OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..45
Oswin Aichholzer, Florian Lehner, and Christian Lindorfer, Folding polyominoes into cubes, arXiv:2402.14965 [cs.CG], 2024. See p. 9.
T. Asano, E. D. Demaine, M. L. Demaine and R. Uehara, NP-completeness of generalized Kaboozle, J. Information Processing, 20 (July, 2012), 713-718.
CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
R. Dickau, Stamp Folding
R. Dickau, Stamp Folding [Cached copy, pdf format, with permission]
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
Stéphane Legendre, The 16 foldings of 4 labeled stamps
W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
David Orden, In how many ways can you fold a strip of stamps?, 2014.
A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
Frank Ruskey, Information on Stamp Foldings
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 41.
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 41. [Incomplete annotated scan of title page and pages 18-51]
J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
Eric Weisstein's World of Mathematics, Stamp Folding
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
FORMULA
a(n) = n * A000682(n). - Andrew Howroyd, Dec 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved