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S1. QUASICRYSTAL ENVIRONMENT ANALYSIS

As a first step in generating patchy particle designs, we analysed the local environments in the ideal quasicrystals,
as outlined in Section B of the Methods. For the ideal BCI QC, the eleven environments with coordination number
greater than or equal to two were represented in Fig. 1. In Table S1 we list all the environments along with the
proportions with which they appear in the ideal QC. All of the environments are explicitly represented by a patchy
particle type in the BCI 5P model, except for the environments with a coordination number of 0 or 1.

The environments in the ideal PI QC are given in Table S2. In this case, as we found that a patchy particle model
that represented just the three environments in the icosahedral cluster in Fig. 3a was already able to assemble into
a QC, we did not consider more complex models that attempted to represent more of the environments in the ideal
QC. Particles in these three local environments only represent 49% of the total number in the ideal QC.

Index 7Mneigh Angles Mole fraction Particle type
1 0 0.013

2 1 0.015

3 2 116.57 0.019 B
4 3 116.57%x3 0.096 B
5 4 116.57 x3, 100.81x3 0.427 B
6 4 116.57x5, 63.43 0.154 Y
7 4 138.18, 116.57, 100.81 x4 0.057 P
8 5 138.18, 116.57, 110.91x2, 100.81x4, 58.28x2 0.065 P
9 5 148.28, 116.57x3, 110.91, 100.81x 3, 58.28x2 0.083 G
10 5 116.57x7, 63.43x3 0.011 R
11 6 116.57x10, 63.43%x5 0.016 R
12 6 148.28 %2, 116.57x3, 110.91x2, 108.0 , 100.81x 3, 58.28 x4 0.015 G
13 7 148.28x3, 116.57x3, 110.91x3, 108.0x3, 100.81x 3, 58.28x6 0.028 G

TABLE S1. Local environments in the ideal BCI QC. The number of nearest neighbours is defined as the number of particles
within a distance of 1.4 (this cutoff provides a clear distinction between first and second coordination shells, see Extended
Data Fig. 6). The angles formed between a particle and its pairs of nearest neighbours are provided in the third column. The
proportion with which each local environment appears in the ideal BCI QC is given in the fourth column. The last column
gives the patchy particle type by which we represent an environment in the BCI 5P model (B: blue; Y: yellow; P: purple; R:
red; G: green).



Index Nneigh Angles Mole fraction Particle type
1 4 138.18x3, 70.53x3 0.0197

2 5 138.18x5, 70.53%5 0.2840 G
3 5 138.19x3, 125.26x2, 70.53x 3, 69.09x2 0.0194

4 6 138.18x4, 125.26x3, 109.47, 70.53x5, 69.09x2 0.0833

5 6 138.18x6, 109.47x2, 70.53x7 0.3041

6 6 138.18x3, 125.26x4, 108.00, 70.53x3, 69.09x4 0.0187 R
7 7 138.18x5, 125.26x4, 109.47x2, 70.53x8, 69.09x2 0.0486

8 7 138.18x7, 109.47x4, 108.00, 70.53x10 0.0174

9 7 138.18x%3, 125.26x6, 108.00x3, 70.53x3, 69.09x6 0.0278 R
10 8 138.18x9, 109.47x6, 70.53x12, 41.81 0.1569 B
11 10 138.18x12, 109.47x12, 70.53x24, 41.81x3 0.0148

12 12 180.00x2, 138.18x15, 109.47x11, 70.53x24, 41.81x7 0.0024

13 15 180.00x5, 138.18 %20, 109.47x30, 70.53x35, 41.81x15 0.0018

14 20  180.00x10, 138.18x30, 109.47x60, 70.53x60, 41.81x30 0.0009

TABLE S2. Local environments in the PI QC. The number of nearest neighbours is defined as the number of particles with a
distance of 1.2 (i.e., up to the second peak in the PDF, see Extended Data Fig. 7). The angle formed between a particle and
all its pairs of nearest neighbours are provided in the third column. The proportion with which each local environment appears
in the ideal PI QC is given in the fourth column. The last column gives the patchy particle type by which we represent an
environment in the PI 3P model (G: green; R: red; B: blue). Note that in the PI 3P model we only represent those environments
that are part of the icosahedral cluster in Fig. 3a, and do not introduce particle types for the new environments that appear
in the matrix between these clusters (represented as yellow (environment 5) and pink in Extended Data Fig. 3). We also
do not attempt to represent the high coordination particles that occupy positions at the centre of the icosahedral clusters
(environments 12-14).

S2. PARTICLE DESIGNS

The details of the patchy particle properties for all the model designs are given in Tables S3 to S8. The particles
have point group symmetries that are subgroups of the I point group, and when the particles are appropriately
oriented (e.g. so that the particle’s symmetry elements are aligned with I), their patch vectors are only directed
along the 2-, 3- and 5-fold axes of symmetry for the BCI examples, and the 2- and 3-fold axes for the PI examples, as
illustrated in Extended Data Fig. 8¢ and f. The angles associated with the environments in Tables S1 and S2, thus,
all correspond to angles between different symmetry axes of Ij,.

The preferred torsional angles ensure that when a patch-patch bond is formed the patches of both particles can
point along the symmetry axes of I. Thus, the torsional constraints encourage the propagation of long orientational
order consistent with the Ij point group or a subgroup thereof. Note that the allowed offset angles might only
represent a subset of those that would ensure propagation of the orientational order, because these are the only ones
that are associated with the environments in the ideal quasicrystals and thus encode certain structural preferences.
For example, the torsional offset angles for patch 1 of the blue particles (which align along 5-fold axes) represent
only two of the five potential angles consistent with icosahedral orientational order (the other three would be +36°
and 180°). Similarly, patches 4-6 of the red particles of PI 3P, which align along 2-fold axes, only have a single
preferred torsional angle of 0° (rather than also 180°) as only the former is consistent with the red particles forming
dodecahedral clusters.

Note that some patches in the BCI 5P, BCI 3P and BCI 2P (namely (some of) those associated with the blue
particles) models can bond with patches on multiple particle types. This multiplicity gives a potential source of
configurational entropy that may help to stabilize the quasicrystal, in addition to the configurational entropy associated
with the different ways of arranging the dangling bonds. However, as illustrated by the BCI 2P-mod and all the PI
systems this is not a necessary feature to observe IQC formation.



Particle Patch Patch vector Reference vector Offset Specificity
type index patch angle
Blue (B) Py (-0.850651,0.525731,0.0 ) P3 +108.0 Py °Py® (1.0), PL (1.2)
Csv P} (0.525731,0.0,-0.850651) P3 +108.0 Py %Py (1.0), PR (1.2)
196/284 P} (0.0,-0.850651,0.525731) P3 +108.0 P53 Py® (1.0), Pk (1.2)

PL  (0.577350,0.577350,0.577350) Ph +60.0 180.0  P%,P°(1.0), PL(1.2)
Yellow (Y) Py (-0.525731,0.0,-0.850651) - - Py ? (1.0)
Cay P% (0.850651,-0.525731,0.0) P% 0.0 P52 (1.0)
12/284 P3 (-0.525731,0.0,0.850651) - - PL % (1.0)

Py (0.850651,0.525731,0.0) P% 0.0 Pp? (1.0)
Purple (P) P} (-0.850651,0.525731,0.0) P2 0.0 P37 (1.0)
Ca P2 (0.850651,0.525731,0.0) Ph 0.0 P3* (1.0)
12/284 P (0.0,1.0,0.0) P2 0.0, 180.0 P{ (1.0)

Py (0.0,-0.356822,-0.934172) P2 +60.0, 180.0 P% (1.0)

P2 (0.0,-0.356822,0.934172) P +60.0, 180.0 P% (1.0)
Red (R) P (-0.525731, 0.0, -0.850651) - - P ? (1.2)
o P3 (0.850651, -0.525731, 0.0) Pk 0.0 P5>* (0.7)
24/284 Py (-0.525731, 0.0, 0.850651) Pk 0.0 P5>* (0.7)

P& (0.0, -0.850651, 0.525731) P} 0.0 PS> (0.7)

2 (0.850651, 0.525731, 0.0) P} 0.0 PS> (0.7)

P§ (0.0, 0.850651, 0.525731) PL 0.0 P5>* (0.7)
Green (G) Pg (-0.850651, 0.525731, 0.0) PG 0.0 P7 °(0.7)
Cso P% (0.0, -0.850651, 0.525731) P% 0.0 Py ¢ (0.7)
40/284 Py (-0.809017, -0.309017, 0.50) P% 0.0 P%>% (0.7)

P¢ (0.850651, 0.525731, 0.0) PL 0.0 PZ7° (0.7)

P (0.0, 1.0, 0.0) PL 0.0 P%>% (0.7)

P%  (0.809017, -0.309017, 0.50) P% 0.0 P> (0.7)

Pg (0.0, -0.356822, -0.934172) P& +60.0, 180.0 P (1.2)

TABLE S3. Description of the geometry and specificity of the particle types of the BCI 5P model. For each particle type, the
positions of the patches on the particle surface are specified by the patch unit vectors. For each patch, the reference patch and
offset angles used for evaluating the torsional interactions are provided. The specificity of each patch, along with the interaction
strength parameter €,5 in parentheses, are given in the last column. To simplify the implementation of the model, torsional
contributions are not imposed on the blue-yellow and blue-red interactions. The strength of the green-red and green-green
interactions are reduced to 0.7 so that the assembly of the triacontahedral clusters occurs in a similar temperature window
as the assembly of the remaining particles. Blue-green and blue-red interactions were enhanced to 1.2 to disfavour the phase
separation of blue particles.



Particle Patch Patch vector Reference Offset Specificity
type index patch angle
Blue (B) Pg (-0.850651, 0.525731, 0.0 ) Pg +108.0 Py ? (1.0), PL (1.2)
Cs P3 (0.525731, 0.0, -0.850651) P3 +108.0 Py ? (1.0), P& (1.2)

P (0.0, -0.850651, 0.525731) P3 +108.0  P5? (1.0), PR (1.2)

Pg  (0.577350, 0.577350, 0.577350) P§ +60.0 180.0  PE(1.0), P&(1.2)
Red (R) Pg (-0.525731, 0.0, -0.850651) - - Py ? (1.2)
Csy P% (0.850651, -0.525731, 0.0) - - P % (0.92)

Py (-0.525731, 0.0, 0.850651) - - P52 (0.92)

P& (0.0, -0.850651, 0.525731) - - P % (0.92)

P (0.850651, 0.525731, 0.0) - - P % (0.92)

P% (0.0, 0.850651, 0.525731) - - P % (0.92)
Green (G) P§ (-0.850651, 0.525731, 0.0) - — P ° (0.92)
Csy P (0.0, -0.850651, 0.525731) - — P; % (0.92)

P (0.850651, 0.525731, 0.0) - - P; % (0.92)

P (0.0, -0.356822, -0.934172) P& +60.0, 180.0 P (1.2)

TABLE S4. Description of the geometry and specificity of the particle types of the BCI 3P model. For each particle type,
the positions of the patches on the particle surface are specified by the patch unit vectors. For each patch, the reference
patch and offset angles used for evaluating the torsional interactions are provided. The specificity of each patch, along with
the interaction strength parameter €,3 in parentheses, are given in the last column. In this model, torsional angles are only
imposed for blue-blue and blue-green interactions. The strength of the red-green interactions are increased compared to the
BCI 5P system, as the triacontahedra are now stabilized by fewer bonds.

Particle Patch Patch vector Reference Offset Specificity

type index patch angle

Blue (B) P§ (-0.850651, 0.525731, 0.0 ) P +108.0 Py ? (1.0)

Cs P} (0.525731, 0.0, -0.850651) P3 +108.0 P52 (1.0)
P} (0.0, -0.850651, 0.525731) P +108.0 P53 (1.0)
Pg  (0.577350, 0.577350, 0.577350) Py +60.0, 180.0 Pg (1.0), P&(1.15)

Green (G) P§ (-0.809017, -0.309017, 0.50) P¢ 0.0 P57 (1.0)

Cso P% (0.0, 1.0, 0.0) P 0.0 P % (1.0)
P, (0.809017, -0.309017, 0.50) P 0.0 P 3 (1.0)
P (0.0, -0.356822, -0.934172) PZ +60.0, 180.0 Pg (1.15)
Py (-0.850651, 0.525731, 0.0) - - ~

TABLE S5. Description of the geometry and specificity of the particle types of the BCI 2P model. For each particle type, the
positions of the patches on the particle surface are specified by the patch unit vectors. For each patch, the reference patch and
offset angles used for evaluating the torsional interactions are provided. The specificity of each patch, along with the interaction
strength €, in parentheses, are given in the last column. Patch 5 of the green particles P2, is a non-interacting patch that was
used only as a reference vector for calculating the torsional angles associated with bonds formed by patch Pg.



Particle Patch Patch vector Reference  Offset Specificity
type index patch angle
Green (G) P§  (-0.577350, -0.577350, -0.577350) P 0.0,-168.5 P3 ° (1.0)
Cse PZ  (-0.577350, -0.577350, 0.577350) P 0.0,-168.5 P ® (1.0)
P (0.0, 0.356820, -0.934173) P 0.0,-168.5 P (1.0)
P (0.0, 0.356817, 0.934174) PZ 0.0-168.5 P ® (1.0)
P (0.356817, 0.934174, 0.0) P 0.0,-168.5 P (1.0)
Red (R) Pg (-0.356817, -0.934174, 0.0 ) PL 0.0 Py” (1.0)
Csv P% (0.0, -0.356817, -0.934174) PL 0.0 Py5? (1.0)
P3 (-0.934174, 0.0, -0.356817) P%L 0.0 PL? (1.0)
P& (0.309023, -0.5, 0.809018) PL 0.0 Py ¢ (1.0)
P% (-0.5, 0.809018, 0.309023) P 0.0 Py ¢ (1.0)
P$ (0.809018, 0.309023, -0.5 ) PL 0.0 Py ¢ (1.0)
Ph (0.577350, 0.577350,0.577350) — — —
Blue (B) Pt (-0.577350, -0.577350, -0.577350) P% 0.0 Py ? (1.0)
Cay P2 (-0.356817, -0.934174, 0.0) Py 0.0 Pr % (1.0)
P%  (0.577350, -0.577350, -0.577350) — — P (1.0)
Pg (-0.934173, 0.0, 0.356820) — — P % (1.0)
P%  (0.577350, 0.577350, -0.577350) Py 0.0-168.5 Pg° (1.0)
PS (0.934174, 0.0, 0.356817) P 0.0-168.5 P& ° (1.0)
P% (-0.356820, 0.934173, 0.0) Pt 0.0-168.5 P§° (1.0)
P% (0.0, 0.356820, 0.934173) P2 0.0,-168.5 PG ® (1.0)

TABLE S6. Description of the geometry and specificity of the particle types of the PI 3P WT model. For each particle type, the
positions of the patches on the particle surface are specified by the patch unit vectors. For each patch, the reference patch and
offset angles used for evaluating the torsional interactions are provided. The specificity of each patch, along with the interaction
strength parameter £, in parentheses, are given in the last column. Patch 7 on the red particles P% is a non-interacting patch
that was used only as the reference vector for calculating the torsional angles associated with bonds formed by the remaining
six patches on red particles P%{_G. The oLy r—r parameter for the red-red interactions was set to 0.7ory (where ory is the value
used for all other interactions and that was taken as the distance unit) to take into account that the distance between red-red
particles is about 0.7 smaller than the remaining interparticle distances in the target ideal primitive IQC. To simplify the
implementation of the model, torsional contributions to the bonds formed by patches P3, and Pg are not imposed. Simulations
using this model with all torsional contributions removed (PI 3P NT) also assemble into an IQC.

Particle Patch Patch vector Reference  Offset Specificity

type index patch angle

Green (G) P& (-0.577350, -0.577350, -0.577350) P 0.0-168.5 Py ° (1.0)

Csy PZ  (-0.577350, -0.577350, 0.577350) P 0.0,-168.5 P4 ¢ (1.0)
P (0.0, 0.356820, -0.934173) P 0.0-168.5 P5 % (1.0)
P (0.0, 0.356817, 0.934174) Pg 0.0,-168.5 P5 ¢ (1.0)
P (0.356817, 0.934174, 0.0) P 0.0,-168.5 P4 ¢ (1.0)

Blue (B) Pt (0.577350, -0.577350, -0.577350) — — Pg ° (1.0)

Cay P3 (-0.934173, 0.0, 0.356820) — — P % (1.0)
P%  (0.577350, 0.577350, -0.577350) Py 0.0-168.5 Pg° (1.0)
P (0.934174, 0.0, 0.356817) P% 0.0,-168.5 PG ® (1.0)
Pg (-0.356820, 0.934173, 0.0) Py 0.0-168.5 P ° (1.0)
Pg (0.0, 0.356820, 0. 934173) P3 0.0,-168.5 Pg° (1.0)

TABLE S7. Description of the geometry and specificity of the particle types of the PI 2P WT model. For each particle type,
the positions of the patches on the particle surface are specified by the patch unit vectors. For each patch, the reference patch
and offset angles used for evaluating the torsional interactions are provided. The specificity of each patch, along with the
interaction strength parameter £, in parentheses, are given in the last column. Note that the two patches on the blue particles
that only interact with red particles in the 3P model are no longer needed, so that now the blue particles have only six patches,
instead of eight. To simplify the implementation of the model, torsional contributions to the bonds formed by patches P& and
P% are not imposed. Simulations using this model with all torsion contributions removed (PI 2P NT) also assemble into an

1QC.



Particle Patch Patch vector Reference Offset Specificity

type index patch angle

Blue (B) Py (-0.850651, 0.525731, 0.0 ) Pg 0.0,£108.0 P ° (1.0)

Cs. P% (0.525731, 0.0, -0.850651) P 0.0,4108.0 Py ? (1.0)
P} (0.0, -0.850651, 0.525731) Pt 0.0,4£108.0 P5? (1.0)
PE  (0.577350, 0.577350, 0.577350) Py +60.0, 180.0 P¢(1.15)

Green (G) Pg (-0.809017, -0.309017, 0.50) P 0.0 P ° (1.0)

Cs. PZ (0.0, 1.0, 0.0) P¢, 0.0 P 3 (1.0)
P2, (0.809017, -0.309017, 0.50) P¢ 0.0 P& % (1.0)
P¢ (0.0, -0.356822, -0.934172) PZ +60.0, 180.0 P} (1.15)

P, (-0.850651, 0.525731, 0.0) - - -

TABLE S8. Description of the geometry and specificity of the particle types of the BCI 2P-mod system that is a modification
to the BCI 2P model in order to allow realization using DNA origami. For each particle type, the positions of the patches
on the particle surface are specified by the patch unit vectors. For each patch, the reference patch and offset angles used for
evaluating the torsional interactions are provided. The specificity of each patch, along with the interaction strength e, in
parenthesis, are given in the last column. Patch 5 of the green particles P is a non-interacting patch that was used only as
a reference vector for calculating the torsional angles associated with bonds formed by patch Pg. The modifications were to
allow three equivalent offset angles for patches P]13_3 and to not allow patch P& to interact with copies of itself. The structural
effects of these modifications are illustrated in Fig. S1.

FIG. S1. Projection of the a BCI 2P-mod and b BCI 2P models along the five-fold axis. The distance between the dodecahedra
is appreciably shorter in the BCI 2P-mod system. Blue and green particles are in similar proportion in the BCI 2P-mod model,
whereas blue particles are more abundant in the BCI 2P model (about 60%). Blue-blue bonds are directed always along the
five-fold axes in the BCI 2P-mod system, whereas in the original BCI 2P model blue-blue bonds (associated with patch 4) can
also be directed along the three-fold axes.



System Thue  Tarowtn  Nfnal Composition

BCI 5P 0.087 0.090 70000 0.72 B, 0.009 Y, 0.013 P, 0.10 R, 0.16 G
BCI 3P 0.087 0.088 53500 0.72 B, 0.11 R, 0.17 G

BCI 2P 0.086 0.089 77500 0.57 B, 0.43 G

BCI 2P-mod 0.089 0.092 48200 0.52 B, 0.48 G

PI 3P WT 0.114 0.125 66000 0.45 G, 0.16 R, 0.39 B

PI 3P NT 0.118 0.128 66 000 0.45 G, 0.16 R, 0.39 B

PI2P WT 0.110 0.115 70500 0.54 G, 0.46 B

PI 2P NT 0.113 0.118 67500 0.54 G, 0.46 B

TABLE S9. Details of the main simulations used for each system. Ty, . is the temperature used for the initial nucleation of a
solid cluster. Ty owen is the temperature used for the growth of that nucleus into a large assembly. Ngna) is the approximate
final size of the solid cluster. The composition of a cluster of size Nfina1 is given in the last column. The structural and dynamic

analysis of the resulting IQCs was performed at T3, quwn-

S3. FURTHER RESULTS
A. Effects of temperature

For the nucleation stage of our simulation the temperature was chosen to be as high as possible consistent with
nucleation on reasonable simulation time scales. This choice makes it likelier that only a single cluster will nucleate.
For the BCI 5P system, the estimates of the melting point in Section S4 suggest this temperature probably corresponds
to a supercooling in the range 10-20%.

For the growth stage of our simulations the temperature was increased slightly, the aim being to use a temperature
as high as possible consistent with reasonable growth rates on the simulation time scales. This choice ensures a high
degree of order in the growing clusters, as well as preventing nucleation of further clusters. Preliminary simulations
at lower temperatures typically led to more defective quasicrystals with less sharp diffraction patterns. Note that as
our simulations were in the NVT ensemble, the concentration of particles in the fluid phase decreases as the cluster
grows. At the end of our simulations, although the clusters were still growing, typically the growth rate had become
extremely slow because of the low density of particles in the fluid. At longer times we would expect the growth to
stop when equilibrium between the solid cluster and the fluid had been reached.

The specific temperatures used in the nucleation and growth stages of our main simulations are given in Table S9
for all systems.

The dynamic properties of the quasicrystals are likely to be particularly sensitive to temperature. To illustrate
this, we also evaluated the van Hove autocorrelation function for the BCI 5P system at a higher temperature than
reported in Extended Data Fig. 9, namely at T = 0.096 rather than 0.090. As expected, the mobility of the particles
is higher at higher temperature, but with the difference in mobility between the blue matrix particles and the red and
green particles that form the triacontahedral clusters still very pronounced (Fig. S2).

B. Effects of composition

In the results reported in the main text, when choosing the initial composition of the fluid the aim was to match the
preferred composition of the quasicrystal. In this way, the composition of the fluid in our NVT simulations remains
roughly constant as the quasicrystalline cluster grows.

The compositions of the final clusters are given in Table S9. Some features are easy to rationalize. For example, in
the PI 2P systems, the patches on the blue particles can only interact with the patches on the green particles and vice
versa. Full bonding could only potentially therefore happen when the number of blue patches and green patches in
the system is equal. This occurs when the mole fraction of green particles is 6/(6 + 5) = 0.545; this is the composition
observed in simulations. In the PI 3P systems, the ratio of blue to green particles is the same. For the BCI 5P,
3P and 2P systems, such arguments cannot be applied to the overall system as a number of patches have multiple
interaction partners. However, the ratio of red to green particles would be expected to be 3:5 as is approximately
observed. Finally, for the BCI 2P-mod system, the blue and green particles each have one patch that can interact
with each other, thus suggesting an equimolar composition, as is close to being observed.

Here we also report the results of additional simulations with different compositions. Firstly, we were interested
to see what would happen in simulations of one-component systems of some of our particles. We first considered
a system of just blue BCI particles (with torsions). In particularly, we were interested whether they might form a
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FIG. S2. Effect of temperature on the dynamics of the BCI 5P model. The van Hove autocorrelation function is shown for
two different temperatures, T*=0.090 and T*=0.096. As expected, mobility is higher at higher temperatures, but the main
features of the van Hove function are similar in both cases. The mobility of the green and red particles (that are often found
forming triacontahedra) is much lower than that of the blue particles at both temperatures. Yellow and purple particles are
incorporated to the IQC cluster in very low concentrations and for this reason data are not shown for these two particle types.

one-component quasicrystal or whether they would form a periodic crystal instead. The particles have C3, symmetry
with the relationship of the patch vectors to the icosahedral point group as illustrated in Extended Data Fig. 8e; i.e.
when appropriately oriented, patch 4 points along a three-fold axis of I, and patches 1-3 along five-fold axes. The
torsional interactions ensure that global orientational order is maintained as a cluster of blue particles grows. The
question then is whether the growth leads to the relevant patch vectors being equally likely to point along any of the
three- and five-fold axes as in the IQC, or whether they only point along a subset associated with a subgroup of 1.

Our simulations of this system always led to the nucleation and growth of cubic BC8 crystals (Fig. S3a). The BC8
crystals form as this allows the particles to be fully bonded, and are thus expected to be significantly lower in energy
than potential competing IQCs. In the crystal, the patch 4 vectors only point along the four three-fold directions that
are retained in the cubic subgroups of I;, (patches 1-3 are equally likely to point approximately along all six five-fold
directions of Ij,). Interestingly, the BC8 crystal has been suggested to be an approximant of a putative tetrahedral
icosahedral quasicrystal.!

It is also noteworthy that the geometric properties of a patchy-particle model previously designed to form BCS8
crystals are very similar to the blue particles,? the main difference being that distinct patchy particles were used for
the two enantiomeric environments in the crystal, one with a preferred torsional offset angle of 108° for patches 1-3
and the other with —108°, whereas the BCI blue particles allow £108°.

The second one-component system that we considered was of modified BCI 2P green particles. The three self-
interacting patches of the green particles would just lead to the assembly of a fluid of dodecahedral clusters in the
absence of other particles. We therefore modified patch 4 to allow it to interact with patch 4 on other green particles.
The assemblies that resulted are shown in Fig. S3b. Again a cubic crystal resulted. It can be considered as a body-
centred-cubic packing of dodecahedra. Each dodecahedra is directly bonded to the eight dodecahedra surrounding it
by patch 4 bonds along the cubic three-fold directions. The crystal is not fully bonded, as not all patch 4’s can be
bonded.
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FIG. S3. a, A BC8 crystal grown from a fluid of pure blue BCI particles viewed along a three-fold axis. All particles are
4-coordinate. b, A cubic crystal grown from modified BCI 2P green particles viewed along a three-fold axis. The crystal is
a body-centred cubic packing of dodecahedra. The particles are modified to allow patch 4 to interact with patch 4 on other
green particles.

Secondly, we checked the sensitivity of IQC formation to the composition of the initial fluid mixture by performing
additional simulations of the BCI 2P and PI 2P WT systems. In the case of the BCI 2P system we ran additional
simulations with blue particle mole fractions of 0.3 and 0.83 (this compares to the preferred composition of 0.57).
In both cases, IQCs still assembled, albeit at a slightly lower temperatures and with quasicrystal compositions that
were closer to but different from the preferred composition, namely 0.45 and 0.62, respectively. For this system, the
quasicrystal composition effectively controls the distance between the green dodecahedral clusters. As long as the
proportion of clusters is still high enough to ensure that the blue matrix particles retain icosahedral orientational
order (rather than adopting cubic BC8 order), quasicrystallinity is to be expected.

As a contrasting example, we also ran simulations of the PI 2P WT system with green particle mole fractions of
0.3 and 0.8, compared to a preferred composition of 0.54. Here, both the green and blue particles are part of the
matrix. Again, IQCs still formed from these mixtures with the green particle mole fractions in the quasicrystals being
0.48 and 0.58, respectively. The reduced variation in the quasicrystal composition compared to the BCI 2P results
was expected, given that there is no equivalent of the structural mechanism for varying the quasicrystal composition
that is available to BCI 2P. Furthermore, the degree of incomplete bonding is expected to increase as the composition
deviates further from the ideal value of 6/11 = 0.545 that would potentially allow all patches to be bonded.

The above results confirm that IQC formation is robust to large changes in the fluid composition.

We should note that because the composition of the IQC in the above NV'T simulations does not match the fluid,
the composition of the fluid will change as the quasicrystal grows. This can lead to growth stopping if the fluid becomes
too depleted in the minority species. Also, in the BCI 2P example with excess blue particles (the 0.83/0.17 blue/green
mixture) there is potential competition with the BC8 crystal that can be formed purely from blue particles. The fluid
first nucleated an IQC cluster, showing even at this composition IQC formation is preferred over phase separation;
the greater strength of the blue-green interactions (Table S5) helps to discourage this phase separation. However,
when the fluid was running out of green particles, grains of the BC8 crystal made of blue particles started to form on
the cluster surface.
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C. Effects of torsions

As was noted in the main text, the main BCI systems were not able to form quasicrystals without a torsional
component to the potential. In all the BCI systems (except BCI 2P-mod) all the patches of the blue particles are
able to self-interact. Therefore, to suppress any tendency to phase separate, and to favour the incorporation of the
icosahedral clusters into the blue matrix, the strength of the blue-red and blue-green interactions were enhanced.

Two clusters that were grown without torsions for the BCI 5P system are illustrated in Fig. S4. In both examples,
the lack of torsions allows the blue particles to form alternative crystalline forms that only incorporate a relatively
small number of icosahedral clusters. In Fig. S4a the blue particles form a BC8 crystal. In Fig. S4b the blue particles
form a distorted hexagonal diamond crystal where patches 1-3 form the bonds within the hexagonal layers, and patch
4 the interlayer bonds. In both cases, orientational coherence is lost between the crystalline matrix and incorporated
icosahedral clusters (see the bottom panel of Fig. S4c).

Interestingly, the dihedral angle distributions for the blue-blue bonds in the BC8 case are very similar to those in
the BCI QC. This is consistent with the features of the blue particles noted in the previous section.

In the BCI 2P-mod system, one of the modifications is to restrict patch 4 of the blue particles to only bind to the
relevant patch on the green particles and not to itself (Table S8). This change hence prevents the system being able
to form a BCS8 crystal purely from blue particles, and hinders phase separation more generally. For this reason, we
also tested whether the BCI 2P-mod system might be able to form a quasicrystal when the torsional interactions were
turned off. In this case, an IQC was still able to form, due to the lack of competing crystalline forms.
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FIG. S4. a and b, Two examples of clusters grown with the BCI 5P model without torsion contributions to the energy. In
both examples triacontahedra clusters form successfully, but blue particles tend to phase separate, forming small crystals, such
as BC8 in a and a stacking of hexagonal layers (somewhat deformed to adapt to the blue particles’ deviations from regular
tetrahedral geometry) in b. These results strongly suggest that torsional interactions are required when the particles can form
alternative ordered structures. ¢, Probability distribution of the dihedral angles in bonds formed by blue particles in the
clusters a (blue line) and b (red line), as compared to those for the IQC formed with the BCT 5P model (black line). Py — P&
bonds exhibit quite flat distributions that evidence that the blue particles are not able to bind with the right orientation to
green particles in the triacontahedral clusters. Whereas the cluster shown in a exhibits dihedral distributions for the blue-blue
bonds that are very similar to those of the IQC obtained with the BCI 5P model (albeit with somewhat less sharp peaks), the
b cluster exhibits an extra peak for the P11373 - P]I;3 bonds.

The main difference in the PI models that allows them to form QCs without a torsional component to the potential
is the binary nature of the matrix—as there is no particle for which all patches can be self-interacting, any competing
crystalline structure would have to be more complex than the BCS8 crystal seen for the BCI systems and involve at least
two types of particles. There must be sufficient specificity in the patchy interactions of the blue and green particles
that precludes alternative crystalline forms even in the absence of torsions. Similar behaviour has been seen before in
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crystal-forming patchy-particle models.? A ternary clathrate-forming model was still able to form the target crystal
in the absence of torsions, but the removal of the torsions caused the BC8 model to also form hexagonal diamond
crystallites. Similarly, a recent paper introduced a scheme to design patchy particle systems (without torsions) to
stabilize a target crystal by systematically increasing the specificity (including by introducing new particles types)
until only the target structure could assemble.?

D. Effects of patch width

The effects of the patch width parameter have been considered in previous simulations of patchy-particle self-
assembly with variants of the current potential. ® Where the patch vector geometry exactly matches a target structure,
as is the case here, the target structure remains the favoured ordered form as the patch width is decreased. The main
effects of reducing the patch width are instead to reduce the kinetic accessibility of the target state and to reduce the
temperature at which it becomes stable with respect to a low-density fluid (the narrower patches mean condensed
states have less vibrational entropy). As the patch width increases, the directionality of the interactions becomes
less pronounced, and hence, at a certain point, there will generally be a crossover to the structures favoured by
a more close to isotropic potential. When the patch geometry does not perfectly match any target structure, the
dependence of assembly behaviour on the patch width can be more complex. For example, this is the case for the
two-dimensional patchy particles with five regularly spaced patches that form a dodecagonal quasicrystal for a limited
range of patch width and temperature. In this system, the crystalline ground state changes from one which has five
imperfectly-oriented bonds to one that has three perfectly-oriented bonds as the patch width decreases.”®

In the results reported so far, we have used an intermediate value of the patch width, namely oan, = 0.3, where
the patches are sufficiently narrow to favour the target structure, but whilst being wide enough to retain reasonable
assembly kinetics. We expect the preference for IQC formation to be unchanged by narrowing the patch width and
to continue until the potential becomes insufficiently directional as the patch width increases. We checked that this
scenario holds by running simulations for the PI 3P NT system at different patch widths. At ., = 0.15 IQC
formation still occurs albeit with a significantly smaller growth rate. Similarly, at oun, = 0.5 an IQC is also able to
assemble. However, at 0,4, = 0.6 the assembled structure no longer exhibited any global orientational order.

E. Indexing diffraction patterns

The peaks in the diffraction pattern can be assigned using basis vectors along the six five-fold symmetry axes of a
regular icosahedron; i.e.

6
Q=a")» nb;, (S1)
=1
where
b1 = (1>T> O) b2 = (T7 07 1) (82)
b3 = (07177—) b4 = (_177—70) (83)
bs = (,0, 1) be = (0,~1,7). (S4)

This basis corresponds to the icosahedron being oriented with two-fold axes along z, y and z. The set of six integers
(n1ngnsngnsng) then uniquely identifies a peak.
An alternative scheme is to use basis vectors along z, y and z, but of two lengths (1 and 7); i.e.

Q=ca*(h+hrk+krl+1UT). (S5)

In this scheme, peaks are labelled using the notation (h/h’' k/k’1/1"). The relationship between the two sets of indices
is that

2ny = h+ K 2ny = —h+k (S6)
2712 = l + h/ 2715 = 71 + h/ (87)
oy =k 4+ 1/ g = —k + 1. (S8)

As the n; must be integers, the above equations place restrictions on the possible values of h, b/, k, k', [, I'.
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All such Q vectors can potentially give rise to peaks in the diffraction pattern for a primitive IQC (although the
intensity for most will be too small to be observed). By contrast, for body-centred and face-centred icosahedral (FCI)
QCs only a subset of these Q are allowed. For BCI those for which h + k + 1 (or equivalently b’ + k' 41" or 3, n;) is
even are allowed. And for a FCI QC, all indices must be even, and h+{+h'+ k" and h+k+1U'+ k' (and I+ k+h' +1)
must be a multiple of 4. These differences can help to identify an IQC as primitive, body-centred and face-centred
based on their diffraction patterns. The patterns along the two-fold axis display the most obvious differences.

As well as the above, indexing the diffraction patterns is aided by computing

Qperp = (W = hr)i+ (K —k7)j+ (' = In)k (S9)

for possible Bragg peaks, as the intensity is expected to be greatest for those with small Qperp.
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FIG. S5. Indexing of the positive quadrant of the two-fold diffraction patterns for example a BCI and b PI systems. The = and
y axes are labelled with the h/h’ and k/k’ values that index the peaks (I/I' = 0/0). a(i), A BCI indexing scheme can account
for all the peaks in the BCI 5P system. a(ii), However, when this scheme is applied to the BCI 2P-mod system, there are
additional peaks that satisfy the BCI extinction condition—one is highlighted. a(iii), Instead, all the peaks can be accounted
for using a primitive indexing with apr = Tascr. b(i), A primitive indexing scheme well describes the PI 2P WT system. b(ii),
The PI 3P WT has a more well-resolved diffraction pattern, and although the primitive indexing scheme can account for the
most intense and many of the weaker peaks, peaks such as those highlighted are not explained. b(iii), Instead, a FCI indexing
scheme with arcr = 2ap1 enables the pattern to be fully indexed.

In Fig. S5a(i) we show an indexed two-fold diffraction pattern for the BCI 5P system for the +z/+y quadrant. We
use the (h/h' k/k'1/l") notation. All peaks in the BCI pattern satisfy b’ + k' 4+ 1" is even. Together with the pattern’s
similarity to that for the ideal BCI QC (Extended Data Fig. 2), this provides strong evidence that this system indeed
has BCI character.

The diffraction pattern for the BCI 2P-mod system is more complex. Although the most intense peaks are the
same as for the BCI 5P system, there are additional weaker peaks that cannot be indexed using the BCI indexing
scheme. For example, in this scheme the highlighted peak in Fig. S5a(ii) would be indexed as (1/1 1/2 0/0) but this
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would lead to non-integer n;. However, these peaks can be satisfactorily indexed if a primitive indexing scheme is
used with a scaling by 7, i.e. ap; = Tapcr (Fig. S5a(iii)), where a is the hypercubic lattice parameter. For example,
the highlighted peak now occurs at (1/2 2/3 0/0).

The diffraction pattern for the PI 2P WT system is shown in Fig. S5b(i). This can be satisfactorily indexed
assuming a primitive hypercubic lattice. The most intense peaks include those that are common with the BCI pattern
and have all even indices (e.g. (0/0 4/6 0/0)), as well as new peaks that have odd indices (e.g. (1/2 2/3 0/0)). These
intense peaks are characteristic of a primitive IQC (see, for example, the diffraction pattern for the ideal primitive
IQC in Extended Data Fig. 5).

The PI 3P WT diffraction pattern shown in Fig. S5b(ii) is similar to that for PI 2P WT. The most intense peaks
are the same, but, as it is more well resolved, there are a greater number of weak Bragg peaks. Many of these are
consistent with the primitive indexing scheme used for PI 2P WT. However, there are a number of weaker peaks that
do not fit with this scheme. The most prominent of these are the highlighted peaks that form a diamond (e.g. (3/5
1/2 0/0) that are not allowed for a primitive IQC because they lead to some n; values being half-integer.

This led us to also consider an FCI indexing of the pattern in Fig. S5b(iii) with a hypercubic lattice parameter that
is twice that for the primitive scheme. This allows all the peaks to now be indexed. However, the intensity pattern
of the peaks is not typical of a face-centred IQC. Rather, the pattern looks more typical of a PI pattern but with the
addition of some lower intensity peaks typical of a face-centred IQC. Similar behaviour has been seen in experimental
1QCs. For example, the AIPdMn system exhibits IQCs that switch from PI to FCI character as the Pd content is
increased.® This happens by the appearance of additional FCI peaks which grow more intense as the Pd content is
increased until a archetypal FCI pattern is observed. This transition occurs due to superstructural ordering of the
primitive lattice due to greater chemical ordering.

What the nature of the superstructural ordering is in the PI 3P systems that leads to the appearance of the FCI
peaks is not fully clear. Interestingly, in the absence of the red particles, i.e. in the PI 2P systems, there is little sign
of this ordering (although this might in part be due to the diffraction patterns being not as sharp) and, as already
noted, the diffraction patterns are consistent with a PI description.

F. Coordination number analysis

The coordination number distributions in the BCI and PI models are given in Fig. S6 using two methods to compute
the coordination number. The first approach defines neighbours by a simple radial cutoff, where we use distance cutoffs
that are similar to those used for the environment analysis of the ideal QCs. The second approach defines neighbours
as a particles that share a patch-patch bond. The distributions resulting from the two approaches are generally very
similar, but, for example, in some instances there will be particles which are close enough to be deemed neighbours
by being within the distance cutoff, but which do not share a patch-patch bond.

For all the BCI systems, by far the most common coordination number is four. The proportion with a coordination
number of four is highest for the BCI 2P system because both particle types have four patches. One noticeable
feature is that the approximant and the BCI 5P and 3P systems have a significantly larger proportion of particles with
coordination numbers of 6 or 7 than the ideal BCI QC, because of the greater tendency to form perfect triacontahedra
(note that the disappearance of the peak at a coordination number of 7 for the BCI 3P system in Fig. S6¢ is simply due
to the removal of the patches mediating green-green interactions in the triacontahedra). The patchy particle systems
also all have a greater proportion of particles with a coordination number of three, and this is mainly a consequence
of the greater likelihood of the blue particles having one missing bond (Extended Data Fig. 6d).

The BCI QCs have very similar coordination number distributions to those BCI QCs observed in the low-density
regime of Ref. 10 with the proportion of 6- and 7-coordinate particles lying between that for the ideal BCI QC and
the BCI 5P and 3P systems. In addition, in their intermediate-density regime icosahedral clusters equivalent to
those highlighted in Fig. 1d become increasingly prevalent. This similarity is not surprising given that the higher-
dimensional structural model obtained for the IQC in Ref. 10 is very similar to that used to generate our ideal BCI
QC.

The coordination number distributions for the ideal PI QC and its 8/5 approximant have significant differences from
the simulated PI systems. Firstly, their average coordination numbers are larger; this is also reflected in their higher
density (Extended Data Fig. 7b). This partly reflects that only a subset of the environments present in the ideal PI
QC and its approximant are represented by the patchy particles. For example, the 6-coordinate environment 5 (Table
S2) is the most numerous in the ideal PI QC, but is one of those not represented. Consequently, the proportion
of particles with coordination number 6 is much higher in the ideal PI QC and the 8/5 approximant. Also, that
significant numbers of the patchy particles are not fully bonded leads to a much greater proportion of particles with
coordination number of 4 or fewer. The lower average coordination numbers and density for the PI 2P systems is a
simple consequence of the reduced average number of patches per particle.
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FIG. S6. Coordination numbers in the simulated IQCs based on the a and c ideal BCI and b and d ideal PI QC models. For
comparison, data for the ideal IQC as well as their approximants are also included. In a and b coordination numbers were
calculated counting the neighbours within a distance of 1.4 ¢ for the BCI (corresponding to the first minimum in the PDF)
and within 1.22¢ for the PI (corresponding to the second minimum in the PDF). In ¢ and d coordination numbers for the
patchy particle systems were calculated by counting the number of patch-patch bonds. For the BCI 5P model, both conventions
give very similar coordination-number distributions. Note that these distributions are similar to those of the low density IQC
found in Refs. 10 and 11. The BCI 3P and BCI 2P models exhibit a lower coordination, especially when the actual number of
patch-patch bonds is considered. In these cases, the coordination number is limited by the maximum number of patches on a
particle, i.e. to six in the BCI 3P model and to four in the BCI 2P model. The coordination numbers in the PI QCs are larger
than those in the BCI QCs. Coordination numbers are limited to a maximum value of eight in the PI 3P models and to six in
the PI 2P models when evaluated counting the patch-patch bonds.

Given the differences in the average coordination number depending on the criteria used to define neighbours, we
have also calculated the contributions to the BOODs using both approaches. The BOODs calculated using a distance
cutoff (Fig. S7) exhibit more spots than the BOODs calculated using the patch-patch bonds (Extended Data Fig. 8)
albeit still always oriented along either the five-, three- or two-fold axes. Thus, even when non-bonded particles are
taken into account, the first coordination shells in these systems still exhibit very clear local icosahedral symmetry.
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[N
System cutoff patch-patch
ideal BCI 4.13

3/2 approximant  4.64

BCI 5P 4.50 4.23
BCI 3P 4.50 3.74
BCI 2P 3.91 3.60
BCI 2P-mod 3.98 3.68
ideal PI 6.12

8/5 approximant  6.08

PI 3P WT 5.81 5.41

PI 3P NT 5.88 5.47

PI 2P WT 5.18 4.75

PI 2P NT 5.22 4.80

TABLE S10. Average coordination number (CN) for the ideal IQC, their approximants and the simulated IQCs. The values
are calculated either using a distance cutoff or the number of patch-patch bonds in the same way as in Fig. S6.

PI3P WT

Blue-blue Blue-green  Green-green Blue-red Total Green-green Green-blue Blue-blue
Red-green  Blue-yellow Blue-purple Yellow-purple Purple-purple Red-red Red-blue Red-green
b d PI2P WT
Blue-blue Blue-green  Green-green Total Green-green Green-blue Blue-blue

FIG. S7. Contribution to the BOOD for the a, BCI 5P and b, BCI 2P and ¢, PI 3P WT and d, PI 2P WT QCs from
the different pairs of nearest neighbours defined as those within a distance cutoff of 1.4 ¢ for the BCI and 1.22 ¢ for the PI.
Different from the contributions shown in Extended Data Fig. 8a—d, additional spots can occur in directions not expected from
the geometry of the particles (Extended Data Fig. 8e,f) due to non-bonded neighbours. For example, for the BCI systems
there are weak additional spots in the blue-blue, blue-green, green-green and blue-purple BOODs. For the PI systems, even
though there are no blue-blue, green-green and red-green patchy interactions, the corresponding BOODs have spots directed
along two-fold axes associated with non-bonded nearest neighbours pairs.
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S4. DIRECT COEXISTENCE SIMULATIONS
A. Methods

Although our simulations have shown that the IQCs that we have discovered are strongly kinetically favoured, it
would also be interesting to know whether they are also ever thermodynamically most stable. But to address this
question we first need to know what the competing crystal forms might be. For the BCI 5P system, the particles can
also form the 3/2 approximant shown in Fig. 1b. However, for the other patchy particle systems, the approximants
to the IQCs are not known, as the particles are no longer able to represent all the environments present in the ideal
IQCs (or their approximants). A potential route to identify the approximants in these cases would be to “lift” the
observed IQCs into 6D and then project back to 3D with the obtained occupation domains oriented so as to produce
an approximant.

As the IQCs are expected to have a greater entropy than any periodic approximants, if the IQCs are ever the most
stable phase, this would be expected to be in a region of the phase diagram bounded at high temperature by their
melting; thus, IQC stability would be indicated by the IQC having a higher melting point than the approximant.

To probe the relative stability of the BCI quasicrystal and its 3/2 approximant for the BCI 5P system, we attempted
to estimate their melting points using the direct coexistence approach.'? In this approach a crystalline slab that spans
the shorter dimensions of an elongated cuboidal simulation box is placed in contact with a fluid phase that fills the rest
of the box. The key feature is that as the crystal grows or shrinks, the area of the crystal-fluid interface stays constant.
Hence, if the crystal grows, the system is above the melting point of the crystal, whereas if the crystal shrinks the
system is below the melting point. Thus, by studying the system at a series of temperatures, one can bracket the
melting temperature. One practical difficulty is that the closer one is to the melting point, the slower the net diffusive
motion of the interface becomes. In Ref. 8 it was suggested that the direct coexistence approach could be extended to
quasicrystals, for which direct calculation of their free energy by approaches such as thermodynamic integration are
hindered by a lack of an appropriate reference state. The one additional difficulty is generating a quasicrystalline slab
that spans the periodic boundary conditions without substantial defects given that the quasicrystal has symmetries
that are incompatible with translational periodicity.

For the 3/2 approximant, the starting configuration of the system contains 18 176 particles (284 x 4 x 4 x 4) in the
crystalline slab and 6684 particles in the fluid phase. The slab configuration is an approximant crystal structure with
4 unit cells along each dimension. The fluid phase has the same composition as the solid phase, but the particles are
randomly placed in the simulation box. Both phases are equilibrated at constant NPT, with p* = Po};/er; = 0.01
and T* = 0.100. After equilibration, the two phases are combined along the z-axis while avoiding overlaps at the
interface. Then, the system is simulated at constant NPT, where only the z-length of the simulation box can change;
p* =0.01 and T* = 0.090/0.100/0.105/0.107/0.110/0.112.

For the quasicrystal, the starting configuration of the system contains 18 798 particles in the quasicrystalline slab
and 13202 particles in the fluid phase. The configuration is prepared by putting a quasicrystal seed with 8284
particles in a fluid of 23 716 particles with the same composition as the 3/2 approximant, and growing the seed across
the periodic boundary of a cuboidal simulation box. The box length along z is longer than that along « and y in order
to encourage the formation of a quasicrystal slab that is periodic across x and y. Because a quasicrystal is inherently
aperiodic, it is difficult for it to merge with itself coherently across the periodic boundaries. To help mitigate this
issue, the quasicrystal seed is oriented such that its two-fold symmetry axes are aligned with the z, y and z axes, but
this may not entirely prevent grain boundaries from forming.

The growth simulation is performed at constant NVT, with N = 32000, N/V* = 0.5 (where Vx = V/o};) and
T* = 0.105. After the slab is formed, it is equilibrated at constant NPT, with p* = 0.01 and 7% = 0.105. The
equilibration has two stages. In the first stage, only the z-length and y-length of the simulation box can change, while
in the second stage, only the z-length can change. After equilibration, the system is simulated at constant NPT,
where only the z-length of the simulation box can change; p* = 0.01 and 7™ = 0.090/0.100/0.103/0.105/0.107/0.110.

B. Results

Figure S8 and Figure S9 show the evolution of the system energy as a function of MC cycles for the 3/2 approximant
and the quasicrystal slab, respectively. A common feature of the curves is their initial large slopes, but the curves
gradually flatten out. This is due to further equilibration after the interface is set up, so only the slopes at the later
stage of the simulations are meaningful.

For the approximant, the system energy reaches an approximately constant value at T* = 0.105 and 0.107 but
consistently increases at T* = 0.110 or higher temperatures, and consistently decreases for 7% = 0.100 and below.
Therefore, its melting point is certainly between 0.100 and 0.110, but it is hard to delimit it more closely. It is also
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worth noting that the interface has a rather irregular shape, which is dominated by clusters formed by the red and
green particles and less so by the blue particles in the matrix (Fig. S10). This is because of the greater stability
of the interactions within the clusters than those within the matrix. The difference in stability could result in local
free-energy barriers to growth because the growth of matrix is unfavourable while the growth of clusters is favourable.
Such barriers are probably partly responsible for the slow dynamics associated with motion of the interface.

Similarly, the melting point of the quasicrystal slab is certainly between 0.107 and 0.090 (probably being above
0.100) but it is again hard to bracket it more precisely. Moreover, as described earlier, the preparation of the starting
configuration could easily result in grain boundary formation. This is evident from its melting behaviour. Instead of
uniform melting of the surface, melting proceeds along the grain boundary into the centre of the slab; this is partly
evident from the snapshots in Fig. S11 but is very clear when visualizing configurations on screen. The grain boundary
reduces the stability of the slab, and likely lowers its melting point.

Given the uncertainty in their melting points and the defective nature of the quasicrystalline slab, we cannot
conclude whether the approximant is thermodynamically more stable than the quasicrystal. However, it is clear that
they have similar stabilities. That the IQCs invariably form in our nucleation and growths simulation rather than
periodic approximants shows that the IQCs are clearly kinetically favoured. This is likely related to the many more
ways that growth can lead to the IQC than the periodic approximant.
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FIG. S8. Energy evolution in direct coexistence simulations of the 3/2 approximant. The bottom plot is an enlarged version
of the top plot.
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FIG. S9. Energy evolution in direct coexistence simulations of a quasicrystalline slab. The bottom plot is an enlarged version

of the top plot.
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FIG. S10. Final configuration of direct coexistence simulations of the 3/2 approximant at various temperatures. The greater
stability of the triacontahedral clusters than the blue matrix particles is evident both from their prominence at the surface,
and their slower melting at higher temperatures.
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S5. DNA ORIGAMI REALIZATION OF PATCHY PARTICLES

We focused on the realization of the most simplified patchy-particle design for the BCI QC. For each type of patchy
particle, we generated a file in .ply format from the patch coordinates. Then, we converted the ply file to a DNA
origami caDNAno design file using the TALOS program'®. While running TALOS, we chose a minimum edge length
of 63 base pairs, a flat vertex type, and a middle vertex connection layer. We used caDNAno' to add six-helix
bundles to each vertex of the origami by extending the six outer helices at each vertex, two from each edge meeting
at a particular vertex (Figure S12a). These extensions were modified with sticky ends to allow origamis to bind.
The resulting caDNAno designs are shown in Figure S13 and Figure S14. Helices 0-35 compose the six edges of the
tetrahedral wireframe, while helices 36-59 composes the four six-helix bundle extensions.

The torsional angles between bound origamis can be controlled by programming the strand sequence of the sticky
ends. Using the simplified representation shown in Figure S12b, the designs that enable the three possible torsional
angles are shown in Figure S12c. Letters A, B and C represent three different sets of sequences, where a letter with
a plus sign is complementary to and binds to the same letter with a minus sign.

To illustrate in detail the realization of patchy particles as DNA origami, we chose the BCI QC patchy particles with
two particles types (green and blue). We needed to modify the patch specificity and torsional angles because of the
incompatibility between some patch specificity and torsional angles and the six-helix bundle extensions. In particular,
P% can interact with itself, so it should be self-complementary. However, it also interacts with P‘é, meaning that P‘é
should have the same sequence as P4 and also be self-complementary. However, P¢, does not interact with itself in the
patchy particle design. Due to this apparent contradiction, we needed to remove the self-interaction of P%. The other
issue is related to the torsional angles of P]13’2’3. It is only possible to implement one or three, but not two, torsional
angles using the scheme in Figure S12c. Since these patches have two possible torsional angles, it is not possible to
implement it through the sticky ends, and so we needed to change it to three. The modified patchy particle designs
are given in Table S8. We verified that the modified patchy particles (BCI 2P-mod) are still able to form an IQC
in simulations. The sequence design of the sticky ends, which corresponds to the modified patchy particle design, is
shown in Figure S12d.

After having designed DNA origami to represent each type of patchy particle, we assembled a cluster of DNA origami
based on the cluster of patchy particles that serves as a fundamental building block of the BCI 2P quasicrystal. We
first converted the caDNAno design file into oxDNA configuration and topology files using the tacoxDNA package'®.
Then, we placed and oriented the DNA origamis according to the patchy particle representation of the cluster. With
the starting configuration prepared, we performed oxDNA'6:17 coarse-grained molecular dynamics simulation at 300
K with a Langevin thermostat and a time step of 0.005 simulation units, corresponding to 15 fs in real units. To
speed up base pair formation between origami sticky ends, we applied harmonic mutual traps on pairs of sticky ends
that should bind to each other. Once all the desired base pairs have formed, we removed the traps and equilibrated
the cluster for 6 x 107 steps, equivalent to approximately 0.9 ps. The structure of the DNA origami cluster was stable
over the entire simulation.

This procedure for representing a patchy particle using a DNA origami could potentially be generalized to patchy
particles of a different shape and with a different number of patches, as long as they can be represented as a polyhedron.
The torsional angles could also be fine-tuned by introducing twist into the six-helix bundle extensions. The inclusion
of sections that remain single-stranded after two arms bind may also allow the torsional flexibility of the interactions
to be tuned.
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(a) Patchy particle DNA origami "Patchy" DNA origami

TALOS caDNAno
—_—

Extend circled helices
Combine into a six-helix bundle

(b) Patch 1 ]
> +
—n
Patch 3 % » Patch2  Patch3 Patch 2 — .
(c) Torsional angle Sticky end sequence (d) C1 (Blue) C2 (Green)

(ref. patch = 1)

4
0 P1
3 2
4
+2m/3 P2
1 3
4
-21/3 P3
2 1
1
0, £21/3 P4
2 3

FIG. S12. (a) Design of DNA origami to represent patchy particle. (b) Simplified representation of DNA origami. (c) Control
of torsional angle through programming sticky end sequences. Each letter represents a different set of sequence. A letter with
a plus sign binds to the same letter with a minus sign. (d) Possible sticky end sequences for the BCI QC patchy particles with
two particle types
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FIG. S13. caDNAno design for the DNA origami equivalent of the blue patchy particle.
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FIG. S14. caDNAno design for the DNA origami equivalent of the green patchy particle.
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FIG. S15. Views of the assembled DNA origami cluster (bottom row) and their respective patchy particle representation (top
row) along the two-, three- and five-fold axes.
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