login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001847
Crystal ball sequence for 5-dimensional cubic lattice.
(Formerly M4793 N2045)
12
1, 11, 61, 231, 681, 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047, 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409, 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793, 11326283
OFFSET
0,2
COMMENTS
Number of nodes degree 10 in virtual, optimal chordal graphs of diameter d(G)=n - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-5) is the number of 10-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007
Equals binomial transform of [1, 10, 40, 80, 80, 32, 0, 0, 0, ...] where (1, 10, 40, 80, 80, 32) = row 5 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
a(n) is the number of points in Z^5 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 5 from any given point. - Shel Kaphan, Jan 02 2023
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973).
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
FORMULA
G.f.: (1+x)^5 /(1-x)^6.
a(n) = (4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
a(n) = Sum_{k=0..min(5,n)} 2^k * binomial(5,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
E.g.f.: exp(x)*(15 + 150*x + 300*x^2 + 200*x^3 + 50*x^4 + 4*x^5)/15. - Stefano Spezia, Mar 17 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 47/60 - log(2) = (1 - 1/2 + 1/3 - 1/4 + 1/5) - log(2). - Peter Bala, Mar 23 2024
EXAMPLE
a(5)=1683, (4*5^5 + 10*5^4 + 40*5^3 + 50*5^2 + 46*5 + 15)/15 = (12500 + 6250 + 5000 + 230 + 15)/15 = 25245/15 = 1683.
MAPLE
for n from 1 to k do eval((4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15) od;
A001847:=(z+1)**5/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[Series[(z+1)^5/(z-1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
CROSSREFS
Cf. A240876.
Row/column 5 of A008288.
Sequence in context: A060884 A141935 A222408 * A089764 A023298 A320145
KEYWORD
nonn,easy
STATUS
approved