login
A023426
a(n) = a(n-1) + Sum_{k=0..n-4} a(k)*a(n-4-k), a(0) = 1. Generalized Catalan Numbers.
13
1, 1, 1, 1, 2, 4, 7, 11, 18, 32, 59, 107, 191, 343, 627, 1159, 2146, 3972, 7373, 13757, 25781, 48437, 91165, 171945, 325096, 616066, 1169667, 2224355, 4236728, 8082374, 15441719, 29542411, 56590472, 108532322, 208387711, 400551615, 770710831, 1484383399
OFFSET
0,5
COMMENTS
Number of lattice paths from (0,0) to (n,0) that stay weakly in the first quadrant and such that each step is either U=(2,1),D=(2,-1), or H=(1,0). E.g. a(5)=4 because we have HHHHH, HUD, UDH and UHD. - Emeric Deutsch, Dec 23 2003
Hankel transform is A132380(n+3). - Paul Barry, May 22 2009
LINKS
Andrei Asinowski, Cyril Banderier and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 10, 19-21.
FORMULA
G.f.: [1-z-sqrt((1-z)^2-4z^4)]/[2z^4]. - Emeric Deutsch, Dec 23 2003
From Paul Barry, May 22 2009: (Start)
G.f.: 1/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-... (continued fraction).
G.f.: (1/(1-x))c(x^4/(1-x)^2), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k)*A000108(k). (End)
D-finite with recurrence (n+4)*a(n) +(n+4)*a(n-1) -(5*n+8)*a(n-2) +3*n*a(n-3) +4*(2-n)*a(n-4) +12*(3-n)*a(n-5)=0. - R. J. Mathar, Sep 29 2012
a(n) ~ sqrt(3) * 2^(n+3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
G.f. A(x) satisfies: A(x) = (1 + x^4 * A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jul 20 2021
a(n) = hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 64). - Peter Luschny, Jul 12 2024
MAPLE
a := n -> hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 2^6): seq(simplify(a(n)), n = 0..35); # Peter Luschny, Jul 12 2024
MATHEMATICA
Clear[ a ]; a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-4-k ], {k, 0, n-4} ];
CoefficientList[Series[(1-x-Sqrt[(1-x)^2-4*x^4])/(2*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Name extended by a formula from the author in Mathematica by Peter Luschny, Jul 13 2024
STATUS
approved