login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036281
Denominators in Taylor series for x * cosec(x).
5
1, 6, 360, 15120, 604800, 3421440, 653837184000, 37362124800, 762187345920000, 2554547108585472000, 401428831349145600000, 143888775912161280000, 846912068365871834726400000, 93067260259985915904000000, 2706661834818276108533760000000
OFFSET
0,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..224 (terms 0..100 from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 30.
J. Malenfant, Factorization of and Determinant Expressions for the Hypersums of Powers of Integers, arXiv preprint arXiv:1104.4332 [math.NT], 2011.
Eric Weisstein's World of Mathematics, Hyperbolic Cosecant
Eric Weisstein's World of Mathematics, Cosecant
Index entries for Bernoulli numbers B(2n)
FORMULA
A036280(n)/a(n)= 2 *(2^(2n-1) -1) *abs(B(2n)) / (2n)!.
From Arkadiusz Wesolowski, Oct 16 2013: (Start)
a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(2 - (2^(1-n))^2)).
a(n) = A230265(n)/2. (End)
EXAMPLE
cosec(x) = x^(-1)+1/6*x+7/360*x^3+31/15120*x^5+...
1, 1/6, 7/360, 31/15120, 127/604800, 73/3421440, 1414477/653837184000, 8191/37362124800, ...
MAPLE
series(csc(x), x, 60);
MATHEMATICA
a[n_] := 2(2^(2n-1)-1) Abs[BernoulliB[2n]]/(2n)! // Denominator;
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2018 *)
PROG
(Sage)
def A036281_list(len):
R, C = [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = -C[k-1] / (k*(4*k+2))
C[0] = -sum(C[k] for k in (1..n))
R.append(C[0].denominator())
return R
print(A036281_list(15)) # Peter Luschny, Feb 21 2016
CROSSREFS
Cf. A036280, also A036282, A036283, B(2n) = A027641(2n) / A027642(2n).
Sequence in context: A290782 A367519 A002684 * A202367 A262179 A064350
KEYWORD
nonn,frac,easy
STATUS
approved