OFFSET
1,1
COMMENTS
Cletus Emmanuel calls these "Carol primes".
There are only 25 such primes below 4^1000. Terms beyond a(15) are too large to be displayed here: The sequence should be extended by listing the corresponding n-values in A091515. - M. F. Hasler, May 15 2008
Is there an explanation for the following observed pattern? Between groups of primes of roughly the same size, there is a gap of about the magnitude of these primes, i.e., the size roughly doubles (e.g., after the 16- and 17-digit primes, there is a 34-digit prime, then a 78-digit prime and some others up to 105 digits, then some 200- to 250-digit primes, then approximately 500 digits...). - M. F. Hasler, May 15 2008
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..25.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
a(k) = 4^A091515(k) - 2^(A091515(k) + 1) - 1 = (2^A091515(k) - 1)^2 - 2. - M. F. Hasler, May 15 2008
MATHEMATICA
lst={}; Do[p=(2^n-1)^2-2; If[PrimeQ[p], AppendTo[lst, p]], {n, 2, 160}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
PROG
(PARI) c=0; for(n=1, 999, ispseudoprime(4^n-2^(n+1)-1)&write("b091516.txt", c++, " ", 4^n-2^(n+1)-1)) \\ M. F. Hasler, May 15 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 17 2004
EXTENSIONS
Edited by Ray Chandler, Nov 15 2004
STATUS
approved