login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037093
"Sloping binary representation" of Fibonacci numbers, slope = +1.
8
0, 1, 3, 14, 57, 229, 916, 7761, 29567, 117474, 469113, 3973641, 15138352, 60146777, 240187355, 2070207870, 7733090689, 30791909229, 260408711716, 991495872825, 3942106110215, 15739612088946, 133333733918417
OFFSET
0,3
FORMULA
a(n) := Sum(bit_n(A000045(n+i), i)*(2^i), i=0..inf) [ bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); ]
In practice, n can be used as an upper limit instead of infinity.
EXAMPLE
When Fibonacci numbers are written in binary (see A004685), under each other as:
0000000 (0)
0000001 (1)
0000001 (1)
0000010 (2)
0000011 (3)
0000101 (5)
0001000 (8)
0001101 (13)
0010101 (21)
0100010 (34)
0110111 (55)
1011001 (89)
and one starts collecting their bits from column-0 to SW-direction (from the least to the most significant end), one gets 000... (0), ...00001 (1), ...00011 (3), ...001110 (14), etc. (See A102370 for similar transformation done on nonnegative integers).
CROSSREFS
Same sequence in octal: A037098. Cf. also: A102370, A000045, A037094-A037095, A036284.
Sequence in context: A052412 A353095 A037793 * A135926 A015523 A127363
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Jan 28 1999. Entry revised Dec 29 2007.
STATUS
approved