-the-fly or

real-timemalware detection [48, 170, 188]. The lack of naming convention indicates the

relative immaturity of this sub-field of dynamic malware detection. The term ‘real-time’

will be used henceforth.

2.8 Real-Time Malware Detection

Real-time detection builds on the weaknesses of early-detection in a VM since it does

not require an additional sandboxed environment and uses the target endpoint to mon-

itor malicious processes. The first advantage is that, this eliminates the computational

resources required to run the VM and second, it ensures that conditionally executing

malware will show it’s true behaviour if it is to cause any damage at all. The second

advantage is that any malicious activity that will impact the endpoint will also be seen by

the analysis system, unlike the case of the sleeping malware using the early-detection

approach. Real-time detection does not invalidate the usefulness of early-detection, it

depends on it since real-time detection is carried out on a live endpoint in use by a user

which presents new challenges beyond the use of a dedicated virtual machine running

single software applications one-by-one.

The next section will set out these challenges in detail but briefly, the impact of

power consumption and model latency needs to be considered; the issue of signal sep-

aration between malicious and benign processes needs to be tested, and consideration



Background: Literature Review and Research Methodologies 57

Problem considered

Ref. R
es
ou
rc
e
co
ns
um

pt
io
n

La
te
nc
y

Si
gn
al
se
pa
ra
tio
n

Ea
rly

de
te
ct
io
n

Im
pa
ct
of
de
te
ct
io
n
tim

e

R
ea
l-t
im
e
te
st
ed

M
al
w
ar
e
ty
pe
s

O
S

#
Sa

m
pl
es

Fe
at
ur
es

Al
go
rit
hm

[170] X X General Linux 200 HPCs Boosted
DT

[171] X X General Linux 200 HPCs Boosted
DT

[48] X X X X General Linux 798 API calls MLP

[139] X X X General Windows 1554 memory
ad-
dresses,
instruc-
tions

NN

[222] X X General Windows,
Linux

500 NN

[188] X X X X General Windows 9992 API calls RF + NN

[172] X X X X Crypto
Ran-
somware

Windows 497 File data Rules

Table 2.6: Real-timemalware detection literature problems considered. OS = operating
system; HPCs = Hardware performance counters; DT=Decision Tree; MLP = multi-
layer perceptron; NN = Neural Network; RF=Random Forest

of how to prevent damage should also be examined. Table 2.6 gives an overview of the

research gaps in this domain before the following subsections discuss it in more detail.

2.8.1 Latency and power consumption

The data collection and machine learning model cannot be too heavyweight compu-

tationally. If the computation is very slow user experience may be impacted and the

benefits of avoiding the VM are less persuasive. This is the most well-addressed as-
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pect of real-time detection in previous work. Sayadi et al. [170, 171] analyse the impact

of a number of features and machine learning algorithms and find that using fewer fea-

tures with an ensemble classifier improves accuracy whilst maintaining low resource

consumption. Das et al. [48] use a field-programmable gate array (FPGA) to imple-

ment a low-power, low-latency multi-layer perceptron.

Sun et al. [188], Ozsoy et al. [139] and Yuan [222] propose two-stage models to

address the need for lightweight computation. The first stage comprises a lightweight

ML model such as a Random Forest to flag suspicious processes, the second being a

deep learning model which is more accurate but more computationally intensive to run.

Two-stage models, as Sun et al. [188] note, can get stuck in an infinite loop of analysis

in which the first model flags a process as suspicious but the second model deems it

benign and this labelling cycle continues repeatedly. Furthermore, if the first model of

the two is prone to false negatives, malware will never be passed to the second model

for deeper analysis.

This previous work gives valuable insights into real-time malware detection algo-

rithms but does not examine the tangible impact of using a low-power or low-latency

model on the ability to prevent harm or detect malware earlier, leaving open the follow-

ing question:

RQ3: Does the use of lower latency algorithms impact upon the speed of accurate

malware detection?

2.8.2 Signal separation

Real-time detection on an endpoint in use requires us to distinguish between malware

and benignware that are running simultaneously. Typically malware detection models



Background: Literature Review and Research Methodologies 59

collect behavioural data for the entire (virtual) machine whilst a single application ex-

ecutes. However, on an endpoint in use, it is necessary to look at the behaviours of

the individual processes. This is more challenging than application-level detection be-

cause a model is only able to observe partial components of the behavioural trace in

each constituent process. Sun et al.[188] present the only previous work to attempt

process-level detection with up to 5 applications running simultaneously and were able

to detect between 88% of applications successfully after 5 minutes of execution. A user

may well run more than 5 programs, which leads us to ask whether there is an impact

on malicious process detection when a greater number of programs are running:

RQ4: Is it possible to separate the signals of tens of simultaneous benign and mali-

cious processes?

2.8.3 Automated Response: Process Killing

Finally, real-time analysis introduces the risk that the malware will execute. Real-time

analysis aims to prevent problems rather than simply detecting that they have occurred

after the fact. In the same way that self-driving cars need to detect a ‘STOP’ sign as

early as possible (rather than 10 minutes after it has passed) in order to mitigate the

chances of a road accident, real-time malware detection should detect malware before

the malicious payload is delivered. This is more challenging than full-trace dynamic

classification because it must use a partial execution trace rather than the complete be-

havioural footprint. The earlier amalicious process is detected and killed, themore likely

it is that damage to the victim machine/endpoint has been mitigated or even prevented.

This means making decisions based on short behavioural traces and automating the

response since humans may not be able to see the alert and react quickly enough to
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prevent damage, which can begin within seconds [43]. Automated responses must be

carefully calibrated in order not to hinder business operations, which may happen if

there are a significant number of false positives (benignware classified as malicious).

Das et al. [48] look at early detection of entire malicious applications (signal sepa-

ration problem not addressed) and report the classification accuracy as a percentage

of the software execution such that 46% of malware was detected in the first 30% of

execution but 97% were detected using the full trace. It is not clear what detection at

30% of the way through execution means for the user. Sun et al.’s work on malware

process killing [188] has used behavioural traces of 5 to 10 minutes, but this is sufficient

time for malware to cause damage; one security vendor has found that Chimera ran-

somware can encrypt 70 MB worth of files (stored in 1,000 documents) in 18 seconds

[43]. Scaife et al. [172] do address this gap by measuring the damage of ransomware,

with most files being saved by the model. However, the researchers only look at ran-

somware malware rather than building a general malware detection model and only

test on 5 benignware samples so an indication of false-positive rate is not evident. The

final research question is therefore:

RQ5: Is it possible to detect and kill malicious processes early enough to prevent ma-

licious damage?

2.9 Thesis Scope

This thesis is concerned with malware affecting Microsoft Windows, which is the most-

used desktop operating system (OS) globally [138]. Many malware detection papers

address malicious applications for Android mobile OS e.g. [1, 24, 73, 76, 93, 99, 100,

113, 125, 149, 167, 173, 175, 206, 213–215, 219, 223, 224] as this OS is even more



Background: Literature Review and Research Methodologies 61

widely used than Windows [69] and sees limited scrutiny of third-party applications.

This thesis is concerned with desktop rather than mobile operating systems due to

the prevalence of desktop machines in business by comparison with mobile devices;

therefore the malware and benignware relate to Microsoft Windows.

Figure 2.9: Most commonly uploaded filetypes to VirusTotal in the 7 days preceding
21st August 2019 [203]

The primary filetypes considered in this thesis are executables. VirusTotal [203]

reports these as the most commonly uploaded filetype for analysis (see Figure 2.9);

though Chapter 3 also reports some experimental results for PDF, Microsoft Word and

Microsoft Excel filetypes.

2.10 Conclusions

The literature review in this chapter has presented the state-of-the art in dynamic mal-

ware detection work. The motivation for malware detection research is clear: malicious

software is responsible for economic and social disruption [82, 185] and the associ-

ated costs of malware attacks are worsening with time [119]. The very large volume

of malware seen each day [203] necessitates automated detection. Dynamic malware

detection models have not been demonstrated to be vulnerable to obfuscation to the

same degree as static models [76, 108, 207] but the time taken to collect dynamic data

has made these models preferred for post-attack analysis over pre-attack detection.
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Whilst in-depth analysis of malware can give valuable insights into existing vulnerabil-

ities and the threat landscape, being able to detect malware before it causes damage

has the potential to eliminate the cost of recovery.

This research advances the problem space of automatic malware detection through

the experimental results presented in Chapters 3, 4, and 5. These chapters address

the research questions presented in the previous chapter for which existing literature

has provided only partial answers; this has resulted in several contributions to the field

of automated malware detection. Related research questions not addressed by this

thesis and those arising from the work presented herein are discussed in Chapter 6:

Limitations, Future Work, Conclusions.



Chapter 3

Robust Models

This chapter considers a common scenario: amodel is trained and tested by researchers

and then used in a new environment. As noted in the previous chapter, McLaughlin et

al.’s work [125] on static data indicates that the most robust model may not be the best-

performing in the ‘lab’ setting. Previous work has not examined whether this robustness

may be impacted by the choice of dynamic malware features or the machine learning

algorithms used.

This chapter addressesRQ1: Towhat extent do dynamic data and algorithm choices

impact the robustness of malware detection accuracy across different datasets?.

Section 3.1 outlines the motivating scenario for this chapter, the problems collect-

ing datasets for malware detection, and defines ‘robustness’. Section 3.2 describes

the methodology used, Sections 3.3 and 3.4 outline the data sources and algorithms

that will be used in experimentation. Section 3.5 describes the data collection and Sec-

tion 3.6 reports and analyses the experimental results. Finally, section 3.7 summarises

the implications of these results.

63
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3.1 Motivation and Definitions

The key motivation for this chapter is the following scenario: a security practitioner

reads that multiple academic groups have developed high-accuracy dynamic malware

detection models and would like to use one in her environment - should she choose the

model reporting the highest accuracy?

Ultimately the practitioner’s goal is to prevent the most malware damage using the

chosen model whilst simultaneously minimising the false positive rate. Over time the

model which works best for the practitioner may change, as the malware landscape

and attacker techniques change. Here the question is limited to thinking about the best

model to implement today, though longevity is an important concern.

Two questions that the practitioner may ask are: ‘How can I compare models A

and B?’ and ‘How does the test set used by model A reflect my real-world environ-

ment?’. The first is difficult to answer due to a lack of benchmark datasets. The second

either requires the practitioner to be able to check the similarity between their own mal-

ware/benignware ecosystem against the samples used by the researcher for testing or

the practitioner may look for evidence that model performance is robust under datasets

from different provenances.

3.1.1 Lack of Benchmark Datasets

Chapter 2 illustrated that the datasets used to train and test machine learning models

are rarely the same. This presents a challenge for the practitioner seeking to compare

models.

In the case of malware detection, the samples evolve over time [150] as malware

and benignware evolve due to changes in technology, opportunities for cybercrime

and other factors. Researchers can thus justify the need for newer datasets, since

old datasets may be considered sufficiently good indicators how a model may perform

today. Obtaining the samples is a non-trivial exercise. Malware is produced in the hun-
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dreds of thousands on a daily basis and is not difficult to find using open-source repos-

itories such as VirusShare [201]. More laboriously it can be collected using honeypots,

with the effort justified in potentially collecting lesser-known, newer or target-specific

malware [6, 66]. Benignware can be more difficult to obtain in large volumes as there

is less motivation to collecting and catalogue it.

So why do researchers not simply reuse datasets collected by previous work? There

may be several reasons behind this phenomenon. (1) Some researchers use industry-

collected datasets which are not shared for security or commercial secrecy reasons

e.g. [45, 87] (2) Academic-collected datasets are often not shared due to security con-

cerns around responsible malware distribution and legal concerns about proprietary

benignware distribution. (3) Commonly used benignware is often not free [44], thus

creating financial barriers. (4a) Some researchers publish the datasets derived from

the software samples but if a new research team would like to try collecting different

data types these datasets are redundant and (4b) as mentioned above, these datasets

go out of date quickly. (5) Models are typically not released publicly, possible also for

security concerns, making it difficult to replicate results. Given the difficulty of compar-

ing the various approaches, how can security professionals discern which approaches

are likely to yield the best results in practice?

3.1.2 Robustness

The term ‘robustness’ can be used to broadly describe the resilience to a range of

testing conditions. The National Institute for Standards and Technology (NIST) Special

Publication 800-137A Assessing Information Security Continuous Monitoring (ISCM)

Programs defines robustness as “The ability of an information assurance (IA) entity

to operate correctly and reliably across a wide range of operational conditions and to

fail gracefully outside of that operational range.”[52]. More broadly the Oxford English

dictionary gives the following definition of ‘Robust’ relating to computing: “Of a program:
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able to recover from errors; unlikely to fail, reliable. Also: (of a program’s feature set)

powerful, full.”[53]. In machine learning, it is important to consider the robustness of

models, especially those that may be used in critical decision-making contexts [142].

Robustness may be discussed for different forms of testing. For example, a building

may be robust over time or robust to earthquake tremors but it may not be robust to

both.

For malware detection, the robustness of a machine learning model refers to the sta-

bility of the testing accuracy as the underlying distribution of the testing data changes.

This underlying distribution may change for several reasons, three likely trials are (i)

different malware and benignware seen in different digital contexts or ecosystems e.g.

different companies, geographic regions (ii) changes in malware and benignware over

time, known as ‘concept drift’ (iii) adversarial samples; which are samples designed to

exploit weaknesses in the ML model.

3.1.3 Contextual Differences

Contextual differences may be used to describe the differences between datasets col-

lected from two different contexts. The contexts may be two different organisations,

different malware or benignware repositories, the same organisation but in two differ-

ent countries etc. In statistics, sampling bias is the term used to describe the deviation

from the true population. It is easy to imagine that a detection model could be deployed

in two different organisations, a local government office and a technology start-up for

example. The technology start-up may see more malware seeking to steal intellec-

tual property and the local government office may see more data exfiltration malware

seeking to capture public records. How might one increase the chances that a model

performs well in both contexts? A simple answer is to ensure that the model has seen

both types of malware during training.

In practice, the distribution of malware families seen in two distinct ecosystems may
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not be known. If they are known, it is still difficult to capture the variety of malware that an

organisation may be targeted by since, as illustrated in Chapter 2, the dataset used is

usually thousands - at most millions [45, 87]) of the available malware and benignware,

which is a very small fraction when one considers that there can be more than 1m new

distinct files produced in a single day [203]. Afroz notes that it takes an average of 1

month for commercial antivirus products to settle on a decision as to whether or not a

given file is malicious (and to which family it belongs) [2].

3.1.4 Concept Drift

Concept drift describes this degradation of model performance owing to changes in

the underlying distribution of the population being classified [197]. Due to the constant

evolution of malware, concept drift should be an important concern for malware detec-

tion researchers. Saxe and Berlin [168] distinguish malware from benignware using a

deep feed-forward neural network trained on static features with a true-positive rate of

95.2%. However, the true-positive rate falls to 67.7% when the model is trained us-

ing files only seen before a given date and tested using those discovered for the first

time after that date, indicating the weakness of static methods in detecting completely

new malware. This last example illustrates that even when reliance on hashes is re-

moved, static features can still fail to capture new malwares. The novelty of a malware

sample by comparison to previous ones may be difficult to measure, some malware

families such as Emotet or Zeus have been in existence for several years; the connect-

ing thread between successive iterations may be the infection mechanism, spreading

mechanism, evasion techniques used or some other method. Since this is different for

different malwares it can be difficult to say how ‘new’ a malware is; many borrow code

from predecessors. However, the results of Saxe and Berlin’s work indicates that even

within the same year new samples may have evolved significantly to evade detection.

Pendlebury et al. [150] recently highlighted the oversight of several well-cited papers
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to test the robustness of detection models against malware that will be written in the

future.

3.1.5 Adversarial Samples

Adversarial samples are samples generated by an attacker to try and fool a machine

learning model into misclassification. This is a concern for automatic malware detec-

tion as malware authors are highly motivated to try and bypass any antivirus tools.

Some work has already been conducted to show the vulnerability of ML malware de-

tection models [76, 85, 88, 108, 153, 207]. There are many kinds of adversarial attack.

Grosse et al. [76] were the first to demonstrate adversarial attacks on ML malware

detection models; with a 90% accurate model falling to 40% accurate when samples

were crafted to evade model detection using injected code. More recently, Kolosnjaji

et al. [108] showed that simply altering the padded code at the end of a compiled bi-

nary could cause the 94%-accurate MalConv model proposed by Raff et al. [153] to

misclassify 60% of samples. One notable caveat in these works highlighted by Afroz

[2] is that researchers have often failed to validate whether the malware still carries out

its malicious goals after manipulation. Similar approaches have been proposed for dy-

namic data models [85, 88], specifically for dynamic models using API call data. These

approaches rely on injecting data into the machine learning model rather than creating

samples that will fool the model itself thus requiring a greater degree of access to the

target system than the static attacks, which is less likely to be possible. In theory, an

attacker could relatively easily manipulate the sequence of API calls to fool ML mod-

els though researchers have not demonstrated this yet and this should be taken into

consideration in selecting a robust data source.
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3.1.6 Malware Detection Robustness - Focus on Contextual Differ-

ence

This section has outlined three issues relating to the robustness of malware detec-

tion models: context, concept drift and adversarial samples. Whilst all are important

considerations, this chapter focuses on contextual difference due to its relative lack of

attention in previous literature: as this section and Chapter 2 have shown, a number

of researchers are addressing the problems of concept drift and adversarial machine

learning. McLaughlin et al. [125] are the only previous work to look at the change in

performance when a model and this work uses static data. Furthermore, the contextual

difference is an immediate problem for ML models once they are deployed and do not

require the evolution of malware or an attacker to be sufficiently motivated to try and

circumvent a model in order to see diminished detection accuracy.

3.2 Methodology

The experimental methodology employed in this chapter is to take the most commonly-

used data sources and algorithms for malware detection research and compare the

classification accuracy for each model configuration on an unseen test set drawn from

the same source as the training data and then on a test set from a commercial organi-

sation.

The reason for choosing the most commonly-used data types and algorithms rather

than the configurations reporting the highest accuracy is that this repeated use and

publication of certain algorithms and data types is itself an indication of the robustness

of a particular approach.

This section outlines the experimental approach to testing model robustness across

multiple contexts. The constituent parts of a machine learning model for malware de-

tection (Figure 3.1) may take a wide variety of forms. Chapter 2 introduced malware
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Figure 3.1: Representation of a machine learning malware detection classifier pipeline
with intermediate steps between collecting raw data and parsing by a rule set to obtain
a final decision. Feature selection excludes features that do not meet a certain criteria
whereas feature representation describes the data structure used by the rule set.

detection dynamic data types and algorithms used by previous work but did not discuss

feature selection or feature representation.

3.2.1 Feature Selection

Feature selection is a process for reducing the number of inputs to a model either us-

ing algorithmic or hand-picked methods. This is typically carried out to reduce data

dimensionality [72, 87] which is a means to reduce the computational requirements for

training models as well as the memory requirements for storing data. For example, Lun-

gana et al. [120] reduce 1,143 features to 570 for a malware detection model using a

feature selection process based on correlation with the classification labels and mutual

information with other features i.e. features are omitted if they have a high correlation

with another feature [212]. On the other hand, Wu et al. [214] use all 56,354 collected

features with no feature selection for Android malware detection. The decision to use

feature selection depends on the use case and the computational resources available.
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3.2.2 Feature Representation

Feature representation refers to the way in which data is presented to a model, this

could be the binary existence of a feature, the frequency with which a feature occurred,

this frequency could, in turn, be represented as a histogram and the data fed to the

model as a 2-dimensional matrix. Some malware detection research has borrowed

ideas directly from computer vision papers, e.g. turning malware into images before

classification [122, 219]

3.3 Choosing Data

This section describes the data types, feature selection methodologies and feature rep-

resentations used for experimentation.

3.3.1 Features

Chapter 2 included a table (Table 2.1) of dynamic malware detection papers and the

data used for detection. This data showed that API calls are the most popular by some

margin, accounting for the data source in 67% of the papers surveyed. The (jointly)

next most popular are expert-defined dynamic events, machine data, and network data

(each 9%). After these three types, the next most popular achieve 6% or less of the

total share.

Although the next most popular data types are around 60 percentage points less

common, in order to have something to compare against API calls, machine metrics

and network data are used in the experiments. Expert-defined dynamic events, which

constitute things like ‘internet explorer is launched’ or a specific set of API calls in suc-

cession, are not included because the expert-defined features may change over time

and cannot be automated.
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3.3.2 API calls
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[205] X
[159] X X
[21] X X
[4] X X
[15] X X X X
[144] X
[61] X
[194] X
[93] X X
[160] X X X X X
[24] X
[10] X
[60] X
[45] X X X X X
[92] X
[166] X X
[109] X
[28] X X X
[3] X
[164] X X X
[214] X X X
[178] X X
[98] X
[90] X
[145] X
[105] X
[106] X
[80] X X
[87] X X X X X
[219] X X
[131] X
[161] X
[188] X
[47] X
[167] X X
[191] X X
[99] X
[85] X
[54] X
[88] X
[215] X
Total 5 6 8 2 1 1 1 11 1 1 10 6 7 1 8 2 1
%
of
41
ref-
er-
ences

12% 15% 20% 5% 2% 2% 2% 27% 2% 2% 24% 15% 17% 2% 20% 5% 2%

Table 3.1: References using API calls as data, representation method and additional
data collected. Where papers have used multiple representations (e.g. [61]) the best-
performing representation is recorded)
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Table 3.1 documents the representations of dynamic API calls from those papers

identified in the background chapter. As the table shows, API calls have been repre-

sented in a number of different ways. One challenge in representing these data is that

thousands are called in a short space of time and these long sequences must typically

be condensed in some way in order to be digested by a model.

The most popular (28%) is a frequency-based representation (simply counting the

occurrence of API calls) followed by time-series representations (24%). 3-grams are the

third most popular (20%), which cluster API calls into sequential triples and use these as

features. N-grams (sequences of length N) constitute 29% of API call representations

but the N value is not agreed; Szeles et al. [191] noted that 5- and 7-grams gave the

highest accuracy whereas Faruki et al. [60] found that 3-grams were best (20% of

papers).

This chapter uses the two most popular representations: frequency and time-series

representation.

3.3.3 Network data

Network data is the second most common feature used (see the previous chapter) but

the data collected and representation varies across different research. The most com-

mon approach (3 of 6 papers) tracks numeric statistics e.g. the number of connection

attempts, packets transmitted/received, bytes transmitted/received [14, 177, 211]. Less

common is the tracking of IP address and port data (2 papers) [134, 208] or of the nodes

in a local network hosting a particular file[193]. 2 papers count the protocols used to

transmit packets [134, 177]. Due to the prevalence of numeric data, one network traffic

feature set is used.
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3.3.4 Machine Metrics

Machine metrics like network data are also represented in several ways. The most

commonly monitored aspects are memory usage,[25, 109] CPU usage data [25, 175]

and the number of processes, [25, 175]. Only one paper each looks at input/output

read/writes [109] and battery level (for mobile devices) [175]. Researchers looking at

Linux systems have used hardware performance counters [13, 170, 171]. This data

is represented as a time series otherwise as summative data has not been used in

previous work. The consensus on representation is low due to the small number of

papers, but taking those metrics with at least two papers the machine activity feature

set user here comprises user CPU usage, system CPU usage, memory use, swap

use, the total number of processes, maximum process ID and time in seconds since

execution began captured each second.

3.3.5 Summary of feature sets and representations

Feature selection is sometimes used to reduce the dimensionality of data but due to

the numbers of distinct API calls observed during data collection being low and the

representation not increasingly data dimensional (as an N-gram approach would), no

feature selection methods are used.

Four file types are tested in these experiments: executables (EXE), Portable Docu-

ment Format files (PDF), Microsoft Excel spreadsheets (XLS) and Microsoft Word doc-

uments (DOC). These four categories are chosen as these types constituted significant

numbers of the malicious files detected by the organisation.

The description of features sets and number of features are listed below - note that

the number of API calls varies for each filetype since different API calls are observed

in the execution of each set of training samples, these are indicated by a set of values

in curly braces:

• API frequency [{62,117,165,277} features]: total number of times each unique
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API call is observed.

• Sequential API calls [{62,117,165,277}×time features]: API calls observed in

sequence, these are grouped into 1-second clusters to provide a time-series rep-

resentation and to capture the temporal co-occurrence of calls, since the optimal

N for N-grams

• Network [4 features]: total packets sent, total packets received, total bytes sent,

total bytes received

• Machine metrics [7 features×time]: user CPU usage, system CPU usage,

memory use, swap use, the total number of processes, maximum process ID

and time in seconds since execution began captured each second

Further to these feature sets models are trained using all features to see if this has

any impact on accuracy across datasets.

• All metrics [{73,128,176,288} features×time]: API call frequency and network

data and machine metrics

3.4 Algorithms

As outlined in the previous chapter, the most popular algorithms for malware detection

mirror the most popular used in other data science domains (in Kaggle competitions

domains at least). As a reminder to the reader, the three most common were: neural

networks, support vector machines and random forests. In order to reduce the number

of possible models that can be tested, these three algorithms are used for analysis in

this chapter. A brief description of the three algorithms and their learning mechanisms

follows:
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3.4.1 Neural network

Neural networks are brain-inspired general function approximators which map data

from inputs to outputs through a network of neurons connected by weighted paths. A

feed-forward neural network or multi-layer perceptron is the simplest form of neural

network. Multi-layer perceptions were first proposed by Rosenblatt in 1958 [162] as a

simplified model of information processing by neurons in the brain. Hardware acceler-

ation has enabled multi-layer and very large perceptrons (deep neural networks) to be

trained quickly.

The success of a neural network (NN) can be highly dependent on the hyperparam-

eters used to configure it. The following experiments use the configuration proposed

by Huang and Stokes [87] as their research achieves the highest dynamic malware de-

tection rate reported at 99.69% accurately labelled samples. The NN is a feed-forward

network with 2000 rectified linear unit neurons in a single hidden layer, trained with a

dropout rate of 0.25. Dropout is a technique used in training NNs by which neurons are

randomly switched ‘off’ (activation is set to 0) during training, which is widely found to

help models generalise better. Although a more optimal hyperparameter configuration

may exist for each dataset, previous works show borrowing configurations from other

papers e.g. [108] therefore this practice is used in order to mimic existing research

In these experiments, the PyTorch [147] python library was used to implement a

feed-forward neural network. Of the papers surveyed using neural networks, 5 use re-

current neural networks (RNNs) [85, 105, 145, 161, 215], 4 use convolutional neural

networks (CNNs) [108, 125, 208, 219] 3 combine both [106, 188, 196], and 5 use feed-

forward neural networks [48, 75, 87, 100, 120]; the others use a further type of network

such as an auto-encoder [81]. The type of neural network depends on the data (rep-

resentation) being used and the type of learning problem being solved. Autoencoders
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are typically used for preprocessing data or for unsupervised learning problems. This

malware detection problem has ground truth labels and is therefore framed as a su-

pervised learning problem. RNNs are used for time-series data and CNNs for image

processing. Since the API call frequency data is not time-series, feed-forward networks

are used.

Support Vector Machine

The support vector machine idea was first proposed by Vapnik and Lerner in 1963

[200].

The kernel of an SVM determines the possible geometries of the separating plane

for SVMs. Some malware detection research does not report the kernel function used

[113, 159, 178, 214] but those which do overwhelmingly used the radial basis function

(RBF) kernel [5, 13, 21, 21, 206, 211, 211]. The RBF kernel is capable of creating

non-linear separating planes. These experiments use the RBF kernel as it is the most

commonly used in the research surveyed of those papers which declare the kernel type.

This was implemented with the Scikit-learn python library [23, 148] implementation of

a support vector machine with default parameters (apart from the kernel type) as pa-

rameter values were not reported for most papers, therefore, it is assumed that default

configuration was used. Although this may seem counter-intuitive and that the best hy-

perparameters should be chosen for each of the 4x10 cross validation folds datasets,

again, previous works [13, 21, 211? ] show borrowing configurations from other papers

e.g. [108] therefore this practice is used in order to mimic existing research

Default configuration differs library-to-library ([214] and [13] use LibSVM [31], whilst

[159] uses Shogun [184]) and also with library versions, these versions are not reported

so it is difficult to precisely replicate previous configurations.
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Random Forest

The random forest algorithm (RF) is an ensemble algorithm, meaning that the fi-

nal decision is determined by combining the ‘votes’ of other sub-classifiers. Ho first

proposed random decision forests in 1995 [83] to overcome the poor performance of

decision tree classifiers in modelling complex functions.

In these experiments, the Scikit-learn python library [23, 148] is used to implement a

random forest rather than XGBoost since random forests are more commonly used by

malware detection researchers. The aim of these experiments is to recreate some of

the common practices used for dynamic malware detection. XGBoost may yield better

results but that is not the aim of this chapter (it is used in the next chapter).

3.5 AMachine LearningModel fromLaboratory to Prac-

tice

It is difficult for security professionals to predict how well a model will perform in their

own environment that was trained on external data. The aim of this chapter is to see

how robust popular data sources and algorithms are when tested on data from two

different provenances.

3.5.1 Samples

The samples collected are summarised in Table 3.2 across the four filetypes.

The training data is collected from publicly available sources. The malware is ob-

tained from VirusShare [201] whilst the benign document files were collected from

the GovDocs repository [41]. The benign executables are a combination of executa-

bles from a fresh Microsoft Windows install and from a free online software provider,
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Filetype Malicious Benign
Provenance Total Samples Provenance Total Samples

EXE VirusShare 938 Win7 SysFiles and PortableApps 1047
PDF VirusShare 1014 GovDocs 1012
DOC VirusShare 1004 GovDocs 1000
XLS VirusShare 805 GovDocs 999
EXE Org. 845 Org. 872
PDF Org. 2088 Org. 2011
DOC Org. 92 Org. 52
XLS Org. 23 Org. 330

Table 3.2: Dataset provenance by filetype. Org. = Commercial data provided by the
organisation. Benign publicly available samples validated by checking for detections
using VirusTotal [202]

PortableApps [78]. VirusTotal’s online malware analysis platform was used as a proxy

to check if any of the PortableApps were in fact malicious. Data collection was an it-

erative process until 1000 files of each type, benign and malicious were collected. It

was not possible to request a specific number of samples from the organisation and so

some datasets are smaller than others. An organisation-provided dataset was supplied

by the Secure Operations Centre of a commercial entity and the imbalance and num-

ber of samples is representative of the file-formats seen during a fixed period. Hence-

forth the publicly available samples will be referred to as the ‘public dataset’ and the

organisation-provided samples will be referred to as the ‘commercial dataset’.

To improve the statistical significance of the results, 10-fold cross-validation is used.

The public dataset is split into 10 subsets, with equal proportions of malicious and be-

nign samples in each (stratified k-fold). 9 subsets are combined and used to train a

model with one subset held out for testing, this is then repeated for the other 9 possi-

ble combinations of subsets. This results in 10 trained models, which are then tested

with the respective held-out 10th of data from the public data and then with the entire

organisation test set.

Cross-validation is not best practice for security applications due to the changing

nature of software, especially malware, over time [150]. However, in these experiments,

the accuracy of the model over time is not the central concern but rather the accuracy
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of the model on data collected in a different environment. Subsequent chapters in this

thesis enforce date-splitting for evaluation.

3.5.2 Sparsity

Figure 3.2: Percentage of instances with non-zero network data, machine metrics and
API calls by filetypes in the public dataset. Grey dashed line denotes 50% mark, the
threshold for sparsity.

There are between 62 and 277 unique API calls depending on the filetype (public

dataset only1). A brief look at the three data categories across the four filetypes reveals

that API calls are sparse features whereas network and machine metrics are not. A

sparse feature vector is one for which most features occur less than half the time, a

dense input vector is the inverse. Figure 3.2 shows the percentage of instances for

which API calls hold a value of 0 (within a second-long snapshot for a fair comparison

with machinemetrics) vs machine and network activity metrics (excluding the time since

execution started since this value is never 0). Every API call is sparse in the time series
1for security reasons the organisation data is not analysed at the request of the commercial entity

providing the data
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public training data, in that more than 50% of the time it is not being called. Any API call

not seen during training will mean nothing to the model. None of the network metrics

are sparse and for machine metrics, only the CPU user consumption percentage is

sparse: 45.2% for EXE 37.6% for PDF.

Hypothesis on Sparsity and Robustness

At this point, it was possible to make a hypothesis that the API calls will not perform as

robustly on the commercial test set as the numeric continuous data.

In 2011, Xu et al. [216] proved that there is a trade-off between algorithm stabil-

ity and model sparsity for l1-regularised (lasso) and l2-regularised (ridge) regressions.

The research defined sparse algorithms rather than sparse input feature sets and de-

fines sparse algorithms as those able to ‘identify redundant features’ i.e. to replace two

features with one where they are well-correlated. Stable algorithms are those which

have a uniform loss in relation to the order of samples presented during learning, espe-

cially as the number of training samples increases. Though in this case, it is the input

features that are sparse and not necessarily the model, extending Xu’s proof, it could

be that the sparsity of input features decreases model robustness.

3.5.3 Data Collection

API calls, machine and network metrics are collected whilst software executes in a

Windows 7 virtual machine. Cuckoo Sandbox [77] was used to manage restoring the

VM to its original state between samples and to manage the manner in which samples

are executed. The Cuckoo Sandbox API hooking module was used to collect API call

features, and the Psutil [63] python library was used to collect machine metrics.

Microsoft Office (v.2010) and Adobe Acrobat (v.9) were installed for the XLS, DOC

and PDF files to run. Older, more vulnerable, versions of Office and Acrobat are used

so that the malicious behaviours which may rely on older vulnerabilities are more likely



Robust Models 82

to be elicited2.

3.5.4 A Note on Time Series Data with Non-Time Series Algorithms

Note that none of Random Forests, SVMs or feed-forward Neural Networks (algorithms

used in this chapter) are directly capable of processing time series. The time-series

vectors could be flattened across time to create a vector that is number of featuresxtime

steps long but since the time series length is variable with this data (not all samples

execute for the full time); for the time series API calls and machine metrics, the models

are trained on the data collected in one-second intervals the mean prediction across

all time points is used; this can be considered majority voting across all time points.

Chapter 4 addresses time series models and dynamic data, but the goal of this chapter

was to use the most prevalent algorithms from previous work.

3.6 Contextual Robustness Results

The heatmap in Figure 3.3 reports the mean F1-scores for the different file types, al-

gorithms and input features on the public test sets generated through 10-fold cross-

validation; this data is available in plain text in the appendix (Table 1). F1-scores are

used due to the highly imbalanced malware/benignware ratios for some filetypes. The

table also indicates the mean absolute change in F1-score, true positive rate (TPR) and

true negative rate (TNR) for the 10 models in each category. These latter metrics are

intended to give a sense of the change in metrics from one dataset to the other. In these

experiments, the public test sets represent the unseen test sets used by researchers in

the lab. An organisation adopting a research model that scored a particular F1-score

in the lab may expect some small deviation in accuracy in practice, perhaps 2 to 3

percentage points deviance from the accuracy reported, the change ranges (∆ range)
2This is not to say that the number of vulnerabilities in software necessarily decreases as version

numbers increase
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Figure 3.3: Mean (µ) F1-scores for withheld public test set, organisation test set, abso-
lute difference between mean F1-scores, mean absolute difference between F1-scores
per model, mean absolute difference in true positive rate (TPR) and true negative rate
(TNR) per model. Evaluated using a public and commercial dataset for 4 filetypes, 3 al-
gorithms, 6 input feature sets averaged over 10 models (10-fold cross-validation). N.B.
Metrics have been multiplied by 100 for easier comparison with percentages



Robust Models 84

reported in the table indicate that in many cases the models fail to meet this criterion.

The colour scale is inverted for the right-hand side so that dark green represents the

most desirable scores across the heatmap.

Figures 3.4, 3.6, 3.7, and 3.8 display the EXE, PDF, DOC and XLS ‘lab’ F1-score,

TPR and FNR along the x-axis and the corresponding metric for the organisation test

set on the y-axis. A 45-degree line indicates where the data should fall if lab results

were perfectly reflected in the organisation test set. Points below this line indicate

where the lab results were better than the organisation results, it would be reasonable

to hypothesis that the accuracy metrics will fall as the underlying distribution of the lab

test data is likely to be more similar to the training data than the organisation data.

In the following sections let N be the total number of samples.

3.6.1 EXE

For the ‘lab’ dataset, executables (EXE) see the lowest F1-scores of all 4 filetypes.

This is expected because the possible set of behaviours for EXEs is broader than for

the other types, which are all channelled through the same application initially (e.g.

Adobe Acrobat, Microsoft Word, Microsoft Excel).

Figure 3.4: F1-score, TPR, FNR on public test sets and organisation test set for EXE
files with different feature sets and algorithms

The best-performing algorithm and feature set in the lab for EXE files was a combi-
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nation of all features and a random forest. On testing with the organisational dataset,

however, there is a significant drop in F1-score from 0.85 to 0.73, the most stable on

average being the sequential API calls. Figure 3.4 shows that network data (brown)

and frequency counts of API calls (orange) drift furthest from the F1-scores, TPRs and

TNRs seen in the lab. Machine metrics (purple) retain F1-scores better than aggregat-

ing all the data together (blue), this is likely because the models including all features

are using the API frequency data (green) and so seeing worse results on the organisa-

tion test set again.

In the lab, frequency of API calls performed equally well (mean F1: NN=77, RF=81,

SVM=71) to sequential APIs (mean F1: NN=77, RF=81, SVM=71) but the frequency

representation sees a much sharper fall in mean F1-scores than the sequential repre-

sentation. Machine metrics are most stable looking at the difference between means

of F1-scores 1
N

∑N
i=0 F1labi − 1

N

∑N
i=0 F1org.i but API calls perform worse than sequential

APIs for mean of the absolute changes per model: 1
N

∑
i = 0N(F1labi − F1org.i ). Al-

though these non-time series algorithms do not know that the sequential API call data

are related to one another, one may hypothesise that the separation of calls into small

segments of time may give a better indication of precise malicious behaviour e.g. a par-

ticular sequence of APIs is linked to process injection or some other common malicious

behaviour. This is a possible avenue for future work.

Of the feature sets, the machine metrics see the smallest divergence from the lab

F1-scores, averaging across all algorithms; the absolute change in mean F1-score for

the EXE models is lowest when trained using machine metrics (0.1 percentage points

for NN, 5.2 percentage points for RF, 1.8 percentage points for SVM) (See Fig.3.3).

Though the machine metrics may be considered the most reliable data across these

two sources, the mean F1 is only 78/100, compared to 85/100 when using all features.

Though a researcher may choose robustness over accuracy, due to the low F1-score

for this data, additional experiments were conducted combining feature sets for the

executable files only. The feature sets are as follows:
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• sequential network data [4 features]: network data may be polled at intervals

rather than just counted at the end, similarly to how the API calls have been used

sequentially above

• sequential machine metrics and API calls [7 + 277 = 284 features]

• sequential API calls and network data [277 + 4 = 281 features]

• sequential machine metrics and network data [7 + 4 = 11 features]

Figure 3.5 shows the samemetrics as previously reported for EXE files using the old

and new feature sets. The sequential network metrics perform a little better (with NN

and RF) than taking the total metrics for the whole execution trace. Machine metrics

with sequential API calls see a bigger drop in F1-scores than for either feature set used

in isolation. Combining API calls with network data has a lower or equivalent mean F1

to sequential API calls alone on both the public and organisation test sets. Machine

metrics coupled with network data however not only achieve higher F1-scores than

most other models (mean F1s: 81, 84, 78) but these scores remain within 4 percentage

points in testing on the organisational test set (mean F1s: 81, 80, 81).

The machine metrics and network data is plotted against the original feature sets

in Figure 3.4 in red (other feature sets omitted to enable easier reading of the graph).

This feature set produced the best performing andmost robust model for EXE detection,

scoring a mean F1-score 0.81 using a neural network in the lab and also a mean of 81

on the commercial dataset.

3.6.2 PDF

As is clear from the heatmap and Figure 3.6 almost all models achieved very high

accuracy distinguishing malicious and benign PDFs. Those models which performed

poorly performed equally poorly on the organisation dataset. Interestingly, for PDF

files the sequential API data (green) is the worst-performing feature set though it was
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Figure 3.5: Mean µ Executable classification F1-scores for public and organisation test
set as well as difference metrics for additional different feature sets.
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Figure 3.6: F1-score, TPR, FNR on public test sets and organisation test set for PDF
files with different feature sets and algorithms

arguably the best for executables. When used to train a random forest these features

seemed to perform well but failed to produce any reasonable models using an SVM or

NN. Combining feature sets for PDF files did not improve classification metrics.

3.6.3 DOC

Figure 3.7: F1-score, TPR, FNR on public test sets and organisation test set for DOC
files with different feature sets and algorithms

The organisation test set for Microsoft Word documents (DOC) was imbalanced.

Although models using all features together were able to achieve high detection accu-

racy in the lab, it was not replicated for the organisation data. It may seem that the

SVM performed well but from Figure 3.7 it is evident the F1-score only appears stable
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because the dramatic loss in TPR is balanced by a dramatic increase in TNR, which is

not desirable for an end-user believing that the model they are using is prone to false

positives when in fact in its new environment it is now prone to false negatives. It is

difficult to draw any conclusions about the diversity of DOC malware or benignware

due to the very small organisation test set. Combining feature sets for DOC files did

not improve classification metrics.

3.6.4 XLS

Figure 3.8: F1-score, TPR, FNR on public test sets and organisation test set for XLS
files with different feature sets and algorithms

TheMicrosoft Excel spreadsheets (XLS) organisation-provided test set is also highly

imbalanced. Again, Figure 3.7 shows that there were a few models able to achieve

high F1-scores on both the lab and enterprise datasets but even the best model sees

a nearly 10% reduction in the lab test results. For XLS there is no dominant feature set

and neither are the results clustered by feature set (colour) as they are for EXEs and

PDFs but neural networks performed particularly badly here. Combining feature sets

for XLS files did not improve classification metrics.
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3.6.5 Discussion: EXE Results

Given the small and imbalanced datasets of the DOC and XLS commercial test sets, it

is difficult to conclude that one model or set of features has performed best. The PDF

classifier achieves very high and consistent accuracymetrics on the test set irrespective

of the algorithm or feature set. The EXE is more challenging to classify, even on the

public test sets taken from the same distribution as the training data.

As reported in table 2.1 above, API calls are the most commonly used feature and

the frequency of API calls are the most common representation of this data (Table 3.1

above). For security reasons, it is not possible to print the distribution of API calls from

the commercial dataset but the high-level metrics show significant difference from the

public dataset. The public data EXE files saw 277 unique API calls and the commercial

dataset produced 263. 57 of the API calls in the commercial dataset did not appear

anywhere in the public dataset, these API calls, therefore, failed to provide information

to the models since the models had no context for their meaning. There were also 63 in

the public dataset that did not appear in the commercial set, indicating that the software

sets were drawn from significantly different distributions. More concretely, analysing

the machine metrics, a 2-distribution Kolmogorov-Smirnov (KS) test was used to mea-

sure the likelihood that the data were drawn from the same distribution. The KS-test

produces a p-value, which if higher than 0.05 indicates that the data are likely to have

been drawn from the same distribution (at a 95% confidence interval). The highest

p-value for any of the 10 machine metrics (time, since execution began, is excluded)

is 1.6e-08. Such metrics may be used to indicate that the organisation data may see

significantly different results to the evaluation data but this topic requires extensive ad-

ditional research.

A further investigation could look at extending Xu et al.’s proof [216] to sparse input

feature spaces rather than sparse models.
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3.7 Limitations and Conclusions

The experiments in this chapter were intended as an analogy for the resilience of aca-

demic findings when tested in an operational context, addressing the following research

question RQ1: To what extent do dynamic data and algorithm choices impact the ro-

bustness of malware detection accuracy across different datasets?.

Machine metrics were found to be more stable, especially when combined with net-

work data, but it is only possible to conclude that this is the case for the organisation test

set used. This may be indicative that as well as algorithmic sparsity, feature sparsity

may lead to less stable models and machine metrics were a non-sparse feature that

performed well (c.f. API calls and network traffic alone). However, these experiments

do demonstrate the variance in model performance in different contexts when features

are varied even when exactly the same samples are used and laboratory performance

between two metrics seems comparable. Little correlation was found between algo-

rithm types though random forests tended to see the larger than average divergence

from lab metrics.

One limitation of machine metric models however is that they are dependent on the

hardware upon which they run, unlike API calls. API call frequency may be impacted by

hardware i.e. slower hardware = fewer calls are made. Machine metrics may be even

more subject to change with different hardware configuration; CPU usage is expressed

as a percentage for example and the percentage of total processing power used will

depend on how many cores and how fast the processor is. However, this is not an

insurmountable problem, a virtual machine is used to collect the data for which the

resource capabilities can be specified, though the underlying bare metal must meet the

minimum requirements of the virtual machine.

These experimental results can only provide limited conclusions. The experiments

themselves, despite more than 600 models being trained, only touch a fraction of the

space that may be explored but they highlight the need for practitioners to have ameans
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of evaluating algorithms within their own environment or perhaps training the models

on data from their own ecosystem, this will be limited by the ease with which labelled

data can be collected.

These preliminary results indicated that some of the most commonly used dynamic

data sources for classifying executables may outperform others in testing but may not

stand up using another dataset. This result constitutes the following contribution: C1:

A demonstration that the most accurate type of dynamic data in laboratory testing may

not be the best-performing or most robust data type when tested on data of a different

provenance..

The next chapters will build on the tentative conclusion that machine metrics with

network data are a robust feature to use for dynamic malware detection.



Chapter 4

Early Stage Prediction

This chapter addresses RQ2: Is it possible to predict that software is malicious from its

early stages of execution? and presents results showing the trade-off between time into

execution and classification accuracy. Dynamic data is favoured over static data due

to the difficulty of obfuscation by comparison with static techniques [47, 75, 108, 220].

This is the first attempt to see if the maliciousness of malware can be predicted based

on its early execution. The results indicate that it is possible to accurately classify 94%

of samples within the first 5 seconds of execution; this presents a significant reduction

in analysis time by comparison with existing works for a relatively small reduction in

accuracy. This work was first published in [156].

The following section presents the case for early stage detection (4.1). Section 4.2

outlines the methodology, followed by experimental results (4.3. Finally future work (4.4

and conclusions(4.5) are discussed.

4.1 The Case for Early Stage Prediction

The previous chapter makes the case for automatic malware detection based on the

rate of newmalware. Automatic rule generation using machine learning is necessary as

malware detection models require updating to capture information about new malicious

93
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behaviours. A key limitation of dynamic behavioural data being that it takes longer to

collect data than static techniques, and therefore may not be preferred for endpoint

detection.

In order to address this shortcoming of dynamic analysis, this chapter proposes

exploring the relationship between classification accuracy and data collection time. If

the data collection time can be sufficiently reduced, this may enable dynamic malware

detection to be incorporated into an end-point solution without greatly compromising us-

ability, and perhaps by extension adoption and use. Wider adoption of dynamic analysis

for endpoint detection could help to mitigate some of the aforementioned weaknesses

of static analysis, prevent more malware from successfully executing and thus reduce

the negative impacts of cyber attacks.

Malicious and benign files comprise a wide range of software and potential be-

haviours, but this chapter hypothesises that malicious activity begins rapidly once a

malicious file begins execution because this reduces the overall run-time of the file and

thus the window of opportunity for being disrupted by a detection system, analyst, or

technical failure.

The previous chapter argues that non-sparse representations of software behaviour

may mitigate the reduction in model performance caused by changing distributions in

that behaviour. The most popular behavioural features were compared with the most

popular machine learning algorithms. Following this analysis machine activity data is

used in this chapter which includes experiments with time-series models.

The results in this chapter find that an ensemble of recurrent neural networks is able

to classify 94% of samples correctly within the first 5 seconds and 96% within the first

20 seconds. Previous dynamic analysis research collects data for around 5 minutes

per sample. 5 seconds is not the goal to reach but rather the time at which accuracy

made a significant increase and the differential of accuracy over data recording time

begins to decrease and plateau. It is possible that additional data could be captured

after the first 20 seconds and before 5 minutes but the detection accuracy has already
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appeared to plateau by this point in time.

Testing the robustness of this model on new malware families, further experiments

omit entire malware families from the training set and test model accuracy with promis-

ing results. Notably a case study using 3,000 ransomware samples achieves 94%

detection accuracy after just 1 second when ransomware is omitted from the training

set and 99% when it is included in the training set. The motivation for removing ran-

somware samples, which is carried out using labels assigned by virus total is in order to

mimic the advent of a new malware coming into existence, this experiment is imperfect

however since it does not also split by time, meaning that some of the ransomware

being tested may overlap with temporally popular malware techniques. Half of the ran-

somware is then included in a second training of the model in order to see if exposure to

this type of malware helps the model, which is does with more than 99 in 100 samples

being detected.

4.1.1 DynamicMalwareDetection: TimeSeriesAlgorithms and Time-

saving Approaches

The previous chapter outlines the state of the art for malware detection using machine

learning techniques. Whilst static models are capable of achieving high detection ac-

curacy, these results may not be robust over time [168] and have been demonstrated

to be easily fooled by small manipulations to code [75, 108].

Time Series Algorithms for Malware Detection

Methods using dynamic data assume that malware must enact the behaviours neces-

sary to achieve their aims. Typically, these approaches capture behaviours such as

API calls to the operating system kernel. The models used vary, but due to the time-

series nature of dynamic data some researchers have used Hidden Markov Models

which assign probabilities to sequences of discrete states [47, 90].
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Some previous work has used recurrent neural networks (RNNs) for malware detec-

tion. Tobiyama et al.[196] use RNNs to extract features from 5 minutes of API call log

sequences which are then fed into a convolutional neural network to obtain 0.96 AUC

score with a dataset of 170 samples. Kolosnjaji et al [106] sought to detect malware

families with deep neural networks, including recurrent networks, to classify malware

into families using API call sequences. By combining a convolutional neural network

with long-short-term memory (LSTM) cells, the authors were able to attain a recall of

89.4%, but do not address the binary classification problem of distinguishing malware

from benignware. Pascanu et al. [145] did conduct experiments into whether files were

malicious or benign using RNNs and Echo State Networks. The authors found that

Echo State Networks performed better with an accuracy of around 95% (error rate of

5%) but did not attempt to predict malicious behaviour from initial execution.

Reducing Behavioural Analysis Time

Existing methods to reduce dynamic data recording time have focused on efficiency.

The core concept is only to record dynamic data if it will improve accuracy, either by

omitting some files from dynamic data collection or by stopping data collection early.

Shibahara et al. [177] decide when to stop analysis for each sample based on changes

in network communication, reducing the total time taken by 67% against a method

that analyses samples for 15 minutes each - thus reducing analysis to an average

of just under 5 minutes per sample. The goal of [177] is to optimise analysis time

in order to collect malicious network behaviour and not waste time when no network

behaviour is present; the authors do not test detection accuracy for malicious/benign

software thus the goal is not comparable to the aim of this chapter; furthermore samples

execute for up to 30 minutes which is not a competitive time frame with static analysis

methods. Neugschwandtner et al. [136] used static data to determine dissimilarity to

known malware variants using a clustering algorithm. If the sample is sufficiently unlike

any seen before, dynamic analysis is carried out. This approach demonstrated an
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improvement in classification accuracy by comparison with randomly selecting which

files to dynamically analyse, or selecting based on sample diversity. Similarly, Bayer

et al. [16] create behavioural profiles to try and identify polymorphic variants of known

malware, reducing the number of files undergoing full dynamic analysis by 25%. These

approaches still allow some files to be run for a long dynamic execution time, whereas

this chapter investigates a blanket cut-off of dynamic analysis for all samples, with a

view to this analysis being run in an endpoint anti-virus engine.

4.2 Methodology: Recurrent Neural Networks for Early

Stage Malware Prediction

In order to advance malware detection to a more predictive model that can respond in

seconds this chapter proposes a model which uses only short sequences of the initial

dynamic data to investigate whether this is sufficient to judge a file as malicious with a

high degree of accuracy. As Burnap et al. [26] argue ‘malware cannot avoid leaving a

behavioural footprint’ of machine activity.

4.2.1 Features

Following the previous chapter, this chapter uses 10 machine activity data metrics as

feature inputs to the detection model. These metrics are captured in a snapshot every

second for the first 20 seconds whilst the sample executes starting at 0s, such that at

1s, there are two feature sets or a sequence length of 2. The metrics captured were:

system CPU usage, user CPU use, packets sent, packets received, bytes sent, bytes

received, memory use, swap use, the total number of processes currently running and

the maximum process ID assigned.

As illustrated in Figure 4.1, activity data are collected during the execution of Portable

Executable (PE) samples using Cuckoo Sandbox [77], a virtualised sandboxing tool.
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Figure 4.1: High-level model overview

While executing each sample the machine activity metrics are extracted using a cus-

tom auxiliary module reliant on the Python Psutil library [63].

4.2.2 Algorithm Choice

As the data are sequential, time series models can be used to extract information about

the way in which data changes over time as well as the raw values. Making use of the

time-series data means that the rate and direction of change in features as well as the

raw values themselves are all inputs to the model. As noted in the previous chapter,

neural networks are the most popular algorithm for machine learning tasks in malware

detection and are the winning algorithm used in most machine learning competitions.

This chapter proposes using RNNs for predictingmalicious activity as as they are able to

process time-series data. Moreover, they can process continuous numeric time series

data such as machine metrics thus capturing information about change over time as

well as the raw input feature values. Hidden Markov Models are not suited to highly

variate numeric data due to the requirement for discrete state spaces [116], therefore

some researchers have used RNNs which are able to model a large possible universe

of states and memory over an extended chain of events [116].

RNNs can create temporal depth in the same way that neural networks are deep

when multiple hidden layers are used. Until the development of the Long Short-Term
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Memory Networks (LSTM) cell by Hochreiter and Schmidhuber in 1997, RNNs per-

formed poorly in classifying long sequences, as the updates required to tune the weights

between neurons would tend to vanish or explode [19].

In a feed forward neural network the activation of a given neuron is calculated using

a weight matrix, W , denoting the relationship between the incoming neurons from the

previous layer, the sum of the previous layer’s activation functions, x a constant bias

term, b, and an activation function g, often a nonlinear function such as a sigmoid or a

rectified linear function. The activation a of a neuron i is therefore

ai = g(W · x+ b)

. The weight matrix is updated using a backpropagation algorithm [97, 115], which

requires g to be differentiable as the update vector is calculated using the chain rule to

calculate the overall weight change using the partial derivatives of the model error with

respect to the model weights in each layer.

Recurrent neural networks (RNNs) capture dependencies over T timesteps using

historic inputs X = x0, x1...xT . An additional weight matrix, U is trained to denote the

relationship between timesteps such that the activation of a neuron at time t is

ai=t = g(W · xt + U · ai=t−1 + b)

The backpropagation algorithm must be amended in order to handle these temporal

dependencies. The backpropagation through time (BPTT) algorithm, formulated by

multiple researchers independently, must calculate the error derivative at each time

step and then aggregate the errors; thus in BPTT, the network is often said to be ‘un-

rolled’ in time. If g is a ‘squashing’ function like a sigmoid, so-named because it rescales

(squashes) any input to a range between 0 and 1. When the network is ‘rolled’ back

up again the partial differentials are multiplied using the chain rule; T differentials are
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multiplied, each one reducing the differential further. In aggregation this can cause

the weight update to be ‘vanishingly small’ or effectively zero. If using non-squashing

functions the inverse problem can occur by which gradients become huge or ‘explode’.

Several solutions have been proposed to this problem such as gradient clipping (for ex-

ploding gradients only) or regularisation of the weight values. LSTM networks address

both the vanishing and exploding gradient problem in RNNs.

LSTM cells use gating mechanisms Γ to mitigate this problem to control the memory

held within a cell. Each gate has its own weight matrices and biasesW,U, b. The LSTM

uses four gates with these respective roles: input, forget and output. These gates can

all be represented using the generic RNN activation calculation where g is a sigmoid

function, i.e.

Γgate = σ(Wgate · xt + Ugate · ai=t−1 + bgate)

The gates’ outputs are combined to give the cell activation

ai=t = Γoutputtanh(Γforgetai=t−1 + Γinputcnew)

where cnew is the new memory content of the cell, calculated by tanh(Wgate · xt +Ugate ·

ai=t−1). These gating mechanisms allow the LSTM to store historical inputs either by

bypassing intermediate segments of the time series or adding the new memory data to

existing data thus mitigating the problems surrounding weight updates. The success

of LSTM has prompted a number of variants, though few of these have significantly

improved on the classification abilities of the original model [74].

Gated Recurrent Units (GRUs) [35], however, have been shown to have compara-

ble classification to LSTM cells, and in some instances can be faster to train [37]. For

this potential training speed advantage, this chapter uses GRU units. GRU units are

similar to LSTM units with two key differences, which are explained in detail by Chung

et al. [37]. In brief, an update gate combines the input and forget gate such that the

forget gate activation of the LSTM is 1− Γinput and there is no output gate to modulate
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the exposure of the hidden memory state of the cell. This reduces the number of pa-

rameters in the model and thus the computational complexity of the model and training

time.

An appropriate architecture and learning procedure of a neural network is integral to

a successful model. These attributes are captured by hyperparameter settings, which

are often hand-crafted. Due to the rapid evolution of malware, it is anticipated that the

RNN should be re-trained regularly with newly discovered samples, thus the architec-

ture may need to change too. As it needs to be carried out multiple times, this process

should be automated. A random search of the hyperparameter space is used as it can

easily be parallelised , it is trivial to implement, and has been found to be more efficient

at finding good configurations than grid search [20]. The best-performing configuration

on a 10-fold cross-validation over the training set is used, the hyperparameter search

space and final configuration is detailed in Table 1 for reproducibiltiy.

Hyperparameter Possible values Best configuration
Depth 1, 2, 3 3
Bidirectional True, False True
Hidden neurons 1 – 500 74
Epochs 1 – 500 53
Dropout rate 0 – 0.5 (0.1 increments) 0.3
Weight regularisation None, l1, l2, l1 and l2 l2

Bias regularisation None, l1, l2, l1 and l2 None
Batch size 32, 64, 128, 256 64

Table 4.1: Possible hyperparameter values and the hyperparameters of the best-
performing configuration on the training set

4.2.3 Data Collection

4.2.4 Samples

Initially, 1,000 malicious and 600 ‘trusted’ Windows 7 executables were obtained from

VirusTotal [152] along with 800 trusted samples from the system files of a fresh Win-

dows 7 64-bit installation. Followed by a further 4,000 Windows 7 applications down-
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loaded from popular free software sources, such as Softonic [183], PortableApps [78]

and SourceForge [186]. The online download files are included to give a a better rep-

resentation the typical workload of an anti-virus system than purely using Windows

system files.

The VirusTotal API [152] was used as a proxy to label the downloaded software

as benign or malicious. VirusTotal runs files through around 60 anti-virus engines and

reports the number of engines that detected the file as malicious. Similar to [168], for

malicious samples, the dataset omitted any files that were deemed malicious by less

than 5 engines in the VirusTotal API as the labelling of these files is contentious. Files

not labelled as malicious by any of the anti-virus engines were deemed ’trusted’ as

there is no evidence to suggest they are malware, these were considered to be benign

software samples. This has the limitation of not detecting previously unseen malware

but our samples are selected from an extended time period historically so it is likely that

it would be reported as malware at some point in this period if it were in fact malicious.

The final dataset comprised 2,345 benign and 2,286 malicious samples, which is

consistent with dataset sizes in this field of research e.g. ([61], [195], [223], [4], [47],

[196], [90]). A further 2,876 ransomware samples obtained from the VirusShare online

malware repository [201] were used for the ransomware case study in Section 4.3.4.

It was possible at the time to extract the date that VirusTotal had first observed each

file together with the families and variants that each anti-virus engine classified the

malware samples as. The dates that the files were first seen ranged from 2006 to 2017.

The test and training set files were split according to the date first seen to mimic the

arrival of completely new software. The training set only comprised samples first seen

by VirusTotal before 11:15 on 10th October 2017 and the test set only samples after

this date, which produced a test set of 500 samples (206 trusted and 316 malicious).

This timestamp was chosen because it gave a reasonable number of both malicious

and benign samples in the training and testing datasets, in line with the sample size in

the existing literature.
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Family Total APT Ransomware
Trojan 1,382 0 76
Virus 407 20 56
Adware 180 0 51
Backdoor 123 7 0
Bot 76 0 0
Worm 24 0 0
Rootkit 11 0 0
Disputed 83 - -
Total 2,286

Table 4.2: Number of instances of different malware families in dataset

The malware infection mechanism, referred to here as the family, total counts are

documented in Table 4.2. The ‘disputed’ class represents those malware for which

a family could not be determined because the anti-virus engines did not produce a

majority vote in favour of one type.

In addition to these majority-vote types, a search for advanced persistent threat

malware (APTs) and ransomware in each category was carried out. This was because

APTs are notoriously difficult for static engines to detect and the ransomware case-study

in Section 4.3.4 required removal of all ransomware from the training set.

4.2.5 Data Distributions

Table 4.3 outlines the minimum and maximum values of the 10 inputs that were col-

lected for malware and benignware respectively. The inter-quartile ranges of values

are similar for some features (see Figure 4.2), however, the benign data sees a far

greater number of outliers in RAM use (memory and swap) and packets being received.

The malicious data has a large number of outliers in total number of processes, but

the benign samples have outliers in the maximum assigned process ID, indicating that

malicious files in this dataset try to carry out lots of longer processes simultaneously,

whereas benign files will carry out a number of quick actions in succession. These ex-

periments did not use outlier detection and removal as part of preprocessing, though
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future work could explore this and whether it improved model accuracy.

Benign Malicious
Min. Max. Min. Max.

Total Processes 43 57 44 137
Max. Process ID 3,020 26,924 3,020 5,084
CPU User (%) 0 100 0 100
CPU System (%) 0 100 0 100
Memory Use (MB) 941 8,387 939 1,957
Swap Use (MB) 941 14,040 941 1,956
Packets Sent (000s) 0.3 110 0.3 129
Packets Received (000s) 2.9 737 2.9 192
Bytes Received (MB) 4 1,116 4 266
Bytes Sent (MB) 0.4 1,434 0.4 1,188

Table 4.3: Minimum and maximum values of each input feature for benign and mali-
cious samples

4.2.6 Data Preprocessing

Prior to training and classification, the data is normalised to improvemodel convergence

speed in training. By keeping data between 1 and -1, the model is able to converge

more quickly, as the neurons within the network operate within this numeric range [112].

This is achieved by normalising around the zero mean and unit variance of the training

data. This z-score normalisation is used instead of minimum-maximum scaling (which

makes the minimum value scale to -1 and the maximum scale to 1) because this latter

approach can cause outliers to skew the scaled distribution and reduce granularity. Z-

scores allow outliers to exist outside the [-1,1] range and prevent the distribution of

more common values being squeezed into a very small range. For each feature, i , the

mean, µi, and variance, σi, of the training data are calculated. These values are stored,

after which every feature, xi is scaled:

xi − µi

σi
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Figure 4.2: Box plots of input features for benign and malicious samples
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4.3 Experimental Results

For reproducibility, the code used to implement the following experiments can be found

at [155]. To implement the RNN experiments Keras [36] was used, whilst Scikit-Learn

[148] was used to implement the other machine learning algorithms. The RNN training

was accelerated using an Nvidia GTX1080 GPU. The Virtual Machine used for data

collection used 8GB RAM, 25GB storage, and a single CPU core running 64-bit Win-

dows 7. Python 2.7 was installed on the machine along with a free office software suite

(LibreOffice), browser (Google Chrome) and PDF reader (Adobe Acrobat) in case of

dropped files being in a different format. The virtual machine was restarted between

each sample execution to ensure that malicious and benign files alike began from the

same machine set-up.

4.3.1 Hyperparameter Configuration

Each layer of a neural network learns an abstracted representation of the data fed in

from the previous layer. There must be a sufficient number of neurons in each layer and

a sufficient number of layers to represent the distinctions between the output classes.

The network can also learn to represent the training data too closely, causing the model

to overfit. Choosing hyperparameters is about finding a nuanced, but generalisable

representation of the data. Table 1 details the search space and final hyperparameters

selected for the models in the later experiments. A maximum depth of 3 hidden layers

was explored because previous work [87, 107] did not see significant increases in accu-

racy for malware detection with deeper models and an increased depth has a significant

impact on training time. Although there are only 8 parameters to tune, there are 478

million different possible configurations1. As well as the hyperparameters above, the

amount of data execution is considered a hyperparameter and is randomly selected.

This is to allow for interaction between hyperparameters and the volume of data col-
1From Table multiply all number of options together: 3x2x499x499x5x4x4x4 = 478, 081, 920
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lected.

Although the goal is to find the best classifier for the shortest amount of time, se-

lecting an arbitrary time such as 5 or 10 seconds into file execution may only produce

models capable of high accuracy at that sequence length. It is not known whether a

model will increase monotonically in accuracy with more data or peak at a particular

time into the file execution. Randomising the time into execution used for training and

classification reduces the chances of having a blinkered view of model capabilities.

Without regularisation measures, the representations learned by a neural network

can fail to generalise well. Several techniques for regularisation are trialled: dropout as

well as l1 and l2 regularisation on the weight and bias terms in the network in our search

space. Dropout [187] randomly omits a pre-defined percentage of nodes each training

epoch, which commonly limits overfitting. l1 regularisation penalises weights growing

to large values whilst l2 regularisation allows a limited number of weights to grow to

large values. The random search indicated that a dropout rate of 0.1-0.3 produced

the best results on the training set, but weight regularisation was also prevalent in the

best-performing configurations.

Bidirectional RNNs use two layers in every hidden layer, one processing the time

series progressively, and the second processing it regressively. Pasacnu et al. [145]

found good results using a bidirectional RNN, as the authors were concerned that the

start of a file’s processes may be forgotten by a progressive sequence as if the LSTM

cell forgets it in favour of new data, the regressive sequence ensures that the initial

data remains prevalent in decision-making. In the experiments reported in this chapter,

many of the best-scoring configurations used a bidirectional architecture.

A model depth of 2 or 3 gave the best results. The number of hidden neurons was

50 or more in each layer to give any accuracy above 60%. All configurations used the

‘Adam’ weight updating rule [102] as it learns to adjust the rate at which weights are

updated during training.
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4.3.2 Predicting Malware Using Early-Stage Data

Our goal is examine the extent to which dynamic data collection time can be reduced

whilst maintaining a reasonable level of detection accuracy. If the model is accurate

within a short time, this sandbox-based analysis could be integrated into an endpoint

antivirus system.

RNNs were tested against other machine learning algorithms used for behavioural

malware classification: Random Forest, J48 Decision Tree, Gradient Boosted Decision

Trees, Support Vector Machine (SVM), Naive Bayes, K-Nearest Neighbour and Multi-

Layer Perceptron algorithms (as in [195], [61], [214], [59]). Previous research indicates

that Gradient Boosted Decision Trees, Random Forest, Decision Tree or SVM are likely

to perform the best of those considered.

To mimic the challenge of analysing new incoming samples, the train and test set

are split using only the samples that were first seen by VirusTotal after 11:15 on 10th

October 2017. This does not account for variants of the same family being present in

both the test and training set, but this question is explored in Section 4.3.3.

Figure 4.3: Classification accuracy (percentage with correct labels) for various ma-
chine learning algorithms and a recurrent neural network as time into file execution
increases

Figure 4.3 shows the accuracy trend as execution time progresses for the 10-fold

cross validation on the training set and on the test set. Gradient boosted decision tree
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Classifier Accuracy (%) Time (s) FP (%) FN (%)
RandomForest 95.29 19 5.03 4.5
MultiLayerPerceptron 85.01 20 21.3 9.83
KNearestNeighbors 86.3 20 17.53 10.96
SVM 82.39 10 24.5 10.62
DecisionTree 93.41 20 7.87 5.72
AdaBoost 83.94 2 19.78 12.03
NaiveBayes 77.44 2 29.78 10.7
GBDT 95.81 19 5.44 3.32
RNN 87.75 20 10.93 15.15

Table 4.4: Highest average accuracy (percentage with correct labels) over 10-fold
cross validation on training set during first 20 seconds of execution with corresponding
false positive rate (FP) and false negative rate (FN)

Classifier Accuracy (%) Time (s) FP (%) FN (%)
RandomForest 92.05 20 4.29 12.29
MultiLayerPerceptron 91.07 18 5.53 12.98
KNearestNeighbors 90.38 18 4.66 15.12
SVM 90.57 20 5.13 14.39
DecisionTree 89.17 12 5.22 17.22
AdaBoost 87.82 19 7.24 17.72
NaiveBayes 76.25 0 24.74 21.13
GBDT 92.62 20 4.33 11.08
RNN 96.01 19 3.17 4.72

Table 4.5: Highest accuracy (percentage with correct labels) on unseen test set dur-
ing first 20 seconds of execution with corresponding false positive rate (FP) and false
negative rate (FN)
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(GBDT) achieves the highest 10-fold mean accuracy over the 20 seconds of execution

on the training set (see Table 4.4), but the RNN achieves the highest accuracy on the

unseen test set (see Table 4.5) and outperforms all other algorithms on the unseen test

set after 2 seconds of execution (see lower graph in Figure 4.3). This could be because

the training set is relatively homogeneous and so relatively easy for the GBDT to learn,

but it is unable to generalise as well as the RNN to the completely new files in the test

set. The RNN cannot usefully learn from 0 seconds as there is no sequence to analyse

so accuracy is equivalent to random guess. Using just 1 snapshot (at 1 second) of

machine activity data, the SVM performs best on the test set and is able to classify

80% of unseen samples correctly. But after 2 seconds the RNN performs consistently

better than all other algorithms. Using 4 seconds of data the RNN correctly classifies

91% of unseen samples, and achieves 96% accuracy at 19 seconds into execution,

whereas the highest accuracy at any time predicted by any other algorithm is 93% (see

GBDT in Table 4.5). The RNN improves in accuracy as the amount of sequential data

(lags) used for training and classification increases. Although peak accuracy occurs at

19 seconds, the predictive accuracy gains per second begin to diminish after 4 seconds.

From 0 to 4 seconds accuracy improves by 41 percentage points (11 percentage points

from 1 second to 4 seconds) but only by 5 points from 4 to 19 seconds. Our results

indicate that dynamic data from just a few seconds of execution can be used to predict

whether or not a file is malicious. At 4 seconds it is possible to accurately classify

91% of samples, which constitutes an 8 percentage point loss from the state of the art

dynamic detection accuracy[87] in exchange for a 04:56 minutes time saved from the

typically documented data recording time per sample (see Table 4.6), making the model

a plausible addition to endpoint anti-virus detection systems. One point to note about

the accuracy at 20 seconds, there is a decrease, this is likely because the timing of the

virtual machine shutting down was not precise as 20 seconds so may have impacted

the number of samples executing at this time therefore creating a significant change in

the number of samples that were executing at 19 seconds. The next-best performing
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algorithm on the test set is the GBDT closely followed by the random forest, these two

algorithms show similar percentage accuracy of labels, false positive and false negative

rates which is perhaps unsurprising since both are ensemble tree-based methods.
Time (s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Acc. (%) 80 85 87 91 93 94 93 95 95 94 95 94 95 95 95 95 94 95 96 93
FN (%) 12 14 16 14 10 9 10 5 7 9 6 9 6 7 7 6 9 7 5 7
FP (%) 33 17 9 2 2 3 2 3 2 2 2 2 4 3 2 4 3 3 3 5

Table 4.6: RNN prediction Accuracy (Acc.) (percentage with correct labels), false neg-
ative rate (FN) and false positive rate (FP) on test set from 1 to 20 seconds into file
execution time

4.3.3 Simulation of Zero-day Malware Detection

Dividing the test and training set by date ensures that the two groups are distinct sets

of files. However, a slight variant on a known strain is technically a new file. Using the

AV labels from virus total, it was possible to extract approximate labels for the samples

malware families and variants and to test how well the model performs when confronted

with a completely new family or variant.

Table 4.7 gives the numbers in the test set for the families and those variants for

which there were more than 100 instances in the dataset. Dinwod, Eldorado, Zusy

and Wisdomeyes are Trojans; Kazy and Scar are Viruses. Those variants listed as

advanced persistent threats (APTs) are also counted since signature-based systems

struggle to detect these if previously unseen. The APTs and some of the high-level

families have less than 100 samples and as such the results are unlikely to be indicative

for the general population of that family but are tested anyway for comparison.

To avoid contamination from those samples that were disputed, these are removed

from the dataset for the following experiments. For each family in Table 4.7, a com-

pletely new model was trained without any samples from the family of interest.

The test set is entirely malicious, which means accuracy is an appropriate metric as

it is just the rate of correct detection from the only class of interest. Table 4.8 gives the

predictive accuracy over time for different families and for APTs, and Table 4.9 gives
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Family Total
Trojan 1,382
Virus 407
Adware 180
Backdoor 123
Bot 76
Worm 24
Rootkit 11
APTs 27
Variant Total
Dinwod 265
Artemis 228
Eldorado 209
Zusy 135
Wisdomeyes 132
Kazy 116
Scar 101

Table 4.7: Number of samples belonging to different families and variants with over
100 samples in the dataset

the predictive accuracies for the five variants for which more than 100 instances were

observed in the dataset. Perhaps surprisingly, there are high classification accuracies

across these two sets of results.

The families are detected with lower accuracy in general than the variants. For

the Trojans particularly, during the first few seconds, accuracy is worse than random

chance. Because so much of the dataset set is comprised of Trojans, removing these

from training halves the number of malware samples, so this may account for the par-

ticularly poor performance. The accuracy does increase significantly between 1 and 3

seconds of execution. This is possibly because Trojans are defined by their delivery

mechanism, and the model has not been trained on any examples of this form of mal-

ware delivery. The model has, however, seen malicious behaviour from other families,

which may be similar to some of the later behaviours by the Trojans, accounting for the

significant rise in accuracy. Though the Worms are detected with a 100% accuracy at

each second, there were only 24 Worm samples in the dataset.

The high detection accuracy for some families does not mean that the model will
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always be able to distinguish future malware families but rather indicates some un-

derlying data similarity of the different samples’ behavioural data despite belonging to

different strains. Figure 4.4 illustrates the mean features over time comparing these

families against benignware. It appears that there is almost linear separability between

benignware and malware families regarding memory and rx_bytes but it is not so sim-

ple since these average figures mask the full range of values. It does, however show

that the mean behaviour is quite well divided between malware and benignware some

these two features, together with swap after some initial seconds. This helps to illus-

trate that despite the families being different, there are common underlying behaviours

between them. It is also possible to pick out that adware appears to use far more CPU

on average than other types.

Family Time(s)
1 2 3 4 5 6 7 8 9 10

Trojan 11.16 49.67 70.23 68.07 73.86 69.33 55.63 57.75 60.18 56.24
Virus 91.26 89.58 82.7 83.0 83.54 88.89 84.56 86.31 84.38 82.26
Adware 90.68 90.0 83.33 84.11 59.59 85.71 87.22 66.41 77.31 73.5
Backdoor 91.3 91.21 80.0 83.53 82.28 79.73 87.32 82.61 79.69 80.7
Bot 93.06 91.55 92.86 84.85 90.16 85.71 80.0 86.36 88.1 87.5
Worm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Rootkit 100.0 75.0 75.0 75.0 100.0 75.0 100.0 100.0 66.67 100.0
APT 96.3 96.3 88.46 92.0 100.0 94.74 94.74 100.0 94.74 89.47

Table 4.8: Classification accuracy on different malware families with all instances of
that family removed from training set

Variant Time(s)
1 2 3 4 5 6 7 8 9 10

Dinwod 90.57 89.43 78.11 91.32 93.96 98.87 99.25 98.11 98.08 97.31
Eldorado 94.3 93.3 92.0 86.42 90.07 82.01 74.81 81.75 85.48 83.61
Wisdomeyes 92.59 90.91 83.72 91.34 89.83 92.63 94.44 84.52 90.36 87.34
Zusy 91.18 89.63 85.94 82.11 81.74 85.19 85.29 88.66 90.43 85.56
Kazy 89.74 82.76 85.22 86.49 87.88 94.94 87.5 88.89 91.43 89.71
Scar 92.08 92.08 75.25 78.22 62.63 81.82 89.69 81.44 86.46 88.42

Table 4.9: Classification accuracy on different malware variants with all instances of
that variant removed from training set
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Figure 4.4: Features over time for each malware family and benignware

The variants tend to achieve a higher predictive accuracy than the families. Other

than Dinwod, all families score lower at 10 seconds than at 1 second. Each variant

is a kind of Trojan or Virus, but the model was trained on other types of Trojan and

Virus. This can help explain the slight drop in accuracy over the first 10 seconds. It is

the delivery mechanism which the variants have in common with samples in the training

set, so the period over which this occurs (the first few seconds) gives the best predictive

accuracy. Every variant was detected with over 89% accuracy during the first second

of execution, despite the model having no exposure to that variant previously.

If the model is able to score well on a family without ever having seen a sample

from that family, the model may hold a robustness against zero days, and support our

hypothesis that malware do not exhibit highly different behavioural activity from one

another as their goals are not highly divergent, even if the attack vector mechanisms

are.
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Figure 4.5: Comparative detection accuracy on various malware families with exam-
ples of the family omitted from the training set
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Figure 4.6: Comparative detection accuracy on various malware variants with exam-
ples of the variant omitted from the training set
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4.3.4 Ransomware Case Study

Early prediction that a sample is malicious enables defensive techniques to move from

recovery to prevention. This is particularly desirable for malware such as ransomware,

from which data recovery is only possible by paying a ransom if a backup does not

exist. An additional 2,788 ransomware samples from the VirusShare website [201]

were collected to test the predictive capability of our model.

Reports in the wake of the high profile ransomware attacks, e.g. WannaCry/WannaDecryptor

worm in May 2017, were reported to be preventable if a patch released two months ear-

lier had been installed [198]. Endpoint users cannot be relied on to carry out security

updates as the primary defence against new malware and it is non-trivial challenge

for system administrators to oversee and patch large, legacy and heterogeneous in-

frastructure as often exists in healthcare systems, governments and businesses. The

model is tested in it’s ability to detect ransomware as a new threat by removing the 183

ransomware samples and the disputed-family samples from our original dataset and

train a new model on the remaining samples, this model is then used to classify the

VirusShare samples and the removed 183 samples.

The model is able to detect 94% of samples at 1 second into execution without

having seen any ransomware previously. When ransomware is included in the training

set this rises to 99.86% (see Table 4.10). Further research could explore the minimum

number of samples and variance of samples required to boost accuracy, here, as a

first experiment, randomly, half of the samples are included in training and half used for

testing.

In Figure 4.7 there is a clear distinction in the accuracy trend over execution time

between the model which has been trained on some of the relevant family. The model

which has never seen ransomware before starts to drop in accuracy after the initial few

seconds. Again this could be because the model is recognising the delivery mecha-

nism at the start of execution, which will be common to other types of malware in the
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Samples in
Training Set

Time(s)

1 2 3 4 5 6 7 8 9 10
Omitted 94.19 93.72 90.94 92.02 86.77 92.46 89.55 87.62 77.88 87.52
Half included 99.86 99.1 97.96 98.83 98.29 97.89 98.78 99.29 97.96 96.46

Table 4.10: Classification accuracy (percentage with correct labels) on ransomware
for one model which has not been trained on ransomware (omitted), and for one which
has (half included)

training set, though the later malicious behaviour is less recognisable to the model by

comparison with the later behaviour of the other types of malware it has seen. The

model trained with half of the samples knows how ransomware behaves after a few

seconds and so maintains a high detection accuracy.

Figure 4.7: Classification accuracy on ransomware for one model which has not been
trained on ransomware (omitted), and for one which has (half included)
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It would be interesting to see if the model at 1 second and the model at 5 seconds

rely on different input features to reach accurate predictions. It is difficult to penetrate

the decision making process of a neural network; the architecture presented here has

1,344 neurons almost 4 million trainable parameters, but it is possible to turn the input

features on and off and see the effect of combinations of features on classification

accuracy. By setting the inputs to zero, which is the normalised mean of the training

data, a feature can be turned ‘off’. By turning off all the features and then turning them

back on sequentially, it is possible to see which features are needed to gain a certain

level of accuracy.

Ransomware omitted from training set Ransomware in training set
# Fea-
tures
on

1 second model 5 second model 1 second model 5 second model

Max.
Acc.

Features
on

Max.
Acc.

Features
on

Max.
Acc.

Features
on

Max.
Acc.

Features
on

1 00.03 tx bytes 40.82 memory 89.36 rx pack-
ets

14.95 total pro-
cesses

2 98.92 memory
and rx
bytes

97.54 rx bytes
and rx
packets

99.80 tx pack-
ets and
{rx pack-
ets, rx
bytes}

71.15 rx bytes
and tx
bytes

Table 4.11: Maximum accuracy scores in predicting ransomware with only one and two
features turned on for a model not trained on ransomware and for a model trained on
ransomware

Table 4.11, shows that with just two features, both the 1 second and the 5 second

models trained with and without ransomware are able to beat 50% accuracy (random

chance). The model trained using ransomware is able to correctly detect more than

99% of ransomware samples as malicious using just the number of packets sent and

either the number of packets or number of bytes received. Unlike the model trained with

ransomware, which draws accurate conclusions from packet data and total processes,

when no ransomware is included in the training set, memory usage is also a prominent

feature in accurate detection. Comparing to the broader families, in classifying Adware,
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Trojans and Viruses, memory and packets a single input feature allowed the model to

achieve more than 50% accuracy, Trojans are the only family for which memory con-

tributes to scoring above 50% at the one-second model, when combined with packets

sent and swap. As Trojans comprise the majority of the dataset it makes sense that the

most relevant features for classifying them help to define what constitutes malware to

the model.

The accuracy in identifying unseen families highlights the presence of shared dy-

namic characteristics between different malware types. The broad families, which detail

the malware infection mechanism particularly help to identify malware early on. Whilst

new malware variants are likely to appear, new delivery mechanisms are far less com-

mon and help to distinguish unseen families from benignware.

4.3.5 Improving Prediction Accuracy With an Ensemble Classifier

As well as accuracy, the values of the model predictions increase with time into file

execution. Therefore an ensemble method is presented, using the top three best per-

forming configurations found in the hyperparameter search space during the previous

experiments, to try and improve the classification confidence earlier in the file execu-

tion. Accuracy does not increase monotonically in our first configuration, and of the best

three configurations on the 10-fold cross-validation, no single configuration consistently

achieved the highest accuracy at each second, the configuration used in the previous

sections was the configuration that scored the highest accuracy at 1 second.

This is comprised of the best-scoring configurations on the training set across the

first 5 seconds, which are 3 distinct hyperparameter sets (one model was the best at 1

and 2 seconds, one at 3 and 5 seconds) and take the maximum of the predictions of

these three RNNs before thresholding at 0.5 to give a final malicious/benign label. The

configuration details are in Table 4.12, configuration ‘A’ is the same as has been used

in the previous experiments.
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Hyperparameter A B C
Depth 3 1 2
Bidirectional True True False
Hidden neurons 74 358 195
Epochs 53 112 39
Dropout rate 0.3 0.1 0.1
Weight regularisation l2 l2 l1

Bias regularisation None None None
Batch size 64 64 64

Table 4.12: Highest accuracy-scoring configurations during first 5 seconds in 10-fold
cross validation on training set

Time (s) Highest accuracy
of configurations
A, B and C

Ensemble acc. (%) Ensemble FP (%) Ensemble FN (%)

1 79.69 (C) 79.5 33.5 12.03
2 85.6 (A) 83.69* 25.73 10.16
3 87.52 (A, C) 88.48* 15.05 9.21
4 91.54 (A) 91.92* 8.74 7.64
5 92.38 (B) 93.95* 3.4 7.84
6 94.09 (A) 95.28* 4.37 4.97
7 94.92 (A) 95.12* 4.85 4.9
8 94.25 (A) 95.48* 4.88 4.26
9 94.97 (A) 96.02* 4.39 3.68
10 95.53 (C) 95.11* 5.45 4.48
11 95.91 (C) 96.13* 4.95 3.04
12 95.46 (C) 95.46* 5.47 3.82
13 95.16 (A) 95.6* 5.97 3.15
14 95.93 (C) 95.93* 5.03 3.29
15 96.1 (C) 95.87* 4.57 3.77
16 95.62 (C) 96.54* 4.08 2.94
17 95.34 (C) 96.5* 3.06 3.86
18 96.67 (C) 96.43* 4.12 3.1
19 96.51 (C) 96.26* 4.23 3.3
20 93.81 (A) 94.85* 8.22 3.31

Table 4.13: Ensemble accuracy (acc.), false positive rate (FP) and false negative rate
(FN) compared with highest accuracy of configurations A, B and C. Those marked with
a ‘*’ signify predictions that were statistically significantly more confident by at the con-
fidence level of 0.01
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To combine the predictions of configurations A, B and C the ensemble uses the max-

imum value of the three to bias the predictions in favour of detecting malware (labelled

as 1) over benignware (labelled as 0). An ensemble of models does tend to boost accu-

racy, increasing detection from 92% to 94% at 5 seconds, and the maximum accuracy

from configuration A alone, 96%, is reached at 9 seconds instead of at 19 seconds

(see Table 4.13). The results in Table 4.13 show that the accuracy score improves or

matches the highest scoring model of configurations A, B and C for 12 of the first 20

seconds. Model A, the original configuration, only bests the ensemble accuracy once.

In order to determine whether the ensemble scores improved predictive confidence on

the individual samples compared with the predictions of the best-scoring model. The

predictive confidence is measured by by rewarding those correct predictions closer to 1

or 0 more highly, i.e. a prediction of 0.9 is better than 0.8 when the sample is malicious.

The equation for predictive confidence is as follows:

confidence = 1− |b− p|

where b is the true label and p is the predicted label.

A one-sided T-test showed that the confidence of predictions from the ensemble

method were significantly higher (at 0.01 confidence level) after 2 seconds. Malicious

predictions are likely be more confident as the ensemble uses the maximum value of

the three models, but it is interesting that taking the maximum of the benign samples

does not out weigh the increase in confidence. This indicates that three models are

more confident about benign samples than malicious ones, which is reflected in the

high true negative rate reported above for the individual model. A further benefit of the

ensemble approach is the reduction in the FNR during the first 10 seconds. Model A

does not achieve 5% FNR until 8 seconds but the ensemble does this at 6 seconds.

The FNR is also less turbulent, remaining lower than Model A’s global minimum (at 19

seconds) from 6 seconds onwards.
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These tables highlight that there may be some trade-off between accuracy and time

but that after a point, more accuracy is not gained with more time during the first 20

seconds. These experiments may serve as useful information for creators of dynamic

detection systems by which to determine data collection time.

4.3.6 Feature Importance

The components of the ensemble must have learned different decision boundaries in

order to improve on the individual accuracies of the components. Neural networks

are often considered black-boxes due to the difficulty in explaining how inputs map to

outputs through multiple hidden layers.

This section attempts to interpret what configurations A, B, and C are using to dis-

tinguish malware and benignware. These preliminary tests seek to gauge the relative

importance of features to classification accuracy.

By setting the test data for a feature (or set of features) to zero, which is the mean of

the data thanks to normalisation, it is possible to approximate the impact of reducing or

increasing values to the mean. With categorical features, it would be possible to simply

set them to zero, but for numeric continuous values it is difficult to nullify the impact of

the data, therefore this is just an approximation. The overall impact of turning features

‘off” is judged by observing the fall in accuracy and dividing it by the number of features

turned off. A single feature incurring a 5 percentage point loss attains an impact factor

of -5, but two features creating the same loss would be awarded -2.5 each. The average

across impact scores is used to approximate the importance of each feature when a

given number of features are switched off.

Figure 4.8 gives the impact factors for each feature at 4 seconds into file execution.

Intuitively, the more features omitted, the higher the impact factors become. Interest-

ingly, there are some very small gains in accuracy for configurations A and B when

only one feature is missing but no more than 0.2 percentage points. For each of the
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configurations, CPU use on the system has the highest impact factor. It is most integral

for configuration A, which is also the best-scoring model. The CPU use in configuration

A does not see a significant increase in its impact factor as more input features are

removed, but for configuration B, all features attain higher impact factors the more are

removed. Configuration B is more reliant on the interplay between features than the

other two models.

Figure 4.8: Impact scores for features with 1, 2 and 3 features turned off 4 seconds
into file execution
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The difference between the impact scores and their emphasis can help us to see

which features are most predictive at different time steps (at 4 seconds this is CPU

system usage) and to understand how an ensemble classifier is able to outperform the

predictions of its components. As all three models suffer the biggest loss from CPU

usage, if an adversary knew this she might be able to manipulate CPU system use to

avoid detection. Future work should examine the decision processes of networks to

detect potential weaknesses that could be exploited to evade detection. The ensem-

ble offers a small increase in accuracy but more importantly, this analysis can help to

understand ways in which the models may be manipulated, by biasing results towards

malicious predictions (taking the maximum prediction) all models must be successfully

manipulated in order to impact the overall results, this analysis indicates that this may

be possible by altering CPU system usage and that the use of more diverse models

may improve robustness against adversarial attacks.

4.4 Limitations and Future work

These results indicate that behavioural data can provide a good indication of whether

or not a file is malicious based only on its initial behaviours, even when the model

has not been exposed to a particular malware variant before. Dynamic analysis could

reasonably be incorporated into endpoint antivirus systems if the analysis only takes

a few seconds per file. Further challenges which must be addressed before this is

possible include:

4.4.1 Robustness to Adversarial Samples

The robustness of this approach is limited if adversaries know that the first 5 seconds

are being used to determine whether a file will run in the network. By planting long

sleeps or benign behaviour at the start of a malicious file, adversaries could avoid de-
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tection in the virtual machine. This chapter hypothesised that malicious executables

begin attempting their objectives as soon as possible to mitigate the chances of be-

ing interrupted, but this would be likely to change if malware authors knew that only

subsections of activity were the basis of anti-virus system decisions. The next chapter

looks at real-time detection as a mitigation against this vulnerability.

4.4.2 Process Blocking

If a live monitoring system is implemented, processes predicted to be malicious will

need to be terminated. Future work should examine the ability of the model to block

once the classifier anticipates malicious activity, and to investigate whether the mali-

cious payload has been executed.

4.4.3 Portability to Other Machines and Operating Systems

The machine activity metrics are specific to the context of the virtual machine used

in this experiment. To move towards adoption in an endpoint anti-virus system, the

RNN should be retrained on the input data generated by a set of samples on the target

machine. Though this recalibration will take a few hours at the start of the security

system installation, it will only need to be performed when hardware is upgraded (once

per machine for most users) and opens the possibility of porting the model to other

operating systems, including other versions of Windows.

Though this chapter has not tested the portability of the data between machines, i.e.

training with data recorded on one machine and testing with data recorded on another,

it is easy to see cases in which this will not work. Some metrics, such as CPU usage

are relative (measured as a percentage of total available processing power) and so

will change dramatically with hardware capacities, for example a file requiring 100% of

CPU capacity on one machine may use just 30% on another with more cores. Non-

relative metrics such as memory usage (measured in bytes) may also be limited by the
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hardware capabilities of a machine. However, there is no clear reason why the model

cannot be re-calibrated to a newmachine. There would be cause for concern if the data

fed into the model did not allow it to learn a representation of the data that distinguishes

malicious and benign files. This loss of data could occur due to hardware limitations;

for example a very small amount of RAM could limit the memory usage such that the

useful information that one sample uses 1.1MB and another 1.2MB are both capped

at 1MB, thus appearing the same to the model. In practice, this model could be used

with live data from real machines, taking a real-time approach. The different results that

would be observed using a dual-core processor offer a potential advantage in training

but also necessitate re-calibration on a per-machine basis. Since this is a one-off time

cost, it is not a major limitation of the proposed solution.

4.5 Conclusions

Dynamic malware detection methods are often preferred to static detection as the lat-

ter are particularly susceptible to obfuscation and evasion when attackers manipulate

the code of an executable file. However, dynamic methods previously incurred a time

penalty due to the need to execute the file and collect its activity footprint before mak-

ing a decision on its malicious status. This meant the malicious payload had likely

already been executed before the attack was detected. This chapter has presented a

novel malware prediction model based on recurrent neural networks (RNNs) that signif-

icantly reduces dynamic detection time, to less than 5 seconds per file, whilst retaining

the advantages of a dynamic model. This offers the new ability to develop methods

that can predict and block malicious files before they execute their payload completely,

preventing attacks rather than having to remedy them.

The experimental results demonstrate that it is possible to achieve a detection ac-

curacy of 94% with just 5 seconds of dynamic data using an ensemble of RNNs and an

accuracy of 96% in less than 10 seconds, whilst typical file execution time for dynamic
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analysis is around 5 minutes.

The best RNN network configurations discovered through random search each em-

ployed bidirectional hidden layers, indicating that making use of the input features pro-

gressing as well as regressing in time aided distinction between malicious and benign

behavioural data.

A single RNN was capable of detecting completely unseen malware variants with

over 89% accuracy for the 6 different variants tested at just 1 second into file execution.

The accuracy tended to fall a little after the first 2 seconds, implying that the model was

best able to recognise the infection mechanism at a family level (e.g. Trojan, Virus)

given that this would be the first activity to occur. The RNN was less accurate at de-

tecting malware at a family level when that family had been omitted from the training

data (11% accuracy at 1 second detecting Trojans), further indicating that the model

was easily able to detect new variants, provided it had been exposed to examples of

that family of infection mechanisms. Our ransomware use case experiment supported

this theory further, as the RNN was able to detect ransomware, which shares common

infection mechanisms with other types of attack such as Trojans, with 94% accuracy,

without being exposed to any ransomware previously. However, this accuracy fell as

time into file execution increased, again implying that the model was easily able to de-

tect a malicious delivery mechanism, better than the activity itself. After exposure to

ransomware, the model accuracy remained above 96% for the first 10 seconds.

The RNN models outperformed other machine learning classifiers in analysing the

unseen test set, though the other algorithms performed competitively on the training

set, this used 10-fold cross validation, which does not reflect real-world use in which the

samples using during inference would have been created later than the training sam-

ples. This indicates that the RNN was more robust against overfitting to the training

set than the other algorithms and had learnt a more generalisable representation of the

difference between malicious and benign files. This is particularly important in malware

detection as adversaries are constantly developing new malware strains and variants
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in an attempt to evade automatic detection. The ensemble RNNs outperformed the

individual components of the standalone network. This is not surprising as ensemble

methods are widely used (the Random Forest, AdaBoost and GBDT algorithms can all

be considered ensemble methods), however this does have implications for the com-

putational overhead required to run such a model. The next chapter begins to address

this consideration for power and memory resources.

These results contribute to the field of malware detection by answering RQ2: Is

it possible to predict that software is malicious from its early stages of execution?.

Whilst initial performance is promising, the longevity of this method would easily be

challenged by malware authors triggering benign execution traces prior to the mali-

cious activity. The next chapter therefore examines the possibility of dynamic run-time

detection, which will eventually force the malware to reveal itself as it must do so in

order to achieve its goals.



Chapter 5

Real-time Malware Detection and

Process Killing

The previous chapter showed that early-stagemalware detection using short behavioural

traces can achieve high detection accuracy. This chapter imagines a future in which

dynamic detection is widely adopted for endpoint protection by just using short be-

havioural traces. The early detection approach is limited since an attacker might simply

inject some benign process behaviour at the start of execution. This limitation can be

extended to virtual machine (VM)-based analysis that lasts for any period of time. Real-

time analysis uses a sliding window of data such that, even if there is benign activity or

a program sleep injected at the start of malware execution, the malicious activity should

still be observed. Instead of looking at just the start of an application’s activity, each

individual process is monitored for its entire lifetime.

This chapter builds on the existing work in real-time malware detection to address

the following unanswered research questions:

RQ3: Does the use of lower latency algorithms impact upon the speed of accurate

malware detection?

and

RQ4: Is it possible to separate the signals of tens of simultaneous benign and ma-

130
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licious processes?

and

RQ5: Is it possible to detect and kill malicious processes early enough to prevent

malicious damage?

This chapter will make the case for real-time detection being a necessary component

of endpoint defence in the next section (5.1). It will then discuss the key research

challenges that this chapter will seek to address in 5.2. The subsequent two sections

will outline the methodologies trialled to address these challenges (5.3). Section 5.5 will

then report the experimental design followed by the general malware and benignware

results (5.6) and prevented damage results (5.7). The chapter ends with discussion

(5.8), future work (5.9) and conclusions (5.10).

5.1 The case for real-time detection with an automated

response

When dynamic malware detection relies on the use of VMs there is always a risk that

the data observed during analysis is not what would be observed on the endpoint. The

malware author may have explicitly programmed conditional execution into the sample

to evade virtual environments, or the version of software that will be exploited may

simply not be installed on the VM. In the latter case the VM can be made to mirror

the image of most machines on an IT estate, but what if the IT estate is very large

and diverse? What if some people have carried out the latest security updates and

others are still using an older version of Windows? This chapter argues that real-time

detection is therefore a necessary part of endpoint defence-in-depth, since it eliminates

any disparity between the observed activity on the victim machine and observed activity

in the analysis environment.

An important point to note is that this chapter does use virtual machines for the
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purposes of experiments as a convenient way to infect and restart machines. The

VMs used are designed to mimic use by a real user, in that benign applications are

being launched and interacted with and the file system is populated with documents

and multimedia. The details are elaborated later in this chapter (section 5.5.2). This

limits the training data collected since the malicious activity of each application is not

verified due to the large number of samples. However, this work is still novel and future

work could take this improved labelling into consideration to improve the model. As

highlighted in the background chapter (2), Sun et al.’s work [188] has looked at running

benign and malicious applications simultaneously to mimic real-use but has only run

a maximum of 5 applications at once. This chapter asks what happens to detection

accuracy when this number is increased to 35.

Real-time detection introduces new risks, namely that the malware could damage a

real endpoint or network. To mitigate against the likelihood of damage, this chapter fo-

cuses on very early detection of malicious processes (using the methods developed in

the previous chapter) - and builds on this to include an automatic immediate response.

The underlying assumption here is that less execution time reduces the opportunity

for the malware to cause damage, this assumption is tested in section 5.7. A human

response would both require round-the-clock monitoring and the emergency support re-

quired for mitigation, which is expensive, and would also be too slow to mitigate against

many types of malware damage, as Correa noted in a 2016 article, some ransomware

can encrypt an entire hard drive in 17 seconds [43].
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Figure 5.1: The damage caused over time by two imaginary malware, one which con-
tacts a server before inflicting damage (left) and one which does so afterwards (right).
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This raises a question around the data used to detect malware - is there is enough

non-damaging malicious activity to allow the model to detect and kill the attack before

the payload fully executes or is the damage itself the signal that the model requires

in order to act? Figure 5.1 draws the damage over time of two imaginary malware

samples: one conducting data exfiltration and one a ransomware attack. The data ex-

filtration sample contacts a server first and begins causing damage a little later, this

could allow the detection model both more data and more time in order to detect and

block the malware, on the other hand, is the malicious behaviour required in order to

detect the malware in the first instance? This is not a question that is directly addressed

in this chapter since it would require a definition of when ‘damage’ begins and thus re-

verse engineering all of the samples in the test dataset and in some cases the damage

caused will be subjective or context dependent. However, a proxy experiment is car-

ried out to measure the damage inflicted by ransomware with and without automated

detection and process killing (section 5.7).

Implementing real-time detection on an endpoint that is being used by a real user

with real assets that could be compromised introduces several new challenges beyond

those of dynamic detection in a sandbox. These are outlined below:

5.2 Research Challenges

Moving from supervised learning models to automated agents which detect and re-

spond to malware presents some significant challenges. During supervised learning

the model continues to update its parameters with respect to some loss function; often

this means minimising the number of wrong predictions on average over the entire trace

of each sample and over the entire training set with misclassifications early and late in

the trace being treated equally. Unlike post-trace detection, a model which integrates

an automated agent is able to impact its world, thus changing the data that is available

for analysis.
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Consider a scenario in which a benign sample runs for 5 minutes (300 seconds), the

supervised model correctly classifies this sample for 299 of the 300 seconds, averag-

ing out to a correct classification. A real-time model, however, provides classifications

constantly whilst the sample executes. If the misclassification (as malware) occurs at

10 seconds into execution but correctly throughout the rest of the program, this is likely

to satisfy the supervised learning algorithm since the average accuracy is very high

(99.67% = 299*100/300). But the automated agent would causes the program to be

killed at 10 seconds, thus the 290 remaining opportunities for the model to correctly

classify the sample correctly after the 10 second mark do not exist.

For real-time detection with an automated action attached, the impact of a misclas-

sification has greater potential to disrupt the user than a misclassification which simply

produces a prediction label for later consideration by a human.

The likelihood of false positives is higher than for post-trace detection models since

the model makes a new decision each second and if the process is automatically killed,

there is no opportunity to reclassify it later. A single false positive detection during

several hours of true negative detections will terminate that process (and its child pro-

cesses); this can mean work being lost, interruption to business processes and other

significant consequences for the user.

As outlined in chapter 2, there are 4 key problems that require solving in the jump

from whole-application analysis in a sandbox to real-time detection with multiple other

applications running and being analysed simultaneously, these are summarised below:

• Signal Separation: Detection in real time requires that the malicious and benign

activity are separated in order that automated actions can be taken on only the

malicious processes.

• Use of Partial Traces: In order to try and mitigate damage, malware needs to

be detected as early as possible but, as shown in the previous chapter, there is

a trade-off between the amount of data collected and classification accuracy in
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the first few seconds of an application launching and the same may be true for

individual processes.

• Quick Classification: The inference itself should be as fast as possible in or-

der to further limit the change of malicious damage once the proces is deemed

malicious.

• Impact of Automated Killing in Supervised Learning: Supervised learning av-

erages the error rate across the entire training set but when the classification

results in an action, this smoothing out of errors across the temporal dataset is

not possible.

As outlined in the background chapter (2), these challenges have not been ad-

dressed by previous works with the exception of signal separation and the use of partial

traces which have been partially tackled by Sun et al. [188] and Das et al. [48].

The next section describes the approaches trialled in order to address these chal-

lenges.

5.3 Methodology: Supervised Learning to Automated

Agent

As explained above, supervised learning models average errors across the training set

but in the case of real-time detection and process killing, a single false positive on a

benign process amongst 300 true-negatives would cause disruption to the user. The

time at which an malware is detected is also important, the earlier the better. There-

fore the supervised learning model needs to be adapted to take account of these new

requirements.

This chapter hypothesises that accurate models which consume less computational

resources will perform better at blocking malicious activity since they will execute more
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quickly and thus reduce the opportunity for damage to take place. The computational

resources and speed of execution are evaluated alongside detection accuracy.

In this chapter automated malicious process detection and killing is tackled using

three methods listed here and explained and justified in detail below. These three meth-

ods were all tested and therefore all three are reported in the interests of future work.

1. Statistical methods to smooth the alert surface and filter out single false-positives

2. Reinforcement learning, which is capable of incorporating the consequences of

model actions into learning

3. A regression model based on the feedback of a reinforcement learning model

made possible by having the ground-truth labels

Figure 5.2: High-level depiction of three approaches taken
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Figure 5.2 gives a high-level depiction of the three approaches tested in this chapter.

5.3.1 Statistical Approach: Alert Filtering

It is expected that transitioning from a supervised learning model to a real-time model

will see a rise in false-positives since one single alert means benign processes (and all

child processes) are terminated, which effectively renders all future data points as false

positives. Filtering the output of the models, just as the human brain filters out transient

electrical impulses in order to separate background noise from relevant data [18], may

be sufficient to make supervised models into suitable agents. This is attractive because

supervised learning models are already known to perform well for malware detection,

as confirmed by the previous chapter and other related work [48, 86, 99, 156]. A dis-

advantage of this approach is that it introduces additional memory and computational

requirements both in order to calculate the filtered results and to track processes current

and historic scores, therefore a model which integrates the expected consequences of

an action into learning is also tested: reinforcement learning.

5.3.2 Reinforcement Learning: Q-learning with Deep Q Networks

The proposed automated killing model may be better suited to a reinforcement learning

strategy than to supervised learning. Reinforcement learning uses rewards and penal-

ties from the model’s environment. The problem that this chapter is seeking to solve is a

supervised learning problem, but one for which it is not possible to average predictions.

There are no opportunities to classify the latter stages of a process if the agent kills

the process, and this can be reflected by the reward mechanism of the reinforcement

learning model (see Figure 5.2 above). Therefore reinforcement learning seems like a

good candidate for this problem space.

Two limitations of this approach are that (1) reinforcement learning models can

struggle to converge on a balanced solution, the models must learn to balance the
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exploration of new actions with the re-use of known high-reward actions; commonly

known as the exploration-exploitation trade-off [190] (2) in these experiments, the re-

ward is based on the malware/benignware label at the application level rather than be-

ing linked to the actual damage being caused, therefore the signal is a proxy for what

the model should be learning. This is used because, as discussed above, the damage

caused by different malware is subjective.

For reinforcement learning, loss functions are replaced by reward functions which

update the neural network weights to reinforce actions (in context) that lead to higher

rewards and discourage actions (in context) that lead to lower rewards; these contexts

and actions are known as state-action pairs. The reward is calculated from the per-

ceived value of the new state that the action leads to e.g. points scored in a game.

Often this cannot be pre-labelled by a researcher since there are so many (maybe in-

finite) state-action pairs. However in this case, all possible state-action pairs can be

enumerated, which is the third approach tested (regression model - outlined in the next

section).

The reinforcement model was still tested. Here the reward is+N for a correct predic-

tion, −N for an incorrect prediction where N is the total number of processes impacted

by the prediction e.g. if there is only one process in a process tree but 5 more will

appear over the course of execution, a correct prediction gives a reward of +6, and

incorrect prediction gives a reward of −6.

There are a number of reinforcement learning algorithms to choose from. This chap-

ter explores q-learning [114, 189, 209, 210] to approximate the value or ’quality’ (q) of a

given action in a given situation. Q-learning approximates q-tables, which are look-up

tables of every state-action pair and their associated rewards. A state-action pair is

a particular state in the environment coupled with a particular action i.e. the machine

metrics of the process at a given point in time with the action to leave the process run-

ning. When the number of state-action pairs becomes large, it is easier to approximate

the value using an algorithm. Deep Q networks (DQN) are neural networks that imple-
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ment q-learning and have been used in state-of-the-art reinforcement learning arcade

game playing, see Mnih et al. [128]. A DQN was the reinforcement algorithm trialled

here, though it did not perform well by comparison with the other methods, a different

RL algorithm may perform better [129], but the results are still included in the interests

of future work. The following paragraphs will explain some of the key features of the

DQN.

The DQN tries out some actions, stores the states, actions, resulting states and

rewards in a memory and uses these to learn the expected rewards of each available

action; with the highest expected reward being the one that is chosen. Neural networks

are well-suited to this problem since their parameters can easily be updated, tree-based

algorithms like random forests and decision trees can be adapted to this end but not

as easily. Future rewards can be built into the reward function and are discounted

according to a tuned parameter signified by γ.

In Mnih et al’s [128] formulation, in order to address the exploration-exploitation

trade off, DQNs either exploit a known action or explore a new one, with the chance

of choosing exploration falling over time. When retraining the model based on new

experiences, there is a risk that previous useful learnt behaviours are lost, this prob-

lem is known as catastrophic forgetting [103]. Mnih et al’s [128] DQNs use two tools

to combat this problem. First, experience replay by which past state-action pairs are

shuffled before being used for retraining so that the model does not catastrophically

forget. Second, DQNs utilise a second network, which updates at infrequent intervals

in order to stabilise the learning.

This chapter hypothesises that q-learning may enable a model to learn when it is

confident enough to kill a process, using the discounted future rewards. For example,

choosing not to kill some malware at time t may have some benefit as it allows the

model to see more behaviour at t+1 which gives the model greater confidence that the

process is in fact malicious. Whilst there are other reinforcement learning algorithms.

Q-learning approximates rewards from experience, but in this case, all rewards from
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state-action pairs can be pre-calculated. Since one of the actions will kill the process

and thus end the ‘experience’ of the DQN, it could be difficult for this model to gain

enough experience. Thus pre-calculation of rewards may improve the breadth of ex-

perience of the model, for this reason a regression model is proposed to predict the

Q-value of a given action.

5.3.3 Regression using Q-Values

Unlike classification problems, regression problems can predict a continuous value

rather than discrete (or probabilitic) values relating to a set of output classes. Regres-

sion algorithms are proposed here to predict the q-value of killing a process. If this

value is positive, the process is killed.

Q-values estimate the value of a particular action based on the ‘experience’ of the

agent. Since the optimal action for the agent is always known, it is possible to pre-

compute the ‘(q-)value’ of killing a process and train various ML models to learn this

value. For a complex problem space, for which a neural network is required, many

resources and iterations are required, this approach investigates training a regression

model, which is quicker and less resource intensive and mimics the DQN by trying to

learn the value of killing a process than to train a DQN which explores the state-action

space and calculates rewards between learning, since the interaction and calculation

of rewards is no longer necessary. The regression approach can be used with any

machine learning algorithm capable of learning a regression problem, regardless of

whether it is capable of partial training.

There are two primary differences between this regression approach and the rein-

forcement learning DQN approach detailed in the previous section. Firstly, the datasets

are likely to be difference. Since the DQN generates training data through interacting

with its environment it may never see certain parts of the state-action space e.g. if a

particular process A is always killed during training before time t∗, the model is not able
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to learn from the process A data after t∗.

Secondly, only the expected value of killing is modelled by the regressor, whereas

the DQN tries to predict the value of both killing and of not killing the process. This

means that the equation used to model the value of process killing is only an approxi-

mation of the reward function used by the DQN.

The equation used to calculate the value of killing is positive for malware and nega-

tive for benignware, in both cases it is scaled by the number of child processes impacted

and in the case of malware, early detection increases the value of process killing (with

an exponential decay). Let y be the true label of the process (0=benign, 1=malicious),

N is the number of child processes and t is the time in seconds at which the process

is killed then the value of killing a process is:

(y ∗ 2− 1) ∗ (1 +N) ∗ (1 + (y ∗ (e−t)))

The equation above negatively scores the killing of benignware in proportion to the

number of subprocesses and scores the killing of malware positively in proportion to

the number of subprocesses. A bonus reward is scored for killing malware early, with

an exponential decay over time. Killing malware may be said to be beneficial to the

extent that it prevents damage but killing benignware (false positives) is highly depen-

dent on context, different applications will have different value to different people at

different times of day. Since it is difficult to model this without making some significant

assumptions and likely biasing the model towards or away from killing, the malware

and benignware are weighted equally with additional value assigned for killing malware

early in accordance with the aforementioned assumptions.
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5.4 Evaluation Methodology: Ransomware detection

As noted in the background chapter, to date research has not addressed the extent to

which damage is mitigated by process killing, since Sun et al. [188] presented the only

previous work to test process killing and damage with and without process killing is not

assessed. To this end, this chapter uses ransomware as a proxy to detect malicious

damage, inspired by Scaife et. al’s approach [172]. A brief overview of Scaife et al.’s

damage measurement is outlined below:

Early detection is particularly useful for types of malware from which recovery is

difficult and/or costly. Cryptographic ransomware encrypts user files and withholds the

decryption key until a ransom is paid to the attackers. This type of attack is costly to

remedy, even if the victim is able to carry out data recovery [185]. Scaife et al.’s work

[172] on ransomware detection uses features from file system data, such as whether

the contents appears to have been encrypted, and number of changes made to the file

type. The authors were able to detect and block all of the 492 ransomware samples

tested with less than 33% of user data being lost in each instance. Continella et al. [40]

propose a self-healing system, which detects malware using file system machine activ-

ity (such as read/write file counts), the authors were able to detect all 305 ransomware

samples tested, with a very low false-positive rate. These two approaches use features

selected specifically for their ability to detect ransomware, but this requires knowledge

of how the malware operates. Whereas the approach taken here seeks to use features

which can be used to detect malware in general. The key purpose of this final exper-

iment (section 5.7) is to show that our general model of malware detection is able to

detect general types of malware as well as time-critical samples such as ransomware.

5.5 Experimental design

This section outlines the data collection process and experimental setup.
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5.5.1 Features

The same features as were used in Chapter 4 are used here for process detection,

with some additional features to measure process-specific data. Despite the popularity

of API calls noted in chapter 2, due to the findings in Chapter 3 and Sun et al.’s [188]

difficulties hooking this data in real-time, these were not considered as features to train

the model.

Category
CPU use (%) system level user level
Memory use

(bytes) total physical
(non-swapped) swap

Child processes count maximum process
ID number of threads

I/O operation
bytes on disk

(bytes)
read write non-read-write I/O

operations

I/O operation
count on disk read write non-read-write I/O

operations

Priority process priority I/O process
priority

Network #
Packets TCP packet count UDP packet count

Network # Bytes # bytes sent # bytes received

Network Other
number of

connections
currently open

statuses of the
ports opened by
the process (4

statuses)

Miscellaneous

number of
command line

arguments passed
to process

number of handles
being used by

process

Table 5.1: 26 process-level features: 22 features + 4 port status values

At the process-level, 26 machine metric features are collected, these were dictated

by the attributes available using the Psutil [63] python library. It is also possible to

include the ‘global’ machine learning metrics that were used in the previous chapters.

Though global metrics will not provide process-level granularity, they may give muffled

indications of the activity of a wider process tree. The 9 global metrics are: system
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level CPU use, user level CPU use, memory use, swapmemory use, number of packets

received and sent, number of bytes received and sent and the total number of processes

running.

The process-level machine activity metrics collected are: CPU use at the user level,

CPU use at the system level, physical memory use, swap memory use, total memory

use, number of child process, number of threads, maximum process ID from a child

process, disk read, write and other I/O count, bytes read, written and used in other I/O

processes, process priority, I/O process priority, number of command line arguments

passed to process, number of handles being used by process, time since the process

began, TCP packet count, UDP packet count, number of connections currently open,

4 port statuses of those opened by the process (see Table 5.1).

Preprocessing

Feature normalisation is used to aid convergence of NNs. The test, train and validation

sets (x) are all normalised by subtracting the mean (µ) and dividing by the standard

deviation (σ) of each feature in the training set: x−µ
σ
. This sets the mean of the features

to 0 and the standard deviation to 1 for all input features, avoiding the potential for

some features to be weighted more important than others during training purely due to

the scalar values of those features. This requires additional computational resources

but is not necessary for all ML algorithms; this is another reason why the supervised

RNN used in chapter 4 may not be well-suited for real-time detection.

5.5.2 Data Capture

During data capture, this research sought to improve upon previous work and emulate

real machine use to a greater extent than has previously been trialled. The implemen-

tation details of the VM, simultaneous process execution and RL simulation are outlined

below:
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Environment: Machine setup

The following experiments were conducted using a virtual machine (VM) running with

Cuckoo Sandbox [77] for ease of collecting data and restarting between experiments

and because the Cuckoo Sandbox emulates human interaction with programs to some

extent to promote software activity. In order to emulate the capabilities of a typical

machine, the modal hardware attributes of the top 10 ‘best seller’ laptops according

to a popular internet vendor [9] were used, and these attributes were the basis of the

VM configuration. This resulted in a VM with 4GB RAM, 128GB storage and dual-core

processing running Windows 7 64-bit. Windows 7 was the most prevalent computer

operating system (OS) globally at the time of designing the experiment [68], though

Windows 10 is now the most popular OS, the findings in this research should still be

relevant.

Simultaneous applications

In typical machine use, multiple applications run simultaneously. This is not reflected

by behavioural malware analysis research in which samples are injected individually to

a virtual machine for observation. The environment used for the following experiments

launches multiple applications on the same machine at slightly staggered intervals as

if a user were opening them. Each malware is launched with a small number (1-3) and

a larger number (3-35) of applications. It was not possible to find find up-to-date user

data on the number of simultaneous applications running on a typical desktop, so here

it was elected to launch up to 36 applications (35 benign + 1 malicious) at once, which

is the largest number of simultaneous apps for real-time data collection to date. From

the existing real-time analysis literature only Sun et al. [188] run multiple applications

at the same time, with a maximum of 5 running simultaneously.

Each application may in turn launch multiple processes, causing more than 35 pro-

cesses to run at once; 95 is the largest number of simultaneous processes recorded,
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this excludes background OS processes.

The results later in the chapter reveal a non-linear time impact on the number of

processes for analysis; probably to to the varied resource consumption of the programs

but illustrate a linear increase in monitoring and killing delay, which is to be expected

since both of these programs have O(n) complexity

Reinforcement Learning Simulation

For reinforcement learning, the DQN requires an observation of the resulting state fol-

lowing an action. To train the model, a simulated environment is created from the pre-

collected training data whereby the impact of killing or not killing a process is returned

as the next state. For process-level elements this reduces all features to zero. A caveat

here is that in reality killing the process may not occur immediately and therefore mem-

ory, processing power etc. may still be being consumed at the next data observation.

For global metrics, the process-level values for the killed processes (includes child pro-

cesses of the killed process) are subtracted from the global metrics. There is a risk

again that this calculation may not correlate perfectly with what would be observed in a

live machine environment.
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Figure 5.3: Benignware sample, normalised process-level metrics 6 observa-
tions made without process being killed

Figure 5.4: Malware sample, no observations made yet
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In order to observe themodel performance, a visualisation was developed to accom-

pany the simulated environment. Figure 5.4 shows a screenshot of the environment

visualisation for one malicious and one benign process.

5.6 Experimental Results

5.6.1 Dataset

The dataset is comprised of 3,604 benign executables and 2,792 malicious applica-

tions (each containing at least one executable), with 2,877 for training and validation

and 3,519 for testing. These dataset sizes are consistent with previous real-time de-

tection dataset sizes e.g. (Das et al. [48] use 168 malicious, 370 benign; Sayadi et

al. [171] use over 100 each benign and malicious; Ozsoy et al. [139] use 1,087 mali-

cious and 467 benign; Sun et al. [188] use 9,115 malicious, 877 benign). With multiple

samples running concurrently to simulate real endpoint use, there are 24K processes

in the training set and 34K in the test set. Overall there are 58K behavioural traces

of processes in the training and testing datasets. The benign samples comprise files

from VirusTotal [152], from free software websites (later verified as benign with Virus-

Total), and from a fresh Microsoft Windows 7 installation. The malicious samples were

collected from two different VirusShare [201] repositories.

In Pendelbury et al’s analysis [150], the authors estimate that in the wild between

6% and 22% of applications are malicious, normalising to 10% for their experiments.

Using this estimation of Android malware, a similar ratio was used in the test set in

which 13.5% were malicious.

Malware families

This chapter is not concerned with distinguishing particular malware families, but rather

with identifying malware in general. However, a dataset consisting of just one malware
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Malware family # Train
set

# Test
set

Total Description

startsurf 66 273 339 adware
fareit 33 222 255 spyware
vigram 23 212 235 adware
winwrapper 78 8 86 PUA
downloadguide 15 59 74 adware
gandcrab 5 54 59 ransomware
emotet 12 46 58 credstealer
chapak 4 37 41 installer
virut 30 2 32 backdoor
installmonster 12 18 30 installer
noon 8 22 30 spyware
gamarue 11 18 29 backdoor
razy 7 16 23 crypto stealer
zeroaccess 23 0 23 rootkit
soft32downloader 5 22 23 installer
appster 7 15 22 PUA
prepscram 1 20 21 installer
zusy 2 19 21 spyware
darkkomet 17 1 18 RAT
adposhel 4 14 16 adware
swrort 13 0 13 backdoor
slugin 13 0 13 installer
vobfus 11 2 13 installer
speedingupmypc 1 11 12 adware
relevantknowledge 5 6 11 adware
kuaizip 4 7 11 PUA
bladabindi 7 4 11 backdoor
Other (≤ 10 instances) 377 260 602 -
# Other families (≤ 10
instances)

184 154 288 -

Unknown 333 291 671 -
Total 1,137 1,655 2,792 -

Table 5.2: Malware families with more than 10 samples in the dataset. 315 families
were represented in the dataset, with 27 having being represented more than 10 times.
Basic description provided which does not cover the wide range of behaviours carried
out by some malware families but is intended to indicate the range of behaviours in the
top 27 families included in the dataset. PUA = potentially unwanted application, RAT =
remote access trojan

family would present an unrealistic and easier problem than is found in the real-world.

The malware families included in this dataset are reported in Table 5.2. The malware
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family labels are derived from the output of around 60 antivirus engines used by Virus-

Total [152].

Ascribing family labels to malware is non-trivial since antivirus vendors do not follow

standardised naming conventions and many malware families have multiple aliases.

Sebastián et al. [174] have developed an open source tool, AVClass, to extract mean-

ingful labels and correlate aliases between different antivirus outputs. AVClass was

used to label the malware in this dataset. Sometimes there is no consensus amongst

the antivirus’ output or the sample is not recognised as a member of an existing fam-

ily. AVClass also excludes malware that belongs to very broad classes of malware

(e.g. “agent”, “eldorado”, “artemis”) as these are likely to comprise a wide range of be-

haviours and so may be applied as a default label in cases for which antivirus engines

are unsure. In the dataset established in this research, 2,121 of the 2,792 samples

were assigned to a malware family. Table 5.2 gives the number of samples in each

family for which there were more than 10 instances found in the dataset. 315 families

were detected overall, with 27 families being represented more than 10 times. These

better-represented families persist in the train and test sets, but the other families have

little overlap. 104 of the 154 other families seen in the test set are not identified by

AVClass as being in the training set.

Malicious vs. Benign Behaviour

Statistical inspection of the training set reveals that benign applications have fewer sub-

processes than malicious processes, with 1.17 processes in the average benign pro-

cess tree and 2.33 processes in the average malicious process tree. Malware was also

more likely to spawn processes outside of the process tree of the root process, often

using the names of legitimate Windows processes. In some cases malware launches

legitimate applications, such as Microsoft Excel in order to carry out a macro-based

exploit. Although Excel is not a malicious application in itself, it is malicious in this

context, which is why malicious labels are assigned if a malware sample has caused
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that process to come into being. It is therefore possible to argue that some processes

launched by malware are not malicious, because they do not individually cause harm to

the endpoint or user, but without the malware they would not be running and so can be

considered at least undesirable even if only in the interests of conserving computational

resources.

Train-Test Split

The dataset is split in half with the malicious samples in the test set coming from the

more recent VirusShare repository, and those in the training set from the earlier repos-

itory. This is to increase the chances of simulating a real deployment scenario in which

the malware tested contain new functionality by comparison with those in the training

set. Ideally, the benignware should also be split by date across the training and test

set, however it is not a trivial task to calculate the date at which benignware was com-

piled. It is possible to extract the compile time from PE header, but it is possible for the

PE author to manually input this date which had clearly happened in some instances

where the compile date was 1970-01-01 or in one instance 1970-01-16. In the lat-

ter case (1970-01-16), the file is first mentioned online in 2016, perhaps indicating a

typographic error [182]. Using internet sources such as VirusTotal [152] can give an

indication when software was first seen but if the file is not very suspicious i.e. from

a reputable source, it may not have been uploaded until years after it was first seen

“in the wild’. Due to the difficulty in dating benignware in the dataset collected for this

research, samples were assigned to the training or test set randomly.

For training, an equal number of benign and malicious processes are selected, so

that the model does not bias towards one class. 10% of these are held out for valida-

tion. In most ML model evaluations, the validation set would be drawn from the same

distribution as the test set. However, because it is important not to leak any information

about the malware in the test set, since it is split by date, the validation set here is drawn

from the training distribution.
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Implementation Tools

Data collection used the Psutil [63] Python library to collect machine activity data for

running processes and to kill those processes deemed malicious. The RNN and Ran-

dom Forests were implemented using the Pytorch [146] and Scikit-Learn [148] python

libraries respectively. The model runs with high priority and administrator rights to make

sure the polling is maintained when compute resources are scarce.

5.6.2 Hyperparameter Search for Process-Level Supervised RNN

In this first set of experiments benchmarks the supervised learning models and demon-

strate their unsuitability to process killing.

In the previous chapter, an RNN was used to distinguish malicious and benign soft-

ware in the early stages of execution with 96% accuracy in the first 20 seconds and 94%

in the first 5 seconds. Real-time detection necessitates detection at the process-level

with multiple applications, benign and malicious, running simultaneously.

A random search of the hyperparameter space explores the best-performing archi-

tecture on 2 feature sets: process-only data (26 features) and process-level + global

metrics (37 features).

The hyperparameters (see Table 5.3) are as follows: hidden neurons refers to the

number of GRU cells in each hidden layer; the depth refers to the number of hidden

layers in the neural network; the batch size indicates the number of samples predicted

by the model between weight updates and the epochs designate the number of times

the model will be exposed to the entire dataset; the dropout rate is a regularisation

technique first proposed by Srivastava et al. [187] to reduce the chance of model over-

fitting, the rate is the proportion of neurons randomly turned ‘off’ (set to an activation of

0) during training; the window size gives the length of historical data for each process

visible to the model. For example a window size of 5 will allow the model to see the

current set of features and the features at the 4 previous time-steps. The data used
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possible values process level data process level data
+ global metrics

Hyperparamter
hidden neurons 8 - 1024 253 193
depth [1, 2, 3] 2 2
batch size [64, 128, 256] 128 256
epochs 1 - 200 89 161
dropout rate [0, 0.1, 0.2, 0.3,

0.4, 0.5]
0.1 0.1

window size 2 - 30 16 6
loss function binary cross-entropy
weight update rule Adam [102]
recurrent unit GRU cell
validation F1-
score (*100)

- 97.43 94.61

Table 5.3: Hyperparameter search space and the hyperparameters of the model giving
the lowest mean false-positive and false-negative rates

here is captured every second such that a window size of 5 corresponds to the model

being able to see the machine activity metrics from 4, 3, 2, and 1 seconds ago as well

as the current metrics. For reproducibility, the loss function used to train the model was

binary-cross-entropy and the weight update algorithm used was Adam [102].

The winning hyperparameter configurations and search space are detailed in ta-

ble 5.3 and the search space is illustrated with respect to validation set F1-score in

Figure 5.5. From the graphs in Figure 5.5, it is clear that many models were able to ac-

curately predict the validation set. There is evidence of a slight positive but plateauing

correlation between sequence length and F1-score, as in the previous chapter when

looking at global machine metrics. It is also evident from the right-most graph that

adding the global metrics tends to lead to worse models (lower F1-scores) but adding

just the global number of processes together with the process-level data gives a slightly

higher average F1-score. It should be noted that these plots do not show the marginal

contribution of each hyperparameter such that the interplay between epochs and batch

size cannot be seen. There are fewer models with 2 or 3 hidden layers as these con-

figurations were more likely to incur an out of memory error.
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Figure 5.5: Validation set F1-score variance with hyperparameter values and feature
sets
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5.6.3 Supervised Learning for Process Killing

It is expected that supervised malware detection models will not adapt well to process-

killing due to the averaging of loss metrics as described earlier. Initially this is verified

by using supervised learning models to kill processes that are deemed malicious. For

supervised classification, the model makes a prediction every time a data measurement

is taken from a process. This approach is compared with one taking average predictions

across all measurements for a process and for a process tree as well as the result of

process killing. The models with the highest validation accuracy for classification and

killing are compared.
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Figure 5.6: F1 scores, true positive rates (TPR) and true negative rates (TNR) for
partial-trace detection (process measurements), full-trace detection (whole process),
whole application (process tree) and with process level measurements + process killing
(process killing) for validation set (left column) and test set (right column)
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features metric classify dataset kill
proc. data F1 97.44 validation set 91.20
proc. data tnr 94.72 validation set 85.71
proc. data tpr 98.64 validation set 95.80
proc. data + glob. F1 94.61 validation set 87.69
proc. data + glob. tnr 90.57 validation set 77.31
proc. data + glob. tpr 95.93 validation set 95.80
proc. data F1 74.91 test set 72.63
proc. data tnr 69.41 test set 59.63
proc. data tpr 87.52 test set 91.82
proc. data + glob. F1 77.66 test set 71.83
proc. data + glob. tnr 79.70 test set 59.63
proc. data + glob. tpr 82.91 test set 90.24

Table 5.4: F1-score, true positive rate (TPR) and true negative rates (TNR) (all * 100)
on test and validation sets for classification and process killing
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Figure 5.7: 3 levels of data collection: Each measurement, each process, each pro-
cess tree
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Figure 5.6 illustrates the difference in validation set and test set F1-score, true pos-

itive rate and false positive rate for these 4 levels of classification: each measurement,

each process, each process tree, and finally showing process killing; see Figures 5.7

for diagrammatic representation of these first 3 levels. Table 5.4 reports the F1, TPR

and TNR for classification (each measurement of each process) and for process killing.

The highest F1-score on the validation set is achieved by an RNN using process

data only. When process killing is applied there is a drop of less than 5 percentage

points in the F1-score but more than 15 percentage points are lost from the TNR.

On the unseen test set the highest F1-score is achieved by an RNN using process

data + global metrics, but the improvement over the process data + total number of

processes is negligible. Overall is there is a reduction in F1-score from (97.44, 94.61)

to (74.91, 77.66), highlighting the initial challenge of learning to classifying individual

processes rather than entire applications, especially when accounting for concept drift.

Despite the low accuracy, these initial results indicate that the model is discriminating

some of the samples correctly and may form a baseline from which to improve.

The test set TNR and TPR for classification on the best-performing model (process

data only) are 79.70 and 82.91 respectively, but when process killing is applied, though

the F1-score drops by 10 percentage points, the TNR and TPR move in opposite direc-

tions with the TNR falling to 59.63 and TPR increasing to 90.24. This is not surprising

since a single malicious classification results in a process being classed as malicious.

This is true for the best-performing models using either of the two feature sets (see

Fig.5.6 above).

5.6.4 Accuracy vs. Resource consumption

Previous work on real-time detection has highlighted the requirement for a lightweight

model (speed and computational resources). The previous chapter, RNNs were the

best performing algorithm in classifying malware/benignware but RNNs have many pa-
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rameters and therefore may consume significant RAM and/or CPU, they also require

preprocessing of the data to scale the values, which other ML algorithms such as tree-

based algorithms do not. Whilst RAM and CPU should be minimised, taking model

accuracy into account, inference duration is also an important metric.

Though the models in this chapter have not been coded for performance and use

common python libraries, comparing these metrics helps to decide whether certain

models are vastly preferable to others with respect to computational resource consump-

tion. The PyRAPL library [17] is used measure the CPU, RAM and duration used by

each model. This library uses Intel processor ‘Running Average Power Limit’ (RAPL)

metrics. Only the data pre-processing and inference is measured as training may be

conducted centrally in a resource-rich environment. Batch sizes of 1, 10, 100 and 1000

samples are tested with 26 and 37 features respectively since there are 26 process-

level features and 37 when global metrics are included. Each model is run 100 times

for each of the different batch sizes.

For the RNN a ‘large’ and a ‘small’ model are included. The large models have

the highest number of parameters tested in the random search (981 hidden neurons,

3 hidden layers, sequence length of 17) and the smallest (41 neurons, 1 hidden layer,

sequence length of 13). These two RNN configurations are compared against other

machine learning models which have been used for malware detection: Multi-Layer

Perceptron (feed-forward neural network), Support Vector Machine, Naive Bayes Clas-

sifier, Decision Tree Classifier, Gradient Boosted Decision Tree Classifier (GBDTs),

Random Forest and AdaBoost.
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Figure 5.8: CPU use of different trained models

Figure 5.9: RAM use of different trained models

Figure 5.10: Inference duration of different trained models
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Figures 5.8, 5.9, 5.10 show the varied CPU, RAM and inference time respectively

for 7 algorithms with different numbers of features. The RNNs, random forests and

SVMs perform worst across all three metrics. SVM is the only algorithm to breach the

1-second mark for inference duration (10e6 micro seconds). Decision Trees, GBDTs

and Naive Bayes perform best. AdaBoost and MLP have middling performance. The

RNN sees a marked difference in performance between the ‘large’ and ‘small’ networks

but the number of features has a greater impact that the size of the network (although

number of features impacts the network size too). Only MLP (also a neural network) and

SVM show a consistently observable observable difference between using 26 and 37

features, but for most algorithms, the number of features does not significantly impact

upon performancemetrics. Sun et al. [188] used an RF as a lightweight initial processor

whereas these experiments do not find it particularly lightweight, however it may be by

comparison with the NN ‘heavyweight’ model used.

Low resource consumption is of little consequence if the model is not able to learn to

distinguish benign and malicious processes. Focusing on batch-sizes of 100 (since 95

is the largest number of simultaneous processes observed in this dataset), the detection

accuracy, process killing accuracy and performance metrics can be compared.

Table 5.5 reports the computational resource consumption and accuracy metrics

together. Decision tree with 38 features is the lowest cost to run, RNN performs best

at supervised learning classification on the validation set but only just outperforms the

decision tree with 26 features, which is the best performing model at process killing on

the validation set at 92.97 F1-score. The highest F1-score for process killing uses a

Random Forest with 37 features, scoring 77.85 F1, which is 2 percentage points higher

than the RF with 26 features (75.97). The models all perform at least 10 percentage

points better on the validation set indicating the importance of taking concept drift into

account when validating models.
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model n fea-
tures avg. cpu (µJ) avg. dram

(W)

avg.
duration

(µs)
val F1 kill val

F1 test F1 kill test
F1

AdaBoost 26 127967.84 7981.51 6595.37 88.35 74.36 77.19 60.09
AdaBoost 37 125041.20 7142.93 6469.16 89.63 76.07 80.10 60.14
DT 26 3905.63 202.65 128.02 97.39 88.48 66.44 62.95
DT 37 2113.67 134.29 106.65 96.32 83.57 79.61 62.50
GBDT 26 8788.41 338.78 349.31 92.27 78.26 82.47 63.33
GBDT 37 11005.80 486.46 329.45 93.13 80.26 84.94 63.46
MLP 26 11044.88 645.14 461.04 82.84 70.18 41.62 57.65
MLP 37 12932.09 628.64 555.42 73.00 67.63 57.66 57.26
NB 26 6947.67 297.87 185.73 75.80 67.42 62.90 56.11
NB 37 5187.96 258.80 177.37 75.58 67.61 61.88 55.33
RF 26 238621.20 11052.84 8997.31 97.12 92.97 71.58 75.97
RF 37 236598.44 9967.63 8879.97 96.57 91.05 85.55 77.85
RNN 26 887664.31 48885.96 27869.30 97.44 90.70 74.91 73.08
RNN 37 312108.07 17120.90 10414.58 94.61 87.31 77.66 71.95
SVM 26 6630490.84 464082.07 282026.57 78.34 67.04 68.16 56.91
SVM 37 7792179.78 730786.06 429081.31 64.89 65.68 61.39 56.25

Table 5.5: Average resource consumption over 100 iterations for a batch size of 100
vs. F1-scores on validation and test set for classification and process killing across
14 models. 26 features = process-level only, 37 features = machine and process level
features.

5.6.5 How to solve a problem like process killing?

From the results above, it is clear that supervised learning models see a significant

drop in classification accuracy when processes are killed as the result of a malicious

label. This confirmation of the initial hypothesis presented here justifies the need to

examine alternative methods. In the interests of future work and negative result report-

ing this chapter reports all of the methods attempted and finds that simple statistical

manipulations on the supervised learning models perform better than using alternative

training methods. This section briefly describes the logic of each method and provides

a textual summary of the results with a formulae where appropriate. This is followed

by a table of the numerical results for each method. In the following section let P be a

set of processes {p0, p1...pP} in a process tree, let t∗ be the time at which a prediction

is made and let ŷi be the prediction for process i at time t* where a prediction equal to

or greater than 1 classifies malware.
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a) Mean predictions

Reasoning: Taking the average prediction across the whole process will smooth out

those process killing results

Not tested This was not attempted for two reasons: (1) Taking the mean at the end

of the process means the damage is done (2) This method can easily be manipulated

by an attacker: 50 seconds of injected benign activity required 50 seconds of malicious

activity to achieve a true positive

ŷi =
1

t∗

t∗∑
t=0

ŷti

b) Rolling mean predictions

Reasoning: Taking the average over a few measurements will eliminate those false

positives that are caused by a single false positive over a subset of the execution trace.

Window sizes of 2 to 5 are tested. Let w be the window size:

ŷi =
1

w

t∗∑
t=t∗−w

ŷti

Summary of results: A small but unilateral increase in F1-Score using a moving

window over 2 measurements on the validation set. Using a moving window of size

2 on the test-set saw a 10 to 20 percentage point increase in true negative rate (to a

maximum of 80.77) with 3 percentage points lost from the true positive rate. This was

one of the most promising approaches.

c) Alert threshold

Reasoning: Like the rolling mean, single false positives will be eliminated but unlike the

rolling mean, the alerts are cumulative over the entire trace such that a single alert at

the start and 30 seconds into the process will cause the process to be killed rather than

requiring that both alerts are within a window of time. Between 2 and 5 minimum alerts

are tested
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ŷi = w −
t∗∑
t=0

ŷti

Summary of results: Again a small increase across all models, with an optimal

minimum number of alerts being 2 for maximum F1-score, competitive with the rolling

mean approach.

d) Process-tree averaging

Reasoning: the data are labelled at the application level, therefore the average predic-

tions across the process tree should be considered for classification

ŷi =
1

P

P∑
p=0

ŷt∗i

Summary of results: Negligible performance increase on validation and test set

data (<1 percentage point). This is likely because few samples have more than one

process executing simultaneously.

e) Process-tree training

Reasoning: the data are labelled at the application level, therefore the sum of resources

of each process tree should be classified at each measurement, not the individual pro-

cesses

Summary of results: Somewhat surprisingly there was a slight reduction in classi-

fication accuracy when using process tree data. One explanation for this may be that

the process tree creates noise around the differentiating characteristics that are visible

at the process level.

DQN

Reinforcement learning is designed for state-action space learning. Both pre-training

the model with a supervised learning approach and not pre-training the model were
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tested.

Summary of results: Poor performance, typically converging to either kill or not

kill everything, of the few models which did not converge to a single dominant action, it

does not distinguish malware or benignware well, indicating that it may not have learned

anything. Reinforcement learning may help the problem of real-time malware detection

and process killing but this initial implementation of a DQNdid not converge to a better or

even competitive solution to supervised learning. Perhaps better formulation of rewards

(e.g. damage prevented) would help the agent learn.

Regression on predicted kill value

Reasoning: Though the DQN explores and exploits different state-action pairs and their

associated rewards, when the reward from each action is known in the first place and

the training set is limited, as it is here, Q-learning can be framed as a regression problem

in which the model tries to learn the return (rewards + future rewards), the training is

faster and can be used by any regression-capable algorithm. Let N be the number of

current and future child processes for pi at t∗

(y ∗ 2− 1) ∗ (1 +N) ∗ (1 + (y ∗ (e−t∗)))

Summary of results: Improved performance on true negative rate, though not per-

ceptible for the highest-scoring F1 models since F1-scores reward true positives more

than true negatives, this metric can struggle to reflect a balance between the true pos-

itive and true negative rates. The highest true negative rate models are all regression

models.

Table 5.6 lists the F1, TPR and TNR on the validation and test set for each of the

methods described above. The best-performing model on the test and validation sets

are reported and the full results can be found in Appendix Table 2. Small improvements

are made by somemodels on the validation F1-score but the test set F1-score improves

by 4 percentage points in the best instance.
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val test
methodology best

dataset
model n fea-

tures
F1 tnr tpr F1 tnr tpr

Supervised
learning

val RF 26 92.37 87.39 96.64 74.57 62.71 92.95

test RF 37 89.68 83.19 94.96 76.43 67.19 92.52
Rolling mean val RF (min: 2) 26 93.22 94.12 92.44 78.26 73.83 89.76

test RF (min: 2) 37 92.70 94.96 90.76 80.77 78.88 89.38
Alert thresh-
old

val DT (min: 2) 26 92.17 95.80 89.08 73.43 67.44 86.56

test RF (min: 2) 37 91.30 94.96 88.24 81.50 81.53 87.97
Process tree
averaging

val RF 26 92.74 88.24 96.64 74.79 64.04 92.20

test RF 37 90.48 84.03 95.80 76.34 67.66 91.92
Process tree
training

val RF 26 90.35 82.58 98.32 74.20 52.44 92.74

test RF 26 90.35 82.58 98.32 74.20 52.44 92.74
Q-learning val DQN 26 51.71 72.27 44.54 27.74 55.50 26.94

test DQN 26 51.71 72.27 44.54 27.74 55.50 26.94
Regression val RF 26 91.94 87.39 95.80 74.77 66.05 90.35

test RF 26 91.94 87.39 95.80 74.77 66.05 90.35

Table 5.6: Summary of best process killing models by model training methodology. F1,
TNR and TPR for validation and test datasets. Full results in Appendix Table 2.

In most cases, the models with the highest F1-score on the validation and test sets

are not the same. The highest F1-score is 81.50 from an RF using a minimum alert

threshold of 2 and both process-level and global process metrics.

5.6.6 Further experiment: Favouring high TNR

Though the proposed model is motivated by the desire to prevent malware from exe-

cuting, the best TNR reported amongst the models above is 81.50%. 20% of benign

processes being killed would not be acceptable to a user. Whilst this research is a

novel attempt at very early-stage real-time malware detection and process killing, one

might consider the usability and prefer a model with a very high TNR, even if this is at

the expense of the TPR.

Considering this, the AdaBoost regression algorithm achieves a 100% TNR with a

39.50% TPR on the validation set. The high FNR is retained in the test set standing at
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val test
methodology model n features F1 tnr tpr F1 tnr tpr
Regression AdaBoost 26 56.63 100.00 39.50 15.06 97.92 8.40
Regression + 4 alerts GBDT 26 85.91 95.80 77.31 68.50 94.98 56.04

Table 5.7: Two models’ F1-score, TNR, TPR for the validation and test set scoring the
highest TNR on the validation and test sets.

97.92% but the TPR drops even further to just 8.40%. The GBDT also using regression

to estimate the value of process killing, and coupled with a minimum of 4 alerts performs

well on the test set but does not stand out in the validation set see Table 5.7.

Though less than 10% of the test set malicious processes are killed by the AdaBoost

regressor, this model may be the most viable despite the low TPR. Future work may

examine the precise behaviour and harm caused by malware that is/is not detected.

To summarise results, the most-detected families were Ekstak (180), Mikey (80), Prep-

scram (53 processes) and Zusy (49 processes) of 745 total samples.

5.7 Measuring damage prevention in real time

Though a high percentage of processes are correctly identified as malicious by the best

performing model (RF with 2 alerts and 37 features); it may be that the model detects

the malware after it has already caused damage to the endpoint. Therefore, instead of

looking at the time at which the malware is correctly detected, a live test was carried

out with ransomware to measure the percentage of files corrupted with and without

the process killing model working. This real time test also assesses whether malware

can indeed be detected in the early stages of execution or whether the data recording,

model inference and process killing is too slow in practice to prevent damage.

It is possible to quantify the damage caused by ransomware using the proportion of

modified files as Scaife et al. [172] have done in developing a real-time ransomware

(only) detection system. The damage of somemalware types are more difficult to quan-

tify owing to their dependence on factors outside the control of the malware. For exam-
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ple the damage caused by spyware will depend on what information it is able to obtain

so it is difficult to quantify the benefit of killing spyware 5 seconds after execution com-

pared with 5 minutes into execution. Ransomware offers a clear metric for the benefits

of early detection and process killing.

val test
model n features F1 tnr tpr F1 tnr tpr
RF (alerts: 2) 37 91.30 94.96 88.24 81.50 81.53 87.97
DT (rolling mean: 2) 26 93.16 94.96 91.60 73.82 66.19 88.40

Table 5.8: Random Forest and Decision Tree each with a minimum requirement of
two alerts (‘malicious classifications’) to kill a process. F1, TNR and TPR reported on
validation and test set.

Although the RF with with a minimum of 2 alerts using both process and global

data gave the highest F1-score on the test set (81.50), earlier experiments showed

that RFs are not one of the most computationally efficient models by comparison with

those tested. Therefore a decision tree is trained on process-only data (26 features)

in case the time-to-classification is important for damage reduction despite the lower

F1-score. For this reason the decision tree model is used in this test. The DT also has

a very slightly higher TPR (see Table 5.8) so a higher damage prevention rate may be

partially due to the model itself rather than just the fewer features being collected and

model classification speed. Neither the TNR nor TPR on the test set surpass 90% on

either model indicates that there may be significant overlap in the behavioural traces of

malicious and benign software when considered at the process level and in the short-

term.

22 fast-acting ransomware files were identified from a separate VirusShare [201]

repository which (i) do not require internet connection and (ii) begin encrypting files

within the first few second of execution. The former condition is set because the ma-

licious server may no longer exist and for safety it is not desirable to connect to it if it

does. These are the types of malware that if the proposed model could block, would

save significant damage to the user in a time-frame that it would be difficult for a human
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to react to.

The 22 samples were executed for 30 seconds each without the process killing

model and the number of files modified was recorded. The process was repeated with

4 process killing models: DT with min. 2 alerts and 26 features, RF with min. 2 alerts

and 37 features, AdaBoost regressor with 26 features and GDBT regressor with min.

4 alerts and 26 features.

It was necessary to run the killing model with administrator privileges and to write an

exception for the Cuckoo sandbox agent process which enables the host machine to

read data from the guest machine since themodels killed this process. The need for this

exception highlights that there are benign applications with malicious-like behaviours

perhaps especially those used for networking and security.

Figure 5.11: Total number of files corrupted by ransomware with no process killing and
with three process killing models within the first 30 seconds of execution.

Figure 5.11 and Table 5.9 give the total number of corrupted files across the 22

samples. The damage prevention column is a proxy metric denoting how many files

were not corrupted using a given process killing model by comparison with no model

being in place. The 22 samples on average each corrupt 910 files within 30 seconds.

The DT model almost entirely eliminates any file corruption with only three being

corrupted. The RF saves 92.68% of files. The ordinal ranking of ‘damage prevention’

is the same as the TPR on the test set but the relationship is not proportional. The

same ordinal relationship indicates that the simulated impact of process killing on the
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Model Files
damaged

Damage
reduction

Detection
rate (Ran-
somware

TPR)

Test set
TPR

no killing 19,997 - - -
DT pro rolling mean 2 3 99.98% 100.00 88.40
RF glo + pro min alerts 2 1,464 92.68% 100.00 87.97
GBDT regressor + min 4 alerts 15,432 22.83% 22.07 56.04
AdaBoost regressor 20,578 0.00% 9.09 8.83

Table 5.9: Total number of files corrupted by ransomware with no process killing and
with three process killing models within the first 30 seconds of execution. Damage
reduction is the percentage of files spared when no killing is implemented

collected test set was perhaps a reasonable approximation of measuring at least fast-

acting ransomware damage, despite the TPR test set metrics being based on other

malware families too.

The DT demonstrates that this architecture is capable of preventing damage, but

the TNR on the test set of the DT model is so low (66.19) that this model cannot be

preferred to the RF (81.53 TNR), which still prevents over 90% of file damage.

TheGBDT prevents some damage, and detects a comparable number of ransomware

samples (1 in 5). The AdaBoost regressor detected 2 ransomware samples of the 22,

and in these two cases more than 64% and 45% of files were saved respectively; per-

haps with more execution time the files would be detected but the key benefit of process

killing is to stop damaging software like these ransomware samples and this algorithm

saw more files encrypted than when no killing model was used; this is because there

will be a slight variance in the ransomware behaviour and execution time each time it

runs. It may appear surprising that more files were corrupted with the Adaboost algo-

rithm running, but the process launching and shutdown of the virtual machine is not

precise to the millisecond, thus extra execution time may have allowed additional files

to be corrupted. The Random Forest is the most plausible model, balancing damage

prevention and TNR, however the delay in classification may be a result of the require-

ment to collect more features and/or the real-time of the model itself.
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5.8 Discussion: Measuring execution time in a live en-

vironment

Though algorithm execution duration was measured above, due to batch processing

used by the models, the number of processes being classified can be increased by

an order of magnitude with a negligible impact on execution time. The data collection

and process killing both have O(n) complexity; where n is the number of processes

therefore it is expected that the number of processes to impact classification time. So

a further experiment was carried out with the RF to measure in a live environment how

long the data collection, model inference, and process killing takes as the number of

processes increases. This was tested by executing more than 1000 processes in the

virtual machine whilst the process killing RF runs.

Some processes demand more computational resources than others, and some

malware in our test set locked pages in memory[42] which prevented the model from

having sufficient resources to collect data, leading to tens of seconds during which no

data was captured and many processes were launched, with better software engineer-

ing practices the model may be more robust against this kind of malicious activity.

These differences in behaviour can cause the evaluation time to lag as demon-

strated by the outlier points visible in Figure 5.12. The data shows a broadly linear

positive correlation between the number of processes (being monitored or killed) and

the time taken for the data collection and process killing; this confirms the hypothesis

that more processes equates to slower processing time. The slowest total processing

time was 0.81 seconds (seen with both 17 and 40 simultaneous processes running) but

the mean processing time is just under 0.3 seconds with 65 simultaneous processes,

fitting comfortably within the 1-second goal time. Additional code optimisation could

greatly improve on these initial results which indicate that the processing, even using

standard libraries and a high level programming language, can execute reasonably

quickly.
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Figure 5.12: Mean time to collect data, analyse data with Random Forest, and kill
varying numbers of processes
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5.9 Future Work

Behavioural malware analysis research using machine learning regularly reports>95%

classification accuracy. Though useful for analysts, behavioural detection should be de-

ployed as part of endpoint defensive systems to leverage the full benefits of a detection

model. Dynamic analysis is not frequently used for endpoint protection, perhaps be-

cause it takes too long in data collection to deliver the quick verdicts required for good

user experience. Real-time detection on the endpoint allows for observation of the full

trace without the user having to wait. However, real-time detection also introduces the

risk that malware will cause damage to the endpoint. This risk requires that processes

detected as malicious are automatically killed as early as possible to avoid harm.

There are some key challenges to implementation, which have been outlined in this

chapter:

• The need for signal separation drives the use of individual processes and only

partial traces can be used.

• The significant drop in accuracy on the unseen test set, even without process

killing demonstrates that additional features may be necessary to improve detec-

tion accuracy.

• With the introduction of process killing, the poor performance of the models on

either benignware classification (RF min 2 alerts: TNR 81% with an 88% TPR on

the test set) or on malware classification (GBDT regressor min 4 alerts: 56% TPR

with a 94% TNR on the test set) means that considerable further work is needed

before very early stage real-time detection can be considered for real-world use.

• Real-time detection using full execution traces of processes however, may be vi-

able. This is useful to handle VM-aware malware which may only reveal its true

behaviour in the target environment. Although the more complex approach using

DQNs algorithms did not outperform the supervised models with some additional
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statistical thresholds, the regression models had better performance in correctly

classifying benignware. Reinforcement learning could still be useful for real-time

detection and automated cyber defence models, but the DQN in these experi-

ments did not perform well.

• Despite the theoretical unsuitability of supervised learning models to state-action

problems, these experiments demonstrate how powerful supervised learning can

be for classification problems, even if the problem is not precisely the one that the

model is attempting to solve.

• Future work may require a more comprehensive manual labelling effort at the

process level and perhaps labelling sub-sections of processes as malicious or

benign.

An additional consideration for real-time detection with automated actions is whether

this introduces an additional denial-of-service vector using process injection for exam-

ple to trigger process killing. This may also however indicate that an attacker is present

and therefore aid the user.

5.10 Conclusions

This chapter has built on previous work in real-time detection to address some of the key

challenges: signal separation, detection with partial execution traces and computational

resource consumption with a focus on preventing harm to the user, since real-time

detection introduces this risk.

Behavioural malware detection using virtual machines is a well-established research

field yielding high detection accuracy in recent literature [48, 87, 89, 156]. However, as

is shown here, fixed-time execution in a sandbox may not reveal malicious functionality.

Real-time malware analysis addresses this issue but risks executing malware on the
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endpoint and requires detection to take place at the process level, which is more chal-

lenging as the definition of a malicious process can be unclear. These two reasons may

account for the limited literature on real-time detection. Looking forward real-time de-

tection may become more popular if static data manipulation and VM-evasion continue

to be used and the costs of malicious execution continue to rise. Real-time detection

does not need to be an alternative to these approaches, but could hold complementary

value as part of a defence-in-depth endpoint security.

To the best of our knowledge previous real-time detection work has used up to 5

simultaneous applications, whereas users may use far more. This gives rise to RQ4:

Is it possible to separate the signals of tens of simultaneous benign and malicious pro-

cesses? Experimenting with up to 35 concurrent applications, it is possible to distin-

guish malicious and benignware, this is the third contribution of this thesis: C3: Real-

time malware detection against a significantly larger number of user background ap-

plications than have previously been investigated with analysis of the impact of the

increase this chapter has demonstrated that many machine learning algorithms can

handle up to 1000 processes and maintain very fast execution speeds.

Automatic actions are necessary in response to a detection if the goal is to pre-

vent harm. Otherwise this is equivalent to letting the malware fully execute and simply

monitor its behaviour since human response times are unlikely to be quick enough for

fast-acting malware. Sun et al. [188] identified this truth in their research but their work

measured the number of correct detections rather than looking at the damage caused

to the user. To prevent damage, detection prior to the malicious payload should take

place. Previous work has looked at damage as a percentage of execution trace [48] or

using several minutes of data [188].

From a user perspective the question is not ‘What percentage of malware was ex-

ecuted?’ or ‘Was the malware detected in 5 or 10 minutes?’ but ‘How much damage

as been done?’. Perhaps the lack of very early detection was because it did not yield

promising results, leading to RQ3: Does the use of lower latency algorithms impact
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upon the speed of accurate malware detection? and RQ5: Is it possible to detect and

kill malicious processes early enough to prevent malicious damage?

The final contribution of this thesis C4: The first model to try and mitigate malware

damage in real-time using malicious process detection and killing addresses both of

these. By creating statistical filters on top of supervised learning models it was possible

to prevent 92% of files from being corrupted by fast-acting ransomware thus reducing

the requirements on the user or organisation to remediate the damage, since it was

prevented in the first instance (the rest of the attack vector would remain a concern).

This approach does not achieve the detection accuracies of state of the art offline be-

havioural analysis models, but these models typically use the full post-execution trace

of malicious behaviour. Delaying classification until post-execution negates the princi-

pal advantages of real-time detection. However, the proposed model presents an initial

step towards a fully automated endpoint protection model which becomes increasingly

necessary as adversaries becomemore andmoremotivated to evade offline automated

detection tools.



Chapter 6

Conclusions, Limitations, Future Work

The field of automatic malware detection using machine learning techniques continues

to be widely researched and published in with various data sources, algorithms, operat-

ing systems and file types. This field is closely tied to the commercial antivirus market,

but it is unclear how much ML (academic- or industry-led) is being used in commercial

products as this information cannot be verified without insider knowledge. Increasingly,

some works are focusing on the weaknesses of ML and how research findings may not

hold in practice. This thesis has uncovered and addressed several unanswered ques-

tions, which deserve attention when considering adopting research in practice. This

chapter first summarises the findings of this thesis then presents limitations, future work

arising from this research and finally come concluding remarks.

6.1 Thesis summary

This thesis has focused on dynamic malware detection due to the difficulty of obfus-

cating dynamic data. It has looked at machine learning approaches to draw out the

distinctions between malware and benignware since these models can be retrained

automatically, thus reducing the delay and expense of hand-generating rules.

The first contribution of this thesis complements the growing voice in malware detec-
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tion literature warning against the vulnerabilities of machine learning methods. Whilst

concept drift and adversarial samples are well-documented, research addressing the

performance of dynamic detectionmodels in different contexts had not been addressed.

Just as concept drift can be seen as a change in context over time, but the idiosyn-

crasies of cyber ecosystems can also be considered different contexts. In order to test

whether the highest performing lab models can be assumed to perform best in other

environments Chapter 3 compared classification accuracy on datasets from the public

internet and those captured by a commercial organisation. The difference in classifi-

cation accuracies on unseen test sets confirmed the uncontroversial argument that the

model would perform differently. The contribution of this work however is

C1: A demonstration that the most accurate type of dynamic data in laboratory

testing may not be the best-performing or most robust data type when tested on data

of a different provenance.

The data type used to train the model had a far greater impact than the algorithm

chosen, and the most commonly used dynamic malware detection data type, API calls,

did not produce the most robust results, though it performed the best under lab. condi-

tions. This work was limited to comparing just two environments but may prove valuable

for commercial adoption of research either as suggestion of an alternative data source

to trial. More generally it highlights the need for security practitioners to have a way to

evaluate the performance of models in their own environment.

The second contribution of this thesis looks at one of the primary criticisms levelled

at dynamic data, that it takes too long time to collect to be suitable for endpoint de-

tection. The key research question asked whether the more-reliable dynamic data can

compete with static data analysis times for endpoint protection. Chapter 4 examined

the classification accuracy in the first few seconds of execution and made the following

contribution:

C2: The first model to predict whether or not software is malicious based on its early

behaviour.
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This contribution is significant as it potentially enables quick dynamic analysis to

augment existing endpoint defences. The omission of entire malware families from the

training set indicated that it may be possible to detect zero-days using this approach

and that new malwares have more in common with existing malware in the injection

mechanism even if the payload is significantly different. This was the first demonstration

of the capabilities for early stage prediction on the initial execution trace of software

samples. Whilst it performed well on the test set and on unseen malware families,

it could potentially be obfuscated with simple benign activity injection at the start of

execution.

This limitation inspired the third and most forward-looking research question of this

thesis. Chapter 5 imagines that early-stage dynamic malware detection has become

widely adopted and the issues associated with a reliance on fixed observation periods

in a VM. This chapter argued that real-time detection is the future of endpoint protec-

tion as the malicious behaviour cannot be concealed. Previous work in this area had

not considered that a live detection should yield some benefit for the user i.e. stop the

malware, as such our work focused on killing malicious processes within a short time

frame. Three key research questions which had not previously been addressed con-

cerned the ability to distinguish malicious processes with a large amount of background

noise: RQ4: Is it possible to separate the signals of tens of simultaneous benign and

malicious processes?; the requirement to identify malware as early as possible and

the viability of killing processes automatically when there is a risk of making the end-

point unusable if benignware is compromised too RQ3: Does the use of lower latency

algorithms impact upon the speed of accurate malware detection?

The experiments sought to address the impact of an automated detection system

on damage prevention, which has not previously been explored, with the following two

contributions:

C3: Real-time malware detection against a significantly larger number of user back-

ground applications than have previously been investigated with analysis of the impact
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of the increase

and

C4: The first model to try and mitigate malware damage in real-time using malicious

process detection and killing

By filtering supervised model outputs it was possible to reduce fast-acting ran-

somware encryption by 92% in a real-time trial. The detection accuracy for benignware

requires further work but demonstrates the challenge of creating a real-time detection

paradigm that is both capable of preventing actual damage and not interrupting user

experience, this has not been addressed in previous work.

6.2 Limitations

Chapters 3, 4 and 5 have each outlined limitations of the experimental results specific

to those chapters. Here is a summary of some of the wider limitations of the research

in this thesis

6.2.1 Dataset labelling

Each of these chapters uses labelled datasets. These labels have referred to whether

or not the sample is malicious, the family to which the malware belongs and sometimes

to try and date the sample. The sources used for labelling malware are imperfect and

change over time [2, 66]. The impact of this imperfect labelling is likely to reduce model

accuracy [11] and may see biases towards certain malware above others. For example,

the storage of malicious hashes is an increasing problem for antivirus vendors and one

method for handling this is to maintain a list of hashes of the more likely malware than

older samples. This limits the reliability of VirusTotal as a means to label samples

and brings into question the method used to retrain models - must this ultimately rely

on labelling samples and is labelling samples easier than devising hand-written rules?
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The answer is ’yes’ since labelling samples is a prerequisite to devising rules however

it highlights the reliance of supervised learning on human effort and it’s limitations as a

means to fully automate malware detection.

Furthermore, some of the malware is adware, which is sometimes not considered

malicious but rather an unwanted programme. In these experiments adware is consid-

ered malware since it is desirable to detect and remove it.

6.2.2 Ransomware as a Case Study

Chapters 4 and 5 both use ransomware as a case-study to measure the ability to detect

zero-day malware and the damage prevented by automatic process killing respectively.

Although ransomware is a considerable concern in cybersecurity, the focus of this thesis

is on general malware detection. Arguably ransomware is one of the less subtle types

of malware, especially when the focus is placed on fast-acting samples as in Chapter

5. As such it may be considered relatively easy to detect. This is not a problem in so far

as ransomware causes a lot of damage and if it’s easy to detect that is good. However,

there are other types of malware which can have catastrophic impact on businesses

and these tend to be highly sophisticated and tailored attacks (APTs). This subset is

not investigated in this thesis due in part to the bespoke nature of these malware likely

requiring the specific infrastructure of its victims in order to function. However, future

work could assess the capability of real-time detection to detect these attacks since real-

time detection can be used directly in the victim environment andmay therefore observe

these behaviours. This would be challenging for researchers to carry out without the co-

operation of multiple industrial environments in order to ensure the attacker’s intended

context is accurately replicated.
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6.2.3 Machine Metrics

As mentioned in Chapter 3, the reliance on machine metrics is machine-specific which

would require models to be recalibrated to endpoints if real-time monitoring is adopted,

VM-based approaches do not suffer this problem. Future work could examine the secu-

rity implications of retraining models locally, whether this introduces new vulnerabilities

or gives better or worse protection to machines with particular characteristics.

6.3 Future Work

This thesis seeks to address some of the areas untouched by previous research in

automatic malware detection for the benefit of the research community and industrial

adopters alike. The contributions described here are also a starting point for continued

work in this area.

6.3.1 Other file types and operating systems

This thesis has focused on Windows7 executables. Though Windows7 was the most

prevalent operating system globally [68] at the time of data collection and Windows

executables are the most commonly submitted file to VirusTotal [203], these models

could be validated by investigating whether they are capable of detecting malicious

PDFs, URLs and other potential vehicles for malware, as well as applications which

run on other operating systems.

6.3.2 Robustness

Relating to the robustness of data there are a number of avenues for future research.

The first is a general machine learning question: are sparse feature vectors more vul-

nerable to contextual and concept drift? Within the malware detection domain the re-

sults presented in Chapter 3 (and [158]) do not imply that machine metrics are the
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answer to cross-context accuracy robustness but are better interpreted as a cautionary

tale. The problem of contextual difference should be treated like concept drift and as-

sume that retraining needs to take place. Further research could investigate the relative

benefits of decentralised fine-tuning of detection models at edge nodes (enterprises)

or whether it is better simply to train the model at the edge in the first place. Research

into when a model requires retraining as used in adversarial sample and concept drift

defences may also be usable here.

From a usability perspective the longevity of all of the results in this thesis must

be tested over a significant time period. The results comparing data sources, early

detection and real-time detection could be used to guide the direction of model building

for long-term testing.

6.3.3 Earlier detection

The early stage malware detection (Chapter 4 and [156]) indicates that dynamic mal-

ware detection may not be as inconvenient in terms of analysis time as static methods.

This could form the basis of a centralised analysis point on a local network e.g. at an

ingestion point but it is not well-suited to being run on individual machines due to the

computational overheads of running virtual machines. Future work could also look at

even smaller time increments. This approach is vulnerable to manipulating data at the

start of a malicious program but it could be possible to combine static and dynamic

analysis in order to try and fast-forward through the benign portion, however this thesis

considered that the more forward-looking response was to investigate real-time detec-

tion and automatic agents.

6.3.4 Improving Real-time Detection Accuracy

Far less research has been conducted in the area of real-time detection. In part it is

because this area is much more challenging. The results in Chapter 5 give an early indi-
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cation that there may be promising research to be developed from this work. Future di-

rections include: quantifying damage and learning user profiles to improve benignware

classification; but the greatest challenge to high accuracy for the research presented

in this thesis was simply conducting supervised learning to label the sub-processes as

benign or malicious. Future research could look at labelling at the process level and

labelling processes as malicious or benign depending on their enacting certain activity.

This is an intensive manual process but may be bootstrapped by starting with specific

malware families with known behaviour.

Another avenue to consider is robustness against interference from the malware

- memory locking was able to block the model from performing as intended, though

security controls could be implemented to prevent this, malware authors may devise

new methods to limit the capability of the detection model.

6.3.5 When Does Harm Begin?

This research has looked at dynamic malware detection, arguing that the behaviour is

harder to disguise than the code and therefore early behavioural detection should be

preferred in order to prevent malicious damage. One broad question leads on from this:

to what extent does malware reveal itself before it caused harm? This is particularly

challenging as it requires a definition of ’harm’, which in itself is context-dependent.

6.4 Concluding remarks

The contributions of this thesis are intended to take the stakeholders in malware detec-

tion into account in ways that they have not been in previous work.

The demonstration that the best model in the lab does not perform best in the field

has not previously been explicitly tested for dynamic malware analysis. As significant

players in the antivirus market offer sandbox-based analysis, this is an important mes-
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sage for those considering using such products.

Early stage malware detection considers the malware author and ease with which

static code can be manipulated. This thesis presented the first attempt at classifying

malware within a time-bound limit in order to make dynamic analysis temporally com-

petitive with static analysis for endpoint protection. An incidental discovery of this work

suggests that different malware shares more in common through injection mechanisms

than through payload behaviour, this in turn suggests that it may be possible to detect

malware before it is able to cause harm.

This thesis concludes by considering the user, with limited computational resources

and the adversary seeking to evade detection. The weaknesses of static and virtual-

machine based analysis strongly suggest that real-time detection live on the endpoint

will be necessary to keep pace with trends in the malware landscape. Real-time detec-

tion is a challenging and perhaps controversial security measure, but it does circumvent

the problems of conditional execution and resource intensity required by sandbox full-

trace analysis. Here it has been demonstrated for the first time that a general malware

detector (rather than specific to a family) is capable of preventing damage to the end-

point. I hope that future research will use the contributions of this thesis to uncover

further possibilities in automated malware detection.
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filetype features classifier µ(f1 public) µ(f1 org.)
abs. µ(f1

public) µ(f1
org.)

µ(abs. ∆ f1) µ(abs ∆ tnr) µ(abs. ∆ tpr)

DOC all NN 97.5 71.1 26.4 26.4 1.2 27.3
DOC all RF 98.2 41.4 56.8 56.8 0.2 45.3
DOC all SVM 94.8 68.1 26.8 26.8 3.7 28.9
DOC api NN 97.0 69.4 27.5 27.5 2.8 43.6
DOC api RF 98.0 31.3 66.7 66.7 0.5 77.6
DOC api SVM 85.9 82.6 3.2 3.4 29.9 27.2
DOC api sequential NN 92.4 27.8 64.6 64.6 2.0 72.1
DOC api sequential RF 98.1 30.9 67.2 67.2 6.3 78.0
DOC api sequential SVM 78.1 30.9 47.3 47.3 8.6 56.0
DOC machine metrics NN 92.8 22.6 70.1 70.1 2.4 79.2
DOC machine metrics RF 94.1 26.5 67.7 67.7 4.8 77.5
DOC machine metrics SVM 84.7 49.2 35.5 35.5 6.0 55.6
DOC network NN 88.1 42.7 45.4 45.4 5.5 62.3
DOC network RF 91.2 34.7 56.5 56.5 3.6 69.4
DOC network SVM 74.2 57.9 16.3 16.3 10.5 34.1
EXE all NN 80.0 64.1 15.9 15.9 1.7 10.2
EXE all RF 85.3 71.8 13.6 13.6 0.8 10.4
EXE all SVM 77.1 63.2 14.0 14.0 1.1 9.0
EXE api NN 77.1 62.1 15.1 15.1 2.7 17.3
EXE api RF 81.4 65.2 16.1 16.1 2.6 20.0
EXE api SVM 70.8 57.5 13.3 13.3 1.7 15.7
EXE api sequential NN 76.7 70.5 6.1 6.7 3.7 8.6
EXE api sequential RF 81.3 65.2 16.1 16.1 3.1 20.7
EXE api sequential SVM 71.1 73.6 2.5 2.6 4.1 1.3
EXE machine metrics NN 71.8 71.8 0.1 3.6 8.6 5.8
EXE machine metrics RF 77.8 72.6 5.2 5.5 8.3 14.0
EXE machine metrics SVM 68.4 70.2 1.8 2.6 6.4 3.7
EXE network NN 61.0 50.8 10.2 10.2 4.1 12.9
EXE network RF 73.3 61.5 11.8 11.8 4.0 18.3
EXE network SVM 51.0 40.0 11.0 11.0 2.7 10.7
PDF all NN 98.7 98.3 0.4 0.7 0.6 0.4
PDF all RF 99.4 98.8 0.6 0.8 0.5 0.4
PDF all SVM 98.2 97.7 0.5 1.0 0.8 0.6
PDF api NN 98.4 97.5 0.8 0.9 2.2 0.8
PDF api RF 98.9 98.4 0.5 1.0 1.1 1.4
PDF api SVM 98.0 97.5 0.5 0.9 1.7 1.2
PDF api sequential NN 54.6 55.2 0.6 2.8 0.5 2.7
PDF api sequential RF 98.0 97.7 0.3 1.2 1.1 1.7
PDF api sequential SVM 11.3 12.1 0.8 3.2 0.0 1.8
PDF machine metrics NN 99.0 98.3 0.7 0.9 1.3 1.2
PDF machine metrics RF 99.2 98.4 0.7 0.9 1.3 0.9
PDF machine metrics SVM 98.2 97.2 1.0 1.2 2.6 0.9
PDF network NN 98.4 97.9 0.5 0.8 1.4 1.1
PDF network RF 98.3 97.8 0.5 0.5 1.6 1.2
PDF network SVM 90.6 89.7 0.9 2.0 3.1 3.2
XLS all NN 97.0 57.7 39.4 39.4 2.2 1.1
XLS all RF 99.5 77.8 21.7 21.7 2.7 0.3
XLS all SVM 97.6 76.8 20.8 20.8 2.6 1.3
XLS api NN 96.2 0.0 96.2 96.2 0.1 92.8
XLS api RF 99.2 77.8 21.4 21.4 2.8 7.3
XLS api SVM 97.3 60.2 37.1 37.1 0.0 46.5
XLS api sequential NN 97.4 4.9 92.6 92.6 0.0 92.4
XLS api sequential RF 98.6 62.0 36.6 36.6 0.0 49.0
XLS api sequential SVM 96.8 0.0 96.8 96.8 0.0 93.9
XLS machine metrics NN 98.5 11.9 86.6 86.6 1.3 86.6
XLS machine metrics RF 98.8 81.7 17.0 17.0 1.3 12.5
XLS machine metrics SVM 97.7 87.8 9.9 9.9 0.5 17.9
XLS network NN 95.8 54.9 40.8 40.8 7.7 3.5
XLS network RF 97.3 75.2 22.1 22.1 1.1 20.1
XLS network SVM 40.8 79.9 39.1 52.9 3.2 66.9

Table 1: Mean (µ) F-scores for withheld public test set, organisation test set, abso-
lute difference between mean F-scores, mean absolute difference between f-scores
per model, mean absolute difference in true positive rate (TPR) and true negative rate
(TNR) per model. Evaluated using a public and commercial dataset for 4 filetypes, 3 al-
gorithms, 6 input feature sets averaged over 10 models (10-fold cross-validation). N.B.
Scores have been multiplied by 100 for easier reading
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val test
model f1 tnr tpr f1 tnr tpr
AdaBoostModel_glo_pro 77.58 55.46 91.60 67.04 49.80 88.67
AdaBoostModel_glo_pro mean process tree 78.01 55.46 92.44 66.75 50.48 87.59
AdaBoostModel_glo_pro process tree min alerts: 1 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro process tree min alerts: 2 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro process tree min alerts: 3 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro process tree min alerts: 4 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro rolling mean window: 2 79.22 70.59 84.87 69.57 60.88 84.88
AdaBoostModel_glo_pro rolling mean window: 3 79.37 72.27 84.03 69.59 61.53 84.39
AdaBoostModel_glo_pro rolling mean window: 4 80.67 80.67 80.67 68.44 67.80 77.34
AdaBoostModel_glo_pro sum alerts min: 2 80.66 78.15 82.35 69.35 66.58 79.89
AdaBoostModel_glo_pro sum alerts min: 3 81.20 83.19 79.83 67.83 70.92 73.88
AdaBoostModel_glo_pro sum alerts min: 4 80.87 84.87 78.15 65.92 73.32 69.00
AdaBoostModel_pro 75.34 47.06 92.44 65.64 45.79 88.89
AdaBoostModel_pro mean process tree 75.86 48.74 92.44 65.74 47.83 87.59
AdaBoostModel_pro process tree min alerts: 1 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro process tree min alerts: 2 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro process tree min alerts: 3 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro process tree min alerts: 4 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro rolling mean window: 2 78.03 64.71 86.55 69.35 59.63 85.47
AdaBoostModel_pro rolling mean window: 3 77.99 67.23 84.87 68.91 59.20 84.99
AdaBoostModel_pro rolling mean window: 4 80.83 79.83 81.51 69.01 66.44 79.40
AdaBoostModel_pro sum alerts min: 2 81.12 75.63 84.87 67.91 61.06 81.68
AdaBoostModel_pro sum alerts min: 3 81.17 80.67 81.51 66.64 64.97 76.42
AdaBoostModel_pro sum alerts min: 4 79.66 80.67 78.99 64.25 68.12 70.14
AdaBoostModel_pro_tree 75.08 47.73 94.96 64.12 30.58 86.60
AdaBoostRegression_pro_process 56.63 100.00 39.50 15.06 97.92 8.40
DTModel_glo_pro 84.53 71.43 94.12 71.41 58.19 90.62
DTModel_glo_pro mean process tree 85.93 73.95 94.96 71.49 59.48 89.70
DTModel_glo_pro process tree min alerts: 1 84.64 70.59 94.96 65.59 42.42 91.27
DTModel_glo_pro process tree min alerts: 2 84.64 70.59 94.96 65.56 42.34 91.27
DTModel_glo_pro process tree min alerts: 3 84.64 70.59 94.96 65.56 42.34 91.27
DTModel_glo_pro process tree min alerts: 4 84.64 70.59 94.96 65.56 42.34 91.27
DTModel_glo_pro rolling mean window: 2 88.70 88.24 89.08 75.09 70.49 86.94
DTModel_glo_pro rolling mean window: 3 87.87 87.39 88.24 74.57 69.77 86.61
DTModel_glo_pro rolling mean window: 4 89.08 93.28 85.71 74.04 74.29 81.63
DTModel_glo_pro sum alerts min: 2 89.74 91.60 88.24 75.48 72.64 85.69
DTModel_glo_pro sum alerts min: 3 89.47 94.12 85.71 74.00 75.62 80.38
DTModel_glo_pro sum alerts min: 4 88.39 94.96 83.19 70.19 77.30 72.63
DTModel_pro 89.76 82.35 95.80 71.53 56.54 92.25
DTModel_pro mean process tree 90.91 84.03 96.64 72.13 59.38 91.06
DTModel_pro process tree min alerts: 1 90.20 82.35 96.64 64.45 37.04 92.79
DTModel_pro process tree min alerts: 2 90.20 82.35 96.64 64.42 36.97 92.79
DTModel_pro process tree min alerts: 3 90.20 82.35 96.64 64.42 36.97 92.79
DTModel_pro process tree min alerts: 4 90.20 82.35 96.64 64.42 36.97 92.79
DTModel_pro rolling mean window: 2 93.16 94.96 91.60 73.82 66.19 88.40
DTModel_pro rolling mean window: 3 91.77 94.96 89.08 73.49 66.15 87.80
DTModel_pro rolling mean window: 4 90.75 95.80 86.55 72.05 69.38 82.38
DTModel_pro sum alerts min: 2 92.17 95.80 89.08 73.43 67.44 86.56
DTModel_pro sum alerts min: 3 90.75 95.80 86.55 71.53 69.63 81.25
DTModel_pro sum alerts min: 4 89.29 95.80 84.03 67.58 70.81 73.55
DTModel_pro_tree 85.93 73.48 97.48 70.40 43.02 91.57
DTRegression_pro_process 89.06 80.67 95.80 71.62 57.98 91.22
GBDTModel_glo_pro 80.44 63.87 91.60 72.62 59.73 91.71
GBDTModel_glo_pro mean process tree 80.88 63.87 92.44 72.76 60.63 91.22
GBDTModel_glo_pro process tree min alerts: 1 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro process tree min alerts: 2 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro process tree min alerts: 3 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro process tree min alerts: 4 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro rolling mean window: 2 85.12 83.19 86.55 76.06 71.50 87.80
GBDTModel_glo_pro rolling mean window: 3 84.52 84.03 84.87 75.87 71.82 87.15
GBDTModel_glo_pro rolling mean window: 4 84.12 86.55 82.35 75.25 76.69 81.57
GBDTModel_glo_pro sum alerts min: 2 84.87 84.87 84.87 76.46 75.65 84.66
GBDTModel_glo_pro sum alerts min: 3 85.22 89.08 82.35 74.12 78.77 77.78
GBDTModel_glo_pro sum alerts min: 4 84.44 90.76 79.83 71.99 81.10 72.30
GBDTModel_pro 80.73 62.18 93.28 71.31 58.09 90.51
GBDTModel_pro mean process tree 82.05 64.71 94.12 71.76 59.59 90.14
GBDTModel_pro process tree min alerts: 1 80.71 59.66 94.96 64.88 40.34 91.33
GBDTModel_pro process tree min alerts: 2 80.71 59.66 94.96 64.87 40.30 91.33
GBDTModel_pro process tree min alerts: 3 80.71 59.66 94.96 64.87 40.30 91.33
GBDTModel_pro process tree min alerts: 4 80.71 59.66 94.96 64.87 40.30 91.33
GBDTModel_pro rolling mean window: 2 84.68 79.83 88.24 75.08 71.60 85.91
GBDTModel_pro rolling mean window: 3 84.08 80.67 86.55 74.99 71.71 85.64
GBDTModel_pro rolling mean window: 4 84.39 84.87 84.03 73.91 76.05 79.84
GBDTModel_pro sum alerts min: 2 85.48 84.03 86.55 74.50 74.40 82.33
GBDTModel_pro sum alerts min: 3 85.11 86.55 84.03 72.35 76.77 76.59
GBDTModel_pro sum alerts min: 4 83.84 88.24 80.67 70.17 78.38 71.71
GBDTModel_pro_tree 79.02 59.09 94.96 71.08 46.68 90.51
GBDTRegression_pro_process 89.71 87.39 91.60 71.84 80.57 72.52
MLPModel_glo_pro 66.67 13.45 93.28 57.92 19.00 90.68
MLPModel_glo_pro mean process tree 67.48 16.81 93.28 59.79 25.74 90.51
MLPModel_glo_pro process tree min alerts: 1 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro process tree min alerts: 2 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro process tree min alerts: 3 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro process tree min alerts: 4 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro rolling mean window: 2 67.96 28.57 88.24 58.73 32.20 84.17
MLPModel_glo_pro rolling mean window: 3 67.79 34.45 84.87 58.90 34.31 83.20
MLPModel_glo_pro rolling mean window: 4 68.75 41.18 83.19 58.32 40.55 78.16
MLPModel_glo_pro sum alerts min: 2 68.94 38.66 84.87 59.51 39.19 81.30
MLPModel_glo_pro sum alerts min: 3 69.04 45.38 81.51 58.47 43.17 76.80
MLPModel_glo_pro sum alerts min: 4 70.63 53.78 79.83 57.23 47.72 71.76

Table 2: Summary of process killing models, validation and test set scoremetrics [Table
1 of 3]
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val test
model f1 tnr tpr f1 tnr tpr
MLPModel_pro 71.43 56.30 79.83 57.54 52.53 69.38
MLPModel_pro mean process tree 72.18 57.14 80.67 57.06 53.53 67.97
MLPModel_pro process tree min alerts: 1 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro process tree min alerts: 2 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro process tree min alerts: 3 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro process tree min alerts: 4 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro rolling mean window: 2 71.77 66.39 74.79 48.88 63.18 50.35
MLPModel_pro rolling mean window: 3 72.65 68.91 74.79 49.23 63.71 50.57
MLPModel_pro rolling mean window: 4 72.34 73.95 71.43 46.40 67.05 45.26
MLPModel_pro sum alerts min: 2 73.86 72.27 74.79 47.14 66.40 46.50
MLPModel_pro sum alerts min: 3 73.68 78.99 70.59 45.27 68.12 43.36
MLPModel_pro sum alerts min: 4 73.30 82.35 68.07 44.48 69.63 41.73
MLPModel_pro_tree 71.38 31.82 97.48 64.36 21.07 92.52
MLPRegression_pro_process 38.89 53.78 35.29 54.83 48.73 67.05
MLPRegression_pro_process mean process tree 37.32 57.14 32.77 56.75 57.37 65.15
NBModel_glo_pro 67.25 9.24 96.64 55.07 10.36 89.49
NBModel_glo_pro mean process tree 67.25 9.24 96.64 55.62 12.69 89.38
NBModel_glo_pro process tree min alerts: 1 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro process tree min alerts: 2 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro process tree min alerts: 3 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro process tree min alerts: 4 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro rolling mean window: 2 67.69 19.33 92.44 55.20 15.10 87.05
NBModel_glo_pro rolling mean window: 3 67.73 26.05 89.08 55.32 17.32 86.02
NBModel_glo_pro rolling mean window: 4 67.76 31.09 86.55 54.28 21.08 81.68
NBModel_glo_pro sum alerts min: 2 68.17 27.73 89.08 55.70 19.40 85.64
NBModel_glo_pro sum alerts min: 3 67.99 31.93 86.55 54.42 22.27 81.30
NBModel_glo_pro sum alerts min: 4 68.03 36.97 84.03 51.32 25.39 73.44
NBModel_pro 67.06 8.40 96.64 55.60 7.03 92.63
NBModel_pro mean process tree 67.06 8.40 96.64 56.17 9.61 92.41
NBModel_pro process tree min alerts: 1 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro process tree min alerts: 2 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro process tree min alerts: 3 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro process tree min alerts: 4 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro rolling mean window: 2 67.69 19.33 92.44 56.01 13.41 89.81
NBModel_pro rolling mean window: 3 67.52 25.21 89.08 56.18 15.81 88.78
NBModel_pro rolling mean window: 4 67.99 31.93 86.55 54.94 19.61 83.90
NBModel_pro sum alerts min: 2 68.61 29.41 89.08 56.52 18.14 88.13
NBModel_pro sum alerts min: 3 68.21 32.77 86.55 55.27 21.30 83.63
NBModel_pro sum alerts min: 4 67.81 37.82 83.19 52.25 24.42 75.77
NBModel_pro_tree 66.10 10.61 98.32 61.25 8.63 92.69
NBModel_pro_tree mean process tree 66.10 10.61 98.32 61.25 8.63 92.69
RFModel_glo_pro 89.68 83.19 94.96 76.43 67.19 92.52
RFModel_glo_pro mean process tree 90.48 84.03 95.80 76.34 67.66 91.92
RFModel_glo_pro process tree min alerts: 1 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro process tree min alerts: 2 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro process tree min alerts: 3 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro process tree min alerts: 4 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro rolling mean window: 2 92.70 94.96 90.76 80.77 78.88 89.38
RFModel_glo_pro rolling mean window: 3 91.30 94.96 88.24 80.19 78.67 88.51
RFModel_glo_pro rolling mean window: 4 90.27 95.80 85.71 79.86 82.86 83.69
RFModel_glo_pro sum alerts min: 2 91.30 94.96 88.24 81.50 81.53 87.97
RFModel_glo_pro sum alerts min: 3 90.27 95.80 85.71 79.99 84.01 82.76
RFModel_glo_pro sum alerts min: 4 88.79 95.80 83.19 76.11 85.37 75.01
RFModel_pro 92.37 87.39 96.64 74.57 62.71 92.95
RFModel_pro mean process tree 92.74 88.24 96.64 74.79 64.04 92.20
RFModel_pro process tree min alerts: 1 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro process tree min alerts: 2 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro process tree min alerts: 3 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro process tree min alerts: 4 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro rolling mean window: 2 93.22 94.12 92.44 78.28 73.83 89.76
RFModel_pro rolling mean window: 3 91.38 94.12 89.08 77.47 73.25 88.78
RFModel_pro rolling mean window: 4 89.96 94.12 86.55 77.08 77.70 83.85
RFModel_pro sum alerts min: 2 91.38 94.12 89.08 77.98 74.65 88.40
RFModel_pro sum alerts min: 3 89.96 94.12 86.55 77.05 77.52 83.96
RFModel_pro sum alerts min: 4 88.50 94.12 84.03 73.11 79.35 75.61
RFModel_pro_tree 90.35 82.58 98.32 74.20 52.44 92.74
RFRegression_pro_process 91.94 87.39 95.80 74.77 66.05 90.35
SVMModel_glo_pro 65.23 15.97 89.08 57.34 24.24 86.23
SVMModel_glo_pro mean process tree 65.23 15.97 89.08 58.11 27.39 85.91
SVMModel_glo_pro process tree min alerts: 1 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro process tree min alerts: 2 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro process tree min alerts: 3 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro process tree min alerts: 4 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro rolling mean window: 2 65.15 26.05 84.03 57.98 33.52 81.84
SVMModel_glo_pro rolling mean window: 3 64.65 31.09 80.67 58.14 35.46 80.98
SVMModel_glo_pro rolling mean window: 4 64.31 38.66 76.47 56.76 40.37 75.34
SVMModel_glo_pro sum alerts min: 2 65.05 36.13 78.99 58.35 39.08 79.13
SVMModel_glo_pro sum alerts min: 3 64.75 42.02 75.63 57.05 43.24 74.15
SVMModel_glo_pro sum alerts min: 4 64.89 51.26 71.43 54.70 47.40 67.59
SVMModel_pro 66.47 5.88 96.64 56.92 10.33 93.71

Table 3: Summary of process killing models, validation and test set scoremetrics [Table
2 of 3]
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val test
SVMModel_pro mean process tree 67.25 9.24 96.64 57.55 13.34 93.33
SVMModel_pro process tree min alerts: 1 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro process tree min alerts: 2 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro process tree min alerts: 3 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro process tree min alerts: 4 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro rolling mean window: 2 66.87 15.97 92.44 58.60 22.02 90.30
SVMModel_pro rolling mean window: 3 67.30 24.37 89.08 58.82 24.42 89.27
SVMModel_pro rolling mean window: 4 67.99 31.93 86.55 57.98 28.97 84.66
SVMModel_pro sum alerts min: 2 67.96 28.57 88.24 59.52 27.61 88.73
SVMModel_pro sum alerts min: 3 68.90 35.29 86.55 59.06 33.35 84.12
SVMModel_pro sum alerts min: 4 68.75 41.18 83.19 56.68 38.87 76.10
SVMModel_pro_tree 65.73 9.09 98.32 61.79 9.88 93.19
dqn 51.71 72.27 44.54 27.74 55.50 26.94
random_search_glo_pro_RNN 87.69 77.31 95.80 71.83 59.63 90.24
random_search_glo_pro_RNN mean process tree 88.03 78.15 95.80 72.50 61.67 89.81
random_search_glo_pro_RNN_Regression 85.71 72.27 95.80 72.44 61.78 89.59
random_search_pro_RNN 91.20 85.71 95.80 72.63 59.63 91.82
random_search_pro_RNN mean process tree 91.20 85.71 95.80 73.03 60.92 91.49
random_search_pro_RNN_Regression 88.37 78.99 95.80 72.71 60.70 91.06
random_search_pro_RNN_tree 88.19 80.67 94.12 73.72 65.79 88.56

Table 4: Summary of process killing models, validation and test set scoremetrics [Table
3 of 3]
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