login
A355743
Numbers whose prime indices are all prime-powers.
14
1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 31, 33, 35, 41, 45, 49, 51, 53, 55, 57, 59, 63, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 105, 109, 115, 119, 121, 123, 125, 127, 131, 133, 135, 147, 153, 155, 157, 159, 161, 165, 171, 175, 177, 179, 187
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also MM-numbers of multiset partitions into constant multisets, where the multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The terms together with their prime indices begin:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
31: {11}
33: {2,5}
35: {3,4}
41: {13}
45: {2,2,3}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], And@@PrimePowerQ/@primeMS[#]&]
CROSSREFS
The multiplicative version is A000688, strict A050361, coprime A354911.
The case of only primes (not all prime-powers) is A076610, strict A302590.
Allowing prime index 1 gives A302492.
These are the products of elements of A302493.
Requiring n to be a prime-power gives A302601.
These are the positions of 1's in A355741.
The squarefree case is A356065.
The complement is A356066.
A001222 counts prime-power divisors.
A023894 counts ptns into prime-powers, strict A054685, with 1's A023893.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.
Sequence in context: A283800 A043325 A023692 * A340718 A155113 A327260
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 24 2022
STATUS
approved