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Abstract

Motivated by food distribution operations for non-profit organizations, we study a variant of the

stochastic routing-allocation problem under demand uncertainty, in which one decides the assign-

ment of trucks for demand nodes, the sequence of demand nodes to visit (i.e., truck route), and the

allocation of food supply to each demand node. We propose three stochastic mixed-integer pro-

gramming (SMIP) models representing different performance measures important to food banks,

namely maximizing efficiency, maximizing equity, and maximizing efficiency and equity simultane-

ously. To solve practical large-scale instances, we develop an original matheuristic based on adaptive

large-scale neighborhood search. Using real-world data based on real-life instances, we conduct an

extensive numerical experiment to assess the computational performance of our approach and de-

rive insights relevant to food banks. The proposed matheuristic produces high-quality solutions

quickly with an optimality gap never exceeding 4.11% on tested instances. We also demonstrate

the performance of the three models in terms of service levels, food waste, and equity.

Keywords: Resource allocation; vehicle routing; food banks; humanitarian logistics; matheuristic

1. Introduction

With the recent COVID-19 pandemic and its double whammy on both the economy and healthcare

sectors, an increasing number of people globally are at risk of food insecurity1 due to the economic
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1Food insecurity is defined as the disruption of food intake or eating patterns because of lack of money and other

resources
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recession (Nagurney 2021). Moreover, current political conflicts (e.g., RussiaUkraine war) have

triggered a significant additional disruption in the global food supply chains and put more pressure

on food security after the COVID-19 impact (Jagtap et al. 2022). Feeding America estimates that

42 million people in the United States (i.e., 1 of 8) including 13 million children (1 in 6), may

experience food insecurity in 2021. These numbers represent an increase of 19.3% compared with

2019 numbers (in 2019 there were 35.2 million people in the US who were food insecure).

Food banks (i.e., non-profit organizations that primarily aim to distribute food items to people

in need of food assistance) have long been the primary means to meditate food insecurity in the

developed countries such as the US. Food banks provide several programs to combat food insecurity

where each program has a unique channel and means of providing food items to the beneficiaries.

For example, the Mobile Food Pantry Program (MFPP) is dedicated to serving populations located

in remote areas or people with limited mobility, such as seniors. The MFPP is a truck loaded

with food items that visit multiple locations to distribute food items to beneficiaries. We use the

term “demand nodes,” to denote the locations where beneficiaries receive food items following a

predefined schedule.

MFPP managers often seek three primary logistical and operational decisions: (1) the assign-

ment of trucks to serve demand nodes, (2) the sequence of visits to demand nodes assigned to each

truck (i.e., vehicle routing), and (3) how much to allocate to each node. The former two decisions

are vehicle routing problem, and the latter decision is a stochastic resource allocation problem

under demand uncertainty. The truck route should not exceed the driver’s work hour limitations.

A primary consideration during the allocation process is equity in allocation for the different nodes

while delivering overall as much food as possible (i.e., avoid food waste). In particular, food banks

are interested in maximizing equity and efficiency rather than maximizing profit or minimizing

cost. Equity refers to the status where all nodes receive similar levels of service and no node is

at a disadvantage. On the other hand, efficiency within the context of MFPP refers to allocating

as much food items as possible and minimize food waste at the end of distribution operations.

Unfortunately, it is well-known that equity and efficiency are often conflicting objectives in many

real-world application and within the context of MFPP in particular. For instance, allocating no

food items to all nodes creates perfect equity since there is no variation in the level of service. But,

on the other hand, no allocation implies that we waste large quantities of food, resulting in a total

loss of efficiency.

Our work aims at developing and solving several mathematical models that help food banks
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run their MFPP more efficiently while maintaining equity. This paper is specifically inspired by

the MFPP of the Food Bank of the Southern Tier (FBST) located in Elmira-NY, which serves

more than 80 nodes across six counties. The ultimate goal of this project is to optimize the routing

of MFPP trucks and food supplies allocation to demand nodes within the service network of the

FBST program to best account for the variability of the demand and ensure maximizing equity

and minimizing food waste (i.e., maximize efficiency).

We consider a multi-vehicle routing and resource allocation problem under demand uncertainty

with equity and efficiency objectives in non-profit settings. Existing models for this problem have

considered deterministic demand or focused on one aspect of the problem, often maximizing eq-

uity with a few studies focusing on the efficiency dimension. We propose a data-driven two-stage

stochastic-mixed-integer programming (SMIP) models that decide on the optimal first-stage rout-

ing and allocation decisions under various performance measures important to food bank managers,

namely maximizing efficiency, maximizing equity, and maximizing efficiency and equity simultane-

ously. We summarize our contributions as follow:

• To the best of our knowledge, and according to our literature review, see Section 2, our paper

is the first to propose and analyze SMIPs for integrated stochastic routing and resource

allocation for the MFPP.

• Due to the challenges of solving large instances with the SMIP, we propose a matheuristic

based on an adaptive large-scale neighborhood search to obtain near-optimal solutions for

large-scale instances. This matheuristic leverages the special structure of the problem. It

combines a constructive heuristic, which provides an initial feasible solution in short compu-

tational times, an improvement heuristic, and solving a mixed-integer programming model.

• Using real-world data obtained from our partners at the Food Bank of the Southern Tier

located in Elmira-NY, we conduct an extensive numerical experiment to assess the computa-

tional performance of our approach and derive insights into the MFPP. Our results demon-

strate the trade-off between service level, efficiency, and equity. In addition, our matheuristic

can solve large practical instances with an optimality gap never exceeding 4.11% within two

hours for large instances, thereby enabling practitioners to use our approach.
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2. Literature Review

Studies on food banks’ operations are more recent in the OR literature. The first paper present-

ing operations research tools for food banks is the study by Bartholdi III et al. (1983). Bartholdi III

et al. (1983) developed a decision support tool to solve a logistic distribution operation related to

the Meals on Wheels program which is essentially a vehicle routing problem. Since then, there

has been more attention by the OR community to study various food banks’ operations such as

resource allocation (Alkaabneh et al. (2021)), location-routing (Johnson et al. (2002), Ghoniem

et al. (2013)), inventory managing (Davis et al. (2014)), gleaning operations (Lee et al. (2017)),

food supply chain network design (Besik et al. 2022), etc.

In this work we focus on the MFPP which encompasses two major operations, the vehicle routing

and the resource allocation in stochastic settings. Studies in the operations research literature

considering routing allocation problems are not new (see, e.g., Kumar et al. (1995), Bassok and

Ernst (1995), Berman and Larson (2001)). Nonetheless, these studies are dedicated to commercial

settings where the goal is to maximize distributor’s profit or minimize costs due to routing and

penalty costs associated with unsatisfied demand. However, the MFPP is a service provided by the

food banks to the public; therefore, it is necessary to have different perspectives on the problem.

Savas (1978) argues that any public service program should have fundamental policy questions

related to how well a service is performed. More precisely, Savas (1978) states that three measures

- efficiency and equity - are the key indices of performance for public services. In light of such

considerations, the performance of MFPP as a public service requires more focus on efficiency and

equity as performance measures rather than cost and profit.

Several studies in the literature examine the problem of resource allocation/inventory manage-

ment in social settings where the goal is to achieve equitable and efficient distribution of donated

supplies. Motivated by the sequential resource allocation at the MFPP where the sequence of

stops is fixed (i.e., the order of nodes to be visited is known upfront and not part of the planning

process), Lien et al. (2014) study the sequential resource allocation with an objective function that

aims to maximize the expected minimum filling ratio among a set of demand nodes. In their work,

a sequence of nodes are served by a single vehicle while the order of visits is fixed and the decision

is how much to allocate at each node upon arrival and revealing the actual demand. Sinclair et al.

(2020) propose a simple policy that aims to “match” the ex-post fair allocation among nodes using

the current available resources and “predicted” histogram of future demand. Their algorithm is

simultaneously Pareto-efficient and envy-free. Orgut et al. (2016, 2018) present robust optimization
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models to support food banks in their inventory (resource) allocation decisions with the objective of

maximizing total food distribution (i.e., efficiency) while equity is enforced as a constraint in their

model. Fianu and Davis (2018) develop a model to assist food banks in distributing food supplies

which they receive from random donations with the aim of maximizing equity in distribution. In

their model the supplies are considered to be stochastic while demand is deterministic.

Other studies in the literature that consider the integration of routing and resource allocation

are limited. To the best of our knowledge, only three studies in the literature consider the inte-

grated problem of resource allocation/collection and routing in an integrated fashion while explicitly

considering social performance measure (i.e., equity and efficiency). Eisenhandler and Tzur (2018)

study “deterministic” (i.e., food supplies and demand are known in advance) problem of food rescue

(food collection and distribution) as a routing resource allocation problem with the objective func-

tion of maximizing equity and efficiency simultaneously. They present an exact solution method

and a large neighborhood search heuristic approach to solve large-scale instances. Eisenhandler

and Tzur (2019) present a novel formulation and a powerful matheuristic that combines solving a

mathematical model and a heuristic to solve rich humanitarian logistic problems including the food

rescue problem at food banks. Balcik et al. (2014) extends the work of Lien et al. (2014) for the

multi-vehicle version and their model incorporates the decision of vehicle routing in addition to the

resource allocation decisions. It is worth mentioning that the work of Eisenhandler and Tzur (2018)

and Eisenhandler and Tzur (2019) assume that the supplies to be collected and the demand to be

satisfied are deterministic; on the other hand, only Balcik et al. (2014) consider random demand

at the nodes which is more realistic and closer to the actual food banks operations. Our work is

substantially different than Lien et al. (2014) since our model considers the multi-vehicle stochastic

routing and allocation unlike the work of Lien et al. (2014) which considers only a single vehicle

stochastic routing and allocation. Balcik et al. (2014) studies multi-vehicle stochastic routing al-

location problem in non-profit setting focusing on maximizing equity and minimizing food waste

using efficient decomposition-based heuristic; on the other hand, our work provides a two-stage

integrated model. More recently, some studies focus on empirical data to analyze the preference

of food banks’ managers in terms of the trade-offs between equity, efficiency, and effectiveness, see

Islam and Ivy (2022), Zoha et al. (2022), Hasnain et al. (2021). Hasnain et al. (2021) develop a

multi-criteria optimization model that provides the decision-maker the flexibility to capture their

preferences over the three criteria of equity, effectiveness, and efficiency, and explore the resulting

trade-offs.

5



Figure 1: Example of MFPP operation.

To the best of our knowledge, solving large-scale instances of routing resource allocation prob-

lem under stochastic demand with an objective function maximizing equity and efficiency simul-

taneously nor a model with an objective function that maximizes efficiency and modeling equity

explicitly have not been addressed before. Our study makes three main contributions. First, we

introduce stochastic routing and resource allocation models to solve the MFPP under different

objective functions. Second, we design a matheuristic solution procedures for this problem that

utilizes certain properties and structure of its subproblem. Numerical experiments on several real-

life and randomly generated data sets confirm that our matheuristic obtains high-quality solutions

within short computational time. Third, we highlight the societal impact and policy insights of our

work based on different performance measures that food banks care about.

3. Definitions and Assumptions

In this section, we formally define our stochastic MFPP problem and provide an illustrative

example of MFPP operations (see Section 3.1). The MFPP operation is essentially a truck loaded

with food items visiting demand nodes following a particular order, and at each stop, volunteers

distribute food items to recipients. The location of these demand nodes is fixed and they are

usually a church, a parking lot, or a public space. Food bank managers need to communicate the

pickup locations and time schedule of each visit to the recipients well in-advance. The food bank

publishes the pick-up times at the beginning of each year and these information are shared with
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the local community. One day before the distribution, the food bank coordinator decides on the

number of items (food units) to load the truck given a certain set of nodes that will be visited by

a truck. On the day of distribution, the volunteers load the truck with the number of units the

coordinator decided. The truck starts visiting the nodes following the order of visits, and volunteers

distribute food items to beneficiaries at each stop. The number of people showing up at a certain

node (demand henceforth) is often random and the volunteers have full control on how many units

of supplies to provide at a certain node as long as they don’t over serve2. A shortage occurs when

the node’s realized demand exceeds the units pre-allocated to this node. On the other hand, extra

food goes to waste if there are excess food items (i.e., the realized demand is less than pre-allocated

units), which is a significant loss for a food bank operating under limited supplies. In this paper,

we allow using the excess supplies from a node to satisfy the demand of any successive node within

that route.

In this paper, we consider a stochastic MFPP problem. Specifically, we consider a food bank

facility (node) with a set of K trucks that must serve a set of demand nodes, and accordingly,

define MFPP problem on a directed service network (graph) G = (V,A), where V = {0, ..., n} is

the vertex set and A is the edge set. The vertex 0 is the food bank node, and the vertices in the

set V ′ = V\{0} are the demand nodes. The traveling time between two nodes i and j is ti,j , which

represent the duration of traveling along edge (i, j) ∈ A. We do not assume that the traveling time

matrix is symmetric. The truck driver need to get back to the food bank within L time units. The

food bank have U units of supplies, and each truck k have a capacity of Qk. The demand, di, of

each node i ∈ V is random.

Given a set of demand nodes, we aim to find: (1) assignment of nodes to trucks, (2) a routing

plan for each truck, i.e., a route that specify the movement of the truck, and (3) allocation of food

items, i.e., amount of supply to pre-allocate for each node in a route. The objective is to maximize

the filling rate across all nodes. As in practice, we aim to satisfy as much as demand as possible

while maintaining equity among nodes. When the volunteers decide on how many units to supply

a certain node, the following constraints are imposed:

• The total number of units allocated is less than or equal the recommended allocation by

Feeding America.

2Over service refers to the case where an individual receive more units (pounds of food) than the number of pounds

recommended by Feeding America.
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• Equity should be maintained among different nodes implying that no node should be at a

disadvantage while other nodes enjoy full demand satisfaction.

In non-profit operations, such as the MFPP, maintaining equity among recipients is very critical

aspect. In the context of MFPP, equity refers to maintaining similar service rate among different

nodes and no node is at a disadvantage. That implies that the filling ratio of all nodes should be

similar, or close, to each other. The filling ratio, or service level, is the total allocated quantity

over total demand. As in prior literature, use the deviation between the maximum filling ratio and

the minimum filling ratio as a measure of inequity. This inequity can be controlled via the inequity

parameter which we denote by α. The parameter α takes values between 0 and 1, in case α is set

to 0, we have a perfect equity and setting α > 0 imply certain degree of inequity. Perfect equity

occurs when all filling ratios are the same across demand nodes.

3.1. Mobile Food Pantry Program Operation

In this section, we provide a small example to illustrate MFPP operation. Consider an MFFP

with one truck and two stops (A and B). Suppose that the demand at the first stop follows a

uniform distribution with a lower bound of 2 and an upper bound of 4 (i.e., U = [2, 4]). Moreover,

suppose that the demand at the second stop follows a uniform distribution with a lower bound of

1 and an upper bound of 4 (i.e., U = [1, 4]), and assume that the food truck leaves the food bank

with 5 units of food. Thus, the demand at nodes A and B are unknown at the planning stage, i.e.,

the actual value of the demand will be observed once the driver arrives at each stop (see Figure 1

part (a)). Suppose the driver’s route starts at the food bank, visits A, then B before returning to

the food bank. In addition, suppose that the driver observes 3 demand units at stop A (see Figure

1 part (b)). At this point, s/he needs to decide how many units to distribute. If they distribute

3 units, the filling ratio is 1 (i.e., amount distributed equals demand). Moreover, the driver leaves

stop A and move to stop B with the remaining two food units in this case. If the demand at stop

B is 3 units (see Figure 1 part (C)), then the driver can only distribute the remaining 2 units to

B, and the filling ratio of B is 0.67 (i.e., distributed quantity is smaller than demand). Finally,

the driver returns to the food bank (see Figure 1 part (d)). Note that, in this example, the food

truck returned to the food bank with zero units. In other words, this feasible allocation is efficient

because all the available supplies were distributed. However, this allocation is inequitable because

stops A and B filling ratios are 1.0 and 0.67, respectively, leading to an inequity (highest filling

ratio - lowest filling ratio) of 0.33.
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4. Stochastic Optimization Model

In this section, we formulate a two-stage SMILP model for the MFPP. In the first (planning) stage,

we determine (1) the assignment of nodes to trucks, (2) a routing plan for each truck, and (3) the

amount of supply to pre-allocate for each node in the route of each truck. In the second stage (i.e.,

recourse problem), after observing the demand, we compute the filling ratio and excess at each

node for each demand realization.

First, let us introduce the variables, parameters, and functions defining our first-stage SP model.

We define a binary variable xkij that is equal to 1 if and only if food truck k travels along edge

(i, j). We let yki be a binary decision variable indicating if node i is served by vehicle k. Let

non-negative continuous decision variable qki represents the amount of supply pre-allocated to node

i to be delivered via vehicle k, for all i and k. Due to demand uncertainty, the actual demand at

each node i may be smaller, equal, or larger than pre-allocated supplies to each node.

For each realization of the demand, we define the following second-stage variables. We define

non-negative continuous decision variable fi as the filling ratio at site i. In addition, we define a

non-negative continuous decision variable wki to represent the excess of supplies available on truck k

after leaving at site i. Note that the excess supplies from a node can be used to satisfy the demand

of any successive site within that route. In other words, in addition to the pre-allocated supply to

each node, volunteers may distribute food items carried from previous nodes to satisfy the demand

as much as possible. Table 1 summarizes all notation. Using these notation, we formulate the

following SMILP:

max
x,y,q

Eξ[Q(x, q, y, ξ)] (1a)

s.t.
∑

j∈V,i 6=j
xkij −

∑
j∈V,i 6=j

xkji = 0, i ∈ V, k ∈ K (1b)

∑
i∈V,i 6=j

xkij = ykj , j ∈ V, k ∈ K (1c)

∑
i∈V

xk0i ≤ yk0 , k ∈ K (1d)

∑
k∈K

yki = 1, i ∈ V ′ (1e)

∑
(i,j)∈A

tijx
k
ij ≤ L, k ∈ K (1f)

∑
i∈S

∑
j∈S:j 6=i

xkij ≤ |S| − 1, k ∈ K,S ⊂ S ⊂ N : 2 ≤ S ≤ N − 1 (1g)
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Table 1: Notation

Indices
i, j Node indices
k Vehicle index
Parameters
N Number of demand nodes in the network excluding the food bank
U Available supplies
tij travelling time between nodes i and j
ρ fraction of available excess in the food truck that can be allocated at a certain node (0, 1]
Qk Capacity of vehicle k
L The maximal vehicle travel time
α Inequity parameter
Scenario-dependent parameters
di Realized demand of node i
sai Node’s i share in the total demand of all nodes (sai = di∑

j∈V′ dj
)

ξ Random vector containing scenario-dependent parameters
ξ = (d1, d2, ..., dN )

Scenario-independent (first stage) variables
xkij binary variable that is equal to 1 if and only if vehicle k travels along edge (i, j)
yki binary variable that is equal to 1 if and only if vehicle k visits site i
qki continuous variable to denote the quantity of food distributed at site i via vehicle k
Scenario-dependent (second-stage) variables
fi filling ratio of node i
γ minimum filling ratio
wk

i excess of food available in truck k upon visiting site i

∑
i∈V ′

∑
k∈K

qki ≤ U, (1h)

∑
i∈V ′

qki ≤ Qkyk0 , ∀k ∈ K (1i)

xkij , y
k
i ∈ {0, 1} qki ≥ 0, i, j ∈ V, k ∈ K (1j)

where for a feasible (x, y, q) ∈ X := {(1b)− (1j)} and a realization of ξ := [d1, . . . , d|V|]
>:

Q(x, y, q, ξ) := min−
∑
i∈V ′

fi (2a)

s.t. qki − di + wkj −M(1− xkji) ≤ wki , ∀i ∈ V ′, j ∈ V, k ∈ K : i 6= j (2b)

(1− ρ)wkj −M(1− xkji) ≤ wki , ∀i ∈ V ′, j ∈ V, k ∈ K : i 6= j (2c)

fi ≤
∑

k∈K(qki + wkj − wki ) +M(1−
∑

k∈K x
k
ji)

di
, ∀i ∈ V ′, j ∈ V : i 6= j (2d)

fi ≤ 1, ∀i ∈ V ′ (2e)

|fi − fj | ≤ α, ∀i, j ∈ V ′ (2f)

fi, w
k
i ≥ 0, ∀i ∈ V, k ∈ K (2g)

The objective function (2a) maximizes the summation of filling ratios to achieve the largest

efficiency. Constraints (1b) require that each node is arrived at from exactly one other node if
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visited by vehicle k. Constraints (1c) require that if node j is served by vehicle k then vehicle

k visits that node. Constraints (1d) enforce that a vehicle can depart the food bank only if it is

used. Constraints (1e) ensure that each node i is served by a vehicle. Constraints (1f) enforce

the length of the tour of vehicle k to be less than or equal to the time limit by which the driver

and the volunteers need to complete their working day. Constraints (1g) are sub-tour elimination

constraints. However, for instances of realistic sizes, the number of sub-tour elimination constraints

(1g) is too large to allow full enumeration and these must be dynamically generated throughout

the search process. Specifically, each time the model is solved, we run minimum s-t cut algorithm

on the resulting graph to detect sub-tours and add the constraints accordingly. Constraints (1h)

ensure that total allocation does not exceed total supplies available and (1i) ensure that the vehicle

load does not exceed its capacity.

For each scenario, constraints (2b) and (2c) calculate the remaining food excess after visiting

node i and performing the distribution process upon observing the demand. Note that the food

excess available on the truck can be used in part or as a whole to satisfy the demand of a node if

the observed demand exceeds the pre-allocated quantity in stage 1. Parameter 0 ≤ ρ ≤ 1 captures

the allowed quantity to be allocated. If ρ is set to 0, then food excess from previous nodes cannot

be reused for later allocations. On the other hand, if ρ is set to 1, then food excess from previous

nodes should be reused completely until the observed demand is fully satisfied or there are no

more excess available for allocation. Lastly, note that due to different cases of difference between

supplies at stage 1 and demand and the different cases of the value of wj , this leads to the need of

having constraints (2b) and (2c), see Table 2 for more details. Constraints (2d) calculate the filling

ratio of each node. Constraints (2e) ensure that distributed quantity does not exceed observed

demand. Note that the waste or excess in supplies at one node is returned to the truck and can be

used as available supplies at the next node, this is captured via decision variable wi ∀i ∈ V ′ where

wk0 = 0. Constraints (2f) ensure that the deviation between maximum and minimum filling ratios

does not exceed the predefined inequity threshold α. Finally, (1j) and (2g) specify feasible ranges

of the decision variables. Model (1a)-(2g) aims at maximizing efficiency measured as total quantity

allocated to all demand nodes while equity is maintained as a constraint, model (1a)-(2g) is called

M Eff.

We also derive models to account for different perspectives by modifying model (1a)-(2g). We

next discuss these models. Lien et al. (2014) and Balcik et al. (2014) present models that focus

on maximizing the minimum filling ratio (i.e., maximizing equity). To derive such model under
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Table 2: Different cases for calculating wk
i

Case (di vs qki ) wk
j wk

i

1. A di > qki positive max{(1− ρ)wk
j , w

k
j − di + qki }

1. B di > qki 0 0
2. A di < qki positive qki − di + wj

2. B di < qki 0 qki − di
3. A di = qki positive wj

3. B di = qki 0 0

uncertainty, we relax constraints (2f) and replace the objective function (2a) by:

Q(x, y, q, γ, ξ) := min−γ (3)

and add the following constraint:

γ ≤ fi, ∀i ∈ V ′ (4)

We call this model M Eq as it aims at maximizing expected equity.

Lastly, the model presented in Eisenhandler and Tzur (2018) and Eisenhandler and Tzur (2019)

aims at maximizing equity and efficiency simultaneously. Efficiency (i.e., total allocated quantity)

can be calculated as
∑

i∈V ′ difi, and the equity can be measured using the following linear con-

straints based on Anand (1983) and Mandell (1991):

Eij ≥ sajdifi − saidjfj ∀i, j ∈ V ′ : i < j (5a)

Eij ≥ saidjfj − sajdifi. ∀i, j ∈ V ′ : i < j (5b)

Constraints (5) become part of the second stage model, constraints (2f) are relaxed, and objec-

tive function (2a) is replaced by:

Q(x, y, q, γ, ξ) := min−
∑
i∈V ′

difi +
∑
i∈V ′

∑
j∈V ′:i<j

Eij (6)

We call this model M Eq M Eff as it aims at maximizing expected efficiency and equity simul-

taneously. Note that the proposed models (i.e., M Eff, M Eq, and M Eq M Eff) are challenging to

solve primarily due to the following reasons

• If we ignore the stochastic demand and assume that the demand at each location is determinis-

tic, and if we relax the equity constraints, the resulting problem is a Vehicle Routing Problem

(VRP). VRP is a well-known problem to be NP-hard; hence, our problem is NP-hard.
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• The number of binary variables in our formulation is a function of the instance size. Specif-

ically, the number of binary decision variables is O(KN2), where N is the number of nodes

in the network, and K is the number of vehicles. Thus, the number of binary variables could

grow exponentially as the size of the instance grows. It is well-known that such large-scale

integer programs are challenging to solve.

5. Matheuristic for the Mobile Food Pantry Program problem

Due to the complexity of the underlying routing and stochastic allocation problems, the SMILP can

solve only small instances to optimality and fail to solve large-scale real-life instances in a reasonable

time. Therefore, in this section, we develop a matheuristic that finds high-quality solutions within

a reasonable time. To develop this matheuristic, we leverage the following structural properties of

the problem. The MFPP seeks three main decisions that can be composed into three stages, the

first stage is to partition the nodes into vehicles, the second stage aims to find the optimal sequence

of nodes for each vehicle route, and the third stage aims to find the optimal resource allocation

across the nodes. The optimization problem at the third stage is a stochastic LP for fixed nodes

partitioning and vehicle routes that is easy to solve efficiently using a standard solver.

We use the above structure to develop a three-stage matheuristic based on the Adaptive Large

Neighborhood Search (ALNS) framework proposed Ropke and Pisinger (2006). Unlike the Large

Neighborhood Search (LNS) framework developed by Shaw (1998), the ALNS updates the weights of

the operators in an adaptive fashion based on their performance. ALNS is a suitable meta-heuristic

for the MFPP problem as it demonstrates excellent performance in solving hard VRP problems

under different variations, see Ribeiro and Laporte (2012), Adulyasak et al. (2014), Mjirda et al.

(2014). At a high level, ALNS implements a mechanism to search within the neighbor space of

a solution by calling a destroy operator, followed by a repair operator. At each iteration during

the search, a certain destroy operator “destroys” part of the solution, which is later “repaired” by

a repair operator. Upon evaluating the objective function value of the new repaired solution, the

algorithm updates the weights of the destroy and repair operators based on the solution quality of

the new repaired solution.

A pseudocode of the ALNS is shown in appendix Appendix A. An initial feasible solution s is

generated by means of a construction heuristic, we describe our construction heuristic in Section

5.1. In our work, destroy operators essentially remove a node (or a set of nodes) from its (their)
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(a) Current feasible solution (b) Add node 3 to the removal list (s′)

(c) Add node 8 to the removal list (s′) (d) Insert nodes 3 and 8 into new routes (snew)

Figure 2: Depiction of destroy and repair operators.

current route while repair operators insert a removed node into a new route. Figure 2 illustrates

the high-level ideas behind the developed destroy and repair operators. The destroy operators are

detailed in Section 5.2, the repair operators are described in Section 5.3, Section 5.4 describes the

acceptance criteria of a new solution, and lastly operators’ weight updating is provided in Section

5.5.

In our implementation of the ALNS heuristic, each solution s is an assignment of nodes to

trucks and trucks routing, and f(s) is the objective function value of the optimal allocation corre-

sponding to the solution s found by solving an LP by fixing the values of all binary variables. The

main motivation for an ALNS-based search heuristic for the MFPP is the fact that each iteration

consists of solving a simple LP efficiently and hence the ALNS can explore large number of random

neighbors. Furthermore, by solving model (1a)-(2g) to optimality for fixed routing variables while

exploring a large number of neighbors, our implementation demonstrates the diversification and

intensification components which are fundamental elements for meta-heuristic optimization (Glover

and Samorani 2019).
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5.1. Construction of an initial feasible solution

We construct the initial solution for the MFPP problem sequentially by considering one demand

node at each iteration and try to find the best route to insert the selected node at each iteration

until all nodes are inserted within a route. Note that any demand node can be characterized by

its location (address), demand mean (µi), demand variance (σi), and nominal allocation. Nominal

allocation refers to the quantity that a node receives upon solving a resource allocation problem

to decide the fair share of each demand node given the trucks capacity, total supplies available

for allocation, and assuming perfect equity allocation (i.e., a setting with α = 0). The nominal

allocation quantity for each node can be simply calculated as follows:

nai = min{Q, U∑N
j=1 µj

∗ µi}, ∀i ∈ N

Calculating the nominal allocation helps in the initial construction of routes as it provides a better

idea of the truck capacity utilization. On the other hand, a route can be characterized by the set

of nodes it serves, remaining capacity of the truck (given how much allocation each node receives),

and the total traveling time. Our construction algorithm makes use of all these information when

deciding which node to consider next and what is the best truck to assign for that node. More

specifically, our algorithm calculates a score for each route when considering a node to insert as:

Scorei,k = −δ1distancei,k + δ2rck + δ3

∑
j∈R(k) σj + σi∑

j∈N σj −
∑

j∈R(k) σj − σi

where δ1 is the weight of importance for the distance measure, distancei,k is the distance from the

centroid of truck’s k route and node i. Note that assigning nodes to trucks does not constitute a

route yet and therefore the centroid of truck’s k route is assumed to be in the center of all nodes

included in that route including the point of the food bank itself. The reasoning behind including

the distance criteria within the weight score is due to the fact that constraints (1f) need to be

satisfied. The second term incorporates the remaining capacity into scorei,k where δ2 is the weight

of importance for the remaining capacity of truck k, rck is the remaining capacity at truck k. The

third term accounts for variation of demand of nodes trying to spread the variance of nodes across

different routes instead of packing nodes with high demand variance within the same route. A

selected node i is then inserted in route k that yields the highest score. The process is repeated

until all nodes are assigned trucks.

Once all nodes are assigned routes, our construction heuristic finds the sequence of nodes within

each route by solving a small instance of the MFPP for one vehicle, setting Uk = 0.8 ∗
∑

i∈k nai.
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Our preliminary analysis suggests that the sequence of nodes within a route is fairly robust to

variation in supplies as long as the supplies are less than the total demand. Therefore, we make

use of this observation to find the optimal sequencing within each route independently.

The last step of our construction heuristic is to find the optimal allocation of resources to

each demand node by solving the MFPP problem (1a)-(2g) with fixed routing variables. The

construction heuristic returns a solution s that is feasible to all constraints in (1a)-(2g).

5.2. Destroy Operators

In this section, we present the six destroy operators that we use in our algorithm. We use d ∈ D to

denote a destroy operator within the set of destroying operators D. Some of these operators appears

in the VRP literature implementing ALNS heuristic, see Ropke and Pisinger (2006), Pisinger and

Ropke (2007), Demir et al. (2012), Alkaabneh et al. (2020), Alkaabneh and Diabat (2022). A destroy

operator in our ALNS design is essentially a function that takes the location of each node within

each route and removes a set of nodes from their locations, implying that these nodes are not visited

by the food truck anymore. Therefore, a destroyed solution is no longer feasible; hence, a repair

operator is needed to restore feasibility. The criteria a destroy operator follows in deciding which

nodes to remove follows the definition of that destroy operator as detailed in our main manuscript.

For the MFPP problem it is natural to design a destroy phase where nodes are removed from routes;

hence, the destroy phase consist of a series of operations where selected nodes are removed from

their routes and added to a removal list L as illustrated in Figure 2. We now describe the destroy

operators used in our implementation:

1. Random selection: this operator starts with an empty removal list. It randomly removes

p nodes from the solution. The idea of randomly selecting nodes helps diversify the search

mechanism. In our implementation, the number of nodes to remove is determined using a

semi-triangular distribution with a negative slope, which favors removing a small number of

nodes. More specifically, p is an integer random number drawn from the interval [1, 0.2∗ |N |].

2. Largest demand mean removal: this operator iteratively removes nodes which belong to a

predefined set of nodes with high demand mean.

3. Largest demand variance removal: this operator, similar to the Largest demand mean removal

operator, iteratively removes nodes which belong to a predefined set of nodes with high

demand variance.
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4. Route removal: This operator removes all nodes within a selected route from the solution and

add them to list L. It randomly selects a route from the set of routes in the solution.

5. Historical knowledge node removal: this operator is inspired by the the neighbor graph re-

moval operator used in Ropke and Pisinger (2006) and the historical knowledge node removal

operator developed in Demir et al. (2012). This operator keeps a record of the food excess of

node i, defined as difference between qki and observed di, and calculated as hri = (
∑

k q
k
i −di)+

at any iteration. At any iteration of the ALNS, the algorithm keeps track of the minimum

excess for each node i denoted as hr∗i . The historical knowledge operator, then, selects a node

that has the highest deviation from its minimum food excess as i∗ = arg maxi∈V ′ hri − hr∗i .

6. Zone removal: The zone removal operator removes a set of nodes from their route based on

their location on the map. This operator picks a point on the map and inserts all nodes

within a predefined radius from the selected point into the removal list.

5.3. Repair operators

We are now ready to present the repair operators that insert nodes from the removal list L until

all nodes are inserted. A repair operator is a function that takes an infeasible solution violating

any of the constraints (in our ALNS algorithm nodes that are not visited) and restores feasibility.

Thus, a solution that is repaired is a feasible solution respecting all constraints. The criteria that

a repair operator follows in deciding where each removed node is inserted follows the definition of

that repair operator as detailed in our manuscript. We use r ∈ R to denote a repair operator from

the set of repairing operators R. Note that these repair operators insert the removed nodes back

into existing routes if it is feasible with respect to the traveling time constraint. Each time a repair

operator selects route k to insert a node from list L (say node i), we implement Algorithm 1 to check

if adding node i to route k maintains feasible truck traveling time. Therefore, our implementation

of ALNS to solve MFPP does not allow moving into a neighbor that is not feasible in terms of

traveling time constraints. The main motivation of preserving feasibility during the search is due

to the fact that a valid lower bound for the MFPP problem can be obtained simply by solving the

problem for a single vehicle due to the pooling effect. That said, violating the truck capacity or

tour length constraints will always lead to lower (i.e., better) objective function value and it might

be difficult to restore feasibility in our setting.

We now briefly define the four insertion operators used in the ALNS algorithm:

• Greedy insertion: This operator repeatedly inserts a node in the best feasible route.
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Algorithm 1: Repair operation

Input: A list of nodes served by vehicle k (L), new node to be inserted i

Output: Feasibility check on inserting node i within route k (True or False)

1 Solve a TSP instance with an objective function to minimize the traveling time on L ∪ i

2 if Total traveling time ≤ L then

3 Return True // It is feasible to insert node i within route k

4 else

5 Return False // It is not feasible to insert node i within route k

• Smallest route insertion: This operator tries to insert a node in the smallest route according

to the total truck load.

• Busiest route insertion: This operator tries to insert a node in one the busiest d0.2∗Ke routes

according to the total truck load.

• Random route insertion: This operator picks a route at random and tries to insert a node in

that selected route.

5.4. Acceptance criteria of a new solution during the search

We use simulated annealing as a local search framework for our ALNS heuristic. Within simulated

annealing, a new solution whose objective function value is worse than the current solution may be

accepted with certain probability that is decreasing as the search moves forward. More specifically,

if s∗ denotes the best solution found during the search so far, scurrent is the current solution

obtained at the beginning of an iteration, and snew is a new feasible solution found at the end of

an iteration upon implementing a destroy and a repair operators. The objective function value

of a solution s is denoted as f(s). A solution snew is always accepted if f(snew) < f(scurrent)

(for minimization problems), and accepted with a probability of e
f(snew)−f(scurrent)

Temp/iter , where Temp is

the temperature. Dividing Temp by the iteration counter (iter) serves as a cooling mechanism to

reduce the temperature as the number of iterations moves forward.

5.5. Updating the weights

The last step at each iteration within the ALNS algorithm is to update the weights of the destroy

and repair operators. Updating the weights of the operators gained success in addressing several
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Figure 3: ALNS general framework.

complex routing and scheduling problems (e.g., Ropke and Pisinger (2006), Cordeau et al. (2010),

Ruf and Cordeau (2021)). In this approach, if destroy operator d (repair operator r) was selected

in iteration iter, then at the end of this iteration, a score ηd (ηr) is assigned to its performance.

The formula for updating the value of ηd is as follows:

ηiter−1
o = ληiter−1

o + (1− λ)ψ

where λ ∈ (0, 1) is a smoothing parameter and ψ is the performance score of an operator and it is

assigned as:

ψ =



ψ1, if the new solution is better than the best solution found so far

ψ2, if the new solution is better than the current solution

ψ3, if the new solution is accepted

ψ4, if the new solution is rejected

with ψ1 ≥ ψ2 ≥ ψ3 ≥ ψ4, in our implementation we use ψ1 = 100, ψ2 = 40, ψ3 = 10, and ψ4 = 1 as

in Cordeau et al. (2010). The initial weight η0
o at the first iteration is set to 1 for all operators. At

the end of each iteration after updating the values of η, the probability assigned to each operation

o is ηo∑
o∈O ηo

. Figure 3 summarizes the main ALNS procedure.

5.6. Improvement Phase

Similar to the work of Archetti et al. (2017), the third phase of our matheuristic is based on

using the information collected during the random search phase. Note that the complexity of the
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MFPP reduces significantly if the clusters of demand nodes and routing decisions are established.

As such, the third phase of our matheuristic focuses on exploring promising clusters of demand

nodes and routes.

The idea of the improvement phase is to solve a new MFPP model where the decision vari-

ables are assignment of nodes to clusters (partitions) and resource allocation. Given a number of

promising partitions, the new model seeks to find the best partitions and resource allocation for

each node. The set of promising partitions are collected during the ALNS search. More specifically,

each time there is an improvement in the current objective function or a new best global solution

is found, see lines 8 and 13 of Algorithm 2 in appendix Appendix A, vehicle clusters/routes are

saved as promising partitions of nodes. We introduce the following notation:

• c ∈ C the set of unique clusters collected during the ALNS execution;

• aci is a parameter that takes value 1 if node i ∈ V ′ is served in cluster c;

• x̄cij parameter equals to 1 if node i is visited before node j within cluster c : aci = acj = 1.

Note that we save the routing variables within each cluster during the search since routing and

allocation variables are optimal with respect to fixed partition, see the discussion in Section 5.3.

We formulate a MILP model called findClust to select the best clusters and resource allocation.

To this end, findClust use the following variables in addition to fi, Eij , γ:

• yc binary variable equals to 1 if and only if cluster c is selected;

• qci continuous variable to denote the quantity of food distributed to node i within cluster

c : aci = 1;

• wci continuous variable denoting excess of food upon visiting site i within cluster c : aci = 1.

max
y,q

Eξ[Q(q, y, ξ)] (7a)

s.t.
∑
c∈C

aciy
c = 1, i ∈ V ′ (7b)

∑
c∈C

yc ≤ K, (7c)

∑
i∈V ′

∑
c∈C

qci ≤ U, (7d)

∑
i∈V ′

aciq
c
i ≤ Qyc,∀c ∈ C (7e)
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yci ∈ {0, 1} qci ≥ 0, i ∈ V, c ∈ C (7f)

Constraints (7b) ensure that each node is served by one cluster only. Constraints (7c) enforce

the number of selected clusters to be less than or equal to the number of vehicles available in

service. Constraints (7d) ensure that total allocation does not exceed total supplies available and

(7e) ensure that the vehicle load does not exceed its capacity. Constraints (7f) enforce that yc

variables are binary and qci variables are continuous and positive. The remaining constraints have

the same meaning as in the original formulation provided that xkij are no longer binary variables,

instead are replaced by x̄cij and qci replaces qki in (2).

6. Lower Bound

Deriving a valid lower bound for the equity and efficiency maximization model can be obtained

by relaxing constraints (5) and removing the second term (i.e., the equity part Eij) from the

objective leads to a new model that provides a lower bound for equity and efficiency maximization

model. Note that constraints (1h) state that total allocated quantity never exceeds U ; therefore,

−U is a valid lower bound for equity and efficiency maximization model. This is a much tighter

bound than the LP relaxation bound. Likewise, for maximize efficiency model a valid lower bound

can be obtained by relaxing constraints (2f) and (1f). In this case, the model becomes easier to

solve.

7. Numerical study

In this section, we present several experiments to assess the performance of the proposed

matheuristic and derive insights into the solutions of the different models. We use real-world

data provided by the Food Bank of the Southern Tier (FBST), which is located in Elmira – New

York, more information about the FBST data is provided in appendix Appendix B.

Note that the areas served by the FBST are mainly suburban communities with the exception

of the city of Binghamton located in Broome county. Serving suburban communities implies that

the network of nodes is very sparse and can be easily partitioned into groups of nodes based on

spatial characteristics such as their county or proximity to the closest city. There are 21 demand

nodes in Broome, 14 in Chemung, 4 in Schuyler, 24 in Steuben, 10 in Tioga, and 13 in Tompkins.

We exclude Schuyler county from the analysis since it is a small county. Given that the truck

driver and volunteers work at most 8 hours a day, it is impossible to visit more than 10 nodes per
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route since the service time at each node should be 45 minutes. Similar to Balcik et al. (2014)

and Lien et al. (2014), we model the demand as Gamma random variable. Using historical data

we obtained from the FBST, we compute the shape and scale of the demand distribution of each

demand node. It is worth mentioning that some demand nodes, specifically senior homes, have

small demand mean and low variance. On the other hand, other demand nodes have a large mean

and high variance. For instance, ‘Senior - Carpenter Apartments’ demand node has a demand

distribution of Gamma(28.1, 1.05); on the other hand, demand node ‘Feed Elmira - Hathorne

Court’ has a demand distribution of Gamma(53.4, 3.40). Both demand nodes are located within

the same county, highlighting that demand can be heterogeneous across different nodes even within

the same county. In appendix Appendix B, we provide the list of all demand nodes, demand shape,

demand scale, and longitude and latitude of each node.

We generate our testbed of problem instances using the following parameters:

• Number of demand nodes, |V ′|: 10, 13, 14, 21, 24, 30, 35.

• Value of α (the measure of inequity): 0.05, 0.10.

• Demand di: randomly selected integer following a gamma distribution.

• Traveling time is calculated using Bing Maps Dev Center data.

• Time spent at each demand node for allocation is 45 minutes including the setup, distribution,

and packing.

We implemented a Monte Carlo Optimization Procedure to determine an appropriate sample

size R to obtain near-optimal solutions to maximize efficiency model (1)-(2) based on its sample

average approximation (SAA) (see Appendix C for details). All the code was written using MAT-

LAB and we use Gurobi 9.1.1 as a solver. The runs were completed on a laptop computer with a

2.8 GHz Intel Core processor and 16 GB of RAM.

7.1. Comparison Between Models

In this section, we analyze and compare the solutions of the models presented in Section ??. For

illustrative purposes and brevity, we use Tioga county’s data because this is a small county consist-

ing of 10 nodes and the demand structure of the nodes within this county is very heterogeneous.

For instance, Waverly demand node has a demand distribution of Gamma(70.1, 2.75) while the

Senior - Spring View Apartment demand node has a demand distribution of Gamma(44.5, 0.62).
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Figure 4: Comparison of the mean percentage of food waste for different values of ρ and levels of supply.

We consider four levels of ρ = {0.05, 0.10, 0.15, 0.50}, and three levels of total supply U={low,

medium, high} relative to total demand. Low U equals 65% of the total demand mean, medium U

equals 78% of the total demand mean, and high U equals the mean of total demand. For the M Eff

model, we consider two values for the inequity parameter α=0.05 and 0.10. For each combination

of ρ, U , and α, we generate 10 data instances and use the same data to compare the models. We

focus our analysis on three primary performance measures, namely equity and efficiency.

Figure 4 illustrates the percentage of food waste under different values of ρ and levels of sup-

plies for the three models. Percentage of food waste is calculated as the difference between total

supplies available for distribution (U) and total quantity allocated over total supplies available for

distribution. We note that the M Eq model yields the highest food waste percentage, and the

M Eq M Eff model yields the lowest food waste. These results are expected as M Eq model focuses

on maintaining similar filling ratio among the demand nodes by maximizing the minimum filling

ratio at the cost of having food waste at the end of the trip. On the other hand, M Eq M Eff model

seeks an allocation that maximizes total allocated quantity while inequity is compromised at the

expense of less value in the objective function, see the second term in equation (6).

Figure 5 illustrates the efficiency (i.e., the summation of the filling ratio of all nodes) under

different values of ρ and levels of supplies for the three models. Clearly, M Eq model yields the

lowest efficiency and M Eff yields the highest efficiency slightly better than M Eq M Eff model. It

is very interesting to see that M Eq M Eff model achieves levels of efficiency that are very similar

to maximize efficiency model but slightly less. This is due to the fact that M Eq M Eff model
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balances equity and efficiency.

Figure 5: Comparison of the mean efficiency under different values of ρ and levels of supply.

Figure 6 illustrates the inequity under different values of ρ and levels of supplies for the three

models. Inequity is calculated as the deviation between the node with the highest filling ratio and

the node with the lowest filling ratio. From this figure, we observe that M Eq model yields the best

performance (zero inequity), M Eq M Eff model yields excellent performance with inequity being

less than 2.5% without explicitly defining that threshold, while the inequity under M Eff model is

always under the values of 0.05 and 0.10 as specified in the model. An interesting observation is

that the inequity behavior of M Eq M Eff model is not monotone with the levels of supplies but

monotone under the other models. This is an interesting aspect to notice that maintaining equity

is not always easier with an increase in supplies

Lastly, for completeness, we compare the mean traveled distance yielded by each model. Figure

7 displays the average traveled distance by the delivery trucks under different values of ρ and levels

of supplies for the three models. We do not notice substantial differences between the traveled

distance by the different models. Later in Section 7.3 we perform some sensitivity analysis on the

traveling and service times to see how models may provide different results.

7.2. Computational Performance of the Developed Matheuristic

In this section, we demonstrate the computational performance of the developed matheuristic

in terms of computational time and optimality gap. Specifically, we evaluate the performance of

our matheuristic with the following characteristics:
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Figure 6: Comparison of the mean inequity under different values of ρ and levels of supplies

Figure 7: Comparison of the mean traveled distance under different values of ρ and levels of supplies

• The FBST data set, which consist of 5 relatively sparse networks with various sizes. Data

and parameters of demand, traveling time, service time, and truck capacity are real-world

data. For the total supplies (U), we follow the same procedure in Section of 7.1.

• Randomly generated instances of 30 and 35 nodes in a dense network. We randomly generate
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the coordinates of the nodes in a square with size 35 miles by 35 miles. The distribution

of demand follows gamma distribution. We randomly divide the nodes into three groups,

and demand distributions among nodes of the same group are identical. Three levels of

node demand means (µ = {75, 50, 25}) and coefficient of variance (CV = {1.5, 1.0, 0.5}) are

considered: low (25,0.5), medium (50,1.0), and high (75,1.5).

Table 3 displays these computational results. We set ρ = 0.5 and α = 0.05. Major columns 1, 2,

and 3 show the number of demand nodes in the network, number of vehicles, and levels of supply (the

setup of level of supplies follows the same procedure as illustrated in Section 7.1). Major columns

4, 5, and 6 display the computational results of each model. The first sub-column within these

columns reports the computational time in seconds using the matheuristic, the second sub-column

of these columns reports the negative3 objective function value of solving the mathematical model

of each model (denotes by zsolver), the third sub-column within these columns reports negative

the objective function value (denoted by zMHeur.), and lastly the fourth sub-column reports the

gap with respect to zsolver (i.e., gap = zMHeur.−zsolver

zsolver
∗ 100%). A negative gap implies that the

solution obtained using the matheuristic is better than the solution found by the solver.

The computational time for solving the mathematical model is restricted to 60 minutes for all

instances with N < 20 and 120 minutes for instances with N ≥ 20. We repeat each experiment 5

times with newly generated data for demand, and we report on the average of the objective function

and computational time. A gap value in bold font indicate that the gap is reported with respect

to the lower bound discussed in Section 6 since the solver was not able to find a feasible solution

within the specified computational time.

The computational results in Table 3 demonstrates the superior performance of the developed

matheuristic in finding high quality solution for all models in shorter time that the solver. Specif-

ically, the average gap ever exceeds 4.11% and on average the matheuristic finds better solutions

than the one found by the solver in the fraction of time needed by the solver. More importantly, our

matheuristic finds such solutions in considerably shorter computing times. The average computing

time required by Gurobi is more than 5560 seconds. In contrast, our matheuristic takes 568 seconds

for the equity model, 1047 seconds for the efficiency model, and 1753 seconds for the efficiency and

equity model. Moreover, our matheuristic provides solutions to all instances, which is not the case

3Recall that all models are stated as minimization models for convenience but in reality the objectives should be

maximize efficiency, maximize equity, and maximize efficiency and equity simultaneously
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Table 3: Results of the Computational Results

Equity Model Efficiency Model Efficiency & Equity Model

N K U Time zsolver zMHeur. gap Time zsolver zMHeur. gap Time zsolver zMHeur. gap
10 2 Low 89.30 0.63 0.64 -1.11 180.44 5.94 5.95 -0.12 168.77 500.40 500.15 0.05
10 2 Med 91.92 0.76 0.76 -1.05 181.37 7.09 7.10 -0.14 146.14 505.59 505.53 0.01
10 2 High 87.10 0.96 0.97 -0.51 155.42 8.78 8.80 -0.19 143.17 505.59 505.59 0.00
13 3 Low 299.14 0.63 0.62 0.19 514.46 7.21 7.26 -0.77 638.76 528.70 528.47 0.04
13 3 Med 280.74 0.75 0.75 0.13 444.61 8.61 8.58 0.35 612.47 634.78 634.65 0.02
13 3 High 263.81 0.96 0.96 0.13 373.77 10.76 10.74 0.20 395.74 799.21 798.21 0.12
14 3 Low 360.26 0.63 0.62 1.52 840.10 7.80 7.80 0.10 1194.28 517.85 517.92 -0.01
14 3 Med 360.07 0.76 0.75 1.39 896.90 9.33 9.32 0.06 1056.96 621.64 621.32 0.05
14 3 High 404.25 0.96 0.96 0.55 718.78 11.70 11.70 0.07 967.61 785.00 784.46 0.07
21 6 Low 244.72 0.60 0.60 0.51 429.72 11.99 11.99 0.01 1481.05 1148.71 1149.73 -0.09
21 6 Med 255.39 0.72 0.71 0.42 346.96 14.28 14.21 0.50 1326.51 1375.05 1379.36 -0.31
21 6 High 174.06 0.92 0.91 0.49 282.60 18.04 18.03 0.02 385.44 1742.11 1738.99 0.18
24 5 Low 346.15 0.60 0.60 -0.32 427.27 13.25 13.28 -0.26 1512.39 324.09 325.73 -0.51
24 5 Med 337.53 0.72 0.72 -0.51 417.25 15.73 15.80 -0.42 1143.71 389.89 391.06 -0.30
24 5 High 343.72 0.92 0.92 -0.28 412.61 19.81 19.97 -0.81 798.99 490.61 493.04 -0.50
30 6 Low 1152.47 Time 0.63 - 2069.95 Time 19.19 21.47 4650.72 Time 452.8 1.81
30 6 Med 1334.26 Time 0.76 - 2215.83 Time 22.92 15.32 4300.53 Time 1745.96 1.65
30 6 High 1103.18 Time 0.97 - 1950.74 Time 28.71 8.07 1530.76 Time 2199.08 0.57
35 7 Low 1339.33 Time 0.58 - 3103.50 Time 20.78 20.30 5934.76 Time 1571.52 1.79
35 7 Med 1431.21 Time 0.70 - 3090.82 Time 24.80 15.07 5168.64 Time 1888.67 1.73
35 7 High 1642.54 Time 0.89 - 2945.21 Time 30.81 7.38 3275.66 Time 2448.3 0.61

Max. 1642.54 1.52 3103.50 21.47 5934.76 1.81
Avg. 568.63 0.10 1047.54 4.11 1753 0.33
Min. 87.10 -1.11 155.42 -0.81 143.17 -0.51
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for Gurobi, that fails to find any feasible solution for larger instances with N = 30, 35.

We also notice that instances with high levels of supplies (U) are easier to solve. This observation

is consistent with the intuition that MFPP is an easy problem to solve if there are abundant supplies.

Nonetheless, in reality, food banks operate under a limited budget and demand exceeds supplies.

7.3. Sensitivity Analysis and Policy Insights

In this section, we derive additional insights by studying the effect of changing some critical

parameters. First, we analyze the impact of pooling, i.e., what happens when more nodes can be

served in one route. Recall that the duration of each stop of the MFPP is set to be 45 minutes.

Therefore, any increase in the service time will decrease the number of stops a truck can serve as

the driver need to get back to the food bank within a time window of 8 hours. On the other hand, a

decrease in service time, say from 45 minutes to 30 minutes, potentially allows visiting more nodes

per route, and hence the pooling effect can be realized. To this end, in this set of experiments we

assume that the service time is 30 minutes rather than 45 minutes per stop. We use the data of

Chemung county as it is a medium size network. If the service time is 30 minutes, two vehicles can

serve all the nodes in Chemung county. On the other hand, if the service time is 45 minutes at

each node, three vehicles are needed (the base case).

Figure 8 illustrates the mean efficiency under different models and levels of supplies for two

vehicles (when the service time at each node is 30 minutes) and three vehicles (when the service

time at each node is 45 minutes). We observe that the efficiency performance measure of the equity

model benefits the most from the pooling effect as measured by the difference from the base case

of non-pooling effect. On the other hand, maximum efficiency model realizes slight increase in the

efficiency due to the pooling effect. Lastly, maximum efficiency and maximum equity model does

not realize significant improvement in the efficiency due to the pooling effect.

Figure 9 illustrates the mean percentage of food waste under different models and levels of

supplies for two and three vehicles. We observe that the percentage of food waste under the

equity model drops significantly as the pooling effect is introduced. On the other hand, maximum

efficiency model realizes slight decrease in the percentage of food waste due to the pooling effect.

Lastly, maximum efficiency and maximum equity model does not realize significant reduction in

the percentage of food waste due to the pooling effect.

Potential benefits to food bank managers. The importance of the analysis that we provide

is not only limited to identifying how each model performs under various settings. Instead, it
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Figure 8: Mean efficiency by number of vehicles and levels of supplies

Figure 9: Mean percentage of food waste by number of vehicles and levels of supplies

highlights how using one model over another leads to substantial difference in different performance

measures. For example, the performance of the maximum efficiency and maximum efficiency model

are very comparable to model maximum efficiency when it comes to the efficiency performance
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measure while achieving superior performance when it comes to the equity performance measures

too as displayed in Figure 6.

That said, it is reasonable question to ask, can we utilize a multi-objective model that incor-

porates equity and efficiency parts in the objective function and achieve better performance results

than M Eq M Eff model? Note that the terms in equation (6) are both in food units, what if

we develop a new multi-objective model with the goal of maximizing the total number of units

allocated while maximizing the minimum filling ratio. Such model will have an objective function

of the form:

Q(x, y, q, γ, ξ) := min
{
− β1

∑
i∈V ′

difi − (1− β1)U ∗ γ
}

(8)

The first part of (8) maximizes the total number of allocated units and the second part aims at

maximizing the minimum filling ratio, the second part is multiplied by U for the sake of normaliza-

tion as γ ≤ 1.0, and β1 ∈ [0, 1] is the weight of importance of the efficiency performance measure.

Similarly, if we modify M Eq M Eff model to incorporate the weight of importance of efficiency

and equity, we get the following objective function:

Q(x, y, q, γ, ξ) := min
{
− β1

∑
i∈V ′

difi + (1− β1)
∑
i∈V ′

∑
j∈V ′:i<j

Eij

}
(9)

Figure 10 display the efficiency and equity results of models (8) and (9) labeled as Multi Obj

and M Eq M Eff, respectively. We note that the Multi-objective model achieves better efficiency

than the M Eq M Eff model especially when the value of β1 is less than 0.5. For values of β1

greater than 0.5, M Eq M Eff model achieves slightly less results under the efficiency performance

measure. On the other hand, we note that the Multi-objective model performs very poorly when

considering the equity performance measure with inequity average values as high as 10.0% while

the average inequity of the M Eq M Eff model are always less than 2.0%. These results highlight

that M Eq M Eff model provides better overall results when considering both equity and efficiency

simultaneously.

Another interesting point we observe is that if the decision maker wants to have more weight

on the efficiency performance measure and less importance on the equity model, in that case it

is better to use the Max. Efficiency model with the appropriate level of the inequity parameter

α. We arrive to that conclusion since the Multi-objective model achieves better results than the

M Eq M Eff model for values of β1 < 0.5 at the cost of having a higher inequity values.
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(a) Equity (b) Efficiency

Figure 10: Equity and Efficiency values of Multi-objective and M Eq M Eff models.

7.4. Comparison against current practice

In this subsection we focus on comparing the performance of the optimization approach against

the solution that the FBST implement in practice. The FBST routing decisions are based on first

clustering the demand nodes based on spatial characteristics and then perform a greedy sequencing

within each cluster by first visiting nodes with smallest expected demand based on historical data.

On the other hand, the optimization approach refers to solving a problem using our developed

matheuristic.

We demonstrate the results of comparing the optimization approach against the solution im-

plemented in practice using the data from Chemung county, we note the same behavior over other

counties but we report the results of Chemung county for brevity. Similar to the previous analysis,

we study each instance under the settings of low, medium, and high supplies. For model M Eff, we

set the inequity parameter α = 0.05. For any generated instance, we do not know the amount the

driver will distribute for each node under each demand realization. (Here, the actual distributed

quantity means the actual amount of food distributed at a given location which equals the pre-

allocated amount plus additional food items (excess) carried from previous nodes.). However, if we

fix the routing decisions following the routes used by the FBST, we can solve the three models to

obtain the allocation decisions for any generated instance of data. On the other hand, we can ob-

tain the solution of any generated instance by solving the corresponding model using the developed

matheuristic. Once we have the solutions under any model using the optimization approach and

the solutions of the FBST implementation, we can run a comparison between these two solutions

in terms of food waste percentage, equity, and efficiency. In Figure 11, we begin by showing the
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Figure 11: Comparison of the mean percentage of food waste under the optimization approach against the food bank

practice.

mean food waste under the optimization approach against the FBST solution. We note that the

food waste under the optimization approach is less than the food waste under the FBST routing

decisions under all cases except the case of low and medium supplies of the M Eq M Eff model.

These results highlight the importance of routing decisions on the food waste performance measure

regardless of the goal of the food bank manager (i.e., maximize equity, maximize efficiency, or

maximize both).

Figure 12, displays the mean efficiency under the optimization approach against the FBST

solution. We note that the efficiency under the optimization approach is higher than the efficiency

under the FBST routing decisions for all tested cases. Lastly, figure 13 displays the mean inequity

under the optimization approach against the FBST solution. We only report on the results of models

M Eff and M Eq M Eff since model M Eq provides 0 inequity under the optimization approach and

the FBST routing. For M Eq M Eff model we notice significant improvement in equity performance

measure while inequity under M Eff model using the FBST routing decisions is better than the

equity achieved under the optimization approach. Using the optimization approach, the inequity
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Figure 12: Comparison of the mean efficiency under the optimization approach against the food bank practice.

under M Eff model is at 0.05 for the cases of low and medium supplies due to constraint 2f.

From Figures 11-13, we observe that the apparent importance of routing decisions on the per-

formance measures even if the allocation is solved to optimality under each model. The food waste

percentage obtained by our optimization approach improves on the FBST policies, respectively,

by 4.7%. These improvements are obtained without adding any extra food resources and food

bank managers would be very interested in obtaining these kinds of improvements by simply using

their existing resources more carefully. Our optimization approach makes a significant step towards

minimizing food waste and maximize total allocated food while maintaining equity. To illustrate

the difference in routing among the different models and the one in practice, Figure 14 displays

the routing under each model for Chemung county, the order of the nodes follows the same order

presented in Table B.6 (for instance, node 2 refers to Erin demand node). The numeric value in

red above each node represent the percentage of the average filling ratio taken across all scenarios

for each node. We observe that the routing variables are substantially different under each model

and a deviation in the allocation under each model.
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Figure 13: Comparison of the mean inequity under the optimization approach against the food bank practice.

(a) M Eq M Eff (b) M Eq

(c) M Eff (d) Routing used by the FBST

Figure 14: Routing decisions of each model.

8. Conclusion

In this article we address stochastic routing-allocation decisions in a nonprofit distribution

system. Motivated by the MFPP operations at food banks, we study a multi-vehicle sequential
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allocation problem that incorporates three critical objectives for food distribution under stochastic

demand: equity (maintaining similar service levels among all recipients) and efficiency (allocating as

much food as possible). We develop three mathematical models focusing on these two measures and

demonstrate the performance of each model under different performance measures. We show that

the efficiency model achieves high level of efficiency and utilization of resource, low levels of food

waste, and maintaining equity within the predefined tolerance as specified by the decision maker.

On the other hand, we show that the equity model achieves near perfect equity among all recipients

at the cost of high levels of food waste. Lastly, we show that the model that maximizes equity

and efficiency at the same time demonstrates the best results when it comes to efficiency but at a

higher levels of inequity. Furthermore, we show that routing-allocation models are very difficult to

solve for large-scale practical instances. Hence, we develop a high quality matheuristic that utilizes

ALNS scheme with a mathematical model to solve the developed models. Our matheuristic solves

the developed models in a fraction of time when compared to the commercial solver Gurobi as well

as providing high quality solutions with average gap never exceeding 4.11%.

An interesting area for future research would be to consider stochastic routing-distribution-

collection decisions in non-profit setting. The FBST is located in a non-urban area where the

MFPP only involves routing and distribution; however, this might not be the case for food banks

located in urban areas. Based on our conversation with the Second Harvest Food Bank of Northwest

North Carolina managers we find that their MFPP has different characteristics than the MFPP

operated by the FBST. Specifically, the MFPP operations managed by the Second Harvest Food

Bank of Northwest North Carolina involves visiting donors after they finish visiting the distribution

nodes for collection/rescue of food items and then the trucks will be back to the food bank. Once

the food trucks get back to the food bank loaded with food items that were rescued from donors,

the volunteers at Second Harvest Food Bank of Northwest North Carolina will perform inspection,

sorting, and packing of the received food items. Such variant necessitates adding the collection

aspect to the studied problem under stochastic setting where the demand of nodes is not revealed

until they are visited.

References

Adulyasak, Y., Cordeau, J.-F., Jans, R., 2014. Optimization-based adaptive large neighborhood search for

the production routing problem. Transportation Science 48 (1), 20–45.

Alkaabneh, F., Diabat, A., 2022. A multi-objective home healthcare delivery model and its solution using

35



a branch-and-price algorithm and a two-stage meta-heuristic algorithm. Transportation Research Part

C: Emerging Technologies, 103838.

Alkaabneh, F., Diabat, A., Gao, H. O., 2020. Benders decomposition for the inventory vehicle routing

problem with perishable products and environmental costs. Computers & Operations Research 113,

104751.

Alkaabneh, F., Diabat, A., Gao, H. O., 2021. A unified framework for efficient, effective, and fair resource

allocation by food banks using an approximate dynamic programming approach. Omega 100, 102300.

Anand, S., 1983. Inequality and poverty in Malaysia: Measurement and decomposition. The World Bank.

Archetti, C., Boland, N., Grazia Speranza, M., 2017. A matheuristic for the multivehicle inventory routing

problem. INFORMS Journal on Computing 29 (3), 377–387.

Balcik, B., Iravani, S., Smilowitz, K., 2014. Multi-vehicle sequential resource allocation for a nonprofit

distribution system. IIE Transactions 46 (12), 1279–1297.

Bartholdi III, J. J., Platzman, L. K., Collins, R. L., Warden III, W. H., 1983. A minimal technology routing

system for meals on wheels. Interfaces 13 (3), 1–8.

Bassok, Y., Ernst, R., 1995. Dynamic allocations for multi-product distribution. Transportation Science

29 (3), 256–266.

Berman, O., Larson, R. C., 2001. Deliveries in an inventory/routing problem using stochastic dynamic

programming. Transportation Science 35 (2), 192–213.

Besik, D., Nagurney, A., Dutta, P., 2022. An integrated multitiered supply chain network model of competing

agricultural firms and processing firms: The case of fresh produce and quality. European Journal of

Operational Research.

Cordeau, J.-F., Laporte, G., Pasin, F., Ropke, S., 2010. Scheduling technicians and tasks in a telecommuni-

cations company. Journal of Scheduling 13 (4), 393–409.

Davis, L. B., Sengul, I., Ivy, J. S., Brock III, L. G., Miles, L., 2014. Scheduling food bank collections and

deliveries to ensure food safety and improve access. Socio-Economic Planning Sciences 48 (3), 175–188.
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Appendix A. ALNS algorithm for the MFPP problem

Appendix B. Details on the demand nodes

The FBST service area includes the counties of Broome, Chemung, Schuyler, Steuben, Tioga,

and Tompkins, covering nearly 4,000 square miles. FBST serves over 21,000 people per week, and

it distributed over 17.6 million pounds of food and groceries in 2020. It is worth mentioning that

FBST is located in a food desert4. Figure B.15 shows the locations of the distribution nodes and

the color of the circles reflect the average demand at each node.

4USDA defines food deserts as parts of the country vapid of fresh fruit, vegetables, and other healthful whole

foods, usually found in impoverished areas. This is largely due to a lack of grocery stores, farmers markets, and

healthy food providers.
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Figure B.15: Distribution of demand nodes served by the FBST

Tables B.4-B.8 display more information about the demand nodes of Tioga, Tompkins, Chemung,

Broome, and Steuben counties, respectively. The first column in Tables B.4-B.8 displays the pro-

gram/demand node name, the second column reports the shape parameter of demand, the third

column reports the scale parameter of demand, and finally the fourth column shows the longitude

and latitude on the map.

Table B.4: Details on Tioga County demand nodes.

Program name k θ (long., lat.)

Apalachin 50.34 3.27 42.058463,-76.1693389

Nichols-The Creamery 45.89 3.26 42.02302,-76.371793

Owego VFW 40.00 2.12 42.1043411,-76.2615965

Richford 49.26 2.8 42.3551522,-76.2008963

Senior - Elizabeth Square, Waverly 35.81 0.79 42.001546,-76.541203

Senior - Long Meadow Senior Housing 43.99 1.02 42.1135325,-76.2704045

Senior - Springview Apartments 44.56 0.61 42.0100399,-76.533895

Van Etten 54.29 1.76 42.2080409,-76.579406

Waverly 70.15 2.74 42.0194466,-76.5236008

Tioga County Rural Ministry 60.2 2.45 42.106912, -76.265281
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Table B.5: Details on Tompkins County demand nodes.

Program name k θ (long., lat.)

Senior - Ellis Hollow 26.98 1.04 42.435955,-76.460374

College TC3 -College 27.89 2.10 42.502126,-76.287671

Senior - Conifer Village 19.03 1.45 42.4511294,-76.5323538

College Ithaca College 24.03 1.60 42.4199351,-76.4969643

Senior - Woodsedge Apartments 21.60 0.88 42.535151,-76.501086

Salvation Army Ithaca 48.92 1.30 42.4398066,-76.5019869

Danby 71.87 2.08 42.3522565,-76.4800051

Senior - Cayuga Meadows 26.81 0.99 42.464569,-76.5409393

Lansing 68.89 2.41 42.5183206,-76.5035538

Reach for Christ Church Freeville 53.89 2.60 42.4919905,-76.3443272

Senior - Titus Towers 77.70 1.03 42.4317058,-76.504801

Cornell University 20.47 0.80 42.450017, -76.488951

Dryden United Methodist Church 40.78 1.28 42.490688, -76.296849

Table B.6: Details on Chemung County demand nodes.

Program name k θ (long., lat.)

Beaver Dams 33.25 1.04 42.2606415,-76.9559856

Erin 24.88 2.10 42.1788978,-76.6922607

Feed Elmira - Hathorne Court 53.38 1.45 42.08873,-76.800510

Millport 30.87 1.60 42.267172,-76.837356

Senior - Bragg 62.01 0.88 42.0896598,-76.7977954

Senior - Carpenter Apartments 28.11 1.30 42.0930065,-76.7984317

Senior - Flannery 44.76 2.08 42.0819957,-76.8053269

Senior - Park Terrace Congregate Apts. 39.00 0.99 42.051364,-76.832954

Senior - Villa Serene 99.30 2.41 42.1295916,-76.8158267

The Love Church 65.16 2.60 42.1412225,-76.8137998

Tioga County Rural Ministry 9.87 1.03 42.106820,-76.265460

Fenton 187.68 0.80 42.166040, -75.832960

College Corning Community College 29.54 1.31 42.148850, -77.055050
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Table B.7: Details on Broome County demand nodes.

Program name k θ (long., lat.)

American Legion - Binghamton 11.19 1.21 42.108036,-75.887779

Boys and Girls Club 11.53 0.99 42.1053841,-75.9213736

Colesville 13.88 1.30 42.1841905,-75.6329193

Conklin- Maines Community Center 20.44 1.10 42.0870901,-75.8309647

Deposit 26.48 1.21 42.0625771,-75.422248

Endwell United Methodist Church 24.16 0.85 42.111296,-76.02203

Family Enrichment Network 21.40 0.75 42.1096901,-75.9558181

First Assembly Of God Church 25.20 0.91 42.1022814,-75.9129518

Redeemer Lutheran Church 11.66 1.20 42.1000047,-75.9224594

Saint Mary Recreation Center 24.31 1.30 42.0988789,-75.9041391

Senior - East Hill Senior Living 29.69 1.21 42.114015, -75.872065

Senior - Harry L Apartments 39.35 0.80 42.1237339,-75.9567565

Senior - Lincoln Court 10.23 0.40 42.090217,-75.910198

Senior - Marian Apartments 20.00 0.50 42.125661,-76.025155

Senior - Metro Plaza Apartments 9.79 1.10 42.1016977,-75.9085338

Senior - North Shore Towers 33.34 1.70 42.0966132,-75.9103884

Senior - N. Broome Sen. Center 40.05 1.30 42.3269618,-75.9677778

Senior - Wells Apartments 8.56 1.20 42.1076045,-75.9607932

Whitney Point 48.35 0.45 42.3405329,-75.9765268

Windsor 95.65 0.70 42.0779615,-75.6427789

Golden Glow Fire Dept 13.00 0.50 42.106134, -76.021179
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Table B.8: Details on Steuben County demand nodes.

Program name k θ (long., lat.)

Troupsburg 11.19 1.21 42.0432505,-77.5456383

Lamphear Court 11.53 0.99 42.1598551,-77.0711389

Canisteo 13.88 1.30 42.272779,-77.606849

Bradford 20.44 1.10 42.3691309,-77.1081064

Campbell 26.48 1.21 42.2314129,-77.1948265

Rehoboth Deliverance Ministry 24.16 0.85 42.318273,-77.6493618

Senior - Dayspring 21.40 0.75 42.1420715,-77.0454685

Lindley 25.20 0.91 42.028142,-77.1392597

Rathbone 11.66 1.20 42.1306252,-77.3197915

Wayland 24.31 1.30 42.5685797,-77.5957241

Senior - Village Square/Manor 29.69 1.21 42.159804,-77.09139

Avoca 39.35 0.80 42.4174468,-77.4358433

Woodhull 10.23 0.40 42.0798397,-77.4111295

Senior - Addison Place Apartments 20.00 0.50 42.1001876,-77.2371924

Senior - Corning Senior Center 9.79 1.10 42.1490255,-77.0619725

Bath 33.34 1.70 42.3362172,-77.3175047

Tuscarora 40.05 1.30 42.0522655,-77.2737134

Prattsburgh 8.56 1.20 42.5272099,-77.2866

Hornell 48.35 0.45 42.3229281,-77.6593841

Senior - CFS Lakeview 95.65 0.70 42.3488781,-77.3110763

Corning Community College 10.00 0.50 42.1172594,-77.0735445

Wellsburg 25.77 2.01 42.010540, -76.726114

Chenango Forks 42.77 1.75 42.240207, -75.846290

Maine 30.01 1.74 42.194378, -76.060179
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(a) Gap (b) AGap

Figure C.16: Gap and AGap values as function of sample size R.

Appendix C. Selection of the Number of Scenarios

We employed a procedure similar to the Monte Carlo Optimization Procedure to determine an

appropriate sample size R to obtain near-optimal solutions to maximize efficiency model (1)-(2)

based on its sample average approximation (SAA) (Homem-de Mello and Bayraksan 2014, Mak

et al. 1999, Shapiro 2003, Shehadeh et al. 2021). Starting with an initial candidate value of H=10,

the procedure proceeds as follows. First, we repeat the following steps for m = 1, . . . ,M ,: (1)

we generate a sample of R i.i.d. scenarios of demand, (2) we solve the SAA formulation of (1)-

(2) and record the corresponding optimal objective value zmR and optimal [xkij , y
k
i , q

k
i ]mR (i.e., first

stage decision variables), and (3) we evaluate the objective function value zmR′ using Monte Carlo

Simulation of the optimal [xkij , y
k
i , q

k
i ]mR with a new sample of R′ >> R i.i.d. scenarios of demand.

Second, we compute the average of zmR and zmR′ among the K replications as z̄R = 1
M

∑M
m=1 z

m
R

and z̄R′ = 1
M

∑M
m=1 z

m
R′ . Given that we solve the SAA using our matheuristic, both z̄R′ and z̄R are

statistical upper bound on the optimal value of the problem, with z̄R′ representing an upper bound

on z̄R (largest objective value if we adopt the solution we obtain from the matheuristic). Finally, we

compute the approximate gap between z̄R and z̄R′ as Gap =
z̄R′−zR
z̄R′

and the approximate optimality

gap between z̄R′ and z∗ as AGapz̄R′
=

z̄R′−z∗
z̄R′

, where z∗ is the best lower bound.

We implemented the above steps with an initial value of H = 10 scenarios, M = 35 replications,

and an instance of 16 nodes (we observe similar results for other choices of nodes). We compute z∗

as the best LB following the discussion in Section 6.
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Figure C.17: Solution time as function of of sample size R

Figure C.16 presents the Gap and AGap as a function of the sample size R. From this figure,

we observe that as R increases, both gap values decrease. Most importantly, AGap values range

from 3% under H = 10 to 2.1% under H = 75, indicating that solving the SAA via our heuristic

with a small sample size yield a near-optimal solution. In contrast, larger sample sizes resulted

in longer solution times (see Figure C.17) without consistent and significant improvements in the

AGap Based on these considerations, we selected R = 40.
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