OFFSET
1,3
COMMENTS
From A.H.M. Smeets, Jun 12 2018: (Start)
The denominator of the k-th convergent obtained from a continued fraction of a constant, the terms of the continued fraction satisfying the Gauss-Kuzmin distribution, will tend to exp(k*A100199).
Similarly, the error between the k-th convergent obtained from a continued fraction of a constant, and the constant itself will tend to exp(-2*k*A100199). (End)
The term "Lévy's constant" is sometimes used to refer to this constant (Wikipedia). - Bernard Schott, Sep 01 2022
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
R. M. Corless, Continued Fractions and Chaos, Amer. Math. Monthly 99, 203-215, 1992.
Eric Weisstein's World of Mathematics, Khinchin-Levy Constant.
Eric Weisstein's World of Mathematics, Lévy Constant.
Wikipedia, Lévy's constant.
FORMULA
Equals ((Pi^2)/12)/log(2) = A072691 / A002162 = (Sum_{n>=1} ((-1)^(n+1))/n^2) / (Sum_{n>=1} ((-1)^(n+1))/n^1). - Terry D. Grant, Aug 03 2016
Equals (-1/log(2)) * Integral_{x=0..1} log(x)/(1+x) dx (from Corless, 1992). - Bernard Schott, Sep 01 2022
EXAMPLE
1.1865691104156254528217229759472371205683565364720543359542542986528...
MATHEMATICA
RealDigits[Pi^2/(12*Log[2]), 10, 100][[1]] (* G. C. Greubel, Mar 23 2017 *)
PROG
(PARI) Pi^2/log(4096) \\ Charles R Greathouse IV, Aug 04 2016
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Dec 27 2004
STATUS
approved