OFFSET
0,1
COMMENTS
The 10-adic numbers a and b defined in A018247 and this sequence satisfy a^2=a, b^2=b, a+b=1, ab=0. - Michael Somos
REFERENCES
W. W. R. Ball, Mathematical Recreations & Essays, N.Y. Macmillan Co, 1947.
R. Cuculière, Jeux Mathématiques, in Pour la Science, No. 6 (1986), 10-15.
V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
M. Kraitchik, Sphinx, 1935, p. 1.
A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see pp. 63, 419.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..9999 (terms 0..999 from Paul D. Hanna).
Anonymous, Automorphic numbers (2)
Peter Bala, A note on A018248
V. deGuerre and R. A. Fairbairn, Automorphic numbers, Jnl. Rec. Math., 1 (No. 3, 1968), 173-179.
MathOverflow, Distribution of digits of pq-adic idempotents (a.k.a. "automorphic numbers"), 2014.
Eric Weisstein's World of Mathematics, Automorphic numbers (1)
FORMULA
x = r^4 where r=...1441224165530407839804103263499879186432 (A120817). x = 10-adic limit_{n->oo} 6^(5^n). - Paul D. Hanna, Jul 06 2006
For n >= 2, the final n+1 digits of either 2^(10^n), 4^(10^n) or 6^(10^n), when read from right to left, give the first n+1 entries in the sequence. - Peter Bala, Nov 05 2022
EXAMPLE
x equals the limit of the (n+1) trailing digits of 6^(5^n):
6^(5^0)=(6), 6^(5^1)=77(76), 6^(5^2)=28430288029929701(376), ...
x = ...9442576576769103890995893380022607743740081787109376.
From Peter Bala, Nov 05 2022: (Start)
Trailing digits of 2^(10^n), 4^(10^n) and 6^(10^n) for n = 5:
2^(10^5) = ...9883(109376);
4^(10^5) = ...7979(109376);
6^(10^5) = ...4155(109376). (End)
MAPLE
a := proc (n) option remember; if n = 1 then 2 else irem(a(n-1)^10, 10^n) end if; end proc:
# display the digits of a(100) from right to left
S := convert(a(100), string):
with(ListTools):
the_List := [seq(parse(S[i]), i = 1..length(S))]:
Reverse(the_List); # Peter Bala, Nov 04 2022
MATHEMATICA
b = {6}; g[n_] := Block[{k = 0, c}, While[c = FromDigits[Prepend[b, k]]; Mod[c^2, 10^n] != c, k++ ]; b = Prepend[b, k]]; Do[ g[n], {n, 2, 105}]; Reverse[b]
With[{n = 150}, Reverse[IntegerDigits[PowerMod[16, 5^n, 10^n]]]] (* IWABUCHI Yu(u)ki, Feb 16 2024 *)
PROG
(PARI) {a(n)=local(b=6, v=[]); for(k=1, n+1, b=b^5%10^k; v=concat(v, (10*b\10^k))); v[n+1]} \\ Paul D. Hanna, Jul 06 2006
(PARI) Vecrev(digits(lift(chinese(Mod(0, 2^100), Mod(1, 5^100))))) \\ Seiichi Manyama, Aug 07 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Yoshihide Tamori (yo(AT)salk.edu)
EXTENSIONS
More terms from David W. Wilson
Edited by David W. Wilson, Sep 26 2002
STATUS
approved