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Résumé

En cryptographie moderne, un système de chiffrement est traditionnellement étudié dans le modèle dit
en boîte noire. Dans ce modèle, le cryptosystème est vu comme un oracle répondant à des requêtes
de chiffrement (et/ou déchiffrement) de messages à partir d’une valeur secrète : la clé. La sécurité du
cryptosystème est alors définie suivant un simple jeu. Un adversaire interroge l’oracle sur le chiffrement
(et/ou le déchiffrement) de messages de son choix et, selon les réponses obtenues, tente de déterminer
la valeur de la clé secrète (ou encore de chiffrer/déchiffrer un message pour lequel il n’a pas questionné
l’oracle). Si, tout en suivant une stratégie optimale, l’adversaire n’a qu’une chance de gain négligeable, la
sécurité est alors établie. Plusieurs cryptosystèmes existants ont été prouvés sûrs dans le modèle en boîte
noire. Cependant, ce modèle n’est pas toujours suffisant pour établir la sécurité d’un cryptosystème en
pratique. Prenons l’exemple de la carte à puce qui est utilisée comme support pour le cryptosystème dans
de nombreuses applications telles le bancaire, le contrôle d’accès, la téléphonie mobile, la télévision à péage
ou encore le passeport électronique. De par la nature de ces applications, un cryptosystème implanté
sur carte à puce est physiquement accessible à de potentiels attaquants. Cet accès physique invalide
l’abstraction du cryptosystème par un oracle de chiffrement car il permet à l’adversaire d’en observer
et/ou d’en perturber le comportement physique. De nouvelles attaques cryptanalytiques deviennent
alors possibles se regroupant sous le terme de cryptanalyse physique.

La cryptanalyse physique se compose essentiellement de deux familles principales d’attaques: les
attaques par canaux auxiliaires et les attaques par fautes. L’objet des attaques par canaux auxiliaires
est l’analyse des différentes fuites physiques d’une implémentation cryptographique durant ses calculs.
On compte parmi ces fuites le temps d’exécution, la consommation électrique ainsi que les émanations
d’ondes électromagnétiques. L’observation de ces dits canaux auxiliaires fournit de l’information sensible
sur le calcul cryptographique. La valeur de la clé peut alors facilement être déterminée par traitement
statistique bien que le cryptosystème soit sûr dans le modèle en boîte noire. L’accès à une implémentation
cryptographique permet plus qu’une simple observation passive de son comportement physique ; il devient
également possible d’en perturber le calcul. Partant de ce principe, les attaques par fautes consistent en
la corruption de calculs cryptographiques en vue de l’obtention de résultats erronés. De manière tout
à fait surprenante, ces derniers peuvent alors être traités afin d’en extraire de l’information sur la clé
secrète.

Cette thèse se focalise sur l’étude de la cryptanalyse physique et de l’implémentation sécurisée de
primitives cryptographiques. Nous examinons dans une première partie les attaques par canaux auxiliaires
d’un point de vue théorique. Différentes techniques d’attaques se basant sur différents outils statistiques
sont abordées. Nous analysons leur taux de succès, nous comparons leur efficacité et nous proposons
certaines améliorations. Nos analyses sont illustrées par des résultats de simulations d’attaques ainsi que
d’attaques mises en pratique sur carte à puce. La deuxième partie de cette thèse est consacrée à l’une
des contre-mesures les plus utilisées contre les attaques par canaux auxiliaires : le masquage de données.
Nos investigations se concentrent sur les schémas de masquage génériques pour les chiffrements par blocs
tels les standards de chiffrement DES et AES. Nous étudions les schémas existants, exhibant des attaques
sur certains d’entre eux, et nous proposons de nouveaux designs. La troisième et dernière partie de
cette thèse concerne les attaques par fautes. Nous décrivons tout d’abord une nouvelle attaque sur le
chiffrement DES exhibant certains pré-requis à son implémentation sécurisée. Nous étudions ensuite le cas
du cryptosystème RSA pour lequel nous proposons une nouvelle contre-mesure, pouvant dans un cadre
plus large s’appliquer à tout algorithme d’exponentiation. Nous adressons finalement un problème plus
pratique mais tout aussi nécessaire à la sécurité : celui de l’implémentation d’un contrôle de cohérence.





Abstract

In modern cryptography, an encryption system is usually studied in the so-called black-box model. In
this model, the cryptosystem is seen as an oracle replying to message encryption (and/or decryption)
queries according to a secret value: the key. The security of the cryptosystem is then defined following a
simple game. An adversary questions the oracle about the encryption (and/or decryption) of messages
of its choice and, depending on the answers, attempts to recover the value of the secret key (or to en-
crypt/decrypt a message for which he did not query the oracle). If by following an optimal strategy
the adversary only has a negligible chance of winning, the system is considered as secure. Several cryp-
tosystems have been proved secure in the black-box model. However, this model is not always sufficient
to ensure the security of a cryptosystem in practice. Let us consider the example of smart cards which
are used as platforms for cryptosystems in various applications such as banking, access control, mobile
telephony, pay TV, or electronic passport. By the very nature of these applications, a cryptosystem
embedded on a smart card is physically accessible to potential attackers. This physical access invali-
dates the modeling of the cryptosystem as a simple encryption oracle since it allows the adversary to
observe and disrupt its physical behavior. New attacks then become possible which are known as physical
cryptanalysis.

Physical cryptanalysis includes two main families of attacks: side channel attacks and fault attacks.
The purpose of side channel attacks is to analyze the different physical leakages of a cryptographic
implementation during its computation. Chief among these rank timing, power consumption, and elec-
tromagnetic radiation. Observing these so-called side channels provides sensitive information about the
cryptographic computation. The secret key value can then be easily recovered by statistical treatment
although the cryptosystem is secure in the black-box model. The access to a cryptographic implemen-
tation enables more than a simple observation of its physical behavior; it is also possible to disrupt its
computation. Working on this assumption, fault attacks consist in corrupting cryptographic computa-
tions so that they produce erroneous results. Surprisingly, these results can be used in order to recover
information about the secret key.

This thesis focuses on physical cryptanalysis as well as on the secure implementation of cryptographic
primitives. We examine in the first part side channel attacks from a theoretical viewpoint. Various
techniques of attack based on different statistical tools are addressed. We analyze their success rate, we
compare their efficiency and we propose some improvements. Our analyses are illustrated by results of
simulated attacks as well as practical attacks on smart cards. The second part of this thesis is devoted to
one of the most widely used countermeasures to side channel attacks: data masking. Our investigations
concentrate on generic masking schemes for block ciphers such as the encryption standards DES and
AES. We analyze existing schemes, exhibiting some attacks against certain of them and we propose new
designs. The third and last part of this thesis deals with fault attacks. First, we describe a new attack on
the DES cipher which exhibits some requirements to its secure implementation. We then provide a case
study based on the RSA cryptosystem where we propose a new countermeasure which can also be applied
to secure any exponentiation algorithm. We finally address an important issue for practical security: the
implementation of coherence checks.
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1.1 Introduction

1.1.1 Terminology

Cryptography (from the Greek kryptos and gráphein, literally “hidden/secret writing”) initially refers to
the art of encrypting (or ciphering) a message, that is writing a message under an unintelligible form for
anyone unaware of the encryption process. A message under an encrypted form is called a ciphertext (or
cryptogram) while in contrast a non-encrypted message is called a plaintext. The operation consisting in
restoring the plaintext from the ciphertext is the decryption (or deciphering). Today, cryptography is a
brad discipline whose purpose is to provide security features for communication. Cryptanalysis confronts
cryptography by trying to break ciphers, namely to retrieve plaintexts from ciphertexts without a priori
knowledge of the decryption process. The study of cryptography goes hand in hand with the study of
cryptanalysis; together they make up cryptology: “the science of secrecy”.

19
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1.1.2 Brief history

Although being a modern science, cryptography is an ancient art. A common historical example of the
use of cryptography dates back to the time of Julius Caesar who encrypted messages for military purpose.
The so-called Caesar’s cipher was very basic: each letter of the message was replaced by the letter at
three positions down the alphabet (looping back at the end). Such a cipher is a particular example of
a monoalphabetic substitution cipher which is a cipher that substitutes every letter of the plaintext by
a different letter (or by some character). Such ciphers were widely used until the development of the
frequency analysis by the Arab mathematician Al-Kindi in the ninth century. Based on the fact that in all
languages the different letters have different occurrence frequencies, this technique consists in examining
the frequency of the different characters in the ciphertext to determine the corresponding plaintext
letters. In order to overcome frequency analysis, polyalphabetic substitution ciphers were designed around
the sixteenth century and consisted in alternating different monoalphabetic substitutions. A famous
example is the Vigenère’s cipher which was thought to be unbreakable for many years before being
shown to be vulnerable to an extension of frequency analysis. More sophisticated polyalphabetic ciphers
were then developed in the nineteenth and twentieth centuries, certain based on mechanical devices. A
particular example is the Enigma machine which was used by the Germans during World War II for radio
communications. The Enigma machine was partly broken by the Allies code-breakers, including, among
others, the British mathematician Alan Turing (considered as the father of modern computer science).
Several communications were decrypted which gave a certain advantage to the Allies.

While most ciphers were sooner or later broken by cryptanalysts, some design principles started to
appear. One of the most famous is the Kerckhoffs’ law (nineteenth century) that is widely accepted today
in cryptography: the security of a cryptosystem must only reside in a small secret parameter called the
key. In other words, the principle states that a cryptosystem should be secure even if everything about
its design is publicly available except the key. In 1949, the American mathematician Claude Shannon
published a seminal paper for the theory of cryptography [209] based on information theory (previously
developed by the same author). In particular, he showed that the only way to obtain perfect secrecy is to
encrypt every message using a different key with the requirement that, for each encryption, the number
of possible keys equals the number of possible plaintexts. As such a requirement renders impractical
the broad-based deployment of cryptography, Claude Shannon proposed some design principles to obtain
practical secrecy i.e. improved resistance to cryptanalysis. His work introduced some of the foundations
of the design of modern ciphers.

Cryptography has undergone a revolution in the late twentieth century with the development of com-
puters and other electronic devices. These new technologies made it possible to design more complicated
ciphers. Such a cipher was designed in the 1970’s by the team of IBM cryptographers, including among
others Horst Feistel and Don Coppersmith. Their cipher yielded the first data encryption standard (DES)
which has been (and is still) widely used and analyzed since then. In 1976, the publication of a paper by
the American cryptographers Whitfield Diffie and Martin Hellman put a new face on cryptography [87].
They introduced the concept of public key cryptography and they linked cryptography to complexity the-
ory. The recent ideas and designs provoked a real effervescence among the cryptographers in the 1980’s.
Shortly afterwards a real scientific community was born, which has been expanding quickly since that
time.

1.1.3 Modern cryptography

Modern cryptography is a branch of applied mathematics and computer science: modern cryptosystems
are computer programs (or electronic circuits) whose algorithmic structure is based on mathematical
tools. The goal of modern cryptography is to provide some security functionalities for secure communi-
cations over an insecure channel (e.g. telephone, radio, internet, etc.) that may be compromised by an
eavesdropper. By compromised, one usually means that the eavesdropper may spy the communication,
modify its content or even steal the identity of one the two communicating entities. In such a context,
cryptography provides technical solutions to ensure the following security features:

— confidentiality: a message is unintelligible for anyone except the receiver (and the sender),
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— message authentication: the receiver can check the identity of the sender of a message,

— data integrity: the receiver can verify that the message has not been modified during its transfer.

Asymmetric cryptography (see Section 1.3) also renders possible the digital signature of electronic
documents which is analogous to the handwritten signature for paper documents. The digital signature
has the same properties of message authentication but it further has the property of non-repudiation: the
author of a signature cannot deny it afterwards. With the development of modern cryptography, many
other security features were rendered possible such as secure multiparty computations, group signatures,
etc.

Modern cryptography is based on computational impossibility. Every cryptosystem can theoretically
be broken using an exhaustive key search (or brute force attack). A single plaintext-ciphertext pair often
suffices to non-ambiguously identify the secret key that has been used for ciphering. If an adversary
can obtain such a pair (which may occur in usual contexts), then every possible key can be tested by
checking whether or not the plaintext encryption yields the corresponding ciphertext. Although such an
exhaustive search is always possible, a cipher can use a key space large enough to render the exhaustiveness
computationally impossible. For instance, if a key is coded in 128 bits (which is tiny compared to modern
computer memories) then 2128 key values are possible. In that case, an exhaustive search merely requires
performing 2128 encryptions. Assuming that an attacker has two billion computers (which is more than the
number of existing computers on the planet) that can perform five billions encryptions per second (which
is faster than the fastest existing computers), such a computation would require about one thousand
billion years (which is about a hundred times longer than the age of universe). Such an exhaustive search
is hence considered computationally impossible to this day.

Cryptography divides in two main branches: symmetric cryptography and asymmetric cryptography.
Symmetric ciphers are usually considered secure if no cryptanalytic attack exists that can break them
more efficiently than exhaustive search. However, the non-existence of such an attack is not proven in
general. As a result, the confidence in the security of a symmetric cipher usually comes with several years
of public existence without cryptanalysis. On the other hand, asymmetric cryptosystems are usually based
on hard problems from number theory. A problem is considered hard if it is computationally impossible to
solve. Classical examples are the factorization of large integers or the discrete logarithm computation in
a large multiplicative group. An asymmetric cryptosystem is usually provided with a security proof. Such
a proof consists of a reduction in the sense of complexity theory: it is shown that if an algorithm exists
that breaks the cryptosystem in a reasonable time, then this algorithm can be used to efficiently solve a
given hard problem. Since the problem is considered as computationally insolvable, the non-existence of
the breaking algorithm is conjectured and the cryptosystem security follows. Nevertheless, it should be
noted that the hardness of the considered problems is not any proven. Here again the confidence in an
asymmetric cryptosystem depends on how much the underlying problem has been investigated.

In the rest of this chapter, we present the outlines of modern cryptography, laying stress on the notions
that shall be useful to the present thesis. For the interested reader, more details about cryptography can
be found in the reference books [161,203,221].

1.2 Symmetric cryptography
Symmetric cryptography, also called secret key cryptography, is based on the assumption that two com-
municating entities share a common secret key k.

1.2.1 Symmetric ciphering
A symmetric cipher is a bijective function enc parameterized by a secret key k and that operates on
messages of arbitrary lengths. The encryption of a plaintext p, into a ciphertext c by a secret key k is
then defined as:

c = enck(p) . (1.1)

The decryption of a ciphertext consists in computing the inverse function enc−1
k . For the cipher to be

secure, the computation of enck and enc−1
k must be computationally impossible without k (even if a large
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amount of plaintext-ciphertext pairs are available). For the interested reader, the security of symmetric
ciphers is formalized in [35].

Two types of symmetric ciphers can be distinguished which are presented hereafter: stream ciphers
and block ciphers.

1.2.1.1 Stream ciphers

The principle of stream ciphers is derived from the one-time pad cipher (also called Vernam cipher) which
encrypts every plaintext with a different secret key using a simple XOR operation. Assuming that the
different keys are fully random, such a cipher has been shown to provide perfect secrecy [209]. However,
the one-time pad requires the generation and the sharing of a significant number of secret keys which
poses practical issues. To overcome these issues, a stream cipher makes use of a pseudorandom bit stream
generator g parameterized by a fixed-length secret key k and an initialization vector iv, and it generates
a key stream ks of arbitrary length. Each bit of the plaintext pi is then encrypted with a key stream bit
ksi:

ci = pi ⊕ ksi .

In practice an internal state σi is used that is initialized by σ0 = fk(iv) for some function f . Then each
invocation of the generator updates the internal state and produces a key stream bit: (ksi, σi) = gk(σi−1).
Note that the usage of a different initialization vector for every encryption is mandatory for the stream
cipher security. Otherwise the same key stream would be used for every encryption which would clearly
destroy the security.

1.2.1.2 Block ciphers

A block cipher is a bijective function E parameterized with a secret key k that takes as input a n-bit
plaintext block and that outputs a n-bit ciphertext block. When a plaintext p of arbitrary length must
be ciphered, it is split into several n-bit blocks p1, . . . , pN that are each encrypted into a ciphertext block
ci. This encryption is defined according to a mode of operation such as:

— the electronic codebook (ECB) mode: ci = Ek(pi),

— the cipher-block chaining (CBC) mode: ci =

{
Ek(p1 ⊕ iv) if i = 1
Ek(pi ⊕ ci−1) if i > 1

,

— the counter mode: ci = Ek(iv + i)⊕ pi,

where iv is a n-bit initialization vector.
The ECB mode is usually considered insecure since identical plaintext blocks yield identical ciphertext

blocks, which enables potential attacks. The two other modes are secure provided that a different iv is
used for every encryption. Such a requirement is mandatory for the counter mode which is similar to a
stream cipher. A fixed iv can be used for the CBC mode but it introduces a potential security weakness
(two plaintexts with the same prefix yield two ciphertexts with the same prefix).

A secure symmetric cipher enables confidential communication between two entities sharing a secret
key. It further enables user authentication thanks to a challenge-response protocol. One party sends a
challenge (that is a random message) to the other (the challenger). The challenger ciphers the challenge
and sends it back as a response. The challenge author then deciphers the obtained response and checks
whether or not it is equal to the original challenge. If this is the case, then the challenge author knows that
the challenger shares the same secret key as him which therefore enables the challenger authentication.
Such user authentication should not be mistaken for message authentication where the receiver of a
message can check the sender identity. Symmetric ciphering does not provide message authentication nor
data integrity. Regarding these issues, one usually makes use of hash functions andmessage authentication
codes.
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1.2.2 Hash functions and message authentication codes
A cryptographic hash function is a function that maps a message of arbitrary length into a fixed-length
digest value. For a hash function to be secure, it must be computationally impossible to find an antecedent
of any given hash value and it must be computationally impossible to find two different messages with
the same hash value. Hash functions are used as a building block in many cryptographic schemes (such as
signature schemes, see Section 1.3.2). Alone, a hash function provides a partial solution to data integrity.
The hash value of a message makes it possible to check its integrity (since no message can be produced
with the same hash value) but it has to be securely transmitted (which is an issue over an insecure
channel). In order to provide data integrity (as well as message authentication) over an insecure channel,
message authentication codes are usually involved.

A message authentication code (MAC) is a function parameterized with a secret key that maps a
message of arbitrary length into a fixed-length digest value. MACs are also referred to as keyed hash
functions. For a MAC to be secure, it must be computationally impossible to compute the MAC value
of a message without knowing the secret key (even if a large number of messages with corresponding
MAC values are available). A secure MAC provides message authentication and data integrity. Indeed,
by verifying that the MAC value of a message is correct, the receiver checks that the message has been
sent by someone sharing his secret key and he checks that the message has not been modified by someone
lacking knowledge of the secret key. Several MAC constructions exist that are based on hash functions [34]
or on block ciphers [45].

1.2.3 Standard block ciphers
Usual block ciphers process an encryption through the repetition of key-dependent permutations, called
round transformations. In practice, the block ciphers are iterative, which means that they apply the same
round transformation several times. This round transformation is parameterized by a round key that is
derived from the secret key by iterating a key scheduling function.

We present hereafter the two main standard block ciphers1: the data encryption standard (DES) [93]
and the advanced encryption standard (AES) [92].

1.2.3.1 The data encryption standard (DES)

The data encryption standard [94] is a block cipher that was selected by the US national bureau of
standards in 1976 as an official standard for data encryption. DES uses a 56-bit key (usually represented
on 64 bits including 8 parity check bits) and it operates on 64-bit blocks. It has an iterative structure
applying 16 times the same round transformation F which is preceded by a bit-permutation IP and
followed by a bit-permutation FP. Every round transformation is parameterized by a 48-bit round key
kr that is derived from the secret key k through a key schedule process. To summarize, a ciphertext c is
computed from a plaintext p as follows:

c = FP ◦
(
©16
r=1Fkr

)
◦ IP(p) .

The round transformation follows a Feistel scheme, namely, the block is split into two 32-bit parts L (the
left part) and R (the right part), and F is defined as:

Fkr (L,R) = (R,L⊕ fkr (R)) ,

where f is a function parameterized with a 48-bit key and operating on a 32-bit block. This structure is
illustrated in Figure 1.1.

The function f of the DES first applies an expansion layer that expands the 32 input bits into 48
output bits by duplicating 16 of them. The round key is then introduced by bitwise addition afterwards
the block is split into eight 6-bit blocks, each entering into a different substitution box (S-box) producing
a 4-bit output. Finally, the 32 bits from the eight S-box outputs are permuted through a bit-permutation
which yields the 32-bit output block.

1We only present the core of the ciphers omitting the key scheduling functions (see [92,93] for further details).
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Figure 1.1: Round transformation in the Feistel scheme.

1.2.3.2 The advanced encryption standard (AES)

The advanced encryption standard, also known as Rijndael, was designed by the Belgian cryptographers
Joan Daemen and Vincent Rijmen. It is the winner of a five-year standardization process and was
announced by the US national institute of standards and technology in 2001 to be the successor of the
data encryption standard. AES is a block cipher working on 128-bit blocks with either a 128, 192 or
256-bit key. AES is known to be quite efficient in software due to its byte-oriented design.

AES operates on a 4 × 4 array of bytes called the state. The state is initialized by the plaintext
value and holds the ciphertext value at the end of the encryption. Each round of AES is composed of
four stages: AddRoundKey, SubBytes, ShiftRows, and MixColumns (except the last round that omits the
MixColumns). AES is composed of either 10, 12 or 14 rounds, depending on the key length (the longer
the key, the higher the number of rounds) plus a final AddRoundKey stage.

The SubBytes stage applies the AES S-box to each byte of the state. The AES S-box, which is a
bijection, is constructed by composing the multiplicative inversion over the field F2[x]/(x8+x4+x3+x+1)
with an affine transformation over F8

2. In the ShiftRows transformation, the bytes in the last three rows
of the state are cyclically shifted over different numbers of bytes (1 for the second row, 2 for the third
row and 3 for the fourth row). The MixColumns transformation operates on the state column-by-column.
Each column is treated as a four-term polynomial over F2[x]/(x8 + x4 + x3 + x + 1) and is multiplied
modulo x4 + 1 with a fixed polynomial a(x), given by

a(x) = 3 · x3 + x2 + x+ 2 .

Finally, the AddRoundKey transformation simply adds the 16-byte round key to the state by bitwise
addition.

The interested reader is referred to [84] for detailed explanations about the design of AES.

1.2.4 The key exchange issue

We have presented how symmetric cryptography provides technical solutions to confidentiality, integrity
and authentication over an insecure channel based on the assumption that two communicating entities
share a secret key. However an issue still remains. How can a secret key be exchanged in a secure way
over an insecure channel? Asymmetric cryptography provides a solution to this issue.

1.3 Asymmetric cryptography

Asymmetric cryptography, also called public key cryptography, was invented by the American cryptogra-
phers Whitfield Diffie and Martin Hellman as a solution to the key exchange issue as well as to the digital
signature [87]. Its principle lies in the use of two dual keys: a public key pk that is used for ciphering
(or signature) and a private key sk that is used for deciphering (or signature verification). The public
key is publicly deployed so that anyone can use it to encrypt a message (or verify a signature). On the
other hand, the private key is kept secret so that only its owner can decrypt messages encrypted with
the corresponding public key (or produce signatures verifiable by the corresponding public key).
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1.3.1 Public key cryptosystem
A public key cryptosystem includes a pair of functions enc (the encryption) and dec (the decryption)
parameterized by a public pk and a private key sk respectively, and satisfying decsk = enc−1

pk . The
encryption of a plaintext p into a ciphertext c by the public key pk is then defined as:

c = encpk(p) .

And the decryption of a ciphertext c into a plaintext p by the private key sk is defined as:

p = decsk(c) .

For a public key cryptosystem to be secure it must be computationally impossible to evaluate decsk
without sk, even if pk is available. For the interested reader, the security of asymmetric ciphering is
formalized in [111,112].

It is worth noting that a public key cryptosystem operates on fixed-length messages. When a longer
message must be ciphered, one often use a hybrid ciphering: a symmetric cipher is involved in encrypting
the message with a randomly generated secret key k which is itself encrypted using the public key
cryptosystem and then attached to the message. The receiver uses his private key to recover k which is
then involved in decrypting the message. Hybrid ciphering is widely used in practice which is mostly due
to efficiency reasons: a symmetric encryption is in general much faster than an asymmetric encryption.

1.3.2 Digital signature
A public key cryptosystem also renders possible the digital signature of electronic documents. The
private key is used to sign and the public key is used to check the signature validity. More precisely, a
signature scheme includes a pair of functions sign (the signature) and verif (the verification), respectively
parameterized by a private key sk and a public key pk. The signature function takes as input a message
of arbitrary length m and computes a signature s. The verification function takes as input a message
and a signature and checks whether the signature indeed corresponds to the message. That is, verifpk
satisfies:

verifpk(m, s) =

{
true if signsk(m) = s
false if signsk(m) 6= s

.

For a signature scheme to be secure, it must be computationally impossible to evaluate signsk without sk,
even if pk is available. For the interested reader, the security of signature schemes has been formalized
in [36,113].

It is worth noting that a public key cryptosystem yields a signature scheme by defining signsk(m) =
decsk(m) and verifpk(m, s) = “encpk(s) = m”. For security reasons and in order to operate on messages
of arbitrary length, such a signature scheme often applies a hash function to the message before applying
decsk [36].

1.3.3 Public key infrastructure (PKI)
Asymmetric cryptography solves the key exchange issue: one only needs to make its public key publicly
available to enable anyone to send encrypted messages. However a further issue appears: an eavesdropper
may publish a key while pretending to be someone else. Public key infrastructures (PKI) were created to
tackle this issue.

A PKI is a system in which the ownership of a public key by a user is certified by a certificate authority
that is a trusted third party (e.g. a government). The certificate authority issues and manages a set of
digital certificates (or public key certificates) which are electronic documents certifying that a public key
belongs to a certain user. A digital certificate contains both the user’s public key and identity and it
is signed by the certificate authority. When two users want to communicate, they first exchange their
certificates. Each user verifies the signature of the received certificate thanks to the certificate authority
public key (that is known to every user). If the signature is accepted, the certificate is considered valid
and the two users feel confident about their mutual identities and public keys. A secure communication
can then be initiated.
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1.3.4 The RSA cryptosystem
When the principle of public key cryptography was introduced in 1976, no practical solution was provided
and the existence of a public key cryptosystem or signature scheme was conjectured. The first public key
cryptosystem was discovered the following year by three cryptographers at Massachusetts Institute of
Technology: Ron Rivest, Adi Shamir, and Leonard Adleman [197]. Their cryptosystem, known as RSA
(from the initials of the authors’ names), is nowadays the most widely used public key cryptosystem.

1.3.4.1 Description

An RSA public key is composed of a public modulus N which is the product of two large secret primes
p and q and of a public exponent e which is co-prime with the Euler’s totient of N , namely

ϕ(N) = (p− 1) · (q − 1) .

The corresponding RSA private key is composed of the public modulus N and the secret exponent d that
is defined as the inverse of e modulo ϕ(N).

An RSA signature (or deciphering) s of a message m < N is obtained by computing:

s = md mod N .

The signature verification (or message ciphering) is the inverse operation that can be performed publicly
since, according to Euler’s theorem, we have:

m = se mod N .

The security of the RSA cryptosystem is based on the fact that to recover the secret exponent d from
the public key (e,N), one must be able to factorize the public modulus N [81] which is commonly believed
computationally impossible for a large modulus2. Therefore, an entity that only knows the public key
cannot a priori sign a given message.

1.3.4.2 RSA with Chinese remainder theorem (RSA-CRT)

For the efficient implementation of RSA, one often makes use of the Chinese remainder theorem (CRT).
This theorem implies that md mod N can be computed from md mod p and md mod q. Consequently,
the RSA-CRT consists in performing the following two exponentiations:

sp = mdp mod p ,

and
sq = mdq mod q ,

where dp = d mod (p − 1) and dq = d mod (q − 1). By Fermat’s little theorem, we have sp = md mod p
and sq = md mod q. Therefore, once sp and sq have been computed, s can be recovered from sp and sq
by applying a so-called recombination step:

s = CRT(sp, sq) .

Two methods exist for CRT recombination: the one from Gauss and the one from Garner. Garner’s
recombination is the most memory efficient and is defined as:

CRT(sp, sq) = sq + q ·
(
iq · (sp − sq) mod p) ,

where iq = q−1 mod p. The entire RSA-CRT is approximately four times faster than the standard RSA
which makes its use very common, especially in the context of embedded cryptography (see Section 1.4)
where computation time is often critical.

2This concerns the security of RSA against full key recovery. Stronger security notions exist (see for instance [36, 111–
113]).
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1.3.5 Other public key cryptosystems

Since the publication of RSA in 1978 [197], several other public key cryptosystems and signature schemes
have been proposed in the literature. Many of them are based on the discrete logarithm problem, such as
the ElGamal cryptosystem [97] and the ElGamal signature scheme [97] as well as its widely-used variants:
the digital signature algorithm (DSA) [91] and the elliptic curve DSA (ECDSA) [27].

1.4 Embedded cryptography

1.4.1 The key storage issue

In the previous sections, we have outlined modern cryptography. We have seen some technical solutions
to secure communications over an insecure channel. All these solutions make use of secret keys: the
knowledge of the secret key enables its owner to decipher encrypted messages, authenticate its messages
to other parties or to electronically sign documents. The security of the entire system is based on the
secrecy of the key. If the key is exposed then all the security features may be violated. It is therefore
crucial to store secret keys in a safe place out of the way of any potential eavesdropper.

Since secret keys are represented as bit strings that can take a huge number of possible values, it is
not conceivable to expect users to memorize them. Secret keys must therefore be stored in a physical
medium such as a piece of paper or a computer memory. A piece of paper does not provide a satisfactory
solution since the key would have to be typed each time: a rather tedious process for the user. Moreover,
the secure storage of the piece of paper would still be an open issue. A natural solution is to store the
key on a personal computer memory. However, such a solution compels the user to restrict the access to
his computer to very trusted people. In addition, most of the time personal computers are connected to
the Internet, thereby exposing the content of their memory. Regarding these issues, a common measure
is to store the key in an encrypted form according to a password chosen by the user. When the key is
required, the user is asked for the password in order to decrypt the key. Such a solution provides double
security: an eavesdropper must access to the encrypted key and guess the password in order to break the
system. Nevertheless, it should be noted that a password-based encryption only offers a limited degree
of security since most of people choose their date of birth as a password or other easily guessable words.
In addition to this security issue, computer storage poses an important practical issue: users must have
their personal computer with them each time a secure communication is required. Such a requirement is
not practical for certain applications (see for instance Section 1.4.3).

In order to give a secure and practical answer to the key storage issue, people imagined small security
tokens to store secret keys so that users could easily carry around with them everywhere. In order to
avoid key exposure, such tokens would not deliver secret keys but would rather perform cryptographic
operations themselves. Such security tokens exist and are widely used at present: they are known as
smart cards.

1.4.2 Smart cards

1.4.2.1 History

The concept of smart cards appeared in the 1970’s in several countries (France, Germany, Japan and
United States) and was the subject of several patents. Its paternity cannot really be attributed to a single
inventor but several contributors can be cited such as the Americans Thomas Pomeroy, Jules Ellingboe,
Paul Castrucci and John Halpern, the Japanese Kunitaka Arimura, the Germans Jürgen Dethloff and
Helmut Gröttrup and the French Roland Moreno, Michel Ugon and Louis Guillou.

Although many patents have been registered, only a few of them gave rise to actual products. The
patent of Roland Moreno [171] describes a portable memory equipped with so-called inhibitors that
protect the memory access (e.g. by requesting a secret code). The first smart cards, known as memory
cards, resulted from this invention. This technology was in particular developed in France in the early
1980’s for the telephone cards used in public telephone boxes. Soon, the success of telephone cards spread
throughout Europe and then worldwide. At the same time, the French economic interest group “Carte
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Bancaire” (banking card) was created with a view to making smart cards a new means of payment. The
first banking memory cards were marketed in 1984. But soon banks turned to a more secure solution:
the microprocessor card.

The embedding of a microprocessor in a smart card was first suggested by Jürgen Dethloff as an
improved inhibitor to protect the memory access of memory cards. The microprocessor card, as it is
known today, was patented [239] and developed by Michel Ugon with the company CII-Honeywell Bull.
This ambitious project aimed to develop a smart card comparable to a miniature computer that could
be programmed and, in particular, that could perform cryptographic computations. The first prototypes
were made available in 1984 and the microprocessor card was subsequently adopted by French banks in
1986. Since then, the use of microprocessor cards has become widespread and these are today present in
many daily life applications (some of them are presented in Section 1.4.3). The next section gives a brief
survey of what a microprocessor card is.

1.4.2.2 Microprocessor cards

A microprocessor card is a pocket-sized plastic card (usually 85.60× 53.98× 0.76 millimeters) in which a
microchip (or chip for short) is embedded. A gold-platted area of approximately one square centimeter is
usually observed on the card surface. This area is a printed circuit board, usually called the micromodule,
which acts as the interface between the chip and the card reader. Figure 1.2 shows the picture of a typical
microprocessor card.

Figure 1.2: Picture of a French social security smart card.

The chip is composed of a microprocessor also called central processing unit (CPU), and of several
memories. The CPU is similar (although more elementary) to traditional computer processors. The
register file is often smaller and optimization mechanisms (such as cache) are not always included. Typical
bit-sizes for cards microprocessors are 8, 16 and 32, while modern computer processors bit-sizes are usually
32 or 64. The chip contains three different kinds of memories:

— The read-only memory (ROM) which cannot be written nor erased. The ROM is set during the
manufacturing of the chip and merely contains the mask that is the program running on the chip.

— The electrically-erasable programmable read-only memory (EEPROM) which can be written and
erased but that is also non-volatile (its content is preserved while the chip is not powered). EEPROM
typically contains user specific information (e.g. name, bank account, client number, etc.) and, in
particular, the cryptographic keys. It is worth noting that a specific kind of EEPROM, known
as flash, is commonly used. It is faster, cheaper but also has a shorter lifetime than a traditional
EEPROM.

— The random-access memory (RAM) which is a fast read-write access volatile memory. As in tradi-
tional computers, RAM is the working space of programs during their execution.

The chip may further include additional modules such as (i) random number generators used in particular
for the random generation of secret keys, (ii) cryptographic coprocessors used to speed up the implemen-
tation of cryptographic operations and (iii) checksum mechanisms used to check the data integrity.
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The micromodule is composed of several contact pads that are used for the power supply input
(Vcc) and ground (Gnd), the external clocking signal (CLK), the input/output data transmission (I/O)
and the reset of the chip (RST). Some modern smart cards, known as contactless cards, communicate
with readers via radio frequencies. Contactless cards do not include a micromodule but a radio-frequency
antenna that is printed inside the card plastic all around. There also exist some dual-interface smart cards
that include both a micromodule and an radio-frequency antenna allowing both contact and contactless
communications.

1.4.3 Embedded cryptography in everyday life
Cryptographic smart cards are currently used in different applications of everyday life. We review several
of these applications hereafter.

1.4.3.1 Mobile telephony

In mobile telephony, the GSM (global system for mobile communication) and UMTS (universal mobile
telecommunication system) standard technologies make use of smart cards known as SIM cards (where SIM
stands for subscriber identity module). The SIM card contains the information specific to the subscriber
as well as the secret key enabling its authentication on the provider’s network. This authentication is
performed by a secret key challenge-response protocol. In case of successful authentication, secret key
ciphering and message authentication codes are then used to secure the communication between mobile
phones and the provider’s antennas.

As in many smart card applications, the user authenticates to the card by means of a secret code: the
personal identification number (PIN). When the phone is turned on, the user is asked to enter the PIN.
Without it, the card does not perform any operation which renders the phone useless.

1.4.3.2 Banking

Smart cards are also involved in banking applications such as electronic payments and cash withdrawals.
In most countries, banking cards are magnetic stripe cards that do not include a microprocessor. The
magnetic stripe contains the user and bank account information. Such cards can easily be cloned by
copying the magnetic stripe content. Moreover, a lost (or stolen) card can be directly used by its finder
(or its thief) since no user authentication mechanism (such as the PIN) is implemented, except a written
signature on the payment receipts, which is only checked afterwards in case of a dispute. Banking smart
cards with a microprocessor do not suffer such security weaknesses and make fraud much more difficult.
First, the user is asked for a PIN code prior to each transaction. Moreover, as specified by the Eurocard-
Mastercard-Visa (EMV) standard, some authentication mechanisms are employed to secure transactions.
The card data (composed of the client name, the account number, the card validity period, etc.) is signed
by the issuing bank. At the beginning of every transaction, the card transmits its signed data together
with the issuing bank certificate. This enables the terminal to authenticate the card by verifying the
bank certificate (which is signed by a certificate authority) and then by verifying the card data (using the
bank certificate). This process, which is called static data authentication (SDA), ensures that the card
has indeed been issued by a legitimate bank. However it does not prevent the card from being cloned
since the signed card data may be duplicated. That is why a dynamic data authentication (DDA) process
is usually involved in large transaction. It starts as SDA but the card also provides its own certificate
(that is signed by the issuing bank). The terminal then checks the validity of the card certificate and,
if valid, sends a challenge to the card. The card signs the challenge and sends it back to the terminal,
which then verifies the signature to authenticate the card. The DDA prevents any simple cloning of the
card since the card’s private key is required. In addition, every transaction (date, place, total amount,
etc.) is signed by the card which authenticates the transaction and ensures its non-repudiation.

1.4.3.3 E-passport

An electronic passport (or e-passport) is not a plastic card as usual smart cards, but rather a classical
passport embedding a chip that is similar to a smart card chip. The chip is contactless and uses a
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radio-frequency technology to communicate with the readers. The chip contains the different identity
information about the holder (that are also written on the passport), a photograph of the holder in digital
format as well as fingerprints and iris data as optional biometrics. In order to attest the passport’s au-
thenticity, these data are signed by the issuer country by means of an asymmetric signature scheme (RSA,
DSA or ECDSA). Airport identity checkpoints are provided with the public keys of the different passport
issuers, thereby allowing them to verify signature validity. In order to protect the user data stored on the
chip from radio-frequency eavesdropping, the reader must authenticate to the chip. For such purposes,
two different protocols have been defined: the basic access control (BAC) and the extended access control
(EAC). The BAC authentication consists of a challenge-response secret key authentication. The secret
key is derived from optically scannable data printed on the passport so that the physical access to the
passport is required (hence preventing radio-frequency eavesdropping). Furthermore, the communication
between the chip and the reader is secured by secret key ciphering and message authentication codes
using different temporary keys for every session. The EAC authentication is much stronger than the
BAC authentication since it is based on a PKI and avoids the use of optically scannable information as a
secret key. The reader has a certified public key that is transmitted to the chip. The chip can then check
the public key’s validity and hence verify the user’s legitimacy.

1.4.3.4 Pay-TV

A typical pay-TV mechanism makes use of a set-top box that receives digital video content under an
encrypted form, decrypts it and displays it, depending on the subscriber’s rights (i.e. depending on
whether or not the subscriber paid for the video content). For such purposes the provider often uses a
smart card included in the set-top box that stores the subscriber rights as well as the secret keys used for
the video decryption. When a customer buys a movie, the provider sends an authenticated and encrypted
order to the smart card specifying the movie rights and the decrypting key. Such a system prevents the
exposure of the decrypting keys that would enable broad-based piracy.

1.4.3.5 Other applications

Smart cards are also widely used for access control applications. Most companies provide their employees
with access badges that are necessary for access and movement into the company offices. Computer access
is also more and more secured via the usage of access badges. Depending on the security required, the
access badges may or may not implement cryptographic/public key authentications.

Some public transportation networks also employ access smart cards as a replacement for the tradi-
tional cardboard ticket. Such e-ticket systems are mostly deployed in megalopolises such as Hong Kong
(since 1997), Paris (since 2001), Singapore (since 2001) and London (since 2003), but are also more and
more common in smaller towns such as Rennes (France, since 2006).

Another important application is the social security card used in some countries. Its role is to store
and protect the medical information about the holder as well as to authenticate the holder to medical
institutions. Such a card, known as Carte Vitale, has been used in France since 1998 (see the picture
in Figure 1.2). Other European countries (e.g. Germany, Belgium, Austria) also have their own social
security cards. The e-CEAM project was launched in 2002 to merge the different solutions into a single
European social security card.

To summarize, embedded cryptography is present all around us in our everyday lives to secure our
communications. A legitimate question then arises: is this security effective? Do smart cards really
protect our secret keys? As explained in the next section and as developed in the rest of this thesis, an
affirmative answer to these questions represents a real challenge.

1.4.4 Physical cryptanalysis

In modern cryptography, a cryptosystem is usually studied in the so-called black-box model. In this model,
a cryptosystem is seen as an oracle replying to some encryption and/or decryption queries according to a
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secret key. The attacker is assumed to have access to this oracle, especially as he can ask for the encryption
(or the decryption) of the messages of its choice. However he cannot get any further information about
the secret key nor about the intermediate results of the cryptographic computation. The security of the
cryptosystem is then defined according to the capabilities of an attacker having an unbounded access
to encryption (or decryption) queries. Namely, one investigates whether based on such queries, an
attacker may retrieve some information about the secret key (or guess the encryption/decryption of a non-
queried message). If the number of queries and the computation time required are beyond computational
feasibility, the cryptosystem can be considered as secure. The motivation for such a model relies on the
principle that the encryption of a plaintext should not provide any exploitable information about the
secret key. It may happen in practice that an attacker obtain a high number of ciphertexts corresponding
to plaintexts that he knows or even that he has chosen. This information should not allow him to deduce
any information about the secret key, nor should it facilitate the encryption or decryption of any other
message.

The black-box model is well suited to characterize the intrinsic security of a cryptosystem, namely
its effectiveness in providing secrecy. However, it does not enable to ensure its security in the physical
world, where the mathematical description of the cryptosystem is replaced by a physical implementation
i.e. by a device performing the cryptographic computations (e.g. a PC, a smart card). In fact, a physical
implementation running a cryptographic computation leaks some physically observable information about
the intermediate results of the computation. Examples of such leakages are the execution time, the power
consumption of the device and the electromagnetic radiation produced during the computation. Moreover,
a physical implementation is not tamper-proof: it may be altered and its computations may be disrupted.
For instance, inducing a voltage spike to the device power supply may disrupt its execution.

Of course disrupting a computation or observing its physical behavior requires a physical access to
the implementation3. This happen in practice for embedded cryptographic implementations. Let us
illustrate our point with two examples from everyday life. When a banking smart card is involved in
performing a payment, the client inserts the card in the shopkeeper’s terminal and enters his PIN code.
The terminal is then able to query the card for different cryptographic computations. In addition, the
terminal has a physical access to the card which allows it to measure the card’s physical leakage or to
disrupt its execution. Another example is for pay-TV applications. This time, the client is the potential
attacker: he has a physical access to the issuer’s smart card that contains the secret keys protecting
the video content. Many other scenarios could be described where the physical access to an embedded
cryptographic implementation is granted to potential attackers.

In this context, new cryptanalytic attacks become possible which are known as physical cryptanalysis.
Physical cryptanalysis includes two main families of attacks: side channel analysis and fault analysis.
Side channel attacks exploit the physical leakage of the cryptographic computation. This leakage provides
sensitive information that often makes it possible to recover the secret key even though the cryptosystem
is secure in the black-box model. Regarding fault attacks, they consist in disrupting the cryptographic
computation so that it produces erroneous results. These erroneous results are then analyzed in order to
deduce information about the secret key.

Physical attacks performed against smart cards can further be divided into different categories de-
pending on how they affect the physical integrity of the card:

— Invasive attacks: as explained in [149], a smart card can be depackaged in order to extract its
microchip. This enables probing attacks that directly examine the content of ROM or EEPROM
or that spy the memory bus during a computation as well as destructive attacks that remove or
modify some elements of the chip. Such attacks are complicated to mount in practice and require
high-tech microelectronic equipment.

— Semi-invasive attacks: the depackaging of the card can be used to facilitate physical cryptanalysis.
It is in particular necessary to measure the electromagnetic radiations produced by the chip [99,194]
as well as to induce errors via light pulses [211]. For such a purpose, a partial depackaging may suffice
to expose the chip without altering its integrity. Figure 1.3 shows the results of such depackaging
that was performed in the security lab of Oberthur Technologies.

3Except for the time that can be measured in any communication from a distance.
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— Non-invasive attacks: altering the physical integrity of the card is not mandatory for physical
cryptanalysis. In particular, measuring the power consumption [148] and injecting faults using
power and clock glitches [30,32] are non-invasive attacks.

Figure 1.3: Smart card depackaging on the back side (on the right) and on the front side (on the left).
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2.1 Basics on probability theory
The calligraphic letters, like X , are used to denote sets. The corresponding large letter X denotes a
random variable over X , while the lowercase letter x denotes a particular realization ofX. The probability
of an event A is denoted by P [A]. The conditional probability of an event A given the occurrence of
an event B is denoted P [A|B]. Every discrete random variable X is associated with a probability mass
function (pmf) PX : x 7→ P [X = x]. If X is continuous, it is associated with a probability density function
(pdf), denoted by gX and that satisfies, for every x ∈ X :

P [X 6 x] =

∫ x

−∞
gX(t)dt .

The function x 7→ P [X 6 x] is further called cumulative distribution function (cdf) of X. The notation
x 7→ P [X = x] for a continuous random variable X, may be further used without ambiguity to denote
the pdf of X.

The expectation E [X] and the variance Var [X] of a random variable X are respectively defined by:

E [X] =
∑
x∈X

PX [x] · x (2.1)

if X is dicrete,

E [X] =

∫
X
gX [x] · x dx (2.2)

if X is continuous, and:
Var [X] = E

[
(X − E [X])2

]
. (2.3)

Since the expectation is a linear function of random variables, the variance of X satisfies: Var [X] =
E
[
X2
]
−E [X]. The standard deviation σ [X] of a random variable X is defined as the square root of its

variance:
σ [X] =

√
Var [X] . (2.4)
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The covariance Cov [X,Y ] between two random variables X and Y is defined by:

Cov [X,Y ] = E [(X − E [X])(Y − E [Y ])] . (2.5)

This definition implies Cov [X,X] = Var [X] and Cov [X,Y ] = E [XY ]− E [X] E [Y ].
A n-dimensional random variable X = (X1, . . . , Xn) is called a random vector (or a multivariate

random variable). Its expectation is defined as the vector composed of its coordinates expectations. The
covariance matrix ΣX of a random vector X is the analog for the variance for a univariate random variable
that is defined as:

ΣX = (Cov [Xi, Xj ])16i,j6n . (2.6)

Two random variables X and Y are said to be independent if, for every (x, y) ∈ X × Y, they satisfy:

P [X 6 x, Y 6 y] = P [X 6 x] · P [Y 6 y] . (2.7)

For discrete random variables, the previous condition is equivalent to P [X = x, Y = y] = P [X = x] ·
P [Y = y], for every (x, y) ∈ X × Y.

Finally, the conditional random variable (X|Y = y) is the random variable with pmf/pdf x 7→
P [X = x|Y = y]. If X and Y are independent then we have (X|Y = y) = X.

2.2 Pearson correlation coefficient

The Pearson correlation coefficient of two real-valued random variables X and Y is denoted by ρ [X,Y ].
It measures the linear correlation between X and Y and is defined by:

ρ [X,Y ] =
Cov [X,Y ]

σ [X]σ [Y ]
. (2.8)

For every pair of random variables (X,Y ), the correlation coefficient satisfies:

− 1 6 ρ [X,Y ] 6 1 . (2.9)

We have ρ [X,Y ] = 1 (resp. ρ [X,Y ] = −1) if and only if X is an increasing (resp. decreasing) affine
function of Y (and vice versa). On the other hand, if X and Y are independent then ρ [X,Y ] = 0, the
converse being false.

We recall hereafter a well-known property of the correlation coefficient.

Property 2.1. For every a1, a2 > 0 and for every b1, b2:

ρ [a1 ·X + b1, a2 · Y + b2] = ρ [X,Y ] . (2.10)

2.3 Entropy and mutual information

In information theory, the entropy (or Shannon entropy) H[X] of a discrete random variable X aims at
measuring the amount of information contained by a realization of X. It is defined by:

H[X] = −
∑
x∈X

PX [x] log2(PX [x]) . (2.11)

The differential entropy extends the notion of entropy to continuous random variables. It is defined by:

H[X] = −
∫
X
gX(x) log2(gX(x))dx . (2.12)

It is worth noting that, contrary to the entropy, the differential entropy can be negative.
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To quantify the amount of information that a second random variable Y reveals about X, the notion
of mutual information is usually involved. It is the value I(X;Y ) defined by:

I(X;Y ) = H[X]−H[X|Y ] , (2.13)

where H[X|Y ] is called the conditional entropy of X given Y which is defined by:

H[X|Y ] =
∑
y∈Y

PY [y] H[(X|Y = y)] , (2.14)

or by: ∫
Y
gY (y) H[(X|Y = y)] dy , (2.15)

depending on whether Y is discrete or continuous.
The mutual information can also be seen as a measure of dependence between two random variables.

In particular, X and Y are independent iff I(X;Y ) equals 0 and X is a deterministic function of Y iff
I(X;Y ) = H[X].

2.4 Gaussian distribution and Gaussian mixture

The Gaussian distribution of dimension n with expectation vector m ∈ Rn and covariance matrix Σ ∈
Mn,n(R) is denoted by N (m,Σ), and the corresponding pdf is denoted by φm,Σ. This pdf is defined for
every x ∈ Rn as:

φm,Σ(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x−m)′Σ−1 (x−m)

)
,

where (x−m)′ denotes the transpose of the vector (x−m) and |Σ| denotes the determinant of the matrix
Σ. If the dimension n equals 1, then the Gaussian distribution is said to be univariate and the single
element of the covariance matrix is the variance that is usually denoted σ2. If n > 1, the Gaussian
distribution is said to be multivariate.

A Gaussian mixture is a distribution whose pdf is a finite linear combination of Gaussian pdfs. A
Gaussian mixture pdf is denoted φθ and is defined, for every x ∈ Rn, by:

φθ(x) =

T∑
t=1

wt · φmt,Σt(x) , (2.16)

where θ = ((wt,mt,Σt))16t6T is a 3T -dimensional vector containing the so-called mixing probabilities
wt’s (that satisfy

∑
t wt = 1), as well as the means mt and the covariance matrices Σt of the n Gaussian

pdfs in the mixture. These Gaussian pdfs are called the components of the Gaussian mixture.

The differential entropy of a Gaussian random variable X with expectation m and covariance matrix Σ
satisfies:

H[X] =
1

2
log((2πe)n|Σ|) . (2.17)

There is no analytical expression for the entropy of a Gaussian mixture with more that one component.
However, upper and lower bounds can be derived. We give hereafter a lower bound.

Proposition 2.1. [64] Let X be a random variable having a Gaussian mixture distribution with param-
eter θ = ((wt,mt,Σt))t=1,...,T . Then, its differential entropy satisfies:

1

2
log

(
(2πe)n

T∏
t=1

|Σt|wt
)
6 H[X] . (2.18)
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2.5 Basics on Boolean algebra
The exclusive or (XOR) operator is denoted ⊕ and is defined for every (x, y) ∈ {0, 1} as:

x⊕ y =

{
1 if x 6= y
0 if x = y

(2.19)

The XOR is also called binary addition since it satisfies: x ⊕ y = x + y mod 2. The AND operator is
denoted ∧ and is defined for every (x, y) ∈ {0, 1} as:

x ∧ y =

{
1 if x = 1 and y = 1
0 otherwise (2.20)

The AND is also called binary multiplication since it satisfies: x ∧ y = xy. The OR operator is denoted
∨ and is defined for every (x, y) ∈ {0, 1} as:

x ∨ y =

{
1 if x = 1 or y = 1
0 otherwise (2.21)

For every vectors x = (x1, . . . , xn) ∈ {0, 1}n and y = (y1, . . . , yn) ∈ {0, 1}n, the previous operators
are extended as:

x ? y = (x1 ? y1, . . . , xn ? yn) (2.22)

for ? being ⊕, ∧ or ∨. The vectorial XOR and the vectorial AND are often called bitwise addition and
bitwise multiplication.

The set {0, 1} with the XOR as addition and the AND as multiplication defines a field that is usually
denoted F2. The vectorial space Fn2 is then provided with a scalar product denoted · and defined for
every x, y ∈ Fn2 as:

x · y = x1y1 ⊕ · · · ⊕ xnyn . (2.23)

The Hamming weight function HW(·) is defined over Fn2 as the number of 1-coordinates of a vector.
Namely, HW(x) is defined for every x ∈ Fn2 by:

HW(x) =

n∑
i=1

xi . (2.24)

The following property of the Hamming weight function shall be useful for some of our analyses.

Property 2.2. Let x,m ∈ Fn2 . The Hamming weight of x⊕m satisfies:

HW(x⊕m) = HW(x) + HW(m)− 2 HW(x ∧m) . (2.25)
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3.1 Introduction

Side channel analysis (SCA) is a cryptanalytic technique that takes advantage of information leaking
from the physical implementation of cryptosystems. Classical side channels are the timing, the power
consumption and the electromagnetic radiations emanating from a device during a cryptographic compu-
tation. These physical leakages directly depend on the operations performed and on the processed data
such as the secret key and the intermediate results of the cryptographic computations. Monitoring these
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leakages can hence provide sensitive information that allows an attacker to efficiently recover the secret
key.

We give in this chapter a general introduction to side channel analysis. After a brief history, we
present the basic principle of these attacks. We then introduce a theoretical model for their analysis.
Afterwards, we present the main attack techniques as well as common countermeasures to these attacks.
Finally, we address extension of classical side channel analysis to higher-order attacks targeting protected
implementations.

3.2 Brief history

The first historical example of side channel analysis appeared during the 1950’s when the US government
became concerned that electromagnetic radiations emanating from electronic devices could be captured
and interpreted to spy confidential communications. Subsequently the TEMPEST program was started
by the US National Security Agency in order to study the so-called compromising emanations and to
define some classified standards to prevent them. In 1985, the first public technical paper was published by
Wim Van Eck [240] which explained how to eavesdrop on video display units by monitoring and decoding
electromagnetic emanations. The first side channel attack that broke a cryptographic implementation
was described by Paul Kocher in 1996 [146]. The author showed how classical implementations of RSA
and other public key cryptosystems could be efficiently broken by exploiting the computation times of
a few executions. Two years later, Paul Kocher, Joshua Jaffe, and Benjamin Jun described an attack
exploiting the power consumed during a cryptographic computation [147, 148]. It was subsequently
showed that a similar attack could be mounted based on the electromagnetic radiations emanating from
the device [99,194]. These side channel attacks turned out to be very efficient in practice to break a large
range of cryptosystems including DES and RSA.

These publications provoked the great concern of the research community. Several researchers started
to investigate these new kinds of physical attacks and ways to prevent them. Today, side channel analysis
is a full branch of research in cryptography and embedded systems security. In particular, the international
workshop on Cryptographic Hardware and Embedded Systems (CHES) has presented several innovative
works in this field every year since 1999.

Side channel analysis has also had a great impact on the smart card industry. The design of smart cards
had to be rethought in order to take this threat into account. Nowadays, rigorous security evaluations
are performed by independent laboratories in order to certify the reliability of smart card products with
respect to side channel analysis.

3.3 Basic principle

Figure 3.1 represents the typical equipment involved in a side channel attack (based on the power leakage).
A PC sends some encryption commands to the card via a smart card reader and obtains the resulting
ciphertexts. An oscilloscope is connected to a small resistor in series with the power supply (or ground).
For each encryption, the oscilloscope measures the voltage difference across the resistor which yields the
power consumption (by I = U/R). Each power trace (consumption over time) is sent to the PC that
either processes it on-the-fly or stores it for post-treatment.

Electromagnetic analysis requires quite similar equipment, but the oscilloscope is connected to an
electromagnetic radiation probe that is placed close to the chip. For such a purpose, the smart card
is usually depackaged such as illustrated in Section 1.4.4. Most modern oscilloscopes include several
measurements channels which allow them to monitor power and electromagnetic radiation at the same
time. As an illustration, Figure 3.2 represents the power consumption and electromagnetic radiation
produced during an RSA-CRT computation (see Section 1.3.4.2) on a smart card. It is worth noting that
two blocks are clearly observable that correspond to the two modular exponentiations.

Side channel analysis can be divided into two categories of attacks depending on the exploited infor-
mation. Some attacks focus on the operation flow while others focus on the processed data.
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Figure 3.1: Typical equipment for a side channel analysis.

Figure 3.2: Power consumption (at the top) and electromagnetic radiation (at the bottom) produced
during an RSA-CRT computation on a smart card.

3.3.1 Attacks on operation flow

The first type of attack are those which exploit the operation flow such as timing attacks [146] or simple
power analysis (SPA) [148]. In fact, the operation flow of a cryptographic algorithm may depend on the
secret key. Different operations may require different amounts of time and may induce different power
consumption and/or electromagnetic radiation patterns. As a result, an attacker that is able to observe
such differences may retrieve information about the secret key.

A typical example of an SPA attack is against an RSA implementation based on the square-and-
multiply algorithm. In this algorithm (see for instance [161]), every loop iteration performs a modular
square and a modular multiplication if the current exponent bit equals 1, otherwise it performs a single
modular square. Modular multiplications and modular squares usually have different power consump-
tion/electromagnetic radiation patterns. In that case, the leakage trace is composed of several square
patterns interleaved by multiplication patterns only for the loop iterations where the exponent bit equals
1. Consequently, the leakage trace for a single RSA operation reveals the secret exponent. As an il-
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lustration, Figure 3.3 shows a zoom on the electromagnetic leakage trace of the RSA-CRT computation
given in Figure 3.2, with the corresponding exponent value. We clearly see that when the exponent bit
equals 0, one single pattern is observed whereas when it equals 1, two different patterns are observed.
In order to thwart SPA, an algorithm must be implemented in an atomic way, namely it must have a
constant operation flow whatever its input. Some atomic exponentiation algorithms have for instance
been proposed in [71,76,131,135].

1 1100100000110101110001110 0001010 10 00 0

Figure 3.3: Electromagnetic radiation produced by a few loop iterations of a modular exponentiation on
a smart card.

Timing attacks are more sophisticated since the adversary does not have access to several leakage
patterns for the different operations but only to the overall time of the computation. Therefore the
attacker has to perform a statistical analysis of the computation times obtained for several executions.
A classical example of timing attack is against RSA using a Montgomery modular multiplication. In this
modular multiplication algorithm (see [169]), a final subtraction may or may not be performed depending
on the operands values. The overall time of the RSA computation hence depends on each intermediate
result of the exponentiation which enables the recovery of the secret exponent [86]. Algorithmic atomicity
also ensures security against timing attacks. An alternative solution is to randomize the intermediate
results to render them unpredictable [146].

Timing attacks are also rendered possible by some optimization mechanisms of modern processors
such as the cache [181,236] or the branch prediction unit [17]. Here again, depending on the intermediate
results, different operations are performed (e.g. some memory segments may or may not be loaded in
cache) thereby enabling timing attacks. In order to overcome this kind of vulnerability, it is necessary to
disable (or at least circumvent) such mechanisms. Otherwise, randomization techniques are still possible.

3.3.2 Attacks on processed data

At any time during the execution of an algorithm on an electronic device, the power consumption and
the electromagnetic emanations depend on the intermediate variable being processed. In a cryptographic
algorithm, some intermediate variables depend on small parts of the secret key; such variables are said to
be sensitive. The leakage related to a sensitive variable can be exploited in order to recover the part of
the secret key which is involved. For such purposes the adversary makes a guess about the value of the
secret key part and, based on this guess, predicts the sensitive variable values for several computations
with different known inputs. If the guess is correct then a statistical relation is observed between the
predicted values and the leakage measurements, otherwise it is expected that no noticeable relation will
be observed. This kind of attack is known as differential power analysis (DPA) [147,148]. Since the first
publication of DPA, several improvements have been proposed, in particular through the use of more
powerful statistical tools (see for instance [58,66]).
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DPA-like side channel attacks are very powerful and intensive efforts have been made (and are still
being made) by the research community to study them, to improve them and to find efficient ways to
thwart them. The first part of this thesis is dedicated to the theoretical study and improvement of these
attacks. In the following, these attacks will be referred to as side channel key recovery attacks. We
introduce in the next section a theoretical model to formalize them.

3.4 Theoretical model

3.4.1 Attack model
LetK be a random variable representing a part of the secret key. LetX be a random variable representing
a part of a public value such as an input (resp. output) of the target algorithm. Let Z be a random
variable representing the result of an intermediate computation of the target algorithm that satisfies
Z = f(X,K) for a given function f : X × K → Z. When K is a part of the secret key that can be
exhaustively searched and when f is not constant with respect to k, the intermediate variable Z is said
to be sensitive. We denote by L the random variable that represents the side channel leakage generated
by the computation (and/or the handling) of Z on a physical implementation of the target algorithm.
We shall further denote by L (z) the random variable (L|Z = z).

A side channel key recovery attack targeting the intermediate variable Z aims to recover the value
k∗ taken by K on a given physical implementation of the target algorithm. For such a purpose, the
attacker collects several, say N , leakage measurements (li)i resulting from the computation of f(xi, k

∗)
for N inputs (xi)i. Namely, the li’s are independent realizations of the random variables L (f(xi, k

∗)).
Then, the attack makes use of a distinguisher, that is a function D which, from the leakage measurements
vector l = (l1, . . . , lN ) and the corresponding inputs vector x = (x1, . . . , xN ), outputs a distinguishing
vector d = (dk)k∈K. If the distinguisher is sound and if the leakage brings enough information on Z, then
k∗ = argmaxk∈K dk holds with a high probability, namely, the attack is likely to recover the value k∗
taken by K. Some metrics for the rigorous evaluation of side channel key recovery attacks are described
in Section 3.4.4.

Remark 3.1. For the sake of simplicity, the model described above focuses on attacks targeting a single
intermediate variable of the computation. However, an attack may exploit leakages on several interme-
diate variables (see for instance [49, 196, 201]). An example of particular interest is higher-order side
channel analysis (see Section 3.7).

3.4.2 Attack classification
A side channel key recovery attack can be characterized according to several criteria. The most traditional
are indicated below.

Known vs. chosen plaintext attacks. A side channel adversary is usually assumed to know the inputs
and the outputs of the implementation under attack. That is, each leakage measurement is associated
with a plaintext and a ciphertext. In a known plaintext attack, the plaintext is assumed to be uniformly
distributed while in a chosen plaintext attack, it can be chosen by the adversary. In our model, the public
variable X is a deterministic function of either the plaintext or the ciphertext (or both). In the first
case and under a chosen plaintext attack scenario, the input vector x of the attack can be chosen by the
attacker. Then, the adversary may use a specific strategy to select the xi values in order to enhance the
attack efficiency. Otherwise the xi’s are randomly drawn following the distribution of X (which results
from the plaintext/ciphertext uniformity).

Profiled vs. non-profiled attacks. In a profiled attack, the adversary owns a profile of the leakage with
respect to the processed data. In our model this means that he has a good estimation of the distribution
of L (z) for every z ∈ Z. This makes it possible to use a likelihood distinguisher (see Section 3.5.3) which
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is optimal provided that the distribution estimations are precise enough. Such a profile of the leakage is
usually obtained through a profiling stage in which the attacker has a copy of the attacked device under
his control. In a non-profiled attack, such a copy is not available and profiling is not possible. As a result,
the attacker cannot get a profile of the leakage and hence cannot use a likelihood distinguisher. In that
case, more generic distinguishers can be used, such as correlation or mutual information distinguishers
(see Section 3.5).

Univariate vs. multivariate attacks. The power consumption and electromagnetic emanations of a
device vary with respect to time. Consequently, the observed leakage is usually a vector whose coordinates
correspond to several successive times in the computation. In a univariate attack, one single coordinate
of this vector is used. That is, in our model, L corresponds to a univariate signal. If the attacker does
not know which point in time corresponds to the processing of the target variable Z by the device, then
he may apply the attack for each leakage coordinate independently. If the distinguisher is sound and if a
sufficient number of leakage measurements is involved, then the correct key guess is clearly distinguished
at the manipulation times of Z while no noticeable distinction occurs at other times. In a multivariate
attack, several coordinates of the leakage are involved and L is a multivariate signal. The choice of the
coordinates may either result from a profiling phase or may be defined according to a specific strategy.

Single-channel vs. multi-channel attacks. In a single-channel attack, the attacker has access to
one and only one side channel leakage (e.g. power consumption or electromagnetic emanations), while
in a multi-channel attack he has access to multiple side channel leakages (e.g. power consumption and
electromagnetic emanations). Multi-channel attacks have been investigated in [18,213].

3.4.3 Leakage models

Most integrated circuits are based on the complementary metal oxide semiconductor (CMOS) technology,
which is in part due to its low power requirements. The power and electromagnetic leakage produced by
a CMOS device results from its switching activity. When the output of a CMOS gate switches from 0
to 1, the corresponding capacitive load is charged from the power supply through the PMOS transistor
and when the output value switches from 1 to 0, the capacitive load is discharged through the NMOS
transistor. Additionally, each transition provokes a current from the power supply to the ground pin
which also consumes some power. In addition, each of these transient currents produces electromagnetic
radiation. In comparison, the static power consumption (and electromagnetic radiation) which does not
result from the switching activity is negligible. As a result, there is a strong correlation between the data
processed by the device and the power consumed (resp. the electromagnetic radiation emanated). Based
on this fact and based on experimental studies, several models for the leakage of intermediate variables
have been proposed in the literature; the most classical ones are presented below.

The leakage produced by the computation of an intermediate variable Z is modelled by a T -size
random vector L over L = RT . If T = 1 the leakage model is said to be univariate; otherwise if T > 1 the
leakage model is said to be multivariate. The leakage L (z) resulting from the computation of a particular
value z ∈ Z can be seen as the composition of a deterministic part that we shall call leakage function and
a random part that we shall call leakage noise. We formally define these two notions hereafter.

Definition 3.1. The leakage function is the function ϕ : Z 7→ L defined, for every z ∈ Z, by:

ϕ(z) = E [L|Z = z] . (3.1)

Definition 3.2. The leakage noise is the random variable B defined over L by:

B = L− ϕ(Z) . (3.2)

According to the two previous definitions, the leakage related to the computation of the intermediate
result Z can be written as:

L = ϕ(Z) +B . (3.3)
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Several assumptions are usually made about the leakage model. Some are related to the noise and
others are related to the leakage function. We give hereafter the most common assumptions of the side
channel literature.

Assumption 3.1 (independent noise assumption). The noise B is independent of the intermediate
variable Z.

This assumption is frequently made in the literature and it has been practically validated numerous
times (see for instance [106,201,216]). The noise in the leakage is indeed often independent of the target
signal. This is especially true if most of the noise amount is produced by a noise generator (independent
of the target algorithm) as a countermeasure to side channel analysis.

Assumption 3.2 (Gaussian noise assumption). The noise B has a Gaussian distribution.

The Gaussian noise assumption is fairly realistic in practice since the noise can be modelled as the
sum of several contributions of uncorrelated events. In addition, this assumption is very common in the
literature (see for instance [66, 157, 201, 217]). It is worth noting that the independent noise assumption
and the Gaussian noise assumption are not related and can be made (or not) independently of each other.

The next three assumptions concern the leakage function. As mentioned above, the leakage results
from logical transitions occurring on the circuit wires. It is therefore reasonable to assume that every
bit of a processed variable contributes independently to the overall instantaneous leakage [201]. This
assumption that we shall call independent bit leakage (IBL) assumption is formalized hereafter.

Assumption 3.3 (IBL assumption). Let Z = {0, 1}n for some n ∈ N. For every z ∈ Z and for every
t ∈ {1, . . . , T}, the coordinate ϕt of the leakage function ϕ = (ϕ1, . . . , ϕT ) can be expressed as:

ϕt(z) = ct,0 +

n∑
i=1

ct,i · z[i] , (3.4)

where ct,i are constants and z[i] denotes the ith binary coordinate of z.

Making the additional assumption that every transition equivalently contributes in the leakage, we
obtain the so-called Hamming distance model.

Assumption 3.4 (Hamming distance model). For every t ∈ {1, . . . , T}, there exists a constant rt ∈ Z
such that the coordinate ϕt of the leakage function can be expressed, for every z ∈ Z, as:

ϕt(z) = δt + εt ·HW(z ⊕ rt) , (3.5)

where εt and δt are constants.

The Hamming distance model is a particular case of the IBL assumptions where the weights of the
different bits satisfy ct,i = ±εt/2. The value rt is usually called reference state [58]. An interesting
particular case is rt = 0. This typically occurs with pre-charged logic for which loads are charged or
discharged at each clock cycle before the evaluation of the logic functions. This particular case is known
as Hamming weight model.

Assumption 3.5 (Hamming weight model). For every z ∈ Z and for every t ∈ {1, . . . , T}, the coordinate
ϕt of the leakage function can be expressed as:

ϕt(z) = δt + εt ·HW(z) , (3.6)

where εt and δt are constants.

Remark 3.2. It is worth noting that the reference state may not be constant. A typical example is
when an intermediate variable Z1 overwrites a previously processed variable Z0. In that case, the target
variable should be the virtual variable Z = Z0 ⊕ Z1.
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3.4.4 Side channel metrics

We review hereafter classical metrics for side channel analysis. Some of them are leakage metrics and
others are attack metrics. Their purposes are different: the first ones aim to measure the information
contained in a side channel leakage L about the processed variable Z (or the secret key K) independently
of any distinguisher and the latter aim to quantify the effectiveness of a side channel attack in a given
context (leakage model, distinguisher, etc.).

3.4.4.1 Leakage metrics

Signal-to-noise ratio. A classical metric of signal processing is the signal-to-noise ratio (SNR). This
notion is usually defined as the ratio of the significant signal power to the noise signal power. This
definition is ambiguous since the notion of signal power is not clearly defined. As suggested in [156], a
sound definition for this power in our context is the signal variance. In that case, the leakage SNR is
defined as:

SNR =
Var [ϕ(Z)]

Var [B]
. (3.7)

Correlation. Another sound leakage metric is the correlation coefficient between the significant signal
and the leakage signal: ρ [ϕ(Z), L]. This metric was suggested by Stefan Mangard in [156] where it is
shown to satisfy:

ρ [ϕ(Z), L] =
1√

1 + 1
SNR

. (3.8)

This metric is related the effectiveness of side channel attacks using the correlation coefficient as
distinguisher (see Section 3.5.1). Indeed, as argued in [157, 220], the number of leakage measurements
required by such an attack can be approximated by c/ρ [ϕ(Z), L]

2 where c denotes a constant depending
on the number of key guesses and of the desired success rate for the attack.

Mutual information. Another metric that can be used to evaluate the information contained in the
side channel leakage is the mutual information between the leakage L and either the target variable Z or
the secret key element K. This approach was suggested by François-Xavier Standaert, Tal Malkin and
Moti Yung in [216,217].

The mutual information I(K;L|X) can be used to quantify the information leakage on the key for a
given implementation. The mutual information I(Z;L) quantifies the information about the processed
data that is revealed by the side channel leakage. In particular, it can be used to compare several
countermeasures or signal processing techniques independently of any algorithm [154, 213]. These two
metrics are closely related since they satisfy:

I(K;L|X) = I(Z;L)− I(X;L) . (3.9)

Interestingly, if Z is statistically independent of X (e.g. Z = f ′(X ⊕K) with K uniformly distributed)
then the two metrics are equal.

3.4.4.2 Attacks metrics

Attacks success rate. The success rate is a classical metric in side channel analysis. Usually, a key
recovery attack is considered successful if the distinguishing vector satisfies k∗ = argmaxk∈K dk. In [217],
the authors propose to extend the notion of success rate to different orders. The oth-order success rate
of a side channel attack using a distinguisher D and a public vector x, and targeting a secret key k∗ is
defined as:

Succ-oDx,k∗ = P

[(
li ← L (f(k∗, xi))

)
i

; d← D(x, l) : k∗ ∈ argmax-o
k∈K

dk

]
,
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where argmax-ok∈K dk denotes the set of the o elements k ∈ K that maximize dk. The notion of order is
motivated by the fact that an attacker may perform an off-line exhaustive search after the side channel
analysis. A oth-order success means that the attacker has at the most o key candidates to test after the
attack in order to recover the correct one.

Guessing entropy. The guessing entropy [60, 160] is defined as the expected number of key guesses
to test before recovering a target key value. As pointed out in [217], the guessing entropy is relevant in
the context of side channel analysis since it indicates the average workload to perform after side channel
analysis. Let rankk(d) denote the index i ∈ {1, . . . , |K|} such that dk is the ith higher element of d. The
guessing entropy of a side channel attack using a distinguisher D and a public vector x, and targeting a
secret key k∗ is formally defined as:

GED
x,k∗ = E

[(
li ← L (f(k∗, xi))

)
i

; d← D(x, l) : rankk∗(d)
]
. (3.10)

Relation between the two metrics. We show hereafter that the guessing entropy is related to the
success rate of every order. In fact, the correct key guess is rated at the oth rank in the distinguishing
vector if and only it is rated among the o first candidates but it is not rated among the o − 1 first
candidates. As a result, the probability that the correct key guess be rated at the oth rank satisfies for
every o:

P [rankk∗(d) = o] = Succ-oDx,k∗ − Succ-(o− 1)Dx,k∗ , (3.11)

where Succ-0 is naturally defined at zero. This leads to the following relation:

GED
x,k∗ =

|K|∑
o=1

o · P [rankk∗(d) = o] = |K| −
|K|−1∑
o=1

Succ-oDx,k∗ . (3.12)

Evaluation of the metrics. Most of the time, the success rate of an attack is empirically evaluated by
performing the attack several times. This approach is not very satisfactory since it implies an important
time complexity and it may even become impossible for attacks with medium or high complexity. It is
therefore not suitable to efficiently and precisely determine the resistance of an embedded device if this
one is not quite weak. To tackle this issue, it is of particular interest to investigate efficient ways to
compute (or at least to precisely estimate) the success rate of an attack without having to perform it
many times.

Issue 3.1. Given an order o, a distinguisher D, an input vector x and a secret key element k∗, how to
efficiently compute the success rate Succ-oDx,k∗?

This issue is addressed in Chapter 4 under the Gaussian noise assumption for the two most widely
used side channel distinguishers: the correlation and the likelihood (see Section 3.5).

3.5 Classical side channel distinguishers

This section presents some of the most usual distinguishers to perform a side channel key recovery attack.

3.5.1 Correlation

Correlation-based distinguishers are probably the most widely used to perform side channel key recovery
in practice. Moreover, a great portion of the side channel literature focuses on their analysis and their
improvement (see for instance [20,40,58,165]).

Remark 3.3. The correlation-based distinguishers presented hereafter are univariate, namely they take has
input a set of 1-sized leakage measurements. When they must be applied to a leakage trace (corresponding
to several times), they are applied to every coordinate independently.
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3.5.1.1 Difference of means

The first example of a correlation-based distinguisher is the difference of means used in the original
DPA [148]. According to a guess k on the value of k∗ and to a bit index j, the attacker predicts the value
of the jth bit of Z and he estimates the difference between the leakage expectation when the predicted
bit equals 1 and the leakage expectation when the predicted bit equals 0. Namely, the attacker estimates
the difference E [L|fj(X, k) = 1] − E [L|fj(X, k) = 0] where fj denotes the jth binary coordinate of f .
For such a purpose, the attacker first computes the prediction vector (fj(xi, k))i6N which is composed of
the predicted values of the jth bit of the target variable for the different executions. Then, the leakage
measurements are separated in two categories: the ones for which the predicted bit fj(xi, k) is equal to
1, and the ones for which it is equal to 0. Finally, the so-called differential ∆k corresponding to the
difference between the mean values of the two sets is computed:

∆k =

∑
i fj(xi, k) · li∑
i fj(xi, k)

−
∑
i(1− fj(xi, k)) · li∑
i(1− fj(xi, k))

. (3.13)

Soundness. Let us denote by δ the difference E [L|Z[j] = 1]−E [L|Z[j] = 0]. For the correct key guess,
the differential ∆k tends towards δ as the number of leakage measurements grows. On the other hand,
for a wrong key guess, ∆k tends towards (1 − 2α)δ where α ∈ [0, 1] denotes the proportion of errors
fj(xi, k) 6= fj(xi, k

∗). Since, for a wrong guess, α is usually close to 1
2 , ∆k tends towards a value close to

0 which shows the soundness of the attack.

Remark 3.4. The previous assertion implicitly assumes that the coordinates (fi(X, k))k∈K,i6=j , are inde-
pendent of fj(X, k∗). This is not always strictly the case and this assumption strongly depends on the
non-linearity of the function f (see [61,191]).

(a) Difference-of-means for different key guesses over the
time.

(b) Maximal difference-of-means for different key guesses
over the number of leakage measurements.

Figure 3.4: DPA attack against an AES S-box based on the difference-of-means distinguisher.

Example. As an illustration, Figure 3.4 shows the results of a practical DPA attack based on the difference-
of-means distinguisher. The leakage corresponds to the power consumption of a smart card performing
an AES S-box computation (first round) in software. The targeted bit is the least significant bit of the
(predicted) S-box output. Figure 3.4.(a) shows the difference-of-means values for the different key guesses
over the time obtained based on 5000 power consumption measurements. Figure 3.4.(b) represents the
convergence of the highest difference-of-means value for every key guess over the number of measurements.
For both graphics, the curve corresponding to the correct key guess is plotted in black while others are
plotted in gray. The attack clearly enable the recovery of the key value.
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3.5.1.2 Pearson correlation coefficient

The use of the Pearson correlation coefficient (see Section 2.2) as a side channel distinguisher is a natural
generalization of DPA. This approach was followed in several works a few years after the initial publication
of DPA (see for instance [57, 80, 85, 151, 156, 218]). In particular, it has been deeply analyzed by Eric
Brier, Christophe Clavier and Francis Olivier in [57, 58]. The authors named this attack correlation
power analysis (CPA) but it is often referred to as DPA. It is nowadays the most widely used approach
to perform DPA in the SCA literature and in the smart card industry.

The adversary is assumed to own a model of the side channel leakage, that is a function M : X×K → R
such that M(x, k) is linearly related to the expectation of the leakage L (f(x, k)), namely to ϕ◦f(x, k). In
practice, the attacker estimates the leakage function ϕ (or an affine transformation of it) by a prediction
function ϕ̂ and set the model to M(x, k) = ϕ̂ ◦ f(x, k). The attack consists in estimating the correlation
coefficient ρ [M(X, k), L] for every key guess k ∈ K. This correlation is estimated based on the prediction
vector

(
M(x1, k), . . . ,M(xN , k)

)
and the leakage measurements vector l by the following coefficient:

ρk =

1
N

∑
i

(
M(xi, k)− 1

N

∑
jM(xj , k)

)(
li − 1

N

∑
j lj

)
√

1
N

∑
i

(
M(xi, k)− 1

N

∑
jM(xj , k)

)2
√

1
N

∑
i

(
li − 1

N

∑
j lj

)2
. (3.14)

Soundness. The coefficient ρk tends towards ρ [M(X, k), L] as the number N of leakage measurements
grows. If the leakage model is sound, namely if the model satisfies M(x, k) = ϕ̂ ◦ f(x, k) with ρ [ϕ, ϕ̂] = 1,
then we have (see [156]):

ρ [ϕ̂ ◦ f(X, k), L] = ρ [ϕ ◦ f(X, k), L] = ρ [ϕ ◦ f(X, k), ϕ ◦ f(X, k∗)] · ρ [ϕ(Z), L] . (3.15)

From this equation, it is clear that the expected correlation is maximal for the good key guess. Indeed,
ρ [ϕ ◦ f(X, k), ϕ ◦ f(X, k∗)] equals 1 if k = k∗ and it is strictly lower than 1 otherwise (assuming ϕ ◦
f(·, k) 6= ϕ ◦ f(·, k∗)).

(a) Correlation for different key guesses over the time.
(b) Maximal correlation for different key guesses over the

number of leakage measurements.

Figure 3.5: DPA attack against an AES S-box based on the Pearson correlation distinguisher.

Example. As an illustration, Figure 3.5 shows the results of a practical DPA attack based on the Pearson
correlation coefficient. The leakage measurements used for this attack are the same than those used for
the attack presented in the previous section. They correspond to the power consumption of a smart
card performing an AES S-box computation (first round) in software. The model used for the attack is
the Hamming weight of the predicted S-box output. Figure 3.5.(a) shows the correlation values for the
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different key guesses over the time obtained based on 5000 power consumption measurements. Figure
3.5.(b) represents the convergence of the highest correlation value for every key guess over the number
of measurements. For both graphics, the curve corresponding to the correct key guess is plotted in black
while others are plotted in gray. It is worth noting that this attack requires significantly less power
measurements to rank the correct key guess as first compared to the difference-of-means attack presented
in the previous section. This comes from the fact that the correlation attack predicts all the computed
bits whereas the difference-of-means attack only predicts one computed bit over eight. The contribution
of the seven remaining bits to the power then acts as a noise (which is often referred to as algorithmic
noise in the literature [165]).

3.5.1.3 Relation between the two distinguishers

We address here the relation between the difference-of-means and the Pearson correlation distinguishers
in order to exhibit their similarities and disparities. It is a common belief that the Pearson correlation
coefficient is a better distinguisher than the difference of means. As argued hereafter, it is actually mostly
more generic due to the choice of the leakage model.

Under a single-bit leakage model (one single bit of Z is predicted), M(x, k) = fj(x, k), it can be shown
that the Pearson correlation distinguisher behave in a close way as the difference-of-means distinguisher.
In particular, assuming that the sets {i; fj(xi, k) = b} have the same cardinal for every (b, k) ∈ {0, 1}×K
(which is a reasonable assumption), we have ρk = c ·∆k where c denotes a constant value with respect
to k. In that case, we clearly have the equivalence of the two distinguishers.

Under a multi-bit leakage model, the difference-of-means distinguisher can be generalized using a
weighted sum. Namely, ∆

(j)
k is computed for every j and the obtained values are summed after being

weighted by some constants ωj . This is almost equivalent to compute a Pearson correlation distinguisher
ρk with model M(x, k) =

∑
j ωjfj(x, k). Once again, assuming that the sets {i; fj(xi, k) = b} have the

same cardinal for every (b, k) ∈ {0, 1} × K, we have ρk = c ·
∑
j ωj∆

(j)
k where c denotes a constant value

with respect to k.
To summarize, for a given adversary with a given knowledge about the leakage model, the difference-of-

means distinguisher and the Pearson correlation distinguisher are almost equivalent. The main difference
between them comes from the fact that the Pearson correlation is normalized (i.e. it ranges over [−1, 1]).
Although this normalization does not change the classification between the key guesses for a given time
coordinate, it enables a better selection of the significant coordinates by eliminating noise spikes in the
correlation trace.

3.5.2 Mutual information

Mutual information is a classical tool from information theory that measures the statistical dependence
between two random variables (see Section 2.3). The use of the mutual information as side channel
distinguisher was initially proposed by Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel
in [104,105]. A similar approach was independently proposed by Sébatien Aumônier in [29]. Side channel
attacks using mutual information as distinguisher are usually referred to as mutual information analysis
(MIA).

In a MIA attack, the adversary uses a model M such that M(X,K) is statistically dependent on L.
The attack then consists in estimating the mutual information I(M(X, k);L) for every key guess k ∈ K.
This mutual information satisfies:

I(M(X, k);L) = H[L]−H[L|M(X, k)] . (3.16)

The key guess maximizing the mutual information I(M(X, k);L) is hence the one minimizing the entropy
H[L|M(X, k)]. Therefore, one only needs to estimate this conditional entropy to mount the attack.
According to (2.14), it satisfies:

H[L|M(X, k)] = −
∑

y∈Im(M)

P [M(X, k) = y] H[L|M(X, k) = y] . (3.17)



3.5. Classical side channel distinguishers 51

The entropies H[L|M(X, k) = y] can be directly computed from the pdf of the conditional leakages
(L|M(X, k) = y). Based on the pairs (xi, li), the attacker derives some estimations of these pdfs for
every y ∈ Im(M). This allows him to compute some estimations of the entropies H[L|M(X, k) = y]
and, according to (3.17), an estimation for the overall conditional entropy H[L|M(X, k)]. The key guess
minimizing this estimation is selected as good key candidate.

Soundness. The soundness of MIA is related to two issues. A first issue is the choice of the model
M. Unlike correlation attacks, the model does not need to be linearly related to the leakage function.
Indeed, the mutual information detects every kind of statistical dependence, not only linear ones. As a
result, the attacker can use M = f as a model, namely he can estimate the mutual information between
the leakage and the target variable. This choice is of particular interest since the attack does not require
any assumption about the leakage model. However this approach has an important drawback: if the
function f(·, k) is injective for all k, then the mutual information I(f(X, k);L) is constant with respect to
k which implies that the mutual information distinguisher is constant for every k ∈ K and no information
is gained about the secret key. For the attack to succeed when f(·, k) is injective, the model must be
defined as M = ϕ̂ ◦ f where ϕ̂ is a non-injective function that statistically depends on ϕ. For instance, in
the Hamming weight model, one shall use M = HW ◦ f .

Example. A classical target variable in side channel attack is an S-box output of the form Z = S(X⊕K).
If the S-box S is non-injective (as in DES for instance) then one can use M = f , otherwise if S is bijective
(as in AES for instance) then one must use M = ϕ̂ ◦ f with ϕ̂ being non-injective.

A possibility to avoid this drawback is to attack a “non-injective” sensitive variable (i.e. such that
the functions f(·, k) are non-injective). For instance, in AES, one could target the result of the bitwise
addition between two S-box outputs occurring in the first MixColumns operation.

The second issue of MIA is the choice of a sound pdf estimation method, namely a method ensuring
that the estimated pdf tends as fast as possible towards the effective pdf as the number of leakage
measurements grows. It was initially suggested in [104,105] to use a histogram estimation. This method
is sound but it is very basic and better estimation methods may exist that improve MIA efficiency.

Issue 3.2. Among the existing pdf estimation methods, which one optimizes the efficiency of MIA?

We deal with this issue in Chapter 5 where we apply several classical pdf estimation methods and
draw conclusions about their efficiencies in the context of MIA.

3.5.3 Likelihood

The likelihood distinguisher is used in the context of profiled attacks i.e. attacks where the adversary
owns a profile of the side channel leakage. Such a profile consists of a set of estimations for the pdfs
(l 7→ P [L = l|Z = z])z∈Z . In practice, these estimations are obtained through a profiling stage on a
physical implementation identical to the targeted one (except the secret key) and that is under the
attacker’s control. This approach was first proposed by Suresh Chari, Josyula Rao and Pankaj Rohatgi
who introduced the so-called template attacks [66]. Several variants and improvements followed (see for
instance [18,28,201]); all these attacks are usually referred to as profiled attacks.

In a profiled attack, the attacker estimates the likelihood of a key guess k, i.e. the probability that K
equals k, given the leakage measurements vector l and the inputs vector x. Let L and X be the random
variables representing the leakage measurements vector and the inputs vector. From Bayes’ Theorem, we
have:

P [K = k|L = l,X = x] =
P [L = l|K = k,X = x] P [K = k]

P [L = l|X = x]
. (3.18)

Assuming that K is uniformly distributed, the previous probability satisfies:

P [K = k|L = l,X = x] = αP [L = l|K = k,X = x] , (3.19)
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where α is constant towards k. Since the different leakage measurements li’s are assumed to be indepen-
dently drawn, we finally obtain:

P [K = k|L = l,X = x] = α

N∏
i=1

P [L = li|Z = f(xi, k)] . (3.20)

For computational reasons, one usually processes the logarithm of the estimated likelihood and av-
erages it on the number of leakage measurements. Moreover, since α is constant with respect to k, it is
usually ignored. On the whole, one computes the log-likelihood λk defined by:

λk =
1

N

N∑
i=1

log P̂ [L = li|Z = f(xi, k)] , (3.21)

where P̂ [·] stands for the pdf estimations.

Profiling stage. The first profiling method was described in the original paper by Suresh Chari et
al. [66]. The Gaussian noise assumption was introduced under which the pdfs P [L = l|Z = z] are Gaussian
pdfs with parameters (mz,Σz). Therefore the method consists in estimating the expectation mz and
covariance matrix Σz for every z ∈ Z. The practical issue posed by this approach is the selection
of the so-called points of interest. As explained above, the leakage corresponding to a cryptographic
computation can be seen as a T -size vector corresponding to T points in time and depending more or
less on the target variable Z. For typical values of T (e.g. ∼ 104), the estimation of the T ×T covariance
matrix Σz is impractical. Therefore, one must restrict the leakage profile to some well chosen coordinates
among {1, . . . , T}. In [66], a heuristic is proposed that consists in selecting the points where the variance
of (m̂z)z∈Z is maximal. In [28], this method is improved by using principal component analysis (see
for instance [129]): a few linear combinations of the leakage points are selected that catch the main
variability of (m̂z)z∈Z . The limitation of these approaches is that the leakage noise is not taken into
account. An alternative method is proposed in [213] that overcomes this problem for small-sized leakage.
Independently of the points selection issue, an improved estimation method is proposed in [201] which
is based on the IBL assumption and on the independent noise assumption (see Section 3.4.3). The IBL
assumption enables the use of linear regression (see for instance [88]) for the means estimation which
renders it more efficient. The independent noise assumption implies that a single covariance matrix needs
to be estimated which also improves the profiling efficiency [106,215].

Soundness. It can be checked that the expected value of the log-likelihood λk satisfies:

E [λk] =
∑
l∈L
x∈X

P [X = x] P [L = l|Z = f(x, k∗)] log
(

P̂ [L = l|Z = f(x, k)]
)
. (3.22)

Assuming the pdf estimations are perfect (i.e. P̂ [·] = P [·]), it can be checked that this expression is
maximal for k = k∗ which demonstrates the soundness of the likelihood distinguisher. Moreover, for good
pdf estimations, the likelihood distinguisher is not only sound but it is also optimal since it computes the
exact probability that the secret variable K equals the different key guesses given the observed leakage
samples.

Note that bad estimations may significantly decrease the attack efficiency. Although this issue did not
receive a lot of attention so far, it would be interesting to study how the likelihood distinguisher tolerates
bad estimations. Also, since the estimations are usually obtained from a copy device under the attacker
control, a legitimate question to ask is: to what extent do different copies of the same cryptographic
implementation have identical leakage distributions? Only the answers to these questions would give a
clear view of the practicability of profiling side channel attacks.
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3.5.4 Discussion
We have described above three distinguishers that can be used for side channel key recovery attacks.
We will now argue that the choice of the distinguisher to use mainly depends on the attacker knowledge
about the leakage, namely about the leakage function and the noise distribution.

The more generic distinguisher is the mutual information since it can be used without any knowledge
about the leakage. Indeed, targeting a “non-injective” sensitive variable and using as model its predicted
value is sufficient to obtain a sound key recovery attack (see Section 3.5.2). However, the genericity
offered by MIA is not very useful in practice since the leakage often depends linearly of the Hamming
weight of processed data or at least on the different bits (see the IBL assumption, Section 3.4.3). This
implies that correlation-based distinguishers can be used since they only require a model that is linearly
correlated to the leakage. As a matter of fact, in a common context, DPA attacks are more efficient
than MIA attacks (see Chapter 5 for experimental results). On the other hand, likelihood-based attack
required a high degree of knowledge about the leakage, since they need precise estimations of the leakage
function and of the noise distribution. Besides, for sound estimations, they give the best results (see for
instance [175,214]).

3.6 Countermeasures to side channel analysis
We review hereafter the most common countermeasures to side channel key recovery attacks. Most of
these countermeasures aim at removing (or at least lowering) the dependence between the leakage and
the processed sensitive variables.

3.6.1 Hardware modules
A first classical countermeasure consists in adding some noise to the leakage. This can be ensured by
the use of a noise generator that is a hardware module randomly consuming power. The main drawback
of such an approach is that it implies a significant overhead of power consumption which is prohibitive
in some situations (e.g. mobile telephony). Another approach is to use a filter to flatten the power
consumption [80,149,162]. However such a module has no effect on the electromagnetic leakage. Another
widely used solution is the insertion of random process interrupts that provoke random delays in the
execution and spread the sensitive signal over several times [74]. All these approaches decrease the
leakage signal-to-noise ratio. However they are usually not sufficient to completely counteract practical
attacks.

3.6.2 Secure logic styles
Recently another approach has been intensively investigated that focuses on the design of secure logic
styles. In this approach, every single gate constituting the circuit is secured. Two main approaches exist
to secure a logic gate: dual-rail and masking.

Dual-rail logic [69, 121, 212, 231, 232] aims to render the power consumption constant at each clock
cycle independently of the processed data. For such a purpose, each wire is doubled and the circuit is
designed in such a way that, at each clock cycle, a transition occurs on one and only one wire of each
pair. As a result, a constant number of transitions occur at each clock cycle. This is expected to render
the power consumption constant. However, small variations of the power consumption are observed in
practice due to small loading imbalances between associated wires [69]. In the electromagnetic leakage,
this imbalance may even be induced by the attacker who can set the position of the measurement probe.
Dual-rail may also be defeated when input signals of a gate arrive at different times [223].

Masking at the gate level consists in randomizing each logical signal in such a way that a transition
always occur with a probability 1

2 (see for instance [224, 233]). For such a purpose, each logical value
v is represented by a masked value v ⊕ r for a randomly generated r called the mask. The masked
values leaking by side channels are uncorrelated to the significant data which a priori prevents SCA.
Unfortunately, this approach suffers multiple flaws in practice. First, the occurrence of glitches, which
is inherent to electronic circuits, renders the average number of transitions dependent on the unmasked
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data [158, 159]. To overcome this weakness a logic style combining dual-rail and masking was proposed
in [190]. However, this approach has been shown to be ineffective due to the so-called early propagation
effect [150,189,223]. A patch was proposed in [189] at the price of a significant overhead in silicium area
and power consumption. Another approach to thwart glitches has been investigated in [174, 225] which
is based on secret sharing [207]. However, even if glitches and early propagation are avoided, another
problem remains: a mask r is used for several (usually all) logic gates within a clock cycle. This enables
a so-called pdf attack as described in [200, 230]. Using a different mask for each logic gate at each clock
cycle would require a huge generation of random bits which is clearly impractical. Finally, masking has
an inherent weakness: since masks are generated and handled by the device, they also leak information.
The leaked information about the masked data together with the leaked information about the masks
jointly depend on the unmasked data which enables higher-order side channel attacks (see Section 3.7).

To summarize, the design of a perfectly secure logic style is still an open issue. In the meantime,
the use of existing logic styles still improve SCA resistance of the circuit by reducing the amount of
information leakage [154].

3.6.3 Algorithmic randomization techniques
Algorithmic randomization techniques are included in the design of algorithms. One of the main advan-
tages of such an approach is that it works for both software and hardware implementations. As they
are dedicated, these countermeasures concentrate on the sensitive parts of the computation rather than
on the whole device such as secure logic styles. Depending on the situation, these techniques may also
be called blinding or masking. The purpose of these countermeasures is to render the processed data
independent of predictable intermediate variables.

3.6.3.1 Randomization techniques for block ciphers

For block ciphers implementations, one usually makes use of a masking scheme. The principle of such a
scheme is to perform the computation is such a way that every sensitive intermediate variable is masked
by the addition of a random value. When a dth-order masking scheme is involved, every sensitive variable
Z is randomly split into d+ 1 shares M0, . . . , Md in such a way that the relation:

M0 ? · · · ? Md = Z (3.23)

is satisfied for a group operation ? (e.g. the XOR or the modular addition). Usually, d shares M1, . . . ,
Md (called the masks) are randomly picked up and the remaining share M0 (called the masked variable)
is computed according to (3.23). This ensures that every set of less than d + 1 shares among the Mi’s
is independent of Z. The attacker must then perform a (d+ 1)th-order side channel attack by exploiting
simultaneously the leakage signals L0, . . . , Ld resulting from the manipulation of the d + 1 shares M0,
. . . , Md. According to the analysis in [65], the complexity of such attacks increases exponentially with d,
which makes masking a sound countermeasure.

The design and cryptanalysis of masking schemes are studied in the second part of this thesis.

3.6.3.2 Randomization techniques for RSA

An RSA computation s = md mod N can be randomized in various ways due to its strong mathematical
structure. Let r and r′ denote random numbers, we have:

s = md+r·ϕ(N) mod N

= md−r ·mr mod N

= (m · r−1)d · rd mod N

=
(
md + r′ ·N mod (r ·N)

)
mod N .

Each of these expressions gives rise to a possible randomization of an RSA computation. In addition,
these techniques can be combined. Further details about SCA countermeasures for RSA can be found
in [70,76,128,166].
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3.6.4 Software desynchronization
Desynchronization may also be included in software. An efficient way to do that is by using operations
shuffling [124, 229]. The principle is to perform, as far as possible, the different operations in a random
order. Shuffling can be enhanced by the addition of dummy operations in order to increase the degree
of randomization. Another similar countermeasure consists in inserting random delays. This is usually
done by dummy loops performing a random number of iterations. Recently, improved methods have been
proposed for the insertion of random delays in software [79, 237]. All these countermeasures result in a
decrease of the leakage signal-to-noise ratio. However using advanced DPA attacks, their effect may be
mitigated [74].

3.6.5 Protocol level countermeasures
Countermeasures against SCA may also be included at the protocol level. As mentioned by Paul Kocher
et al. in [148], frequent key update procedures may prevent side channel attacks. Related approaches
have been followed in [184, 187]. To date, the protocols of most applications are designed without con-
sideration for SCA. This is unfortunate since protocol level countermeasures seem promising and they
would certainly lead to significant gains in efficiency.

3.7 Higher-order side channel analysis
Higher-order side channel analysis was first introduced by Paul Kocher, Joshua Jaffe, and Benjamin Jun
in [148] as attacks “that combine multiple samples from within a trace”. It was then more formally
defined by Thomas Messerges in [164]: “A dth-order DPA attack makes use of d different samples in
the power consumption signal that correspond to d different intermediate values calculated during the
execution of an algorithm”. Today, higher-order SCA usually refer to side channel attacks targeting
masked implementations [2, 23,176,183]. This terminology shall be used in the present thesis.

Let us consider a masking scheme in which a sensitive variable Z is split into d + 1 shares M0, . . . ,
Md satisfying (3.23) and which produce d + 1 leakage signals L0, . . . , Ld. As explained hereafter, the
classical side channel distinguishers presented in Section 3.5 can be extended to perform a (d+ 1)th-order
attack exploiting the Li’s.

3.7.1 Higher-order differential power analysis
We call higher-order differential power analysis (HO-DPA) any higher-order SCA using a correlation
distinguisher. Since the correlation is a univariate operator, the attacker must combine the d+ 1 leakage
signals L0, . . . , Ld in order to create a univariate signal that is correlated to the target variable. This is
done by means of a combining function C. The attack then consists in estimating the correlation between
the combined leakage C(L0, . . . , Ld) and the model M(X, k) = ϕ̂ ◦ f(X, k) for every key guesses k ∈ K.

Several combining functions have been proposed in the literature. Two of them are commonly used:
the product combining suggested by Suresh Chari, Charanjit Jutla, Josyula Rao, and Pankaj Rohatgi
in [65] which consists in multiplying the different signals:

Cprod(L0, . . . , Ld) = L0 × · · · × Ld , (3.24)

and the absolute difference combining proposed by Thomas Messerges in [164] which computes the abso-
lute value of the difference between two signals:

Cdiff (L0, L1) = |L0 − L1| . (3.25)

The latter can be extended to higher orders by induction:

Cdiff (L0, . . . , Ld) = | · · · ||L0 − L1| − L2| · · · − Ld| . (3.26)

Other combining functions have been proposed in [133, 175]. All these methods are sound to perform
HO-DPA, however it is not clear which of them is the most efficient.
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Issue 3.3. Among the existing combining functions, which one leads to the most efficient HO-DPA?

Once a combining function has been chosen, a remaining issue is the choice of the prediction function
ϕ̂ optimizing the attack.

Issue 3.4. Given a combining function C, which prediction function ϕ̂ optimizes the attack efficiency?

The two issues above are addressed in Chapter 6. First we give the optimal prediction function
according to any combining function and according to the leakage model. Afterwards, we study existing
combining functions for second-order DPA in the Hamming weight model. Our analysis allows us to
exhibit an improved product combining that is shown to be better than the other existing combining
functions. Afterwards we analyze the improved product combining at any order.

3.7.2 Higher-order mutual information analysis
Contrary to the correlation, the mutual information is a multivariate operator. As a result, it can be
directly involved in performing a higher-order MIA (HO-MIA). One just estimates the mutual information
between the prediction ϕ̂◦f(X, k) and the (d+1)-tuple of leakages (L1, . . . , Ld). The drawback of HO-MIA
is that it relies on pdf estimations (or at least entropy estimations) whose complexity grows exponentially
with the leakage dimension. As a result, it may quickly becomes impractical as d increases.

HO-MIA is discussed in more detail in Chapter 5: we address its theoretical and practical aspects
and we provide several experimental results.

3.7.3 Higher-order profiled attacks
The likelihood distinguisher can also be straightforwardly extended to higher orders. The principle re-
mains the same: estimate the probability P [K = k|(l,x)]. Here each leakage measurements li is composed
of d + 1 (possibly multivariate) leakages: li = (li,0, . . . , li,d) such that li,j corresponds to the leakage of
the jth share in the ith leakage measurements. Similarly to the first-order case, we have:

P [K = k|(l,x)] = α

N∏
i=1

P [L0 = li,0, . . . , Ld = li,d|Z = f(xi, k)] . (3.27)

Assuming that the leakage noises of each share are mutually independent, we further have:

P [K = k|(l,x)] = α

N∏
i=1

 ∑
m∈Zd

P
[
L0 = li,0|f(xi, k) = M0 ? m1 ? · · · ? md

]
·
d∏
j=1

P [Lj = li,j |Mj = mj ]

 .

Some works have described higher-order profiled attacks with an a priori known leakage model [175,
183]. However in the general case the pdfs P [Li|Mi] must be estimated as for first order profiled attacks.
The profiling efficiency then depends on whether or not the adversary controls the masks values on
the profiled device. If the adversary controls the Mi values (or at least knows them), he can apply an
estimation method for each P [Li|Mi] just as in the first order case (see Section 3.5.3). Without controlling
the Mi values, the profiling is much harder. In the Gaussian model, this amounts to estimating Gaussian
mixture pdfs which is usually done via an expectation maximization algorithm [152].
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4.1 Introduction
In this chapter, we investigate the issue of evaluating the success rate of side channel analysis in the
widely admitted Gaussian leakage model, i.e. under the Gaussian noise assumption. We introduce a new
approach that allows us to efficiently compute the success rate of an attack using either the correlation
or the likelihood as distinguisher.

The results presented in this chapter have been published in the international workshop on Selected
Areas in Cryptography (SAC 2008) [7].

4.2 Approach
Under the Gaussian noise assumption, the leakage related to the computation of a given value z ∈ Z
has a Gaussian distribution N (mz,Σz). That is, the leakage function and the noise are such that
ϕ(z) = mz and (B|Z = z) ∼ N (0,Σz). In order to determine the exact success rate of an attack,
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we must investigate the multivariate probability distribution of the distinguishing vector (dk)k∈K. This
distribution can be expressed with respect to the inputs vector x, the secret key k∗ and the leakage
distribution parameters (mz,Σz)z∈Z . We will show that under the Gaussian assumption, the multivariate
distribution of the distinguishing vector is (or at least can be precisely approximated by) a multivariate
Gaussian distribution. This will enable us to show how the success rate of such attacks can be efficiently
computed.

For clarity and without ambiguity, we shall respectively denote by mx,k∗ and Σx,k∗ the mean vector
mf(x,k∗) and the covariance matrix Σf(x,k∗). We will further denote by τx the occurrence ratio of an
element x ∈ X through the inputs vector x, i.e. :

τx =
|{i;xi = x}|

N
. (4.1)

4.3 Correlation distinguisher

4.3.1 Distribution
We investigate hereafter the distribution of the correlation distinguishing vector (ρk)k∈K such as defined
by (3.14). Since the correlation is an univariate distinguisher, we investigate the distribution of this
distinguisher with respect to univariate leakage measurements li ∼ N

(
mxi,k∗ , σ

2
xi,k∗

)
.

Let us first denote by Mk and σ̂k the mean and the standard deviation of the prediction vector(
M(xi, k)

)
i
, namely:

Mk =
∑
x∈X

τxM(x, k) and σ̂2
k =

∑
x∈X

τx
(
M(x, k)−Mk

)2
.

Instead of focusing on ρk, we focus in the sequel on the following coefficient:

ρ̇k =
1

σ̂kN

N∑
i=1

(
M(xi, k)−Mk

)
li . (4.2)

The distribution of (ρ̇k)k∈K is indeed more convenient to analyze than the one of (ρk)k∈K. Moreover,
one can verify that the ratio ρ̇k/ρk equals the standard deviation of the leakage measurement vector l.
Consequently, ρ̇k/ρk is positive and constant with respect to the key guess k. As a result,

argmax-o
k∈K

ρk = argmax-o
k∈K

ρ̇k

holds for every k and hence, the success rate of the attack is fully determined by the distribution of the
vector (ρ̇k)k∈K. The next proposition provides us with the exact distribution of this vector.

Proposition 4.1. The vector (ρ̇k)k∈K has a multivariate Gaussian distribution whose expectation satisfies
for every k ∈ K:

E [ρ̇k] =
1

σ̂k

∑
x∈X

τx
(
M(x, k)−Mk

)
mx,k∗ , (4.3)

and whose covariance satisfies for every (k1, k2) ∈ K2:

Cov [ρ̇k1 , ρ̇k2 ] =
1

Nσ̂k1 σ̂k2

∑
x∈X

τx
(
M(x, k1)−Mk1

) (
M(x, k2)−Mk2

)
σ2
x,k∗ . (4.4)

Proof. Since the li’s are drawn from Gaussian distributionsN (mxi,k∗ , σxi,k∗) and since the vector (ρ̇k)k∈K
is a linear transformation of l, one deduces that (ρ̇k)k∈K has a multivariate Gaussian distribution.

Now, for every x ∈ X , we have Nτx elements among the xi’s that are equal to x. This, together with
(4.2) immediately leads to (4.3). Then, the mutual independence of the li’s and the bilinearity of the
covariance imply (4.4).
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Proposition 4.1 gives the exact distribution of the distinguishing vector (ρ̇k)k∈K. This makes it possible
to precisely compute the success rate of a side channel attack that involves the Pearson correlation
coefficient (see Section 4.5).

It is worth noting that the distribution of (ρ̇k)k∈K does not fully depend on the inputs vector x but
only on the different ratios τx’s. A common choice, for a chosen plaintext SCA, is to set these ratios
at τx = 1/|X |. For a known plaintext/ciphertext SCA, assuming that the xi’s are uniformly drawn, we
further have τx ≈ 1/|X | for N large enough. We investigate this particular setting hereafter.

4.3.2 Distribution in the uniform setting
We investigate here the setting where the xi’s are chosen such that τx = 1/|X | holds for every x. We
further assume that the target variable Z can be expressed as Z = f ′(X ⊕ K) where f ′ is a balanced
function (i.e. the cardinal of f ′−1(z) is constant for every z ∈ Z).

In the uniform setting, the previous study can be simplified. In this setting, the mean and the standard
deviation of the prediction vector are constant with respect to k∗. Indeed, for every k ∈ K, we have:

Mk =
1

|Z|
∑
z∈Z

M(z) and σ̂k =

√
1

|Z|
∑
z∈Z

(
M(z)−M

)2
.

Hence, we can focus on the following coefficient:

ρ̈k =
1

N

N∑
i=1

M(xi, k)li . (4.5)

Once again ρ̈k/ρk is positive and constant with respect to k which implies that focusing on ρk instead of
ρ̈k does not affect the success rate of the attack. The following corollary gives the distribution of (ρ̈k)k∈K.

Corollary 4.1. The vector (ρ̈k)k∈K has a multivariate Gaussian distribution whose expectation satisfies
for every k ∈ K:

E [ρ̈k] =
1

|X |
∑
x∈X

M(x, k)mx,k∗ , (4.6)

and whose covariance satisfies for every (k1, k2) ∈ K2:

Cov [ρ̈k1 , ρ̈k2 ] =
1

N |X |
∑
x∈X

M(x, k1)M(x, k2)σ2
x,k∗ . (4.7)

Proof. Corollary 4.1 straightforwardly holds from Proposition 4.1 by setting Mk to 0 and σ̂k to 1.

An interesting property of the uniform setting is stressed in the following proposition.

Proposition 4.2. Let (dk)k∈K and (d′k)k∈K be the distributions of the vector (ρ̈k)k∈K for two secret keys
k∗1 ∈ K and k∗2 ∈ K respectively. In the uniform setting, the distributions (dk⊕k∗1 )k∈K and (d′k⊕k∗2

)k∈K are
indentical.

Proof. In the uniform setting, we have M(x, k) = M(f ′(x ⊕ k)) and mx,k∗ = mf ′(x⊕k∗). Hence, from

(4.6) we get E
[
dk⊕k∗1

]
= E

[
d′k⊕k∗2

]
for every k ∈ K and from (4.7) we get Cov

[
dk1⊕k∗1 , dk2⊕k∗1

]
=

Cov
[
d′k1⊕k∗2

, d′k2⊕k∗2

]
for every (k1, k2) ∈ K2. Finally, since (dk)k∈K and (d′k)k∈K are both Gaussian then

they are identical.

Proposition 4.2 shows that the vector (ρ̈k⊕k∗)k∈K has the same distribution for every k∗. Moreover,
the event k∗ ∈ argmax-ok∈K ρ̈k can be rewritten as 0 ∈ argmax-ok∈K ρ̈k⊕k∗ . Since the distribution of
(ρ̈k⊕k∗)k∈K is independent of k∗, we get that, in the uniform setting, the success rate is constant with
respect to k∗. Therefore, one only needs to analyze the distribution of (ρ̈k⊕k∗)k∈K for a given secret key
(e.g. for k∗ = 0) to get the distribution and the success rate of (ρ̈k)k∈K for any secret key k∗.
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4.4 Likelihood distinguisher

4.4.1 Likelihood in the Gaussian model
Under the Gaussian noise assumption, every leakage pdf l 7→ P [L = l|Z = z] is assumed to be the
Gaussian pdf φmz,Σz . Estimating such a pdf amounts to estimating the parameters (mz,Σz) for every
z ∈ Z. In the following, we shall denote the attacker estimations of (mz,Σz) by (m̂z, Σ̂z). For clarity
and without ambiguity, the estimated parameters m̂f(x,k) and Σ̂f(x,k) are further denoted by m̂x,k and
by Σ̂x,k. That is, the estimated pdf P̂ [L = ·|Z = f(x, k)] satisfies for every l ∈ L:

P̂ [L = l|Z = f(x, k)] =
1√

(2π)T |Σ̂x,k|
exp

(
−1

2
(x− m̂x,k)′ Σ̂−1

x,k (x− m̂x,k)

)
,

According to (3.21), the likelihood λk then satisfies:

λk =
1

2N

N∑
i=1

(
log
(
(2π)T |Σ̂xi,k|

)
− (li − m̂xi,k)′ Σ̂−1

xi,k
(li − m̂xi,k)

)
. (4.8)

4.4.2 Distribution
We investigate hereafter the distribution of the likelihood distinguishing vector (λk)k∈K such as defined
by (4.8).

Let us first introduce a few notations. The element of the ith row and of the jth column of a matrix
A is denoted by A[i, j] while the ith element of a vector V is denoted by V [i]. A′ denotes the transpose
of a matrix (or a vector) A. The notation ‖·‖ is used to denote the Euclidian norm while the notation

‖·‖hs refers to the Hilbert-Schmidt matrix norm defined by ‖A‖hs =
√∑

i,j A[i, j]
2. We shall further

denote by A2 the product A′A and by A−1/2 any matrix satisfying (A−1/2)′A−1/2 = A (e.g. the Cholesky
decomposition matrix). Finally the trace of A is denoted by Tr(A).

The next proposition provides a precise approximation of the distribution of the likelihood vector
(λk)k∈K.

Proposition 4.3. The distribution of the vector (λk)k∈K tends toward a multivariate Gaussian distribu-
tion as N grows. Moreover, for every k ∈ K, the expectation of λk satisfies:

E [λk] =
1

2

∑
x∈X

τx

(
log
(
2π|Σ̂x,k|

)
−
∥∥∥Σ̂
−1/2
x,k (mx,k∗ − m̂x,k)

∥∥∥2

− Tr
(

Σ̂
−1/2
x,k Σx,k∗

(
Σ̂
−1/2
x,k

)′))
, (4.9)

and for every (k1, k2) ∈ K2, the covariance between λk1 and λk2 satisfies:

Cov [λk1 , λk2 ] =
1

N

∑
x∈X

τx

( 1

2

∥∥∥Σ̂
−1/2
x,k1

Σx,k∗ (Σ̂
−1/2
x,k2

)′
∥∥∥2

hs

+ (mx,k∗ − m̂x,k1)′ Σ̂−1
x,k1

Σx,k∗ Σ̂−1
x,k2

(mx,k∗ − m̂x,k2)
)
. (4.10)

The proof of Proposition 4.3 makes use of the following lemma.

Lemma 4.1. Let X be a T -size random vector having a Gaussian distribution N (0,Σ). Let A1 and A2

be two (T ×T )-matrices and let m1 and m2 be two T -size vectors. Let Q1 and Q2 be two quadratic forms
defined, for j = 1, 2, by Qj = (X +mj)

′A2
j (X +mj). For j = 1, 2, the expectation of Qj satisfies:

E [Qj ] = ‖Ajmj‖2 + Tr(Aj ΣA′j) . (4.11)

And the covariance of Q1 and Q2 satisfies:

Cov [Q1, Q2] = 2 ‖A1 ΣA′2‖
2
hs + 4 m′1A

2
1 ΣA2

2m2 . (4.12)
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Proof. We have Qj =
∑T
i=1 (Aj (X +mj))[i]

2 which leads to:

E [Qj ] =

T∑
i=1

E
[
(Aj (X +mj))[i]

2
]

(4.13)

=

T∑
i=1

E [(Aj (X +mj))[i]]
2

+

T∑
i=1

Var [(Aj (X +mj))[i]] , (4.14)

since E
[
Y 2
]

= Var [Y ] + E [Y ]
2 holds for every random variable Y . From (X +mj) ∼ N (mj ,Σ) we have

Aj (X +mj) ∼ N
(
Ajmj , Aj ΣA′j

)
which directly yields (4.11).

The quadratic form Qj can be rewritten as Qj = (AjX)2 + (Ajmj)
2 + 2m′j A

2
j X for j = 1, 2. By

bilinearity, Cov [Q1, Q2] satisfies:

Cov [Q1, Q2] = Cov
[
(A1X)2, (A2X)2

]
+ 2 Cov

[
(A1X)2, m′2A2X

]
+ 2 Cov

[
(A2X)2, m′1A1X

]
+ 4 Cov [m′1AX, m

′
2AX] . (4.15)

We claim the three following relations:

Cov
[
(A1X)2, (A2X)2

]
= 2 ‖A1 ΣA′2‖

2
hs , (4.16)

Cov
[
(A1X)2,m′2A

2
2X
]

= Cov
[
(A2X)2,m′1A

2
1X
]

= 0 , (4.17)

Cov
[
m′1A

2
1X, m

′
2A

2
2X
]

= m′1A
2
1 ΣA2

2m2 . (4.18)

These relations together with (4.15) result in (4.12) and state the correctness of Lemma 4.1. Re-
lation (4.18) straightforwardly holds from the bilinearity of the covariance and by symmetry of A2

1

(i.e. (A2
1)′ = A2

1). Relations (4.16) and (4.17) are stated hereafter.

First, let us show (4.16). The covariance between (A1X)2 and (A2X)2 can be rewritten as:

Cov
[
(A1X)2, (A2X)2

]
=

∑
i,j

Cov
[
(A1X)[i]

2
, (A2X)[j]

2
]

(4.19)

=
∑
i,j

(
E
[
(A1X)[i]

2
(A2X)[j]

2
]
− E

[
(A1X)[i]

2
]

E
[
(A2X)[j]

2
])

.(4.20)

Since the expectations of A1X and A2X equal zero, the expectation of the product (A1X)[i]
2
(A2X)[j]

2

is the Gaussian forth order moment that is known to satisfy:

E
[
(A1X)[i]

2
(A2X)[j]

2
]

= E
[
(A1X)[i]

2
]

E
[
(A2X)[j]

2
]

+ 2 Cov [(A1X)[i], (A2X)[j]]
2
. (4.21)

Hence, (4.20) gives:

Cov
[
(A1X)2, (A2X)2

]
= 2

∑
i,j

Cov [(A1X)[i], (A2X)[j]]
2
. (4.22)

Since we have Cov [(A1X)[i], (A2X)[j]] = (A1 ΣA′2)[i, j], one deduces that (4.22) finally results in (4.16).

We now show the correctness of (4.17). We have:

Cov
[
(A1X)2, m′2A

2
2X
]

=
∑
i

Cov
[
(A1X)[i]

2
, m′2A

2
2X
]
. (4.23)

Since X has a zero mean, every term of the previous sum is a Gaussian third order moment and is hence
equal to zero. This way, we get (4.17).
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We give hereafter the proof of Proposition 4.3.

Proof. (Proposition 4.3) Since the li’s are independently drawn from distributions N (mxi,k∗ ,Σxi,k∗) and
since, for every x, there is a ratio τx of the xi’s that equal x, Relation (4.8) and Lemma 4.1 directly lead
to (4.9) and (4.10).

Now, (λk)k∈K can be expressed as a linear transformation of the vector
∑N
i=1 li and of the vector(∑N

i=1 li[j1]li[j2]
)

16j1,j26T
. The first one has a multivariate Gaussian distribution and, from the mul-

tivariate central limit theorem, the second one tends toward a multivariate Gaussian distribution as N
grows. Hence (λk)k∈K tends toward a multivariate Gaussian distribution as N grows.

4.4.3 Convergence of the distribution
Proposition 4.3 shows that the distribution of the log-likelihood vector (λk)k∈K tends towards a mul-
tivariate Gaussian distribution as the number N of leakage measurements grows. We argue hereafter
that this convergence is quick meaning that approximating the distribution of (λk)k∈K by a multivariate
Gaussian is sound.

According to (4.8), the log-likelihood λk can be expressed as the sum of |X | values λk,x that are
defined by:

λk,x =
τx
2

log
(
(2π)T |Σ̂x,k|

)
− 1

2N

N∑
i=1
xi=x

(li − m̂x,k)′ Σ̂−1
x,k (li − m̂x,k) . (4.24)

The first term is constant and the second term is a sum of Nτx elements of the form X ′A2X where A
is the matrix Σ̂

−1/2
x,k and X is a Gaussian random variable N (mx,k∗ − m̂x,k,Σx,k∗). The distribution of

such a sum is given in the following lemma. At first, let us recall that the chi-square distribution with
n degrees of freedom χ2 (n) is the distribution obtained by summing n independent N (0, 1)-distributed
random variables.

Lemma 4.2. Let (Xj)j be n independent T -size random vectors having a Gaussian distribution N (m,Σ),
let A be a (T × T )-matrix and let (Qj)j be the quadratic forms defined as Qj = X ′j A

2Xj. The sum of
the Qj satisfies:

n∑
j=1

Qj = β +G+

T∑
i=1

αiCi , (4.25)

where β = n(A·m)2, αi = (AΣA′)[i, i], G is an univariate Gaussian random variable, Ci are T chi-square
random variables with n degrees of freedom.

Proof. For j = 1, 2, we have Qj = (AXj)
2. Denoting by Xj the centered random variable Xj −m, we

get Qj = (Am)2 + 2 m′A2Xj + (AXj)
2 and hence,

∑
j Qj = β + 2

∑
jm
′A2Xj +

∑
j

∑
i (AXj)[i]

2
.

After denoting 2
∑
jm
′A2Xj by G and 1

αi

∑
j (AXj)[i]

2
by Ci, we get (4.25). Now, G is Gaussian

since it is defined as a sum of Gaussian random variables. Moreover, the covariance matrix of AXj

being equal to AΣA′, we have, for every j: αi = Var
[
(AXj)[i]

]
. This implies that 1√

αi
(AXj)[i] is

N (0, 1)-distributed for every j, hence by definition Ci is χ2 (n)-distributed.

A chi-square distribution with n degrees of freedom quickly tends towards a Gaussian distribution as
n grows. A rule of thumb in probability theory is to consider the approximation χ2 (n) ≈ N (n, 2n) quite
reasonable for n > 30. From Lemma 4.2, λk,x is a sum of a constant, a Gaussian random variable and
T chi-square random variables with Nτx degrees of freedom. Therefore, for Nτx large enough, we can
consider that λk,x has a Gaussian distribution. If this holds for every x ∈ X then the distribution of λk
can fairly be approximated by a Gaussian.

As shown in Section 4.5, approximating the distribution of the likelihood vector by a multivariate
Gaussian is sound to estimate the success rate of a likelihood attack. The computational cost of (4.9) and
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(4.10) is O(|X |T 3) where T denotes the leakage dimension. The total cost of computing the distribution
parameters is hence O(|K|2|X |T 3). This may be prohibitive if the leakage dimension is high. However,
the leakage dimension can be reduced by pre-processing the leakage measurements [28,213]. In practice,
T = 3 is often sufficient to catch most of the side channel information [28,213].

4.4.4 Distribution in the uniform setting
Proposition 4.2 also applies to the log-likelihood vector (λk)k∈K. Besides, in the uniform setting (see
Section 4.3.2), the success rate of a likelihood attack is also constant with respect to k∗.

4.5 Success rate evaluation
In accordance with the analyses of Sections 4.3 and 4.4, we assume that the distribution of the dis-
tinguishing vector d = (dk)k∈K is a multivariate Gaussian N (md,Σd). In this section we present two
approaches to compute the success rate of a side channel key recovery attack, once the parameter of this
distribution have been determined.

In the first approach, we show that the success rate can be expressed as a sum of Gaussian cumulative
distribution functions (cdf). It can hence be estimated by numerically computing these cdf. The second
approach consists in simulating the multivariate Gaussian vector d several times in order to get a precise
estimation of the success rate.

4.5.1 Numerical computation
We show hereafter that the success rate can be expressed as a sum of Gaussian cdf. For this purpose,
we need to introduce the comparison vector that is the (|K| − 1)-size vector c = (ck)k∈K/{k∗} defined for
every k ∈ K/{k∗} by:

ck = dk∗ − dk . (4.26)

If all the coordinates of this vector are positive then the attack succeeds in isolating the good key
guess as first candidate. If n coordinates are negative then the attack rates the good key guess as
the (n + 1)th candidate; in other words, it succeeds at the (n + 1)th order. The comparison vector
is a linear transformation of the distinguishing vector by a ((|K| − 1) × |K|)-matrix P whose expression
straightforwardly follows from (4.26). This implies that the comparison vector has a multivariate Gaussian
distribution N (mc,Σc) where mc = Pmd and Σc = PΣdP

′.
Let α ⊆ {1, . . . , |K| − 1} be a set of indices and let Iα and Sα be the (|K| − 1)-size vectors defined by:

Iα[i] =

{
−∞ if i ∈ α
0 if i /∈ α and Sα[i] =

{
0 if i ∈ α
+∞ if i /∈ α .

The vector c has exactly n negative coordinates if and only if there exists a set α of cardinal n s.t.
Iα < c < Sα. Since the intervals ([Iα, Sα])α are disjoints, the probability that exactly n coordinates of c
be negative can be written as:

pn =
∑

α;|α|=n

P [Iα 6 c 6 Sα] . (4.27)

The oth-order success rate equals the sum p0 + p1 + · · ·+ po−1 which from (4.27) gives:

Succ-o =
∑

α;|α|<o

P [Iα 6 c 6 Sα] =
∑

α;|α|<o

Φmc,Σc (Iα, Sα) , (4.28)

where Φm,Σ denotes the Gaussian cdf that satisfies Φm,Σ : (a, b) 7→
∫ b
a
φm,Σ(x) dx.

Relation (4.28) shows that the oth-order success rate can be computed by performing
∑
i<o

(|K|−1
i

)
multivariate Gaussian cdf calculations (on (|K|−1)-size Gaussian vectors). The numerical computation of
multivariate Gaussian cdf is a classical issue in statistics. Some solutions exist (see for instance [101,102])
that can be used to precisely compute the success rate according to (4.28).
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This approach has some drawbacks. Firstly, the numerical computations of Gaussian cdf may be
difficult with covariance matrices having particular forms and/or quite high dimensions. For instance
it requires that the covariance matrix is not singular, which is not always the case in our context.
Yet another drawback of this approach is that the computation of high-order success rates requires
an important number of Gaussian cdf computations. Regarding these issues, a possible alternative is
presented in the next section.

4.5.2 Gaussian simulation

Another possibility to compute the success rate is to perform a Gaussian simulation. The principle
is to simulate several times the distribution N (md,Σd). This amounts to randomly pick up several
distinguishing vectors each one corresponding to the result of an attack. The success rate is estimated
based on these different results. In other words, this approach works as an attack simulation, but instead
of performing the attack several times, we perform several Gaussian random vectors simulation which
is clearly more efficient especially when the number of leakage measurements is high and/or the leakage
dimension is high. Another advantage of this approach is that the success rate at the different orders
as well as the guessing entropy (see Section 3.4.4.2) can all be computed using the same simulated
distinguishing vectors. Finally Gaussian simulation is sound even when the covariance matrix is singular
which may happen in our context.

4.6 Empirical validation

In order to empirically validate the theoretical analyses conducted in the previous sections we performed
several simulations. We chose Z = X ⊕ K as target variable where X and K are 8-bit variables. The
leakage means (mz)z∈Z and the leakage covariance matrix Σ were drawn with random coefficients. Their
dimensions were set to 1 for a correlation attack, and to 3 for a likelihood attack (this is a typical
dimension when subspace-based profiling is involved [28,213]). The attacker model/estimations were first
assumed to be exact (i.e. M(z) = mz, m̂z = mz and Σ̂ = Σ) and then assumed to be slightly erroneous
(by inserting random errors).

On the one hand, the success rate was estimated empirically by simulating the attack. Namely, the
leakage measurements li corresponding to random inputs xi were randomly picked up according to the
leakage parameters (mxi,k∗ ,Σxi,k∗). The attack was performed several times (a few thousands) on such
simulated measurements in order to obtain an empirical success rate. On the other hand, the success rate
was estimated using our approach. We computed the distinguishing vector expectation and covariance
matrix (such as described in Sections 4.3 and 4.4) according to the leakage parameters and assuming
τx = 1/256 for every x. Then we performed Gaussian simulations (see Section 4.5.2) to get an estimation
of the success rate.

As expected, for the correlation attacks, the different success rates obtained with our approach always
perfectly match the success rates obtained by attack simulations. For likelihood attacks, the success
rates obtained with our approach also match quite well the success rates obtained by attack simulations.
The precision of this matching depends on the number of leakage measurements required for the attack
to succeed (with a high success rate). When this number is quite low (i.e. around a few hundreds),
our estimation slightly overvalues the real success rate. This overvaluation becomes less marked as the
number of required leakage measurements for the attack to succeed (with high success rate) increases.
As an illustration the success rate of four attacks requiring different amounts of leakage measurements is
plotted Figure 4.1. The success rates that were obtained by attack simulation are plotted in black while
the corresponding ones obtained with our approach are plotted in grey. The convergence can be clearly
observed. Figure 4.2 shows both success rates for an attack requiring around 200 leakage measurements
to succeed (with high success rate). When moving up to 500 required leakage measurements, the curves
completely mix up.

The different empirical results that we obtained have demonstrated the soundness of our theoretical
analysis. They also show that the approximation τx ≈ 1/|X | is sound when the xi’s are randomly drawn
(i.e. in a known plaintext/ciphertext attack setting).
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Figure 4.1: Success rates of different likelihood
attacks over an increasing number of leakage
measurements.

Figure 4.2: Success rates of a likelihood attack
over an increasing number of leakage measure-
ments.

4.7 Number of leakage measurements vs. leakage variance
We investigate hereafter how an increase in the leakage noise variance impacts the number of leakage
measurements required for a given success rate.

4.7.1 Correlation distinguisher
From (4.3) we see that the distinguishing vector expectation does not depend on the leakage variance
nor on the number of leakage measurements. Conversely, (4.4) shows that the covariance matrix depends
on these parameters. If the leakage variance is multiplied by a factor λ then so does the covariance
matrix. And if the number of measurements is multiplied by a factor λ then the covariance matrix is
multiplied by 1/λ. As a result, if the leakage variance is increased by a given factor, the number of
leakage measurements must also be increased by the same factor to keep unchanged the distinguisher
distribution and hence the attack success rate.

4.7.2 Likelihood distinguisher
In order to simplify our analysis, we make the independent noise assumption (see Section 3.4.3). Under
this assumption, the covariance matrix Σz is the same for every z ∈ Z.

Let us denote the leakage covariance matrix by Σ and its estimation by Σ̂. Under the independent
noise assumption, (4.9) and (4.10) can be rewritten as:

E [λk] = C1 −
1

2

∑
x∈X

τx

∥∥∥Σ̂−1/2 (mx,k∗ − m̂x,k)
∥∥∥2

, (4.29)

and
Cov [λk1 , λk2 ] = C2 +

1

N

∑
x∈X

τx (mx,k∗ − m̂x,k1)′ Σ̂−1 Σ Σ̂−1 (mx,k∗ − m̂x,k2) , (4.30)

where C1 = log
(
2π|Σ̂|

)
+ Tr

(
Σ̂−1/2 Σ

(
Σ̂−1/2

)′) and C2 = 1
2N

∥∥∥Σ̂−1/2 Σ (Σ̂−1/2)′
∥∥∥2

hs
are constant with

respect to k.
We show in Section 4.5.1 that the success rate depends of the distribution of the comparison vector

c = (ck)k∈K/{k∗} that is defined, for a likelihood attack , by ck = λk∗ − λk for every k ∈ K. Assuming
(λk)k∈K Gaussian, c has a Gaussian distribution whose parameters satisfies:

E [ck] = E [λk∗ ]− E [λk] , (4.31)
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and
Cov [ck1 , ck2 ] = Var [λk∗ ] + Cov [λk1 , λk2 ]− Cov [λk∗ , λk1 ]− Cov [λk∗ , λk2 ] . (4.32)

From these expressions, we can see that the constant terms C1 and C2 of (4.29) and (4.30) cancel each
other out in the expectation and the covariance matrix of c. It thus appears that multiplying the leakage
covariance matrix by a factor λ (and assuming that its estimation is also multiplied by λ) results in the
multiplication of mc and Σc by 1/λ while multiplying the number of leakage measurements by λ results
in the multiplication of Σc by 1/λ.

One can verify that the Gaussian cdf satisfies for every (a, b):

Φm/λ,Σ/λ2(a, b) = Φm,Σ(λa, λb) . (4.33)

As shown in Section 4.5.1, the success rate can be expressed as a sum of cdf Φmc,Σc with inputs in
{0,+∞,−∞}|K|−1. One thus deduces from (4.33) that multiplying mc by 1/λ and Σc by 1/λ2 keeps the
success rate unchanged. Hence we obtain that multiplying the leakage covariance matrix and multiplying
the number of leakage measurements have complementary effects on the success rate of a likelihood attack.

Fact 4.1. Under the Gaussian noise assumption and the independent noise assumption, a correlation
attack and a likelihood attack are affected in the same way when the leakage noise increases. Besides,
when the leakage noise increases, the ratio between the number of required leakage measurements for both
attacks remains constant.
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5.1 Introduction
In this chapter, we study theoretical and practical aspects of MIA. We first conduct a theoretical analysis
of MIA under the Gaussian noise assumption. Afterwards we address the major practical issue of MIA:
the entropy estimation. In particular, we introduce a parametric estimation based MIA which is clearly
more efficient than the original proposal. Eventually, we provide simulations and practical experiments
that validate our analysis. Further analysis of MIA can be found in [170,241].

Part of the results presented hereafter have been published in collaboration with Emmanuel Prouff in
the international conference on Applied Cryptography and Network Security (ACNS 2009) [5].

5.2 Preliminaries
We consider an attacker that uses a model M = ϕ̂ ◦ f and that estimates the mutual information
I(M(X, k);L) to distinguish key guesses k ∈ K. In the following, we shall denote the function f(·, k) by
fk and we shall denote the variable M(X, k) by Y (k) (i.e. we have Y (k) = ϕ̂ ◦ fk(X)). The set Im(ϕ̂)
of the possible prediction values will be firther denoted y. For clarity reasons, we shall further use Y to
denote Y (k) when there is no ambiguity.

67
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An MIA succeeds at the oth-order iff the estimations Î(L, Y (k)) of I(L, Y (k)) satisfy:

k∗ ∈ argmax-o
k∈K

Î(L, Y (k)) . (5.1)

We therefore deduce two necessary conditions for an MIA to succeed at the oth-order:

— Theoretical. The mutual information (I(L, Y (k)))k∈K must satisfy:

k∗ ∈ argmax-o
k∈K

I(L, Y (k)) . (5.2)

— Practical. The estimations of (I(L, Y (k)))k∈K must be good enough to satisfy (5.1) while (5.2) is
satisfied.

In the next section, we study when Relation (5.2) is satisfied. This will allow us to characterize
(with regards to f , ϕ, ϕ̂) when an MIA is theoretically possible. Then, for 3-tuples (f, ϕ, ϕ̂) s.t. (5.2)
is satisfied, we shall study in Section 5.5 the success probability of the MIA according to the estimation
method used to compute Î and according to the noise variation. This will allow us to characterize when
an MIA is practically feasible (i.e. when (5.1) is satisfied) and when it is more efficient than the other
SCA attacks.

5.3 Study of MIA in the Gaussian model
In this section we focus on first-order MIA and, in a second time, we extend our analysis to the higher-
order case i.e. when the target implementation is protected by masking [65]. We conduct our analysis
assuming a univariate leakage model and under the independent noise and the Gaussian noise assumptions
(see Section 3.4.3). Namely, the leakage can be expressed as:

L = ϕ ◦ fk∗(X) +B , (5.3)

where B ∼ N
(
0, σ2

)
.

We shall further make the two following assumptions which are realistic in a side channel analysis
context and make the formalization easier.

Assumption 5.1 (Uniformity). The plaintext X has a uniform distribution over Fn2 .

Assumption 5.2 (Balancedness). For every k ∈ K, the function fk : x ∈ Fn2 7→ fk(x) ∈ Fn2 is s.t.
#{x ∈ Fn2 ; y = fk(x)} equals 2n−m for every y ∈ Fm2 .

Remark 5.1. This assumption states that the algorithmic functions targeted by the SCA are balanced
which is usually the case in a cryptographic context.

5.3.1 First-order MIA
The mutual information I(L, Y (k)) equals the difference of entropies H[L]− H[L|Y (k)]. Since H[L] does
not depend on the key prediction, I(L|Y (k)) reaches one of its o highest values when k ranges over K
iff the conditional entropy H[L|Y (k)] reaches one of its o smallest values. One deduces that an MIA is
theoretically possible iff the 3-tuple (f, ϕ, ϕ̂) is s.t.:

k∗ ∈ argmin-o
k∈K

H[L|Y (k)] , (5.4)

where argmin-o is defined analogously to argmax-o .
The starting point of our analysis is that studying the MIA effectiveness is equivalent to investigating

the minimality of H[L|Y (k)] over K. According to (2.14), we have:

H[L|Y ] =
∑
y∈y

P [Y = y] H[L|Y = y] . (5.5)
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Under the Gaussian noise assumption, L is a continuous random variable, therefore H[L|Y = y] is defined
as:

H[L|Y ] = −
∑
y∈y

P [Y = y]

∫
`

gL|Y=y(`) log gL|Y=y(`)d` , (5.6)

where gL|Y=y denotes the pdf of the random variable (L|Y = y).
To reveal the relationship between H[L|Y (k)] and the key-prediction k, the expression of the pdf

gL|Y=y in (5.6) needs to be developed. Let us denote by Ek(y) the set [ϕ̂ ◦ fk]−1(y). Since X has a
uniform distribution over Fn2 , for every ` ∈ L and every y ∈ Im(ϕ̂ ◦ fk) we have:

gL|Y=y(`) =
1

#Ek(y)

∑
x∈Ek(y)

φϕ◦fk∗ (x),σ(`) . (5.7)

The next proposition directly follows.

Proposition 5.1. For every pair (k∗, k) ∈ K2 and every y ∈ y the pdf of the random variable (L|Y (k) =
y) is a Gaussian mixture gθ whose parameter θ satisfies:

θ =
(
(wy,t, t, σ

2)
)
t∈Im(ϕ)

,

with

wy,t = P [ϕ ◦ fk∗(X) = t | ϕ̂ ◦ fk(X) = y] =
#
(
[ϕ ◦ fk∗ ]−1(t) ∩ Ek(y)

)
#Ek(y)

.

In Proposition 5.1, the key hypothesis k only plays a part in the definition of the weights wy,t of the
Gaussian mixture. In other terms, gL|Y (k)=y is always composed of the same Gaussian pdfs and the key
hypothesis k only impacts the way how the Gaussian pdfs are mixed. To go further in the study of the
relationship between k and H[L|Y (k) = y], let us introduce the following diagram where y is an element
of y, where F ′, F and T are image sets:

y
ϕ̂−1

−−→ F ′
f−1
k−−→ Ek(y)

fk∗−−−→ F
ϕ−−→ T ,

Based on the diagram above, we can make the two following observations:

— If the set T is reduced to a singleton set {t1} (i.e. if ϕ̂ ◦ fk is constant equal to t1 on Ek(y)), then
all the probabilities wy,t s.t. t 6= t1 are zero and wy,t1 equals 1. In this case, one deduces from
Proposition 5.1 that the distribution of (L|Y (k) = y) is Gaussian and, due to (2.17), its conditional
entropy satisfies

H[L|Y (k) = y] =
1

2
log(2πeσ2) .

— If the set T contains more than one element (i.e. ϕ◦fk∗ is not constant over Ek(y)), then there exists
at least two probabilities wy,t1 and wy,t2 which are non-zero and the distribution of (L|Y (k) = y)
is a Gaussian mixture (not Gaussian). Due to (2.18), its entropy satisfies:

H[L|Y (k) = y] >
1

2
log(2πeσ2) .

When ϕ is constant on F ′ (e.g. when ϕ̂ = ϕ or ϕ̂ = Id), the two observations above provide us with
a discriminant property. If k∗ = k, then we have F = F ′ and thus T is a singleton and H[L|Y (k) = y]
equals 1

2 log(2πeσ2). Otherwise, if k 6= k∗, then fk∗ ◦ fk is likely to behave as a random function4. In this
case, F is most of the time different from F ′ and T is therefore likely to have more than one element5.
This implies that #ϕ ◦ fk∗(Ek(y)) is strictly greater than 1 and thus that H[L|Y (k) = y] is greater than
or equal to 1

2 log(2πeσ2). Eventually, we get the following proposition in which we exhibit a tight lower
bound for the differential entropy H[L|Y (k)].

4This property, sometimes called wrong-key assumption [63], is often assumed to be true in a cryptographic context, due
to the specific properties of the primitive f .

5As detailed later, this is only true if ϕ̂ ◦ fk is non-injective.
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Proposition 5.2. For every (k∗, k) ∈ K2, the conditional entropy H[L|Y (k)] satisfies:

1

2
log
(
2πeσ2

)
6 H[(L|Y (k)] . (5.8)

Moreover, if ϕ ◦ fk∗ is constant on Ek(y) for every y ∈ y, then the lower bound is tight.

Proof. Relation (5.8) is a straightforward consequence of (5.5) and of Propositions 2.1 and 5.1. The
tightness is a direct consequence of (2.17) and Proposition 5.1.

Remark 5.2. Intuitively, the entropy H[L] is a measure of the diversity or randomness of L. It is therefore
reasonable to think that the more components in the Gaussian mixture pdf of (L|Y (k) = y), the greater
its entropy. Relation (5.8) provides a first validation of this intuition. The entropy is minimal when the
pdf is a Gaussian one (i.e. when the Gaussian mixture has only one component). In our experiments
(partially reported in Section 5.5), we noticed that the entropy of a Gaussian mixture whose components
have the same variance, increases with the number of components.

Corollary 5.1. If ϕ̂ ◦ fk is injective, then H[L|Y (k)] equals 1
2 log(2πeσ2) for every k ∈ K.

Proof. If ϕ̂ ◦ fk is injective, then Ek(y) is a singleton and ϕ ◦ fk∗ is thus constant on Ek(y).

If the functions ϕ̂ ◦ fk’s are all injective, then Corollary 5.1 implies that the MIA cannot succeed at
any order. Indeed, in this case the entropy H[L|Y (k)] stays unchanged when k ranges over K and thus,
k∗ does not satisfy (5.4). As a consequence, when the fk’s are injective (which is for instance the case
when fk consists of a key addition followed by the AES S-box), then the attacker has to choose ϕ̂ to be
non-injective (e.g. the Hamming weight function). It must be noticed that this is a necessary but not
sufficient condition since the function ϕ̂ must also be s.t. I(ϕ̂, ϕ) is non-negligible (otherwise the MIA
would clearly fail). In this case, the attacker must have a certain knowledge about the leakage function
ϕ in order to define an appropriate function ϕ̂ and hence, the MIA does no longer benefit from one of
its main advantages. This drawback can be overcome by exclusively targeting intermediate variables s.t.
the fk’s are not injective (in AES, the attacker can for instance target the bitwise addition between two
S-box outputs during the MixColumns operation).

5.3.2 Generalization to the higher-order case
In this section, we extend the analysis of MIA to higher orders and we assume that the target imple-
mentation is protected by Boolean masking. The sensitive variable fk∗(X) is now masked with d − 1
independent random variables M1, . . . , Md−1 which are uniformly distributed over Z.

The masked data fk∗(X)⊕M1 ⊕ · · · ⊕Md−1 and the different masks Mj ’s are processed at different
times. The leakage about fk∗(X)⊕M1 ⊕ · · · ⊕Md−1 is denoted by L0 and the leakages about the Mj ’s
are denoted by L1, . . . , Ld−1. Under the Gaussian noise and the independent noise assumptions, the Lj ’s
satisfy:

Lj =

{
ϕ[fk∗(X)⊕

⊕d−1
t=1 Mt] +B0 if j = 0,

ϕj(Mj) +Bj if j 6= 0,
(5.9)

where the Bj ’s are independent Gaussian noises with mean 0 and standard deviations σj , and where ϕ,
ϕ1, . . . , ϕd−1 are d device dependent functions that are a priori unknown to the attacker. The vector
(L0, . . . , Ld−1) is denoted by L. The vector of masks (M1, . . . ,Md−1) is denoted by M. We denote by
Φk∗(X,M) the vector (ϕ(fk∗(X)⊕

⊕d−1
t=1 Mt), ϕ1(M1), . . . , ϕd−1(Md−1)).

To simplify our analysis, we assume that the attacker knows the manipulation times exactly and is
therefore able to get a sample for the random variable L. Under this assumption and for the same reasons
as in the univariate case, higher-order MIA essentially consists in looking for the key candidate k which
minimizes an estimation of the conditional entropy H[L|Y (k)]. Similarly to (5.5), this entropy satisfies:

H[L|Y ] =
∑
y∈y

P [Y = y] H[L|Y = y] .
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Since Y equals ϕ̂◦fk(X), the probabilities P [Y = y] in this sum can be exactly computed by the attacker.
Once this computation has been performed, estimating H[L|Y ] amounts to estimate the entropies H[L|Y =
y] for all the prediction values y. These entropies are estimated as for the first-order case (see (5.6)), but
the pdfs gL|Y (k)=y are multivariate. More precisely, after denoting by Σ the matrix (Cov [Bi, Bj ])i,j , we
get:

gL|Y (k)=y(`) =
1

#Ek(y)(#Z)d−1

∑
x∈Ek(y)

m∈Zd−1

gΦk∗ (x,m),Σ(`) . (5.10)

In a similar way than in Section 5.3.1, the next proposition directly follows.

Proposition 5.3. For every pair (k∗, k) ∈ K2 and every y ∈ y the pdf of the random variable (L|Y (k) =
y) is a Gaussian mixture gθ whose parameter θ satisfies:

θ = ((wy,t, t,Σ))t ,

with
Σ = (Cov [Bi, Bj ])i,j ,

and

wy,t = P [Φk∗(X,M) = t | ϕ̂ ◦ fk(X) = y] =
#Φ−1

k∗ (t) ∩ (Ek(y)×Zd−1)

#(Ek(y)×Zd−1)
.

We deduce from Propositions 2.1 and 5.3 the following result.

Proposition 5.4. For every (k∗, k) ∈ K2, the entropy H[L|(Y (k),M)] satisfies:

1

2
log
(
(2πe)d|Σ|

)
6 H[L|(Y (k),M)] . (5.11)

Moreover, if ϕ ◦ fk∗ is constant on Ek(y) for every y ∈ y, then the bound is tight.

We cannot deduce from the proposition above a wrong-key discriminator as we did in the univariate
case. Indeed, to compute the entropy in (5.11) the attacker must know the mask values, which is
impossible in our context. However, if the 3-tuple (f, ϕ, ϕ̂) satisfies the condition of Proposition 5.4, then
it can be checked that for every y the number of components in the multivariate Gaussian mixture pdf
of (L|Y (k) = y) reaches its minimum for k = k∗. As discussed in Remark 5.2, this implies that the
entropies of the random variables (L|Y (k) = y) are likely to be minimum for k = k∗. The simulations
and experiments presented in Section 5.5 provides us with an experimental validation of this fact.

In the next sections, we assume that an MIA is theoretically possible. Namely, we assume that k∗
belongs to argmin-o k H[L|Y (k)] for a given order o. At first, we study the success probability of an MIA
according to the method used to estimate H[L|Y (k)] and the noise variation. Secondly, we compare the
efficiency of an MIA with the one of the DPA in different contexts.

5.4 Conditional entropy estimation

Let L be a d-dimensional random variable defined over Ld and let k be a key-candidate. We assume that
the attacker has a sample of N leakage-message pairs (li, xi) ∈ Ld×X corresponding to a key k∗, and that
he wants to estimate H[L|Y (k)] to discriminate key-candidates k. Due to (5.5), estimating H[L|Y (k)]
from the sample ((li, xi))i essentially amounts to estimate the entropy H[L|Y (k) = y] for every y ∈ y.
For such a purpose, a first step is to compute estimations ĝL|Y=y of the pdfs gL|Y=y. Then, depending on
the estimation method that has been applied, the H[L|Y (k) = y]’s are either directly computable or must
still be estimated. In the following we present three estimation methods and we discuss their pertinency
in our context.
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5.4.1 Histogram method
Description. We choose d bin widths h0, . . . , hd−1 (one for each coordinate of the leakage vectors)
and we partition the leakage space Ld into regions (Rα)α with equal volume υ =

∏
j hj . Let k be a key-

candidate and let y be an element of y. We denote by Sy the sub-sample
(
li;xi ∈ [ϕ ◦ fk]−1(y)

)
i
⊆ (li)i

and by `i,j the jth coordinate of li. To estimate the pdf gL|Y=y, we first compute the density vector Dy

whose coordinates are defined by:

Dy(α) =
#(Sy ∩Rα)

#Sy
, (5.12)

where Sy ∩Rα denotes the sample of all the li’s in Sy that belong to Rα.
The estimation ĝL|Y=y is then defined for every l ∈ Ld by ĝL|Y=y(l) =

Dy(il)
υ , where il is the index

of the region Ril that contains l. Integrating the pdf estimation according to formula (2.12) gives
the following estimation for the conditional entropy: Ĥ(L|Y = y) = −

∑
αDy(α) log(Dy(α)/υ). We

eventually get:

Ĥ(L|Y ) = −
∑
y∈y

P [Y = y]
∑
α

Dy(α) log

(
(
Dy(α)

υ

)
. (5.13)

The optimal choice of the bin widths hj is an issue of statistics. Actually, there are several rules that
aim at providing ad hoc formulae for computing the hj ’s based on the nature of the samples (see for
instance [238, 244]). In our simulations, we chose to follow the Scott Rule, which is a common choice.
Namely, if σ̂j denotes the estimated standard deviation of the sample (`i,j)i of size Nj , then hj satisfies:

hj = 3.49× σ̂j ×N
− 1

3
j .

Notice that in our context all the Nj ’s are equal to N .

Simulations. In order to illustrate the histogram method in the context of an MIA attack, we generated
10000 leakage measurements in the Gaussian model (5.3) for ϕ being the Hamming weight function, for
f being the first DES S-box parameterized with the key k∗ = 11 and for σ = 0.1. Since the DES S-box
is non-injective, we chose the identity function for ϕ̂. Figure 5.1 plots the estimations of the pdf gL|Y=1

when k = 11 and when k = 5 (for a number of bins equal to 285). As expected (Proposition 5.1 and

(a) For k = 11 (correct guess). (b) For k = 5 (wrong guess).

Figure 5.1: Histogram method in the first-order case.

Corollary 5.1), a Gaussian pdf seems to be estimated when k = 11 (good key prediction), whereas a
mixture of three Gaussian distributions seems to be estimated when k = 5 (wrong key prediction). For
the experimentation described in the left-hand figure we obtained Ĥ(L(11)|Y (11) = 1) = −1.31 (due to



5.4. Conditional entropy estimation 73

(2.17) we have H[L(11)|Y (11) = 1] = −1.27) and we got Ĥ(L(11)|Y (5) = 1) = −0.0345 for the one in the
right-hand side. Moreover, we validated that the estimated conditional entropy is minimum for the good
key hypothesis.

In order to illustrate the histogram method in the context of a second-order MIA attack, we generated
10000 pairs of leakage measurements in the higher-order Gaussian model (5.9) with d = 2, with ϕ and ϕ1

being the Hamming weight function, with f being the first DES S-box parametric with the key k∗ = 11
and with σ0 = σ1 = 0.1. Figure 5.2 plots the estimations of the pdf gL|Y=1 when k = 11 and when
k = 5. As expected, the mixture of Gaussian distributions for k = 11 have less components than for

(a) For k = 11 (correct guess). (b) For k = 5 (wrong guess).

Figure 5.2: Histogram method in the second-order case.

k = 5. For the experimentation in the left-hand figure we obtained Ĥ(L(11)|Y (11) = 1) = 0.22 (and
Ĥ(L(11)|Y (11)) = 0.14 ), whereas we got 1.12 for Ĥ(L(11)|Y (5) = 1) (and 1.15 for Ĥ(L(11)|Y (5))). Here
again, the estimated conditional entropy was minimum for the good key hypothesis.

5.4.2 Kernel density method
Description. Although the histogram method can be made to be asymptotically consistent, other
methods can be used that converge at faster rates. For instance, rather than grouping observations
together in bins, the so-called kernel density estimator (or Parzen window method) can be thought to
place small “bumps” at each observation, determined by the kernel function (see for instance [210]). The
estimator consists of a “sum of bumps” and is clearly smoother as a result than the histogram method.

The kernel density estimation ĝL|Y=y based on the sample Sy is defined for every l = (`0, . . . , `d−1) ∈
Ld by:

ĝL|Y=y(l) =
1

#Sy

∑
li=(`i,0,...,`i,d−1)∈Sy

1

υ
×
d−1∏
j=0

K
(
`j − `i,j
hj

)
,

where K is a kernel function chosen among the classical ones (see for instance [245]), where the hi’s are
kernel bandwidths and where υ equals

∏
j hj . As recalled in [33], the following Parzen-windows entropy

estimation of H[L|Y = y] is sound when the sample size is large enough:

Ĥ(L|Y = y) = − 1

#Sy

∑
li∈Sy

log

 1

#Sy

∑
lr∈Sy

1

υ
×
d−1∏
j=0

K
(
`i,j − `r,j

hj

) ,

In our attack simulations, we chose the kernel function to be the Epanechnikov one defined for every u
by K(u) = 3

4 (1 − u2) if |u| 6 1 and by K(u) = 0 otherwise (another common choice is the Gaussian
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kernel [245]). Our choice was motivated not only by the fact that this kernel function has a simple form,
but also by the fact that its efficiency is asymptotically optimal among all the kernels [120]. Let σ̂j
denotes the estimated standard deviation of the sample (`i,j)i of size Nj . To select the kernel bandwidth
hj , we followed the normal scale rule [210]. Namely, we chose the hj ’s s.t.

hj = 1.06× σ̂j ×N
− 1

5
j . (5.14)

Simulations. In order to illustrate the effectiveness of the kernel method, we applied it for the same
simulated traces used for our first and second-order histogram experiments (Figure 5.1 and Figure 5.2).
We present our results in Figure 5.3(a–b) for the first-order and in Figure 5.3(c–d) for the second-order.

(a) First-order for k = 11 (correct key guess). (b) First-order for k = 5 (wrong key guess).

(c) Second-order for k = 11 (correct key guess). (d) Second-order for k = 5 (wrong key guess).

Figure 5.3: Kernel method

As expected, the pdf estimated in Figure 5.3(a) when k = 11 seems to be a Gaussian one, whereas
the pdf estimated when k = 5 seem to be a mixture of three Gaussian distributions. Moreover, the
estimations are smoother than in the case of the histogram method and there is no noticeable differences
between the estimation with Gaussian kernel and the estimation with the Epanechnikov one. For the
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experimentation described in the left-hand figure we obtained Ĥ(L(11)|Y (11) = 1) = −0.88 and we got
0.54 for Ĥ(L(11)|Y (5) = 1) (right-hand side).

As expected, in Figure 5.3(c) the mixture of Gaussian distributions for k = 11 have less compo-
nents than for k = 5. For the experimentation in the left-hand figure we obtained Ĥ(L(11)|Y (11)) =
0.17, whereas we got 0.52 for Ĥ(L(11)|Y (5)). Moreover, we validated that the conditional entropy
Ĥ(L(11)|Y (k)) is minimum for k = k∗ = 11.

5.4.3 Parametric estimation
Description. As argued in Section 5.3, under the Gaussian noise assumption, the conditional leakage
pdfs are Gaussian mixtures. One can hence directly estimate the parameters θ of these Gaussian mixtures
to obtain sound estimations of the pdfs.
First-order case. Relation (5.7) shows that gL|Y=y is a Gaussian mixture gθ whose parameter θ satisfies:

θ =

(
1

#Ek(y)
, ϕ ◦ fk∗(x), σ2

)
x∈Ek(y)

. (5.15)

Based on this relation, an alternative to the methods presented above is to compute an estimation θ̂ of
the parameter θ so that we get ĝL|Y=y = gθ̂ and thus:

Ĥ(L|Y = y) = −
∫
l∈Ld

gθ̂(l) log2 gθ̂(l)dl .

For every x, the mean value ϕ ◦ f(x, k∗) in (5.15) can be estimated by:

l̄x =
1

#{i;xi = x}
∑
i;xi=x

li

and the noise variance σ2 by:
σ̂2 =

∑
i

(
li − l̄xi

)2
.

On the whole, this provides us with the following estimation θ̂ of θ:

θ̂ =

(
1

#Ek(y)
, l̄x, σ̂

2

)
x∈Ek(y)

.

Higher-order case. Relation (5.10) shows that gL|Y=y is a Gaussian mixture gθ whose parameter θ
satisfies:

gθ =
1

#Ek(y)

∑
x∈Ek(y)

gθx , (5.16)

where gθx denotes the Gaussian mixture pdf of the random variable (L|X = x) whose parameter satisfies:

θx =

(
1

(#Z)d−1
,Φk(x,m),Σ

)
m∈Zd−1

.

The mean values Φk(x,m) of the different components cannot be directly estimated as in the first-order
case since the values taken by the masks m for the different leakage observations li are not assumed to
be known. To deal with this issue, a solution is to involve Gaussian mixture estimation methods such as
the expectation maximization algorithm. By applying it on the sample (li ; xi = x)i we get an estimation
θ̂x of θx for every x ∈ X . Then, according to (5.16), we obtain:

Ĥ(L|Y = y) = −
∑
x

∫
l∈Ld

gθ̂x(l) log gθ̂x(l)dl .

Remark 5.3. As an advantage of the parametric estimation method, the mean values lx’s (resp. the
estimated parameters θ̂x’s) are only computed once for every x and are then used to compute Ĥ(L|Y (k) =
y) for every pair (k, y).
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Simulations. As for the previous estimation methods, we applied the parametric estimation to the
same simulated traces. The resulting estimated pdfs (ĝL(11)|Y (k)=1)k=11,5 are plotted in Figure 5.4(a–b)
for the first-order and in Figure 5.4(c–d) for the second-order.

(a) First-order for k = 11 (correct key guess). (b) First-order for k = 5 (wrong key guess).

(c) Second-order for k = 11 (correct key guess). (d) Second-order for k = 5 (wrong key guess).

Figure 5.4: Parametric Estimation

The results are similar to those of the previous estimation methods. For the first-order case, we
distinguish a mixture of three Gaussian distributions for the wrong key hypothesis while a single Gaussian
pdf is observed for the correct one. For the second-order case, the Gaussian mixture obtained for the
wrong key hypothesis contains more components than the one for the correct key hypothesis. Once again,
the estimated entropy is lower for the correct key hypothesis than for the wrong one. For instance, the
entropies of the plotted pdfs equal −0.94 (correct hyp.) and 0.13 (wrong hyp.) for the first-order case
and 0.24 (correct hyp.) and 0.60 (wrong hyp.) for the second-order case.

5.5 Experimental results

5.5.1 First-Order Attack Simulations
To compare the efficiency of MIA with respect to the estimation method, we simulated leakage mea-
surements in the Gaussian model (5.3) with ϕ being the Hamming weight function and f being the first
DES S-box (we therefore have n = 6 and m = 4). For various noise standard deviations σ and for the
estimation methods described in previous sections, we estimated the number of messages required to have
an attack first-order success rate greater than or equal to 90% (this success rate being computed for 1000
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attacks). Moreover, we included first-order DPA in our tests to determine whether and when an MIA is
more efficient than a DPA6. Each attack was performed with ϕ̂ being the identity function in order to
test the context in which the attacker has no knowledge about the leakage model. Moreover, each attack
was also performed with ϕ̂ being the Hamming weight function in order to test the context where the
attacker has a good knowledge of the leakage model. The results are given in Table 5.1 where MIAH,
MIAK and MIAP respectively stand for the histogram, the kernel and the parametric MIA.

Table 5.1: Attack on the first DES S-box – Number of measurements required to achieve a success rate
of 90% according to the noise standard deviation σ.

Attack \ σ 0.5 1 2 5 10 15 20 50 100

DPA, ϕ̂ = Id 30 30 100 1000 3000 7000 15000 70000 260000
MIAH (hist.), ϕ̂ = Id 80 160 600 4000 20000 50000 95000 850000 106+
MIAK (kernel), ϕ̂ = Id 70 140 500 3000 15000 35000 60000 500000 106+
MIAP (param.), ϕ̂ = Id 60 100 300 2000 5000 15000 20000 150000 500000

DPA, ϕ̂ = HW 30 30 70 400 2000 4000 7000 45000 170000
MIAH (hist.), ϕ̂ = HW 40 70 300 1500 7000 20000 40000 320000 106+
MIAK (kernel), ϕ̂ = HW 30 60 190 1500 5500 15000 25000 190000 900000
MIAP (param.), ϕ̂ = HW 70 70 150 1000 3000 7000 15000 65000 300000

It can be checked in Table 5.1 that DPA is always better than MIA when ϕ̂ = HW. This is not an
astonishing result in our model, since the deterministic part of the leakage corresponds to the Hamming
weight of the target variable. More surprisingly, this stays true when ϕ̂ is chosen to be the identity
function. This can be explained by the strong linear dependency between the identity function and the
Hamming weight function over F4

2 = {0, . . . , 15}. Eventually, both results suggest that DPA is more
suitable than MIA for attacking a device leaking first-order information in a model close to the Hamming
weight model with Gaussian noise. When looking at the different MIAs, we can notice that MIAP becomes
much more efficient than MIAH and MIAK when the noise standard deviation increases.

5.5.2 Second-Order Attack Simulations
In a DPA, the attacker computes Pearson’s correlation coefficients which is a function of two univariate
samples. Thus, when DPA is applied against dth-order masking (see (5.9)) a multivariate function must
be defined to combine the different leakage signals (see Chapter 6). This signal processing induces an
information loss which strongly impacts the higher-order DPA efficiency when the noise increases. Because
an higher-order MIA can operate on multivariate samples, it does not suffer from the aforementioned
drawback. We could therefore expect MIA to become more efficient than DPA when it is performed
against masking. To compare higher-order DPA and higher-order MIA, we simulated power consumption
measurements such as in (5.9) with d = 2, with ϕ = ϕ1 = HW, with σ1 = σ2 = σ and with f being
the first DES S-box. For various noise standard deviations σ and for the estimation methods described
in previous sections, we estimated the number of measurements required to have an attack success rate
greater than or equal to 90% (this success rate being computed over 100 attacks). Table 5.2 reports the
results that we obtained7 for second-order DPA (2O-DPA) and for second-order MIA with histogram
estimation method (2O-MIAH) and with kernel estimation method (2O-MIAK). We performed second-
order DPA with Hamming weight prediction function and for two different combining functions: the
absolute difference and the normalized product (see Chapter 6). For MIA, we tried both Hamming
weight and identity prediction functions. Moreover, for MIA with histogram estimation, we tried two
rules for the choice of the bin-width: Scott’s rule (see Section 5.4.1) and the rule proposed in [105].
Remark 5.4. We experimented that second-order MIA with parametric estimations using the expectation
maximization algorithm is inefficient. In fact, estimating a Gaussian mixture using the EM algorithm

6Attacks have been performed for measurements numbers ranging over 50 different values from 30 to 106.
7The results given in the paper [5] for second-order MIA simulations are erroneous. Table 5.2 provides the corrected

results.



78 Chapter 5. Analysis and improvement of mutual information analysis

requires a great number of samples, especially when the number of components in the mixture is not
small. In our context, the number of components equals the number of possible mask values8, that is 16
when attacking a DES S-box. To lower the number of components, one could focus on a restricted number
of bits (considering the remaining ones as an algorithmic noise). Such an approach has been followed by
Lemke-Rust and Paar in [152] in the context of higher-order profiled attacks. Another approach could
be to look for other estimation methods dedicated to Gaussian mixtures and, possibly, to adapt them for
masked implementations. We let such investigations for future research.

Table 5.2: Second-order attack on DES S-box – Number of measurements required to achieve a success
rate of 90% according to the noise standard deviation σ.

Attack \ σ 0.5 1 2 5 7 10

2O-DPA (ϕ̂ = HW, abs. difference) 300 800 5000 200000 106+ 106+
2O-DPA (ϕ̂ = HW, norm. product) 300 400 3000 70000 300000 106+

2O-MIAH (ϕ̂ = Id, Scott’s Rule) 1200 7000 75000 106+ 106+ 106+
2O-MIAH (ϕ̂ = Id, Rule in [105]) 1800 7000 40000 1000000 106+ 106+

2O-MIAK (ϕ̂ = Id) 600 2500 25000 600000 106+ 106+

2O-MIAH (ϕ̂ = HW, Scott’s Rule) 600 2700 34000 106+ 106+ 106+
2O-MIAH (ϕ̂ = HW, Rule in [105]) 350 1300 9000 350000 106+ 106+

2O-MIAK (ϕ̂ = HW) 300 1300 9000 n.a. n.a. n.a.

Table 5.2 shows that, contrary to what we could have expected, second-order DPA is always better
than second-order MIA. As for the first-order case, we deduce that DPA is more suitable to attack
masked implementations that leak the Hamming weight of the processed data with Gaussian noise.
However, we also note that the efficiency of MIA is strongly impacted by the estimation methods and
the related parameters (e.g. the choice of the bin-width for histograms). Determining the estimation
method/parameters that optimize (or at least improve) the attack efficiency is hence a relevant open
issue. Results reported in Table 5.2 also show that in the considered context, kernels perform better
than histograms and that a Hamming weight prediction is better than an identity prediction. These
observations are quite natural since, on the one hand, kernels are known to give tighter pdf estimations
than histograms and, on the other hand, a Hamming weight prediction enables better discrimination of
the wrong key guesses than an identity prediction in the presence of a Hamming weight leakage function9.
Another observation is that, the bin-width selection rule proposed in [105] for histogram-based MIA leads
to a more efficient attack than Scott’s rule. More generally, we experimented that increasing the bin-
width improve the attack efficiency until reaching a small number of bins. The analysis of the underlying
reasons for this phenomenon and the study of the bin-width choice optimizing the MIA efficiency are
open issues that deserve more investigations.

5.5.3 Practical Attacks

To experimentally validate our theoretical analysis and the simulations reported in Sections 5.4, 5.5.1 and
5.5.2, we experimented MIA with real-life leakage traces measured for different kinds of implementations.
We first performed univariate MIA attacks against hardware and software implementations of the AES
S-box. Then, we applied second-order MIA attacks against a masked software implementation of the first
DES S-box. In both contexts, we also performed a DPA attack to compare its efficiency with that of
MIA.

8It may be less in a particular leakage model (e.g. Hamming weight model) but the attacker does not a priori have such
an information.

9More precisely, it can be checked that if ϕ = ϕ1 = HW holds, then we have I(L; HW ◦ fk(X)) ≤ I(L; fk(X)) for every
k, with equality for k = k∗.
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5.5.3.1 First Order Attacks.

We performed the attacks against two AES S-box implementations that use a lookup-table (i.e. fk
corresponds to the AES S-box). The first one is a hardware implementation on the chip SecMat V3/2
(see [122] for details about the chip and the circuit layout). The corresponding power consumption
measurements are plotted in Fig. 5.5(a) over the time. It can be noticed that they are not very noisy.
The second one is a software implementation running on a smart card with 8-bit architecture. As it can
be seen in Fig. 5.6(a), the signal is much more noisy in this case.

(a) Power consumption traces. (b) DPA with 256 traces.

(c) Histogram-based MIA with 1024 traces. (d) Parametric MIA with 1024 traces.

Figure 5.5: Practical attacks on a hardware AES implementation.

For both set of traces, we performed DPA and MIA attacks with the histogram estimation method
and the parametric estimation method (see Section 5.4). For all of these attacks the prediction function ϕ̂
was chosen to be the Hamming weight function (since ϕ̂ ◦ fk must be non-injective – see Corollary 5.1 –).
The obtained correlation and mutual information curves are plotted in Fig. 5.5(b–d) and Fig. 5.6(b–d)
over the time. For each attack the curve corresponding to the correct (resp. wrong) key hypothesis is
drawn in black (resp. gray).

In both cases, the attacks succeed with a few number of traces. It can be noticed that MIA with a
parametric estimation is more discriminating than MIA with the histogram estimation. This confirms
the simulations performed in Section 5.5.1. However, even when the parametric estimation method is
involved, DPA is always more discriminating than MIA. Those results suggest that the power consumption
of the attacked devices has in fact a high linear dependency with the Hamming weight of the manipulated
data. This implies in particular that the Hamming weight model is sound in this context and that looking
for non-linear dependencies is not useful.

To corroborate that the leakage measured in Figure 5.5 and 5.6 is close to the one simulated in Section
5.4, we plotted in Fig. 5.7 the estimation of the pdf gL(0)|Z(k)=1 when k = 0 = k∗ and k = 5 6= k∗ for
the hardware implementation. We could verify that actually the conditional pdfs that are estimated look
like Gaussian mixture pdfs (a Gaussian pdf when k∗ is correctly guessed and a mixture of two pdfs when
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(a) Power consumption traces. (b) DPA with 2000 traces.

(c) Histogram-based MIA with 2000 traces. (d) Parametric MIA with 2000 traces.

Figure 5.6: Practical attacks on a software AES implementation.
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it is not).

(a) Histogram estimation (k = k∗). (b) Histogram estimation (k 6= k∗).

(c) Parametric estimation (k = k∗). (d) Parametric estimation (k 6= k∗).

Figure 5.7: Pdf estimations on power measurements.

5.5.3.2 Second Order Attack.

We performed second-order MIA attacks against a DES S-box implementation that uses a lookup-table
and is protected by first-order masking. Namely, the targeted variable fk∗(X) corresponds to the DES
S-box output and the leakage measurement consists in two points L0 and L1 satisfying (5.9) for d = 2.
The power consumption traces have been measured for a software implementation running on a smart
card with 8-bit architecture. They are plotted in Fig. 5.8(a). The traces are composed of 3000 points
and we identified that the masked value fk∗(X) ⊕M is manipulated at time t0 = 81789 whereas the
mask M is manipulated at time t1 = 83238. We also performed a second-order CPA attack involving the
normalized product combining with ϕ̂ = HW. For the MIA attacks, we choose to define the prediction
function ϕ̂ either as the identity function or as the Hamming weight function. For the histogram-based
MIA, we used the Scott’s rule for the bin-width. For the kernel-based MIA, we applied the normal scale
rule recalled in (5.14) to select the kernels bandwidth.

Our attacks results for ϕ̂ being the identity function are plotted in Fig. 5.8(c–d). For each key-
candidate, the mutual information/correlation values are plotted over the number of leakage measure-
ments. The curve corresponding to the correct (resp. wrong) key hypothesis is drawn in black (resp.
gray). In Fig. 5.9, we plotted for each attack the rank of the good key hypothesis according to the
number of traces exploited by the attack. The dot-line corresponds to the second-order DPA attack.
Black curves refer to 2O-MIAK attacks whereas gray curves refer to 2O-MIAH attacks. In both cases,
plain-lines correspond to attacks with ϕ̂ = Id and dashed-lines correspond to ϕ̂ = HW.

As we can see from Fig. 5.9, the obtained results validate our simulations. In particular, we see that
second-order DPA is clearly more efficient than second-order MIA and that kernel-based MIA is better
than histogram-based MIA. We further observe that compared to our simulations where the Hamming
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(a) Power consumption traces. (b) 2O-DPA, ϕ̂ = HW.
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(c) 2O-MIAH, ϕ̂ = Id. (d) 2O-MIAK, ϕ̂ = Id.

Figure 5.8: Practical second-order attacks on a software DES implementation.
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weight prediction leads to better efficiency than the identity prediction, both predictions lead to similar
results for our practical attacks. This suggests that the power consumption of the attacked device does
not fully depend on the Hamming weight of the processed data but rather on some leakage function
between Hamming weight and identity (e.g. each bit of the data has a different weight in the power
consumption).
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Chapter 6

Analysis and improvement of
higher-order differential power analysis
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6.1 Introduction
In this chapter, we investigate higher-order DPA that involve a combining function (see Section 3.7).
We first exhibit the optimal prediction function for such attacks. Then we study second-order DPA
involving the product combining [65] or the absolute difference combining [164]. We study them under
the Hamming weight model and the Gaussian noise assumptions (see Section 3.4.3). After showing a way
to improve the product combining, we argue that in this model, the product combining is more efficient
not only than absolute difference combining, but also than all the other combining techniques proposed
in the literature. Eventually, we analyze higher-order DPA involving the improved product combining to
attack masking at any order and possibly combined with shuffling.

The results presented in this chapter have been published in collaboration with Emmanuel Prouff
and Régis Bévan in the journal IEEE Transactions on Computers vol. 58 no. 6 (June 2009) [6] and in
collaboration with Emmanuel Prouff and Julien Doget in the international workshop on Cryptographic
Hardware and Embedded Systems (CHES 2009) [11].

6.2 Attack efficiency metric
We recall that when dth-order masking is involved, every sensitive variable Z is split into d + 1 shares
M0, . . . , Md such that M0 ? · · · ? Md = Z for a group operation ?. In this chapter, we focus on Boolean

85
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masking i.e. using the XOR as masking operation (which is the most widely used to protect block ciphers
in practice). The attacker combines the d+1 leakage signals L0, . . . , Ld corresponding to the d+1 shares
respectively in order to create a combined signal that is correlated to the target variable. This is done
by means of a combining function C. The attack then consists in estimating the correlation between the
combined leakage C(L0, . . . , Ld) and the prediction ϕ̂ ◦ f(X, k) for every key guesses k ∈ K.

As argued in several works (see for instance [6, 156, 157, 204]), the absolute value of the correlation
coefficient ρ [ϕ̂(Z), C(L1, . . . , Ld)] (i.e. corresponding to the correct key guess) is a sound estimator of
the efficiency of a correlation based (higher-order) DPA characterized by the pair of functions (ϕ̂, C).
In [157,220], it is even shown that the number of leakage measurements required for the attack to succeed
can be approximated by c · ρ [ϕ̂(Z), C(L1, . . . , Ld)]

−2 where c is a constant depending on the number of
key guesses and on the required success rate. In this chapter, we will therefore compare attack efficiencies
by means of the correlation values ρ [ϕ̂(Z), C(L1, . . . , Ld)]. For a given higher-order DPA attack, we will
refer to this coefficient as the correlation of the attack: the higher the correlation of an attack, the more
efficient the attack.

6.3 Optimal prediction function

Let us begin our discussion with the following important result which will be intensively used in the rest
of the chapter. In the following proposition as well as in the rest of the chapter, we shall consider the
conditional expectation E [C|Z] as a function E [C|·] applied to Z.

Proposition 6.1. Let C and Z be two random variables. Then, for every function ϕ̂ defined over Z, we
have

ρ [ϕ̂(Z), C] = ρ [ϕ̂(Z),E [C|Z]]× ρ [E [C|Z] , C] . (6.1)

Before proving Proposition 6.1, let us introduce the following useful lemma.

Lemma 6.1. Let C and Z be two random variables. Then, for every function ϕ̂ defined over Z, we have

E [ϕ̂(Z)C] = E [ϕ̂(Z)E [C|Z]] . (6.2)

Proof. We assume that C and Z are discrete (the continuous case holds straightforwardly from the discrete
one). We have:

E [ϕ̂(Z)C] =
∑
z,c

P [Z = z, C = c] ϕ̂(z)c . (6.3)

Since P [Z = z, C = c] equals P [Z = z] P [C = c|Z = z], we get:

E [ϕ̂(Z)C] =
∑
z

P [Z = z] ϕ̂(z)
∑
c

P [C = c|Z = z] c

=
∑
z

P [Z = z] ϕ̂(z)E [C|Z = z] ,

which leads to (6.2).

Remark 6.1. Lemma 6.1 implies E [C] = E [E [C|Z]] (for f : z 7→ 1), which is known as the law of total
expectation, and it implies E [E [C|Z] C] = E

[
E [C|Z]

2
]
(for f : z 7→ E [C|Z = z]).

Based on Lemma 6.1, we give hereafter the proof of Proposition 6.1.

Proof. (Proposition 6.1) According to Remark 6.1, the covariance between ϕ̂(Z) and C satisfies:

Cov [ϕ̂(Z), C] = E [ϕ̂(Z)E [C|Z]]− E [ϕ̂(Z)] E [E [C|Z]]

= Cov [ϕ̂(Z),E [C|Z]] .
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Hence, the correlation ρ [ϕ̂(Z), C] satisfies:

ρ [ϕ̂(Z), C] = ρ [ϕ̂(Z),E [C|Z]]× σ [E [C|Z]]

σ [C]
. (6.4)

On the other hand, we have:

ρ [E [C|Z] , C] =
Cov [E [C|Z] , C]
σ [E [C|Z]]σ [C]

. (6.5)

Due to Lemma 6.1, the covariance Cov [E [C|Z] , C] equals Cov [E [C|Z] ,E [C|Z]], namely it equals the
variance Var [E [C|Z]]. Hence, (6.4) and (6.5) together imply (6.1).

As a direct consequence of Proposition 6.1, we have the next corollary.

Corollary 6.1. Let C denote a combined leakage C(L1, . . . , Ld). The prediction function ϕ̂ that maximizes
the correlation ρ [ϕ̂(Z), C] is defined by

ϕ̂opt(z) = E [C|Z = z] . (6.6)

Let ρopt be the correlation ρ [ϕ̂opt(Z), C]. If ϕ̂opt is not constant, then ρopt satisfies:

ρopt =
σ [E [C|Z]]

σ [C]
. (6.7)

Proof. Let ϕ̂ be a function defined over Z and let ρ′ denote the correlation ρ [ϕ̂(Z), C]. Then, due to
Proposition 6.1, we have ρ′ = ρ [ϕ̂(Z),E [C|Z]]× ρopt. As ρ [ϕ̂(Z),E [C|Z]] is always smaller than or equal
to 1 and since ρopt is greater than or equal to 0, we deduce ρ′ 6 ρopt. This implies that the function
f = fopt : z 7→ E [C|Z = z] maximizes ρ′. Finally, (6.7) holds by definition of ϕ̂opt and by Lemma 6.1.

Corollary 6.1 exhibits the optimal prediction function ϕ̂opt and the optimal correlation of an HO-DPA
given a combining function and the leakage distribution. Moreover, Proposition 6.1 gives us a means to
quantify the effectiveness loss occurring when a sub-optimal function ϕ̂ is involved. Indeed, in this case
(6.1) implies that making a suboptimal prediction ϕ̂ decreases the optimal correlation ρopt by a factor
ρ [ϕ̂, ϕ̂opt].

In practice, the kind of adversary considered in this chapter is not able to compute the optimal
prediction function exhibited in Corollary 6.1. Indeed, such a computation requires to determine the
exact relationship between the leakages Li’s and the shares Mi’s. In the next section, we will estimate
this relationship by modeling the leakage and then we will study the optimal prediction function and
the optimal correlation for two widely used second-order combining functions. We will show that some
prediction functions proposed in the literature are in fact sub-optimal and we will compute how much
they decrease the correlation ρopt (and thus the attack efficiency) from the optimal one defined in (6.7).

6.4 Analysis and improvement of second-order combining func-
tions

The different second-order DPA that are studied in this section are assumed to target an implementation
that processes a masked sensitive variable Z ⊕M at a time t1 and the corresponding mask M at a time
t2. Variables Z and M are assumed to be mutually independent and uniformly distributed over Fn2 .

Studying a second-order DPA essentially amounts to studying the combining function it involves.
Hereafter, we pay particular attention to the product combining [65] and to the absolute difference
combining [164] which are the most widely used functions in the literature. For both combining functions,
we exhibit the optimal prediction ϕ̂opt and we calculate the optimal correlation ρopt by applying (6.7). We
also compare ϕ̂opt with the Hamming weight prediction function (which is often involved in the published
HO-DPA) and we study their impact on the attack efficiency. Eventually, we analyze the obtained results
and we address other combining functions that have been proposed in the literature.

Before presenting our analysis (and to allow us to exhibit explicit formulae), we need to make the
following assumption which we claim is very common and realistic.
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Assumption 6.1 (Leakage Model). The leakages L1 and L2 satisfy:

L1 = δ1 + HW(Z ⊕M) +B1 , (6.8)
L2 = δ2 + HW(M) +B2 , (6.9)

where δ1 and δ2 denote the constant parts of the leakages and HW(·) is the Hamming weight function.
B1 and B2 are two Gaussian random variables centered in zero with a standard deviation σ and Z, M ,
B1 and B2 are mutually independent10.

Remark 6.2. In some cases, it may be sound to assume that the device does not leak the Hamming weight
of the processed data but the Hamming distance between this data and an initial state (see for instance
Section 3.4.3). Extending our analysis to the Hamming distance model is straightforward. Let L1 equal
δ1 + HW(IS1 ⊕ Z ⊕M) +B1 and L2 equal δ2 + HW(IS2 ⊕M) +B2 where IS1 and IS2 are two initial
states independent of Z and M . After denoting by Z ′ the summation IS1 ⊕ IS2 ⊕ Z and by M ′ the
summation M ⊕ IS2, it can be checked that L1 and L2 respectively equal δ1 + HW(Z ′ ⊕M ′) + B1 and
δ2 + HW(M ′) + B2. As Z ′ and M ′ are uniformly distributed and mutually independent, this model is
equivalent to the one defined in Assumption 6.1.

When the noises B1 and B2 are both zero, we shall say that the model is idealized. The analysis of
second-order DPA in this model is of interest. Firstly because some devices leak quite perfect non-noisy
information. Secondly because it is generic (it does not take the component noise into account) and
theoretical analyses conducted in this model are usually simple. In such an idealized model, exhibiting
relevant properties and/or characteristics for new combining and prediction functions (C, ϕ̂) is often much
more simple than in a model with noise. However, this primary study is not sufficient alone and, once
defined in the idealized model, a pair of functions (C, ϕ̂) must also be analyzed in the noisy model. Indeed,
the combining of leakage points always results in an amplification of the noise (e.g. the noises B1 and B2

are added or multiplied) and it is therefore important to study the relationship between the efficiency of
a combining function and the noise variations. For this reason, in the following we conduct our analysis
in the context of both the idealized and the non-idealized model.

6.4.1 Product combining second-order DPA

In this section we investigate the product combining function:

Cprod (L1, L2) = L1 × L2 . (6.10)

This function has already been studied by Kai Schramm and Christof Paar in [204]. Our main contribution
compared to their work is that we consider a leakage model where the offsets δi are not zero. This makes
our analysis more practical since the leakage often has a non-zero offset due to the contribution of the
device activity aside from the variable manipulation. During our study we show in particular that the
efficiency of the product combining is related to the values of these offsets and we show how to significantly
improve it by applying a pre-processing to the leakage signals before combining them.

Let us start our analysis by computing the optimal prediction function corresponding to Cprod. Ac-
cording to Corollary 6.1, it is the function ϕ̂opt = z 7→ E [L1 × L2|Z = z]. In the next proposition we give
an explicit formula for it.

Proposition 6.2. Let L1 and L2 satisfy (6.8) and (6.9). Then, for every z ∈ Fn2 , we have

E [L1 × L2|Z = z] = −1

2
HW(z) +

n2 + n

4
+
n

2
(δ1 + δ2) + δ1δ2 . (6.11)

Before giving the proof of Proposition 6.2, let us introduce a useful lemma.

10For the sake of simplicity we assume that both noises B1 and B2 have the same standard deviation. The analysis can
be straightforwardly generalized for σ [B1] 6= σ [B2].
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Lemma 6.2. Let n be a positive integer and let M be a random variable uniformly distributed over Fn2 .
Then, for every z ∈ Fn2 , we have:

E [HW(z ⊕M)HW(M)] = −1

2
HW(z) +

n2 + n

4
. (6.12)

A generalized version of Lemma 6.2 is given and proved in Section 6.5 (see Lemma 6.3). We now give
the proof of Proposition 6.2.

Proof. (Proposition 6.2) Since B1 and B2 are independent from M and satisfy E [B1] = E [B2] = 0, the
expectation E [L1 × L2|Z = z] is equal to E [HW(z ⊕M)HW(M)] + δ1E [HW(M)] + δ2E [HW(z ⊕M)] +
δ1δ2. Moreover, since M is uniformly distributed over Fn2 , we have E [HW(z ⊕M)] = E [HW(M)] = n

2

and, from Lemma 6.2, we have E [HW(z ⊕M)HW(M)] = − 1
2HW(z) + n2+n

4 . Hence we get (6.11).

Proposition 6.2 together with Corollary 6.1 implies that the function z 7→ HW(z), or any decreasing
affine function of it, may be used as an optimal prediction function for a second-order DPA involving the
product combining.

Corollary 6.2. In the Hamming weight model, the optimal prediction function ϕ̂opt corresponding to
Cprod is of the form:

ϕ̂opt : z 7→ A ◦HW(z) , (6.13)

where A is an affine decreasing function defined over HW(Z).

Proof. Corollary 6.2 is a straightforward consequence of Corollary 6.1 and of Proposition 6.2.

It must be noticed that the Hamming weight function has already been used as prediction function in
previous works [176,204]. Corollary 6.2 shows that this choice maximizes the amplitude of the correlation
coefficient (in the Hamming weight model) and that it results in a negative correlation (as observed in [176]
for instance).

To compute the optimal correlation corresponding to one of the function satisfying (6.13), we exhibit
in the following a formula for the variance of L1 × L2.

Proposition 6.3. Let L1 and L2 satisfy (6.8) and (6.9). Then, the variance of L1 × L2 satisfies

Var [L1 × L2] =
2n3 + n2

16
+
n

4

(
nδ1 + δ2

1 + nδ2 + δ2
2

)
+
n2 + n

2
σ2+

(
nδ1 + δ2

1 + nδ2 + δ2
2

)
σ2+σ4 . (6.14)

Proof. As Z and M are mutually independent and uniformly distributed, one can check that M and
Z ⊕M are mutually independent. This implies that L1 and L2 are also mutually independent and we
get:

Var [L1 × L2] = E
[
L2

1

]
E
[
L2

2

]
− E [L1]

2
E [L2]

2
. (6.15)

Since Z and M are uniformly distributed over Fn2 and mutually independent we have E
[
HW(M)2

]
=

E
[
HW(Z ⊕M)2

]
= n2+n

4 . Then, since we have Bi ∼ N (0, σ), one deduces that E [Li] and E
[
L2
i

]
equal

respectively n
2 + δi and n2+n

4 + nδi + δ2
i + σ2 for i = 1, 2. Finally, simplifying (6.15) leads to (6.14).

It can be noticed in (6.14) that Var [L1 × L2] is an increasing function of nδ1 +δ2
1 +nδ2 +δ2

2 . Hence the
offsets values that minimize the variance are δ1 = δ2 = −n/2. Actually, this is not surprising: with such
offsets, the leakages are centered in zero (i.e. E [L1] = E [L2] = 0) which alleviates the noise amplification
caused by the product combining. As a direct consequence, minimizing the variance of L1×L2 (and thus
maximizing the correlation) can be done by centering the leakage signals L1 and L2 in zero (namely by
substituting Li−E [Li] for Li). This can be simply achieved by averaging the leakage for a large number
of measurements then subtracting the average to each measurements. In the sequel, this pre-processing
is called normalization step.

In the Hamming weight model, if variable Di manipulated at time ti is uniformly distributed over Fn2 ,
then the leakage after the pre-processing step equals Li − E [Li] and satisfies:

Li − E [Li] = −n
2

+ HW(Di) +Bi .
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After assuming that the pre-processing step is part of the combining computation, we get the improved
product combining function:

Cprod? (L1, L2) = (L1 − E [L1])× (L2 − E [L2]) .

Then, we have the following proposition.

Proposition 6.4. For every z ∈ Fn2 , we have:

E [Cprod? (L1, L2) |Z = z] = −1

2
HW(z) +

n

4
,

and,

Var [Cprod? (L1, L2)] =
n2

16
+
n

2
σ2 + σ4 .

Proof. Proposition 6.4 straightforwardly results from Proposition 6.2 and Proposition 6.3 by setting
δ1 = δ2 = −n/2.

As a consequence of the proposition above, in the Hamming weight model, an optimal prediction
function ϕ̂opt corresponding to Cprod? is of the form:

ϕ̂opt : z 7→ A ◦HW(z) ,

where A is an affine decreasing function defined over HW(Z).
Due to Proposition 6.4 and Corollary 6.1, we can propose an explicit formula for the optimal correlation

ρprod
?

opt corresponding to the improved product combining Cprod? and ϕ̂opt. In the Hamming weight, the
correlation satisfies

ρprod
?

opt =

√
n√

n2 + 8nσ2 + 16σ4
. (6.16)

In particular, in the idealized model (σ = 0) it satisfies ρprod
?

opt = 1/
√
n and in the very noisy model

(σ � n), it satisfies ρprod
?

opt ≈
√
n/4σ2. As an illustration to (6.16), Table 6.1 gives some values of the

correlation for n ∈ {0, . . . , 8} and σ ∈ {0, 1, 5, 10}.

Table 6.1: (Optimal) correlation for the improved product combining

σ\n 1 2 3 4 5 6 7 8
0 1.00 0.707 0.577 0.500 0.447 0.408 0.378 0.354
1 0.200 0.236 0.247 0.250 0.248 0.245 0.241 0.236
5 0.010 0.014 0.017 0.019 0.021 0.023 0.025 0.026
10 0.002 0.004 0.004 0.005 0.006 0.006 0.007 0.007

To illustrate the gain of efficiency resulting from the normalization step we propose in this chapter,
let us now consider the correlation ρprod−0

opt for the classical product combining function (6.10) in the
Hamming weight model without offsets (such as computed in [204]). It satisfies:

ρprod−0
opt =

√
n√

2n3 + n2 + 8(n2 + n)σ2 + 16σ4
.

It can be checked that ρprod−0
opt is strictly lower than the correlation ρprod

?

opt we obtained for the product
combining with pre-processing Cprod? . Figures 6.1 and 6.2 show how the value of the offsets (assuming
δ1 = δ2 = δ) affects the correlation ρprodopt for n ∈ {1, 4, 8} in the idealized model and in a noisy model
(σ = 2). The maximum of this correlation is always reached for δ = −n/2. Moreover, we observe that the
correlation quickly decreases when the offset deviates from −n/2 which demonstrates the effectiveness of
our improvement.
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Figure 6.1: Correlation ρprodopt for n = 8 (on the
left), n = 4 (in the middle) and n = 1 (on the
right), in the idealized model, according to the off-
set δ.
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Figure 6.2: Correlation ρprodopt for n = 8 (on the
left), n = 4 (in the middle) and n = 1 (on the
right), in a noisy model (σ = 2), according to the
offset δ.

Remark 6.3. It was already noted in [65] that such a normalization step should be performed before
combining the leakages by product. However, [65] suggests to subtract the offset δi to the leakage while
we show that subtracting E [Li] = δi + n

2 is optimal (in the Hamming weight model with uniform data).

6.4.2 Absolute difference combining second-order DPA

In this section, we investigate the absolute difference combining function i.e. we take interest in the
variable

Cdiff (L1, L2) = |L1 − L2| .

The absolute difference combining has already been studied by Marc Joye, Pascal Paillier, and Berry
Schoenmakers in [133]. In their paper, the authors consider the idealized model (i.e. without noise)
and analyze a single-bit second-order DPA (i.e. with a binary prediction function: ϕ̂(Z) ∈ {0, 1}). We
extend hereafter this analysis to the multi-bit case (i.e. where ϕ̂ is not a binary function but the optimal
prediction function) not only in the idealized but also in the noisy model. In the Hamming weight model,
Cdiff (L1, L2) equals |δ1−δ2+HW(Z⊕M)−HW(M)+B1−B2|. For this combining to work correctly, it is
important that δ1 be equal to δ2. Indeed, if there is a great difference between these values, then the effect
of the absolute value is reduced (or even canceled) by the constant term δ1− δ2. For instance (neglecting
the noise), if we have |δ1−δ2| > n then δ1−δ2+HW(Z⊕M)−HW(M) is either strictly positive or strictly
negative and, as noticed in [164], difference without absolute value is not a sound combining function
(i.e. the difference between the two leakages is not correlated to the sensitive variable). Consequently, as
for the product combining, we point out that the leakages must be normalized in order to have identical
offsets in both leakage signals. Thus, as in Section 6.4.1, we will consider in this section that the leakages
are normalized before being combined in order to ensure that they have similar offsets (i.e. we define
the combining function Cdiff? such that Cdiff? (L1, L2) = |L1 − E [L1]− L2 + E [L2]|). In that case, the
combined leakage after pre-processing satisfies

Cdiff? (L1, L2) = |HW(Z ⊕M)−HW(M) +B| , (6.17)

where B denotes B1 −B2 and satisfies B ∼ N (0,
√

2σ).
For the absolute difference combining, it is not possible to exhibit a simple formula for the expectation

that would be relevant in the general case. Hence we structure our study of the combining function in
two steps: the first one is performed in the idealized model and the second one in the noisy model.
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6.4.2.1 Study in the idealized model

If B is zero, then (6.17) becomes:

Cdiff? (L1, L2) = |HW(Z ⊕M)−HW(M)| .

In the following proposition, we exhibit an explicit formula for the expectation of |HW(Z⊕M)−HW(M)|.

Proposition 6.5. Let z be an element of Fn2 . Then we have

E [|HW(M)−HW(z ⊕M)|] = 21−HW(z)HW(z)

(
HW(z)− 1

bHW(z)
2 c

)
. (6.18)

Proof. For every pair (z,m) ∈ Fn2 , Property 2.2 implies |HW(z⊕m)−HW(m)| = |HW(z)−2HW(z∧m)|
from which we deduce:

E [|HW(z ⊕M)−HW(M)|] =

HW(z)∑
i=0

|HW(z)− 2i| P [HW(z ∧M) = i] . (6.19)

Since M is uniformly distributed P [HW(z ∧M) = i] equals 2−HW(z)
(
h
i

)
. Hence we deduce

E [|HW(z ⊕M)−HW(M)|] = 2−HW(z)

bHW(z)
2 c∑
i=0

(
HW(z)

i

)
(HW(z)− 2i) . (6.20)

By symmetry, we have
∑bHW(z)

2 c
i=0

(
HW(z)

i

)
equal to 1

2

(∑HW(z)
i=0

(
HW(z)

i

)
+
(HW(z)

HW(z)
2

)
(HW(z) mod 2)

)
. Then∑

i

(
HW(z)

i

)
= 2HW(z) implies

bHW(z)
2 c∑
i=0

(
HW(z)

i

)
= 2HW(z)−1 +

1

2

(
HW(z)
HW(z)

2

)
(HW(z) + 1 mod 2) . (6.21)

On the other hand
(

HW(z)
i

)
i equals HW(z)

(
HW(z)−1

i−1

)
which in a similar way gives

bHW(z)
2 c∑
i=0

(
HW(z)

i

)
i =

HW(z)

2
2HW(z)−1 − HW(z)

2

(
HW(z)− 1

HW(z)−1
2

)
× (HW(z) mod 2) . (6.22)

Finally, (6.20), (6.21) and (6.22) lead to (6.18)

As a consequence of Proposition 6.5, the optimal prediction for the absolute difference combining in
the idealized Hamming weight model is not the Hamming weight of Z but a non-affine function of it.

Corollary 6.3. In the Hamming weight model, the optimal prediction function ϕ̂opt corresponding to
Cdiff∗ is of the form:

ϕ̂opt : z 7→ [A ◦ ϕ̂](z) ,

where ϕ̂ is the function z 7→ 21−HW(z)HW(z)
(HW(z)−1

bHW(z)
2 c

)
and where A is either the identity function or an

affine increasing function defined over ϕ̂(Z).

Proof. This a straightforward consequence of Corollary 6.1 and of Proposition 6.5.

Our main interest in Corollary 6.3 is that it tells us that even when the leakage satisfies the Hamming
weight model, the Hamming weight of the targeted variable is not necessarily the optimal prediction for
an HO-DPA. It actually depends on the combining function.
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The variance of |HW(Z ⊕M)−HW(M)| has already been computed in [133]. The authors prove
that it satisfies:

Var [|HW(Z ⊕M)−HW(M)|] =
n

2
−
(

2−2nn

(
2n

n

))2

. (6.23)

By Corollary 6.1 and in view of formulae (6.18) and (6.23), we deduce the optimal correlation related to
Cdiff? :

ρdiff
?

opt =
2n
∑n
i=0 2−2ii2

(
n
i

)(
i−1
b i2 c
)2 − (∑n

i=0 2−ii
(
n
i

)(
i−1
b i2 c
))2

22n−2
(
n
2 −

(
2−2nn

(
2n
n

))2) .

We have computed in Table 6.2 the optimal correlation ρdiff
?

opt for some values of n. For comparison, we
have also computed the correlation ρHW that corresponds to the Hamming weight prediction function
(i.e. ϕ̂ : z 7→ HW(z)). As expected, choosing our new prediction function makes it possible to slightly
increase the correlation value (especially for low values of n). Furthermore, it can be checked that, as
stated in Proposition 6.1, the efficiency gain is ρ(ϕ̂, ϕ̂opt).

Table 6.2: Correlations for the absolute difference combining in the idealized model.

n 1 2 3 4 5 6 7 8
HW 1.00 0.53 0.41 0.35 0.31 0.28 0.26 0.24
ϕ̂opt 1.00 0.65 0.50 0.41 0.35 0.31 0.28 0.26

When the leakage is noisy, the previous analysis is no longer valid and cannot be extended to take the
noise into account. Therefore, in the next section, we conduct a complementary analysis which addresses
the noisy model.

6.4.2.2 Study in the noisy model

In the analysis that follows, we shall use the notation erf to denote the error function defined for every
x ∈ R by erf(x) = 2√

π

∫ x
0

exp(−t2) dt. We recall that the cumulative distribution function Φ of the
standard Gaussian distribution N (0, 1) and the error function satisfy Φ(x) = 1

2

(
1 + erf

(
x/
√

2
))
. The

following proposition shall be useful to study Cdiff? when the leakage is noisy.

Proposition 6.6. Let s be a real number and let B be a Gaussian random variable centered in zero with
a standard deviation σ0. The expectation of the variable |s+B| satisfies:

E [|s+B|] = s erf

(
s√
2σ0

)
+

√
2σ0√
π

exp

(
− s2

2σ2
0

)
. (6.24)

Proof. Let φB and ΦB respectively denote the probability density function and the probability distri-
bution function of B (that is ΦB(y) = P [B 6 y] =

∫ y
−∞ φB(x) dx). As B has a Gaussian distribution

N (0, σ0), we have φB(x) = 1√
2πσ0

exp(−x2/2σ2
0). Then we have:

E [|s+B|] =

∫ +∞

−∞
|s+ x| φB(x) dx = s

∫ s

−s
φB(x) dx +

∫ s

−s
xφB(x) dx + 2

∫ +∞

s

xφB(x) dx .

Since the function x 7→ xφB(x) is odd, the term
∫ s
−s xφB(x) dx equals zero. Moreover, we have∫ s

−s φB(x) dx = 2
(
ΦB(s)− 1

2

)
and

∫ +∞
s

xφB(x) dx = σ0√
2π

exp
(
−s2/2σ2

0

)
. Hence, we get:

E [|s+B|] = 2s

(
ΦB(s)− 1

2

)
+

√
2σ0√
π

exp
(
−s2/2σ2

0

)
. (6.25)
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Finally, since B has a Gaussian distribution N (0, σ0), its probability distribution function ΦB satisfies
ΦB(y) = 1

2

(
1 + erf

(
y√
2σ0

))
for every y ∈ R hence (6.25) directly implies (6.24).

As a straightforward consequence of Proposition 6.6, we have the following corollary.

Corollary 6.4. Let L1 and L2 satisfy (6.8) and (6.9). For every z ∈ Fn2 , we have:

E [Cdiff? (L1, L2) | Z = z] = E

[
(HW(z ⊕M)−HW(M)) erf

(
HW(z ⊕M)−HW(M)

2σ

)]
+

2σ√
π

E

[
exp

(
− (HW(z ⊕M)−HW(M))

2

4σ2

)]
, (6.26)

and
Var [Cdiff? (L1, L2)] = 2σ2 +

n

2
− E [Cdiff? (L1, L2)]

2
. (6.27)

Proof. After denoting S = HW(z ⊕ M) − HW(M), we get E [|L1 − L2| | Z = z] = E [|S +B|] and
Proposition 6.6 directly leads to (6.26). Since we have E [B] = 0, then E

[
|S +B|2

]
equals E

[
S2
]

+

E
[
B2
]
. Due to the linearity of the expectation, E

[
S2
]
equals E

[
HW(M)2

]
+ E

[
HW(z ⊕M)2

]
−

2E [HW(M)HW(z ⊕M)]. Then, from Lemma 6.2, we deduce E
[
S2
]

= HW(z). On the other hand
we have E

[
B2
]

= 2σ2, hence we deduce E
[
|S +B|2

]
= 2σ2 + HW(z) which finally gives (6.27) by

definition of the variance.

Corollary 6.4 does not allow to exhibit explicit formulae for ϕ̂opt and ρopt in the noisy model. However,
(6.26) and (6.27) may be involved in efficiently computing the optimal prediction function and the optimal
correlation corresponding to Cdiff? in the noisy model for every pair (n, σ). As an illustration we give in
Table 6.3 the exact optimal correlation ρdiff

?

opt for n ∈ {1, . . . , 8} and σ ∈ {0, 1, 5, 10}.

Table 6.3: Optimal correlation for the absolute difference combining.

σ\n 1 2 3 4 5 6 7 8
0 1.00 0.655 0.495 0.405 0.348 0.308 0.280 0.258
1 0.143 0.166 0.173 0.173 0.171 0.168 0.164 0.161
5 0.007 0.009 0.011 0.013 0.014 0.015 0.016 0.017
10 0.002 0.002 0.003 0.003 0.004 0.004 0.004 0.005

In order to determine the efficiency loss resulting from the use of the Hamming weight as predic-
tion function instead of the one defined in (6.26), we computed the correlation ρ [HW(Z), ϕ̂opt(Z)] (as
suggested in Proposition 6.1) for different values of n and σ. Table 6.4 lists some of our results.

Table 6.4: Correlation between the optimal prediction function and the Hamming weight.

σ\n 1 2 3 4 5 6 7 8
0 1 0.816 0.832 0.861 0.886 0.905 0.919 0.930
1 1 0.996 0.996 0.996 0.996 0.996 0.996 0.996
5 1 0.998 0.997 0.999 0.999 0.999 0.999 0.999
10 1 1 1 1 0.999 0.999 0.999 0.999

Table 6.4 suggests that whatever the dimension n, the correlation ρ(HW(Z), ϕ̂opt(Z)) tends toward 1
when σ increases. This suggests that in the noisy model, the Hamming weight of Z (or an affine function
of it) is a good prediction for the absolute difference combined leakage and that it becomes optimal as
the noise increases. The following corollary brings an explanation to this phenomenon.
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Corollary 6.5. Let L1 and L2 satisfy (6.8) and (6.9). Then for every integer n and for every z ∈ Fn2 ,
we have:

E [Cdiff? (L1, L2) | Z = z] =
2σ√
π

+
HW(z)

2
√
πσ

+ ε

(
1

σ3

)
,

and
Var [Cdiff? (L1, L2)] =

2π − 4

π
σ2 +

π − 2

2π
n+ ε

(
1

σ2

)
.

Proof. Let us focus on (6.26) asymptotically. For every a, we have erf(a) = 2√
π
a + ε

(
a3
)
and exp(a) =

1 + a + ε
(
a2
)
. Since we also have HW(z ⊕M) − HW(M) = ε(1) (as n is a constant), we can rewrite

(6.26) in the following form:

E [Cdiff? (L1, L2) |Z = z] =
1√
πσ

E
[
(HW(z ⊕M)−HW(M))

2
]

+ ε

(
1

σ3

)
+

2σ√
π

(
1− 1

4σ2
E
[
(HW(z ⊕M)−HW(M))

2
]

+ ε

(
1

σ4

))
. (6.28)

Then, E
[
(HW(z ⊕M)−HW(M))

2
]
equals E

[
HW(M)2

]
+E

[
HW(z ⊕M)2

]
−2E [HW(M)HW(z ⊕M)].

From Lemma 6.2 and since E
[
HW(M)2

]
= E

[
HW(z ⊕M)2

]
= n2+n

4 , one verifies that this expression
equals HW(z) which together with (6.28) and (6.27) implies Corollary 6.5.

Corollary 6.5 confirms the empirical study presented in Table 6.4: in the noisy model, the Hamming
weight is a good prediction for the absolute difference combined leakage. Indeed, the function z 7→
E [ |L1 − L2| | Z = z] (which corresponds to the optimal prediction function) tends toward an affine
function of HW(z) when the noise increases. Moreover, we can deduce from Corollary 6.1 and Corollary
6.5 an approximation of the correlation ρdiff

?

opt when n is negligible compared to σ:

ρdiff
?

opt ≈
√
n

4
√

2π − 4σ2
.

6.4.3 Product vs. absolute difference
In the two previous sections, we have investigated the correlation of second-order DPA involving either
the product or the absolute difference as combining function. Tables 6.1 and 6.3 give the correlations
for n ∈ {0, . . . , 8} and σ ∈ {0, 1, 5, 10} and show that, for all these parameters, the correlation for the
product combining is greater than the correlation for the absolute difference combining.

In a very noisy model (σ � n), we have shown that the correlations satisfy:

ρprod
?

opt ≈
√
n

4σ2
= 0.25

√
n

σ2
,

and

ρdiff
?

opt ≈
√
n

4
√

2π − 4σ2
≈ 0.165

√
n

σ2
.

We observe a linear relationship between the two approximations of the correlations in the very noisy
model: ρprod

?

opt ≈ 1.5ρdiff
?

opt . As a straightforward consequence of this relation, the correlation ρprod
?

opt is
always greater than ρdiff

?

opt when the noise is high and the two correlations are asymptotically equivalent
when the noise increases.

6.4.3.1 Empirical verification

In order to empirically verify the analysis carryied out in the previous sections, we ran some second-
order DPA attack simulations according to the defined Hamming weight model. The targeted sensitive
variable Z was a vector of n 6 8 bits chosen among the output bits of the AES S-Box (taking X ⊕K as
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input). The different values of X were randomly picked up to model a known (but not chosen) plaintext
attack. Tables 6.5 and 6.6 give the number of measurements required to reach a success rate of either
90% or 99.9% for the product and the absolute difference according to the values of n ∈ {0, . . . , 8} and
σ ∈ {0, 1, 5} (10000 – resp. 1000 – simulations were performed for σ ∈ {0, 1} – resp. σ = 5).

Table 6.5: Number of required measurements for the product combining.

n 1 2 3 4 5 6 7 8
σ = 0, SR = 90.0% 20 30 40 60 80 100 110 130
σ = 0, SR = 99.9% 30 50 80 130 150 190 230 280
σ = 1, SR = 90.0% 430 310 280 280 280 290 300 310
σ = 1, SR = 99.9% 940 690 600 600 570 600 650 700
σ = 5, SR = 90.0% 190000 100000 65000 55000 40000 35000 30000 25000
σ = 5, SR = 99.9% 410000 205000 135000 120000 85000 75000 65000 55000

Table 6.6: Number of required measurements for the absolute difference combining.

n 1 2 3 4 5 6 7 8
σ = 0, SR = 90.0% 20 40 60 90 130 170 210 250
σ = 0, SR = 99.9% 30 60 130 190 270 340 440 550
σ = 1, SR = 90.0% 900 800 800 700 700 750 750 800
σ = 1, SR = 99.9% 1800 1700 1650 1600 1550 1500 1600 1750
σ = 5, SR = 90.0% 420000 300000 225000 155000 115000 90000 80000 70000
σ = 5, SR = 99.9% 800000 770000 410000 380000 200000 200000 170000 160000

Remark 6.4. We can observe that the results printed in Tables 6.5 and 6.6 match very well the correlation
values given in Tables 6.1 and 6.3. Indeed, there is a kind of one-to-one correspondance between the
correlation values and the number of measurements required to reach a given success rate. These results
confirm that the correlation is a good indicator of the efficiency of an HO-DPA.

The number of measurements required by an HO-DPA quickly increases as the noise increases. Conse-
quently, we were not able to derive some precise success rates for σ > 10. However, we have done several
simulations with different noise deviations that all led to the same results: the number of measurements
required to retrieve the targeted secret was almost all the time smaller for the product combining than
for the absolute difference combining.

From our observations, we conclude that the product combining is more efficient than the absolute
difference combining not only in the idealized but also in the noisy model (under the assumption that
the leakage is normalized before being combined as explained in Section 6.4.1).

6.4.4 Further combining functions
Other combining functions have been proposed in the literature [133,175,176]. In this section, we discuss
these different proposals.

Raising to the power. In [133], Marc Joye et al. suggest to improve the efficiency of the absolute
difference combining by raising it to a power α. They analyze the new combining functions Cαdiff? in the
idealized model (corresponding to our model with σ = 0) for a single-bit second-order DPA (i.e. with
a binary combining function f : z 7→ z[i]). Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and
Stefan Tillich carry on with this approach in [176]: for a prediction function equal to the Hamming weight
(i.e. f : z 7→ HW(z)), they evaluate the correlation coefficients for Cαdiff? and Cαprod? according to different
values of α in the idealized model without offset (corresponding to our model with δ1 = δ2 = 0).
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For several values n and α, we have computed in the idealized model the optimal correlations for both
Cαprod? and Cαdiff?11. Table 6.7 lists the obtained values.

Table 6.7: Optimal correlation for Cαprod? and Cαdiff? .

α\n 1 2 3 4 5 6 7 8
Product

1 1.00 0.71 0.58 0.50 0.45 0.41 0.38 0.35
2 und. 0.58 0.37 0.27 0.21 0.17 0.15 0.13
3 1.00 0.71 0.50 0.39 0.33 0.29 0.26 0.24
4 und. 0.58 0.44 0.32 0.24 0.19 0.16 0.14
5 1.00 0.71 0.50 0.36 0.26 0.21 0.17 0.15
6 und. 0.58 0.45 0.33 0.24 0.18 0.14 0.11

Absolute difference
1 1.00 0.65 0.50 0.41 0.35 0.31 0.28 0.26
2 1.00 0.58 0.45 0.38 0.33 0.30 0.28 0.26
3 1.00 0.60 0.45 0.37 0.33 0.29 0.27 0.25
4 1.00 0.62 0.45 0.36 0.31 0.28 0.25 0.24
5 1.00 0.64 0.45 0.35 0.30 0.26 0.24 0.22
6 1.00 0.65 0.45 0.35 0.29 0.25 0.22 0.20

For both combining functions and for every n, the maximum of the optimal correlations is reached for
α = 1. Thus, our analysis shows that raising the combined leakage to a power is not a sound approach to
increase the efficiency of a second-order DPA when the noise is zero. This seems to contradict the analyses
presented in [133, 176], where the authors report that raising to some values α improves the efficiency
of the combining. The difference between our conclusions and the ones in [133, 176] is a consequence
of the following fact: our study compares second-order DPA that have been optimized by involving the
optimal prediction function (introduced in Section 6.3) and by normalizing the leakage signals (as shown
in Section 6.4.1). Besides, for every α we have tested, our correlation values are greater than the ones
reported by Elisabeth Oswald et al. in [176].

In fact we observed that raising to the power also decreases the efficiency of second-order DPA in
the noisy model. To summarize, our analysis suggests that raising the combining function to a power α
decreases the efficiency of the second-order DPA, the noise being zero or not.

Sine-based combining function. In [175], Elisabeth Oswald and Stefan Mangard propose a combin-
ing function based on the sine function. It takes as parameters the exact Hamming weights of the mask
and of the masked variable12:

Csin(HW(Z ⊕M),HW(M)) = sin
(

(HW(Z ⊕M)−HW(M))
2
)
. (6.29)

They also suggest to use the above combining function together with the following prediction function:

ϕ̂sin(Z) = −89.95 sin(HW(Z))3 − 7.82 sin(HW(Z))2 + 67.66 sin(HW(Z)) . (6.30)

In the idealized model and for n = 8, the use of the couple (Csin, ϕ̂sin) allows an attacker to reach a
correlation of 0.83 which is quite high. However, ϕ̂sin is not optimal. Indeed, Corollary 6.1 states that
the optimal prediction function for Csin is the function ϕ̂opt defined by:

ϕ̂opt(z) = E [Csin(HW(z ⊕M),HW(M))] . (6.31)

11When n equals 1 and α is even, the product of the leakages does not depend on Z (and the expectation is constant
with Z) which results in an undefined correlation.

12The formulae given in [175] are erroneous and (6.29) and (6.30) are their corrected versions.
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Actually, for such a function we have ρ(ϕ̂sin, ϕ̂opt) = 0, 97, which implies that the use of ϕ̂sin instead of
ϕ̂opt results in an efficiency loss of 3%.

With or without the above improvement, it is difficult to compare the efficiencies of Csin and Cprod∗ .
Indeed, the attack scenario presented in [175] does not correspond to the kind of attacker we focus here.
In [175] the authors consider a very strong adversarial model where the attacker is able to recover the
exact Hamming weights of the mask and of the masked variable based on pre-processed leakage profiles
(see Section 3.5.3 for further details on profiled attacks). However, in such a scenario, combining the
obtained Hamming weights is a suboptimal attack strategy and, as explained in [175], a better strategy
is to use a Bayesian classification (or maximum likelihood test). Moreover the recovering of the exact
Hamming weight values is only possible in an almost noise-free model.

As argued at the beginning of this section, in a classical HO-DPA scenario, the evaluation process of a
combining function must include an analysis in a noisy environment. Therefore, we analyzed the efficiency
of the sine-based combining in the presence of noise. Namely, we added Gaussian noises B1, B2 ∼ N (0, σ)
to the Hamming weights in (6.29) and (6.31). We list in Table 6.8 the values of the correlation according
to an increasing noise (with n equal to 8).

Table 6.8: Correlations for Csin and Cprod? according to σ.

(C, ϕ̂) \ σ 0 0.1 0.3 0.4 0.5 0.7 1 5
(Csin, ϕ̂opt) 0.87 0.74 0.38 0.21 0.11 0.05 0.037 0
(Csin, ϕ̂sin) 0.83 0.70 0.35 0.19 0.08 0.01 0 0

(Cprod? ,HW) 0.36 0.36 0.34 0.33 0.32 0.29 0.24 0.03

It can be observed that the correlation for Csin quickly decreases as σ increases. For a noise deviation
σ greater or equal to 0.4 (which is quite low) the product combining offers a greater correlation. This
suggests that in an HO-DPA scenario (where the leakage is noisy), the sine-based combining function is
not suitable.
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Figure 6.3: Attack correlation for different combining functions according to the noise deviation σ.

Final Comparison. To conclude this section, Figure 6.3 plots the attack correlations with respect to
the noise deviation σ ∈ [0, 2] for the combining functions Csin, Cαprod? and Cαdiff? , α ∈ {1, 2, 3}. This
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plot underlines the previous conclusion: among the known combining functions, the improved product
combining offers the best efficiency in a general leakage model.

6.5 Analysis of higher-order normalized product combining
When dth-order Boolean masking is used, any sensitive variable Z is split into d + 1 shares Z ⊕M,
M1, . . . , Md, where M denotes the sum

⊕
iMi. In the following, we shall denote Z ⊕M by M0. The

processing of each share Mi results in a leakage signal Li. In the Hamming weight model, the leakage Li
resulting from the manipulation of the share Mi is modeled as:

Li = δi + βi ·HW(Mi) +Bi , (6.32)

where δi denotes a constant offset, βi is a real value, HW(·) denotes the Hamming weight function and
Bi denotes a noise with mean 0 and standard deviation σ.

When several leakage signals Li’s are jointly considered, we shall make three additional assumptions:
(1) the constant βi is the same for the different Li’s (without loss of generality, we consider βi = 1), (2)
noises Bi’s are mutually independent and (3) the noise standard deviation is the same for the different
Bi’s and is denoted σ.

6.5.1 General case
As explained in Section 3.7.1, higher-order DPA consists in combining the d + 1 leakage signals by the
mean of a combining function C. This makes it possible to construct a signal that is correlated to the
sensitive variable Z. In the previous section of this chapter we have shown that the best known combining
function to perform a second-order DPA in a noisy context is the normalized product combining. We
consider here the normalized product combining generalized to higher orders:

Cprod? (L0, L1, . . . , Ld) =

d∏
i=0

(Li − E [Li]) . (6.33)

We shall denote by Cd(Z) the combined leakage signal C (L0, L1, . . . , Ld) where the Li’s correspond to
the processing of the shares Z⊕M,M1, . . . ,Md in the Hamming weight model. The following proposition
gives the expectation of Cd(Z) given Z = z for every z ∈ Fn2 .

Proposition 6.7. Let z ∈ Fn2 , then the expectation of Cd(z) satisfies:

E [Cd(z)] =

(
−1

2

)d (
HW(z)− n

2

)
. (6.34)

The proof of Proposition 6.7 makes use of the following lemma.

Lemma 6.3. We recall that the notation x[j] stands for the jth bit of a value x ∈ Fn2 . Let (Mi)16i6d

be d random variables uniformly distributed over Fn2 and mutually independent and let M =
⊕

iMi. For
every z ∈ Fn2 , the expectation of the product HW (z ⊕M)

∏
i HW(Mi) satisfies:

E

[
HW (z ⊕M)

d∏
i=1

HW(Mi)

]
=

(
−1

2

)d (
HW(z)− n

2

)
+
(n

2

)d+1

. (6.35)

Proof. According to Property 2.2 (see Section 2.5), we have:

E

[
HW (z ⊕M)

d∏
i=1

HW(Mi)

]
= HW(z) E

[
d∏
i=1

HW(Mi)

]
+ E

[
HW(M)

d∏
i=1

HW(Mi)

]

− 2 E

[
HW(z ∧M)

d∏
i=1

HW(Mi)

]
. (6.36)
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Since the Mi’s are uniformly distributed and mutually independent, we have:

E

[
d∏
i=1

HW(Mi)

]
=
(n

2

)d
, (6.37)

and

E

[
HW(z ∧M)

d∏
i=1

HW(Mi)

]
=

HW(z)

n
E

[
HW(M)

d∏
i=1

HW(Mi)

]
. (6.38)

Relations (6.37) and (6.38) imply that (6.36) can be rewritten as:

E

[
HW (z ⊕M)

d∏
i=1

HW(Mi)

]
= HW(z)

(n
2

)d
+

(
1− 2

HW(z)

n

)
E

[
HW(M)

d∏
i=1

HW(Mi)

]
. (6.39)

The uniformity and mutual independence of the Mi’s further imply:

E

[
HW(M)

d∏
i=1

HW(Mi)

]
= n E

[
M[1]

d∏
i=1

HW(Mi)

]
,

which can be rewritten as:

E

[
HW(M)

d∏
i=1

HW(Mi)

]
= n E

[
M[1]M1[1]

d∏
i=2

HW(Mi)

]
+ n E

M[1]

 n∑
j=2

M1[j]

 d∏
i=2

HW(Mi)

 ,

and by induction on d:

E

[
HW(M)

d∏
i=1

HW(Mi)

]
= n E

[
M[1]

d∏
i=1

Mi[1]

]

+ n

d∑
k=1

E

(M[1]

k−1∏
i=1

Mi[1]

) n∑
j=2

Mk[j]

( d∏
i=k+1

HW(Mi)

) . (6.40)

Then, on the first hand, we have:

E

[
M[1]

∏
i

Mi[1]

]
= 2−d(d mod 2) , (6.41)

and on the other hand, the mutual independence between the Mi’s implies the mutual independence
between M[1], (Mi[1])16i6k−1,

∑n
j=2Mk[j] and (HW(Mi))k+16i6d which leads to:

E

(M[1]

k−1∏
i=1

Mi[1]

) n∑
j=2

Mk[j]

( d∏
i=k+1

HW(Mi)

)
=

(
E [M[1]]

k−1∏
i=1

E [Mi[1]]

)
E

 n∑
j=2

Mk[j]

( d∏
i=k+1

E [HW(Mi)]

)
=

(
1

2

)k
n− 1

2

(n
2

)d−k
(6.42)

From (6.41) and (6.42), (6.40) can be rewritten as:

E

[
HW(M)

d∏
i=1

HW(Mi)

]
=

n(d mod 2)

2d
+
n(n− 1)

2

d∑
k=1

(
1

2

)k (n
2

)d−k
(6.43)

=
n(d mod 2)

2d
+
n(n− 1)

2d+1

d∑
k=1

nk (6.44)

=
n(d mod 2)

2d
+
n(nd − 1)

2d+1
(6.45)

Finally, (6.39) and (6.45) yields (6.35) which conclude the proof.
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We now give the proof of Proposition 6.7.

Proof. (Proposition 6.7) From the expression of the Li’s, we have E [Li] = δi + n
2 giving:

Cd(z) =
(

HW(z ⊕M)− n

2
+B0

) d∏
i=1

(
HW(Mi)−

n

2
+Bi

)
. (6.46)

Since the Bi’s have zero means, one deduces:

E [Cd(z)] = E

[(
HW(M)− n

2

) d∏
i

(
HW(Mi)−

n

2

)]

= E

[
HW(M)

d∏
i

(
HW(Mi)−

n

2

)]
− n

2
E

[
d∏
i

(
HW(Mi)−

n

2

)]

The uniformity and the mutual independence between the Mi’s imply:

E [Cd(z)] = E

[
HW(M)

d∏
i

(
HW(Mi)−

n

2

)]

Similarly, we have:

E [Cd(z)] = E

[
HW(M)HW(M1)

∏
i>1

(
HW(Mi)−

n

2

)]
and by induction on d:

E [Cd(z)] = E
[
HW(M)HW(M1) · · ·HW(Md−1)

(
HW(Md)−

n

2

)]
. (6.47)

Finally, the uniformity and the mutual independence between the Mi’s lead to:

E [Cd(z)] = E

[
HW(M)

d∏
i

HW(Mi)

]
−
(n

2

)d+1

, (6.48)

which together with Lemma 6.3 imply (6.34).

Proposition 6.7 shows that the expectation of Cd(z) is an affine function of the Hamming weight of
z. According to the analysis in Section 6.3, HW(Z) can therefore be considered as an optimal prediction
for Cd(Z). Hence, the higher-order DPA we focus here consists in estimating the correlation between the
Hamming weight of the target variable HW(Z) and the combined leakage Cd(Z). The next proposition
provides the exact value of this correlation.

Proposition 6.8. Let Z be a random variable uniformly distributed over Fn2 . The correlation between
HW(Z) and Cd(Z) satisfies:

ρ [HW(Z), Cd(Z)] = (−1)d
√
n

(n+ 4σ2)
d+1
2

. (6.49)

Proof. According to Lemma 6.1, the covariance between HW(Z) and Cd(Z) satisfies:

Cov [HW(Z), Cd(Z)] = Cov [HW(Z),E [Cd(Z)|Z]] .

By Proposition 6.7, we get:

Cov [HW(Z), Cd(Z)] =

(
−1

2

)d
Var [HW(Z)] ,
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which leads to:

ρ [HW(Z), Cd(Z)] =

(
−1

2

)d
σ [HW(Z)]

σ [Cd(Z)]
=

(
−1

2

)d √
n

2 σ [Cd(Z)]
. (6.50)

Since Z and the Mi’s are uniformly distributed and mutually independent, then so do Z⊕M and the
Mi’s. Moreover since the Bi’s are mutually independent then we get:

Var [Cd(Z)] = E

[(
HW(Z ⊕M)− n

2
+B0

)2
] d∏
i=1

E

[(
HW(Mi)−

n

2
+Bi

)2
]

= E

[(
HW(M)− n

2
+B

)2
]d+1

,

where M is a uniform random variable over Fn2 and B is a random variable with mean 0 and variance
σ2. Since E [HW(M)] = n/2 and E

[
HW(M)2

]
= (n2 + n)/4, one deduces:

E

[(
HW(M)− n

2
+B

)2
]

= E

[(
HW(M)− n

2

)2
]

+ E
[
B2
]

=
n

4
+ σ2 ,

which implies:

Var [Cd(Z)] =
(n

4
+ σ2

)d+1

. (6.51)

Finally, (6.50) and (6.51) leads to (6.49).
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Proposition 6.8 makes clearly appear the security provided by higher-order masking. Indeed, we see
that the correlation of the higher-order DPA decreases exponentially with d. As an illustration, Figures
6.4 and 6.5 show the correlation values obtained for n = 8 and for different values of d according to an
increasing noise.

As argued in [156, 157], a division of the attack correlation by a factor λ implies a multiplication of
the number of leakage measurements by a factor λ2 (for a given success rate). We can then deduce from
Proposition 6.8 that incrementing by 1 the masking order results in a multiplication by (n+ 4σ2) of the
number of required measurements for the higher-order DPA based on the normalized product combining.
The stronger is the noise, the more prohibitive is this factor for the attack. This illustrates the soundness
of combining higher-order masking with noise addition to thwart DPA attacks.
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When the leakage noise is weak, higher-order masking may not be enough to thwart DPA. In that
case, one may combine higher-order masking with operations shuffling to improve the DPA resistance. In
the next section, we address such a scenario and we describe and analyze some advanced DPA techniques
in this context.

6.5.2 Combined higher-order and integrated DPA

In this section, we focus on attacks targeting an implementation protected by combining (higher-order)
masking and shuffling. When shuffling is used without masking, the signal containing information about
the sensitive variable Z is randomly spread over t different signals L1, . . . , Lt. As a result, the correlation
between the prediction and one of these signals is reduced by a factor t compared to the correlation
without shuffling. In [74], an integrated DPA attack (also called windowing attack) is proposed for this
issue. The principle is to add the t signals all together to obtain an integrated signal. The correlation is
then computed between the prediction and the integrated signal. This way, the resulting correlation is
reduced by a factor

√
t instead of t without integration.

When masking is combined with shuffling, a sensitive variable Z is split into d+ 1 shares Z⊕M, M1,
. . . , Md whose manipulations are randomly spread over t different times yielding t different signals Li.
The (d + 1)-tuple of signals indices corresponding to the shares hence ranges over a subset I of the set
of (d+ 1)-combinations from {1, . . . , t}. This subset depends on how the shuffling is performed (e.g. the
shares may be independently shuffled or shuffled all together).

To bypass such a countermeasure, an adversary may combine integrated and higher-order DPA tech-
niques. The most relevant way to perform such a combined attack is to design a so-called combined-and-
integrated signal by summing all the possible combinations of d+ 1 signals among L1, . . . , Lt [228, 229].
That is, the combined-and-integrated signal, denoted ICd,I(Z), is defined by:

ICd,I(Z) =
∑
i∈I

C(Li0 , . . . , Lid) , (6.52)

where i denotes the vector (i0, . . . , id).
By construction of I, the family of signals (Li)i corresponds to a family of processed data (Di)i such

that there always exists a single (d + 1)-tuple (i′0, . . . , i
′
d) ∈ I for which we have (Di′0

, Di′1
, . . . , Di′d

) =
(Z ⊕M,M1, . . . ,Md). Let us now view (i′0, . . . , i

′
d) as a random vector uniformly distributed over I and

let us assume that the random variables Dj with j 6= i′0, . . . , i
′
d are uniformly distributed and mutually

independent. Then, we have the following proposition:

Proposition 6.9. Let Z be a random variable uniformly distributed over Fn2 . The correlation between
HW(Z) and ICd,I(Z) satisfies:

ρ [HW(Z), ICd,I(Z)] =
1√
#I

ρ [HW(Z), Cd(Z)] .

Proof. According to (6.52) the variance of ICd,I(Z) satisfies:

Var [ICd,I(Z)] =
∑

(i,j)∈I2
Cov [C(Li0 , . . . , Lid), C(Lj0 , . . . , Ljd)] .

Since by definition each monomial C(Li0 , . . . , Lid) is a product of terms with zero expectation, the covari-
ance between two different monomials equal zero. By construction, the #I monomials C(Li0 , . . . , Lid)

have equal variance and we therefore have σ [ICd,I(Z)] =
√

#I × σ
[
C(Li′0 , . . . , Li′d)

]
. Moreover, only

the combination C(Li′0 , . . . , Li′d) is statistically dependent on Z. We hence deduce that the covariance

Cov [HW(Z), ICd,I(Z)] equals Cov
[
HW(Z), C(Li′0 , . . . , Li′d)

]
. Since C(Li′0 , . . . , Li′d) and Cd(Z) have,

by definition, equal distributions, we deduce that the correlation ρ
[
HW(Z), C(Li′0 , . . . , Li′d)

]
equals

ρ [HW(Z), Cd(Z)] and Relation (6.9) straightforwardly follows.
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Proposition 6.9 shows that the effect of shuffling is similar with or without masking: the correlation
is divided by the square root of the number of possible locations for the meaningful signal(s)13. Never-
theless, when shuffling is combined with higher-order masking, the number of possible locations soars up.
Basically, we have two possible cases for such a combination:

1. Each share is independently shuffled among t operations. In that case, the number of possible
combinations for the d+ 1 meaningful signals is:

#I = td+1 .

2. The d + 1 shares are shuffled all together among t operations. Then, the number of possible
combinations is:

#I =

(
t

d+ 1

)
.

These values, together with Proposition 6.9, show that combining shuffling and higher-order masking is
a sound approach to thwart DPA when the noise in the leakage and/or the masking order do not suffice
to obtain a satisfactory resistance level. This observation is the motivation for the scheme described
in Chapter 11, which combines higher-order masking and shuffling to protect implementations of block
ciphers against DPA attacks.

13Note that this holds from the normalization of the leakage before product combining which implies a zero covariance
between the different monomials in the sum ICd,I(Z) (see the proof of Proposition 6.9). Using a different combining
function would make the effect of shuffling stronger (i.e. it would decrease the correlation more).



Chapter 7

Conclusions and perspectives

In this first part, we have investigated side channel analysis from a theoretical point of view. We have
formalized the concept of side channel attack and the underlying notions (e.g. sensitive variable, leakage
function, distinguisher) following the outlines of the theoretical model introduced in [216,217]. We have
then reviewed different metrics for the evaluation of side channel attacks. Among these metrics, we took
particular interest to the success rate. We investigated how the success rate of an attack may be efficiently
and precisely computed. Our approach was to consider the result of an attack (i.e. the distinguishing
vector) as a random process and to characterize its distribution. We have shown that, under the Gaussian
noise assumption, the result of an attack using either the correlation or the likelihood as distinguisher
follows a multivariate Gaussian distribution. The parameters of this distribution were exhibited with
respect to the leakage parameters and to the attacker’s model/estimations. From these distributions, we
were able to precisely estimate the success rate of the underlying attack. Although this analysis is purely
theoretical, we believe that it has a real practical interest for the rigorous evaluation of embedded devices.
In practice, an embedded cryptographic implementation is usually protected by some countermeasures
and an attack on such an implementation is (hopefully) complex in terms of leakage measurements. This
makes it difficult (or even impossible) to evaluate the success rate of an attack by performing it many
times. That is why, security evaluations usually focus on the result of a single attack which is not very
satisfactory in terms of security. Our analysis could be used in order to tackle this issue. As a next
step, the effectiveness of our approach should be validated in practice. An extension of our analysis to
higher-order side channel attacks would then be of particular interest for the evaluation of protected
implementations.

Our researches also addressed some attacks techniques in more detail. First, we investigated mutual
information analysis, a recently proposed attack technique that makes use of the mutual information
as distinguisher [29, 104]. The motivation behind this approach is that, contrary to correlation, mutual
information detects every kind of statistical dependences, not only linear ones. This makes it possible
to relax some assumptions about the leakage which are necessary to classical DPA attacks. However,
some questions had remained unanswered after the first publications. In particular, the estimation of the
mutual information, which itself requires the estimation of statistical distributions, is a major practical
issue that had not been fully investigated. Secondly, it was not clear to what extent MIA should be
preferred or not to classical DPA attacks. To answer these questions, we conducted an in-depth analysis
of the theoretical and the practical aspects of MIA. First, we studied MIA under the Gaussian noise
assumption which allowed us to stress the theoretical foundations behind the attack and to generalize it
to higher orders. Then, we presented some classical estimation methods for statistical distributions and
we applied them in the context of MIA. We observed that the way to estimate the mutual information
has a clear impact on the attack efficiency. In particular, we introduced a parametric estimation method
which significantly improves the MIA efficiency compared to the initially proposed histogram method.
Finally, our analysis showed that MIA is less efficient than classical DPA in a common context where the
leakage linearly depends on the Hamming weight of the target variable.

We also studied higher-order side channel attacks which target protected implementations. We ad-
dressed higher-order DPA attacks and the underlying combining functions. At the time when we started
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our study, two different combining functions were commonly used to perform second-order attacks: the
absolute difference combining and the product combining. However, no formal analysis existed allowing
one to decide between them. To fill this gap, we conducted a study of second-order DPA involving both
combining functions under common assumptions about the leakage. Our analysis clearly showed that the
product combining should be preferred to the absolute difference combining. Moreover, we have shown
that a normalization of the leakage measurements before product combining enables a significant gain in
the attack efficiency. The resulting normalized product combining is at this day the best combining func-
tion in the literature to perform a second-order DPA under common assumptions about the leakage. We
also exhibited the optimal prediction function for higher-order DPA according to a combining function
and given a leakage model. This result is not of practical purpose since a higher-order DPA adversary
is not assumed to precisely know the leakage distribution (contrary to a profiled attack adversary). On
the other hand, it allows one to determinate what a higher-order DPA attacker can ideally expect (for a
given combining function) which is of great interest from a security point of view. Finally, we extended
our analysis of the normalized product combining to higher orders and possibly in the presence of op-
eration shuffling. From a more general point of view, our analysis introduced the basis for a practically
oriented analysis of higher-order DPA attacks that may be used for further investigations. In particular,
the proposed framework makes it possible to analyze the efficiency of new combining techniques in a
general model. Future research could focus on better/optimal combining functions for higher-order DPA.
However, it should be noted that higher-order DPA involving a combining function is not optimal from
an information theoretic point of view. Indeed, the application of a combining function inevitably leads
to a loss of information. Therefore, other types of higher-order side channel attacks should also be inves-
tigated. Regarding this issue, we showed how MIA can be naturally extended to higher orders. However,
the first experimental results have showed that second-order MIA is still less efficient than second-order
DPA involving the normalized product combining. For future work, a more accurate analysis of MIA at
different orders and for different leakage noises would be of interest. In particular, an alternative method
for higher-order MIA based on multivariate mutual information has been recently proposed in [103]. A
comparison of the two approaches is missing at this day. Moreover, as we stressed in our study, the main
practical issue of higher-order MIA is the estimation of Gaussian mixture distributions. This issue, which
has been investigated in the context of profiled SCA in [152], could also be studied and deepened in the
context of higher-order MIA.
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8.1 Introduction
Masking is nowadays the most widely used countermeasure to protect block ciphers implementations
against side channel analysis. The basic principle of masking is to add one or several random value(s)
to every sensitive variable occurring during the computation. This approach appeared in the literature
soon after the publication of the DPA attack [147]. It was independently published by Suresh Chari,
Charanjit Jutla, Josyula Rao, and Pankaj Rohatgi in [65] and by Louis Goubin and Jacques Patarin
in [118]. In [65], the authors conduct a theoretical study that demonstrates the soundness of masking.
On the other hand, [118] introduces a general framework to protect block ciphers using masking and
applies it to the DES cipher. The terminologies employed in these two papers are different: in [65],
masking is referred to as sharing, while in [118], it is referred to as duplication. In this thesis, we use the
term masking as it is today the most widely used in the literature.

We present hereafter the outlines of masking and we explain why it is a sound approach to counteract
side channel analysis. Then, we review the different masking schemes for block ciphers which have been
proposed in the literature. Afterwards, we introduce a model to prove the security of such schemes.
Eventually, we present the outlines of our different contributions.

8.2 Masking outlines
When masking is involved, every sensitive variable Z occurring during the computation is randomly split
into d+ 1 shares M0, . . . , Md in such a way that the following relation is satisfied for a group operation
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? (e.g. the XOR or the modular addition):

M0 ? M1 ? · · · ? Md = Z (8.1)

Usually, the d sharesM1, . . . ,Md (called the masks) are randomly picked up and the shareM0 (called the
masked variable) is processed such that it satisfies (8.1). Two types of masking have mainly been studied:
the Boolean masking for which ? is defined as the XOR operation and the arithmetic masking for which ?
is defined as the modular addition. Boolean masking is the most widely used since most ciphers use the
XOR as elementary operation. When d random masks are involved per sensitive variable the masking is
further said to be of order d.

Assuming that the masks are uniformly distributed, masking renders every intermediate variable of
the computation statistically independent of any sensitive variable. As a result, classical side channel
attacks exploiting the leakage related to a single intermediate variable are not possible anymore. However,
masking can be overcome by higher-order side channel attacks that exploit the leakages related to several
intermediate variables at the same time (see Section 3.7). Indeed, the leakages resulting from the d +
1 shares (i.e. the masked variable and the d masks) are jointly dependent on the sensitive variable.
Whatever its order d, a masking is always theoretically vulnerable to an attack of order d+1. Nevertheless,
the noise effects imply that the difficulty in carrying out a higher-order SCA increases exponentially with
its order, which makes masking a sound countermeasure.

8.3 Soundness of masking

The soundness of masking was formally demonstrated by Suresh Chari, Charanjit Jutla, Josyula Rao,
and Pankaj Rohatgi in [65]. They assume a simplified but still realistic leakage model where a bit b is
masked using d random bits M1, . . . , Md i.e. the masked bit is defined as M0 = b⊕M1 ⊕ · · · ⊕Md. The
leakage of each share is modelled as Li = Mi + Bi where the noises Bi’s are assumed to have Gaussian
distributions N

(
µ, σ2

)
and to be mutually independent. Under this leakage model, they show that the

number of samples N required by any adversary to distinguish the distribution (L0, . . . , Ld|b = 0) from
the distribution (L0, . . . , Ld|b = 1) with a probability at least α satisfies:

N > σd+δ (8.2)

where δ = 4 logα/ log σ.
This result encompasses all the possible distinguishers and hence formally states the resistance against

every kind of side channel attack. Although the model is simplified, it could probably be extended to
more common leakage models such as presented in Section 3.4.3. The point is that if an attacker observes
noisy side channel information about d + 1 shares corresponding to a variable masked with d random
masks, the number of samples required to retrieve some information about the unmasked variable is lower
bounded by an exponential function of the masking order whose base is related to the noise amplitude.
This shows that (higher-order) masking is a sound countermeasure especially when combined with noise.
Many works also made this observation for particular side channel distinguishers (see for instance Chapter
6, [204,219]).

When masking is involved in protecting a block cipher implementation, a problem arises: how should
the computation on masked data be performed? From a masked plaintext and a possibly masked key, one
must perform the computation while ensuring that masks and masked variables are processed separately.
For a dth-order masking, the goal is to ensure that every tuple of d or less intermediate variables is
independent of any sensitive variable. Otherwise an attack of order lower than d + 1 may be possible.
Any method to achieve this goal is called a masking scheme. Most masking schemes proposed in the
literature only deal with first-order masking. That is why, we shall not specify the masking order when
it is one but we shall specify it when it is higher.
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8.4 Masking schemes in the literature
Following the first publications [65,118], several papers have been published that propose masking schemes
for block ciphers14. The different proposals are reviewed hereafter.

Most block ciphers are composed of substitution boxes (S-boxes), linear operations and key additions
(this is for instance the case of the two encryption standards DES and AES). While designing a masking
scheme for such a cipher, the main issue is the masking of the S-boxes. This issue has been widely
investigated in the literature. Some solutions have been proposed that are generic, namely they can be
applied to any S-box. Other solutions have been proposed that are dedicated to the AES S-box taking
advantage of its mathematical structure. Other block ciphers exist that involve an alternative use of
Boolean and arithmetic operations. Masking such block ciphers poses a masking conversion problem.

8.4.1 Generic masking schemes
The first generic solution (although described for DES) is the one proposed by Louis Goubin and Jacques
Patarin in [118]. This solution has recently been shown to be vulnerable to first-order SCA [96]. A
very simple and efficient method known as the table re-computation was published by Thomas Messerges
in [163]. It consists in computing a look-up table representing a masked version of the S-box. This
look-up table is then involved each time the S-box must be computed. In order to avoid the memory
overhead induced by this method, alternative solutions have been proposed that perform masked S-boxes
computations on-the-fly without RAM allocation. A first method was introduced by Emmanuel Prouff,
Christophe Giraud and Sébastien Aumônier in [192] that is based on the Fourier transform. As we show in
Chapter 12, this method has a flaw with respect to first-order SCA. We then describe a patched version
of the method that is secure with respect to first-order SCA. Furthermore, we propose in Chapter 9
another generic method for on-the-fly masked S-box computation which is more efficient than the Fourier
transform based method.

Generic solutions have also been proposed to withstand higher-order SCA. A first solution was pro-
posed by Mehdi-Laurent Akkar and Louis Goubin (and described for DES) [23] which was broken and
improved in [21,153]. However, all these solutions are based on a first-order masking which prevents them
from perfectly thwarting second-order SCA. A second proposal was made by Kai Schramm and Christof
Paar in [204] that generalizes the table re-computation method to higher orders. Their scheme takes an
order d as parameter and aims to protect an implementation against dth-order SCA. However, we show
in Chapter 13 that their method is broken for d > 3 and can only be used to thwart second-order SCA.
In Chapter 10, we further present two alternative second-order masking schemes for S-boxes that provide
time-memory tradeoffs to the Schramm and Paar’s scheme.

8.4.2 Masking schemes dedicated to AES
Due to its strong mathematical structure, the AES S-box is well suited to dedicated masking schemes.
Indeed, the AES S-box is defined as the multiplicative inversion over GF (256) composed with an affine
transformation (with respect to the XOR). Masking the AES S-box hence mainly amounts to masking
the inversion over GF (256). Regarding this issue, a first solution was proposed by Mehdi-Laurent Akkar
and Christophe Giraud in [22]. Their solution is based on the use of a multiplicative masking which
propagates well throughout the inversion. However, multiplicative masking has a serious drawback: it
does not mask the zero value which enables a first-order SCA attack [114]. Another dedicated solution
was proposed by Johannes Blömer, Jorge Guajardo Merchan, and Volker Krummel in [46] that performs
the inversion over GF (256) using an exponentiation algorithm with on-the-fly mask correction. In [178],
Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen propose a method based
on composite field arithmetic. They use the fact the inversion over GF (256) can be broken down into
a sequence of operations over GF (16) and GF (4) that are easy to mask. Their solution, which was
initially devoted to hardware implementations, has been extended to software implementations in [179].
Furthermore, an improved solution for more compact hardware representation was proposed in [62].
Finally, an algebraic method was proposed by Nicolas Courtois and Louis Goubin in [83] that consists

14Masking has also been investigated at the logic gate level (see Section 3.6.2 for an overview).
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in embedding the inversion over GF (256) in a group of homographic transformations over the projective
space.

8.4.3 Masking conversion problem

Some block ciphers exist that involve both Boolean and arithmetic operations. As suggested by Thomas
Messerges in [163], masking such block cipher implies the use of both Boolean masking and arithmetic
masking. When a cipher requires the two types of masking, conversion methods must be defined to
switch from one to the other without introducing a flaw. Thomas Messerges proposed in [163] such
conversion methods. However, these methods imply the computation of some intermediate variables that
are non-uniformly masked, thereby implying a flaw with respect to first-order SCA [78]. Subsequently,
secure methods to convert Boolean masking into arithmetic masking and vice versa were proposed by
Louis Goubin in [117]. The proposed method for Boolean-to-arithmetic conversion is quite efficient but
the converse is less efficient. In order to fix this imbalance, Jean-Sébastien Coron and Alexei Tchulkine
proposed in [82] an improved method for arithmetic-to-Boolean conversion based on pre-computed tables.
Their method was further improved and extended in [173].

8.5 Provably secure masking schemes for block ciphers

We present in this section a generic masking scheme for block ciphers that are composed of key additions,
S-boxes and linear transformations (e.g. the encryption standards DES and AES). We show that the
main issue while designing such a masking scheme is the masking of the S-boxes computations. We then
introduce a security model that makes it possible to formally prove the security of such a masking scheme.

8.5.1 Block cipher model

A block cipher is a cryptographic algorithm that, from a secret key k, transforms a plaintext block p into
a ciphertext block c through the repetition of key-dependent permutations, called round transformations.
Let us denote by p, and call cipher state, the temporary value taken by the ciphertext during the algorithm.
In practice, the cipher is iterative, which means that it applies R times the same round transformation
ϕ to the cipher state. This round transformation is parameterized by a round key k that is derived
from k by iterating a key scheduling function α. We shall use the notations pr and kr when we need
to indicate the round r during which the variables p and k are involved: we have kr+1 = α(kr, r) and
pr+1 = ϕ[kr](pr), with p0 = p, pR = c and k0 = α(k, 0).

We consider block ciphers for which the round transformation ϕ is composed of different operations:
a key addition layer σ, a non-linear layer γ, and a linear layer λ:

ϕ[k] = λ ◦ γ ◦ σ[k].

The entire cipher transformation can thus be written:

c =©R−1
r=0 λ ◦ γ ◦ σ[kr] (p).

We consider that the key scheduling function α is composed of linear and non-linear layers similar to
those of the round transformation.

The key addition layer is a simple bitwise addition between the round key and the cipher state and
we have σ[k](p) = p⊕ k. The non-linear layer consists of several non-linear vectorial functions Sj , called
S-boxes, that operate independently on a limited number of state bits: γ(p) =

(
S1((p)1), . . . , SN ((p)N )

)
where (p)j denotes the jth part of the state p. For reasons of efficiency, S-boxes are most of the time
implemented as look-up tables (LUT). We consider here that the linear layer λ, which mixes the outputs
of the S-boxes, is linear with respect to the bitwise addition.

As an illustration, Figure 8.1 represents a typical round transformation with a non-linear layer made
of four S-boxes.
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Figure 8.1: A typical round transformation with a non-linear layer composed of four S-boxes.

Remark 8.1. Note that this description is not restrictive regarding the structure of recent block ciphers.
In particular, this description can be straightforwardly extended to represent the DES and the AES
algorithms.

8.5.2 Generic masking scheme
We describe hereafter a generic masking scheme for any block cipher following the model above. The ci-
pher state p and the secret key k are represented by d+1 shares – (p0, . . . , pd) and (k0, . . . , kd) respectively
– that satisfy the following relations:

p = p0 ⊕ · · · ⊕ pd , (8.3)
k = k0 ⊕ · · · ⊕ kd . (8.4)

At the beginning of the computation, the shares (p1, . . . , pd) and (k1, . . . , kd) – the masks – are randomly
generated and the shares p0 and k0 – the masked state and the masked key – are processed according to
(8.3) and (8.4).

In order to keep track of the correct values of p and k, (8.3) and (8.4) must be satisfied at the different
steps of the cipher. At the end of the algorithm, the desired ciphertext (which corresponds to the final
value pR) is re-built from the shares

(
pR0 , . . . , p

R
d

)
. To preserve the security throughout the cipher, the

different shares must always be processed separately. Thus, the point is to process the algorithm by
manipulating the shares separately, while maintaining (8.3) and (8.4) in such a way that the unmasked
value can always be re-established. To maintain these relations along the algorithm, one must be able to
maintain them throughout the three layers λ, σ and γ.

For the linear layer λ, maintaining (8.3) and (8.4) is simply done by applying λ to each share separately.
Indeed, due to the linearity of the operations, λ(p) and the new shares λ(pi) satisfy the desired relation:

λ(p) = λ(p0)⊕ · · · ⊕ λ(pd) .

An easy relation also stands for the key addition layer σ where each ki can be separately added to
each pi since we have:

σ[k](p) = σ[k0](p0)⊕ · · · ⊕ σ[kd](pd) .

For the non-linear layer, no such relation exists and maintaining (8.3) is a much more difficult task.
This makes the secure implementation of such a layer the principal issue while protecting block ciphers.
Because of the non-linearity of γ, new random masks p′1, . . . , p′d must be generated. Then the masked
output state p′0 has to be processed from (p0, . . . , pd) and (p′1, . . . , p

′
d) in such a way that:

γ(p) = p′0 ⊕ · · · ⊕ p′d .

Since γ is composed of several S-boxes, each operating on a subpart of p, the problem can be reduced
to securely implement one S-box. The underlying problem is therefore the following.
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Figure 8.2: dth-order masking scheme for a typical round transformation.

Problem 8.1. Let S be a non-linear function from Fn2 to Fm2 . From a masked input x⊕ r1 ⊕ · · · ⊕ rd ∈
Fn2 , the tuple of masks (r1, . . . , rd) ∈ Fn2

d and a tuple of output masks (s1, . . . , sd) ∈ Fm2
d, compute

S(x)⊕ s1 ⊕ · · · ⊕ sd without introducing any vulnerability with respect to dth-order SCA.

If the problem above can be resolved by an algorithm SecSbox, then the masked output state p′0 can
be constructed by performing each S-box computation through this algorithm.

Let us now assume that we have such a secure S-box implementation. The scheme described in
Figure 8.2 can then be viewed as the protected version of the round transformation described in Figure
8.1. Finally, the entire block cipher algorithm protected against dth-order SCA can be implemented as
depicted in Algorithm 1.

Remark 8.2. We have described above a way to secure a round transformation ϕ. The secure implemen-
tation αsec of the key scheduling function α can be straightforwardly deduced from this description since
it is also composed of linear and non-linear layers.

Remark 8.3. When the notation (p0, p1, . . . , pd)← . . . is used, the operation is assumed to be performed
on each pi separately.

Algorithm 1 Block Cipher secure against dth-order SCA
Input: a plaintext p, a masked key k0 = k⊕ k1 ⊕ · · · ⊕ kd and the masks (k1, . . . , kd)

Output: the ciphertext c

1. (p1, . . . , pd)←
(
rand(|p|), . . . , rand(|p|)

)
2. p0 ← p⊕ p1 ⊕ · · · pd
3. for r = 0 to R− 1 do
4. (k0, k1, . . . , kd)← αsec ((k0, k1, . . . , kd), r)

5. (p0, p1, . . . , pd)← (p0 ⊕ k0, p1 ⊕ k1, . . . , pd ⊕ kd)
6. (p′1, . . . , p

′
d)←

(
rand(|p|), . . . , rand(|p|)

)
7. for j = 1 to N do (p′0)j ← SecSbox (Sj , (p0)j , . . . , (pd)j , (p

′
1)j , . . . , (p

′
d)j)

8. (p0, . . . , pd)← (λ (p′0) , λ (p′1) , . . . , λ (p′d))

9. return p0 ⊕ p1 ⊕ · · · ⊕ pd
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8.5.3 Security model
In order to prove the security of such a masking scheme, we need to introduce a few definitions. We shall
say that a variable is sensitive if it is a function of the plaintext and the secret key (that is not constant with
respect to the secret key). Additionally, we shall call primitive random values the intermediate variables
that are generated by a random number generator (RNG) executed during the algorithm processing.
Primitive random values are assumed to be uniformly distributed and mutually independent of each
other.

In our security analyses, we will make a distinction between a statistical dependence and what we shall
call a functional dependence. Every intermediate variable of a cryptographic algorithm can be expressed
as a deterministic function of some sensitive variables and some primitive random values (generated by
a RNG). When this function involves (resp. does not involve) a primitive or sensitive variable X, the
intermediate variable is said to be functionally dependent (resp. independent) of X. If the distribution of
an intermediate variable I varies (resp. does not vary) according to the value of a variable X then I is
said to be statistically dependent (resp. independent) of X. It can be checked that the two notions are
not equivalent since functional independence implies statistical independence but the converse is false.
We give hereafter an example that illustrates the difference between these notions.

Example. Let X be a sensitive variable and let R be a primitive random value. The variable I = X ⊕R
is functionally dependent on X and on R. On the other hand, it is statistically independent of X since
the probability P [X = x|I = i] is constant for every pair (x, i).

When the term (in)dependent is used alone, it refers to the statistical notion.
As introduced in Section 3.7, a dth-order SCA is an SCA that exploits the leakages of d intermediate

variables. According to [2, 46], we formally define hereafter the security against dth-order SCA.

Definition 8.1. A cryptographic algorithm is said to be secure against dth-order SCA if every d-tuple of
its intermediate variables is independent of any sensitive variable.

Conversely, an algorithm is said to admit a dth-order flaw if d of its intermediate variables jointly
depend on a sensitive variable. Due to Definition 8.1, proving that an algorithm is secure against dth-
order SCA can be done by showing that all the d-tuples of its intermediate variables are independent of
any sensitive variable. In order to simplify our security proofs, we introduce the notion of independence
for a set.

Definition 8.2. A set E is said to be independent of a variable X if every element of E is independent
of X.

By extension, Definition 8.2 implies that the cartesian product of d sets E1, . . . , Ed is independent
of a variable X if any d-tuple in E1 × · · · ×Ed is independent of X15. Thus, according to Definition 8.1,
an algorithm processing a set I of intermediate variables is secure against dth-order SCA if and only if
Id is independent of any sensitive variable. In the sequel we shall further say that a set admits a flaw
(resp. admits no flaw) if one (resp. none) of its elements depends of a sensitive variable.

The following proposition provides a useful security reduction for the generic masking scheme described
in Section 8.5.2.

Proposition 8.1. Algorithm 1 is secure against dth-order SCA if and only if SecSbox is secure against
dth-order SCA.

Sketch of Proof. Let us denote by I the set of intermediate variables processed during one execution
of Algorithm 1. Moreover, let us denote by Ir the set of intermediate variables processed during the
rth round of Algorithm 1; we have I =

⋃
r Ir. Finally, let us denote by Sr,j the set of intermediate

variables processed during the jth execution of SecSbox at round r, and by Or the set of the intermediate
variables processed outside of the SecSbox calls at round r; we have Ir = Or∪

⋃
j Sr,j . We will argue that

(1) Id admits a flaw (namely a d-tuple of Id depends on a sensitive variable) if and only if (2) there exists
15Unlike a set, a d-tuple is independent of a variable X if its d elements are jointly independent of X.
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a pair (r, j) such that Sdr,j admits a flaw. Since for every (r, j), we have Sdr,j ⊂ Id, (2) straightforwardly
implies (1). Let us now show that (1) also implies (2).

Since the mask are re-generated at each round, if a dth-order flaw occurs in the algorithm then it
occurs within (at least) a given round r. That is, if Id admits a flaw then there exists r such that Idr
admits a flaw. This implies that an element of Idr depends on pr. Since pr is split into d + 1 shares pr0,
. . . , prd that are such that any d-tuple among them is independent of pr, there exists at least one variable
x ∈ Ir that jointly depends on at least two shares. It can be checked from Algorithm 1 that all the shares
are manipulated strictly separately outside the SecSbox calls. Therefore, there exists j such that x ∈ Sr,j
which implies that Sdr,j has a flaw. �

Proposition 8.1 formally shows that plugging a secure S-box computation algorithm in the masking
scheme described in the previous section implies the overall security for the block cipher implementation.
That is why in the next chapters we shall focus on masking schemes for S-boxes. In order to prove the
security of the proposed scheme, we will make use of the following lemmas.

Lemma 8.1. Let X and Z be two independent random variables. Then, for every family (fi)i of mea-
surable functions the set E = {fi(Z); i} is independent of X.

Lemma 8.2. Let X be a random variable defined over Fn2 and let R be a random variable uniformly
distributed over Fn2 and independent of X. Then X ⊕ R is independent of X. Moreover, let Z be a
variable independent of R and functionally independent of X. Then the pair (Z,X ⊕ R) is independent
of X.

When a sensitive variable is masked with two primitive random values, then Lemmas 8.1 and 8.2
imply that no second-order leakage occurs if the three shares are always processed separately.

8.6 Design and cryptanalysis of masking schemes
In the next two chapters, we propose new first-order and second-order masking schemes for S-boxes.
For each of them, we formally prove the security against first-order/second-order SCA with respect to
the security model introduced in the previous section. According to Proposition 8.1, using one of these
methods together with the block cipher masking scheme described above guarantees an overall first-
order/second-order SCA security.

A different approach is followed in Chapter 11, where we propose a scheme combining higher-order
masking with operation shuffling. This scheme does not aim at provable security against SCA of given
order. Rather, it ensures a chosen resistance level against some advanced DPA attacks which are especially
effective against masking and shuffling.

Finally, we present in Chapters 12 and 13 the cryptanalysis of two masking schemes. The first one
aims to thwart first-order SCA. We show that a first-order attack is in fact possible in the presence of
this scheme. The second one aims to thwart dth-order SCA for a chosen security parameter d. We show
that, whatever the value of d, the scheme is vulnerable to several third-order attacks, which invalidates its
higher-order security. These results underline the importance of proving the security of masking schemes.
For the first of the two broken schemes, a security proof was given which was flawed, while, for the second
one, no security proof was provided.
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9.1 Introduction

In this chapter, we address generic first-order masking schemes for S-boxes. After a review of the existing
solutions, we present a new generic method to perform an S-box computation on masked data. Our
method performs the computation on-the-fly and it does not require any RAM allocation. We compare
it to the previous solutions and we give implementation results.

The results presented in this chapter have been published in collaboration with Emmanuel Prouff
in the international workshop on Information Security Applications (WISA 2007) [4]. The presented
method has also been patented in [15].

9.2 State of the art

9.2.1 Table re-computation method

The table re-computation method [163] is the most natural way to mask an S-box computation using a
look-up table. It consists in pre-computing a masked version of the S-box look-up table which is then
involved each time the S-box must be computed. The simplicity and the efficiency of this method makes
it widely used to protect S-boxes computations at the first order.
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Let n and m be the input and output bit-lengths of S. Let T denote a table of 2n m-bit words
allocated in RAM. The table re-computation algorithm is described hereafter.

Algorithm 2 re-compute
Input: an input mask r, an output mask s
Output: the table T [·] = S(· ⊕ r)⊕ s

1. for a = 0 to 2n − 1 do
2. T [a]← S(a⊕ r)⊕ s
3. return T

Usually the masked table is computed once at the beginning of the cipher for a pair of random masks
(r∗, s∗) and it is then involved performing every masked S-box computation such as described hereafter.

Algorithm 3 SecSbox-trc
Input: a masked input x̃ = x⊕ r, an input mask r, an output mask s, a table T [·] = S(· ⊕ r∗)⊕ s∗
Output: the masked output S(x)⊕ s

1. tmp← x̃⊕ r∗ [tmp = x⊕ r ⊕ r∗]
2. tmp← tmp⊕ r [ tmp = x⊕ r∗]
3. tmp← T [tmp] [tmp = S(x)⊕ s∗]
4. tmp← tmp⊕ s [tmp = S(x)⊕ s∗ ⊕ s]
5. tmp← tmp⊕ s∗ [tmp = S(x)⊕ s]
6. return tmp

Complexity analysis. The re-compute algorithm requires 2n×2 logical operations (2 XOR operations
per loop iteration) and 2n×2 memory transfers (1 read operation and 1 write operation per loop iteration).
Moreover, it requires the allocation of 2nm bits of RAM. The SecSbox-trc algorithm requires 4 logical
operations and 1 memory transfer.

Remark 9.1. When a block cipher involves several (say NS) different S-boxes, a masked table must be
pre-computed per S-box. Besides, the re-compute algorithm must be executed NS times and NS tables
must be allocated in RAM. For instance, the DES algorithm involved 8 different S-boxes; it hence required
8 table re-computations.

Security analysis. It can be checked from Algorithm 3 that every intermediate variable of the compu-
tations is masked with a uniform random mask and is hence independent of x. Consequently, SecSbox-trc
is secure against first-order SCA.

9.2.2 Global look-up table method

The global look-up table method makes use of a look-up table T for the function (y1, y2) 7→ S(y1⊕y2)⊕y2.
This look-up table is stored in ROM and it does not require any dynamic pre-computation. The masked
S-box computations are then performed as follows.

Algorithm 4 SecSbox-glut
Input: a masked input x̃ = x⊕ r, an input mask r, an output mask s, the table T [y1, y2] = S(y1 ⊕ y2)⊕ y2
Output: the masked output S(x)⊕ s

1. tmp← T [x̃, r] [tmp = S(x)⊕ r]
2. tmp← tmp⊕ s [tmp = S(x)⊕ r ⊕ s]
3. tmp← tmp⊕ r [tmp = S(x)⊕ s]
4. return tmp
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Complexity analysis. The timing performances of the global look-up table method are ideal since it
requires only two logical operations and one memory transfer. However, the bit-size 22nm of the look-up
table T makes an application of the method difficult in a low resource context. For instance, if n = m = 8,
the amount of ROM required (64 kilobytes!) is definitively too large. When n is lower, the feasibility
of the method depends on the amount of ROM of the device and on the number of different S-boxes
which must be protected. The method can become interesting when it comes to protect S-boxes mapping
F4

2 into itself (as it is the case for FOX [136] where three such S-boxes are involved) or when the S-box
computation can be performed in spaces of dimensions lower than or equal to 4 (as it is the case for the
AES S-box, see Section 9.4.2).

Security analysis. From a security point of view, the global look-up table method has a flaw since it
manipulates the pair (x̃, r) to address the look-up table T (see Step 1 of Algorithm 4). In practice, this
implies the processing of x̃||r (where || denotes the concatenation operator). The latter depends on x
which induces a first-order flaw. For instance, in the Hamming weight model, it can be checked that x is
statistically dependent of HW((x ⊕ r)||r), which results in an information leakage. Moreover, the input
and output masks being equal, this method has also a potential flaw in the Hamming Distance model.
Indeed, if a transition occurs between the index (x⊕ r)||r and the value S(x)⊕ r accessed in the look-up
table (which is very likely in a single bus architecture), the mask r is canceled and some information
leaks about x and/or S(x).

9.2.3 Fourier transform based method
The Fourier transform based method processes a masked S-box computation on-the-fly. Its main advan-
tage is that it does not required any RAM allocation.

As we show in Chapter 12, the original version proposed in [192] has a first-order flaw which enables
a first-order SCA attack. We also propose a corrected version of the method whose basic principle is to
evaluate the following equation (m is assumed equal to n):

(−1)r
′
S(x) + s mod 2n =

⌊
1

2n

(
(2ns+ s′) +

∑
a∈Fn

Ŝ(a)(−1)(r′⊕a·x̃)⊕a·r mod 22n

)⌋
, (9.1)

where Ŝ denotes the Fourier transform of S, r′ is a random mask over F2, s′ is a random mask over Fn2 .
It is worth noting that the obtained value is masked arithmetically (i.e. by modular addition). This

implies that, once (9.1) has been computed, one must still convert the arithmetic mask s into a Boolean
mask (after canceling the (−1)r

′
factor) to obtain the desired masked output. Such a conversion can

be done using the method in [117]. All in all, the Fourier transform based method is quite expensive in
terms of timings.

We do not give details about the complexity and security of the Fourier transform based method here
(see Chapter 12 for details). The next section present an alternative on-the-fly masked S-box computation
that neither require RAM allocation and that is clearly more efficient than the Fourier Transform based
method.

9.3 A new on-the-fly masked S-box computation

9.3.1 Description
The core idea of our proposal is to compute S(x̃⊕ a)⊕ s for every value a, storing the result in a register
R0 if a equals r and in a second register R1 otherwise.

Let compare : x, y 7→ compare(x, y) be the function returning 0 if x = y and 1 otherwise. We depict
our proposal in the following algorithm.
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Algorithm 5 SecSbox-otf
Input: a masked input x̃ = x⊕ r, an input mask r, an output mask s, the S-box S
Output: the masked output S(x)⊕ s

1. for a = 0 to 2n − 1 do
2. cmp← compare(a, r)

3. Rcmp ← S(x̃⊕ a)⊕ s
4. return R0

Remark 9.2. Many microprocessors implement the function compare by a single instruction. Thus, we
will assume in the following that this function is an elementary logical operation.

To verify the correctness of Algorithm 5, it can be checked that Step 3 performs the following operation:{
R0 ← S(x̃⊕ a)⊕ s if a = r ,
R1 ← S(x̃⊕ a)⊕ s otherwise . (9.2)

Hence, R0 contains the value S(x̃⊕ r)⊕ s = S(x)⊕ s when the loop is completed.

9.3.2 Complexity analysis

Algorithm 5 requires 2n × 3 logical operations (2 XOR operations and 1 comparison per loop iteration)
and 2n memory transfers (1 table look-up per loop operation).

9.3.3 Security analysis

The security of the new method highly depends on the assumption that the leakage generated by a
register transfer does not enable to determine which register has been used. This assumption is commonly
accepted and it is the security core of SPA countermeasures used to protect asymmetric cryptosystems
(see for instance [135]).

Table 9.1: Intermediate variables of Algorithm 5.

Step Intermediate Variables
2 r
2 compare(a, r)
3 S(x̃⊕ a)
3 S(x̃⊕ a)⊕ s
4 S(x)⊕ s

We list in Table 9.1 the intermediate variables processed in Algorithm 5. Based on Lemma 8.2, we
clearly see that all the intermediate variables processed in Algorithm 5 are independent of x. As a result,
SecSbox-otf is secure against first-order SCA.

Remark 9.3. When a 6= r, Step 3 performs a dummy operation. As we explain in [4], this may induce a
flaw with respect to combined side channel and fault attacks. Regarding this issue, a variant is provided
in [4] that avoids dummy operations.

9.4 Comparison and application

9.4.1 Comparison

In what follows, we compare the complexity of our proposal with the ones of other generic methods.
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Table 9.2 summarizes the costs of the table re-computation method, the global look-up table method
and our on-the-fly computation method with respect to the number of logical operations (LO), the number
of memory transfers (MT), the memory size (bits in RAM) and the code size (bits in ROM).

Table 9.2: Time & memory complexities of the generic first-order masking schemes for S-boxes.

Method Pre-computation S-box computation RAM ROM
Table re-computation 2n+1MT + 2n+1LO 1MT + 4LO 2nm 2nm

Global LUT 0 1MT + 2LO 0 22nm
On-the-fly computation 0 2nMT + 3× 2nLO 0 2nm

The three methods provide different time-memory tradeoffs. Our method is clearly the least efficient
in terms of timings. However, contrary to the table re-computation method, it does not require any RAM
allocation. And contrary to the global LUT method, it does not require a huge amount of ROM and it
does not suffer any security flaw. Note that for low-cost devices, timings are sometimes less critical than
memory. In such a situation, our solution is of great interest compared to the others.

9.4.2 Application to AES
We recall that the AES S-box is composed of two parts: a non-linear function and an affine mapping.
In the following we focus on the non-linear part, which will be denoted here by F . Let p(x) denotes the
irreducible polynomial x8 ⊕ x4 ⊕ x3 ⊕ x⊕ 1 ∈ F2[x]. The function F is defined in F2[x]/p(x) by:

F (a) =

{
0 if a = 0,
a−1 otherwise.

At first, we applied the method depicted in Algorithm 5 for n = 8 to protect the S-box access of the
AES algorithm. We implemented the solution on a classical 8051 chip running at 8 Mhz and we studied
the performances of the implementation. Clearly, the timing overhead of the resulting AES implemen-
tation (approximately 115 ms) is considerable compared to an implementation without countermeasures
(approximately 5 ms).

Secondly, we represented F28 has an extension of F24 , allowing us to perform the computations in F24

instead of F28 (such a method is usually called composite field approach). We chose the two irreducible
polynomials p′(x) = x2 + x + {e} and p′′(x) = x4 + x + 1 in F4[x] and F2[x] respectively and we
denoted by map the field isomorphism which takes an element a of F2[x]/p(x) as input and outputs
the pair (ah, al) ∈ (F2[x]/p′′(x))2 corresponding to the coefficients of the linear polynomial (ahx+ al) ∈
F24 [x]/p′(x). Moreover, we denoted by InvF24

the function which corresponds to the inverse function over
F2[x]/(x4 +x+ 1)\{0} and which maps 0 into itself. The following algorithm describes the different steps
of our computation.

Algorithm 6 Inversion of a masked element ã = a⊕ma in F28

Input: (ã = a⊕ma,ma) ∈ F28
2

Output: (ã−1 = a−1 ⊕m′a,m′a)

1. Pick up three 4-bit random md, m′h and m′l
2. (mh,ml) ∈ F2

24 ← map(ma)

3. (ãh, ãl) ∈ F2
24 ← map(ã) [(ãh, ãl) = (ah ⊕mh, al ⊕ml)]

4. d̃← ãh
2 ⊗ {e} ⊕ ãh ⊗ ãl ⊕ ãl2 ⊕md ⊕ ãh ⊗ml [d̃ = d⊕md]

⊕ ãl ⊗mh ⊕m2
h ⊗ {e} ⊕m2

l ⊕mh ⊗ml

5. d̃−1 ← SecSbox-otf(d̃,md,md−1 , InvF
24
) [d̃−1 = d−1 ⊕md−1 ]

6. ã′h ← ãh ⊗ d̃−1 ⊕m′h ⊕mh ⊗ d̃−1 ⊕md−1 ⊗ ãh ⊕md−1 ⊗mh [ã′h = a′h ⊕m′h]
7. ã′l ← ãl ⊗ d̃−1 ⊕m′l ⊕ ã′h ⊕ d̃−1 ⊗ml ⊕ ãl ⊗md−1 ⊕ m′h ⊕ml ⊗md−1 [ã′l = a′l ⊕m′l]
8. m′a ← map−1(m′h,m

′
l)
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9. ã−1 ← map−1(ã′h, ã
′
l) [ã−1 = a−1 ⊕m′a]

10. return (ã−1,m′a)

For this version, the timing of the resulting AES algorithm are interesting and the input and output
masks can be changed at each execution of the algorithm. In Table 9.3, we have listed the timing and
memory performances of our proposal and the ones of other methods proposed in the literature. As the
performances have been measured for a particular implementation on a particular architecture, the table
above does not aim at arguing that a method is better than another but aims at enlightening the main
particularities (timing performances and ROM/RAM requirements) of each method.

Table 9.3: Comparison of several first-order masking schemes for AES.

Method Timings (ms) RAM(bytes) ROM(bytes)
Unprotected implementation 5 0 1150

Table re-computation method
Re-computation method in F28 ×1.42 +256 +49%
Re-computation method in F24 ×2.60 +16 +150%

Masking schemes with the composite field approach
Oswald et al. [177,178] ×5.20 0 +173%

Prouff et al. [192] ×6.40 0 +147%
Our scheme (Algo. 6) ×5.30 0 +150%

methods with security weaknesses
Oswald and Schramm [179] ×2.40 0 +200%

Trichina et al. [235] ×4.20 +256 +165%

The AES implementations listed above only differ in their approaches to protect the S-box access.
The linear steps of the AES have been implemented in the same way and the internal sensitive data have
been masked by bitwise addition of a random value. We chose to protect only rounds 1 to 3 and 8 to
10, assuming that the diffusion properties of the AES algorithm make SCA attacks impossible to mount
on inner rounds 4 to 7 (this implies that the S-box calculations made in rounds 4 to 7 are performed by
simply accessing the table representation of the S-box which is stored in ROM).

The table re-computation method in F28 has the best timing performances but at least 256 bytes of
RAM must be allocated to store the re-computed look-up table. As RAM is a sensitive resource in the
area of embedded devices, we implemented a second version which follows the outlines of the composite
field approach and then applies the re-computation method in F24 . Because only 16 bytes of RAM are
required to store the table re-computed from the InvF24

function, the new implementation requires much
less RAM than the version in F28 and the timing performances are suitable for practical applications.

The masking schemes of Elisabeth Oswald et al. [178], Emmanuel Prouff et al. [192] and ours only
differ in the way of securely computing the value d−1 ⊕ md−1 from d̃, md and md−1 (i.e. to securely
perform the fifth Step of Algorithm 6):

— In [177,178], the masked inversion is performed by going down to F4 and its complexity approxima-
tively equals the one of Algorithm 6 excluding the 5th Step which is replaced by a square operation
(since the inversion operation in F4 is equivalent to squaring). For our implementation of [177,178],
the number of cycles required for the fifth step is 267.

— In [192], the masked inversion is essentially performed by computing a Fourier transform on F4
2.

For our implementation of [192], the number of cycles required for the fifth step is 468.

— For the new solution presented here, the masked inversion essentially corresponds to the computa-
tion of y−1⊕md−1 for every y ∈ F4

2. For our implementation, the number of cycles required by the
fifth step is 270.
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The execution timings of AES implementations based on our proposal or on the scheme of Elisabeth
Oswald et al. are very close and their RAM requirements are almost equal. The additional time required
by the scheme of Emmanuel Prouff et al. is slightly greater, however the code seems to be shorter (2844
bytes of ROM versus 2881 and 3144 bytes of ROM for our method and the scheme of Elisabeth Oswald
et al. ).

Remark 9.4. Compared to the table re-computation method the three previous schemes have the advan-
tage that they do not use the same mask for every S-box computation. Indeed, as explained in Section
9.2.1, the masked table is computed once at the beginning of the algorithm for a fix pair of masks. As
already put forward in [114,179], second-order SCA are especially effective when the same pair of masks
is used to protect all the table look-ups. Therefore, depending on the context, the three previous schemes
may have a better practical security than the table re-computation method.

The methods proposed by Elena Trichina and Lesya Korkishko [235] and by Elisabeth Oswald and Kai
Shramm [179] have good timing performances but are not perfectly resistant to first-order SCA attacks.

— In the method of Elena Trichina and Lesya Korkishko, a primitive element of F28 is computed and
every non-zero element of F28 is expressed as a power of that element. A pre-computed discrete
logarithm table and an exponentiation table are then involved in the S-box operation. As argued
in [179], the method has a faulty behavior when some intermediate values are zero and correcting
the method without introducing a flaw with respect to first-order attacks seems to be an issue.

— The method proposed by Elisabeth Oswald and Kai Shramm offers the best timing performances.
As for Algorithm 6, it is based on the composite field approach but steps 4 to 7 are replaced by a
sequence of table look-ups and bitwise additions. The table look-ups have been render resistant to
first-order SCA attacks by applying the global look-up table method (which is recalled in Section
9.2.2). For example, the computation of d−1 ⊕md−1 (Step 5) is performed by accessing the table
Tinv associated to the function ((d⊕md),md) ∈ (F24)2 7→ (d−1 ⊕md) ∈ F24 . As argued in Section
9.2.2, the global look-up table method has a flaw with respect to first-order SCA attacks. Indeed,
to address the Tinv table the value (d ⊕md)||md is manipulated, which results in an information
leakage on the sensitive value d.
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10.1 Introduction

In this chapter, we address generic second-order masking schemes for S-boxes. After presenting a state
of the art, we introduce two new solutions to perform an S-box computation secure against second-order
SCA. We prove their security in the security model introduced in Section 8.5.3 and we exhibit a way to
significantly improve their efficiency by using the particularities of the targeted architectures. Finally, we
compare our methods to the existing solutions and we give implementation results.

The results presented in the chapter have been published in collaboration with Emmanuelle Dottax
and Emmanuel Prouff in the international workshop on Fast Software Encryption (FSE 2008) [10]. The
presented methods have also been patented in [14–16].

10.2 State of the art

10.2.1 Higher-order SCA resistance in the literature

Only a few papers deal with higher-order SCA resistance in the literature. It seems that the first attempt
has been proposed by Mehdi-Laurent Akkar and Louis Goubin in [23] for securing the DES algorithm.
The proposed solution had some flaws that were fixed in two steps, firstly by Mehdi-Laurent Akkar,
Régis Bévan and Louis Goubin in [21] and secondly by Jiqiang Lv and Yongfei Han in [153]. All these
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works are more or less based on the same principle. At each DES execution, a few 32-bit masks are
generated (2 masks in [21, 23], and 3 masks in [153]). The masks are used to derive several new masked
S-boxes from each of the 8 DES S-boxes, which are then combined in different ways. In the security
discussion conducted in [23] and implicitly assumed in [21, 153], the masks manipulations and the table
re-computations are supposed to leak no information about the masks values. Although the different
methods proposed in [23] to process the mask values and the masked S-boxes allow to minimize the
instantaneous leakages on the mask values, they do not perfectly prevent it. Therefore, according to
Definition 8.1, the implementations proposed in [21,23,153] are not secure against second-order SCA.

A higher-order masking scheme has been proposed by Yuval Ishai, Amit Sahai, and David Wagner in
[126] to protect a logical AND. Based on such a scheme, every circuit can theoretically be secured against
dth-order SCA for a given d since every circuit can be decomposed in Boolean functions performing XORs
and ANDs. To the best of our knowledge, this is the only scheme that is provably secure against dth-order
SCA. However, this scheme does not take glitches into account which makes its practical security an issue
for hardware implementations (see [158,159]). Moreover, it is not suitable for software implementations.
Although every S-box computation could be decomposed and secured at the Boolean level, the implied
timing overhead of such a decomposition in software would be clearly prohibitive.

The only generic higher-order masking scheme suitable in software (as well as in hardware) as been
proposed by Kai Schramm and Christof Paar in [204] for the AES block cipher. Their scheme merely
consists of a generalization of the table re-computation method (see Section 9.2.1) to higher orders and it
was initially claimed to be secure against dth-order SCA for any chosen parameter d. However, we show
in Chapter 13 that the Schramm and Paar’s scheme is vulnerable to several third-order attacks which
makes it reliable only for d = 2 i.e. to secure implementations of block ciphers against second-order SCA.
The next section describes the Schramm and Paar’s scheme for d = 2.

10.2.2 Schramm and Paar’s scheme

The Schramm and Paar’s scheme is a generalization of the table re-computation method (see Section
9.2.1) for higher-order masking. At the second order, the principle is to compute from a 4-tuple of masks
(r1, r2, s1, s2), the look-up table of a masked S-box S∗ that satisfies S∗(x) = S(x⊕ r1 ⊕ r2)⊕ s1 ⊕ s2 for
every x ∈ Fn2 . Then, the masked output S(x)⊕ s1 ⊕ s2 is obtained by simply accessing the value S∗(x̃)
in the re-computed look-up table. The tricky part in such a method is the construction of the look-up
table for S∗ which must never manipulate the sum of masks r1 ⊕ r2 and s1 ⊕ s2 directly (since it would
introduce a second-order flaw together with x⊕ r1 ⊕ r2 or with S(x)⊕ s1 ⊕ s2).

In their paper, Kai Schramm and Christof Paar present two schemes. The first one (the generic)
involves two table re-computations16.

Algorithm 7 SecSbox-2O-SP1 (Schramm and Paar’s generic scheme)
Input: a LUT for S, the masks (r1, r2, s1, s2), the masked input x̃ = x⊕ r1 ⊕ r2
Output: the masked output S(x)⊕ s1 ⊕ s2

1. Stmp ← re-compute(S, r1, s1) [Stmp(·) = S(· ⊕ r1)⊕ s1]
2. S∗ ← re-compute(Stmp, r2, s2) [S∗(·) = S(· ⊕ r1 ⊕ r2)⊕ s1 ⊕ s2]
3. return S∗(x̃)

As noticed by Kai Schramm and Christof Paar in [204], the algorithm above is quite costly as it
involves two table re-computations for each S-box computation for each round of the cipher. To reduce this
overhead, the authors propose an improvement: two successive table re-computations are still preformed
to process the first masked S-box in the first round of the cipher but all the other S-box computations
are protected with a single table re-computation. Before describing the method, let us assume that
the previous S-box computation has been protected with the 4-tuple of masks (r′1, r

′
2, s
′
1, s
′
2) and with a

masked S-box S∗prev (satisfying S∗prev(y) = S(y⊕r′1⊕r′2)⊕s′1⊕s′2 for every y ∈ Fn2 ). To securely compute

16We consider that the table re-computations are performed using the straightforward algorithm since, as argued in
Section 13.2.3, other proposals of [204] include some flaws.
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the new masked output S(x) ⊕ s1 ⊕ s2 from the masked input x̃, the masked S-box S∗ is derived from
S∗prev. Then, the value S∗(x̃) is accessed to get S(x)⊕ s1 ⊕ s2.

Algorithm 8 SecSbox-2O-SP2 (Schramm and Paar’s improved scheme)
Input: a LUT for S∗prev, the 4-tuples (r1, r2, s1, s2) and (r′1, r

′
2, s
′
1, s
′
2), the masked input x̃ = x⊕ r1 ⊕ r2

Output: the masked output S(x)⊕ s1 ⊕ s2 (and LUT (S∗))

1. icm← (r1 ⊕ r′1)⊕ r2 ⊕ r′2
2. ocm← (s1 ⊕ s′1)⊕ s2 ⊕ s′2
3. S∗ ← re-compute(S∗prev, icm, ocm)

4. return S∗(x̃)

Schramm and Paar’s improved scheme is clearly more efficient than the generic scheme and it seems
to be secure against second-order SCA. However, its use as algorithm SecSbox in the scheme described
in Section 8.5.2 may potentially introduce a second-order flaw in the implementation (see below).

Complexity analysis. The Schramm and Paar’s generic scheme (Algorithm 7) involves two table re-
computations, that is 4× 2n XOR operations and 4× 2n(+2) memory transfers, plus 1 memory transfer.
The Schramm and Paar’s improved scheme (Algorithm 8) involves a single table re-computation, that is
2 × 2n XOR operations and 2 × 2n memory transfers, plus 6 XOR operations and 1 memory transfer.
Moreover, both schemes require the allocation of 2×2n×m bits of RAM. If different S-boxes are involved
in the cipher (such as in DES), the improved scheme requires a total of (1 +NS)× 2n ×m bits of RAM
(where NS stands for the number of different S-boxes involved in the cipher).

Security analysis. Although it has never been demonstrated, the generic Schramm and Paar’s scheme
seems to be secure against second-order SCA. Regarding the improved scheme, its use as algorithm
SecSbox in the scheme described in Section 8.5.2 may potentially introduce a second-order flaw. In fact,
the proof given in Section 8.5.3 does not apply in this case since Algorithm 8 does not fulfill the definition
of SecSbox (see Problem 8.1). Indeed, Algorithm 8 takes additional parameters (r′1, r

′
2, s
′
1, s
′
2) which may

induce a second-order flaw. For instance, let us assume that the linear layer λ operates on a pair of
successive S-box outputs (S(x′), S(x)) and that it computes a value taking the form S(x′) ⊕ S(x) (this
is the case in AES). When second-order masking is used, this sum of successive S-box outputs takes the
form (S(x′) ⊕ s′1 ⊕ s′2) ⊕ (S(x) ⊕ s1 ⊕ s2) that is (S(x′) ⊕ S(x)) ⊕ (s′1 ⊕ s′2 ⊕ s1 ⊕ s2). Consequently, if
Algorithm 8 is used to implement the S-box computations, then targeting the later sum together with
ocm = s′1 ⊕ s′2 ⊕ s1 ⊕ s2 (which is processed during Step 2) reveals some information about the sensitive
variable S(x′) ⊕ S(x). To circumvent such a flaw, additional countermeasures have to be added to the
implementation of the linear layer λ. The resulting overhead depends on the definition of λ. In the
implementation results given in Section 10.4.2, we do not take this overhead into account for simplicity
reasons (namely, the implementations involving Algorithm 8 may have such a flaw). However, we point
out that the issue described above must not be neglected when it comes to implement Schramm and
Paar’s improved scheme.

10.3 Two generic second-order masking schemes for S-boxes
In this section, we first describe two methods to implement any function S : Fn2 → Fm2 and we prove
their security against second-order SCA. Then we propose an improvement that allows us to substantially
reduce the complexity of both methods.

10.3.1 First scheme
The following algorithm describes a method to securely process a second-order masked S-box output from
a second-order masked input.
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Algorithm 9 SecSbox-2O-RDP1
Input: a masked value x̃ = x⊕ r1 ⊕ r2 ∈ Fn2 , the pair of input masks (r1, r2) ∈ Fn2 × Fn2 , a pair of output masks
(s1, s2) ∈ Fm2 × Fm2 , a look-up table for S
Output: the masked S-box output S(x)⊕ s1 ⊕ s2 ∈ Fm

1. r3 ← rand(n)

2. r′ ← (r1 ⊕ r3)⊕ r2
3. for a = 0 to 2n − 1 do
4. a′ ← a⊕ r′

5. T [a′]← (S(x̃⊕ a)⊕ s1)⊕ s2
6. return T [r3]

Remark 10.1. In the description of Step 5, we used brackets to point out that the introduction of the
two output masks s1 and s2 is done in this very order (otherwise a second-order flaw would occur).

The random value r3 is used to mask the sum r1 ⊕ r2 in order to avoid any second-order flaw. The
value returned at the end of the algorithm satisfies: T [r3] = S(x̃ ⊕ r3 ⊕ r′) ⊕ s1 ⊕ s2 = S(x) ⊕ s1 ⊕ s2,
which proves the correctness of Algorithm 9.

10.3.1.1 Complexity

Algorithm 9 requires the allocation of a table of 2n m-bit words in RAM. It involves 4 × 2n (+2) XOR
operations, 2× 2n (+1) memory transfers and the generation of n random bits.

10.3.1.2 Security analysis

We prove hereafter that Algorithm 9 is secure against second-order SCA.

Security Proof. Algorithm 9 involves four primitive random values r1, r2, s1 and s2. These variables are
assumed to be uniformly distributed and mutually independent together with the sensitive variable x.

The intermediate variables of Algorithm 9 are viewed as functions of the loop index a and are denoted
by Ij(a). The set {Ij(a); 0 6 a 6 2n − 1} is denoted by Ij . If an intermediate variable Ij(a) does not
functionally depend on a, then the set Ij is a singleton. The set I = I1 ∪ · · · ∪ I15 of all the intermediate
variables of Algorithm 9 is listed in Table 10.1.

Remark 10.2. In Table 10.1, the step values refer to the lines in the algorithm description (where Step
0 refers to the input parameters manipulation). Note that one step (in the algorithm description) can
involve several intermediate variables. However, these ones are separately processed and do not leak
information at the same time.

In order to prove that Algorithm 9 is secure against second-order SCA, we need to show that I ×I is
independent of x. For this purpose, we split I into the three subsets E1 = I1∪· · ·∪I9, E2 = I10∪· · ·∪I14

and I15. First, the sets E1×E1, E2×E2 and I15× I15 are shown to be independent of x. Then, we show
that E1 × E2, E1 × I15 and E2 × I15 are also independent of x, thus proving the independence between
I × I and x.

The set E1 × E1 is independent of x since E1 is functionally independent of x. Moreover, since
x⊕ r1 ⊕ r2 (resp. S(x)⊕ s1 ⊕ s2) is independent of x and since each element in E2 ×E2 (resp. I15 × I15)
can be expressed as a function of x⊕ r1⊕ r2 (resp. S(x)⊕ s1⊕ s2), then Lemma 8.1 implies that E2×E2

(resp. I15 × I15) is independent of x.
One can check that E1 is independent of r1 ⊕ r2 and is functionally independent of x. Hence, we

deduce from Lemma 8.2 that E1 × {x ⊕ r1 ⊕ r2} is independent of x, which implies (from Lemma 8.1)
that E1 ×E2 and x are independent. Similarly, E1 is independent of s1 ⊕ s2 so that E1 × {I15} (namely
E1 × {S(x)⊕ s1 ⊕ s2}) is independent of S(x) and hence of x.
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Table 10.1: Intermediate variables of Algorithm 9.

j Ij Steps
1 r1 0,2
2 r2 0,2
3 s1 0,2
4 s2 0,2
5 r3 1,6
6 r1 ⊕ r3 2
7 r1 ⊕ r2 ⊕ r3 2,4
8 a 3,4,5
9 a⊕ r1 ⊕ r2 ⊕ r3 4,5
10 x⊕ r1 ⊕ r2 0,5
11 x⊕ r1 ⊕ r2 ⊕ a 5
12 S(x⊕ r1 ⊕ r2 ⊕ a) 5
13 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 5
14 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 ⊕ s2 5
15 S(x)⊕ s1 ⊕ s2 6

To prove the independence between E2 × I15 and x, we split E2 into two subsets: I10 ∪ · · · ∪ I13

and I14. One can check that (x ⊕ r1 ⊕ r2, S(x) ⊕ s2) is independent of x and that every element of
(I10 ∪ · · · ∪ I13) × I15 can be expressed as a function of this pair. Hence one deduces from Lemma 8.1
that (I10 ∪ · · · ∪ I13)× I15 is independent of x. In order to prove that I14 × I15 is also independent of x,
let us denote u1 = S(x) ⊕ s1 ⊕ s2 and u2 = S(x ⊕ a ⊕ r1 ⊕ r2). The variables u1 and u2 are uniformly
distributed17, independent and jointly independent of x. Since I14× I15 equals {S(x)⊕ u2 ⊕ u1}× {u1},
we deduce that it is independent of x. �

10.3.2 Second scheme
In this section, we propose an alternative to Algorithm 9 for implementing an S-box securely against
second-order SCA. This second solution requires more logical operations but less RAM allocation, which
can be of interest for low-cost devices.

The algorithm introduced hereafter assumes the existence of a masked function compareb that extends
the classical Boolean function (defined by compare(x, y) = 0 iff x = y) in the following way:

compareb(x, y) =

{
b if x = y
b̄ if x 6= y

. (10.1)

Based on the function above, the second scheme is an adaptation of the first-order scheme of Section 9.3.

Algorithm 10 SecSbox-2O-RDP2
Input: a masked value x̃ = x⊕ r1 ⊕ r2 ∈ Fn2 , the pair of input masks (r1, r2) ∈ Fn2 × Fn2 , a pair of output masks
(s1, s2) ∈ Fm2 × Fm2 , a look-up table for S
Output: the masked S-box output S(x)⊕ s1 ⊕ s2 ∈ Fm

1. b← rand(1)

2. for a = 0 to 2n − 1 do
3. cmp← compareb(r1 ⊕ a, r2)

4. Rcmp ← (S(x̃⊕ a)⊕ s1)⊕ s2
5. return Rb

17This holds for u2 if and only if the S-box S is balanced (namely every element in Fm2 is the image under S of 2n−m

elements in Fn2 ). As it is always true for cryptographic S-boxes we implicitly make this assumption.
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Let dummy denote any element in Fm2 . Steps 3 and 4 of Algorithm 10 perform the following operations:{
cmp← b ; Rb ← S(x)⊕ s1 ⊕ s2 if a = r1 ⊕ r2 ,
cmp← b̄ ; Rb̄ ← dummy otherwise.

We thus deduce that the value returned by Algorithm 10 is S(x)⊕ s1 ⊕ s2.

10.3.2.1 An implementation of compareb

In this section, we describe a way to implement the function compareb that prevents any first-order leakage
on compare(x, y).

The method requires a table T of 2n bits in RAM. The following pre-computation is processed at the
beginning of the cipher.

Algorithm 11 Pre-computation for the compareb function
Input: a bit b
Output: a random r3 ∈ Fn and a (2n)-bit table T s.t. T [x] = b if x = r3 and T [x] = b̄ otherwise

1. r3 ← rand(n)

2. T ← {b̄, b̄, . . . , b̄}
3. T [r3]← b

Then, the function compareb is implemented by a simple table look-up:

compareb(x, y) = T [(x⊕ r3)⊕ y]

If x = y then compareb(x, y) = T [r3] otherwise compareb(x, y) = b̄, which shows the correctness of the
solution.

10.3.2.2 Complexity

Algorithm 10 involves 4× 2n XOR operations, 2n memory transfers and the generation of 1 random bit.
Since it also involves 2n compareb operations, the overall complexity relies on the compareb implemen-
tation. When compareb is implemented such as described above, each call to compareb involves 2 XOR
operations and 1 memory transfer. Then the total complexity of Algorithm 10 is 6× 2n XOR operations,
2 × 2n memory transfers. Moreover, it requires some pre-computation (at the beginning of the cipher)
that involves the generation of n random bits and the initialization of the (2n)-bit table T .

Compared to Algorithm 9, this implies a slight timing overhead but it consumes m times less RAM
which is of interest for low-cost devices.

10.3.2.3 Security analysis

Let δ0 denote the Boolean function defined by δ0(z) = 0 if and only if z = 0. For security reasons,
compareb(x, y) must prevent any first-order leakage on δ0(x ⊕ y) that is, on the result of the unmasked
function compare(x, y) (and more generally on x ⊕ y). Otherwise, Step 3 would provide a first-order
leakage on δ0(r1⊕r2⊕a) and an attacker could target this leakage together with x̃⊕a (Step 4) to recover
information about x. Indeed, the joint distribution of δ0(r1 ⊕ r2 ⊕ a) and x̃⊕ a depends on x, which can
be illustrated by the following observation: x̃⊕ a = x if and only if δ0(r1⊕ r2⊕ a) = 0. In particular, the
straightforward implementation compareb(x, y) = compare(x, y)⊕ b would not be valid since it processes
compare(x, y) directly.

When compareb is implemented such as described in Section 10.3.2.1, no first-order leakage occurs on
δ0(x⊕ y) nor on x⊕ y. Indeed, all the intermediate variables processed during the table pre-computation
and the table look-ups (namely {b, b̄, r3, x⊕r3, x⊕y⊕r3, compareb(x, y)}) are independent of compare(x, y)
(as well as of x⊕ y).
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Table 10.2: Intermediate variables of Algorithm 10.

j Ij Steps
1 r1 0,3
2 r2 0,3
3 s1 0,4
4 s2 0,4
6 b 1,3
7 a 2-4
8 r1 ⊕ a 3
10 δ0(a⊕ r1 ⊕ r2)⊕ b 3
11 x⊕ r1 ⊕ r2 0,4
12 x⊕ r1 ⊕ r2 ⊕ a 4
13 S(x⊕ r1 ⊕ r2 ⊕ a) 4
14 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 4
15 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 ⊕ s2 4
16 S(x)⊕ s1 ⊕ s2 5

Remark 10.3. The previous assertion implicitly assumes that the look-up T [(x ⊕ r3) ⊕ y] does not read
several bits of T simultaneously. Otherwise a potential flaw would occur. In practice, T could be placed
in a bit-addressable memory or each byte of T could be further masked in order to avoid a joint leakage
on the different bits resulting from a look-up.
Remark 10.4. The solution described in Section 10.3.2.1 for the compareb function implies that the same
random values b and r3 are used in every SecSbox computation of the cipher. It is easy to check that this
does not induce any second-order flaw in the overall scheme.

Security Proof. As done in Section 10.3.1, we denote by I the set of intermediate variables that are
processed during an execution of Algorithm 10. Table 10.2 lists these variables. The primitive random
values r1, r2, s1, s2 and b are assumed to be uniformly distributed and mutually independent together
with the sensitive variable x. The following security proof is quite similar to the one done in Section
10.3.1.

In order to prove that Algorithm 10 is secure against second-order SCA, we need to show that I×I is
independent of x. As in Section 10.3.1 we split I into three subsets E1 = I1∪· · ·∪I10, E2 = I11∪· · ·∪I15

and I16. First, we show that E1 × E1, E2 × E2 and I16 × I16 are independent of x and then, we show
that E1 ×E2, E1 × I16 and E2 × I16 are independent of x (thus proving that I × I is independent of x).

As in Section 10.3.1, E1 × E1 is straightforwardly independent of x and the independence between
x⊕r1⊕r2 (resp. S(x)⊕s1⊕s2) and x implies, by Lemma 8.1, that E2×E2 (resp. I16×I16) is independent
of x.

Since E1 is independent of r1⊕r2 (resp. s1⊕s2) and functionally independent of x, Lemma 8.2 implies
that E1 × {x⊕ r1 ⊕ r2} (resp. E1 × {S(x)⊕ s1 ⊕ s2}) is independent of x. Hence, since every element of
E2 (resp. I16) can be written as a function of x⊕ r1 ⊕ r2 (resp. S(x)⊕ s1 ⊕ s2), Lemma 8.1 implies that
E1 × E2 (resp. E1 × I16) is independent of x.

Every pair in (E2\I15) × I16 can be expressed as a function of (x ⊕ r1 ⊕ r2, S(x) ⊕ s2) which is
independent of x. Hence, by Lemma 8.1, (E2\I15) × I16 is independent of x. Finally, I15 × I16 can be
rewritten as {S(x)⊕ u2 ⊕ u1} × {u1}, where u1 (= S(x) ⊕ s1 ⊕ s2) and u2 (= S(x ⊕ r1 ⊕ r2 ⊕ a)) are
uniformly distributed, mutually independent and jointly independent of x. This implies that I15 × I16 is
independent of x. �

10.3.3 Improvement
This section describes an improvement of the two previous methods which can be used when the device
architecture allows the storage of 2w S-box outputs on one q-bit word (namely m, w and q satisfy
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2wm 6 q). This situation may happen for 8-bit architectures when the S-boxes to implement have small
output dimensions (e.g. m = 4 and w = 1) or for q-bit architectures when q > 16 (and m 6 8).

In the following, we assume that the S-box is represented by a look-up table having 2n−w elements
of bit-length 2wm (instead of 2n elements of bit-length m). This look-up table can then be seen as
the table representation of the (n − w, 2wm)-function S′ defined for every y ∈ Fn−w by: S′(y) =
(S(y, 0), S(y, 1), . . . , S(y, 2w − 1)), where each i = 0, . . . , 2w − 1 must be taken as the integer repre-
sentation of a w-bit value.

For every x ∈ Fn2 , let us denote by x[i] the ith most significant bit of x and by xH (resp. xL) the
vector (x[1], . . . , x[n − w]) (resp. the vector (x[n − w + 1], . . . , x[n])). According to these notations, the
S-box output S(x) is the m-bit coordinate of S′(xH) whose index is the integer representation of xL.

In order to securely compute the masked output S(x) ⊕ s1 ⊕ s2 from the 3-tuple (x̃, r1, r2), our
improvement consists of the two following steps. In the first step, we securely compute the masked vector
S′(xH) ⊕ z1 ⊕ z2 (where z1 and z2 are (2wm)-bit random masks). Then, the second step consists in
securely extracting S(x)⊕ s1 ⊕ s2 from S′(xH)⊕ z1 ⊕ z2.

To securely compute the masked vector S′(xH)⊕ z1⊕ z2, we perform Algorithm 9 (or 10) for the pair
of dimensions (n−w, 2wm), with as inputs the 3-tuple (x̃H , r1,H , r2,H), the pair of output masks (z1, z2)
and the look-up table for S′. This execution returns the value S′(xH)⊕ z1 ⊕ z2. Moreover, as proved in
Section 10.3.1 (or Section 10.3.2), it is secure against second-order SCA.

At this point, we need to securely extract S(x)⊕ s1 ⊕ s2 from S′(xH)⊕ z1 ⊕ z2 as well as s1 and s2

from z1 and z2. Namely, we need to extract the m-bit coordinate of S′(xH)⊕ z1 ⊕ z2, and of z1 and z2

whose index corresponds to the integer representation of xL. For such a purpose, we propose a process
that selects the desired coordinate by dichotomy.

For every word y of even bit-length, let H0(y) and H1(y) denote the most and the least significant
half part of y. At each iteration our process calls an algorithm select that takes as inputs a dimension l, a
second-order masked (2l)-bit word z0 = z⊕z1⊕z2 (and the corresponding masking words z1 and z2) and
a second-order masked bit c0 = c⊕c1⊕c2 (and the corresponding masking bits c1 and c2). This algorithm
returns a 3-tuple of l-bit words (z′0, z

′
1, z
′
2) that satisfies z′0 ⊕ z′1 ⊕ z′2 = Hc(z). We detail hereafter the

global process which extracts the 3-tuple (S(x)⊕ s1 ⊕ s2, s1, s2) from (S′(xH)⊕ z1 ⊕ z2, z1, z2).

Algorithm 12 Masked sub-word extraction
Input: the masked word S′(xH)⊕ z1 ⊕ z2, the masks z1 and z2
Output: the masked sub-word S(x)⊕ s1 ⊕ s2, the sub-word masks s1 and s2

1. z0 ← S′(xH)⊕ z1 ⊕ z2
2. for i = 1 to w

3. (c0, c1, c2)← (x̃L[i], r1,L[i], r2,L[i])

4. (z′0, z
′
1, z
′
2)← select

(
2wm/2i, (z0, z1, z2), (c0, c1, c2)

)
5. (z0, z1, z2)← (z′0, z

′
1, z
′
2)

6. return (z0, z1, z2)

To be secure against second-order SCA, this process requires that select admits no second-order leakage
on z nor on c. A solution for such a secure algorithm is given hereafter (Algorithm 13). It requires three
l-bit addressing registers (A0, A1), (B0, B1) and (C0, C1).

Algorithm 13 select
Input: a dimension l, a masked word z0 = z ⊕ z1 ⊕ z2 ∈ F2l, the pair of masks (z1, z2) ∈ F2l × F2l, a masked bit
c0 = c⊕ c1 ⊕ c2 ∈ F and the pair of masking bits (c1, c2) ∈ F× F
Output: a 3-tuple (z′0, z

′
1, z
′
2) ∈ (Fl)3 that satisfies z′0 ⊕ z′1 ⊕ z′2 = Hc(z)

1. t1, t2 ← (rand(l), rand(l))

2. b← rand(1)

3. c3 ← (c1 ⊕ b)⊕ c2
4. Ac3 ← Hc0(z0)⊕ t1
5. Bc3 ← Hc0(z1)⊕ t2
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6. Cc3 ← Hc0(z2)⊕ t1 ⊕ t2
7. Ac3 ← Hc0(z0)⊕ t1
8. Bc3 ← Hc0(z1)⊕ t2
9. Cc3 ← Hc0(z2)⊕ t1 ⊕ t2
10. return (Ab, Bb, Cb)

One can verify that Algorithm 13 performs the following operations for every value of (c1, c2):{
(Ab, Bb, Cb)← (Hc(z0)⊕ t1, Hc(z1)⊕ t2, Hc(z2)⊕ t1 ⊕ t2)
(Ab, Bb, Cb)← (Hc(z0)⊕ t1, Hc(z1)⊕ t2, Hc(z2)⊕ t1 ⊕ t2)

.

Thus the three returned variables satisfy Ab ⊕Bb ⊕ Cb = Hc(z).

Remark 10.5. Although it has been described for second-order masking, this improvement could be used
for first-order masking and in particular with the method proposed in Chapter 9.

10.3.3.1 Complexity

Algorithm 13 involves 10 XOR operations and the generation of 2l + 1 random bits.
The improvement allows to divide the execution time of Algorithm 9 (or 10) by approximately 2w

since it performs a loop of 2n−w iterations instead of 2n. Additionally, the improvement involves w calls
to Algorithm 13 which implies an overhead of approximately 10×w XOR operations and the generation
of 2m× (2w − 1) + w random bits.

Example.For an 8 × 8 S-box on a 16-bit architecture, the improvement applied to Algorithm 9 allows
to save 512 XOR operations and 128 memory transfers for an overhead of 10 XOR operations and the
generation of 33 random bits (16 more for (z1, z2) than for (s1, s2) and 16 + 1 for Algorithm 13).

10.3.3.2 Security analysis

The random values t1 and t2 are introduced to avoid any second-order leakage on c. Otherwise, if the
algorithm simply returns (Hc(z0), Hc(z1), Hc(z2)), an inherent second-order flaw (i.e. independent of the
algorithm operations) occurs. Indeed, by targeting one of the inputs zi and one of the outputs Hc(zi),
an attacker may recover some information on c since

(
zi, Hc(zi)

)
depends on c (even if zi is random).

Security Proof. Table 10.3 lists all the intermediate variables that are processed by Algorithm 13. To
prove that Algorithm 13 is secure against second-order SCA, we must show that I × I is independent of
z and of c.

The independence between I × I and z is straightforward. Indeed, from Table 10.3, one can verify
that z ⊕ z1 ⊕ z2, z1 and z2 are always processed separately.

Now, let us show that I × I is also independent of c. For such a purpose, we split I into the three
subsets E1 = I1 ∪ · · · ∪ I10, E2 = I11 ∪ · · · ∪ I26 and E3 = I27 ∪ I28 ∪ I29. As done in Sections 10.3.1 and
10.3.2, we first show that Ei × Ej is independent of x for i = j and then for i < j.

E1 is functionally independent of c which implies that E1 ×E1 is independent of c. Since c⊕ c1 ⊕ c2
is independent of c and since every element of E2 × E2 is a function of c ⊕ c1 ⊕ c2, Lemma 8.1 implies
that E2 × E2 is independent of c. On the other hand, each element of E3 × E3 can be rewritten
(Hc[u1]⊕ v1, Hc[u1]⊕ v1) or (Hc[u1]⊕ v1, Hc[u2]⊕ v2) where u1, u2 v1 and v2 are uniformly distributed
random variables that are mutually independent and jointly independent of c. This implies (by Lemma
8.2) that E3 × E3 is independent of c.

One can verify that E1 is independent of c1 ⊕ c2. Moreover E1 is functionally independent of c. This
implies, according to Lemma 8.2, that E1 × {c ⊕ c1 ⊕ c2} is independent of c. Moreover, since every
element in E2 is a function of c⊕ c1 ⊕ c2 Lemma 8.1 implies that E1 × E2 is independent of c.

To prove that E1 × E3 is independent of x, we split E1 into two subsets: E′1 = E1\ (I6 ∪ I7) and
I6 ∪ I7. The set E′1 is functionally independent of c and is independent of t1, t2 and t1 ⊕ t2. Since every
element of E3 is a function of c that is masked either by t1, or t2, or t1 ⊕ t2, then, Lemma 8.2 implies
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Table 10.3: Intermediate variables of Algorithm 13.

j Ij Steps
1 z ⊕ z1 ⊕ z2 0-4-7
2 z1 0,5,8
3 z2 0,6,9
4 c1 0,3
5 c2 0,3
6 t1 1,4,6,7,9
7 t2 1,5,6,8,9
8 b 2-3-10
9 c1 ⊕ b 3
10 c1 ⊕ c2 ⊕ b 3-9
11 c⊕ c1 ⊕ c2 0,4-6
12 Hc⊕c1⊕c2(z ⊕ z1 ⊕ z2) 4
13 Hc⊕c1⊕c2(z ⊕ z1 ⊕ z2)⊕ t1 4
14 Hc⊕c1⊕c2(z1) 5
15 Hc⊕c1⊕c2(z1)⊕ t2 5
16 Hc⊕c1⊕c2(z2) 6
17 Hc⊕c1⊕c2(z2)⊕ t1 6
18 Hc⊕c1⊕c2(z2)⊕ t1 ⊕ t2 6
19 Hc⊕c1⊕c2(z ⊕ z1 ⊕ z2) 7
20 Hc⊕c1⊕c2(z ⊕ z1 ⊕ z2)⊕ t1 7
21 Hc⊕c1⊕c2(z1) 8
22 Hc⊕c1⊕c2(z1)⊕ t2 8
23 Hc⊕c1⊕c2(z2) 9
25 Hc⊕c1⊕c2(z2)⊕ t1 9
26 Hc⊕c1⊕c2(z2)⊕ t1 ⊕ t2 9
27 Hc(z ⊕ z1 ⊕ z2)⊕ t1 10
28 Hc(z1)⊕ t2 10
29 Hc(z2)⊕ t1 ⊕ t2 10
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that E′1 × E3 is independent of c. On the other hand, every element of E3 is a function of Hc(zi) for
i ∈ {0, 1, 2} (recalling z0 = z ⊕ z1 ⊕ z2). Since zi is uniformly distributed and independent of c, Hc(zi)
is independent of c. And since I6 ∪ I7 is functionally independent of z, z1, z2 and c, we can deduce that
(I6 ∪ I7)× E3 is independent of c.

To prove that E2×E3 is independent of x, we split E2 into two subsets: I11 and E′2 = E2\I11. Every
element of I11×E3 is a pair (c,Hc(zi)) that is masked with an independent and uniformly distributed pair
(c1⊕c2, t) (where t is in {t1, t2, t1⊕t2}). This implies (by Lemma 8.2) that I11×E3 is independent of c. On
the other hand, every element of E′2×E3 is a function of a pair (Hc0(u1), Hc(u2)) (or (Hc0(u1), Hc(u2)))
where c0 equals c⊕c1⊕c2 and where u1 and u2 are two random variables (possibly equal) both uniformly
distributed and independent of c and c0. Then, since c and c0 are independent, one can verify that
(Hc0(u1), Hc(u2)) (and (Hc0(u1), Hc(u2))) is independent of c, thus implying, by Lemma 8.1, that E′2×E3

is independent of c. �

10.4 Comparison and application
The purpose of this section is twofold. First, we compare the complexity of the Schramm and Paar’s
scheme with the one of our scheme. Secondly, we present several implementations of the AES protected
as described in Section 8.5.2 and where the SecSbox algorithm is implemented either with the Schramm
and Paar’s schemes or with ours (Algorithm 9). We also implemented the different SecSbox algorithms
on 8-bit, 16-bit and 32-bit architectures. To demonstrate the practical interest of the improvement
proposed in Section 10.3.3, we implemented the improved version of Algorithm 9 for the 16-bit and 32-bit
architectures.

10.4.1 Comparison to Schramm and Paar’s scheme
Table 10.4 summarizes the complexities of the Schramm and Paar’s schemes and ours with respect to the
number of XOR, the number of memory transfers (MT) and the memory size (bits in RAM). NS stands
for the number of different S-boxes involved in the cipher.

Table 10.4: Time & memory complexities of the generic second-order masking schemes for S-boxes.

Method Pre-computation S-box computation RAM
Algo. 7 0 (4× 2n + 1)MT + 4× 2nXOR 2m× 2n

Algo. 8 2× 2nMT + 2× 2nXOR (2× 2n + 1)MT + (2× 2n + 6)XOR (1 +NS)×m× 2n

Algo. 9 0 (2× 2n + 1)MT + (4× 2n + 2)XOR m× 2n

Algo. 10 (2× 2n + 1)MT 2nMT + 6× 2nXOR 2n

Considering that the execution timings of an XOR and of a memory transfer are equivalent, the
Schramm and Paar’s generic scheme (Algorithm 7) is clearly less interesting than our schemes. The
Schramm and Paar’s improved scheme (Algorithm 8) is almost 1.5 times faster than our first scheme and
1.75 times faster than our second scheme (when the latter uses the compareb function given in Section
10.3.2.1). However, the Schramm and Paar’s improved scheme requires the allocation of (1+NS)×m×2n

bits of RAM, whereas our schemes respectively require 2nm and 2n bits of RAM whatever the number of
involved S-boxes. RAM memory being a sensitive resource in low-cost devices, the memory gain provided
by Algorithms 9 and 10 can often be of great interest even if it is mitigated by a timing overhead. This is
especially true when the S-box input dimension is high (namely greater than or equal to 8) and/or when
the number of S-box(es) to protect is high (as it is for instance the case for DES).

10.4.2 Application to AES
We compare hereafter several AES implementations protected against second-order DPA (i.e. we do not
mask the key and we do not protect the key scheduling function). We wrote the codes in assembly
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language for an 8051-based 8-bit architecture. The implementations only differ in their approaches to
protect the S-box computations. The linear steps of the AES have been implemented in the same way,
by following the outlines of the method presented in Section 8.5.2. To secure the S-box computation,
we implemented the generic and the improved Schramm and Paar’s schemes and the scheme that is
the fastest among our two new ones (namely Algorithm 9). Table 10.5 lists the timing and memory
performances of each implementation.

Table 10.5: Comparison of AES implementations secure against second-order DPA.

Method Reference cycles RAM (bytes) ROM (bytes)
AES with Algorithm 7 SP1 10830× 103 512 + 86 2247
AES with Algorithm 8 SP2 5943× 103 512 + 90 2336
AES with Algorithm 9 RDP 6723× 103 256 + 86 2215

As expected, implementations SP2 (Schramm and Paar’s improved scheme) and RDP (our scheme)
are much more efficient than the SP1 (Schramm and Paar’s generic scheme) which performs two table
re-computations for each S-box computation. The SP2 implementation is slightly faster than RDP
(approximately 1.13 times faster), essentially because it involves less logical operations (as shown in the
complexity analysis conducted in Sections 10.3.1 and 10.4.1). However, our scheme (RDP) only requires
the allocation of 256 bytes of RAM, which is twice smaller than the RAM memory used by SP1 and
SP2. Since RAM memory is a sensitive resource in the area of embedded devices and since the timing
performances of SP2 and RDP are close, our tests show that our scheme represents a good alternative to
the proposal of Kai Schramm and Christof Paar in applications where memory constraints are strong.

10.4.3 Implementation of the improvement
To demonstrate the practical interest of the improvement proposed in Section 10.3.3, we implemented the
generic and the improved Schramm and Paar’s schemes and our proposal (improved or not) on a 16-bit
architecture with a proprietary assembly language and on a 32-bit ARM architecture.

Table 10.6: Comparison of 8×8 S-box implementations secure against second-order DPA on 8-bit, 16-bit
and 32-bit architectures.

Method Reference Cycles RAM(bytes) ROM(bytes)
8-bit architecture

Algorithm 7 SP1-8 6703 512 + 3 119 + 256
Algorithm 8 SP2-8 3638 512 + 7 89 + 256
Algorithm 9 RDP-8 4142 256 + 3 88 + 256

16-bit architecture
Algorithm 7 SP1-16 6418 512 96 + 512
Algorithm 8 SP2-16 3090 512 56 + 256
Algorithm 9 RDP-16 4125 256 98 + 512

Algorithm 9 + Improvement RDP*-16 2099 256 260 + 256
32-bit architecture

Algorithm 7 SP2-32 3359 512 na.
Algorithm 8 RDP-32 4143 256 na.

Algorithm 9 + Improvement RDP*-32 1415 256 na.

Remark 10.6. In our implementations of SP1-16 and RDP-16, we represented each element of the 8× 8
S-box by a 16-bit word whose LSB is the S-box element and whose MSB is the zero element. This
representation multiplies by a factor of two the size of the look-up table in ROM, but avoids the conversions



10.4. Comparison and application 137

of 16-bit words into 8-bit words during the loop execution (thus speeding up the entire S-box calculation
by approximately 1.25).

In all the cases, the implementation of Algorithm 8 is more efficient than the implementation of
Algorithm 9. On average, it is 1.20 times faster. The use of the improvement (Algorithm 13) allows a
gain of 50% for the 16-bit architecture and of 65% for the 32-bit architecture. With this improvement our
method becomes much faster than SP2. For the implementation on the ARM 32-bit architecture, it may
be noticed that the gain is smaller than the one resulting from our theoretical complexity analysis (Section
10.3.3). This is merely due to the fact that the assembly implementation of Algorithm 13 involves costly
registers and data pointers manipulations.
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11.1 Introduction

In the previous chapters, we have studied the masking countermeasure for implementations of block
ciphers. When a block cipher is implemented in software, another countermeasure is commonly used:
operations shuffling. The principle is to perform, as far as possible, the different operations of the
computation in a random order. Shuffling can be enhanced by the addition of dummy operations to
increase the degree of randomization. As a result of shuffling, a side channel attacker is provided with a
set of leakages resulting from several operations and he cannot a priori isolate the leakage corresponding
to the target operation.

A natural approach to improve the SCA resistance of software implementations of block ciphers is
to mix masking and shuffling [124, 228, 229]. This approach seems promising since it enables to get the
best of the two techniques. However, the schemes that have been proposed so far [124,229] only focus on
first-order masking which prevents them from reaching high resistance levels. This is all the more serious
that advanced DPA attacks have turned out to be quite efficient in breaking them [228, 229]. These
advanced DPA techniques have been studied and extended in Chapter 6 of this thesis. Based on this
analysis, we design here a new scheme combining higher-order masking and shuffling to protect software
implementations of block ciphers. Contrary to the previous chapters, this scheme does not provide perfect
security against dth-order SCA for a given order d. Rather it ensures a given resistance level with respect
to some advanced DPA techniques. Besides, our scheme is scalable and its parameters can be specified
to achieve any desired resistance level. We apply it to protect a software implementation of AES and we
show how to choose the scheme parameters to achieve a given security level with the minimum overhead.

139
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The results presented in this chapter have been published in collaboration with Emmanuel Prouff and
Julien Doget in the international workshop on Cryptographic Hardware and Embedded Systems (CHES
2009) [11].

11.2 Block cipher model
We give hereafter the general model of block ciphers on which our scheme applies. We use the model
introduced in Section 8.5.1 with further precisions that shall be useful for the description of our scheme.

We recall that the round transformation is modeled as the composition of a key addition, a non-linear
layer γ, and a linear layer λ:

ϕ[k](·) = λ ◦ γ(· ⊕ k) .

Compared to the block cipher model of Section 8.5.1, we shall make two further assumptions:

— The non-linear layer applies the same S-box S on N independent n-bit parts pi of the state: γ(p) =(
S(p1), . . . , S(pN )

)
.

— The linear layer λ is composed of L linear operations λi that operate on L independent l-bit parts
pi(l) of the state: λ(p) =

(
λ1(p1(l)), . . . , λL(pL(l))

)
. We also denote by l′ 6 l the minimum number

of bits of a variable manipulated during the processing of λi. For instance, the MixColumns layer of
AES applies to columns of l = 32 bits but it manipulates some elements of l′ = 8 bits. We further
assume that the λi’s are sufficiently similar to be implemented by one atomic operation (i.e. an
operation which has the same execution flow whatever the index i).

Remark 11.1. Linear and non-linear layers may involve different state indexing. In AES for instance, the
state is usually represented as a 4 × 4 matrix of bytes and the non-linear layer usually operates on its
elements p1, . . . , p16 vertically (starting at the top) and from left to right. In this case, the operation
λ1 corresponding to the AES linear layer (that is composed of ShiftRows followed by MixColumns [92])
operates on p1(32) = (p1, p6, p11, p16).

In the sequel, we shall consider that the key addition and the non-linear layer are merged in a keyed
substitution layer that adds each key part ki to the corresponding state part pi before applying the S-box
S.

11.3 The scheme
In this section, we describe a generic scheme to protect a round ϕ by combining higher-order masking
and operations shuffling. Our scheme involves a dth-order masking for an arbitrarily chosen d. Namely,
the state p is split into d+ 1 shares m0, . . . , md satisfying:

m0 ⊕ · · · ⊕md = p . (11.1)

In practice, m1, . . . , md are random masks and m0 is the masked state defined according to (11.1). In
the sequel, we shall denote by (mj)i (resp. (mj)i(l)) the ith n-bit part (resp. the ith l-bit part) of a share
mj . At the beginning of the ciphering the masks are initialized to zero. Then, each time a part of a mask
is used during the keyed substitution layer computation, it is refreshed with a new random value (see
below). Our scheme uses two different approaches to protect the keyed substitution layer and the linear
layer. These are described hereafter.

11.3.1 Protecting the keyed substitution layer
To protect the keyed substitution layer, we use a single d′th-order masked S-box (for some d′ 6 d) to
perform all the S-box computations. Whatever the number of masks, a second-order side channel attack
targeting two different masked inputs/outputs is always possible (see for instance [176]). To deal with
this issue, we make use of a high level of shuffling in order to render such an attack difficult and to keep
a homogeneous security level (see Section 11.5).
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The input of S is masked with d′ masks r1, . . . , rd′ and its output is masked with d′ masks s1, . . . ,
sd′ . Namely, a masked S-box S∗ is computed that is defined for every x ∈ {0, 1}n by:

S∗(x) = S
(
x⊕

d′⊕
j=1

rj

)
⊕

d′⊕
j=1

sj . (11.2)

This masked S-box is then involved to perform all the S-box computations. Namely, when the S-box
must be applied to a masked variable (m0)i, the d masks (mj)i of this latter are replaced by the d′ masks
rj which enables the application of S∗. The d′ masks sj of the obtained masked output are then switched
for d new random masks (mj)i.

The high level shuffling is ensured by the addition of dummy operations. Namely, the S-box compu-
tation is performed t times: N times on a relevant part of the state and t − N times on dummy data.
For such a purpose, each share mj is extended by a dummy part (mj)N+1 that is initialized by a random
value at the beginning of the ciphering. The round key k is also extended by such a dummy part kN+1.
For each of the t S-box computations, the index i of the parts (mj)i to process is read in a table T . This
table of size t contains all the indices from 1 to N stored at random positions and its t−N other elements
equal N + 1. Thanks to this table, the S-box computation is performed once on every of the N relevant
parts and t−N times on the dummy parts. The following algorithm describes the entire protected keyed
substitution layer computation.

Algorithm 14 Protected keyed substitution layer
Input: the shares m0, . . . , md s.t.

⊕
mi = p, the round key k = (k1, . . . , kN+1)

Output: the shares m0, . . . , md s.t.
⊕
mi = γ(p⊕ k)

1. for iT = 1 to t

// Random index pick-up
2. i← T [iT ]

// Masks conversion: (m0)i ⇐ pi
⊕

j rj

3. for j = 1 to d′ do (m0)i ← ((m0)i ⊕ rj)⊕ (mj)i

4. for j = d′ + 1 to d do (m0)i ← (m0)i ⊕ (mj)i

// key addition and S-box computation: (m0)i ⇐ S(pi ⊕ ki)⊕
⊕

j sj

5. (m0)i ← S∗
(
(m0)i ⊕ ki

)
// Masks generation and conversion: (m0)i ⇐ S(pi ⊕ ki)⊕

⊕
j (mj)i

6. for j = 1 to d′

7. (mj)i ← rand()

8. (m0)i ← ((m0)i ⊕ (mj)i)⊕ sj
9. for j = d′ + 1 to d
10. (mj)i ← rand()

11. (m0)i ← (m0)i ⊕ (mj)i

12. return (m0, . . . ,md)

Remark 11.2. In Steps 3 and 8, we used round brackets to underline the order in which the masks are
introduced. A new mask is always introduced before removing an old mask. Respecting this order is
mandatory for the scheme security.

Masked S-box computation. The look-up table for S∗ is computed dynamically at the beginning of
the ciphering by performing d′ table re-computations such as proposed in [204]. As shown in Chapter 13,
this method is insecure for d′ > 2, or for d′ > 3 depending on the table re-computation algorithm (see
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Section 9.2.1). We will therefore consider that one can compute a masked S-box S∗ with d′ 6 3 only.
The secure computation of a masked S-box with d′ > 3 is left to further investigations.

Indices table computation. Several solutions exist in the literature to randomly generate indices
permutation over a finite set [144, 182, 186]. Most of them can be slightly transformed to design tables
T of size t > N containing all the indices 1 to N in a random order and whose remaining cells are filled
with N + 1. However, few of those solutions are efficient when implemented in low resources devices. In
our case, since t is likely to be much greater than N , we have a straightforward algorithm which tends to
be very efficient for t� N . To generate T , we start by initializing all the cells of T to the value N + 1.
Then, for every j 6 N , we randomly generate an index i < t until T [i] = N + 1 and we move j into T [i].
The process is depicted in the following algorithm.

Algorithm 15 Generation of T
Input: state length N and shuffling order t
Output: indices permutation table T

1. for i← 0 to t− 1

2. T [i]← N + 1 // Initialization of T
3. for j ← 1 to N
4. while (T [i] 6= N + 1) do i← rand(t) // Generate random index i < t

5. T [i] = j

6. return T

11.3.2 Protecting the linear layer
The atomic operations λi are applied on each part (mj)i(l) of each share mj in a random order. For such
a purpose a table T ′ is constructed at the beginning of the ciphering that is randomly filled with all the
pairs of indices (j, i) ∈ {0, . . . , d} × {1, . . . , L}. The linear layer is then implemented such as described
by the following algorithm.

Algorithm 16 Protected linear layer
Input: the shares m0, . . . , md s.t.

⊕
imi = p

Output: the shares m0, . . . , md s.t.
⊕

imi = λ(p)

1. for iT ′ = 1 to (d+ 1) · L
2. (j, i)← T ′[iT ′ ] // Random index look-up
3. (mj)i(l) ← λi

(
(mj)i(l)

)
// Linear operation

4. return (m0, . . . ,md)

Indices table computation. To implement the random generation of a permutation T ′ on {0, . . . , d}×
{1, . . . , L}, we followed the outlines of the method proposed in [77]. However, since this method can only
be applied to generate permutations on sets with cardinality a power of 2 (which is not a priori the case
for T ′), we slightly modified it. Let 2q be the smallest power of 2 which is greater than (d + 1)L. Our
algorithm essentially consists in designing a q-bit random permutation T ′ from a fixed q-bit permutation
π and a family of q random values in Fq2 (Steps 1 to 6 in Algorithm 17). Then, if (d+ 1)L is not a power
of 2, the table T ′ is transformed into a permutation over {0, . . . , d}× {1, . . . , L} by deleting the elements
which are strictly greater than (d+ 1)L− 1. The process is detailed in pseudo-code hereafter.
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Algorithm 17 Generation of T ′

Input: parameters (d, L) and a q-bit permutation π with q = dlog2((d+ 1)L)e
Output: indices permutation table T ′

1. for i← 0 to q − 1

2. do aleai ← rand(q) // Initialization of aleas
3. for j ← 0 to 2q − 1

4. do T ′[j]← π[j]

5. for i← 0 to q − 1

6. do T ′[j]← π[T ′[j]⊕ aleai] // Process the ith index
7. if q 6= (d+ 1)L

8. then for j ← 0 to (d+ 1)L− 1

9. do i← j

10. while T ′[i] > (d+ 1)L

11. do i← i+ 1

12. T ′[j]← T ′[i]

13. return T ′

With Algorithm 17, it is not possible to generate all the permutations over {0, . . . , d}×{1, . . . , L}. In
our context, we assume that this does not introduce any weakness in the scheme.

11.4 Time complexity
In the following we express the time complexity of each stage of our scheme in terms of the parameters
(t, d, d′, N, L) and of constants ai that depend on the implementation and the device architecture. More-
over, we provide practical values of these constants (in number of clock cycles) for an AES implementation
protected with our scheme and running on an 8051-architecture.

Generation of T . Its complexity CT satisfies:

CT = t× a0 +N × a1 + f(N, t)× a2 ,

where f(N, t) denotes the expected number of iterations of the loop 3-to-5 in Algorithm 15. As explained
in [11, App. A], f(N, t) satisfies:

f(N, t) = t

N−1∑
i=0

1

t− i
.

Moreover, f(N, t) can be approximated by t ln
(

t
t−N

)
for t� N .

Example. For our AES implementation, we got a0 = 6, a1 = 7 and a2 = 9.

Generation of T ′. Let q denote dlog2((d+1)L)e. The number of iterations of loop 8-to-12 in Algorithm
17 in the worst case is 2q. The complexity CT ′ hence satisfies:

CT ′ =

{
q × a0 + 2q × (a1 + q × a2) if q = log2((d+ 1)L),
q × a0 + 2q × (a1 + q × a2) + 2q × a3 otherwise.

Example. For our AES implementation, we got a0 = 3, a1 = 15 and a2 = 14, a3 = 17.

Generation of the Masked S-box. Its complexity CMS satisfies:

CMS = d′ × a0 .
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Example. For our AES implementation, we got a0 = 4352.

Protected keyed Substitution Layer. Its complexity CSL satisfies:

CSL = t× (a0 + d× a1 + d′ × a2) .

Example. For our AES implementation, we got a0 = 55, a1 = 37 and a2 = 18.

Protected Linear Layer. Its complexity CLL satisfies:

CLL = (d+ 1)L× a0 .

Example. For our AES implementation, we got a0 = 169.

11.5 Attack paths and parameters setting
In [228, 229], some advanced DPA attacks have been proposed to bypass countermeasures combining
first-order masking and shuffling. In Chapter 6 (see Section 6.5.2), we have extended these attacks to
defeat combined higher-order masking and shuffling. In this section, we list the different advanced DPA
attacks that may be attempted against our scheme. According to the analysis in Chapter 6 and under the
Hamming weight model assumption, each attack is associated with a correlation coefficient which depends
on the leakage noise deviation σ, the block cipher parameters (n,N, l′, L) and the security parameters
(d, d′, t). As argued in Chapter 6, this coefficient characterizes the attack efficiency. Therefore, under the
Hamming weight model assumption, the overall resistance of our scheme can be quantified according to
the maximal of the different attack coefficients.

Remark 11.3. We only consider known plaintext attacks i.e. we assume the different sensitive variables
uniformly distributed. In a chosen plaintext attack, the adversary would be able to fix the value of some
sensitive variables which could yield better attack paths. We do not take such attacks into account and
let them for further investigations.

As stated in Proposition 6.8 (see Section 6.5.1), under the Hamming weight model assumption, the
correlation coefficient ρ(n, d, σ) associated with a higher-order DPA attack involving the normalized
product combining satisfies:

ρ(n, d, σ) = (−1)d
√
n

(n+ 4σ2)
d+1
2

,

where n denotes the bit-size of the targeted shares, d denotes the masking order and σ denotes the leakage
noise standard deviation.

When shuffling is combined with higher-order masking, the manipulation times of the d + 1 shares
constitute a (d+ 1)-combination from a set of different times. Denoting by I the set of the possible com-
binations, Proposition 6.9, (see Chapter 6, Section 6.5.2) states that the correlation coefficient associated
with the resulting combined higher-order and integrated DPA attack satisfies:

1√
#I

ρ(n, d, σ) .

11.5.1 Attack paths
Every sensitive variable in the scheme is either (1) masked with d unique masks or (2) masked with d′
masks shared with other sensitive variables (during the keyed substitution layer).

(1). In the first case, the d + 1 shares appear during the keyed substitution layer computation and
the linear layer computation. In both cases, their manipulation is shuffled.

(1.1). For the keyed substitution layer (see Algorithm 14), the d + 1 shares all appear during a
single iteration of the loop among t. The attack consists in combining the d+ 1 corresponding signals for
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each loop iteration and to sum the t obtained combined signals. This attack can be associated with the
following correlation coefficient:

ρ1(t, d) =
1√
t
ρ(n, d, σ) . (11.3)

(1.2). For the linear layer (see Algorithm 16), the d + 1 shares appear among (d + 1) · L possible
operations. The attack consists in summing all the combinations of d + 1 signals among the (d + 1) · L
corresponding signals. This attack can be associated with the following correlation coefficient:

ρ2(L, d) =
1√(

(d+1)·L
d+1

)ρ(l′, d, σ) . (11.4)

Remark 11.4. In the analysis above, we chose to not consider attacks combining shares processed in the
linear layers together with shares processed in the keyed substitution layer. Actually, such an attack
would yield to a correlation coefficient upper bounded by the maximum of the two correlations in (11.3)
and (11.4).

(2). In the second case, the attack targets a d′th-order masked variable occurring during the keyed
substitution layer. Two alternatives are possible.

(2.1). The first one is to simultaneously target the masked variable (that appears in one loop iteration
among t) and the d′ masks that appear at fixed times (e.g. in every loop iteration of Algorithm 14 or
during the masked S-box computation). The attack hence consists in summing the t possible combined
signals obtained by combining the masked variable signal (t possible times) and the d′ masks signals (at
fixed times). This leads to a correlation coefficient ρ3 that satisfies:

ρ3(t, d′) =
1√
t
ρ(n, d′, σ) . (11.5)

(2.2). The second alternative is to target two different variables both masked with the same sum
of d′ masks (for instance two masked S-box inputs or outputs). These variables are shuffled among t
variables. The attack hence consists in summing all the possible combinations of the two signals among
the t corresponding signals. This leads to a correlation coefficient ρ4 that satisfies:

ρ4(t) =
1√

t · (t− 1)
ρ(n, 2, σ) . (11.6)

11.5.2 Parameters setting
The security parameters (d, d′, t) can be chosen to satisfy an arbitrary resistance level characterized by
an upper bound ρ∗ on the correlation coefficients corresponding to the different attack paths exhibited
in the previous section. That is, the parameters are chosen to satisfy the following inequality:

max(|ρ1|, |ρ2|, |ρ3|, |ρ4|) 6 ρ∗ . (11.7)

Among the 3-tuples (d, d′, t) satisfying the relation above, we select one among those that minimize
the timing complexity (see Section 11.4).

11.6 Application to AES
We implemented our scheme for AES on an 8051-architecture. According to Remark 11.1, the ShiftRows
and the MixColumns were merged in a single linear layer applying four times the same operation (but
with different state indexings). The block cipher parameters hence satisfy: n = 8, N = 16, l = 32, l′ = 8
and L = 4.

Remark 11.5. In [124], it is claimed that the manipulations of the different bytes in the MixColumns can
be shuffled. However it is not clear how to perform such a shuffling in practice since the processing differs
according to the byte index.
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Table 11.1: Timings for the different stages of the scheme for an AES implementation on an 8051-
architecture.

Stage Timings
T Generation CT = 112 + t

(
6 + 9

∑15
i=0

1
t−i

)
T ′ Generation CT ′ = 3q + 2q(15 + 14q) [+17× 2q]

Masked S-box Generation CMS = 4352d′

Pre-computations CT + CT ′ + CMS

Substitution Layer CSL = t(55 + 37d+ 18d′)
Linear Layer CLL = 676(d+ 1)

Protected Round CSL + CLL = 676(d+ 1) + t(55 + 37d+ 18d′)

Unprotected Round 432

Table 11.1 summarizes the timings obtained for the different stages of the scheme for our implemen-
tation.

Remark 11.6. The unprotected round implementation has been optimized, in particular by only using
variables stored in DATA memory. Because of memory constraints and due to the scalability of the code
corresponding to the protected round, many variables have been stored in XDATA memory which made
the implementation more complex. This explains that, even for d = d′ = 0 and t = 16 (i.e. when there
is no security), the protected round is more time consuming than the unprotected round.

We give hereafter the optimal security parameters (t, d, d′) for our AES implementation according to
some illustrative values of the device noise deviation σ and of the correlation bound ρ∗. We consider
three noise deviation values: 0,

√
2 and 4

√
2. In the Hamming weight model, these values respectively

correspond to a signal-to-noise ratio (SNR) of +∞, 1 and 1
16 . We consider four correlation bounds: 10−1,

10−2, 10−3, and 10−4. The security parameters and the corresponding timings for the protected AES
implementation are given in Table 11.2. Note that all the rounds have been protected.

Table 11.2: Optimal parameters and timings according to SNR and ρ∗.

SNR = +∞ SNR = 1 SNR = 1
16

ρ∗ t d d′ timings t d d′ timings t d d′ timings
10−1 16 1 1 3.66× 104 16 1 1 3.66× 104 16 1 0 2.94× 104

10−2 20 3 3 8.57× 104 20 2 2 6.39× 104 16 1 1 3.66× 104

10−3 1954 4 3 5.08× 106 123 3 3 3.13× 105 16 2 2 5.75× 104

10−4 195313 5 3 5.75× 108 12208 4 3 3.15× 107 19 3 3 8.35× 104

When SNR = +∞, the bound d′ 6 3 implies an intensive use of shuffling in the keyed substitution
layer. The resulting parameters for correlation bounds 10−3 and 10−4 imply timings that quickly become
prohibitive. A solution to overcome this drawback would be to design secure table re-computation algo-
rithms for d′ > 3. Besides, these timings underline the difficulty in securing block ciphers implementations
with pure software countermeasures. When the leakage signals are not very noisy (SNR = 1), timings
clearly decrease (by a factor from 10 to 20). This illustrates, once again, the soundness of combining
masking with noise addition. This is even clearer when the noise is stronger (SNR = 1

16 ), where it can
be noticed that the addition of dummy operations is almost not required to achieve the desired security
level.
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12.1 Introduction
At CHES 2006, a generic first-order masking scheme for S-boxes was published that is based on the
Fourier transform. In this chapter, we show that this countermeasure has a flaw and that it can be
broken by first-order SCA. Moreover, we report successful practical DPA attacks on two different S-
box implementations using this countermeasure. Finally, we propose an improvement of the original
countermeasure and we prove its security against first-order DPA.

The results presented in this chapter have been published in collaboration with Jean-Sébastien Coron,
Christophe Giraud and Emmanuel Prouff in the international workshop on Cryptographic Hardware and
Embedded Systems (CHES 2008) [1].

12.2 Masked S-box computation based on the Fourier transform
In [192], Emmanuel Prouff, Christophe Giraud and Sébastien Aumônier proposed a new algorithm to
perform an S-box computation on masked data. The method is based on the involutivity property of the
Fourier Transform. Before describing it, let us first recall some basics about the transformation itself.

For every function S : Fn2 → Fm2 , the Fourier transform Ŝ of S is defined for every z = (z0, . . . , zn−1) ∈
Fn2 by:

Ŝ(z) =
∑
a∈Fn2

S(a)(−1)a·z , (12.1)

147
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where · denotes the scalar product defined by a · z =
⊕n−1

i=0 aizi.

It is well known that this transformation is involutive, which means that ̂̂S = 2nS or equivalently
that:

S(z) =
1

2n

∑
a∈Fn2

Ŝ(a)(−1)a·z, z ∈ Fn2 . (12.2)

Let r1, r2, r3 and r4 be 4 random masks belonging to Fn2 , and let z denotes a sensitive variable. The
algorithm proposed in [192] to process S(z) + r3 mod 2n securely from z̃ = z⊕ r1 and r1, implements the
right-hand side calculus of the following relation (which is a slightly modified version of Relation (12.2)):

(−1)(z̃⊕r2)·r1S(z) + r3 mod 2n =

 1

2n

r′ + ∑
a∈Fn2

Ŝ(a)(−1)a·z̃⊕r1·(z̃⊕a⊕r2) mod 22n

 , (12.3)

where r′ = 2nr3 + r4.
Let SSP denote the signed scalar product X,Y 7→ (−1)X·Y , let � denote the addition modulo 22n

and let × denote the multiplication of two values belonging to {−1, 1}. We recall hereafter the algorithm
proposed in [192] to process the right-hand side of (12.3) securely.

Algorithm 18 Computation of an arithmetically masked S-box output from a Boolean masked input
Input: a masked input z̃ = z ⊕ r1, the input mask r1 and a lookup table for Ŝ
Output: the 3-tuple ((−1)(z̃⊕r2)·r1S(z) + r3 mod 2n, r3, r2) where r2 and r3 are random values.

1. (r2, r3, r4)←
(
rand(n), rand(n), rand(n)

)
2. result← 2nr3 + r4

3. for a from 0 to 2n − 1 do
4. T1 ← SSP(a, z̃) [T1 = (−1)a·z̃]
5. T2 ← z̃ ⊕ a [T2 = z̃ ⊕ a]
6. T2 ← T2 ⊕ r2 [T2 = z̃ ⊕ a⊕ r2]
7. T2 ← SSP(r1, T2) [T2 = (−1)r1·(z̃⊕a⊕r2)]
8. T2 ← T1 × T2 [T2 = (−1)a·z̃⊕r1·(z̃⊕a⊕r2)]
9. T2 ← T2 × Ŝ(a) [T2 = Ŝ(a)(−1)a·z̃⊕r1·(z̃⊕a⊕r2)]

10. result← result� T2 [result = (2nr3 + r4)�
∑

i∈{0,a}

Ŝ(i)(−1)i·z̃⊕r1·(z̃⊕i⊕r2)]

11. result← result� n [result = (−1)(z̃⊕r2)·r1S(z) + r3 mod 2n]
12. return (result, r3, r2)

Finally, it is proposed in [192] to use the method described in [117] in order to transform the arithmetic
masking of the output of Algorithm 18 into a Boolean masking.

The authors of [192] had proposed a proof of security versus first-order SCA for the countermeasure
defined by Algorithm 18, but as we will see in the next section, the proof is flawed and the countermeasure
is not secure against first-order SCA.

12.3 First-order attack against the Fourier transform based S-box
computation

12.3.1 First-order flaw

Unlike what is claimed in [192], the implementation of Algorithm 18 is not immune against first-order
SCA. Indeed, the variable v = a · z̃ ⊕ r1 · (z̃ ⊕ a ⊕ r2) processed at Step 8 brings information about the
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sensitive variable z (recalling z̃ = z⊕ r1). To exhibit the dependence between v and z, let us first rewrite
v as follows:

v = a · z̃ ⊕ r1 · (z̃ ⊕ a⊕ r2)

= a · (z ⊕ r1)⊕ r1 · (z̃ ⊕ a⊕ r2)

= a · z ⊕ r1 · (z̃ ⊕ r2) .

The relation above shows that the intermediate variable v equals the sensitive variable a ·z (a being a loop
index) masked with the scalar product r1 ·(z̃⊕r2). Since r2 is uniformly distributed and is independent of
both z and r1, then so does the variable z̃⊕ r2. The flaw of the method proposed in [192] comes from the
fact that the scalar product of two uniformly distributed random variables does not output an uniformly
distributed random variable. For example, the product b1 · b2 of two random bits b1 and b2 equals 0 with
probability 3/4, and equals 1 with probability 1/4. More generally, for n-bit random variables we have
the following lemma.

Lemma 12.1. Let X and Y be two random variables uniformly distributed over Fn2 and mutually inde-
pendent. Then the scalar product X · Y satisfies:

P [X · Y = 0] =
1

2
+

1

2n+1
. (12.4)

Proof. We have:

P [X · Y = 0] = P [X 6= 0] · P [X · Y = 0|X 6= 0] + P [X = 0] · P [X · Y = 0|X = 0] .

Since the Boolean function y ∈ Fn2 7→ x · y is linear and non-zero for every x 6= 0, we have #{x · y =
1} = #{x · y = 0} = 2n−1. This, together with the fact that X and Y are independent, implies
P [X · Y = 0|X 6= 0] = 1

2 . Since P [X · Y = 0|X = 0] = 1 and P [X 6= 0] = 2n−1
2n , we deduce (12.4).

Remark 12.1. In the security proof conducted in [192], it is stated that the uniform distribution of X
and Y implies the uniform distribution of X · Y . We show in Lemma 12.1 that this assertion is actually
wrong.

Lemma 12.1 implies that the distribution of r1 · (z̃ ⊕ r2) has a bias 1
2n+1 with respect to the uniform

distribution. Since the sensitive variable a · z is masked with a biased mask, the variable v defined in
(12.4) leaks information on a · z. This information can be exploited to mount a first-order DPA attack.

12.3.2 DPA attack exploiting a biased masking

We consider a DPA attack targeting a bit b that satisfies:

b = f(X, k∗)⊕R , (12.5)

where f is a Boolean function and X is a public variable, k∗ is a secret key element (that can be
exhaustively searched) and R is a random bit. The leakage resulting from this bit is denoted L(b).

If R is uniformly distributed over F2, then no successful DPA attack is possible. Indeed, in that case
b equals 0 (resp. 1) with probability 1

2 independently of f(X, k∗). Conversely, when the distribution of
R is biased compared to the uniform distribution, then the distribution of b depends on f(X, k∗), which
renders DPA possible. In the following, we denote by ε 6= 0 the bias such that P [R = 0] = 1

2 + ε.
The DPA works as described Section 3.5.1. That is, for a given measurements vector (li)i and

corresponding input vector (xi)i, the attacker computes for every key guess k the differential ∆k defined
as18:

∆k =

∑N
i=1 f(xi, k)× li∑N
i=1 f(xi, k)

−
∑N
i=1(1− f(xi, k))× li∑N
i=1(1− f(xi, k))

. (12.6)

18Here f is a Boolean function hence the index j is ignored compared to the definition given in Section 3.5.1
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When the biais is strictly lower than 1
2 , the randomization provided by R implies that the bit effectively

processed equals f(xi, k
∗) with probability 1

2 + ε. One deduces that, for the correct key hypothesis, a
portion 1

2 + ε of the predicted bits f(xi, k
∗) effectively correspond to the computed bits while a portion

1
2 − ε does not on average. This implies that the expectation of the differential for the correct key
hypothesis satisfies:

E [∆k∗ ] =

(
1

2
+ ε

)(
E [L(1)]− E [L(0)]

)
+

(
1

2
− ε
)(

E [L(0)]− E [L(1)]
)
,

that is:
E [∆k∗ ] = 2ε×

(
E [L(1)]− E [L(0)]

)
. (12.7)

If the key hypothesis k is incorrect then a ratio α ∈ [0, 1] of the xi’s satisfies f(xi, k) 6= f(xi, k
∗). The

expectation of the differential then satisfies:

E [∆k] = (1− α) E [∆k∗ ]− α E [∆k∗ ] = (1− 2α) E [∆k∗ ] . (12.8)

Since α is usually approximately 1
2 , we have E [∆k 6=k∗ ] ' 0. This implies that, for a sufficiently large N ,

the correct key hypothesis is such that ∆k is of maximum amplitude.
Remark 12.2. Depending on the function f , it may happen that the correct key hypothesis is not the
single one for which ∆k is of maximum amplitude. Indeed, a key hypothesis such that α = 1 also results
in a differential of maximal amplitude. According to (12.6), this differential and the one corresponding
to the correct key hypothesis have exactly the same amplitude but have opposite signs. To differentiate
them the attacker needs to determine the polarity of E [L(1)]− E [L(0)].

The effect of the biased masking can be observed from (12.7) and (12.8). We see that for every k, the
expectation of ∆k is divided by a factor 1

2ε compared to an unprotected implementation. This implies,
according to the analysis in [74], that the number of required leakage measurements is roughly multiplied
by ( 1

2ε )2.
As a result, Lemma 12.1 implies that a DPA on Algorithm 18 exploiting the flaw exhibited in Section

12.3.1 is expected to require about 22n times more leakage measurements than a DPA when no masking
is used. Since Algorithm 18 is only interesting for a small value of n (e.g. n = 4), this factor is not
prohibitive.

12.3.3 DPA attack on the flaw
In this section, we apply the DPA attack described in Section 12.3.2 in order to exploit the flaw exhibited
in Section 12.3.1. More precisely, our attack targets a bit b which is a scalar product a · z masked with a
biased mask R = r1 · (z̃ ⊕ r2), that is:

b = a · z ⊕R . (12.9)

We recall that a refers to a loop index in Algorithm 18 and that its value can be chosen by the attacker
among {0, . . . , 2n − 1} (by choosing the target loop iteration). The sensitive variable z is the sensitive
S-box input and it can be written as a function of a public variable X and a piece of secret data k∗. The
way our attack is performed depends on this function which can take several forms. In the sequel we
consider two usual cases.

The first one is referred as the linear case and assumes:

z = X ⊕ k∗ .

This occurs for instance in AES and in FOX algorithms for the first round S-box computation.
The second case, referred as the non-linear case, assumes the existence of a non-linear transformation

φ such that:
z = φ(X ⊕ k∗) .

This occurs for instance in the AES algorithm implemented using the composite field method [178, 192]
(see [192, §4.1] for details). In that case, φ is the non-linear (8, 4)-function which from a ∈ F256 processes
d ∈ F16 according to the notations of [178,192].
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12.3.3.1 The linear case

We consider here the case where the targeted bit can be expressed as b = a · (X ⊕ k∗)⊕R that is:

b = a ·X ⊕ a · k∗ ⊕R . (12.10)

The bit b in (12.10) only depends on one secret binary value a ·k∗. Therefore, a DPA on b will provide
at most one bit of information on k∗. Hence, recovering the entire secret k∗ requires to perform a DPA
attack on b for several (say t) different loop indices a0, . . . , at−1.

When mounting a DPA attack on b for a particular loop index a, the sequence of guesses can only
take one of the two following forms: (a · xi)i or (a · xi ⊕ 1)i. According to (12.6), these two sequences
result in two differentials that are opposite one to each other. The attacker does not know a priori which
of these differentials correspond to the correct key hypothesis. Indeed, depending on the device, the
polarity (−1)s of the good differential ∆a·k∗ may be positive or negative. In other terms, the DPA allows
the attacker to recover the value of a · k∗ ⊕ s, where k∗ and s are unknown.

Since the polarity s is the same for all the loop indices a, then performing t DPA attacks for t different
loop indices a0, . . . , at−1 provides the attacker with a system of t equations and n + 1 variables (the
polarity bit s and the n bits of k∗). Solving this system requires to have at least t = n + 1 equations.
After choosing n indices ai having linearly independent vectorial representations in Fn2 and after defining
an = a0 ⊕ a1, it can be checked that solving the system allows the attacker to unambiguously determine
the value of k∗.

12.3.3.2 The non-linear case

We now consider the case where b satisfies:

b = a · φ(X ⊕ k∗)⊕R . (12.11)

For a non-linear φ, the attack is analogous to a classical DPA on some output bit of e.g. a DES or
AES S-box [148]. The non-linearity of φ ensures that for the correct key hypotheses a peak of maximal
amplitude will appear while for most other key hypothesis no peak will appear. This enables to fully
recover k∗.

In this section, we have described how to exploit the leakage on a sensitive bit which is masked with
a biased random bit. In the linear case, the attack requires to perform n+ 1 DPAs while only one DPA
is needed in the non-linear case. In the following section, we present experimental results for these two
attacks.

12.4 Experimental results
We put into practice the attacks described in Section 12.3 for two S-box implementations on an 8-bit
smart card. Both attacks exploited the power consumption resulting from several S-box computations.

Regarding the linear case, we performed the attack on the S-box computation of FOX algorithm
during the first round protected by the method described in [192]. In this case, the sensitive bits we
targeted are of the form a · (X ⊕ k∗) ⊕ R, where a,X, k∗ ∈ F4

2. Following the outlines of the attack
described in Section 12.3.3 for the linear case, we have applied 4+1 DPAs on five different loop iterations
of Algorithm 18, namely one DPA for every a ∈ {1, 2, 4, 8, 3}.

Figure 12.1.a represents the value of
∑3
i=0 ∆ai·k, where ai = 2i, obtained after 20 000 executions of

the algorithm. The full black curve corresponds to the correct subkey value k∗ and the dotted black
curve corresponds to the complementary of this value. As expected, these two candidates are such that
the highest peaks of the differential vectors ∆ai·k are either all positive or all negative, hence leading to
the highest amplitudes for

∑3
i=0 ∆ai·k. As explained in Section 12.3.3, we then computed the differential

∆a·k∗ for a = a0 ⊕ a1 = 3. Figure 12.1.c illustrates this computation. The polarity of the highest peak
of ∆3·k∗ being negative, one deduces that the correct subkey value k∗ corresponds to the full black curve
in Figure 12.1.a.
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Figure 12.1: Practical DPA attack – the linear case.

Figures 12.1.b and 12.1.d represent respectively the convergence of the peak of maximal amplitude for∑3
i=0 ∆ai·k and for ∆3·k∗ according to the number of power consumption measurements. By analyzing

these curves, we deduce that the value of the 4-bit subkey k∗ is recovered by using about 8 000 executions
of the algorithm.

Regarding the non-linear case, we attacked the AES S-box computation using the composite field
method in order to perform the inversion in F4

2 instead of F8
2 and the method of [192] to protect this

inversion (see [192, § 4.1] for more details). In that case, the targeted bit is of the form a ·φ(X ⊕ k∗)⊕R
where X, k∗ ∈ F8

2, a ∈ F4
2 and φ : F8

2 → F4
2. Figure 12.2.a represents the value of the differentials ∆k’s

for k ∈ F8
2 and a = 1, when 200 000 executions of the algorithm are used. It can be seen that the correct

subkey k∗ (plotted in black) is easily distinguishable.
Figure 12.2.b represents the convergence of the maximum peak amplitude for the differentials accord-

ing to the number of power consumption measurements. The analysis of these curves shows us that the
value of the 8-bit subkey k∗ is recovered after about 100 000 executions of the algorithm.

12.5 An improved version of the Fourier transform based S-box
computation

In the following we propose an improvement of Algorithm 18 that allows to circumvent the flaw depicted
in Section 12.3.1 and also leads to a more efficient implementation.

The new algorithm is still a secure computation of a Fourier transform but it is based on a slightly
modified version of (12.3) which we rewrite in the following form:
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Figure 12.2: Practical DPA attack – the non-linear case.

(−1)r2S(z) + r3 mod 2n =

 1

2n

r′ + ∑
a∈Fn2

Ŝ(a)(−1)r2⊕a·z̃⊕a·r1 mod 22n

 , (12.12)

where z̃ = z ⊕ r1, r2 ∈ F, (r1, r3, r4) ∈ (Fn2 )3 and r′ = 2nr3 + r4.
After a brief look at (12.12) (and before a deeper analysis), we can notice that the sensitive variable

a · z is now masked with the uniformly distributed random bit r2. Furthermore, it may be noticed that
the exponent in the summation in (12.12) involves less operations than in (12.3).

Let us denote by SP the function X,Y 7→ X ·Y and by SFT the function X,T 7→ Ŝ(X)(−1)T . As we
prove in this section, Algorithm 19 implements (12.12) securely.

Algorithm 19 First-order secure S-box computation
Input: a masked value z̃ = z ⊕ r1 and the mask r1
Output: the 3-tuple ((−1)r2S(z) + r3 mod 2n, r3, r2), where r2 and r3 are random values.

1. Generate a random bit r2
2. (r3, r4)←

(
rand(n), rand(n)

)
3. result← 2nr3 + r4

4. for a from 0 to 2n − 1 do
5. T1 ← SP(a, z̃) [T1 = a · z̃]
6. T1 ← T1 ⊕ r2 [T1 = r2 ⊕ a · z̃]
7. T2 ← SP(a, r1) [T2 = a · r1]
8. T1 ← T1 ⊕ T2 [T1 = r2 ⊕ a · z]
9. T1 ← SFT(a, T1) [T1 = Ŝ(a)(−1)r2⊕a·z]
10. result← result� T1 [result = (2nr3 + r4)�

∑
i∈{0,a} Ŝ(i)(−1)r2⊕i·z]

11. result← result� n [result = (−1)r2S(z) + r3 mod 2n]
12. return (result, r3, r2)

12.5.1 Efficiency analysis

Although Algorithm 19 is more secure than Algorithm 18, it is also faster. For each loop iteration, Algo-
rithm 19 requires two XORs, two calls to the function SP and one call to the lookup table SFT. Therefore,
for each loop iteration, Algorithm 18 performs 2 extra multiplications compared to Algorithm 19. Com-
bining this result with the fact that function SP is slightly faster than function SSP, we deduce that our
method is faster than the one proposed in [192].
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Table 12.1: The different sensitive values manipulated during Algorithm 19.

Step Instruction Masked Value Mask(s)

5.1 register ← z̃ z̃ r1

5.2 T1 ← SP(a, z̃) a · z̃ a · r1

6 T1 ← T1 ⊕ r2 r2 ⊕ a · z̃ r2 ⊕ a · r1

8 T1 ← T1 ⊕ T2 r2 ⊕ a · z r2

9 T1 ← SFT(a, T1) Ŝ(a)(−1)r2⊕a·z r2

10 result ← result� T1 (2nr3 + r4)�
∑
i Ŝ(i)(−1)r2⊕i·z (r2, r3, r4)

11 result ← result� n (−1)r2S(z) + r3 mod 2n r3

12.5.2 Security analysis
In Table 12.1, we list the intermediate variables of Algorithm 18 that involve a sensitive variable. The
values which only depend on the loop counter or on a random value are obviously omitted.

As it can be checked in Table 12.1, the intermediate variables manipulated at Steps 5.1, 6, 8, 9, 10
and 11 are masked with a uniformly distributed random variable (resp. r1, r2 ⊕ a · r1, r2, r2, r3||r4 and
r3) which is independent of the sensitive variable. Those intermediate variables are therefore independent
of the sensitive variable z. The intermediate variable at Step 5.2 can be rewritten a · z ⊕ a · r1. When
a equals 0, this variable equals 0 whatever z and r1. Otherwise, for every a 6= 0 the variable a · r1 is
uniformly distributed and independent of z. We deduce that a · z⊕ a · r1 (and hence a · z̃) is independent
of z whatever a.

To summarize, we have proved that all the intermediate variables manipulated during the execution of
Algorithm 18 are independent of z. As a consequence, our improved method is secure against first-order
DPA.
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13.1 Introduction

At CT-RSA 2006, a higher-order masking scheme has been proposed by Kai Schramm and Christof
Paar [204]. It is actually the only higher-order masking scheme for S-boxes that has been published in
the literature. The authors claimed that the scheme is resistant against dth-order DPA for any arbitrary
chosen order d. In this chapter, we exhibit several third-order SCA attacks that can defeat the Schramm
and Paar’s scheme for any value of d.

The results presented in this chapter have been published in collaboration with Jean-Sébastien Coron
and Emmanuel Prouff in the international workshop on Cryptographic Hardware and Embedded Systems
(CHES 2007) [2].

13.2 The generic masking scheme

13.2.1 Description

Kai Schramm and Christof Paar propose in [204] a masking scheme for AES which aims to thwart dth-
order SCA for any arbitrary chosen d. Every sensitive byte z appearing in the algorithm is never directly
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manipulated and is represented by d + 1 values m0, m1, . . . , md. To ensure the SCA-resistance, the
shares (mi)i>1 take random values and to ensure completeness, m0 satisfies:

m0 = z ⊕
d⊕
i=1

mi . (13.1)

When a transformation S must be applied to z, d+ 1 new values s0, s1, . . . , sd must be processed from
the mi’s such that:

s0 = S(z)⊕
d⊕
i=1

si . (13.2)

As argued in Chapter 8, the critical point of such a method is to deduce the si’s from the mi’s when S
is non-linear, without compromising the security of the scheme against dth-order SCA.

To tackle this issue, Kai Schramm and Christof Paar propose to adapt the table re-computation
method which is widely used to protect implementations against first-order SCA (see Section 9.2.1). In
their proposal, the d output masks (si)i>1 are randomly generated and a new table S∗ is derived from
m1, . . . , md and s1, . . . , sd in such a way that S∗ satisfies for every x:

S∗(x) = S

(
x⊕

d⊕
i=1

mi

)
⊕

d⊕
i=1

si . (13.3)

Then, one lets s0 ← S∗(m0); using (13.1) this gives s0 = S(z)⊕
⊕d

i=1 si as required.
To ensure that the design of S∗ induces no flaw with respect to dth-order SCA, it involves d successive

table re-computations from S0 = S to Sd = S∗. For every j ∈ {1, . . . , d}, the jth re-computation produces
a new S-box Sj from Sj−1 such that, for every x:

Sj(x) = Sj−1(x⊕mj)⊕ sj = S

(
x⊕

j⊕
i=1

mi

)
⊕

j⊕
i=1

si , (13.4)

which for j = d satisfies (13.3).
In the next section, we consider that the table re-computations are performed according to Algorithm

2 (see Section 9.2.1) and we exhibit a third-order flaw. Afterwards, we address the scheme security with
respect to other re-computation algorithms.

13.2.2 The third-order flaw
Before describing the flaw, and to simplify the presentation, we will denote m =

⊕d
i=1mi and s =⊕d

i=1 si. During the re-computation of Sd from Sd−1, the variables Sd(0) = S(m) ⊕ s and Sd(1) =
S(m⊕ 1)⊕ s are respectively manipulated during the first iteration and the second iteration of the loop
(see Algorithm 2). The manipulation of these two variables together with m0 induces a third-order flaw.
In fact, recalling that m0 satisfies m0 = z ⊕m, we have

(m0, Sd(0), Sd(1)) = (z ⊕m, S(m)⊕ s, S(m⊕ 1)⊕ s) . (13.5)

It can be checked from (13.5) that (m0, Sd(0), Sd(1)) and z are not independent, which implies that a third-
order SCA is potentially feasible. Namely, given Sd(0) and Sd(1), one can compute ∆ = Sd(0)⊕Sd(1) =
S(m)⊕ S(m⊕ 1). This makes it possible to recover m with high probability since the number of values
z satisfying ∆ = S(z) ⊕ S(z ⊕ 1) is small when S has good cryptographic properties (e.g. this equation
admits at most 4 solutions if S is the AES S-box). Then, knowing the value of m allows to recover z
from m0 since they satisfy z = m0 ⊕m.

The discussion above demonstrates that the use of Algorithm 2 to perform the table re-computations
makes Schramm and Paar’s scheme vulnerable to third-order SCA for any value d.
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Even if the third-order flaw above has been exhibited for the first and the second loop iterations, the
generic scheme admits more generally a flaw (m0, Sd(e1), Sd(e2)) for every pair (e1, e2) ∈ {0, . . . , 255}2 of
loop indices such that e1 6= e2.

The importance of the third-order flaw depends on the amount of information that (m0, Sd(e1), Sd(e2))
provides about z. As we show in [2, App. B], this amount depends on the cryptographic properties of
S and on the value e1 ⊕ e2. In fact, for every S-box S defined from Fn2 into Fm2 and for every sub-
set {e1, e2} ⊆ Fn2 , the mutual information I(z; (m0, Sd(e1), Sd(e2))) between z and (m0, Sd(e1), Sd(e2))
satisfies:

n− log(δ) 6 I(z; (m0, Sd(e1), Sd(e2))) 6 n , (13.6)

where δ denotes maxe∈Fn2 ∗,z∈Fm2 #{x ∈ Fn2 ; S(x)⊕ S(x⊕ e) = z}.
To resist against differential cryptanalysis [43], the AES S-box (n = 8, m = 8) has been designed

in such a way that δ = 4. Consequently, if S is the AES S-box then (13.6) implies that the mutual
information between z and (m0, Sd(e1), Sd(e2)) is lower bounded by 6. In fact, this mutual information
equals 7− 1

64 ≈ 6.98 for every sub-set {e1, e2} ⊆ Fn2 , which means that knowing the values of m0, Sd(e1)
and Sd(e2) reveals almost 7 bits of z (out of 8) on average.

13.2.3 Further re-computation algorithms
In this section, we focus on the different re-computation algorithms given by Kai Schramm and Christof
Paar in [204] and we analyze how they impact the security of their scheme.

In [204], a variant of Algorithm 2 is given in which Step 2 is replaced by:

Sj(x⊕mj)← Sj−1(x)⊕ sj .

If this variant is used in Schramm and Paar’s scheme, the third-order flaw presented in the previous
section becomes a fourth-order flaw. Indeed, the values stored in memory during the first and the second
loop iterations of the dth table re-computation are no longer Sd(0) and Sd(1) but Sd(md) and Sd(md⊕1).
The two last variables satisfy:

Sd(md) = S(m⊕md)⊕ s and Sd(md ⊕ 1) = S(m⊕md ⊕ 1)⊕ s .

Thus, by analogy with Section 13.2.2, knowing the values of these two variables reveals information about
m⊕md (instead of m in Section 13.2.2). Therefore, in addition to these two variables, an attacker needs
to target not only m0 = z ⊕m but also md in order to unmask z. This results in a fourth-order flaw.

in [204], another re-computation algorithm is recalled which has been introduced in [234]. However,
this algorithm is not suitable as its execution time depends on the input mask value. Such a dependence
induces a flaw with respect to first-order SCA. Indeed, as the re-computation duration depends on the
mask value, the manipulation date of the masked variable after the re-computation also depends on the
mask value. This implies that the distribution of the mask given the manipulation date of the masked
variable is not uniform. Consequently, a first-order flaw occurs at this date.

Finally, Kai Schramm and Christof Paar propose in [204] a new table re-computation algorithm. This
algorithm does not require any RAM allocation for the output table because it modifies the input table
itself to compute the new one.

Algorithm 20 Schramm and Paar’s re-computation
Input: an input mask r, an output mask s, a look-up table T [·] = S(·)
Output: the modified look-up table T [·] = S(· ⊕ r)⊕ s

1. l = blog2(r)c
2. for x1 from 0 to 255 by 2l+1 do

3. for x2 from 0 to 2l − 1 do

4. tmp1 ← T [x1 ⊕ x2]⊕ s
5. tmp2 ← T [x1 ⊕ x2 ⊕ r]⊕ s
6. T [x1 ⊕ x2]← tmp2 ⊕ s
7. T [x1 ⊕ x2 ⊕ r]← tmp1 ⊕ s
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8. end
9. end

Despite its practical interest, this algorithm cannot be used because it does not take the case r = 0
into account. This is problematic since the mask r must be uniformly distributed to ensure the SCA-
resistance. Moreover, Algorithm 20 cannot be patched to take this case into account. Indeed, when r
equals 0, the re-computation should apply the output mask s to every value in the table: T [x]← T [x]⊕s.
However, for r = 0 and whatever the value of l, it can be checked that Steps 4 to 7 of Algorithm 20
perform twice the operation T [x1 ⊕ x2]← T [x1 ⊕ x2]⊕ s. Thus, when r equals 0, Steps 2 to 9 apply the
output mask s only to the half of the table values. Therefore the only solution to patch Algorithm 20 is
to perform a particular re-computation when r equals 0. This would induce a dependence between the
value of r and the execution time of the re-computation algorithm which, as remarked above, is a flaw
with respect to first-order SCA.

13.3 The improved masking scheme

13.3.1 Description
Schramm and Paar’s generic Scheme recalled in Section 13.2.1 is quite costly as it involves d table
re-computations for each S-box access for each round of the cipher (which implies 160 × d table re-
computations for AES).

Therefore, Kai Schramm and Christof Paar propose in [204] an improvement of the method. In the
new solution, d successive re-computations are still performed for the computation of the first masked
S-box in the first round. Then, each time S must be applied on a new byte m′0 = z′ ⊕

⊕d
i=1m

′
i, a new

masked S-box S∗new, satisfying S∗new(x) = S(x⊕
⊕d

i=1m
′
i)⊕

⊕d
i=1 s

′
i for every byte x, is derived from the

previous S∗ with a single re-computation. This re-computation firstly requires the computation of two
values called chains of masks in [204] and denoted here by icm and ocm:

icm =

d⊕
i=1

mi ⊕
d⊕
i=1

m′i , (13.7)

ocm =

d⊕
i=1

si ⊕
d⊕
i=1

s′i . (13.8)

Once the values of the chains of masks have been computed, the masked S-box S∗new is derived from S∗

by performing one single re-computation such that the following relation is satisfied for every x:

S∗new(x) = S∗(x⊕ icm)⊕ ocm . (13.9)

To construct an S-box S∗new that satisfies (13.9), a re-computation algorithm may be called with the
input parameters (S∗, icm,ocm). The variable icm removes the previous sum of input masks

⊕d
i=1mi

and adds the new sum of input masks
⊕d

i=1m
′
i while ocm removes the previous sum of output masks⊕d

i=1 si and adds the new sum of output masks
⊕d

i=1 s
′
i.

For the entire AES implementation, this improved scheme replaces the 160× d table re-computations
required in the generic scheme by d+ 159 table re-computations. For d > 2, this represents a substantial
gain.

13.3.2 The third-order flaws
We show hereafter that the computation of the chains of masks induces two third-order flaws. In fact,
one obtains from (13.1) and (13.7) that the input chain of masks icm satisfies:

z ⊕ z′ = icm⊕m0 ⊕m′0 . (13.10)
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Since z ⊕ z′ is a sensitive variable (because it depends on both the plaintext and the secret key), and
since the variables icm, m0 and m′0 are manipulated by the implementation, this immediately gives a
third-order flaw.

The second third-order flaw is derived as follows: from (13.2) and (13.8) we deduce that the output
chain of masks ocm satisfies:

S(z)⊕ S(z′) = ocm⊕ s0 ⊕ s′0 . (13.11)

This shows that the manipulation of ocm, s0 and s′0 gives a third-order flaw which leaks information on
the sensitive variable S(z)⊕ S(z′).

To summarize, we have shown that the improved Schramm and Paar’s scheme is vulnerable to third-
order SCA for any value of d.

13.4 Attacks simulations

In previous sections, we have shown that an attacker who can obtain the exact values of 3 intermediate
variables of the (generic or improved) Schramm and Paar’s masking scheme, can recover the value (or
a part of the value) of a sensitive variable. This is sufficient to show that the scheme is theoretically
vulnerable to third-order SCA. However, the physical leakage of an implementation does not reveal the
exact values of the variables manipulated but a noisy function of them. Thus, a leakage model must be
considered when SCA attacks are addressed. In this section, we firstly recall two generic dth-order SCA
attacks in a classical leakage model. Then we apply each of them against Schramm and Paar’s scheme
and we present results of attack simulations.

13.4.1 Leakage model

We consider the Hamming weight model with Gaussian noise i.e. we assume that the physical leakage Li
resulting from the manipulation of a variable Vi satisfies:

Li = ε ·HW(Vi) +Bi , (13.12)

where the Bi’s have independent Gaussian distributions N
(
0, σ2

)
.

In the next section, two generic dth-order SCA attacks are recalled. Both of them assume that
there exists a d-tuple (V1, . . . , Vd) of variables manipulated by the algorithm which is correlated to a
sensitive variable Z = f(X,K). The Vi’s depend on the sensitive variable Z and on random values
generated during the execution of the algorithm. The random values involved in the Vi’s are represented
by a random variable R which is assumed to be uniformly distributed over R. Thus, the Vi variables
considered in the rest of the chapter can be expressed as functions of (Z,R), which will be denoted
Vi(Z,R).

Two attacks are described in the next section which aim at recovering the value k∗ taken by K on the
target implementation.

13.4.2 Higher-order attacks

We recall hereafter two generic higher-order SCA attacks: the higher-order DPA and the higher-order
profiled SCA.

13.4.2.1 Higher-order DPA

As explained in Section 3.7.1, a dth-order DPA first applies a combining function C (e.g. the product or
the absolute difference) to the d leakage signals L1, . . . , Ld. Then it estimates the correlation between
the combined signal C (L1, . . . , Ld) and a model M(X, k) = ϕ̂◦ f(X, k) of this signal, according to a guess
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k on the value of the secret key part k∗. According to the analysis in Chapter 6, in the Hamming weight
model, a good choice for the so-called prediction function ϕ̂ is:

ϕ̂(z) = ER [C (HW (V1 (z,R)) , . . . ,HW (Vd (z,R)))] . (13.13)

The experiments presented in the next section use a variant of classical correlation attack that eval-
uates (for every key guess k) the correlation:

ρk = ρ̂ [M(X, k),E [C (L1, . . . , Ld) |X]] . (13.14)

That is, the combined leakage is averaged for every value of X before correlation. For the different attacks
we tried both the product combining (3.24) and the generalized absolute difference combining (3.26) (see
Section 3.7.1) and we selected the one yielding the most efficient attack.

13.4.2.2 Higher-order profiled SCA

In a higher-order profiled attack (see Section 3.7.3), the attacker has some estimations of the leakage
distribution according to the processed variables. In this context, we assume that the attacker knows the
exact distributions of the Li’s given the Vi’s. The knowledge of these distributions allows him to compute
the probability density function g(.|x, k) of (Li)i given X = x and K = k. As the Vi’s satisfy (13.12) for
every i, assuming that the Bi’s have independent Gaussian distributions, g(.|x, k) satisfies:

g(l1, . . . , ld|x, k) =
1

#R
∑
r∈R

d∏
i=1

φ0,σ2 (li − ε ·HW(Vi(f(x, k), r))) , (13.15)

where φ0,σ2 denotes the pdf of the Gaussian distribution N (0, σ2) (see Section 2.4).
Then, the attack consists in estimating the likelihood λk of the key guess k given the observations of

the leakage (lj,1, . . . , lj,d)j corresponding to the plaintexts (xj)j :

λk =
∏
j

g(lj,1, . . . , lj,d|xj , k) . (13.16)

13.4.3 Results
We launch hereafter the two attacks described in Section 13.4.2 against the Schramm and Paar’s generic
and improved schemes. Each attack is a third-order SCA targeting three variables V1, V2 and V3 appearing
during the computation. The measurements (lj,1, lj,2, lj3)j are simulated according to the noisy Hamming
weight model (13.12) with ε = 3.72 and σ = 1.9619.

Before presenting the results, we recall that during the first round, every S-box input Z satisfies
Z = X ⊕ k∗, where X is a plaintext byte and k∗ is a secret key byte.

13.4.3.1 Attacks on the generic scheme

We have shown in Section 13.2.2 that a third-order flaw results from the manipulation of V1 = m0,
V2 = Sd(e1) and V3 = Sd(e2). Hereafter, we apply our attacks for e1 = 0 and e2 = 1. In this case, we
recall that V1, V2 and V3 satisfy:

V1(Z,R) = Z ⊕m ,

V2(Z,R) = S(m)⊕ s ,

V3(Z,R) = S(m⊕ 1)⊕ s ,

where Z = X ⊕ k∗ and where R denotes the pair (m, s) of involved random masks.
Figure 13.1 shows the result of a third-order DPA which uses the product as combining function to

exploit the flaw. The different curves represent the different key guesses; the curve corresponding to
19These values are the ones used by Kai Schramm and Christof Paar in their experiments [204].
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Figure 13.1: Third-order DPA: evolution of
the correlation (Y-axis) over an increasing num-
ber of leakage measurements (X-axis).

Figure 13.2: Third-order profiled SCA: evo-
lution of the likelihood (Y-axis) over an increas-
ing number of leakage measurements (X-axis).

the correct key guess is plotted in black. We noticed that this curve also corresponds to three other
wrong key hypotheses (additionally, four wrong key hypotheses result in correlation peaks with equal
magnitude and opposite sign). It can be observed that the correlation for the correct key guess comes
out after about 4.106 measurements. This implies that several millions of measurements are required
to recover the secret key byte. However this assertion must be mitigated. Indeed, we noticed that the
correlation curve corresponding to the correct key guess is quickly among the top curves, which implies
a significant loss of entropy for the secret key value.

Figure 13.2 shows the results of a third-order profiled SCA. The likelihood of the correct key guess is
clearly remarkable after 2800 measurements which shows that the third-order profiled SCA is much more
efficient than the third-order DPA.

13.4.3.2 Attacks on the improved scheme

As argued in Section 13.3.2, a third-order flaw results from the manipulation of V1 = icm, V2 = m0 and
V3 = m′0. We recall that these 3 variables satisfy:

V1(Z,R) = Z ⊕m0 ⊕m′0 ,
V2(Z,R) = m0 ,

V3(Z,R) = m′0 ,

where Z = X ⊕ k∗ ⊕ X ′ ⊕ k∗′ and where R denotes the pair (m0,m
′
0) of involved random masks. An

attack targeting this flaw therefore aims at recovering the secret value k∗ ⊕ k∗′.
Remark 13.1. The flaw above corresponds to a “standard” third-order flaw since the sensitive variable Z
is masked with two random masks (m0 and m′0).

Figure 13.3 shows the result of a third-order DPA which uses the absolute difference as combining
function and Figure 13.4 shows the result of a third-order profiled SCA. The third-order DPA allows to
recover the targeted secret key part with 2.105 measurements, whereas the third-order profiled SCA only
requires 600 measurements.

13.4.3.3 Results analysis

We performed each attack 100 times and we recorded the obtained success rates. Table 13.1 summarizes
the number of measurements required to reach a success rate equal to 50%. We list hereafter our
observations:

— The most efficient of our third-order DPA requires a number of measurements which is only 10
times larger than for a first-order DPA against an unprotected implementation.



162 Chapter 13. Cryptanalysis of a higher-order masking scheme

Figure 13.3: Third-order DPA: evolution of
the correlation (Y-axis) over an increasing num-
ber of leakage measurements (X-axis).

Figure 13.4: Third-order profiled SCA: evo-
lution of the likelihood (Y-axis) over an increas-
ing number of leakage measurements (X-axis).

Attack Implementation Measurements
No countermeasure DPA 100
S&P generic scheme 3O DPA 6.106

S&P generic scheme 3O profiled SCA 2.103

S&P improved scheme 3O DPA 105

S&P improved scheme 3O profiled SCA 103

Table 13.1: Number of measurements required to achieve a success rate of 50%.

— The third-order profiled SCA is much more efficient than the third-order DPA. This result was
predictable: the third-order profiled SCA exploits all the information provided by the 3 leakage
signals to derive the likelihood of a key candidate, whereas combining the 3 leakage signals in a
single signal implies a significant loss of information whatever the combining function. However,
the adversary model of third-order profiled SCA is very strong and in such a model, an attacker
may break an implementation without exploiting the kind of flaws exhibited in this chapter.

— The third-order profiled SCA requires a quite small number of measurements. This shows the
practicability of such an attack when the attacker owns a profile that matches well the real leakage
of the implementation.

— The third-order DPA is fairly efficient against the improved scheme but is less suitable against
the generic scheme. This is not surprising: combining techniques have been especially designed to
attack Boolean masking and the flaw in the improved scheme involves a doubly masked variable and
two Boolean masks. The flaw in the generic scheme has not this particularity and the combining
techniques involved in this chapter are less appropriate to exploit it.
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Conclusions and perspectives

In this second part, we have investigated one of the most widely used countermeasures to side channel
analysis: data masking. Our investigations focused on masking schemes for block ciphers composed of
linear transformations and non-linear S-boxes. First, we introduced a model to prove the security of
masking schemes with respect to side channel analysis of a given order. In this security model, we have
shown that the problem of securing a block cipher could be reduced to the problem of securing a single
S-box computation. This allowed us to concentrate our investigations on masking schemes for S-boxes.

At first, we proposed new designs of generic masking schemes for S-boxes with provable security
against first-order and second-order SCA. On the one hand, we proposed a first-order masking scheme
which performs an S-box computation on masked data on-the-fly and which does not require any RAM
allocation. Such an asset comes at the price of a significant overhead in computation time compared
to the usual table re-computation method. Our scheme is therefore merely interesting for low cost
implementations without strong timing constraints. On the other hand, we proposed two second-order
masking schemes. Proving their security was trickier than for a first-order scheme. For this purpose,
we introduced a methodology which could be used to prove the security of future proposals. We also
described an improvement of our methods that takes advantage of the device architecture to speed the
computation up. Our schemes provide worthwhile alternatives to the other existing methods and they
enable different time-memory tradeoffs. Moreover, for a software implementation on an architecture with
large bit-size (e.g. 16, 32), our improved solutions are the most efficient in the literature.

Then, we have designed a generic scheme combining higher-order masking and operation shuffling for
implementations of block ciphers. This design followed a different approach compared to our previous
works about masking. Instead of aiming at absolute security with respect to a given order, the latter
scheme rather aims at practical security. In fact, some advanced DPA attacks have been shown especially
effective in breaking masking and shuffling schemes. Our scheme advantageously makes use of higher-
order masking and shuffling to ensure a chosen resistance level against these attacks.

Our investigations on masking schemes also include the cryptanalysis of two masking schemes proposed
in 2006 at the conferences CT-RSA and CHES respectively. For both attacks, the underlying scheme does
not satisfy the claimed security order. First, we exhibited a flaw in the first-order masking scheme based
on the Fourier transform proposed at CHES 2006. We explained how to exploit such a flaw to mount
a first-order DPA, and we reported successful practical attacks on two different S-box implementations
using this scheme. We then proposed an improvement of the original countermeasure and we prove its
security against first-order SCA. Secondly, we attacked the only higher-order masking scheme for block
ciphers proposed in the literature which was published at CT-RSA 2006. This scheme merely consists
in a generalization of the table re-computation method to the dth-order for a chosen parameter d. We
have invalidated this approach by exhibiting several third-order attacks breaking the scheme irrespective
of the value of d. Our attacks have been validated by simulations under common assumptions about the
leakage.

For future works, masking schemes for block ciphers with provable security against higher-order SCA
needs more investigations. A secure higher-order masking scheme for a logical AND operation has been
proposed in [126]. Based on this scheme, every circuit can be secured against dth-order SCA for any
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chosen d since every circuit can be decomposed in Boolean functions performing XORs and ANDs.
However, this solution induces a significant size-overhead for hardware implementations and it is clearly
impractical for software implementations. Besides, masking schemes for block ciphers only exist at the
second order and have an important timing complexity. The research for alternative methods with
better performances as well as higher security orders is therefore an important open issue. Another line
for further research would be the investigation of other kinds of randomization techniques in a view
of improving the practical resistance to higher-order side channel analysis. For instance, the recently
proposed permutation table countermeasure [77, 193] may have a better practical resistance to higher-
order SCA than Boolean masking.
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Introduction to fault analysis
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15.1 Introduction
Fault analysis is a cryptanalytic technique that takes advantage of errors occurring in cryptographic
computations. Such errors can be induced in a device by physical means such as the variation of the
power supply voltage, the increase in the clock frequency or an intensive lighting of the circuit. The
erroneous results of the cryptographic computations can then be exploited in order to retrieve some
information about the secret key.

We give in this chapter a general introduction to fault analysis. After a brief history, we discuss the
existing techniques to inject faults and the expected effects on target devices. Then, we give an overview
of fault attacks against block ciphers and against the RSA cryptosystem. Finally, we review common
countermeasures to thwart these attacks.

15.2 Brief History
Several years ago, it was noticed that cosmic rays, which are energetic particles originating from outer
space, could affect the behavior of electronic devices present in aircrafts and space vehicles [250]. Notably,
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such particles induce some faults in devices memories which may result in the corruption of the different
program executions. For several years, this problem was studied in the context of aviation and space
equipment without imagining that it could be relevant in other situations. But what if such a fault occurs
during the execution of a security protocol and, in particular, during the execution of a cryptographic
algorithm? The firsts to raise this question were Dan Boneh, Richard DeMillo and Richard Lipton in
1996. The answer was devastating attacks against RSA and other public key signature and authentication
schemes [50, 51]. Soon, the approach was extended to symmetric cryptography by Eli Biham and Adi
Shamir that described an attack on DES [44]. These new kinds of attacks aroused the interest of the
cryptographers and hardware designers. In subsequent years, several reports and papers were published
that investigated physical means of injecting faults [30,119,149,211] and extended fault analysis to other
cryptosystems [41,42,107,188].

Today, fault analysis is an important branch of embedded cryptography. An international annual
workshop named Fault Diagnosis and Tolerance in Cryptography (FDTC) has been dedicated to its
study since 2004. Fault analysis is also considered as an important threat in the smart card industry. It
is taken into account in the development of secure embedded devices by including some countermeasures
to their design. In addition, laboratories performing security evaluations experiment fault attacks to
check the resistance of smart cards products.

15.3 Fault injection techniques

Several techniques are able to disrupt the execution of a microprocessor. The most commonly used are
power and clock glitches [30, 32] and pulses of light [32, 211].

A power glitch is an instantaneous sizeable variation of the power supply voltage. Smart cards are
supplied at a voltage constant to 5 volts and usually tolerate variations of ±10%. A more significant
variation over a short period may provoke the switching of the voltage of several gates in the circuit
thereby disrupting the current execution. Similarly, a temporary increase in the clock frequency may
result in an early start for the execution of the subsequent instruction, which induces a skipping of the
current instruction. Glitches attacks are very simple to put into practice and they do not require any
particular equipment. Fortunately, glitches can be avoided by the addition of voltage threshold sensors
and high frequency detectors to the chip. Modern smart cards usually include such hardware mechanisms
which protect them against glitches attacks.

Electronic circuits are also sensitive to light. A brief and intensive pulse of light may induce faults
in the exposed gates. To perform a light attack on a smart card, a part of its package must be removed
in order to expose the chip (see Section 1.4.4). The first light attack was described in [211] by Sergei
Skorobogatov and Ross Anderson. In this paper, the authors show how to disrupt the execution of a
depakaged microchip using a camera flash amplified through a probing station. Such equipment is quite
cheap, which makes the attack relatively easy to put into practice (note however that the depackaging is
a difficult task for a novice). Light attacks can be enhanced by the use of a laser (see for instance [32]).
Using a laser gives two significant advantages. First, a camera flash is easily detected by light sensors
(which are often included in modern chips) while a laser beam can escape such detection. Moreover, a
laser beam enables a precise and localized fault injection which is a requirement for several attacks. Note,
however, that a laser is much more expensive than a simple camera flash with a probing station.

Many other ways exist to inject faults in electronic devices (see [180] for an overview). In particular
cosmic rays [119], electromagnetic fields [149, 195], infrared radiations and heat spikes [119] have been
successfully experimented.

15.4 Fault effects

Different effects may be observed following a fault injection. As explained above, a laser-based fault
injection disrupts a local area of the chip (e.g. a few RAM cells, a memory bus, a few CPU registers or
a cryptographic coprocessor).

The effect of a disruption of the RAM is difficult to predict in general. Indeed, RAM is usually a few
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kilobytes of data and the attacker does not know a priori the content of the different areas. This makes
it difficult to target a precise variable and to anticipate the effect of an induced fault. The disruption
of a memory bus on the other hand has a more predictable effect. Two typical cases are observed
in practice: (1) The bus is disrupted while reading/writing data; this has the effect of corrupting the
current intermediate variable, (2) the bus is disrupted during an instruction fetch while looking up the
codop of the next instruction. In the latter case, a wrong instruction is subsequently executed which
may have several effects: (i) simple corruption of the computation (e.g. a XOR is performed rather
than an ADD), (ii) skipping of a function execution (if the subsequent instruction was a branch), (iii)
random branch in the software code (if the induced codop is a branch) and so on. It is worth noting
that certain chips use different buses for the different memories and an attacker may choose the target
bus according to the desired effect. Disrupting the CPU may also provoke similar effects. If working
registers are corrupted then intermediate results are likely to be erroneous. If some special purpose
registers are corrupted then some branches in the code may be induced. For instance, a typical target is
the program counter register. Disrupting its value amounts to performing a jump in the code. Another
sensitive register is the stack pointer. If it is corrupted then a wrong memory area is taken as the
stack which may in particular induce a bad branch at the end of the function being executed. Finally,
attacking a cryptographic coprocessor directly leads to the disruption of the cryptographic computation.
Cryptographic coprocessors are therefore common targets of fault attacks.

Contrary to a laser, a camera flash does not make it possible to target a local area of the chip and it
may induce some (or many) of the effects described above. Likewise, power glitches may affect any part
of the chip. On the other hand, clock glitches have a predictable effect which is instruction skipping.

Remark 15.1. The kinds of faults described above are transient since they only affect one execution of
the device. It is worth noting that some faults may be induced whose effect is permanent if the content
of the EEPROM or the ROM is modified. The ROM may be overwritten using laser cutting [26] and
the EEPROM can be modified using microprobing needles [26]. However such fault injections are very
chancy and they are only possible at the cost of high-tech microelectronic equipment. In addition, to
obtain any desired fault effect an attacker must precisely know the content of the memory which seems
unlikely.

Remark 15.2. Fault attacks do not only target cryptographic computations. Instruction skipping attacks
are widely used to overcome security mechanisms in general. A classical example is the skipping of the
PIN verification enabling unauthorized users to execute commands.

15.5 Fault models

The different fault injection techniques and effects presented above enable the corruption of cryptographic
computations performed on an unprotected microchip. The obtained erroneous results can then be
analyzed to break the underlying cryptosystems. Some fault attacks are very generic: they only require
that the computation be corrupted in any way and within a large time interval during the execution.
This is typically the case of the Bellcore attack on RSA with CRT (see Section 1.3.4.2). However, most
fault attacks require more specific assumptions about the fault effect. They are based on a so-called fault
model that formally describes the effect of the fault.

A fault model typically specifies what data have been corrupted by the fault and how the fault affects
these data. Common models consider the corruption of a bit, a byte or a data word (whose length
depends on the device architecture). When the fault affects an intermediate variable composed of several
bits, bytes or words, its position may be either fixed (chosen or not) or randomly spread over the whole
variable.

Two possible effects on the data are usually considered. First, the fault may induce a random switching
of the corrupted data. In that case, the faulty data is modelled as a uniformly distributed random variable.
On the other hand, the fault may erase the data by a given fixed value (usually the all-0 word or the all-1
word). This fault model is known as stuck-at fault model. It is mostly relevant in the context of light
attacks due to their physical effect.

Finally, the time of the fault injection may not be precisely controlled by the attacker due to dynamic
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variations in the execution time (e.g. desynchronization mechanisms). For this reason, some fault models
consider a set of intermediate variables among which the corrupted one is randomly picked up.

15.6 Fault analysis against block ciphers
Fault analysis against block ciphers can be divided into two mains categories: differential fault analysis
and ineffective fault analysis.

15.6.1 Differential fault analysis
Differential fault analysis (DFA) was introduced by Eli Biham and Adi Shamir in [44]. The principle of
DFA is to infer information about the secret key by exploiting the differences between the ciphertexts
obtained from correct and faulty computations. To a large extent it is based on differential cryptanalysis,
a cryptanalytic technique against block ciphers also introduced by Eli Biham and Adi Shamir a few years
before [43]. We recall hereafter the basic principle of DFA.

Let us consider a block cipher ending by a non-linear layer composed of several S-boxes (Si)i followed
by the bitwise addition of a key k. The principle of DFA is to inject a fault in the computation before the
final S-boxes, which results in a faulty ciphertext C̃. Then, based on the pair of correct-faulty ciphertexts
(C, C̃), the attacker infers some information on k. For such a purpose, the attacker assumes a fault model
from which he deduces a set Di of possible bitwise differences between the correct input and the faulty
input of Si. For example, the fault model could be a simple bit switch in input of Si, which would imply
Di = {2i; i 6 n} (assuming n-bit S-box inputs). The attacker then makes a guess k on the value of the
subkey ki which is added to the ith S-box output. For a given pair (C, C̃), this guess leads to an expected
differential δi(k) in input of Si:

δi(k) = S−1
i (Ci ⊕ k)⊕ S−1

i (C̃i ⊕ k) .

If the differential δi(k) is not included in the set of possible input differentials Di, then the guess k is
incorrect (since by definition δi(ki) ∈ Di). In this way, several wrong key guesses are discarded. After
a few pairs (C, C̃), only the correct guess remains. The lower the cardinal of Di, the higher the number
of wrong guesses discarded per pair (C, C̃). Besides if #Di is maximal, no key guess is discarded and
the attack fails. Consequently, the fault model is usually chosen to minimize #Di. This particularly
implies that (i) DFA targets last rounds of the cipher (otherwise the error propagation implies that #Di
is high/maximal) (ii) the more accurate the fault model, the more efficient the attack.

Note that for a Feistel cipher (e.g. DES, see Section 1.2.3.1), the attack is slightly different: the
attacker knows the correct/faulty inputs of the last Feistel function but ignore the outputs. Based on
a key guess he predicts the differential of an S-box output which is expected to match a certain set
(depending on the fault model).

The original attack of [44] targets DES. It was subsequently applied to other block ciphers such as
AES [48, 67, 89, 107, 142, 188, 227], IDEA [75] and CLEFIA [68, 226]. These different attacks more or
less follow the above principle. They differ in the considered fault models as well as in the way to
discriminate key guesses. DFA was also extended to target early rounds of DES in [123]. The proposed
attack aims to generate correct-faulty collisions i.e. pairs of plaintexts (P, P ′) such that their correct and
faulty encryptions yield C = C̃ ′. The pair (P, P ′) can then be used to infer information about the first
round key just as (C, C̃) for the last round key in classical DFA.

15.6.2 Ineffective fault analysis
Contrary to DFA, ineffective fault analysis (IFA) [48,73,198] does not exploit the faulty outputs but the
simple information of whether or not the injected fault yields an erroneous ciphertext. IFA assumes a
stuck-at fault model: the attacker is able to set an intermediate variable to a fixed value. This value is
either known to the attacker or it is guessable (in general one assumes this value to be zero). If the result
is erroneous or if a fault is detected, the attacker knows that the intermediate variable was different from
the induced value. Obtaining this information for several encryptions enables key-recovery.
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Remark 15.3. Fault attacks exploiting the behavior of faulty computations have been previously intro-
duced against modular exponentiations that are known as safe-error attacks (see Section 15.7.3). Contrary
to IFA, safe-error attack do not particularly require a stuck-at fault model.

15.7 Fault analysis against RSA

Fault analysis on RSA can also be divided into two categories: the attacks exploiting the faulty outputs
and the safe-error attacks. Among the former, one counts the Bellcore attack against an RSA-CRT
implementation and other attacks against an implementation in standard mode (i.e. without CRT).

15.7.1 The Bellcore attack

The first fault attacks against RSA were introduced in the founding paper of Dan Boneh, Richard DeMillo
and Richard Lipton [50]. The most powerful, that is usually referred to as the Bellcore attack [50],
targets an RSA-CRT implementation (see Section 1.3.4.2). It consists in corrupting one of the two CRT
exponentiations, e.g. the one modulo p. The RSA computation thus results in a faulty signature s̃ that
is correct modulo q (i.e. s̃ ≡ s mod q) and corrupted modulo p (i.e. s̃ 6≡ s mod p). This implies that the
difference s̃− s is a multiple of q but is not a multiple of p, and hence we have

gcd(s̃− s,N) = q .

Therefore, a pair signature-faulty signature provides a way to factorize N and consequently to fully break
RSA. In fact, a pair message-faulty signature is sufficient to mount the attack since we have [132]:

gcd(s̃e −m,N) = q .

In this way, RSA can be broken with a single faulty computation.

15.7.2 Fault analysis against standard RSA

RSA implemented in standard mode (i.e. without CRT) is also vulnerable to fault analysis. The first
attack on RSA in standard mode was proposed by Dan Boneh et al. in the original paper [50]. Their
attack assumes a single bit flip in an intermediate variable of a binary exponentiation algorithm. Similar
attacks were subsequently proposed in [31, 180]. In [52], an attack is described which assumes a random
fault in a chosen intermediate result. These different attacks enable the recovery of the secret exponent.
An attack based on a corruption of the exponent was described in [31] and generalized in [134]. It
assumes the corruption of few bits of the secret exponent which can then be recovered. The first fault
attack targeting the public modulus was published in [205] which was then improved in [172]. These
attacks do not enable the recovery of an RSA private key but they aim to fool a signature verification by
the target device in order that it accepts a wrong signature. The first fault attack fully breaking an RSA
in standard mode based on the corruption of the modulus was presented in [56]. This attack assumes a
random modification of the modulus before the exponentiation. Improved attacks targeting RSA public
modulus were then published in [37, 39]. These attacks are based on the random corruption of one byte
of the modulus at a chosen step during the exponentiation. Finally, an attack assuming a skipping of a
multiplication of the RSA computation has been published in [202].

The different attacks reviewed above all require several faulty signatures to fully recover the key. This
requirement varies depending on the attack and the fault model and it is sometimes quite huge. However,
these attacks still constitute a practical threat and the implementation of RSA in standard mode must
also be secured against fault analysis.

15.7.3 Safe-error attacks

Safe-error attacks were introduced by Sung-Ming Yen and Marc Joye in [246]. Their principle differs
from traditional fault attacks that exploit erroneous results. Here, the attack exploits the behavior of a
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corrupted computation, i.e. it checks whether or not the induced fault effectively provokes an erroneous
result. Depending on the algorithm, a fault injection may have no effect for some secret key values
and may cause a corruption for others. In that case, simply observing whether the computation was
corrupted or not reveals information on the secret key. Such attacks are especially threatening since they
bypass classical fault analysis countermeasures that return an error in case of fault detection. Among
these attacks, two categories can be distinguished: the C-safe-error attacks [248] that target dummy
operations and the M-safe-error attacks that target registers copies [143,246].

15.8 Countermeasures to fault analysis

We have seen in the previous sections that unprotected implementations of cryptographic algorithms are
highly vulnerable to fault attacks. As a matter of fact, some countermeasures exist to thwart them.
Some of these countermeasures are generic and can be applied irrespective of the algorithm and the
device. Others are included in the hardware during the design of the chip and are independent of the
cryptographic algorithm. Finally some are dedicated to protect a given (class of) cryptographic algorithm
(e.g. block ciphers, RSA).

15.8.1 Generic countermeasures

15.8.1.1 Computation doubling or inversion

A straightforward way to protect any algorithm against fault analysis is simply to perform the computa-
tion twice and to check that the same result is obtained. In case of an inconsistency, an error message is
returned, thus preventing the exposure of the faulty result. A variant consists in verifying an encryption
by means of a decryption (or vice versa). Such a countermeasure can be easily implemented in hardware
and in software at the cost of a doubling of the execution time (or of the circuit size). These counter-
measures are suitable for fast algorithms such as block ciphers, but when a public key cryptosystem such
as RSA must be implemented, a doubling of the execution time (or of the circuit size) often becomes
prohibitive.

15.8.1.2 Desynchronization

Desynchronization of the computation is widely used as a side channel attack countermeasure that can
be included in hardware or in software (see Section 3.6). Desynchronization also complicates fault at-
tacks that have strong synchronization constraints e.g. requiring the corruption of a precise intermediate
variable or the skipping of a precise instruction (see for instance [24]).

15.8.2 Hardware countermeasures

15.8.2.1 Physical sensors

Some sensors are usually included in modern chips in order to detect important voltage and frequency
variations. Such detectors usually prevent fault attacks based on power glitches and clock glitches. Light
sensors are also included to detect light attacks. Such sensors are usually very effective in detecting a
general light induction such as provoked by a camera flash. However, a laser beam may still be induced
at some precise locations over the chip leading to undetected faults. An attacker can then program its
laser to perform an automatic scan of the chip in order to detect unprotected locations. Nevertheless,
modern smart cards are often programmed to erase their memory when a certain number of light attacks
have been detected, thus rendering such a scan useless.

15.8.2.2 Active shield

Another common hardware protection is to include an active shield that is a metal mesh covering the
chip in which all paths are continuously monitored [149]. Any disconnection while the chip is powered is



15.8. Countermeasures to fault analysis 173

instantaneously detected. Such shields are initially devoted to thwarting probing attacks but they also
render light attacks more complicated by making the depackaging of the chip harder.

15.8.2.3 Error detection/correction units

A natural countermeasure to fault attacks is the inclusion of error detection units or error correction units
in the circuit. Coding theory has been investigated for several years to find some way to detect and correct
random errors occurring in digital communications. It is therefore natural to turn to such codes in the
context of fault analysis resistance [98,125]. Some modern smart cards include error detection/correction
units in order to protect the integrity of their memories. However, the security offered by such a solution
is only partial since there is still a small chance that errors will go undetected. While keeping an
implementation overhead lower than the one of computation doubling, the non-detection probability is
usually non-negligible. Nevertheless, such a protection renders harder the task of the attacker that must
significantly increase the number of attempts to obtain one faulty execution.

15.8.2.4 Bus encryption

Bus encryption is widely used in secure embedded microchip [59, 90, 115]. The principle is to encrypt
the data transferred on the bus via hardware encryption mechanisms. The purpose of bus encryption is
essentially to prevent probing attacks and not fault attacks. However it does prevent fault attacks based
on the corruption of a limited number of bits of a memory transfer.

15.8.2.5 Dual-rail logic

Dual-rail logic is usually involved in protecting circuits against side channel analysis (see Section 3.6) but
it may also be useful to detect faults [206]. In a dual-rail circuit, each wire is replaced by a pair of wires
carrying complementary electrical signals in order to reduce the side channel leakage. A fault injection
is likely to destroy this complementarity. Therefore, checking that the signals of the different pairs are
in fact complementary makes it possible (with some probability) to detect fault injections.

15.8.3 Countermeasures dedicated to block ciphers

15.8.3.1 Error detection schemes

To design block ciphers implementation resistant to DFA one must include some error detection mecha-
nisms. This may be done by including redundancy and coherence checking at the operation level. Many
such schemes have been proposed for hardware implementations of block ciphers and in particular for
AES [130, 137–139, 199]. A detection scheme for AES suitable for software implementation was recently
proposed in [100]. None of these schemes provide a perfect security against fault analysis and their detec-
tion probabilities highly depend on the considered fault model. In general the offered complexity-security
ratio is of the same order as the one for computation/circuit doubling [155].

15.8.3.2 Round doubling

As mentioned above, a straightforward way to protect any algorithm against DFA is computation doubling
(or inversion). In case of block ciphers, the doubling of the execution time is conceivable. A more efficient
solution is to double a limited number of rounds. In fact, most DFA techniques target the last few rounds
of the block cipher. To thwart these attacks, one only needs to double the computation of these last few
rounds thus saving computation time.

However, a question remains: how many rounds should be protected to obtain a good security level
with respect to DFA? To answer this question, DFA on middle rounds of the cipher must be investigated.
This issue has been addressed in [185] by Raphael Phan and Sung-Ming Yen for the AES block cipher.
They apply block cipher cryptanalysis techniques to improve DFA on AES and exhibit some attacks
against rounds 7, 6 and 5. Concerning DES, the original work by Eli Biham and Adi Shamir [44]
described an attack that exploits a fault corrupting either round 16, 15 or 14 (and equivalently the end
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of round 15, 14 or 13). In his PhD thesis, Mehdi-Laurent Akkar addresses this issue and describes some
attacks on DES middle rounds [19]. However, most of the considered fault models are not realistic and
it is not clear what an attacker could expect in practice.

Issue 15.1. Assuming standard fault models, which rounds of DES are sensitive to differential fault
analysis?

This issue is investigated in Chapter 16 where we present an improved attack on DES middle rounds.
In addition, the effectiveness of the presented attack is analyzed in different standard fault models.

15.8.3.3 Preventing ineffective fault analysis

Contrary to DFA, error detection schemes at the algorithmic level do not thwart IFA. Indeed, even an
error detection leaks the desired information to the attacker: the fault injection effectively produced an
error. A simple way to thwart IFA is to employ data masking. This countermeasure is often applied
to protect implementations of block ciphers against side channel analysis (see Part II). Indeed, masking
ensures that no single intermediate variable of the computation provides sensitive information. It is
worth noting that masking does not ensure result integrity and is hence ineffective against DFA (see for
instance [24,54]).

15.8.4 Countermeasures dedicated to RSA

15.8.4.1 Public verification

A simple way to protect RSA against fault analysis is by verifying the signature s before returning it,
namely by performing the following check:

m
?
= se mod N .

This method offers a perfect security against fault analysis (provided that the check cannot be skipped)
since a faulty signature is systematically detected. This countermeasure is efficient as long as e is small,
but in the opposite case, it implies performing two exponentiations which doubles the time complexity of
RSA. This overhead is clearly prohibitive in the context of low resource devices. Moreover, depending on
the situation, the public exponent e may not be available (e.g. the Javacard API for RSA signature [222]).
That is why many research works in the last decade have been dedicated to the search for alternative
solutions. We review hereafter the main proposals that can be divided into two families: the extended
modulus based countermeasures and the self-secure exponentiations.

15.8.4.2 Extended modulus based countermeasures

We present hereafter different countermeasures that all rely on the use of an extended modulus in order
to add redundancy in the computation.

Shamir’s trick and variants. A first solution to protect RSA with CRT was proposed by Adi Shamir
[208]. It consists in performing the two CRT exponentiations with extended moduli p · t and q · t where
t is a small random integer (typically of 32 to 80 bits depending on the desired security). Namely, one
computes:

s∗p = md mod ϕ(p·t) mod p · t

and
s∗q = md mod ϕ(q·t) mod q · t .

The consistency of the computation is then checked by verifying that s∗p mod t equals s∗q mod t. If no error
is detected, the algorithm returns CRT(s∗p mod p, s∗q mod q). In its simplest form, this countermeasure
does not protect the CRT recombination which enables a successful fault attack [30]. Several works have
proposed variants of Shamir’s countermeasure in order to deal with this issue [30,47,72].
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Vigilant’s scheme. In [242], David Vigilant proposed another countermeasure based on a modulus
extension. The modulus is multiplied by t = r2 for a small random number r. The message is then
formatted as follows:

m̂ = αm+ β · (1 + r) mod Nt

where (α, β) is the unique solution in {1, . . . , Nt}2 of the system:

α ≡
{

1 mod N
0 mod t

and β ≡
{

0 mod N
1 mod t

.

Then, the exponentiation sr = m̂d mod Nt is performed. As shown in [242], sr satisfies:

sr = αmd + β · (1 + dr) mod Nt .

Therefore, the signature can be recovered from sr since we have s = sr mod N and the consistency of the
computation can be verified by checking: sr ≡ 1 + dr mod t. This method can be extended to protect
RSA-CRT (see [242] for details).

Security considerations. The security of an extended modulus based countermeasure is not perfect.
For instance, if a faulty message m̃ satisfies m̃ ≡ m mod t and m̃ 6≡ m mod N , then the exponentiation
of this message results in a faulty signature that is not detected. The non-detection probability of
an extended modulus based countermeasure is roughly about 2−k where k denotes the bit-length of the
modulus extension t. Therefore, the greater k, the more secure the countermeasure. However, the greater
k, the slower the exponentiation. This kind of countermeasure therefore offers a time-security tradeoff.
A common choice for k is 64 bits which provides a fairly good degree of security. However, depending
on the application, one may choose k = 32 (low security, more efficient exponentiation) or k = 80 (high
security, less efficient exponentiation).

Remark 15.4. The security of the Vigilant scheme such as described in [242] is actually only of k/2 bits
since a corruption of the exponent is detected with a probability close to 2−k/2 (see [242, Sect. 4.1]).
This can be fixed by the on-the-fly computation of a cyclic redundancy code during the exponentiation
in order to check the exponent integrity.

15.8.4.3 Self-secure exponentiations

For the countermeasures presented hereafter, the redundancy is no longer included in the modular oper-
ations but at the exponentiation level. Namely, the exponentiation algorithm provides a direct way to
check the consistency of the computation.

Giraud’s scheme. In [108, 109], Christophe Giraud proposed a fault analysis countermeasure for RSA
which is based on the use of the Montgomery powering ladder. The Giraud’s scheme takes advantage of
the fact that this exponentiation algorithm works with a pair of intermediate variables (a0, a1) storing
values of the form (mα,mα+1). At the end of the exponentiation the pair (a0, a1) equals (md−1,md) and
the consistency of the computation can be verified by checking whether a0 · m equals a1. If a fault is
injected during the computation, the coherence between a0 and a1 is lost and the fault is detected by the
final check.

Boscher et al.’s scheme. The scheme by Arnaud Boscher, Robert Naciri and Emmanuel Prouff [55]
is based on the right-to-left square-and-multiply-always algorithm [76] which was originally devoted to
thwart simple power analysis (see Section 3.1). In [55], the authors observe that this algorithm computes
a triplet (a0, a1, a2) that equals (md,m2l−d−1,m2l) at the end of the algorithm, where l denotes the
bit-length of d. The principle of their countermeasure is hence to check that a0 · a1 ·m equals a2 at the
end of the exponentiation. Once again, in case of a fault injection, the relation between the ai’s is broken
and the fault is detected by the final check.
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The main drawback of the two previous schemes is that they both require the use of an exponentiation
algorithm that performs 2 modular multiplications per bit of the exponent while other exponentiation
algorithms require an average of 1.5 multiplications per bit of the exponent (and sometimes less).

Issue 15.2. Is it possible to design a self-secure exponentiation algorithm that performs faster than 2
modular multiplications per bit of the exponent?

In Chapter 17, we propose a new self-secure exponentiation that requires approximately 1.65 multi-
plications per bit of the exponent on average. Our solution thus represents an efficient alternative to the
existing countermeasures.

15.8.4.4 Randomization techniques

The randomization techniques used to protect RSA against side channel analysis (see Section 3.6.3.2)
may also be useful to counteract fault analysis against RSA in standard mode. In particular all the
existing attacks against RSA in standard mode (see Section 15.7.2 can be prevented by randomizing the
secret exponent. However, other fault attacks may exist that overcome the exponent randomization. It
is therefore recommended to use a sound error detection scheme to protect both CRT and standard RSA
implementations.

15.8.4.5 Preventing safe-error attacks

As explained in Section 15.7.3, safe-error attacks are based on the observation of whether or not an
induced fault in fact provokes an erroneous result. As argued in [246], such attacks overcome standard
fault analysis countermeasures involving checking procedures.

To prevent C-safe-error attacks [248] one must ensure that no dummy operation is conditionally
performed depending on the secret key value. If for some reason this condition cannot be satisfied, C-
safe-error attacks may be avoided by randomizing the exponent (see Section 3.6). To prevent M-safe-error
attacks [246] one can either randomize the exponent or randomize the indices of the registers that are
addressed by some exponent bits (see Section 17.4.2 for an example).

15.8.5 Implementation of coherence checks
As explained in Section 15.4, many kinds of fault injections can lead to instruction skipping. On the
other hand, most of the presented countermeasures against fault analysis are based on the addition of
redundancy in the computation in order to check its coherence afterwards. Such a check is hence a key
point of the security of fault analysis countermeasures in practice. It is therefore important to implement
coherence checks in such a way that they cannot be skipped.

Issue 15.3. How can coherence checks be implemented in such a way that they cannot be skipped?

In Chapter 18 we propose a solution to this issue that stops attackers from bypassing a coherence check
by skipping some instructions. Together with a sound error detection scheme for the implemented algo-
rithm, our solution thwarts any second-order fault attack which corrupts the computation and attempts
to skip the coherence check.
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16.1 Introduction

In his PhD thesis [19], Mehdi-Laurent Akkar investigates the application of differential cryptanalysis
techniques to attack earlier rounds of DES. In a first place, the considered attacker is assumed to be able
to induce a differential of its choice in the DES internal value at the end of some round. The last round key
is recovered by guessing every 6-bit parts independently and by selecting, for each subkey, the candidate
that produces the expected differential at the S-box output the more frequently. The obtained attacks
are quite efficient but, as mentioned by the author, the fault model is not realistic. Mehdi-Laurent Akkar
then applies this attack under two more realistic fault models: a single bit switch at a fixed position (in
the left part of the DES internal state) and a single bit switch at a random position (in the right part
of the DES internal state). For the fixed position bit error model, the attack needs a few hundred fault
injections at the end of round 11 and it fails on round 9 (the attack on round 10 is not considered). For
the random position bit error model, the attack needs a few dozen fault injections at the end of round
12 and it fails on round 11.

In this chapter, we generalize and improve the attack described by Mehdi-Laurent Akkar in [19]. We
consider various realistic fault models for an error induced in the left part of the DES internal state,
including the bit error model and the byte error model with chosen error position or random error
position. As we will argue, disrupting the left part leads to better attacks than disrupting the right part.
Moreover, we use more accurate distinguishers than the one proposed in [19]. In the common (chosen
position) byte error model, our attack recovers the entire last round key with a 99% success rate using
9 faults on round 12, 210 faults on round 11 and 13400 faults on round 10. In the (chosen position) bit

177
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error model, these numbers are reduced to 7, 11 and 290, respectively. These results allow us to exhibit
some lower bounds on the number of rounds of DES that should be protected against fault analysis.

The results presented in this chapter have been published in the international workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2009) [8].

16.2 Notations and fault models

16.2.1 Notations

The reader is referred to Section 1.2.3.1 for a description of the DES block cipher. We shall use hereafter
the same notation as in Section 1.2.3.1: IP for the DES initial permutation, FP for the DES final per-
mutation, F for the round function and f for the round internal function. We shall further denote the
expansion layer by E, the eight S-boxes by (Si)16i68, the round permutation by P, the secret key by k
and the rth round key by kr. A ciphertext C is then computed from a plaintext P according to:

C = FP ◦
(
©16
r=1Fkr

)
◦ IP(P ) ,

where:
Fkr : (L,R) 7→ (R,L⊕ fkr (R)) .

The output block of the rth round shall be denoted as (Lr, Rr). Defining (L0, R0) = IP(P ), we have
(Lr, Rr) = Fkr (Lr−1, Rr−1) for every r 6 16 and C = FP(L16, R16).

Finally, Ei and P−1
i denote the ith 6-bit coordinate of the expansion layer E and the ith 4-bit coordinate

of the bit-permutation P−1, respectively. Similarly, kr,i shall denote the ith 6-bit part of a round key kr.
We hence have the equality:

P−1
i (fkr (·)) = Si(Ei(·)⊕ kr,i) . (16.1)

16.2.2 Fault models

Our attack consists in corrupting some bits of the left part of the DES internal state at the end of the
rth round with r ∈ {9, 10, 11, 12}. We shall consider different fault models depending on the statistical
distribution of the induced error. We first consider the bit error model: one and one single bit of the left
part is switched. We also consider the byte error model: one byte of the left part is switched to a random
and uniformly distributed value. Furthermore, the fault position may be either chosen by the attacker
or random among the 32 bit-positions or the 4 byte-positions of the left part.

In the sequel, L̃i and R̃i will respectively denote the corrupted value of the left part Li and the right
part Ri at the end of round i and C̃ = FP(L̃16, R̃16) will denote the faulty ciphertext. We shall further
denote by ε the induced error that is defined as ε = Lr ⊕ L̃r.

16.3 Attack description

16.3.1 General principle

Let us denote by ∆ the bitwise difference between the correct value and the corrupted value of the left
part at the end of the fifteenth round: ∆ = L15 ⊕ L̃15. Due to the Feistel scheme, we have the following
relation:

R16 ⊕ R̃16 = fk16
(L16)⊕ fk16

(L̃16)⊕∆ . (16.2)

Based on (16.2), an adversary that knows ∆ can mount a key recovery attack. The principle is to
make a guess on the value of the round key k16. Then, given a pair of ciphertexts (C, C̃), the attacker
checks whether (16.2) is consistent for this guess. If not, the guess is discarded. In this way, k16 is
non-ambiguously determined using a few pairs of ciphertexts. Due to the structure of f (see (16.1)), the
attacker does not need to guess the entire round key k16 but he can guess and check each subkey k16,i

independently. When an error is induced in the final rounds, the differential ∆ (or at least a part of it)
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can be predicted according to the pair (C, C̃) which enables the attack [44]. This is no more the case for
an error induced in a middle round; in that case the attack must be extended.

As noted in [19], if an error ε is induced in the left part at the end of the thirteenth round then ∆
equals ε. Therefore, an attacker that is able to induce a chosen (or at least known) error in L13 can apply
the previous attack. For a fault induced in the left part during an earlier round, the equality ∆ = ε does
not hold anymore. However the statistical distribution of ∆ may be significantly biased (depending on
the fault model and the round number). Indeed, as illustrated in Figure 16.1, a fault injected in the left
part skips one round before propagating through the function f . Besides, the error propagation path
from Lr to L15 sticks through the function f only once for r = 12, twice for r = 11, etc. This is quite
low considering the slow diffusion of the function f . As a result, a fault induced in Lr may produce a
differential ∆ with a distribution that is significantly biased. As described hereafter, this bias enables a
key recovery attack based on a statistical distinguisher.

(a) From L12 to L15. (b) From L11 to L15.

Figure 16.1: Error propagation paths.

Remark 16.1. From Figure 16.1, it can be noticed that the injection of an error ε in Lr is equivalent to
the injection of ε in Rr+1. This demonstrates the relevance of attacking the left part rather than the
right one. Besides, this explains why the attack on the right part described in [19] is inefficient compared
to the one on the left part on the same round.

Let us define, for every i ∈ {1, . . . , 8}, the function gi as the prediction of the ith 4-bit coordinate of
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P−1(∆) according to a pair (C, C̃) and to a guess k on the value of k16,i:

gi(C, C̃, k) = Si
(
Ei(L16)⊕ k

)
⊕ Si

(
Ei(L̃16)⊕ k

)
⊕ P−1

i

(
R16 ⊕ R̃16

)
.

From (16.1) and (16.2), it can be checked that, for the correct key guess, gi(C, C̃, k) equals P−1
i (∆). On

the other hand, for a wrong key guess, gi(C, C̃, k) can be assumed to have a uniform distribution. This
is a classical assumption in block cipher cryptanalysis known as the wrong-key assumption.

Let us define, for every i ∈ {1, . . . , 8} and for every δ ∈ {0, . . . , 15}, the probability pi(δ) as:

pi(δ) = P
[
P−1
i (∆) = δ

]
.

To summarize, according to the wrong-key assumption, we have:

P
[
gi(C, C̃, k) = δ

]
=

{
pi(δ) if k = k16,i
1
16 otherwise (16.3)

Provided that the distribution pi(·) is significantly biased, (16.3) clearly exhibits a wrong-key distinguisher
for k16,i.

16.3.2 Wrong-key distinguishers
We define hereafter two possible distinguishers d(k) for a key candidate k which are expected to be
maximal for the correct key candidate k = k16,i. These distinguishers take as input a set of N pairs
(Cn, C̃n), 1 6 n 6 N . The choice of the distinguisher to use depends on the attacker’s knowledge of the
fault model.

Likelihood distinguisher. The attacker is assumed to have an exact knowledge of the fault model,
namely he knows the distribution of ε. In that case, he can compute (or at least estimate) the distribution
pi(·) in order to use a maximum likelihood approach20. The likelihood of a key candidate k is defined as
the product of the probabilities pi

(
gi(Cn, C̃n, k)

)
for n = 1, . . . , N . For practical reasons, we make the

classical choice to use the logarithm of the likelihood, namely d(k) is defined as:

d(k) =

N∑
n=1

log
(
pi
(
gi(Cn, C̃n, k)

))
.

Squared Euclidean imbalance (SEI) distinguisher. The attacker does not have a precise knowledge
of the fault model and is hence not able to estimate the distribution pi(·). In that case, an alternative
strategy is to look for the strongest bias in the distribution of gi(Cn, C̃n, k). This is done by computing the
squared Euclidean distance to the uniform distribution (known as squared Euclidean imbalance), namely
d(k) is defined as:

d(k) =

15∑
δ=0

(
#{n; gi(Cn, C̃n, k) = δ}

N
− 1

16

)2

.

16.3.3 Chosen error position strategies
In a chosen error position fault model scenario, we further have to define a strategy to choose the positions
where to induce the errors.

Bit error model. In the bit error model, ε has a single bit to 1 which implies that the function f in
round r + 2 has one or two active S-boxes. That is, the correct output and the corrupted output of f
only differ for one or two S-boxes. Indeed, as shown in Table 16.1, the expansion layer sends every input
bit of f in one or two S-boxes. In order to maximize the bias in the distribution of ∆, the bit-positions

20Note that the distribution pi(·) is independent of the secret key and only depends on the error (considering random
plaintexts).
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Table 16.1: Destination S-boxes for the input bits of f .

bits 1,32 2,3 4,5 6,7 8,9 10,11 12,13 14,15
S-boxes 1,8 1 1,2 2 2,3 3 3,4 4
bits 16,17 18,19 20,21 22,23 24,25 26,27 28,29 30,31

S-boxes 4,5 5 5,6 6 6,7 7 7,8 8

Table 16.2: Destination S-boxes for the input bytes of f .

bytes 1 2 3 4
S-boxes 8,1,2,3 2,3,4,5 4,5,6,7 6,7,8,1

should be chosen among the ones entering in a single S-box hence slowing the error propagation. Our
strategy is simply to first choose a bit-position entering in S-box 1 only, then in S-box 2 only, and so on
until S-box 8 and start over with S-box 1, etc.

Byte error model. Concerning the byte error model, every input byte of f is spread over four S-boxes.
This can be checked from Table 16.2 which gives the destination S-boxes of every input byte of f . As a
result, a byte error in Lr always implies four active S-boxes in the output differential of f in round r+ 2.
For the attacks in the chosen position byte error model, the four byte-positions are hence equivalently
chosen since they all induce the corruption of exactly four S-boxes in round r + 2.
Remark 16.2. In a chosen error position attack, several fault models are involved hence, for a given i,
different distributions pi(·) are induced. Consequently, the SEI distinguisher shall not be directly applied
but the SEI of pi(·) shall be estimated for every error position independently. The SEI distinguisher is
then defined as the sum of the SEIs for the different error positions.
Remark 16.3. In our attack simulations, we tried more specific strategies taking into account the bias in
the (pi(·))i distributions resulting from the different bit-error positions. These strategies did not yield
substantial improvements.

16.4 Attack simulations
This section presents some experimental results. We performed attack simulations for each of the fault
models introduced in Section 16.2 with a fault induced at the end of round 12, 11, 10 or 9. For every
round number and every fault model, we applied the likelihood distinguisher and the SEI distinguisher
(see Section 16.3.2). For the likelihood distinguisher, we empirically computed the distributions (pi(·))i
based on several21 ciphertexts pairs, each obtained from the correct and faulty encryptions of a random
plaintext22.

In what follows, we consider an attack successful when the entire last round key is determined with
a 99% success rate. This strong requirement is motivated by the fact that, for a triple DES, too many
key bits remain to perform an exhaustive search once the last round key has been recovered. Therefore,
one shall fully determine the sixteenth round key before reiterating the attack on the fifteenth and so on.
Every subsequent attack on a previous round key can be performed by using the same set of ciphertexts
pairs and is expected to be substantially more efficient since the error propagates on fewer rounds. This
way, if the last round key is recovered with a 99% success rate then the cipher can be considered fully
broken.

Figure 16.2 shows the success rate (over 1000 simulations) of the different attacks (chosen/random
position bit/byte error, likelihood/SEI distinguishers) on rounds 12, 11 and 10. Figure 16.3 shows the

21107 for bit errors models and 108 for byte errors models.
22Note that the value of the key does not change the (pi(·))i distributions.
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success rate (over 10 to 100 simulations) for the attacks on round 9 in the bit error model. Attacks on
round 9 in the byte error model all required more than 108 faults. The numbers of faults required for a
99% success rate are summarized in Table 16.3.
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Figure 16.2: Attacks on rounds 10, 11 and 12: success rate w.r.t. number of faults.

Attack efficiency vs. round number. The attacks on rounds 11 and 12 are very efficient: less than
25 faults are sufficient on round 12 while, on round 11, less than 100 faults are sufficient in a bit error
model and less than 1000 faults are sufficient in a byte error model. On round 10, the attacks are still
fairly efficient: the best attack (chosen position bit error model, likelihood distinguisher) requires 290
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Figure 16.3: Attacks on rounds 9, bit error model: success rate w.r.t. number of faults.

Table 16.3: Number of faults to recover the 16th round key with a 99% success rate.

bit error byte error
round distinguisher chosen pos. random pos. chosen pos. random pos.

12 Likelihood 7 11 9 17
SEI 14 12 17 21

11 Likelihood 11 44 210 460
SEI 30 71 500 820

10 Likelihood 290 1500 13400 18500
SEI 940 2700 26400 23400

9 Likelihood 3.4 · 105 2.2 · 107 > 108 > 108

SEI 1.4 · 106 > 108 > 108 > 108

faults whereas the least efficient attack (chosen position byte error model, SEI distinguisher) requires
26400 faults. It is on round 9 that the attacks become quite costly since the most efficient attack in the
bit error model (chosen position, likelihood distinguisher) requires approximately 3.4 · 105 faults and all
the attacks in the byte error model require more than 108 faults23.

Attack efficiency vs. fault model. As expected, we observe that, for a given setting (random/chosen
position, likelihood/SEI distinguisher), a bit error model always leads to more efficient attacks than a
byte error model. Similarly, a chosen position usually leads to more efficient attacks than a random
position. Some exceptions are observed for the SEI distinguisher for which a random position sometimes
leads to more efficient attacks than a chosen position. The reason of this phenomenon may be that in a
chosen position bit (resp. byte) error model, 8 (resp. 4) different SEIs are estimated based on 8 (resp.
4) times less faults than in the random position model where a single SEI is estimated (see Remark
16.2). As a result, these estimations are less precise which may render the attack less efficient than in
the random position model. In these cases, the attacker can compute a single SEI based on all the faults,
which amounts to perform the attack in the random position model.

To summarize, we naturally have that a bit error is better than a byte error and a chosen position is
better than a random position. What was not a priori straightforward is the superiority of the random
position bit error model compared to the chosen position byte error model. Except on round 12 where

23The most efficient one (chosen position byte error model, likelihood distinguisher) yielded a 0% success rate (over 10
attack simulations) for 108 faults.
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both cases are almost equivalent, our results show that the attacks in the random position bit error model
are significantly more efficient than the ones in the chosen position byte error model.

Another interesting observation is that, in the bit error model, the ability to choose the error position
is more advantageous than in the byte error model. This phenomenon results from the strategy for the
choice of the bit-positions (see Section 16.3.3) which selects 8 positions over 32 leading to more important
bias in the distributions pi(·) than the average case, whereas, in the chosen position byte error model,
the 4 byte-positions are equivalently used.

Likelihood vs. SEI. As expected, the likelihood distinguisher always leads to more efficient attacks
than the SEI distinguisher. It is interesting to note that this difference of efficiency is always greater in
a chosen position model than in a random position model. Once again, this phenomenon results from
the fact that, for a chosen position model, several different SEIs are estimated based on 4 or 8 times less
faults compared to the random position model where a single SEI is estimated.

16.5 How many rounds to protect?
The question of the number of rounds to protect does not have a unique answer. Indeed, the answer to
this question depends on the ability of an attacker to induce faults and on the number of correct and
faulty ciphertexts pairs that he can collect. Moreover, more efficient attacks that those described above
may exist.

What provides our study is some lower bounds on the number of rounds to protect. We have shown
that in a realistic fault model, efficient DFA attacks can be performed by inducing some faults until round
10. It seems therefore reasonable to protect at least the last seven rounds of the cipher. However, this
may not suffice while considering a strong adversary model. We have shown that in a chosen position
bit error model, 3.4 · 105 faults induced at the end of round 9 are sufficient to recover the last round key
with a 99% confidence. Consequently, in order to thwart an adversary able to induce a single bit fault
at a chosen position and to gather about 105 ciphertexts pairs, one shall at least protect the last eight
rounds.

Attacks on initial rounds. As noted in [110], if an attacker has access to a decryption oracle then
any DFA attack can be transposed on the initial rounds of the cipher. In fact, the attacker may obtain
a faulty ciphertext C̃ from a plaintext P by inducing a fault at the end of the first round. The plaintext
P can then be viewed as the faulty result of a decryption of C̃ for which a fault has been induced at
the beginning of the last round. The attacker then asks for the decryption of C̃ which provides him
with a plaintext P̃ . The pair (P̃ , P ) thus constitutes a pair of correct and faulty results of the decryption
algorithm with respect to an error induced at the beginning of the last round. According to this principle,
any fault attack on an initial round of an encryption can be transposed to a fault attack on a final round
of a decryption, provided that the attacker has access to a decryption oracle. In that case, the same
number of rounds should be protected at the beginning and at the end of the cipher in order to obtain an
homogenous security level. For a simple DES, based on our study, we recommend to protect the entire
cipher. For a triple DES, one can only protect some rounds at the beginning of the first DES computation
and some rounds at the end of the last DES computation; the number of protected rounds being at least
seven according to our study.
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17.1 Introduction

This chapter describes a countermeasure against fault analysis for exponentiation and RSA. It consists
of a self-secure exponentiation algorithm, namely an exponentiation algorithm that provides a direct
way to check the result coherence. An RSA implemented with our solution hence avoids the use of an
extended modulus (which slows down the computation) as in several other countermeasures. Moreover,
our exponentiation algorithm involves 1.65 multiplications per bit of the exponent which is significantly
less than the 2 required by other self-secure exponentiations.

The results presented in this chapter have been published in the Cryptographer’s Track at the RSA
conference (CT-RSA 2009) [9]. The proposed countermeasure has also been patented in [13].
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17.2 A self-secure exponentiation based on double addition chains

17.2.1 Basic principle

In the following, we shall call double exponentiation an algorithm taking as inputs an element m and a
pair of exponents (a, b), and computing the pair of powers (ma,mb).

The core idea of our method is to process a double exponentiation to compute the pair (md,mϕ(N)−d)
modulo N . Then, the consistency of the computation is verified by performing the following check:

md ·mϕ(N)−d ?≡ 1 mod N . (17.1)

If no error occurs during the computation then, due to Euler’s Theorem, this check is positive. In that
case, the algorithm returns md mod N . On the other hand, if the computation is corrupted, then the
result of this check is negative with high probability. In that case, the algorithm returns an error message.

In order to construct a self-secure exponentiation based on aforementioned principle, we need a double
exponentiation algorithm. We propose hereafter such an algorithm that is well suited for implementation
constrained in memory. Our solution is based on the building of an addition chain. This notion, as well
as the ensued notion of addition chain exponentiation are briefly introduced in the next section (see [144]
for more details).

17.2.2 Addition chain exponentiations

At first, we give the definition of an addition chain.

Definition 17.1. An addition chain for an integer a is a sequence x0, x1, . . . , xn with x0 = 1 and xn = a
that satisfies the following property: for every k there exist indices i, j < k such that xk = xi + xj.

An addition chain (xi)i for an integer a provides a way to evaluate any element m to the power a. Let
m0 = m. For k from 1 to n, one computes mk = mi ·mj where i, j < k are such that xk = xi + xj . By
induction, the sequence (mk)k satisfies: mk = mxk for every k 6 n which leads to mn = mxn = ma. Such
an addition chain exponentiation may require an important amount of memory to store the intermediate
powers required for the computation of subsequent powers. This can make the exponentiation unpractical,
especially in the context of low resource devices. Therefore, the minimum number of variables required
to store the intermediate powers is an important parameter of the addition chain exponentiation. This
parameter that directly results from the addition chain will be called the memory depth of the chain in
the following.

An addition chain x0, x1, . . . , xn with (xn−1, xn) = (a, b) will be called a double addition chain for the
pair (a, b). A double addition chain for a pair (a, b) provides a way to perform the double exponentiation
m 7→ (ma,mb) for any element m.

Remark 17.1. What we call here double exponentiation shall not be confused with multi-exponentiations
(also known as simultaneous exponentiations) that compute a product of powers

∏
im

ai
i (see for instance

[168]). What we call double addition chain is also called addition sequence in the general case where
possibly more than two powers must be computed [53, 116]. Addition sequences have not been so much
investigated. In [53], the authors propose some heuristics but these are not suitable for implementations
constrained in memory.

17.2.3 A heuristic for double addition chains

In this section, we propose a heuristic to compute a double addition chain with a memory depth of 3 for
any pair of natural integers (a, b). This provides us with a double exponentiation algorithm that is well
suited for implementations constrained in memory.

Without loss of generality, we assume a 6 b. The chain involves a pair of intermediate results (ai, bi)
that is initialized to (0, 1) and that equals (a, b) once all the additions have been performed. In order to
have a memory depth of 3, one single additional variable is used that holds the value 1 (this amounts to
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hold the element m in a register for the resulting exponentiation). Therefore, at the ith step of the chain,
one can either increment ai or bi by 1, double ai or bi, or add ai and bi together.

To construct such a chain, we start from the pair (a, b) and go down to the pair (0, 1) by applying the
inverse operations. Namely, we define a sequence (αi, βi)i such that (α0, β0) = (a, b) and (αn, βn) = (0, 1)
for some n ∈ N, and where, for every i, the pair (αi+1, βi+1) is obtained from (αi, βi) by decrementing,
by dividing by two and/or by subtracting an element to the other one. In order to limit the memory
required to the storage of the chain, we have to restrict the set of possible operations. Our heuristic is
the following one:

(αi+1, βi+1) =


(
αi, βi/2

)
if αi 6 βi/2 and βi mod 2 = 0(

αi, (βi − 1)/2
)

if αi 6 βi/2 and βi mod 2 = 1(
βi − αi, αi

)
if αi > βi/2

(17.2)

Proposition 17.1. If α0, β0 ∈ N∗ are such that α0 6 β0 then the sequence (αi, βi)i satisfies the following
properties:

1. For every i, we have αi 6 βi.

2. There exists n ∈ N such that (αn, βn) = (0, 1).

Proof. The first property is straightforward: it is true for i = 0 and it is preserved by every step. The
second one is demonstrated as follows. For every i such that αi > 0, we have αi+1 6 βi+1 6 βi and
αi+1 + βi+1 < αi + βi. This implies that there exists n′ ∈ N such that αn′ > 0 and αn′+1 6 0.
From (17.2), one deduces αn′ = βn′ > 0 and αn′+1 = 0. Denoting x the natural integer such that
(αn′+1, βn′+1) = (0, x), we finally get (αn′+dlog xe, βn′+dlog xe) = (0, 1).

At this point, we need a binary representation for the sequence of additions to perform for the
processing of the sequence (ai, bi)i. Let us denote by n the natural integer satisfying (αn, βn) = (0, 1).
We define τ and ν as the n-bit vectors whose coordinates satisfy:

τi =

{
0 if αn−i 6 βn−i/2
1 if αn−i > βn−i/2

(17.3)

and
νi = βn−i mod 2 . (17.4)

The sequence (ai, bi)i can be computed from τ and ν by initializing (a0, b0) to (0, 1) and by iterating:

(ai+1, bi+1) =

 (ai, 2bi) if τi+1 = 0 and νi+1 = 0
(ai, 2bi + 1) if τi+1 = 0 and νi+1 = 1
(bi, ai + bi) if τi+1 = 1

One can verify that (ai, bi) = (αn−i, βn−i) holds for every i which yields (an, bn) = (a, b).
Let us remark that the entire sequence ν is not necessary for processing this addition chain (and the

resulting exponentiation). Indeed, only the bits νi for which τi equals 0 are required. Therefore, the
exponentiation algorithm shall make use of a single compressed sequence ω in order to avoid memory
loss. We simply define ω as the sequence obtained from τ by inserting every bit νi for which τi = 0
between τi and τi+1. In the sequel, we shall denote by n∗ the bit-length of ω. Moreover, when we will
need to make appear the relationship between the pair (a, b) and ω, we will use the notation ω(a, b).

The sequence ω(a, b) thus constitutes the binary representation of the double addition chain for the
pair of exponents (a, b). To process the corresponding double exponentiation one must pre-compute ω.
This is done by computing the pair (αi, βi) for every i ∈ {1, . . . , n}. The following algorithm details such
a computation. It makes use of two registers R0 and R1 that store the intermediate results αi and βi. It
makes also use of a Boolean variable γ such that αi is stored in Rγ⊕1 and βi is stored in Rγ .
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Algorithm 21 Double addition chain computation – ChainCompute

Input: a pair of natural integers (a, b) s.t. a 6 b
Output: the chain ω(a, b)

1. R0 ← a; R1 ← b; γ ← 1; j ← n∗

2. while (Rγ⊕1, Rγ) 6= (0, 1) do
3. if (Rγ/2 > Rγ⊕1)

4. then ωj−1 ← 0; ωj ← Rγ mod 2; Rγ ← Rγ/2; j ← j − 2

5. else ωj ← 1; Rγ ← Rγ −Rγ⊕1; γ ← γ ⊕ 1; j ← j − 1

6. end while
7. return ω

Remark 17.2. The length n∗ is a priori unknown before the computation of the chain. However, as shown
in Section 17.6.2, it is upper bounded by 2.2dlog be (with high probability). For a practical implementation
of Algorithm 21, one may use a buffer of 2.2dlog be bits to store ω.

The following algorithm describes the resulting double modular exponentiation algorithm. It makes
use of two registers R0 and R1 that store the intermediate results mai and mbi and one more register to
hold m. It makes also use of a Boolean variable γ such that mai is stored in Rγ⊕1 and mbi is stored in
Rγ .

Algorithm 22 Double modular exponentiation – DoubleExp

Input: an element m ∈ ZN , a chain ω(a, b) s.t. a 6 b, a modulus N
Output: the pair of modular powers (ma mod N,mb mod N)

1. R0 ← 1; R1 ← m; γ ← 1

2. for i = 1 to n∗ do
3. if (ωi = 0) then
4. Rγ ← R2

γ mod N ; i← i+ 1

5. if (ωi = 1) then Rγ ← Rγ ·m mod N

6. else
7. Rγ⊕1 ← Rγ⊕1 ·Rγ mod N ; γ ← γ ⊕ 1

8. end for
9. return (Rγ⊕1, Rγ)

17.2.4 The secure exponentiation algorithm

Following the principle described in Section 17.2.1, Algorithm 22 provides a way to perform a modular
exponentiation secure against fault analysis. The resulting secure modular exponentiation is depicted in
the following algorithm.

Algorithm 23 Secure modular exponentiation
Input: a message m, a secret exponent d, a modulus N and its Euler’s totient ϕ(N)

Output: the modular power md mod N

1. ω ← ChainCompute
(
d, 2ϕ(N)− d

)
2. (s, c)← DoubleExp

(
m, ω, N

)
3. if s · c mod N 6= 1 then return “error”; else return s

Remark 17.3. For the chain computation (Step 1), ϕ(N) − d is replaced by 2ϕ(N) − d in order to fit
the constraint a 6 b imposed by the chain computation algorithm. This does not affect the result of the
double exponentiation in Step 2 since we have mϕ(N)−d ≡ m2ϕ(N)−d mod N .
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17.3 A secure RSA-CRT algorithm

For an RSA computation, the secure modular exponentiation proposed above can be extended to be
performed in CRT mode. Two double exponentiations are performed separately in order to compute the
pairs (sp, cp) and (sq, cq) where:

cp = mp−1−dp mod p

and
cq = mq−1−dq mod q .

Then the signature s is recovered from sp and sq by CRT recombination and its value is checked modulo
p (resp. q) using cp (resp. cq) according to (17.1).

Algorithm 24 Secure RSA-CRT
Input: a message m, the secret exponents dp and dq, the secret primes p and q
Output: the modular power md mod p · q

1. ωp ← ChainCompute
(
dp, 2(p− 1)− dp)

2. (sp, cp)← DoubleExp(m mod p, ωp, p)

3. ωq ← ChainCompute
(
dq, 2(q − 1)− dq)

4. (sq, cq)← DoubleExp(m mod q, ωq, q)

5. s← CRT(sp, sq)

6. if (s · cp mod p 6= 1 or s · cq mod q 6= 1) then return “error” else return s

Remark 17.4. We assume that m mod p (resp. m mod q) cannot be corrupted before the beginning of the
double exponentiation. This is mandatory for the security of Algorithm 24, since such a corruption would
not be detected and would enable the Bellcore attack. In practice, this can be ensured by computing a
cyclic redundancy code for m mod p (resp. m mod q) at the beginning of the RSA-CRT algorithm. Then,
at the beginning of the double exponentiation algorithm, m mod p (resp. m mod q) is recomputed from
m and its integrity is checked once it has been loaded in two different registers (m and R1 in Algorithm
22). Any corruption occurring after this check shall be detected by the final check.

Remark 17.5. The chains ωp and ωq can be either computed on-the-fly as depicted in Algorithm 24 (Steps
1 and 3) or pre-computed and stored in non-volatile memory. The first solution has the advantages of
preserving the classical RSA-CRT parameters and of enabling the exponent blinding countermeasure (see
Section 17.5.2). The second solution has the advantage of avoiding the timing and memory overhead
induced by the chain computations.

17.4 Security against fault analysis

In this section, we analyze the security of our method against fault analysis. We start with a few remarks
of practical purpose, then we investigate the detection probability of a fault injection and finally we
address safe-error attacks.

Remark 17.6. We assume that the Boolean γ cannot be modified at the end of Algorithm 22. This is
mandatory for the security of the solution since such a modification would result in a swapping of the
two registers which would not be detected. In practice, this can be ensured by doubling the variable γ.

Remark 17.7. We assume that one cannot switch the last bit(s) of the chain ω (resp. ωp, ωq) from 1 to
00 (or vice versa). This would provoke an undetected error. Such a switch can be prevented in practice
by checking that the loop index i matches the chain length n∗ at the end of Algorithm 22.

Remark 17.8. In Algorithms 23 and 24, we assume that the integrity of the chain computation parameters
is checked before executing the chain computation algorithm. This avoids any attack that would corrupt
d (resp. dp, dq) before the computation of 2ϕ(N)− d (resp. 2(p− 1)− dp, 2(q − 1)− dq).
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Remark 17.9. Some papers claim that coherence checks using conditional branches should be avoided
to strengthen fault analysis security [72, 249]. The argument behind this assertion is that the coherence
check could be easily skipped by corrupting the status register. In the next chapter, a simple solution
is proposed that performs a coherence check in a way that is secure against operations skipping. We
suggest to use this solution for the coherence checks performed in Algorithm 23 (Step 3) and Algorithm
24 (Step 6).

17.4.1 Fault detection
We analyze hereafter the different fault attacks that can be attempted on our secure exponentiation
algorithm and we investigate the corresponding detection probability. We only focus on transient faults,
namely faults whose effect lasts for one computation. Permanent fault attacks are easily thwarted by the
addition of some cyclic redundancy codes to check the parameters integrity.

We use the generic notation M to denote the involved modulus that may equal N (for a standard
RSA), p or q (for an RSA-CRT) and we denote by ordM (m) the order of an element m in Z∗M . When
the fault causes the corruption of an intermediate variable v, we denote the corrupted variable by ṽ and
the error by ε such that ṽ = v + ε. We analyze here the condition about ε for a non-detection and we
bound the probability P of non-detection in the uniform fault model i.e. assuming that ε is uniformly
distributed.

For our analysis, the following lemma shall be useful.

Lemma 17.1. Let M be an integer greater than 30. Let m be a random variable uniformly distributed
over Z∗M and let u be a random variable uniformly distributed over {1, . . . , ϕ(M)} and independent of m.
We have:

P [ordM (m)|u] <
2

M1/3
. (17.5)

Proof. By the law of total probability, we have:

P [ordM (m)|u] =
∑

λ∈D(ϕ(M))

P [λ|u] P [ordM (m) = λ] , (17.6)

where D is the function mapping a natural integer to the set of its divisors. On the one hand, the
probability P [λ|u] equals 1/λ. On the other hand, for every λ ∈ D(ϕ(M)), there are ϕ(λ) elements of
order λ in Z∗M which leads to P [ordM (m) = λ] = ϕ(λ)/ϕ(M). On the whole, (17.6) can be rewritten as:

P [ordM (m)|u] =
1

ϕ(M)

∑
λ∈D(ϕ(M))

ϕ(λ)

λ
. (17.7)

Since ϕ(λ)/λ is strictly lower than or equal to 1, we have P [ordM (m)|u] 6 d(ϕ(M))/ϕ(M) where d(·)
denotes the divisor function (i.e. the function that maps a natural integer to the quantity of its distinct
divisors). It is well known that the divisor function satisfies d(x) < 2

√
x for every x [167] which implies

P [ordM (m)|u] < 2/
√
ϕ(M). Since we have ϕ(M) > n2/3 for every M > 30 [167], we get (17.5).

For the sake of simplicity, we approximate hereafter a uniform distribution over ZM by a uniform
distribution over Z∗M . This approximation is sound in our context since M is a large prime or an RSA
modulus.

Corruption of one of the two exponents. Among the two exponents a and b, one equals d and
the other one equals ϕ(M) − d. On the one hand, if ϕ(M) − d is corrupted, then the result of the
exponentiation remains correct (i.e. it equals md mod M) and the attack failed whatever the result of
the final check (which is however very likely to detect the fault). On the other hand, if d is corrupted,
we show hereafter that the final check will detect the error with high probability.

In fact, the error is not detected if and only if we havemd̃·mϕ(M)−d ≡ 1 mod M that ismε ≡ 1 mod M .
This occurs if and only if ε is a multiple of the order of m. Therefore, the probability of non-detection can
be expressed as P = P [ordM (m)|ε] (the lower the order ofm, the higher the probability of non-detection).
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Since a potential attacker does not know ϕ(M), he cannot chose m in a way that affects its order. For
this reason, m can be considered uniformly distributed over ZM . Therefore, in the uniform fault model,
Lemma 17.1 implies P < 2/M1/3.

Remark 17.10. The bound provided by Lemma 17.1 is not tight at all but it is sufficient to show that P is
negligible. For instance, ifM satisfies logM > 244, which is necessary (but not sufficient) for the security
of RSA (even for RSA-CRT where logN = 2 logM), P is strictly lower than 2−80 which is negligible.

Corruption of the message or an intermediate power. From the definition of the double addition
chain given in Section 17.2.3, one can see that for every i ∈ {1, . . . , n}, the pair (an, bn) can be expressed
as a linear transformation of the triplet (ai, bi, 1). Let us denote by αai , βai , δai the three coefficients of
the expression of an, namely an = αai ai + βai bi + δai . By analogy, we denote by αbi , βbi , δbi the coefficients
in the expression of bn.

If the message m is corrupted at the ith step of the exponentiation, the latter returns the following
pair of powers:

(
ma(m−1 · m̃)δ

a
i ,mb(m−1 · m̃)δ

b
i

)
modulo M . The error is not detected if and only if we

have (m−1 · m̃)δ
a
i +δbi ≡ 1 mod M , that is (1 + ε ·m−1)δ

a
i +δbi ≡ 1 mod M . This occurs if and only if the

order of m′ = 1 + ε ·m−1 divides δai + δbi . Therefore, the probability of non-detection can be expressed
as P = P

[
ordM (m′)|δai + δbi

]
. Following the same reasoning, a corruption of the intermediate power mai

(resp. mbi) is not detected with a probability P = P
[
ordM (m′)|αai + αbi

]
where m′ = 1 + e ·m−ai (resp.

P = P
[
ordM (m′)|βai + βbi

]
where m′ = 1 + ε ·m−bi).

Since a and b are unknown to the attacker, this one cannot chose the value of δai + δbi , αai + αbi or
βai + βbi as these directly ensue from a and b. That is why, we make the heuristic assumption that P
equals P [ordM (m′)|u] where u is uniformly distributed over {1, . . . , ϕ(M)}. In the uniform fault model,
we have the uniformity of m′ that holds from the one-to-one relationship between ε and m′ for every
m 6= 0. Consequently, Lemma 17.1 implies P < 2/M1/3 and P is negligible.

Corruption of the chain. A faulty chain w̃ results in a faulty pair of powers (mã,mb̃). The error is not
detected if and only if the order of m divides ã+ b̃, hence the non-detection probability can be expressed
as P = P

[
ordM (m)|ã+ b̃

]
.

As shown in Section 17.6.2, the expected bit-length of the chain ω yielding a pair of l-bit exponents
(a, b) is 2l. This suggests an almost bijective relationship between the chains space and the exponents
pairs space. In the uniform fault model, we can therefore consider that ã and b̃ are uniformly distributed
which, by Lemma 17.1, implies P < 2/M1/3.

Corruption of the modulus. If the modulus M is corrupted at the ith step of the exponentiation,
then the latter results in the two following powers: mαai

1 ·m
βai
2 ·mδai mod M̃ and mαbi

1 ·m
βbi
2 ·mδbi mod M̃

where m1 = mai mod M and m2 = mbi mod M . Therefore, the error is not detected if and only if we
have mαai+αbi

1 ·mβai +βbi
2 ·mδai +δbi mod M̃ = 1.

In the uniform fault model, the faulty modulus M̃ is uniformly distributed over [0, 2l[ where l de-
notes the bit-length of M . Therefore, the probability of non-detection P is close to P [u1 mod u2 = 1]
where u1 and u2 are uniform (and independent) random variables over [0, 2l[. This probability equals
2−l

∑2l−1
i=1 (1/i) which is strictly lower than 2−80 for every l > 86. The probability of non-detection P is

hence negligible in our context.

17.4.2 Safe-error attacks

As explained in Section 15.7.3, safe-error attacks divide into two categories: C-safe-error attacks [248] and
M-safe-error attacks [143,246]. To prevent C-safe-error attacks one must ensure that no dummy operation
is conditionally performed depending on the secret key. Our secure exponentiation does not perform any
dummy operation and is hence secure against C-safe-error attacks. When the chain is computed on-the-
fly, it must be done in an atomic way in order to thwart SPA (see Section 17.5.1). The atomic version of
the chain computation algorithm makes use of dummy operations and is hence vulnerable to C-safe-error
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attacks. In that case, one must use the exponent blinding countermeasure to thwart them (see Section
17.5.2). In addition, the exponent blinding countermeasure also thwarts M-safe-error attacks. On the
other hand, if the chain is pre-computed, the exponent cannot be randomized and M-safe-error must
be prevented in another way (while C-safe-error attacks do not apply since no dummy operations are
involved anymore). In that case, we suggest to randomize the indices of the registers that are addressed
by some exponent bits (or chain bits in our context). Namely, the registers used to store the different
variables are randomly chosen at each execution among the different available registers. For instance, in
Algorithm 21, a random bit r is picked up so that the registers R0 and R1 are switched if r equals 1. In
the description of Algorithm 21 this amounts to replace Rγ by Rγ⊕r. In this way, an M-safe-error attack
will imply a faulty output once out of two, independently of the performed operation.

17.5 Toward side channel analysis resistance
In this section, we address the resistance of our exponentiation algorithm against simple power analysis
(SPA) and differential power analysis (DPA).

17.5.1 Simple power analysis

As explained in Section 3.1, SPA [148] exploits the fact that the operation flow of a cryptographic
algorithm may depend on the secret key. Different operations may induce different patterns in the side
channel leakage which provides secret information to any attacker able to eavesdrop this leakage. To
thwart SPA, an algorithm must be atomic [71], namely, it must have the same operation flow whatever
the secret key.

The chain computation algorithm (Algorithm 22) and the double exponentiation algorithm (Algorithm
21) may be vulnerable to SPA. To circumvent this weakness, we provide hereafter atomic versions of these
algorithms.

Atomic chain computation. Looking at the chain computation algorithm, we observe that the main
operations (namely operations on large registers) performed at each loop iteration are a division by
two and possibly a substraction (depending on the value of τi). To render the algorithm atomic both
operations must be performed at each loop iteration. The following algorithm describes the atomic version
of the chain computation. It makes use of three registers: R0, R1 and R2 which are used to store the
values of αi and βi as well as a temporary value. It also uses three indices iα, iβ , itmp ∈ {0, 1, 2} such
that αi is stored in Riα , βi is stored in Riβ and the temporary value is stored in Ritmp .

Algorithm 25 Atomic double addition chain computation
Input: a pair of natural integer (a, b) s.t. a 6 b
Output: the chain ω(a, b)

1. Riα ← a; Riβ ← b; j ← n∗

2. while (Riα , Riβ ) 6= (0, 1) do
3. Ritmp ← Riβ −Riα
4. v ← Riβ mod 2

5. Riβ ← Riβ/2

6. t← (Riβ 6 Riα)

7. ωj−1 ← t; ωj ← t ∨ v
8. (iα, iβ , itmp)←

(
t ∧ (itmp, iα, iβ)

)
∨
(
(t⊕ 1) ∧ (iα, iβ , itmp)

)
9. j ← j − 1− (t⊕ 1)

10. end while
11. return ω

Notations. In Step 6, the notation t ← (Riβ 6 Riα) is used to denote the operation that compares the
two values in Riβ and Riα and that returns the binary value t satisfying t = 1 if Riβ 6 Riα and t = 0
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otherwise. In Step 8, the logical AND is extended to the {0, 1} × {0, 1}n → {0, 1}n operator performing
a logical AND between the left argument and each coordinate of the right argument.

Looking at Algorithm 25, we see that, at each loop iteration, the Boolean values t and v represent
the values of τi and νi. One can verify that if t = 0 then these values are stored in (ωj−1, ωj) and j
is decremented by two while if t = 1 then t is stored in ωj and j is decremented by one. Moreover, if
t = 0 then Step 8 has no effect while if t = 1 then it ensures that the indices of the different registers are
permuted so that (αi, βi) is correctly updated.

Although Algorithm 25 requires three l-bit registers and a (2.2 l)-bit buffer to store ω (see Section 17.6),
its memory consumption can be reduced to 4.2 l bits using the following trick. During the computation
of the 1.2 l high order bits of ω, the l low order bits allocated for ω are used as one of the three necessary
l-bit registers. Once the 1.2 l high order bits of ω have been computed, the intermediate values αi and
βi have a bit-length lower than l/2. Therefore, the three registers can be allocated on less than 2l bits
and the low order part of the buffer for ω can be freed.

Atomic double exponentiation. The following algorithm describes the atomic version of the double
modular exponentiation. It makes use of two registers R(0,0) and R(0,1) that are used to store the
intermediate results mai and mbi and one more register R(1,0) to store m. It makes also use of two
Boolean variables γ and µ. The Boolean γ indicates that mai is stored in R(0,γ⊕1) and that mbi is stored
in R(0,γ). And the Boolean µ indicates wether the next modular multiplication is a multiplication by m
(µ = 0) or not (µ = 1).

Algorithm 26 Atomic double modular exponentiation
Input: an element m ∈ ZN , a chain ω(a, b) s.t. a 6 b, a modulus N
Output: the pair of modular power (ma mod N,mb mod N)

1. R(0,0) ← 1; R(0,1) ← m; R(1,0) ← m

2. γ ← 1; µ← 1; i← 0

3. while i < n do
4. t← ωi ∧ µ; v ← ωi+1 ∧ µ
5. R(0,γ⊕t) ← R(0,γ⊕t) ·R((µ⊕1),γ∧µ) mod N

6. µ← t ∨ (v ⊕ 1); γ ← γ ⊕ t
7. i← i+ µ+ µ ∧ (t⊕ 1)

8. end while
9. return (Rγ⊕1, Rγ)

While µ = 1, the Boolean t is evaluated to τi and, if τi = 1, the Boolean v is evaluated to νi. Then,
while t = 1 or v = 0 each loop iteration corresponds to a step performing one single multiplication which
is done in Step 5. If t = 0 and ν = 1, the step must perform two multiplications: R(0,γ) by R(0,γ) and
R(0,γ) by R(1,0). The first one is performed in Step 5 afterwards the Boolean µ is evaluated to 0 thus
indicating that the next loop must perform the multiplication by R(1,0). In that case, i is not incremented
and the next loop iteration performs the desired multiplication before evaluating µ to 1 and normally
carrying on the computation.

17.5.2 Differential power analysis

As explained in Section 3.1 (and developed in Chapter 3), DPA [148] exploits the fact that the side channel
leakage reveals information about some key-dependent intermediate variables of the computation. Since
its first publication, several improvements of DPA have been proposed, in particular to attack modular
exponentiation [25, 95, 127, 166]. In order to thwart DPA, one usually makes use of randomization tech-
niques. The message randomization as well as the modulus randomization are common countermeasures
(see Section 3.6.3.2) that can be straightforwardly combined with our method. The exponent is usually
randomized using the blinding technique that consists in performing the exponentiation to the power
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d′ = d + r · ϕ(N) for a small random number r [76, 146, 166]. This technique cannot be straightfor-
wardly applied while using our secure exponentiation algorithm since we have d′ > ϕ(N) for every r > 0.
Therefore, we propose the following simple adaptation: in Step 1 of Algorithm 23, the exponent a is
set to d + r1 · ϕ(N) and the exponent b is set to r2 · ϕ(N) − d where r1 and r2 are two small random
numbers with r2 > r1 + 2. Then the rest of the secure exponentiation algorithm does not change. Since
md+r1·ϕ(N) ≡ md mod N , the desired signature is computed and sincemd+r1·ϕ(N)·mr2·ϕ(N)−d ≡ 1 mod N ,
the final check is correctly carried out.

Remark 17.11. If the chain ω is pre-computed, the exponent blinding cannot be used. In that case,
another kind of randomization (message, modulus) shall be used. However, these do not prevent a DPA
targeting the chain itself (as for instance the SEMD attack of [166] or the address-bit DPA [127]). To
deal with this issue, we suggest to use a Boolean masking such as proposed in [128].

17.6 Complexity analysis

In this section we analyze the time complexity and the memory complexity24 of our proposal. In the
sequel, we shall denote by l the bit-length of the exponentiation inputs. Namely for a standard RSA we
have l = dlogNe and for an RSA-CRT we have l = dlogN/2e.

17.6.1 Time complexity

Our secure exponentiation is mainly composed of the chain computation and the double exponentiation.
The chain computation loop is shorter than the exponentiation loop and it involves simple operations
(e.g. substraction, division by 2) whose time complexities are negligible compared to a modular multipli-
cation. Therefore, the time complexity of our proposal mainly depends on the number of multiplications
performed by the double exponentiation algorithm (all the more so as the chain may be pre-computed).
We shall denote this number by m and we shall define the multiplications-per-bit ratio as the coefficient
θ satisfying m = θl.

Some practical values for the expectation and the standard deviation of θ are given in Table 17.6.1
that were obtained by simulations. For l ∈ {512, . . . , 1024}, the expected multiplications-per-bit ratio is
approximately 1.65. Compared to the classical square-and-multiply algorithm, our exponentiation hence
requires 10% more multiplications, implying a 10% overhead on average, which is a fair cost for fault
analysis resistance. Moreover, it can be checked that the time complexity of our exponentiation is steadier
than the one of the square-and-multiply for which the standard deviation σ [θ] equals 1/(2

√
l).

Table 17.1: Expectation and standard deviation of the double exponentiation multiplications-per-bit
ratio.

l = 512 l = 640 l = 768 l = 896 l = 1024
E [θ] 1.65 1.66 1.66 1.66 1.66
σ [θ] 0.020 0.017 0.017 0.016 0.014

17.6.2 Memory complexity

Our double exponentiation algorithm requires three l-bit registers to store the message and the pair of
powers. If the chain ω is computed on-the-fly then an additional buffer is necessary to store it.

We performed simulations to derive the practical values of the expectation and the standard deviation
of the chain length n∗. For the expectation, we obtained E [n∗] ≈ 2.03 l for l ∈ {512, . . . , 1024}. For the
standard deviation, the obtained values are summarized in Table 17.2. Approximating the distribution

24We only focus on RAM consumption without taking into account the modulus and the exponent (which are usually
stored in non-volatile memory).
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of n∗ by a Gaussian, we get P [n∗ > E [n∗] + kσ [n∗]] =
(
1− erf

(
k/
√

2
))
/2 where erf(·) denotes the error

function. For k = 10 and for l ∈ {512, . . . , 1024}, this probability is lower than 2−80. Consequently, for
l ∈ {512, . . . , 1024}, the probability to have n∗ > 2.2 l is negligible in practice, hence ω can be stored in
a (2.2 l)-bit buffer.

Table 17.2: Standard deviation of the chain bit-length.

l = 512 l = 640 l = 768 l = 896 l = 1024
σ [n∗] 0.015 l 0.013 l 0.011 l 0.010 l 0.010 l

On the whole, our secure exponentiation requires 5.2 l bits of memory when the chain is computed
on-the-fly and it requires 3 l bits of memory when the chain is pre-computed.

For our secure RSA-CRT (see Algorithm 24), the peak of memory consumption is reached in the second
exponentiation while sp and cp must be kept in memory. This makes a total memory consumption of
7.2 l bits with on-the-fly chain computation and of 5 l bits with pre-computed chain.

17.6.3 Comparison with previous solutions
We analyze hereafter the complexity of previous countermeasures in the literature. As explained in
Section 15.8.4, these can be divided into two categories: the extended modulus based countermeasures
and the self-secure exponentiations.

Extended modulus based countermeasures. The time complexity of an extended modulus based
countermeasure (such as the Shamir’s trick or the Vigilant’s scheme) is around the complexity of the main
exponentiation loop(s) since the additional computations are negligible. However, such countermeasures
are not free in terms of timing since the use of an extended modulus slows down the exponentiation.
In fact, the time complexity of a modular multiplication can be written as l2t0 where t0 denotes a
constant time that depends on the device architecture. Denoting by k the bit-length of the modulus
extension, an extended modulus exponentiation has a time complexity of m(l + k)2t0 while a normal
exponentiation has a time complexity of ml2t0. Besides, the modulus extension implies an increase in the
exponentiation execution time by a factor (1 + k/l)2. As an illustration, Table 17.6.3 gives several values
of the induced overhead according to the modulus length and to the extension length. For instance,

Table 17.3: Time overhead (in %) for an extended modulus based modular exponentiation.

l = 512 l = 768 l = 1024
k = 32 (low security) 13 9 6
k = 64 (fair security) 27 17 13
k = 80 (high security) 34 22 16

an RSA 1024 implemented in CRT (l = 512) with extended modulus providing a fair level of security
(k = 64) is about 27% slower than an unprotected one. This time overhead is sizeable; in particular it is
significantly greater than the 10% overhead induced by our countermeasure. However, extended modulus
based countermeasures enables the use of exponentiation algorithms faster that the square-and-multiply
such as the q-ary or the sliding windows methods (see for instance [161]). Roughly, a q-ary exponentiation
has a multiplications-per-bit ratio of 1 + (2q − 1)/(q2q) which is lower than or equal to 1.5, but it has
a higher memory complexity since it requires 2q−1 + 1 registers. The use of a sliding window allows to
slightly improve the time complexity of a q-ary method [145].

The memory complexity of an exponentiation with modulus extension is of nr(l+k) where nr denotes
the number of registers required by the exponentiation algorithm. For an RSA-CRT, the memory com-
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plexity depends on the used countermeasure. For the Vigilant’s scheme, the memory consumption peak
occurs during the second exponentiation while the values S′p, iqr, r, R3 and R4 must hold in memory
(see [242]). This results in a memory consumption of nr(l+k)+(l+k)+3.5 k = (nr+1) · l+(nr+4.5) ·k
bits.

Remark 17.12. We do not detail the memory complexity of the other extended modulus based counter-
measures since, for most of them, it is close to the memory complexity of the Vigilant’s scheme.

Previous self-secure exponentiations. The Giraud’s scheme and the Boscher et al. ’s scheme both
have a multiplications-per-bit ratio constant to 2. This implies an average time overhead of 33% compared
to the square-and-multiply algorithm and of 21% compared to our exponentiation. However, both of these
schemes do not require additional computations contrary to the extended modulus based countermeasures
or to our scheme when the chain is computed on-the-fly. Although these additional computations are
theoretically negligible, they may induce an important overhead for a practical implementation depending
on the device architecture.

In terms of memory, we shall focus on the Giraud’s scheme since it is less consuming than the Boscher
et al. ’s scheme. The secure exponentiation requires two l-bit registers. For the RSA-CRT, the peak of
memory consumption is reached during the two recombinations. For instance, the first recombination
requires (at least) 3l bits of memory while m, Sp and Sq must hold in memory (see [109]) which makes
a total complexity of 7l bits.

Comparison with our solution. Table 17.4 provides a comparison between the Giraud’s scheme, the
Vigilant’s scheme and ours for an RSA 1024 with CRT (i.e. l = 512). For the Vigilant’s scheme, we assume
a modulus extension of {64, 80} bits and a q-ary sliding window exponentiation for q = 1, 2 or 3 [161].
The results given in Table 17.4 show that our countermeasure is currently one of the most competitive
solution to thwart fault analysis for an RSA 1024 with CRT.

Table 17.4: Memory and time complexities of different fault analysis countermeasures for an RSA 1024
with CRT.

Countermeasure Time (106 · t0) Memory (Kb)
Vigilant [242] (q = 1) {484, 511} {2.3, 2.4}
Vigilant [242] (q = 2) {444, 468} {2.5, 2.6}
Vigilant [242] (q = 3) {417, 440} {3.6, 3.7}
Giraud [109] 537 3.5
Ours 443 2.5 (+1.1)

Remark 17.13. The time complexity for the Vigilant’s scheme with sliding widow is computed as follows.
A q-ary exponentiation performs an average of l ·

(
1 + (2q − 1)/(q2q)

)
multiplications [161] and the use

of a sliding window yields an improvement of about 5% for l = 512 [145]. Therefore, the time complexity
of one exponentiation is estimated to 0.95 · (l + k)2t0 · l ·

(
1 + (2q − 1)/(q2q)

)
. Concerning the memory

complexity, the sliding window method requires a total of nr = 2q−1 + 1 registers.
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How to implement coherence checks?
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18.1 Introduction

In this chapter, we address the problem of implementing a coherence check in a secure way with respect
to fault attacks. As we have seen earlier, most countermeasures against fault analysis are based on the
addition of redundancy in the computation in order to check its coherence afterwards. Such a check is
hence a key point of the security of fault analysis countermeasures in practice. It is therefore important
to implement coherence checks in such a way that they cannot be skipped by a fault injection.

The results presented in this chapter have been published in collaboration with Emmanuelle Dottax,
Christophe Giraud and Yannick Sierra in the international workshop in Information Security Theory and
Practices (WISTP 2009) [3]. The proposed method has also been patented in [12].

18.2 Infective procedures vs. checking procedures

Most fault analysis countermeasures can be summarized according to the following principle: some re-
dundancy is included in the computation in order to provide an error detection code c that is expected
to take a certain value c?. At the end of the computation, the code is involved to check the coherence:
if the expected value is obtained then the computation is considered correct. In that case, the result of
the computation is well returned otherwise an error message is returned. This avoids the exposure of
faulty results and hence prevents fault attacks. This general principle is illustrated in Figure 18.1. For
example, the redundancy can be a simple doubling of the computation. In that case, the error detection
code c is the second result and its expected value c? is the first one. Depending on the cryptographic
algorithm, more efficient solutions exist; the countermeasure for RSA presented in the previous chapter
is an example.

The natural way to implement a coherence check is to perform a simple comparison followed by a
conditional branch:

if (c = c?) then return result else return “error”
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result

computation redundancy

return result return “error”

“yes” “no”

c
?
= c?

c

Figure 18.1: General principle of fault analysis countermeasures.

However some authors argued that such simple checking procedures could be easily overcome by fault
injection [249]. In fact, when a conditional branch is executed, the CPU tests the value of some bit of the
status register which depends on the result of the previous instructions. According to the value of this
bit the program either executes the subsequent instructions or it jumps at a given address in the program
code. If a fault is induced in the status register during a conditional branch, the value of the tested bit
may be flipped. In that case, the wrong code section is executed. This way, an attacker may corrupt the
cryptographic computation based on a first fault injection and then, based on a second fault injection,
fool the coherence check such that the erroneous result is returned instead of the error message. Such
an attack is called a second-order fault attack since it requires the injection of two different faults in two
different parts of the computation (see Section 18.3).

In order to prevent such attacks, the authors of [249] introduced the concept of infective computation.
Rather than checking the coherence of the computation, the algorithm is designed in such a way that any
fault corrupting the computation yields a faulty result that is not exploitable by an attacker i.e. that does
not provide any information about the secret key. Such an infective countermeasure for RSA-CRT was
proposed in [249] but it has been shown insecure in [247]. The concept of infective computation was then
applied to classical error detection schemes as replacement of checking procedures. Instead of comparing
the error detection code c to its expected value c?, an infective procedure is involved that ensures the
infection of the result when c differs from c?. Namely a function f(c, c?, result) is always returned that
satisfies:

f(c, c?, result) =

{
result if c = c?,
dummy otherwise,

where dummy denotes a dummy value useless for an attacker.
Two schemes for RSA-CRT based on the Shamir’s trick (see Section 15.8.4) have been proposed that

make use of infective procedures: the BOS scheme [47] and the Ciet and Joye scheme [72]. Unfortunately,
these two schemes have been broken due to flaws in the infective procedures [38,243]. In both cases, the
faults are effectively detected but the infected results f(c, c?, result) leak some information enabling key
recovery. Special care must hence be taken while designing an infective procedure so that infected results
do not leak any information. Moreover, it must be noticed that even a secure infective procedure (in
the sense that infected results do not leak information) may be skipped just as a checking procedure.
Namely, face to a secure infective procedure a second-order fault analysis may still be attempted.

18.3 Second-order fault analysis
An algorithm is said to be first-order resistant when it contains some countermeasure which ensures
that any single error occurring in its execution is not exploitable by an attacker. When a single fault
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is injected and corrupts the cryptographic computation, it is systematically detected (or at least with
high probability) and, based on a checking/infective procedure, the faulty result is either destroyed or
infected.

However, an attacker may defeat such a countermeasure by using a second-order fault analysis, namely
by injecting two faults during the execution. In that case, one of these faults must be dedicated to the
corruption of the cryptographic computation in order to produce an exploitable faulty result. The second
fault is then used to render the countermeasure ineffective. For such a purpose, two approaches are
possible:

— In the first approach, the attacker tries to fool the error detection mechanism. Namely, the second
fault aims at covering the effects of the first fault in such a way that the error detection mechanism
does not detect it while the result of the cryptographic computation remains faulty. To do so, the
attacker needs to precisely control the two fault injections effects. This implies a strong and not
very practical adversary model.

— The second approach consists in directly skipping the coherence verification (or the infection pro-
cedure). Since several experiments have demonstrated the practicability of skipping the execution
of one or more operations (see for instance [32, 140, 149]), this approach corresponds to a weaker
model of adversary and it is then more natural from a practical point of view.

In the following, the fault model corresponding to the latter approach will be referred to as the
corrupt-and-skip fault model. We formalize it hereafter.

Fault model (corrupt-and-skip). Two faults are injected. The first fault can be of any type (instruc-
tions skip, memory modification, etc.), provided it corrupts the cryptographic computation and produces
a faulty result. The second fault allows the attacker to skip any operation or set of contiguous operations
in order to circumvent the coherence check (or the infective procedure).

The literature contains several practical examples of fault attacks. However, to the best of our
knowledge, the paper [140] is the first one that reports a successful experiment of second-order fault
attacks. In this paper, Chong Hee Kim and Jean-Jacques Quisquater explain how they practically
mounted some corrupt-and-skip fault attacks against the first-order resistant CRT-RSA implementations
proposed in [72] and [108]. Their work also includes improvements of the latter first-order countermeasures
to achieve a secure implementation against corrupt-and-skip attacks. Later, the same authors proposed
in [141] an implementation also meant to resist this kind of attacks. Unfortunately, we have shown in [3]
that the proposed countermeasures are actually not intrinsically resistant in the corrupt-and-skip model
and that they may be successfully attacked. In order to circumvent the lack of secure solutions, we have
proposed in [3] a generic way to implement a coherence check that is secure against any attack in the
corrupt-and-skip model. This method is presented in the next section.

18.4 A generic method to check coherence
In this section, we describe a generic method to counteract corrupt-and-skip second-order fault attacks
based on an error detection scheme secure against first-order fault analysis.

18.4.1 Description
As described in Section 18.2, we assume that the error detection scheme computes some redundant value
c which is involved in the checking (or infective) procedure. Thus c is expected to take a given value,
denoted c?, otherwise the checking (resp. infective) procedure returns an error (resp. infects the result).

Our countermeasure is based on a simple mechanism that advantageously replaces the checking (resp.
infective) procedure: given c and its expected value c?, we perform the check c ?

= c? twice while inserting
in between a simple but pivotal statement. The whole procedure is described in the following algorithm.
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Algorithm 27 Lock
Input: result, c and c?

Output: result if c = c? and 0 otherwise

1. if (c 6= c?) then result← 0

2. tmp← result

3. if (c 6= c?) then tmp← 0

4. return tmp

Remark 18.1. The conditional branches in Steps 1 and 3 can be avoided (although not necessary to
thwart corrupt-and-skip second-order fault attacks). Instead, a function f(c, c?, ·) such that:

f(c, c?, x) =

{
x if c = c?

0 otherwise

can be implemented using basic instructions. Such an implementation is detailed in [3].
The whole solution based on the Lock procedure follows the series of steps hereafter. First, the buffer

result is initialized at 0. Then the fault analysis resistant cryptographic algorithm is executed: from a
message m and a key k it computes the result of the cryptographic algorithm and a couple of values (c, c?)
depending on the fault analysis countermeasure. Afterwards, the Lock procedure described in Algorithm
27 is executed and result is eventually returned. If c = c? then Lock returns the content result otherwise
it returns 0. The overall cryptographic implementation resistant against corrupt-and-skip fault attacks
is described in Algorithm 28.

Algorithm 28 KQ-attack resistant RSA
Input: m, P
Output: md mod N

1. result← 0

2. (result, c, c?)← FA-Res-CryptoAlgo(m, k)

3. return Lock(result, c, c?)

This generic solution can be applied to any fault analysis countermeasure based on an error detection
scheme and it is resistant to any corrupt-and-skip attack as shown in the next section.

18.4.2 Security analysis
In the corrupt-and-skip fault model, a first fault is dedicated to the corruption of the cryptographic
computation and a second fault aims to avoid the erasure of the faulty result by skipping some operations.
According to this model, we assume that an attacker can:

— inject a fault in Step 2 of Algorithm 28 producing a faulty result and a faulty pair of checking values
(c̃, c̃?) such that c̃ 6= c̃? (this results from the soundness of the first-order countermeasure that is
used),

— skip a set of contiguous operations of the overall computation.

We demonstrate hereafter that the skipping of any set of contiguous operations of Algorithm 28 cannot
prevent the Lock procedure from erasing the faulty result S̃ (or returning an unexploitable result) while
the faulty checking values c̃ and c̃? are different.

Let us first assume that the adversary skips the entire Step 2 of the Lock procedure. In this case,
Algorithm 28 returns the initialization value of tmp which is unexploitable. On the other hand, if Step 2
of the Lock procedure is not entirely skipped, then either all the previous operations or all the following
operations are properly executed since the set of skipped operations is contiguous. As a result, either Step
1 or Step 3 of the Lock procedure is executed which ensures the result erasure in case of fault detection
(i.e. if c̃ and c̃? are different).
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To conclude, any corrupt-and-skip second-order fault attack implies the return of an unexploitable
output and the attacker gains no sensitive information.
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Chapter 19

Conclusions and perspectives

In this third part, we have investigated fault analysis. After presenting the principle of these attacks,
we have reviewed several attacks and countermeasures for block ciphers and for RSA. We have seen that
securing these algorithms against fault analysis requires the implementation of error detection schemes
to prevent the exposure of faulty results.

The simplest way to detect if an error has corrupted a computation is to perform the computation
twice and to check whether the two obtained results are equal. Such a solution implies a doubling of the
execution time (or of the circuit size in hardware). Doubling the execution time is conceivable for block
ciphers implementation as they are usually quite fast. Nevertheless, an improved solution consists in only
doubling certain rounds of the cipher. In fact, fault attacks against block ciphers usually target the few
last rounds or the few initial rounds of the cipher. Consequently, the overall computation does not need
to be doubled. However, one must be careful while protecting a limited number of rounds to avoid the
induction of any security flaw. We investigated this issue for the DES cipher for which we described an
attack on the middle rounds. Our attack makes it possible to break DES by inducing some faults at the
end of rounds 12, 11, 10 and 9, more or less efficiently depending on the round number and the fault
model. These results allowed us to refine the lower bounds on the number of rounds of DES that should
be protected against fault analysis.

We then addressed the RSA cryptosystem which is a privileged target of fault attacks. Contrary to
block ciphers, a doubling of the computation time is often prohibitive in the case of RSA. As a conse-
quence, some alternative countermeasures were developed during the past years. Two approaches have
been mainly followed: the modulus extension based countermeasures that include redundancy in modular
operations and the self-secure exponentiation algorithms that include redundancy at the exponentiation
level. Both approaches have some assets and drawbacks depending on the implementation context. The
two self-secure exponentiation algorithms that have been previously proposed have a significant timing
overhead compared to classical exponentiation algorithms. Indeed, they require to perform 2 multiplica-
tions per bit of the exponent whereas a classical exponentiation requires 1.5 multiplications per bit of the
exponent on average. Our researches yield a new self-secure exponentiation algorithm which requires an
average of 1.65 multiplications per bit of the exponent. The core idea of our method is to use a double
exponentiation that computes two different powers of a given element. Therefore, we introduced a double
exponentiation algorithm which is based on the construction of a double addition chain for the underlying
pair of exponents. We analyzed the security of our solution vs. fault analysis and we showed how it can
be protected against side channel analysis. We also studied the time and memory complexities of our
countermeasure and we showed that it offers an efficient alternative to the existing schemes. A direction
for further research would be to investigate more efficient double exponentiation algorithms possibly with
the use of pre-computed powers.

Finally, our investigations about fault analysis focused on a practical issue: the implementation of
coherence checks. As we have seen, most countermeasures against fault analysis are based on the addition
of redundancy in the computation in order to check its coherence afterwards. Such a check is therefore a
key point of the security of fault analysis countermeasures in practice. Two approaches have been followed
in the literature for the implementation of coherence checks: simple checking procedures involving a test
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and conditional branch and infective procedures rendering faulty results useless. However both approaches
have been shown to be vulnerable to second-order fault attacks corrupting the computation and skipping
the checking/infective procedure through a second fault injection. We proposed a simple method to
implement a coherence check which counteracts these attacks.
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