login
A003499
a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.
(Formerly M1701)
38
2, 6, 34, 198, 1154, 6726, 39202, 228486, 1331714, 7761798, 45239074, 263672646, 1536796802, 8957108166, 52205852194, 304278004998, 1773462177794, 10336495061766, 60245508192802, 351136554095046, 2046573816377474, 11928306344169798, 69523264248641314
OFFSET
0,1
COMMENTS
Two times Chebyshev polynomials of the first kind evaluated at 3.
Also 2(a(2*n)-2) and a(2*n+1)-2 are perfect squares. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Chebyshev polynomials of the first kind evaluated at 3, then multiplied by 2. - Michael Somos, Apr 07 2003
Also gives solutions > 2 to the equation x^2 - 3 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
Output of Lu and Wu's formula for the number of perfect matchings of an m X n Klein bottle where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
It appears that for prime P = 8*n +- 3, that a((P-1)/2) == -6 (mod P) and for all composites C = 8*n +- 3, there is at least one i < (C-1)/2 such that a(i) == -6 (mod P). Only a few of the primes P of the form 8*n +-3, e.g., 29, had such an i less than (P-1)/2. As for primes P = 8*n +- 1, it seems that the sum of the two adjacent terms, a((P-1)/2) and a((P+1)/2), is congruent to 8 (mod P). - Kenneth J Ramsey, Feb 14 2012 and Mar 05 2012
For n >= 1, a(n) is also the curvature of circles (rounded to the nearest integer) successively inscribed toward angle 90 degree of tangent lines, starting with a unit circle. The expansion factor is 5.828427... or 1/(3 - 2*sqrt(2)), which is also 3 + 2*sqrt(2) or A156035. See illustration in links. - Kival Ngaokrajang, Sep 04 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 6*x*y + y^2 + 32 = 0. - Colin Barker, Feb 08 2014
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 198.
Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seyed Hassan Alavi, Ashraf Daneshkhah, and Cheryl E. Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See Lemma 7.9 p. 21.
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence K_3.
S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), #12.1.4.
Tanya Khovanova, Recursive Sequences
W. Lu and F. Y. Wu, Close-packed dimers on nonorientable surfaces, arXiv:cond-mat/0110035 [cond-mat.stat-mech], 2001-2002; Physics Letters A, 293(2002), 235-246. [From Sarah-Marie Belcastro, Jul 04 2009]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
FORMULA
G.f.: (2-6*x)/(1 - 6*x + x^2).
a(n) = (3+2*sqrt(2))^n + (3-2*sqrt(2))^n = 2*A001541(n).
For all sequence elements n, 2*n^2 - 8 is a perfect square. Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
a(2*n)+2 is a perfect square, 2(a(2*n+1)+2) is a perfect square. a(n), a(n-1) and A077445(n), n > 0, satisfy the Diophantine equation x^2 + y^2 - 3*z^2 = -8. - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n+1) is the trace of n-th power of matrix {{6, -1}, {1, 0}}. - Artur Jasinski, Apr 22 2008
a(n) = Product_{r=1..n} (4*sin^2((4*r-1)*Pi/(4*n)) + 4). [Lu/Wu] - Sarah-Marie Belcastro, Jul 04 2009
a(n) = (1 + sqrt(2))^(2*n) + (1 + sqrt(2))^(-2*n). - Gerson Washiski Barbosa, Sep 19 2010
For n > 0, a(n) = A001653(n) + A001653(n+1). - Charlie Marion, Dec 27 2011
For n > 0, a(n) = b(4*n)/b(2*n) where b(n) is the Pell sequence, A000129. - Kenneth J Ramsey, Feb 14 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 3 - 2*sqrt(2). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.16585 37786 96882 80543 ... = 2 + 1/(6 + 1/(34 + 1/(198 + ...))). Cf. A174501.
Also F(-alpha) = 0.83251219269380007634 ... has the continued fraction representation 1 - 1/(6 - 1/(34 - 1/(198 - ...))) and the simple continued fraction expansion 1/(1 + 1/((6-2) + 1/(1 + 1/((34-2) + 1/(1 + 1/((198-2) + 1/(1 + ...))))))). Cf. A174501 and A003500.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((6^2-4) + 1/(1 + 1/((34^2-4) + 1/(1 + 1/((198^2-4) + 1/(1 + ...))))))).
(End)
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
Inverse binomial transform of A228568 [Bhadouria]. - R. J. Mathar, Nov 10 2013
From Peter Bala, Oct 16 2019: (Start)
4*Sum_{n >= 1} 1/(a(n) - 8/a(n)) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 4/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/4 - 8*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 8)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 4*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 4)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(3-2*sqrt(2)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(2*sqrt(2)-3))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A067902.
(End)
E.g.f.: 2*exp(3*x)*cosh(2*sqrt(2)*x). - Stefano Spezia, Oct 18 2019
a(2*n)+2 = a(n)^2. - Greg Dresden and Shraya Pal, Jun 29 2021
MAPLE
A003499:=-2*(-1+3*z)/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
a[0]=2; a[1]=6; a[n_]:= 6a[n-1] -a[n-2]; Table[a[n], {n, 0, 25}] (* Robert G. Wilson v, Jan 30 2004 *)
Table[Tr[MatrixPower[{{6, -1}, {1, 0}}, n]], {n, 25}] (* Artur Jasinski, Apr 22 2008 *)
LinearRecurrence[{6, -1}, {2, 6}, 25] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
CoefficientList[Series[(2-6x)/(1-6x+x^2), {x, 0, 25}], x] (* Vincenzo Librandi, Jun 07 2013 *)
(* From Eric W. Weisstein, Apr 17 2018 *)
Table[(3-2Sqrt[2])^n + (3+2Sqrt[2])^n, {n, 0, 25}]//Expand
Table[(1+Sqrt[2])^(2n) + (1-Sqrt[2])^(2n), {n, 0, 25}]//FullSimplify
Join[{2}, Table[Fibonacci[4n, 2]/Fibonacci[2n, 2], {n, 25}]]
2*ChebyshevT[Range[0, 25], 3] (* End *)
PROG
(PARI) a(n)=2*real((3+quadgen(32))^n)
(PARI) a(n)=2*subst(poltchebi(abs(n)), x, 3)
(PARI) a(n)=if(n<0, a(-n), polsym(1-6*x+x^2, n)[n+1])
(Sage) [lucas_number2(n, 6, 1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
(Magma) I:=[2, 6]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 16 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (2-6*x)/(1 - 6*x + x^2) )); // Marius A. Burtea, Jan 16 2020
(GAP) a:=[2, 6];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
CROSSREFS
A081555(n) = 1 + a(n).
Bisection of A002203.
First row of array A103999.
Row 1 * 2 of array A188645. A174501.
Sequence in context: A030233 A362224 A233396 * A279609 A253778 A346189
KEYWORD
nonn,easy
STATUS
approved