login
A078434
Decimal expansion of zeta(3/2).
40
2, 6, 1, 2, 3, 7, 5, 3, 4, 8, 6, 8, 5, 4, 8, 8, 3, 4, 3, 3, 4, 8, 5, 6, 7, 5, 6, 7, 9, 2, 4, 0, 7, 1, 6, 3, 0, 5, 7, 0, 8, 0, 0, 6, 5, 2, 4, 0, 0, 0, 6, 3, 4, 0, 7, 5, 7, 3, 3, 2, 8, 2, 4, 8, 8, 1, 4, 9, 2, 7, 7, 6, 7, 6, 8, 8, 2, 7, 2, 8, 6, 0, 9, 9, 6, 2, 4, 3, 8, 6, 8, 1, 2, 6, 3, 1, 1, 9, 5, 2, 3, 8, 2, 9, 7
OFFSET
1,1
LINKS
Alexander Sakhnovich and Lev Sakhnovich, Nonlinear Fokker-Planck equation: stability, distance and the corresponding extremal problem in the spatially inhomogeneous case, in: D. Alpay and B. Kirstein (eds.), Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes, Birkhäuser, Cham, 2015, pp. 379-394; arXiv preprint, arXiv:1307.1126 [math.AP], 2013-2015.
FORMULA
Equals (2/sqrt(Pi))*Integral_{x>=0} sqrt(x)/(exp(x)-1) dx. - Jean-François Alcover, Nov 12 2013
Equals Gamma(-1/2)*zeta(-1/2)*tau(-1/2) where tau(s) = (2*Pi*i)^(-s) + (-2*Pi*i)^(-s). This follows from the functional equation of the Riemann zeta function. (Cf. A059750, A211113, A019707). - Peter Luschny, May 13 2020
Equals -4*Pi*zeta(-1/2) = 10 * A019694 * A211113. - Amiram Eldar, May 29 2021
EXAMPLE
2.6123753486854883433485675679240716305708006524000634075733...
MATHEMATICA
RealDigits[ Zeta[3/2], 10, 110][[1]]
PROG
(PARI) zeta(3/2) \\ Charles R Greathouse IV, Feb 06 2015
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Dec 30 2002
STATUS
approved