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Abstract

Task progress is intuitive and readily available task information that can guide
an agent closer to the desired goal. Furthermore, a task progress estimator can
generalize to new situations. From this intuition, we propose a simple yet effective
imitation learning from observation method for a goal-directed task using a learned
goal proximity function as a task progress estimator for better generalization to
unseen states and goals. We obtain this goal proximity function from expert demon-
strations and online agent experience, and then use the learned goal proximity
as a dense reward for policy training. We demonstrate that our proposed method
can robustly generalize compared to prior imitation learning methods on a set of
goal-directed tasks in navigation, locomotion, and robotic manipulation, even with
demonstrations that cover only a part of the states.

1 Introduction

Humans are effective at learning a task from demonstrations and applying the learned behaviors to
other situations. We achieve this by extracting the underlying structure of the task when observing
others fulfilling the task, instead of simply memorizing the demonstrator’s low-level actions [4, [18].
This high-level task structure generalizes to new situations and thus helps us to quickly learn the task
in new situations. One intuitive and readily available instance of such high-level task structure is task
progress, measuring how much of the task the agent completed. Inspired by this insight, we propose
a novel imitation learning method that utilizes task progress for better generalization to unseen states
and goals.

Typical learning from demonstration (LfD) approaches [[13}35] greedily imitate the expert policy and
thus suffer from accumulated errors causing a drift away from states seen in the demonstrations [38]].
To make the imitation policy more robust to states not in demonstrations, adversarial imitation
learning methods [[14} [17]] encourage the agent to stay near the expert trajectories using a learned
reward that distinguishes expert and agent behaviors. However, such learned reward functions often
overfit to the expert demonstrations by learning spurious correlations between task-irrelevant features
and expert/agent labels [52], and thus suffer from generalization to slightly different initial and
goal configurations from the ones seen in the demonstrations (e.g. holdout goal regions or larger
perturbation in goal sampling).

To learn a more generalizable and informative reward from demonstrations, we propose an imitation
learning from observation (LfO) method, which learns a task progress estimator and uses the
task progress estimate as a dense reward for training a policy as illustrated in Figure [Tl Unlike
discriminating expert and agent behaviors by predicting binary labels in prior adversarial imitation
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Figure 1: In goal-directed tasks, states on an expert trajectory have increasing proximity toward the
goal as the expert makes progress towards fulfilling a task. Inspired by this intuition, we propose
to learn a proximity function f, from expert demonstrations and agent experience, which predicts
goal proximity (i.e. an estimate of temporal distance to the goal). Then, using this proximity function,
we train a policy 7y to progressively move to states with higher predicted goal proximity (italicized
numbers) and eventually reach the goal. We alternate these two learning phases to improve both the
proximity function and policy, leading to not only better generalization but also superior performance.

learning methods, which is prone to overfitting to task-irrelevant features, the task progress estimator is
required to learn more task-relevant information to precisely predict the task progress on a continuous
scale. Hence, it can generalize better to unseen states and provide more informative rewards.

As a measure of progress in goal-directed tasks, we define goal proximity, which is an estimate of
temporal distance to the goal (i.e. the number of actions required to reach the goal) and entails all
semantic information about how to reach the goal. We then train a proximity function to predict the
goal proximity from expert demonstrations and agent experience. This proximity function acts as a
dense reward to guide a reinforcement learning agent to reach states with high proximity, leading to
the goal. In this paper, we focus on learning the proximity function and policy in a state space shared
by the expert and learner, and leave generalizing to different embodiments as future work.

However, the predicted goal proximity can still be inaccurate on states not in the demonstrations,
resulting in unstable policy learning. To improve the accuracy of the proximity function, we contin-
ually update it with trajectories from both the expert and learning agent. In addition, we penalize
trajectories with the uncertainty of the proximity prediction to prevent the policy from exploiting
inaccurate high proximity predictions. By leveraging the agent experience and predicting proximity
function uncertainty, the proposed method achieves more efficient and stable policy learning.

The main contribution of this paper is an LfO algorithm for goal-directed tasks with better generaliza-
tion to new goals or states not in demonstrations using goal proximity that informs an agent of the
task progress. Together with a difference-based reward and uncertainty penalty of goal proximity
estimation, our method provides more informative and robust rewards. Our extensive experiments
show that the policy learned with the goal proximity function generalizes better than the state-of-
the-art LfO algorithms on various goal-directed tasks, including navigation, locomotion, and robotic
manipulation. Moreover, our method shows comparable results with LfD methods which learn from
expert actions and a goal-conditioned imitation learning method which uses a sparse task reward.

2 Related Work

Imitation learning [39] aims to leverage expert demonstrations to acquire skills. While behavioral
cloning [33]] is simple but effective with a large number of demonstrations, it suffers from com-
pounding errors caused by covariate shift [38]]. On the other hand, inverse reinforcement learning
(IRL) [} 129, 151] estimates the underlying reward from demonstrations and trains a policy through
reinforcement learning (RL) with this reward, which can better handle the compounding errors.
Specifically, generative adversarial imitation learning (GAIL) [17] shows improved demonstration
efficiency by training a discriminator to distinguish expert and agent transitions and using the dis-
criminator output as a reward for policy training. Goal GAIL [9] further improves sample efficiency
for goal-directed tasks by relabeling transitions [2] and using true environment rewards.



While these imitation learning algorithms require expert actions, imitation learning from observation
(LfO) approaches learn from state-only demonstrations, such as videos and kinesthetic demonstrations.
To imitate demonstrations without expert actions, inverse dynamics models [30} 33} 46]], reachability
functions [23], or learned reward functions [11} 26} |41, 42] can be learned and used for policy
training, but training such models requires a large amount of quality data or additional test-time
demonstrations. On the other hand, state-only adversarial imitation learning [47]] can imitate from a
few demonstrations.

However, in such adversarial imitation learning approaches, the discriminator tends to find spurious
associations between task-irrelevant features and expert/agent labels [52]. This becomes problematic
when the agent encounters unseen states and the discriminator erroneously assigns agent behaviors
low scores based on these task-irrelevant features, providing a poor reward for the agent. To overcome
finding spurious associations, in addition to discriminating expert and agent trajectories, we propose
to also estimate the proximity to the goal, which requires more task-relevant information and thus
generalizes better to new states.

Temporal progress estimation has shown its effectiveness as an auxiliary reward for RL [[10, 24} 27]]
and decision making criteria [3| |6, [8]. However, these methods learn the progress estimator only
from the given demonstrations. This hinders policy learning when the progress estimator fails to
generalize to agent experience, allowing the agent to exploit inaccurate progress predictions for higher
reward. Moreover, greedily choosing an action with the highest predicted temporal progress [3, 16} S]]
could lead to low long-term returns. By incorporating online updates, uncertainty estimates, and
a difference-based proximity reward, our method robustly learns from demonstrations to solve
goal-directed tasks without access to expert actions or the true environment reward.

3 Method

In this paper, we address the problem of LfO for goal-directed tasks with a focus on generalization to
states or goals not covered in the demonstrations. Adversarial LfO methods [47, |49] suggest learning
areward function that penalizes agent state transitions deviating from the expert trajectories. However,
these learned reward functions often focus on task-irrelevant features [52] and do not generalize to
states not in the demonstrations, leading to unsuccessful policy training.

To learn a generalizable reward, we propose to leverage task progress information freely available in
demonstrations, in terms of goal proximity, which estimates temporal distance to the goal (i.e. number
of actions required to reach the goal). Predicting precise goal proximity on a continuous scale,
rather than simply distinguishing expert and agent states, requires the model to capture task-relevant
information, allowing the proximity prediction to generalize to states not in the demonstrations
(Section[3.2)). Then, a policy learns to reach states with higher proximity prediction, leading to the
goal (Section[3.3). Moreover, we propose to use the uncertainty of the proximity prediction to prevent
the policy from exploiting over-optimistic proximity predictions and yielding undesired behaviors.

3.1 Preliminaries

We formulate our problem as a Markov decision process [44] defined through a tuple
(S, A, R, P, py,y) of the state space S, action space A, reward function R(s, a, s’), transition distri-
bution P(s’|s, a), initial state distribution pg, and discounting factor v. We define a policy 7 (a/|s) that
maps from a state s to an action a and correspondingly moves an agent to a new state s’ according
to the transition probability P(s’|s,a). The policy is trained to maximize the sum of discounted

rewards, E s aq.....57. )orr [ZtT:Bl Y R(s¢,as, s¢+1)|, where T; is the variable episode length.
In imitation learning, the learner receives a set of NV expert demonstrations, D¢ = {75, ...,75}. In
this paper, we specifically consider the LfO setup where each demonstration 7; is a sequence of states.

Moreover, we assume that goal information is explicitly or implicitly included in the state s, and all
demonstrations are successful; therefore, the final state of each trajectory achieves the task goal.

3.2 Learning Goal Proximity Function

To effectively leverage expert demonstrations and generalize to new states or new goals, learning
a generalizable reward function is essential. In goal-directed tasks, an estimate of how close an



agent is to the goal can be utilized as a dense and direct learning signal. Moreover, predicting the
continuous goal proximity requires understanding the task structure and thus encourages finding
more task-relevant features, resulting in better generalization.

Therefore, instead of learning to simply discriminate agent and expert trajectories, we propose to
learn a goal proximity function, f : S — [0, 1], which predicts goal proximity of a state s, which is a
discounted value based on the temporal distance to the goal (i.e. inversely proportional to the number
of actions required to reach the goal). In this paper, we define goal proximity as the exponentially
discounted proximity f(s;) = 6(7i=*), where § € (0,1) is a discounting factor and T} is the episode
length. Note that the goal proximity function measures the temporal distance, not the spatial distance,
between the current and goal states. Therefore, a single proximity value can entail all information
about the task, goal, and any roadblocks. There are alternative ways to define goal proximity, such as
linearly discounted proximity [24] and ranking-based proximity [S}6]]. But, in this paper, we use the
exponentially discounted proximity as it performs better across most tasks (see appendix, Figure [g).

We train a goal proximity function f, parameterized by ¢ to minimize the following objective:

Ly = ETf‘""DCvStNT{: [f¢(5t) - 6(Ti7t)]2' (1

Since the goal proximity function trained only on expert demonstrations can overfit to the data, we
further train the goal proximity function with online agent experience by setting the target proximity
of states in agent trajectories to 0, similar to adversarial imitation learning methods [[17]:

»Cd) = ETfNDe,stN'rf [f(ﬁ(st) - §(Ti_t)} ? + E'r~7r9,st~7' [f¢(8t)]2~ (2)

By learning to predict the goal proximity, fs not only learns to discriminate agent and expert
trajectories (i.e. predict 0 proximity for an agent trajectory and positive proximity for an expert
trajectory) but also acquires the task information about temporal progress entailed in the trajectories.
From this freely available additional supervision, the proximity function is required to learn task-
relevant features. Hence, the resulting proximity function generalizes better to unseen states and
provides more informative learning signals to the policy as empirically shown in Section 4]

Due to the lack of environment reward, successful agent experience is also used as negative examples
for proximity function training, and thus the proximity function learns to predict low goal proximity
even for successful trajectories. However, early stopping and learning rate decay can ease this
problem [52]], and the optimal proximity function still outputs the average of expert and agent labels,
which is 6" /2 for ours and 0.5 for GAIL [[14].

3.3 Training Policy with Proximity Reward

In a goal-directed task, a policy 7y aims to get close to and eventually reach the goal. We can
formalize this objective as maximizing the difference-based proximity reward Ry, the increase in
goal proximity, at every timestep, which corresponds to making consistent progress towards the goal:

Ry (sty8141) = fo(st+1) — fo(st). 3)

Given the proximity reward 24, the policy is trained to maximize the expected discounted return:

T,—1
E(So,..--,STi)N‘fre |: Z ’YtR¢(St, St+1):| . (4)

t=0

However, a policy trained with the proximity reward can sometimes acquire undesired behaviors
by exploiting over-optimistic proximity predictions on states not seen in the expert demonstrations.
This becomes critical when the expert demonstrations are limited and cannot sufficiently cover the
state space. To avoid inaccurate predictions leading an agent to undesired states, we propose to
(1) fine-tune the proximity function with online agent experience to reduce optimistic proximity
predictions; and (2) penalize agent trajectories with high uncertainty in goal proximity prediction.

To alleviate the effect of inaccurate proximity estimation in policy training, we discourage the policy
from visiting states with uncertain proximity estimates. Specifically, we model the uncertainty Uy (s;)
as the disagreement of an ensemble of proximity functions by computing the standard deviation of
their outputs [22,[31]. Then, we use this estimated uncertainty to penalize exploration of states with



(a) NAVIGATION  (b) MAZE2D  (c) ANT REACH (d) FETCH PIcK (e) FETCH PUSH (f) HAND ROTATE

Figure 2: Six goal-directed tasks are used for our experiments. (a) The agent must navigate across
rooms to reach the goal. (b) The agent needs to navigate the maze to reach the goal. (c) The ant agent
must walk towards the flag. (d, e) The robotic arm is required to pick up or push the block towards
the goal (red). (f) The dexterous robot hand needs to rotate the block in-hand to the desired rotation.

high uncertainty. The proximity estimate f,(s;) is the average prediction of the ensemble. With the
uncertainty penalty, the modified proximity reward can be written as:

Ry (se,s141) = fo(st1) = fo(st) = A Ug(si41), (%)
where ) is a tunable hyperparameter to balance the proximity reward and uncertainty penalty. A larger
A results in more conservative exploration outside the states covered by the expert demonstrations.

In summary, we propose to learn a goal proximity function to robustly provide a reward signal on
states or goals not covered by demonstrations. We train the goal proximity function to estimate how
close the current state is to the goal, and train a policy to maximize the goal proximity while avoiding
states with uncertain proximity predictions. We jointly train the proximity function and policy as
described in appendix, Algorithm [I]

4 Experiments

In this paper, we propose a generalizable LfO algorithm that leverages task progress information
(i.e. goal proximity) freely acquired from demonstrations. Hence, in our experiments, we aim to
answer the following questions: (1) Does our method lead to policies that generalize better to states
and goals not in the demonstrations? (2) How does our method’s efficiency and performance compare
against prior work in LfO and LfD? (3) What factors contribute to the performance of our method? To
answer these questions we consider diverse goal-directed tasks: navigation, locomotion, and robotic
manipulation.

4.1 Experimental Setup

To demonstrate the improved generalization capabilities of policies trained with the goal proximity,
we benchmark our method under two different setups: expert demonstrations are collected from
(1) only a fraction of the possible initial and goal states (e.g. 25%, 50% coverage) and (2) initial states
with smaller amounts of noise. These generalization experimental setups serve to mimic the reality
that expert demonstrations may be collected in a different setting from agent learning. For instance,
due to the cost of demonstration collection, the demonstrations may poorly cover the state space,
which corresponds to the setup (1). Likewise, in the setup (2), demonstrations may be collected in
controlled circumstances with little noise. Then, an agent in an actual environment would encounter
more noise than presented in the demonstrations, leading to a wider initial state distribution.

In our experiments, we use the discounting factor 6 = 0.95 for the goal proximity. We use an
ensemble of 5 proximity functions to model uncertainty across all tasks. For policy optimization, we
use PPO [40Q], which is widely used in LfO and LfD methods, and its hyperparameters are tuned for
each method and task (see appendix, Table[2). Each baseline implementation is verified against the
results reported in its original paper. We train each task with 5 random seeds and report mean and
standard deviation. See Section [F|for further implementation details.

4.2 Baselines

We compare our method to the state-of-the-art methods in LfO (BCO, GAIfO, GAIfO-s) as well
as LfO with reward (Goal GAIL) and LfD (BC, GAIL, SQIL) approaches, which require additional
supervisions, such as task reward and expert actions:
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Figure 3: Goal completion rates of our method and baselines. The agent must generalize to a wider
state and goal distributions than seen in the demonstrations. Demonstrations cover only a part of
states (a, b) or are generated with less noise (c, d, e, f). Our method learns more stably, faster, and
achieves higher goal completion rates than prior LfO methods. Moreover, our method outperforms
the LfD baselines in NAVIGATION, FETCH tasks, and MAZE2D, and achieves comparable results in
ANT REACH. GoalGAIL performs well in MAZE2D since it can easily acquire environment rewards.

* BCO [46] learns an inverse dynamics model from environment interaction to provide action
labels in demonstrations for behavioral cloning.

* GAIfO [47] trains a discriminator with state transitions (s, s’), instead of (s, a) as in GAIL.
¢ GAIfO-s [49] learns a discriminator based off a single state, not a state transition as with GAIfO.
* GoalGAIL [9] uses goal reaching reward and relabeling to improve sample efficiency of GAIL.
» BC [35] fits a policy to the demonstration state-action pairs (s, a) with supervised learning.

* GAIL [17] is an adversarial imitation learning with a discriminator trained on state-action pairs
(s, a) from both expert and agent.

* SQIL [37] is a sample-efficient imitation learning method which adds expert transitions (s, a)
with reward 1 to the replay buffer of off-policy RL and assigns 0 reward to all agent experience.

4.3 Navigation

We first examine the NAVIGATION task between four rooms shown in Figure 2a] to demonstrate
generalization capability of our method, and visualize the learned goal proximity function. The agent
observes the 19 x 19 x 4 2D map of the maze and moves in one of four directions. In this task, the
agent starting and goal positions are randomly sampled (see an example in appendix, Figure[12). We
provide 250 expert demonstrations obtained using a shortest path algorithm. During demonstration
collection, we hold out 0%, 25%, 50%, and 75% of the possible agent starting and goal positions
uniformly at random. In contrast, during agent learning and evaluation, start and goal positions are
sampled from all possible positions.

Figure [3a] shows that our method achieves near 100% success rate in 2M environment steps even
with demonstrations only covering 25% of starting and goal states, while other LfO methods fail to
learn the task. Although BC, GAIL, and BCO achieve success rates of about 60%, 30%, and 35%,
respectively, they show limited generalization to unseen configurations. This result shows that the
learned goal proximity function generalizes well to unseen configurations.

Figure[d| visualizes the proximity function trained with 50% coverage demonstrations and 250k steps
of agent training. Our proximity function predicts high proximity near the goal and lower proximity
when the agent is farther away from the goal. This demonstrates that our proximity function can learn
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Figure 4: Analyzing the effect of improved generalization as the cause for performance increase in
our method. (a) Performance with no generalization required. (b, ¢) Performance with increasing
difference between start and goal distributions of demonstrations and agent learning. (d) Visualization
of the learned proximity function for a fixed goal (green) in the 50% coverage case. The proximity
function was evaluated for every state on the grid; lighter cells correspond to states with higher
estimated proximity to the goal.

the semantic, non-euclidean relationship between high-dimensional observations and goals. Since
the proximity function is conditioned on the state, similar states are likely to have similar predicted
proximity, and thus the proximity function learns a spatially consistent measure of proximity from
temporal supervision. Moreover, as the task progress is a relative position within a trajectory, both
slow and fast demonstrations result in the same task progress. More visualizations can be found in
appendix, Section [E]

Finally, we investigate our hypothesis that the goal proximity function allows for greater generaliza-
tion, which results in better performance with smaller demonstration coverages. We compare the
cases where extreme (25% coverage), moderate (50% and 75% coverage), and no generalization
(100% coverage) are required. Figure [3a]and Figure [ show that our method consistently achieves
almost 100% success rates in 2M steps across all coverages and is not as affected by the increasingly
difficult generalization settings as baselines. In contrast, all LfO baselines struggle to learn the
task when the demonstrations do not cover all configurations. LfD methods also shows limited
generalization in 25% coverage since the discriminator can easily learn spurious associations between
the actions and labels, which hurts generalization to new actions. This supports our hypothesis that
the goal proximity function is able to capture the task structure and therefore, generalize better to
unseen configurations.

4.4 Maze2D

We further evaluate our method in MAZE2D [15]] with the medium maze, a continuous version of
NAVIGATION. The agent observes its position, velocity, and goal position, and then outputs an x- and
y-velocity to navigate the maze. The agent starting and goal positions are randomly sampled. We
collect 100 demonstrations (18k transitions) using a planner from Fu et al. [[15].

Our method outperforms LfO baselines over all demonstration coverages (see appendix, Figure 7).
More importantly, in the low coverage case, our method outperforms BC, which has access to expert
actions, as shown in Figure bl This could be because our proximity function generalizes well
whereas BC is not robust to unseen states under small demonstration coverages. On the other hand,
GoalGAIL shows the best performance regardless of coverages as the task can be easily solved with
the sparse reward and goal relabeling, which is not available for our method and other baselines.

4.5 Ant Locomotion

In ANT REACH [16], the quadruped ant is tasked to reach a randomly generated goal, which is
along the perimeter of a half circle of radius 5 m centered around the ant (see Figure[2c). The 132D
state consists of joint angle, velocity, contact force, and the goal position relative to the agent. We
collect 1k demonstrations (25k transitions) using the pre-trained policy (trained for 40M steps). When
demonstrations are collected, no noise is added to the initial pose of the ant whereas random noise is
added to the initial pose during policy learning, which requires the reward functions to generalize to
unseen states.
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Figure 5: Analysis of the contribution of goal proximity function, uncertainty penalty, and reward
formulation to the performance. “Prox” uses the goal proximity function while “GAIfO-s” does not.
“+Diff” uses R(s¢, s¢+1) = f(s¢+1) — f(s¢) and “+Abs” uses R(s;) = f(s;) as a reward. “+Uncert”
adds the uncertainty penalty to the reward. “+Ensemble” uses an ensemble for the discriminator.

In Figure with 0.05 added noise, our method achieves 35% success rate while BCO, GAIfO, and
GAIfO-s achieve 1%, 2%, and 7%, respectively. This result illustrates the importance of learning
proximity as opposed to discriminating expert and agent states for generalization to unseen states.
The performance of GAIfO and GAIfO-s drops drastically with larger joint angle randomness as
shown in appendix, Figure[7] As ANT REACH is not as sensitive to noise in actions compared to other
tasks, BC and GAIL show superior results but our method still achieves comparable performance.

4.6 Robotic Manipulation

We evaluate our method in two robotic manipulation tasks with the 7-DoF Fetch robotics arm: FETCH
PicK and FETCH PUSH [34]. The robot must grasp and move a block to a target position for FETCH
P1CK, and push a block to a target position for FETCH PUSH. The 16D state consists of the gripper
pose, object pose, the gripper pose relative to the object, and goal position. Both the initial and target
positions of the block are randomly initialized. We generate 1k demonstrations using a hard-coded
policy, consisting of 33k and 28k transitions for FETCH PICK and FETCH PUSH, respectively. The
policy is trained in an environment with larger noise applied to the starting and target block positions.

In FETCH PICK, our method achieves about 80% success rate outperforming all baselines, despite
LfD methods learning with expert actions (see Figure [3d). The best performing baseline BC only
obtains around 40% success rate. The high variance in performance between seeds comes from
the difficulty of learning the grasping behavior with large noise. In FETCH PUSH, our method
outperforms baselines in generalization to unseen states by achieving more than 90% success rate (see
Figure 3¢€). This shows that our proximity function is able to accelerate policy learning in continuous
control environments with superior generalization capability.

4.7 Dexterous Hand Manipulation

We evaluate our method in a challenging in-hand object manipulation task [34], HAND ROTATE as
shown in Figure[2f] In HAND ROTATE, a 24-DoF Shadow Dexterous Hand must in-hand rotate a
block to a target z-axis rotation. The state consists of the agent’s joint angles and velocities, object
pose, and the target rotation. Due to the high dimension of the state (68D) and action space (20D),
HAND ROTATE is extremely challenging for both RL and IL without dense reward. We therefore
ease the task by constraining the possible initial and target z rotations to [—35, 35] and %, §]. We
collect 10k demonstrations (98k transitions) using a pre-trained policy (trained for 8M steps).

In Figure 3] GAIfO-s performs well because its reward function is biased to provide large negative
rewards encouraging the agent to end the episode early which is only possible by succeeding. In
contrast, our difference-based reward is designed to provide positive rewards, which does not exploit
this task property, and performs poorly even with an additional constant penalty -0.005 every step. To
test the generalization capability of our proximity function, we additionally examine a variant of our
method (Ours-GAIL), which uses the same reward formulation as GAIfO-s, log f4(s;) — log(1 —
f(s¢)). With this biased reward function, our method outperforms both GAIfO-s and GAIL, which
verifies the benefit of our proximity function in generalization to noisy environments. While BC
achieves the high success rate with 10x more demonstrations compared to other tasks, SQIL shows
poor performance due to the lack of the negative reward bias.
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4.8 Ablation Study

Dissecting proximity reward We analyze the contribution of the proximity function, reward
formulation, and uncertainty penalty to our method’s performance across four tasks in Figure [5]
Adding uncertainty to GAIfO-s (GAIfO-s+Uncert) produced a 18.4% boost in average success rate
compared to regular GAIfO-s. Proximity supervision, without the uncertainty penalty, resulted in a
66.7% increase in average performance over GAIfO-s with the difference-based reward f(s;q1) —
f(st) (Prox+Diff) and 25.8% with the absolute reward f(s;) (Prox+Abs). This higher performance
means modeling proximity is more important than the uncertainty penalty for our method.

Although we choose difference-based reward with exponentially discounted goal proximity, the goal
proximity can be either linear or exponential discounting, and both can be used for either a difference-
based or absolute reward, which perform differently across tasks. For example, the difference-based
proximity reward is better for policy learning than the absolute proximity reward except on ANT
REACH and HAND ROTATE, where the bias of the absolute reward [20] helps the agent survive longer
and reach the goal. This is a fundamental problem in IRL, where inductive bias in reward functions is
crucial and varies by tasks [20]. Nonetheless, our extensive experiments (Figure 5} [6b] [8) show that
our goal proximity reward provides a more stable and generalizable learning signal than baselines
under the same reward bias.

Moreover, we found that the uncertainty penalty and proximity function have a synergistic in-
teraction. Combining both the proximity and uncertainty gives a 68.7% increase with the difference-
based reward (Prox+Diff+Uncert) and 26.4% increase with the absolute reward (Prox+Abs+Uncert).
The uncertainty penalty is especially important for the proximity function as it models fine-grain tem-
poral information where inaccuracies can be easily exploited, as opposed to the binary classification
of other adversarial imitation learning methods.

Ensemble networks Next, we study if the robustness of our method comes from the use of
ensemble networks or task progress. We verify this by applying ensemble of discriminators to the
best performing baseline, GAIfO-s. Figure[5]|shows that GAIfO-s with ensemble networks (GAIfO-
s+Ensemble) only achieves 19.6% higher success rates, but this is still 39.7% lower than our method
on average. Therefore, the use of task progress is key to learn a generalizable reward, not the use of
ensemble networks.

Regularization of discriminators In our experiments above, we show that our goal proximity
function is generalizable to unseen states and goals, which leads to successful imitation learning.
We verify whether standard regularization techniques, such as spectral normalization [28]], can also
provide the same generalization benefit. In the FETCH PICK 1.75x noise setting (Figure [6c]), GAIfO-s
without regularization struggles to learn, achieving only a 1.43% success rate. Not surprisingly,
applying spectral normalization [28] to the discriminator of GAIfO-s improves the success rate
to 14.56%, which suggests that generalization of the reward function is key to imitation learning
with insufficient demonstration coverage. Despite this improvement, our method performs much
better at 75.45% success. In summary, predicting goal proximity enables significantly better



generalization than regularization on the baselines. Figure [10|in appendix show similar results
across most other tasks.

Uncertainty penalty coefficient A In Figure [6a] we investigate how the uncertainty penalty coeffi-
cient \ affects the performance, showing that our method performs the best with A = 0.001. A higher
or lower X yields worse performance since a higher A prevents exploring unseen states while a lower
) encourages exploiting uncertain predictions.

Proximity function training In Figure we test the importance of online and offline training
of the proximity function. Note that we update the policy with online interactions in both scenarios.
The result shows that online proximity function update is crucial for our method as the agent fails
without online update. Meanwhile, no pre-training, Ours (No Offline), slows down training. Similar
results can be observed across all tasks (see appendix, Figure [g).

Our ablation experiments show that (1) goal proximity generalizes better and is more informative for
policy learning; (2) the difference-based proximity reward generally performs better than the absolute
one; and (3) the uncertainty penalty boosts the performance of our method. In conclusion, all three
components of proximity, difference-based reward, and uncertainty are crucial for our method.

5 Conclusion

We propose a generalizable learning from observation (LfO) method inspired by how humans acquire
generalizable task information and learn skills in new situations by watching others performing
goal-directed tasks. We specifically propose to use task progress, which is intuitive and readily
available task information that can guide an agent closer to the goal. Inspired by this insight, we learn
a goal proximity function and utilize it as a dense reward for policy learning. We hypothesize that
predicting the task progress requires more task-relevant information than estimating an occupancy
measure [17], and thus generalizes to states not seen in the demonstrations. Our extensive experiments
on navigation, locomotion, and robotic manipulation show that our goal proximity function improves
generalization in imitation learning, which results in better performance compared to LfO methods
and comparable performance with LfD methods which learn from expert actions.

In imitation learning, the generalization ability can include generalization to (1) unseen states
and goals, (2) new visual environments (e.g. background), (3) unseen objects, and (4) different
embodiments (e.g. humans to robots or different dynamics). In this paper, we focus on generalization
to (1) unseen states and goals. This is especially important in imitation learning when the number
of demonstrations is not sufficient to cover all possible states and goals. This is very common in
imitation learning due to costly demonstration collection. Our approach suggests an effective way of
using the demonstrations with limited coverage by learning the generalizable goal proximity reward.

Generalization to a different environment and embodiment is another important research direction
and this is indeed our immediate future work. Recent advances in generalizable representation
learning 42,143\ 48]}, robust policy learning [[19} 21]], and cross-domain correspondence [50] enable
us to train a policy that generalizes to new environments and embodiments. Yet, these approaches are
orthogonal and complementary to our method as our goal proximity function can be trained on top of
the learned representations [[19} 121} 142,143, 148|150]. We believe that our method can be combined with
these approaches and improve their performance with better demonstration efficiency and additional
supervision about task progress.

Societal Impact Our method aims to increase the ability of autonomous agents, such as robots and
self-driving cars, to imitate experts (e.g. humans) from observation alone. This enables autonomous
agents to utilize data even without expert actions, such as kinesthetic demonstrations and video
demonstrations. Ultimately, it could allow autonomous agents to acquire skills even from watching
Youtube videos. Since our method learns from experts, it inherits any biases of the demonstrator,
such as sub-optimal or unsafe behaviors. Additionally, demonstrations are an easy and intuitive way
to specify behaviors, its potential for automation is a threat to job security. However, we overall see
enormous benefit with this technology increasing human quality of life and automating difficult jobs.
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