OFFSET
1,1
COMMENTS
Suggested by Euclid's proof that there are infinitely many primes.
REFERENCES
R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..61
R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498.
OEIS wiki, OEIS sequences needing factors
S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32. (Annotated scanned copy)
MAPLE
a :=n-> if n = 1 then 3 else numtheory:-divisors(mul(a(i), i = 1 .. n-1)-1)[2] fi:seq(a(n), n=1..15);
# Robert FERREOL, Sep 25 2019
PROG
(PARI) lpf(n)=factor(n)[1, 1] \\ better code exists, usually best to code in C and import
print1(A=3); for(n=2, 99, a=lpf(A); print1(", "a); A*=a) \\ Charles R Greathouse IV, Apr 07 2020
CROSSREFS
KEYWORD
nonn,nice,hard
AUTHOR
STATUS
approved