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Abstract   21 

Groundwater is a vital water source in the rural and urban areas of developing and developed nations. In 22 

this study, a novel hybrid integration approach of Fisher’s linear discriminant function (FLDA) with 23 

rotation forest (RFLDA) and bagging (BFLDA) ensembles was used for groundwater potential 24 

assessment at the Ningtiaota area in Shaanxi, China. A spatial database with 66 groundwater spring 25 

locations and 14 groundwater spring contributing factors was prepared; these factors were elevation, 26 

aspect, slope, plan and profile curvatures, sediment transport index, stream power index, topographic 27 

wetness index, distance to roads and streams, land use, lithology, soil and normalised difference 28 

vegetation index. The classifier attribute evaluation method based on the FLDA model was implemented 29 

to test the predictive competence of the mentioned contributing factors. The area under curve, confidence 30 
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interval at 95%, standard error, Friedman test and Wilcoxon signed-rank test were used to compare and 31 

validate the success and prediction competence of the three applied models. According to the achived 32 

results, the BFLDA model showed the most prediction competence, followed by the RFLDA and FLDA 33 

models, respectively. The resulting groundwater spring potential maps can be used for groundwater 34 

development plans and land use planning. 35 

Keywords: Groundwater; Machine learning; Fisher’s linear discriminant function (FLDA); Rotation 36 

forest (RF); GIS 37 

 38 

1. Introduction 39 

Groundwater is a vital water source in rural and urban areas of developing and developed nations with 40 

various climate situations (Bera and Bandyopadhyay 2012; Waikar and Nilawar 2014). In recent years, 41 

the demand for high-quality water has increased due to the growing need in drinking, industrial, 42 

agricultural and domestic activities. Furthermore, groundwater has a low level of pollution and wide 43 

distribution, thereby attracting a large human population worldwide (Arkoprovo et al. 2012).  44 

In the arid and semiarid regions of northwestern China, groundwater resource is significant for human 45 

lives, agriculture and industry; in some regions, groundwater is the single available water source (Yang 46 

et al. 2016). However, groundwater constrains the fragile eco-environment in this region. 47 

The study of groundwater potential zones has received considerable attention for the implementation 48 

of an effective groundwater establishment, protection and management strategy due to the increasing 49 

demand for fresh drinking groundwater. Therefore, the assessment of groundwater potential zones is 50 

essential (e.g. measuring spring recharge) to manage groundwater quality and usage (Zabihi et al. 2016). 51 

Recently, several studies based on multitemporal datasets in groundwater spring potential mapping have 52 
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been conducted by using geographic information system (GIS) tools and remote sensing datasets (U. 53 

Kumar et al. 2013; B. Kumar and Kumar 2010; Ambrish Kumar et al. 2011; Thilagavathi et al. 2015; Jha 54 

et al. 2009; Ozdemir 2011b; Elbeih 2015; Javed and Wani 2009; T. Kumar et al. 2014; Zabihi et al. 2016; 55 

Israil et al. 2006; Meijerink 1996; Gupta and Srivastava 2010; Manap et al. 2014; Rahmati et al. 2015; 56 

Naghibi et al. 2016). GIS is a powerful and useful tool, and it provides an easy approach not only for 57 

spatial data management and information analysis but also for the decision-making process in the natural 58 

sciences, such as geology and environmental management (Fedra 1993; Shahabi et al. 2014). 59 

GIS spatial models, including statistical and bivariate algorithms, have been proposed in groundwater 60 

studies, such as frequency ratio (Ozdemir 2011a; Manap et al. 2014; Naghibi et al. 2015), analytic 61 

hierarchy process (Jandric and Srdjevic 2000; Sener and Davraz 2013; Kaliraj et al. 2014), logistic 62 

regression (Teso et al. 1996; Mair and El-Kadi 2013) and weights-of-evidence (Masetti et al. 2007; Lee 63 

et al. 2012; Ozdemir and Altural 2013; Uhan et al. 2011; Pourtaghi and Pourghasemi 2014). Recently, 64 

data mining methods, such as fuzzy logic (Nobre et al. 2007; Gemitzi et al. 2006), neurofuzzy (Dixon 65 

2005; Safavi et al. 2013), artificial neural network (Corsini et al. 2009), decision trees (Duan et al. 2016; 66 

Lee and Lee 2015), random forest (Naghibi et al. 2016; Rahmati et al. 2016) and naive Bayesian (NB) 67 

(Aguilera et al. 2013), have been explored for groundwater spring potential mapping. 68 

Newly, machine learning hybrid techniques and ensembles have been found to be superior to 69 

conventional techniques in various applications. An example is bagging ensemble, which can improve 70 

the prediction accuracy of a base classifier. However, the use of these techniques for groundwater 71 

potential mapping has rarely been investigated.  72 

A literature review revealed that, although some ensemble methods focused on natural hazards, such 73 

as landslides (Tien Bui et al. 2017; Chen et al. 2017a; Althuwaynee et al. 2014; Hong et al. 2018a) and 74 
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floods (Razavi Termeh et al. 2018; Tehrany et al. 2015; Tien Bui et al. 2016a; Hong et al. 2018b), few 75 

studies use machine learning ensembles in groundwater spring potential assessment. The present study 76 

aims to fill this research gap by developing a novel hybrid intelligence approach based on Fisher’s linear 77 

discriminant function (FLDA) with rotation forest (RFLDA) and bagging (BFLDA) ensembles for 78 

groundwater spring potential mapping via a case study at the Ningtiaota area in Shaanxi Province, China. 79 

RFLDA and BFLDA have not been explored in groundwater spring potential mapping. Weka, ArcGIS 80 

and ENVI software are used in data analysis, model development and groundwater spring potential 81 

mapping. 82 

2. Background of the methods used 83 

2.1 Fisher’s linear discriminant function 84 

FLDA is one of the widespread feature recognition method in various fields (Agarwal and Chen 2010). 85 

Theoretically, m recognised classes operate the method.
( )i

jX  specifies the -j th  training trial in class86 

i . 
iX  denotes the average of training trials in the class i , whereas X  signifies the mean of total 87 

training trials. With regard to the assumed training trials, bM and wM , which are scatter matrices of 88 

between-class and with-class, respectively, can be calculated as 89 

1

1
( )( )

m
i i T

b i

i

M N X X X X
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where iN defines the number of training trials in class 
1

( )
m

i

i

i S S


 , and N illustrates the total number 92 

of the assumed training trials. 93 

FLDA aims to obtain a set of ideal distinguishing vectors to compose a transform of  1 2, ,...d d     94 
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by maximising the Fisher criterion, indicated as (Moghaddam et al. 2007) 95 

( )
( )

( )

Tdef
d b d

T

d w d

tr M
J

tr M

 
 

 
 ,                                     (3) 96 

where T  is the matrix transpose. Considering that the ideal discriminating vectors are empowered by 97 

benchmark maximisation, a vector for one input instance can be extracted, and the resulting vector can 98 

be used to classify the conforming instance (Yin et al. 2006). 99 

2.2 Rotation forest 100 

RF is an ensemble method that was initially proposed for classification (Rodríguez et al. 2013) and is 101 

built with independent decision trees (Ozcift and Gulten 2011). In the RF, individual tree is trained with 102 

a comprehensive dataset associated with a rotated feature space.  103 

Here, 1 2( , ,... )nS s s s  is the vector of spring conditioning factors; 1 2( , )Y y y  is the vector of 104 

spring and nonspring classes; D  designates the training data; 1 2, ,... nF F F  are classifiers in the 105 

ensemble structure; and T  denotes a set of spring contributing parameters. T  can be divided into 106 

several k  subsets. The number of the contributing parameters for a subset can be calculated as107 

/T n k . For the iF  classier, 
ijT  should be the -j th  and 1,2,...j k subset of contributing 108 

parameters. 
ijE shows the spring contributing parameters in 

ijT  from E . Basically, 
'

ij
E  is 109 

nominated randomly from 
ijE by using the bootstrap method. At that moment, 

'

ij
E  should be 110 

transformed to achieve the constants of (1) (2) ( 1)

1 1 1, ,... Tri ri ri , where the 
'

,1ir  size is 1T  . Ensemble 111 

RF is then created in respect to the rotation matrix that was produced by the basic classifier and 112 

transformation method (Xia et al. 2014). 
iR  is the rotation matrix, which is obtained by reorganising 113 

the matrix of iR , which can be defined by Equation 4 114 
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.     (4) 115 

Subsequently, one sparse rotation matrix called iR  is organised by the obtained coefficients that 116 

were designed for each individual class by using the average combination technique as follows: 117 

,

1

1
( ) ( ), 1, 2,...

n

k i k i

i

R k c
n

   


  ,                             (5) 118 

where , ( )i k iR   illustrates the probability produced by the iC  classifier to the hypothesis in which 119 

  fits the k  class. Lastly,   is allocated to the largest confidence class. 120 

Bagging  121 

Bagging, which is an acronym for ‘bootstrap aggregating’, is created by training discrete classifiers on 122 

independent bootstrap instances that are generated with replacement from training instances (Breiman 123 

1996a). The bagging hybrid ensemble technique was developed by Hothorn and Lausen (2005) and was 124 

referred to as ‘bundling’. This approach adds the results of classifiers to the original feature for the 125 

bagging of classification trees. 126 

Let a learning set of T  comprise data   , , 1,2,...n nT x y n N , where y  is the class labels. In 127 

this study, nx  is the spring contributing parameters, and ny  is the springs and nonsprings. Here, 128 

assume that a producer for training the learning set from a predictor ( , )h x T  is available. Then, 129 

assume that an order of learning sets  iT exists, each containing of N is independent observation from 130 

the identical original distribution asT . The purpose is to practise  iT to obtain a superior predictor than 131 

the single learning set of predictors{ ( , )}h x T .  132 

The bagging-type hybrid ensemble technique enhances the results of each set of classifier by adding them 133 

to the original feature system for bagging the categorization procedure. Approximately one-third of the 134 



7 

 

examples in the initial training system is not involved in all bootstrap trials. Breiman (1996) referred to 135 

these examples as out-of-bag samples. 136 

2.3 Conditioning factor selection based on the FLDA method 137 

The study of spatial relationships among groundwater spring conditioning factors is essential. However, 138 

the relationships among the spring conditioning factors have not been verified either statistically or 139 

quantitatively (Lee et al. 2017). Factors with no or negative contribution on modelling results should be 140 

eliminated to increase of model performance (Chen et al. 2018b). In this study, the classifier attribute 141 

evaluation method based on the FLDA model was used to analyse the prediction ability of contributing 142 

parameters during modelling (Witten et al. 2011).  143 

2.4 Performance evaluation and comparison of models 144 

2.4.1 Receiver operating characteristic curve (ROC) 145 

ROC is the sensitivity as a function of 1-specificity (Chen et al. 2018a; Hong et al. 2018b). It plots the 146 

1-specificity on the x axis versus the sensitivity on the y axis (Pourtaghi and Pourghasemi 2014; Al-147 

Abadi 2015). This process considers the standard method for validating the overall performance of 148 

predicting model (Pham et al. 2017). The area under the ROC curve is one of the quantitative 149 

representation for the quality of a model; a high value of area under the receiver curve (AURC) (i.e. the 150 

maximum value of AURC is one that specifies a perfect model) shows high accuracy of the applied 151 

model (Chen et al. 2018c). 152 

2.4.2 Friedman test 153 

The Friedman test is a statistical test that established by Milton Friedman (Friedman 1939, 1937). This 154 
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technique includes ranking of each row together and then assigning the rank’s values to columns 155 

(Khosravi et al. 2018). The null hypothesis for the Friedman test is that no differences exist among the 156 

groundwater spring potential models. If the chi-square is larger than the standard value of 3.841 and the 157 

P value is smaller than the selected significance level (i.e. α = 0.05), the null hypothesis would be 158 

rejected (Khosravi et al. 2018).  159 

2.5.3 Wilcoxon signed-rank test 160 

The Friedman test can only show if significant differences exist among the three groundwater spring 161 

potential models. Basically, this test cannot provide pairwise comparisons among the three models (Tien 162 

Bui et al. 2016b). Therefore, the Wilcoxon signed-rank test was used. The null hypothesis is that no 163 

significant difference exists among groundwater spring potential models at the significance level of 164 

α = 0.05 (Tien Bui et al. 2016b). The z and P values are two statistics for this method. When z value 165 

exceed the range values (i.e. -1.96 to +1.96) and the P value is smaller than the significance stage 166 

(α = 0.05), the null hypothesis would be dismissed (Tien Bui et al. 2016b; Chen et al. 2017a; Chen et al. 167 

2017c).  168 

3. Study area and data preparation 169 

The Ningtiaota area of Shaanxi Province in China was selected to evaluate groundwater spring potential 
170 

(Fig. 1). This territory was considered suitable because it is representative of the geomorphological, 
171 

environmental and geological settings of groundwater spring processes, and the area is a part of the 
172 

transition zone of the Aeolian landform and is a loess hilly region. Most of its surface area outcrops sand, 
173 

loess, laterite and bedrock (Fig. 2). It covers approximately 119.77 km2 and has a mean annual rainfall 
174 

of roughly 434.1 mm. Elevation ranges from 1,118 m to 1,364 m above sea level, and land use types 
175 
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include farm, forest and grass lands, water body, residential and others, such as sand and bare lands. 
176 

Hydrologically, the study area is situated in the Kuye River Basin, a tributary of the Yellow river. The 
177 

river systems in the area include Miaogou, Kaokaowusugou and Lucaogou from north to south. The 
178 

surface water in this area is greatly affected by the seasons. Generally, the rainy season occurs from 
179 

March and July to September; the dry season is marked by alternating winter and spring. The general 
180 

situation of the main rivers is as follows: 
181 
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 182 

Fig. 1 Location of the study area and spring inventory 183 
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 184 

Fig. 2 Geological map of the study area 185 

Miaogou is the second tributary of the Kuye River, which originates from Zhong’aobao in the western 
186 

part of the study area and flows northeastward through the northern border of the study area. The river 
187 

has a perennial flow, and the flow length within the research area is approximately 8 km. 
188 

Kaokaowusugou flows from west to east through the central part of the entire study area. The flow 
189 

length is 41.9 km, with a watershed area of 259.5 km2. According to the observations at Shaqu and 
190 

Liujiashipan, the average flow discharge over the years was 0.7491 m3/s, the maximum flow discharge 
191 

was 26.0113 m3/s and the minimum flow discharge was 0.101 m3/s.  
192 

Lucaogou originates from the Qibushu in the southern part of the region and flows into Majiatagou 
193 

from northwest to southeast. The flow length within the research area was 1.6 km, and the flow discharge 
194 

was 13.34 L/s. 
195 
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Numerous types of data about groundwater springs in the Ningtiaota area were collected from earlier 
196 

reports and field surveys, including the locations of springs, types and yield. Groundwater springs (66) 
197 

were divided into two datasets randomly (Fig. 1). The initial dataset included 70% of the groundwater 
198 

spring locations for model training, whereas the other part included 30% that used for testing assessment.
  199 

Table 1 Contributing parameters in groundwater spring potential assessment  200 

Groups Conditioning factors Raster type 

Topographical factors 

Elevation Continuous 

Slope angle Continuous 

Aspect Categorical (9 class) 

Profile curvature Continuous 

Plan curvature Continuous 

TWI Continuous 

SPI Continuous 

STI Continuous 

Geological factor Lithology Categorical (9 class) 

Environmental factors 

Distance to roads Continuous 

Distance to streams Continuous 

Land use Categorical (6 class) 

Soil 

Categorical (4 class): Calcari-

Gypsiric Arenosols (Arc) Haplic 

Arenosols (ARh) 

Calcareous Red Clay (CMe) Luvi-

Calcic Kastanozems (KSk) 

NDVI Continuous 

 
201 

Groundwater spring is affected by several topographical, geological and environmental factors. 
202 

Selecting the most suitable parameters depends on the geo-environmental specification of the study area. 
203 

In this study, 14 conditioning factors were selected with regard to groundwater spring potential for the 
204 

modelling (Fig. 3). These conditioning factors were obtained from the compilation of ASTER GDEM 
205 

with a resolution of 30 m, a geological map with a 1:10,000 scale, Landsat 8 OLI images with a resolution 
206 

of 30 m and soil maps using ArcGIS and ENVI software. The conditioning factors used in groundwater 
207 
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spring potential assessment listed in Table 1. All the thematic maps of groundwater spring conditioning 
208 

factors were discretised to be compatible with the 30 m resolution of the digital elevation model. 
209 
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Fig. 3 Thematic maps of spring contributing parameters: (a) Elevation; (b) Slope angle; (c) Aspect; (d) 210 

Plan curvature; (e) Profile curvature; (f) TWI; (g) SPI; (h) STI; (i) Distance to roads; (j) Distance to 211 

streams; (k) Lithology; (l) Land use; (m) Soil; (n) NDVI. 212 

4. Application of hybrid integration approaches 213 

The procedure of this study has five main steps (Fig. 4): (i) preparation of groundwater spring locations 214 

and groundwater spring conditioning factors; (ii) selection and analysis of groundwater spring 215 

conditioning factors; (iii) groundwater spring potential modelling using FLDA, RFLDA and BFLDA 216 

models; (iv) generation of groundwater spring potential maps; and (v) model validation and comparison. 217 
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Models validation and comparison

Spring 
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Generating groundwater spring potential maps

Data 
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Groundwater spring 

potential modelling

Conditioning factors 
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FLDA

FLDA with RF ensemble

FLDA with Bagging ensemble

ROC, Friedman test, 

Wilcoxon signed-rank test 

 218 

Fig. 4 Schematic of the study procedure  219 

5. Results and discussions 220 

5.1 Selection of conditioning factors 221 

The classifier attribute evaluation technique based on the FLDA model with the average merit (AM) and 222 

its standard deviation was utilised using 10-fold cross validation system. The most effective parameters 223 

have higher AM values (Chen et al. 2017a). Results of feature selection indicate that lithology (0.562) is 224 

the most significant parameter for groundwater spring potential modelling, followed by elevation (0.503), 225 
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distance to roads (0.481), distance to streams (0.440), SPI (0.433), STI (0.419), soil (0.416), aspect 226 

(0.395), slope (0.379), TWI (0.335), profile curvature (0.297), plan curvature (0.286), NDVI (0.200) and 227 

land use (0.092). Therefore, all 14 groundwater spring contributing parameters have positive 228 

contributions to the model and were incorporated in the training and testing datasets for further analysis 229 

(Table 2). 230 

Table 2 Predictive capabilities of spring contributing parameters using the FLDA method 231 

Number Conditioning factors Average merit Standard deviation 

1 Lithology 0.562  0.008 

2 Elevation 0.503  0.013 

3 Distance to roads 0.481  0.010 

4 Distance to streams 0.440  0.017 

5 SPI 0.433  0.025 

6 STI 0.419  0.012 

7 Soil 0.416  0.010 

8 Aspect 0.395  0.014 

9 Slope  0.379  0.019 

10 TWI 0.335  0.009 

11 Profile curvature 0.297  0.009 

12 Plan curvature 0.286  0.007 

13 NDVI 0.200  0.012 

14 Land use 0.092  0.007 

 232 

5.2 Model construction 233 

In groundwater spring potential assessment, the dependent factors is considered a binary variable (spring 234 

and nonspring). Consequently, the spring and nonspring sample points are essential for groundwater 235 

spring potential mapping. The testing and training datasets contained equal numbers of spring and 236 

nonspring. Thus, the equal number of nonspring points was designated randomly from groundwater 237 

spring-free locations and was randomly divided into 70% and 30% for training and testing, respectively. 238 

The generating and splitting process, which is a randomisation approach, was repeated 30 times. Then, 239 
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the predictive competencies of individual applied for the three models were assessed by using the AURC 240 

technique to discover the ideal combination of spring and nonspring samples. A 10-fold cross-validation 241 

method, in which parameters are selected in the training dataset to avoid the overfitting problem and to 242 

decrease variability, was employed for all tests to obtain an unbiased estimate of AURC values (Chen et 243 

al. 2017b; Jiang and Chen 2016; Alkhasawneh et al. 2014).  244 

With the use of the training dataset, three models were constructed for groundwater spring potential 245 

assessment, and certain parameters were determined to obtain high prediction accuracy. The FLDA 246 

model used default ridge values (the ridge penalty factor for the output layer) of 1.0E-6. The RFLDA 247 

model used 10 for the number of iterations, 5 for seeds, 1 for the number of execution slots (threads) to 248 

use for the construction of the ensemble, principal components for projection filter and 50 for the 249 

percentage of instances to be removed. The BFLDA model used 10 for the number of iterations, 6 for 250 

seeds and 1 for the number of execution slots (threads) for the construction of the ensemble. 251 

5.3 Generation of groundwater spring potential maps 252 

After the construction of the three models, the built groundwater potential models were validated by 253 

using the testing dataset and then applied through the entire area to create groundwater spring potential 254 

maps. The calculated groundwater spring potential indices for the whole study area by using the three 255 

models ranged from 0.000 to 1. Subsequently, all calculated groundwater spring potential indices were 256 

applied to prepare the groundwater spring potential maps by using the ArcGIS software. Finally, these 257 

groundwater spring potential maps were reclassified into five different intervals by using the Jenks 258 

natural breaks classification process, which is one of the most popular classification methods for creating 259 

classification maps (Fig. 5) (Naghibi et al. 2017; Akshay Kumar and Krishna 2018). The area percentages 260 

are 20.47%, 35.60%, 25.58%, 13.65% and 4.70%, which denote very low, low, moderate, high and very 261 
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high classes with the FLDA model, respectively. For the RFLDA model, the area percentages are 23.05%, 262 

35.45%, 24.40%, 12.77% and 4.33%, whereas the area percentages are 26.22%, 35.65%, 24.01%, 10.65% 263 

and 3.47% for the BFLDA model (Fig. 6).  264 

  265 
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 266 

  267 
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Fig. 5 Groundwater spring potential maps: (a) FLDA, (b) RFLDA and (c) BFLDA models 268 

 269 

Fig. 6 Area percentages of groundwater spring potential classes 270 

5.4 Model validation  271 

The predictive capability of the three models was evaluated using evaluation statistics, including AURC, 272 

confidence interval (CI) and standard error at 95%. Results of the success rate curve using the training 273 

dataset are shown in Fig. 7 and Table 3. The BFLDA model showed the best performance, with the top 274 

AURC value of 0.892, the lowest standard error of 0.025 and the finest CI of 0.843–0.941, whereas the 275 

RFLDA and FLDA models obtained slightly lower values for all the aforementioned criteria. Results of 276 

the prediction rate curve are shown in Fig. 8 and Table 4. The BFLDA model also showed the best 277 

performance, with the peak AURC value of 0.746, the least standard error of 0.067 and the finest CI of 278 

0.614–0.877. In general, considering the training and testing datasets, all three models showed acceptable 279 

goodness-of-fit; however, the BFLDA model presented the best performance among all.  280 

In addition, results of the Friedman test are presented in Tables 5 and 6, which illustrate the mean rank 281 

for the FLDA, RFLDA and BFLDA models are 1.49, 2.05 and 2.46. The P value and chi-square for this 282 

Very low Low Moderate High Very High

FLDA 20.47 35.60 25.58 13.65 4.70
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test are 0.000 and 87.254, which are far from the standard values of 3.841 and 0.05. Therefore, in this 283 

test, the primary statement was true, and the null hypothesis was rejected. Results of the Wilcoxon 284 

signed-rank test are shown in Table 7. The significant z and P values are far from the standard values (i.e. 285 

-1.96 and +1.96) and 0.05, individually. Therefore, all the three groundwater spring potential models are 286 

significantly different. 287 

 288 

Fig. 7 the training ROC curves for three models  289 



24 

 

 290 

Fig. 8 the testing ROC curves for three models 291 

Table 3 Parameters of ROC curves of training analysis 292 

Test Result Variable  Area Std. Error 
95% Confidence interval 

Lower bound Upper bound 

FLDA 0.845 0.035 0.776 0.914 

RFLDA  0.882 0.028 0.828 0.936 

BFLDA 0.892 0.025 0.843 0.941 

 293 

Table 4 Parameters of ROC curves of testing analysis 294 

Test Result Variable  Area Std. Error 
95% Confidence interval 

Lower bound Upper bound 

FLDA 0.675 0.073 0.532 0.819 

RFLDA  0.728 0.069 0.593 0.863 

BFLDA 0.746 0.067 0.614 0.877 

 295 

Table 5 Average ranking of the three models 296 

Models Mean Rank 

FLDA 1.49 

RFLDA 2.05 

BFLDA 2.46 
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 297 

Table 6 Results of the Friedman test for the three models with α = 0.05 298 

Chi-Square 87.254 

df 2 

P. 0.000 

 299 

Table 7 Pairwise model comparison based on the Wilcoxon signed-rank test  300 

Pairwise Comparison Z value P value Significance 

RFLDA vs. FLDA -6.963 0.000 Yes 

BFLDA vs. FLDA -7.205 0.000 Yes 

BFLDA vs. RFLDA  -5.033 0.000 Yes 

 301 

6. Conclusions 302 

In current study, a novel hybrid integration method of FLDA with RF and bagging ensembles was applied 303 

and evaluated for groundwater spring potential mapping at the Ningtiaota area in Shaanxi Province, 304 

China. Sixty-six groundwater springs and 14 groundwater spring contributing parameters were initially 305 

selected for this study; these 14 parameters were elevation, slope angle, aspect, plan curvature, profile 306 

curvature, TWI, SPI, STI, distance to roads, distance to streams, lithology, land use, soil and NDVI. The 307 

predictive capability of these contributing parameters was tested by using the classifier attribute 308 

evaluation method based on the FLDA model. All 14 groundwater spring conditioning factors were 309 

incorporated in the training and testing datasets for further analysis. The applied models were validated 310 

and compared using ROC, Std. Error, CI at 95% and the Friedman and Wilcoxon signed-rank tests. The 311 

BFLDA model, which has the highest AURC values, smallest Std. Error and narrowest CI, is considered 312 

a promising technique for groundwater spring potential mapping.  313 
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