login
A006891
Decimal expansion of Feigenbaum reduction parameter.
(Formerly M1311)
9
2, 5, 0, 2, 9, 0, 7, 8, 7, 5, 0, 9, 5, 8, 9, 2, 8, 2, 2, 2, 8, 3, 9, 0, 2, 8, 7, 3, 2, 1, 8, 2, 1, 5, 7, 8, 6, 3, 8, 1, 2, 7, 1, 3, 7, 6, 7, 2, 7, 1, 4, 9, 9, 7, 7, 3, 3, 6, 1, 9, 2, 0, 5, 6, 7, 7, 9, 2, 3, 5, 4, 6, 3, 1, 7, 9, 5, 9, 0, 2, 0, 6, 7, 0, 3, 2, 9, 9, 6, 4, 9, 7, 4, 6, 4, 3, 3, 8, 3, 4, 1, 2, 9, 5, 9
OFFSET
1,1
REFERENCES
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 65-76
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
K. Briggs, A precise calculation of the Feigenbaum constants, Math. Comp., 57 (1991), 435-439.
B. Derrida, A. Gervois and Y. Pomeau, Universal metric properties of bifurcations, J. Phys. A 12 (1979), 269-296.
R. J. Mathar, Chebyshev series representation of Feigenbaum's period-doubling function, arXiv:1008.4608 [math.DS], 2010.
Simon Plouffe, Feigenbaum constants
Simon Plouffe, Plouffe's Inverter, Feigenbaum constants to 1018 decimal places
J. Thurlby, Rigorous calculations of renormalisation fixed points and attractors, PhD thesis, U. Portsmouth, (2021). 400 digits in Section 3.8.
Eric Weisstein's World of Mathematics, Feigenbaum Constant
EXAMPLE
2.502907875095892822283902873218215786381271376727149977336192056779235...
CROSSREFS
Cf. A006890 (Feigenbaum bifurcation velocity), A159767 (continued fraction).
Sequence in context: A296047 A307237 A127863 * A054675 A346191 A136209
KEYWORD
cons,nonn,nice
EXTENSIONS
More terms from Simon Plouffe, Jan 06 2002
STATUS
approved