login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000713
EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, ...
(Formerly M2731 N1096)
7
1, 3, 8, 18, 38, 74, 139, 249, 434, 734, 1215, 1967, 3132, 4902, 7567, 11523, 17345, 25815, 38045, 55535, 80377, 115379, 164389, 232539, 326774, 456286, 633373, 874213, 1200228, 1639418, 2228546, 3015360, 4062065, 5448995, 7280060, 9688718, 12846507, 16972577
OFFSET
0,2
COMMENTS
Equals row sums of triangle A146023. - Gary W. Adamson, Oct 26 2008
Partial sums of A000712. - Geoffrey Critzer, Apr 19 2012, corrected by Omar E. Pol, Jun 19 2012
Equals the number of partitions of n with 1's of three kinds and all parts >1 of two kinds. - Gregory L. Simay, Mar 25 2018
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: A(x)/(1-x) where A(x) is g.f. for A000712. - Geoffrey Critzer, Apr 19 2012.
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(3*n)/Pi * A000712(n).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*Pi*3^(1/4)*n^(3/4)).
(End)
G.f.: exp(Sum_{k>=1} (2*sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<2, 3, 2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
nn=20; g=Product[1/(1-x^i), {i, 1, nn}]; c=1/(1-x); CoefficientList[Series[g^2/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Apr 19 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(1/((1-x)*eta(x)^2)) \\ Joerg Arndt, May 01 2013
(Python)
from functools import lru_cache
from sympy import divisor_sigma
@lru_cache(maxsize=None)
def A000713(n): return sum(A000713(k)*((divisor_sigma(n-k)<<1)+1) for k in range(n))//n if n else 1 # Chai Wah Wu, Sep 25 2023
CROSSREFS
Row sums of triangle A093010.
Cf. A146023. - Gary W. Adamson, Oct 26 2008
Sequence in context: A136376 A099845 A036635 * A261325 A261446 A328539
KEYWORD
nonn
EXTENSIONS
Extended with formula from Christian G. Bower, Apr 15 1998
Definition changed by N. J. A. Sloane, Aug 15 2006
STATUS
approved