login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057112
Sequence of 719 adjacent transpositions (a[n] a[n]+1), which, when starting from the identity permutation and applied successively, produce a Hamiltonian circuit/path through all 720 permutations of S_6, in such a way that S_{n-1} is always traversed before the rest of S_n.
5
1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3
OFFSET
1,2
COMMENTS
If the 120 permutations of S_5 are connected by adjacent transpositions, the graph produced is isomorphic to the prismatodecachoron (a 4-dimensional polytope) graph (see the Olshevsky link) and this sequence gives directions for a Hamiltonian circuit through its vertices. The first 24 terms give a Hamiltonian path through truncated octahedron's graph (the last path shown in the Karttunen link).
Comment from N. J. A. Sloane: This is the subject of "bell-ringing" or "change-ringing", which has been studied for hundreds of years. See for example Amer. Math. Monthly, Vol. 94, Number 8, 1987, pp. 721-.
LINKS
A. Karttunen, Truncated octahedron
Arthur T. White, Ringing the Cosets, Amer. Math. Monthly, Vol. 94, Number 8, 1987, pp. 721-746.
FORMULA
tp_seq := [seq(adj_tp_seq(n), n=1..719)];
EXAMPLE
Starting from the identity permutation and applying these transpositions (from right), we get:
[1,2,3,4,5,6,...] o (1 2) ->
[2,1,3,4,5,6,...] o (2 3) ->
[2,3,1,4,5,6,...] o (1 2) ->
[3,2,1,4,5,6,...] o (2 1) ->
[3,1,2,4,5,6,...] o (1 2) ->
[1,3,2,4,5,6,...] o (3 4) ->
[1,3,4,2,5,6,...] o (1 2) ->
[3,1,4,2,5,6,...] o (2 3) ->
[3,4,1,2,5,6,...] o (3 4) etc.
MAPLE
adj_tp_seq := proc(n) local fl, fd, v; fl := fac_base(n); fd := fl[1]; if((1 = fd) and (0 = convert(cdr(fl), `+`))) then RETURN(nops(fl)); fi; if(n < 6) then RETURN(2 - (`mod`(n, 2))); fi; if((0 = convert(cdr(fl), `+`)) and (n < 24)) then RETURN((nops(fl)+1)-fd); fi; if(n < 18) then if(0 = (`mod`(n, 2))) then RETURN(2); else RETURN(4-(`mod`(n, 4))); fi; else if(n < 24) then RETURN(2+(`mod`(n, 2))); else if(n < 120) then if(0 = convert(cdr(fl), `+`)) then RETURN(nops(fl)); else RETURN(adj_tp_seq(`mod`(n, 24))); fi; else if(n < 720) then if(125 = n) then RETURN(5); fi; v := (`mod`(n, 5)); if(0 = v) then v := (n-125)/5; RETURN(adj_tp_seq(v)+(`mod`(v+1, 2))); else if(5 > (`mod`(n, 10))) then RETURN(5-v); else RETURN(v); fi; fi; else if(0 = convert(cdr(fl), `+`)) then RETURN(nops(fl)); fi; RETURN(adj_tp_seq(`mod`(n, 720))); fi; fi; fi; fi; end;
CROSSREFS
Cf. A057113, A055089 (for the Maple definitions of fac_base and cdr), A060135 (palindromic variant of the same idea).
Sequence in context: A292997 A372471 A060135 * A071956 A077767 A355319
KEYWORD
nonn,fini,full
AUTHOR
Antti Karttunen, Aug 09 2000
STATUS
approved