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Abstract

Web 2.0 applications enabled users to classify information resources using

their own vocabularies. The bottom-up nature of these user-generated clas-

si�cation systems have turned them into interesting knowledge sources, since

they provide a rich terminology generated by potentially large user commu-

nities. Previous research has shown that it is possible to elicit some emer-

gent semantics from the aggregation of individual classi�cations in these

systems. However the generation of ontologies from them is still an open

research problem. In this thesis we address the problem of how to tap into

user-generated classi�cation systems for building domain ontologies.

Our objective is to design a method to develop domain ontologies from user-

generated classi�cations systems. To do so, we rely on ontologies in the

Web of Data to formalize the semantics of the knowledge collected from the

classi�cation system. Current ontology development methodologies have

recognized the importance of reusing knowledge from existing resources.

Thus, our work is framed within the NeOn methodology scenario for building

ontologies by reusing and reengineering non-ontological resources. The main

contributions of this work are:

� An integrated method to develop ontologies from user-generated clas-

si�cation systems. With this method we extract a domain terminology

from the classi�cation system and then we formalize the semantics of

this terminology by reusing ontologies in the Web of Data.

� Identi�cation and adaptation of existing techniques for implementing

the activities in the method so that they can ful�ll the requirements of

each activity.

� A novel study about emerging semantics in user-generated lists.
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Resumen

La web 2.0 permitió a los usuarios clasi�car recursos de información us-

ando su propio vocabulario. Estos sistemas de clasi�cación generados por

usuarios son recursos interesantes para la extracción de conocimiento de-

bido principalmente a que proveen una extensa terminología generada por

grandes comunidades de usuarios. Se ha demostrado en investigaciones pre-

vias que es posible obtener una semántica emergente de estos sistemas. Sin

embargo la generación de ontologías a partir de ellos es todavía un problema

de investigación abierto. Esta tesis trata el problema de cómo aprovechar

los sistemas de clasi�cación generados por usuarios en la construcción de

ontologías de dominio.

Así el objetivo de la tesis es diseñar un método para desarrollar ontologías

de dominio a partir de sistemas de clasi�cación generados por usuarios. El

método propuesto reutiliza conceptualizaciones existentes en ontologías pub-

licadas en la Web de Datos para formalizar la semántica del conocimiento

que se extrae del sistema de clasi�cación. Por tanto, este trabajo está en-

marcado dentro del escenario para desarrollar ontologías mediante la reuti-

lización y reingeniería de recursos no ontológicos que se ha de�nido en la

Metodología NeOn. Las principales contribuciones de este trabajo son:

� Un método integrado para desarrollar una ontología de dominio a partir

de sistemas de clasi�cación generados por usuarios. En este método

se extrae una terminología de dominio del sistema de clasi�cación y

posteriormente se formaliza su semántica reutilizando ontologías en la

Web de Datos.

� La identi�cación y adaptación de un conjunto de técnicas para im-

plementar las actividades propuestas en el método de tal manera que

puedan cumplir automáticamente los requerimientos de cada actividad.

� Un novedoso estudio acerca de la semántica emergente en las listas

generadas por usuarios en la Web.
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CHAPTER 1

INTRODUCTION

In recent years we have witnessed the transition from a Web where the content is

generated mainly by the owners of websites to a more open and social Web where

users are not only information consumers but also producers �prosumers (Tapscott and

Williams, 2006). This new age of the Web, also known as Web 2.01, has brought a

diversity of new social applications like wikis, blogs, social networks, social bookmarks,

and photo, music and video sharing sites. These applications made it possible for Web

users to contribute and share huge amounts of information.

Nevertheless the wealth of user-generated content poses some challenges and oppor-

tunities to improve the management and retrieval of this information. Web 2.0 appli-

cations have used di�erent strategies to overcome this information overload problem,

including the use of tags to annotate information resources, and the use of user-generated

lists or collections to organize them. The innovation of these solutions was the user em-

powerment to organize their information according to their own vocabulary, as opposed

to previous approaches where information was represented by keywords extracted from

the resources (i.e., bag of words model in traditional information retrieval approaches),

or by metadata (i.e., keywords or taxonomy categories) generated by groups of experts.

Tags serve multiple purposes in tagging systems, such as content organization, de-

scription, sharing and searching. In 2003, Delicious2 was released as a social bookmark-

ing tool where users were able to assign tags to URLs in a collaborative manner. One

1http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
2http://delicious.com/
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year later, Flickr1 was presented as a social network for photo sharing where users could

assign tags to their own photos or to other photos from their colleagues. Nowadays,

tagging is part of many popular applications such as Amazon, YouTube and Last.Fm,

to name a few, where users can assign tags to products, videos and songs respectively.

The success of tagging is attributed to two main factors (Hotho et al., 2006): (a) they

are very easy to create so that users do not need any special skills or experience to tag,

and (b) the bene�ts of tagging are immediate. In 2004, Vander Wal2 coined the term

folksonomy to describe the new structure of users, tags and objects. Folksonomy is

de�ned as the result of personal free tagging of information and objects (anything with

a URL) for one's own retrieval. The tagging is done in a social environment (usually

shared and open to others).

More recently, Web 2.0 applications have started allowing users to classify infor-

mation in lists. We call these lists named lists since users assign names to them so

that they can be identi�ed and shared with other users. For instance, Twitter3, the

microblogging platform, included a list feature in 2009 to organize other users in the

platform. Similarly, Pinterest4, a social photo sharing site launched in 2010, allows

users to arrange photos in named lists, which are known as boards. Furthermore rep-

resentative tagging systems such as Delicious and Flickr have also their own version of

named lists. Delicious calls them stacks and encourages people to create them around a

theme. In Flickr users can create lists, referred to as groups, which are created by users

but are collaboratively maintained and updated. All these named list versions allow

sharing the listed information with other users in the platforms.

From now on we will refer to folksonomies and named lists as user-generated clas-

si�cation systems, since the classi�cation of information is carried out by individual

users instead of groups of experts. Tags and named lists can be considered as category

names under which resources are classi�ed. These classi�cation systems re�ect the in-

dividual point of view of each user to organize information. In applications based on

folksonomies or named lists other users may partially agree with the individual classi�-

cations by reusing existing tags to annotate a resource, or by subscribing to an existing

list.
1http://www.flickr.com/
2http://www.vanderwal.net/folksonomy.html
3http://www.twitter.com/
4http://pinterest.com
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1.1 User-generated classi�cation systems and knowledge

acquisition

Two characteristics have turned user-generated classi�cation systems into interesting

resources for knowledge acquisition processes: i) a large user community is clas-

sifying resources using their own vocabulary, and ii) other users of the platform can

reinforce the individual classi�cations (i.e., reusing existing tags or named lists) which

can be interpreted as an agreement about the vocabulary used to classify resources.

Gruber (2007) claimed that it is possible to observe an emergent semantics (Staab

et al., 2002) from the aggregation of the individual annotations of shared resources in

folksonomies. In fact, research about folksonomies has shown the emergence of vocabu-

laries, which tend to stabilize over time around resources (Golder and Huberman, 2006)

and users (Marlow et al., 2006). These vocabularies are elicited from the aggregation of

the individual classi�cations of resources from which it is possible to identify the most

used category names to organize them. In addition, as a consequence of the large user

communities maintaining the folksonomies, they can be considered as a good sources

of terminology frequently updated. This contrasts with controlled vocabularies, such

as thesauri and taxonomies, which are generally created and maintained by groups of

experts. Hence, one of the advantages of these systems is their ability to rapidly adapt

to new changes in terminologies and domains. These �ndings led to research works

such as (Specia and Motta, 2007) and (Mika, 2007) to claim that it was possible to use

folksonomies in knowledge acquisition processes at large scale. In contrast, named lists

have not been studied yet as source of knowledge.

As explained before users are not enforced to use a controlled vocabulary. They can

use acronyms, spellings variations, and synonyms of a given concept as category names.

However user-generated classi�cation systems lack semantics (Angeletou et al.,

2008; Cantador et al., 2008; Tesconi et al., 2008), and thus it is not possible to identify

these relations between terms. Therefore, to leverage user-generated classi�cation sys-

tems as knowledge sources the semantics of the terms have to be speci�ed. Synonyms,

acronyms, and spelling variations of a given concept must be identi�ed so that they can

be properly represented in the knowledge base, thus avoiding duplicity of information.

Ambiguous tags have to be disambiguated so that they can be added to the knowledge

base according to their intended meaning.
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Some proposals (Begelman et al., 2006; Giannakidou et al., 2008; Jäschke et al., 2008;

Mika, 2007) tackle the lack of semantics associated with category names by clustering

them, in the hope that such grouping exposes their meaning. The clusters are created

according to a de�ned relation among category names, usually relying on a de�nition

of similarity (Cattuto et al., 2008; Markines et al., 2009). On the other hand, other

authors (Angeletou et al., 2008; Cantador et al., 2008; Tesconi et al., 2008) address this

problem by relating category names to semantic entities in ontologies. Clustering-based

approaches have the drawback that the meaning of the relations grouping the category

names is not explicitly identi�ed, what hampers the incorporation of the clusters into

a knowledge base. Ontology-based approaches depend strongly on the ontology cover-

age of the terminology in the user-generated classi�cation system. A low terminology

coverage limits the amount of knowledge which can be added to the knowledge base.

Although some of the works produce an ontology, none of them have limited the scope

of the output ontology to a given domain.

The objective of this thesis is to design a method and supporting techniques

to develop domain ontologies from user-generated classi�cation systems in

the Web. Therefore our work can be classi�ed as an ontology learning approach (Buite-

laar et al., 2005; Gómez-Pérez and Manzano-Macho, 2004; Maedche and Staab, 2001).

Ontology learning aims at the creation of ontologies from unstructured (e.g., text �les

or Web pages) or structured data (e.g., XML �les or relational databases).

Recent methodologies for developing ontologies (Suárez-Figueroa et al., 2012) have

recognized that reusing existing ontologies and external knowledge sources is important

in order to bene�t from existing conceptualizations, and to speedup the development

process which potentially may save cost. In fact, the NeOn methodology (Suárez-

Figueroa et al., 2012) de�nes scenarios to build ontologies by reusing and re-engineering

ontological and non-ontological resources. Ontologies to be reused can be found on the

web as independent ontologies, for instance by using search engines such as Watson1

or Swoogle2, or as part of a linked data set (Bizer et al., 2009a). Linked data are

data sets published in RDF and connected among them (Berners-Lee, 2006). At the

time of writing this dissertation there are 295 datasets in the Linked Open Data cloud

1Watson: http://kmi-web05.open.ac.uk/WatsonWUI/
2Swoogle: http://swoogle.umbc.edu/
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comprising 31,634,213,770 triples and 503,998,829 links1. This network of linked data

is also known as The Web of data (Bizer et al., 2009a). Among these data sets there

are general purpose ontologies such as DBpedia (Bizer et al., 2009b) and OpenCyc2 as

well as domain ontologies such as GeneOntology 3 and GeoLinkedData4.

In this thesis, we propose an integrated method to develop domain ontolo-

gies from user-generated classi�cation systems relying on existing ontologies

published on the web of data. This method taps into user-generated classi�cation

systems to obtain a vocabulary (i.e., a list of terms) relevant to the domain. Then we

identify the terms that can be considered as classes. To do so we reuse ontologies in the

web of data so that we can �gure out whether a given term leads to the identi�cation

of a class. In addition, we search in the ontologies that we are reusing for relations

among the discovered classes. Thus the output is an ontology comprising classes and

their relations within a given domain.

We have modeled our method for developing ontologies from user-generated classi-

�cation systems as a work�ow, where processes are arranged in an ordered sequence.

The method consists of two main processes: Terminology Extraction and Semantic

Elicitation. In the terminology extraction process the data are extracted from the

user-generated classi�cation system and pre-processed, so that they are cleaned and

normalized. Then this data set is traversed to select the relevant terms in the domain.

In the semantic elicitation process terms are grounded to semantic entities in a general-

purpose ontology (e.g., DBpedia ontology). By grounding we mean to associate terms

with ontology entities representing the term intended meaning. Then from these se-

mantic entities we identify which of them correspond to classes in the ontologies that

we are reusing. Next we search in these ontologies for relations among the identi�ed

classes.

We use DISPEL (Data-Intensive Systems Process Engineering Language) (Martin

and Yaikhom, 2011) to describe the work�ow. This language is suitable to describe the

method since it was designed to focus on the description and understandability of the

process rather than in the implementation. The bene�ts of using DISPEL include i) a

formal description of how the data is streamed and transformed within the work�ow,

1see Linked Open Data cloud statistics at http://www4.wiwiss.fu-berlin.de/lodcloud/state/
2see http://sw.opencyc.org/
3see http://www.geneontology.org/
4see http://geo.linkeddata.es/
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and ii) the possibility of adding semantic descriptions (i.e., semantic entities) to the

data.

To automatically carry out the processes identi�ed in the method we identify exist-

ing techniques and adapt them to carry out each process. In the case of terminology

extraction, we use spreading activation (Crestani, 1997) to collect the relevant domain

terms. For the semantic elicitation we use the vector space model (Salton and Mcgill,

1986) to ground the terms to semantic entities, and SPARQL (Prud'hommeaux and

Seaborne, 2008) queries to identify classes from the semantic entities, and to search for

relations among the identi�ed classes.

We carried out di�erent experiments to test how our method helps to achieve our

objectives. One of our main concerns was the reproducibility of these experiments.

Hence we made public the evaluated data set and used standard evaluation metrics,

whenever it was possible, such as precision and recall (Baeza-Yates and Ribeiro-Neto,

2011). For those experiments involving human evaluations we assessed their validity

using agreement measures such as the kappa statistical measure (Fleiss, 1971). In

this thesis we present experiments regarding individual activities of each of the main

processes such as the normalization and semantic grounding of category names. We also

include an experiment of the whole approach where we used data from an existing user-

generated classi�cation system to produce a domain ontology. In addition, we include a

novel experimental survey of the emergent semantics which can be elicited from named

lists, which according to our review or the state of the art had not been studied yet.

1.2 Thesis structure

In the following we present the thesis structure:

Chapter 2. State of the Art. We review the state of the art regarding the use of

folksonomies and named lists as data sources for knowledge acquisition processes.

From this survey we identi�ed the two open research problems addressed in this

thesis: i) The lack of an integrated method and a set of supporting techniques

to automatically elicit formal domain ontologies from user-generated classi�cation

systems, and ii) The lack of a survey about the emergent semantics in named lists.

In addition we present a review of the methodologies for building ontologies where

we show how our method solves problems not addressed by current methodologies.
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Chapter 3. Objectives and Contributions. We present the global and speci�c

objectives of this thesis work which were de�ned according to the open research

problems identi�ed in chapter 2. We also present the contributions to the state

of the art, the assumptions and hypotheses on which our contributions rely, and

the restrictions which de�ne the scope of the di�erent contributions. In addition

we describe the research methodology that we followed during the development

of this thesis.

Chapter 4. Method for Developing Ontologies. We describe our method to ob-

tain ontologies from user-generated classi�cation systems. To do so, we de�ne

processes, activities and tasks which have to be carried out, and the user roles

involved in their execution. We use an example to illustrate each part of the

method. The method consists of the following processes:

� Terminology extraction. We propose to extract the data from the user-

generated classi�cation systems and normalize them. Then from these data

set we propose to select a sub set of relevant domain terms.

� Semantic Elicitation. In this process we aim at identifying the semantics

of the relevant domain terms identi�ed in the previous process. To do so we

propose to reuse existing conceptualizations in knowledge bases. First we

ground the set of terms to semantic entities that represent their meaning.

Next we identify, in the knowledge base, classes from the semantic enti-

ties. Finally we search, in the knowledge base, for relations between pairs of

classes.

Chapter 5. Techniques Supporting the Method. For each of the processes pro-

posed in the method we provide techniques to achieve their goals. These are

existing techniques which have been adapted to the particularities of the informa-

tion in user-generated classi�cation systems.

� We use spreading activation (Crestani, 1997) for gathering a domain relevant

terminology from the user-generated classi�cation system.

� We turn the semantic grounding of category names into a search task. That

is, for a category name we search, among a set of candidate ontology entities,
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the entity that better represents its meaning. To carry out this search we

use the vector space model (Salton and Mcgill, 1986).

� To identify classes from the semantic entities, to which the category names

have been grounded, we pose SPARQL queries over the ontologies that we

are reusing in our process.

� Similarly to search for relations between the identi�ed classes we pose SPARQL

queries over the ontologies that we are reusing in our process.

Chapter 6. Evaluation. To test our method and supporting techniques we present

experiments with regard to the normalization and the semantic grounding of cat-

egory names. We also include an experiment covering all the processes proposed

in the method where we produce a domain ontology from a subset of a real user-

generated classi�cation systems. Finally, in this section we include a novel survey

about the emerging semantics in named lists.

Chapter 7. Conclusions and future work. We �nalize this thesis presenting the

conclusions of our research. We include potential bene�ts of using ontologies in

the user-generated classi�cation systems from which they were obtained. We also

present the future work.

Annex A. Ontology for describing the method data. In this annex we present

the ontology de�ning the semantics of the data structures used in the de�nition

of each one of the method components. In chapter 6 each method component is

described in terms of their input and output data using DISPEL. This language

allows enriching the data de�nitions with semantic information provided by an

ontology.

1.3 Dissemination of results

The contributions produced within the framework of this thesis have been published in

international peer-reviewed journals, conferences and workshops. Some contributions

are still in reviewing process so they are marked accordingly. In the following we list

the contributions along with the publications which support them.
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� A survey of the state of the art regarding the use of folksonomies as source for

knowledge acquisition processes.

García-Silva, A., Corcho, Óscar, Alani, H. and Gómez-Pérez, A. (2012) Review

of the state of the art: Discovering and Associating Semantics to Tags

in Folksonomies. The Knowledge Engineering Review, 27 (01). pp. 57-85.

ISSN 0269-8889.

García Castro, Raul and García-Silva, A. (2009) Content Annotation in the

Future Web. The European Journal for the Informatics Professional, X (1). 27

- 32. ISSN 1684-5285

García-Castro, R. and García-Silva, A. (2009) Anotación de contenidos en la

Web del futuro. Novática (197). pp. 28-32. ISSN 0211-2124

� A process for the semantic grounding of tags in Folksonomies. The semantic

grounding is carried out by associating tags with semantic entities in ontologies.

García-Silva, A., Cantador, Iván, and Corcho, Óscar (2012) Enabling Folk-

sonomies for Knowledge Extraction: A Semantic Grounding Approach.

International Journal on Semantic Web and Information Systems, Special Issue

on Web-Scale Knowledge Extraction, 8 (3).

García-Silva, A., Szomszor, M., Alani, H. and Corcho, Óscar (2009) Prelimi-

nary Results in Tag Disambiguation using DBpedia. In: First Interna-

tional Workshop Collective Knowledge Capturing and Representation CKCaR09,

September 2009, Redondo Beach, California, USA.

García-Silva, A., Corcho, Óscar and Gracia, J. (2010) Associating Semantics

to Multilingual Tags in Folksonomies (Poster). In: 17th International

Conference on Knowledge Engineering and Knowledge Management, EKAW2010,

11/10/2010 - 15/10/2010, Lisboa, Portugal.

� A process for the automatic generation of domain ontologies from folksonomies.

In revision: García-Silva, A., García-Castro, Jael, García, A. and Corcho, Ós-

car and Gómez-Pérez, Asunción (2011) Folksonomies and Linked Data for

Ontology Development: A Case Study in the Financial Domain. IEEE

Internet Computing.

9



� A survey about the semantics which can be obtained from user-generated lists.

García-Silva, A., Kang, Jeon-Hyung, Lerman, Kristina, and Corcho, Óscar (2012)

Characterising Emergent Semantics in Twitter Lists. In: 9th Extended

Semantic Web Conference, ESWC12, 27/05/2012-31/05/2012, Heraklion, Crete,

Greece.

In addition, in the exploratory research stage of this thesis work, while de�ning the

main research problem, we experimented with the possible uses of some of the techniques

developed for the semantic grounding. Though the publications of these experiments

are not strictly related with the contributions of this thesis, we consider them highly

related to the thesis subject since they exploit some of the thesis �ndings in other related

contexts.

� We used the disambiguation algorithm proposed in the semantic grounding process

for the automatic annotation of natural language text.

Mendes, P., Jakob, M., García-Silva, A. and Bizer, C. (2011) DBpedia Spot-

light: Shedding Light on the Web of Documents. In: 7th International

Conference on Semantic Systems, 7-9 September 2011, Graz, Austria.

Muñoz-García, O., García-Silva, A., Corcho, Óscar, de la Higuera Hernández,

M. and Navarro, C. (2011) Identifying Topics in Social Media Posts using

DBpedia. In: Networked and Electronic Media Summit (NEM summit 2011),

27-29 September 2011, Torino, Italy.

� We adapt the semantic grounding for an approach to enrich ontologies with tagged

multimedia information.

García-Silva, A., Jakob, M., Mendes, PN. and Bizer, C. (2011)Multipedia: En-

riching DBpedia with Multimedia Information. In: The Sixth International

Conference on Knowledge Capture, K-CAP 2011, 25/06/2011-29/06/2011, Ban�,

Alberta, Canada.

1.4 Collaborations

Within the framework of this thesis the Ph.D student visited di�erent research groups

that were working in a highly related subject to that of his thesis. The goals of these
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visits were to explore new research opportunities by identifying intersection points be-

tween his work and the host group work, and to �nd new use cases where to apply the

contributions produced in the thesis. In the following we list these research visits and

mention the papers that were produced during each visit. Please note that the details of

each paper were already provided in the previous section (1.3 Dissemination of Results)

and thus we only include the paper title.

� University of Southampton (The United Kingdom), School of Electronic and

Computer Science, Intelligence, Agents and Multimedia group. Year 2009. Length:

3 months. Host Researcher: Dr. Harith Alani. The outcome of this visit were

two papers:

� Review of the state of the art: Discovering and Associating Se-

mantics to Tags in Folksonomies.

� Preliminary Results in Tag Disambiguation using DBpedia.

� Free University of Berlin (Germany), School of Business and Economics, Web-

based Systems Group. Year 2010. Length: 6 months. Host Researcher: Prof. Dr.

Christian Bizer. The outcome of this visit were two papers:

� DBpedia Spotlight: Shedding Light on the Web of Documents.

� Multipedia: Enriching DBpedia with Multimedia Information.

� University of Southern California (The United States), Information Science

Institute, Information Integration Research Group. Year 2011. Length: 4 months.

Host Researcher: Dr. Kristina Lerman. The outcome of this visit was one paper:

� Characterising Emergent Semantics in Twitter Lists.

� Time Out (The United Kingdom), Research and Personalisation. Year 2012.

Length: 2 months. Host Researcher: Dr. Daniele Turi. At the time of writing

this thesis we are writing a paper about the use of topics to model tweets in the

entertainment domain.
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CHAPTER 2

STATE OF THE ART

With the advent of the Web 2.0, users were allowed to create content that needed to

be organized so that it could be successfully retrieved and shared with other users.

Therefore, Web applications provided functionalities that allow users to manage their

own information. Two representative functionalities to manage information in the Web

are folksonomies and the use of named lists. Though these user-generated classi�ca-

tion systems have features in common, folksonomies have been studied in depth by

researchers while named lists have been unnoticed for them so far. A possible reason

for this di�erence is that folksonomy-based systems, which appeared in 2003, gained

a lot of attention due to their success for �nding things with an strategy based on

the exploration and serendipity1. In contrast named lists re�ect traditional directories

which were thought not apt to classify the large amount of content in the Web, mainly

because of the limitations imposed by a small group of maintainers. According to this

distinction in the amount of research e�orts received by folksonomies and named lists

we have decided to split this state of the art chapter in two sections: i) a brief section

to describe named lists in the current web (see section 2.2) and ii) a section where we

review the research about folksonomies as source of knowledge (see section 2.3). We

�nalize each section by identifying the open research problems regarding the use of these

user-generated classi�cation systems in the ontology development process.

Our focus in this thesis is to leverage the emergent semantics from user-generated

classi�cation systems for building ontologies. Thus, in section 2.1, we discuss the mean-

1see http://vanderwal.net/folksonomy.html
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ing of the concept of emergent semantics in our context. We also included, in section 2.4,

a review of the main methodologies for building ontologies where we show that none

of them provide methods and techniques for building ontologies from user-generated

classi�cation systems.

2.1 Emergent semantics

In a general context emergence is de�ned as the arising of novel and coherent struc-

tures, patterns and properties during the process of self-organization in complex systems

(Goldstein, 1999). Emergence phenomena can appear in distinct types of systems in-

cluding physical systems or computer simulations. This concept is interesting in sciences

since it allows explaining complex systems from the con�guration of the components in

contrast to use explanations based on the parts alone.

In computer science the term emergent computing refers to highly complex processes

arising from the cooperation of many simple processes (Ruskin andWalshe, 2006), rather

than from a designer's elaborate plan (Staab et al., 2002). These complex processes are

characterized by systematic properties which are those that the system has but none of

its parts have (Brunner, 2002).

In the context of arti�cial intelligence and the semantic web emergent semantics has

been referred as to let semantics emerge out of the interaction of human and software

agents (Staab et al., 2002). The concept has been also discussed within the context

of semantic interoperability which is the problem of how to provide transparent access

to heterogeneous information sources (Aberer et al., 2004). The bene�ts of emergent

semantics have been recognized by the Semantic Web community since this observable

semantics can be useful to ameliorate the knowledge acquisition bottleneck (Staab et al.,

2002).

Folksonomies are an example of a system from which it is possible to observe an

emergent semantics (Gruber, 2007). Individual annotations are important for the user

itself though the aggregation of these annotations turn them in a useful data source

in general. Golder and Huberman (2006) and Marlow et al. (2006) showed that it

is possible to identify an emergent vocabulary around resources and around users in

folksonomies. These �ndings led to a large number of research works to focus on the

problems of: i) how to obtain the emergent semantics from folksonomies, and ii) how to
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develop ontologies out of that emergent semantics. In section 2.3 we present the most

important research works addressing these problems. In this thesis we demonstrate that

lists created by users in the Web are also a source of emergent semantics. In section 2.2

we present the evolution of lists in the Web from traditional web directories to the lists

created by users.

2.2 Named lists

Named lists in the Web can be traced back to early 90s when the World Wide Web

was created. Yahoo! �rst product, launched in 1994, was a human-edited directory1

where web sites where organized in a hierarchy of categories and subcategories. A more

sophisticated example is the Open Directory project 2 which was launched in 1998. The

Open Directory is a multilingual web directory which manages more than 80 languages.

The hierarchy of categories and web sites is maintained by a global community of vol-

unteer editors. As of April 2012 the Open Directory has around 5,018,891 sites, 95,016

editors, and over 1,010,596 categories. Naturally the large taxonomies agreed by edi-

tors in the Yahoo directory and the Open directory have been recognized as lightweight

ontologies which can be leveraged in distinct applications such as the de�nition of user

pro�les (Liu and Maes, 2004; Sieg et al., 2010) and ontology learning methods and tools

(Kavalec and Svátek, 2002; Labrou and Finin, 1999; Varma, 2002).

2.2.1 Named lists in the Web 2.0

More recently, Web 2.0 applications have started allowing users to classify information

in lists. For instance, Twitter3 included a list feature in 2009 as an answer for those users

requesting better ways of organizing information in the platform4. Any user can create

a list to organize other users so that he can see all the messages of the listed people

at once. Other users can subscribe to public lists. Similarly to Twitter, Pinterest5, a

social photo sharing site launched in 2010, allows users to arrange photos in named lists

1see http://dir.yahoo.com/
2see http://www.dmoz.org
3see http://www.twitter.com/
4as reported in Twitter blog: http://blog.twitter.com/2009/09/soon-to-launch-lists.html
5see http://pinterest.com
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which are known as boards. In this social site other users can follow public boards so

that they receive updates of new content in those boards.

Representative tagging systems such as Delicious and Flickr have also their own

version of named lists. Delicious calls them stacks and encourages people to create

them around a theme. Other users can follow public stacks so that they can see the

listed information and receives updates. On the other hand, in Flickr users can create

lists which are referred as groups, sets and collections to arrange their pictures. Groups

are created by a user but are collaboratively maintained and updated. Users can join

groups so they can see and receive updates of the information of the group. Sets and

collections are also created by users but they are used to share information out of the

platform.

2.2.2 Emergent semantics in Twitter lists

In this section we aim at illustrating that it is possible to identify an emergent semantics

from named lists in Twitter. As it was mentioned before users in Twitter are allowed

to classify other users into lists. The creator of the list is known as the curator. List

names are freely chosen by the curator and consist of keywords. Users other than the

curator can then subscribe to receive tweets from the listed users.

We can analyze term co-occurrence patterns in these lists to identify semantic rela-

tions between all these elements. Co-occurrence may happen due to the simultaneous

use of keywords in: i) di�erent lists created by the same curator, ii) in lists followed by

the same subscriber, or iii) in lists under which the same user is listed. Figure 2.1 depicts

an example of lists and user roles. We can identify two candidate relations according

to the simultaneous use of keywords by curators: Semantic Web and Open Data, and

SemWeb and Social Web. Subscribers use of lists has set up a relation between Open

Data and Social Web. In addition, taking into account users listed under di�erent lists

we can see that Semantic Web and Social Web, and Semantic Web and SemWeb are

related. In this case the latter relation is reinforced since two users are listed under

both lists.

Another example is presented in table 2.1 where we summarize the lists under which

an active and well known researcher in the Semantic Web �eld has been listed. The

�rst column presents the most frequent keywords used by curators of these lists, while

the second column shows keywords according to the number of subscribers. We can see
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Figure 2.1: Diagram showing di�erent user roles in twitter lists. Boxes indicate list

names.

that semantic_web and semweb are frequently used to classify this user, which suggests

a strong relationship between both keywords. In fact, these keywords can be considered

as synonyms since they refer to same concept. Though less frequent, other keywords

such as semantic, tech and web_science are also related to this context. The other

keywords according to the use given by subscribers (e.g., connections) are more general

and less informative for our purposes.

Table 2.1: Most frequent keywords found in list names where the user has been listed.

Curators Subscribers

semantic_web 39 semantic_web 570

semweb 22 semweb 100

semantic 7 who-my-friends-talk-to 93

tech 7 connections 82

web_science 5 rock_stars 55

2.2.3 Conclusions

In this thesis, we distinguish between collaborative or proprietary e�orts to create a

unique hierarchy, such as in the case of the Web directories, from those where the clas-

si�cation system emerges from the individual classi�cations of users, which is the case of

the lists in the Web 2.0 applications. We are interested in studying these emerging clas-

si�cation systems as potential sources of knowledge that can be leveraged for developing

ontologies. Named lists and folksonomies are similar since in both classi�cation systems

users classify resources under a category name which can be a tag or a list name. In
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spite of this similarity named lists have not been widely researched as a potential source

of emergent semantics.

Thus we can conclude that named lists constitute an interesting emerging classi�ca-

tion system where a potentially large community of users classify resources under lists

which are identi�ed by names assigned freely by users. In the review of the state of

the art we did not �nd research works aiming at tapping into these classi�cation sys-

tems with the objective of identifying the semantics that can emerge from the di�erent

connections between list names with users and resources. Therefore we can state the

following open research problem:

� Is it possible to elicit knowledge, in the form of semantically related terms and

explicit relations between them, from the classi�cation systems emerging from

named lists?

2.3 Folksonomies as source of knowledge

Our goal is to survey research works studying Folksonomies as a source of knowledge,

which can be later used to create ontologies. To do so �rst, in section 2.3.1, we identify

the weakness of folksonomies from a semantic point of view. Then we present, in section

2.3.2, a uni�ed process that we use to describe in a uniform way the approaches aiming at

eliciting knowledge from folksonomies. We also describe a simple folksonomy in section

2.3.3, which we use to exemplify the results obtained from each one of the analyzed

approaches. Please note that we did not have access to the programs implementing the

surveyed approaches, and thus the results of applying a given approach to the example

folksonomie were obtained by a dry run process1. In section 2.3.4 we present research

works surveying di�erent types of tag relatedness measures which are the foundation of

some of the approaches for acquiring knowledge from folksonomies. Next we describe

the approaches to enrich or discover the semantics in folksonomies. We present them

according to their types: statistical-based (see 2.3.5), ontology-based (see 2.3.6), and

hybrid (see 2.3.7). We also present a summary of the review in section 2.3.8. Finally,

we present our conclusions.

1Dry run testing: http://en.wikipedia.org/wiki/Dry_run_%28testing%29
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2.3.1 Weakness from the semantics point of view

We start by de�ning the two problems, from the semantic point of view, that a�ect

current tagging technology. First problem is that folksonomies lack a uniform rep-

resentation to facilitate their sharing and reuse. Some Web 2.0 applications

provide APIs to export their folksonomies. However, they do it in proprietary formats.

To overcome this problem, ontologies have been proposed to model the tagging activ-

ities in folksonomies, with semantic concepts to represent users, tags, resources, etc.

(Echarte et al., 2007; Gruber, 2007; Kim et al., 2008a; Knerr, 2006; Newman, 2005;

Passant and Laublet, 2008; Scerri et al., 2007). One example of these ontologies is the

SCOT ontology (Kim et al., 2008a), which is depicted in Figure 2.2. This ontology mod-

els tagging information, and includes concepts such as User, Item, Tag and Tag Cloud

as well as the relationships among these concepts. SCOT reuses existing vocabularies

such as FOAF1 and SIOC2, being the former a set of classes and properties describ-

ing people and their interests, and the latter a popular ontology for interlinking online

communities (Breslin et al., 2006). Some surveys in this respect have been published

such as Kim et al. (2008b) where authors review most of the current ontologies for

folksonomy information representation. Note that this lack of uniform representation

problem as well as the proposed solutions are more related to data interchange than

to the knowledge that can be extracted from folksonomies, and hence we consider this

issue as out of the scope of our survey.

The second and more relevant problem is the lack of formal and explicit seman-

tic of tags, which hampers the reuse of the knowledge hidden in folksonomies.

This problem has been widely reported in Angeletou et al. (2008); Golder and Huber-

man (2006); Lee and Yong (2007); Szomszor et al. (2008). Users can use di�erent

morphological variations of a tag to represent the same label such as plurals, acronyms,

conjugated verbs or misspelling words (e.g., di�erent users can annotate a picture of a

celebration with tags such as party, parties, partying, partyign). Furthermore, a user

can use a tag to annotate a resource while another user can use a synonym of that

tag to annotate another resource (e.g., synonyms as party and celebration). Moreover,

some tags can be polysemous, where the same word has more than one meaning, such

as party as a celebration as opposed to party as a political organization. Most current

1http://www.foaf-project.org/
2http://sioc-project.org/
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Figure 2.2: Graphical representation of the SCOT ontology (Kim et al., 2008a)

tagging applications do not allow users to de�ne the intended meaning for their tags.

For example, while Flickr tackles the ambiguity problem by providing clusters of related

tags, the meaning of these tags, the meaning of their relationships, and the meaning of

the cluster itself are not de�ned. Finally, di�erent levels of granularity may be found

in tags provided by users: some users issue more generic tags while others issue more

speci�c tags. Such di�erence in granularity could be related to the level of user interest,

or depth of expertise in the subject (e.g., a general tag as party in contrast to a speci�c

tag as banquet).

Thus, if we want to use folksonomies for the creation of ontologies we have to tackle

the lack of semantics so that tags and relations among them can be used to derive con-

cepts, data and object properties, and instances in an ontology. For ambiguous tags, the

proper intended meaning must be identi�ed so that they can be used unambiguously

as ontology components. Similarly, di�erent synonyms and morphological variations of

a same entity have to be related to a unique concept or to several concepts which are

stated as equals in the ontology. Finally, tags representing di�erent level of speci�city of

the same concept have to be identi�ed as di�erent concepts which are related by a hier-
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archical relation such as subClassOf or thesauri-oriented relations such as broaderTerm

and narrowerTerm.

In the rest of this section we describe the most relevant approaches described in the

literature whose main objective is either to extract ontologies from tags in folksonomies

or to associate tags to external semantic entities in order to make explicit the meaning

of those tags. We identify three groups of approaches according to if they are based

on 1) statistical techniques, 2) ontologies, or 3) on a hybrid approach mixing

statistical techniques and ontologies. In general, the goal of statistical approaches is to

organize tags in a hierarchy or to group related tags in the hope that such grouping

will indirectly expose a meaning for their tags. Hence these approaches do not formally

de�ne the meaning of tags or their relations. Statistical approaches relies on a notion of

tag relatedness, and thus we have include a sub-section where we review the di�erent

surveys about measures of relatedness between tags. Ontology-based approaches aim

at stating the meaning of the tags and their relations by means of associating semantic

entities to tags. Hybrid approaches objective can be either 1) to group tags using

semantic information, or 2) to associate semantic entities to tags using as context groups

of tags.

2.3.2 A uni�ed process for the association of semantics to tags

In this section we propose a uni�ed process that can be used to understand, evaluate and

categorize the di�erent approaches for the association of semantics to tags. This process

consists of a set of common activities identi�ed in most of the analyzed proposals. The

objective is to provide a uniform way to describe the di�erent proposals and therefore

to facilitate their assessment.

We designed this uni�ed process following a bottom-up approach. First, we ana-

lyzed each approach individually, identifying the activities carried out and main objec-

tives. Then, we highlighted the commonalities between the activities among di�erent

approaches and the result was a set of activities that most of the analyzed approaches

carry out with di�erent degrees of detail. The activities are presented in a logical se-

quence, which does not necessarily hold for all the approach. The general process is

depicted in Figure 2.3.

Most of the approaches start with de�ning their data sources, and some of them

explicitly describe how they gather information from these data sources. For instance,
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Figure 2.3: Process for associating semantics to tags (García-Silva et al., 2012)

some research teams designed and developed specialized programs to crawl folksonomies

when APIs are not available, or available but with limited coverage and capabilities.

For this thesis, the details of how to get the data are not so important. What is relevant

are the �lters they implement to select and clean the data if they exist. Thus, the �rst

activity identi�ed in our uni�ed process is called data selection and cleaning. This

activity may include �lters that take into account tag use frequency, lexical character-

istics like tag length or allowed characters, morphological characteristics, or even the

idiom of the tags. With regard to tag frequency, this can be measured based on the

number of times the tag has been used to annotate a resource, or the number of times

the tag was used by di�erent users.

Once we have the data set we want to work with, the next activity is context iden-

ti�cation of the tagging activity. In linguistics analysis the context includes features

such as part-of-speech labels, collocation information, and surrounding words and sen-

tences (Navigli, 2009). In this thesis context is the set of concepts we take into account

to �gure out the tag meaning. This will help to identify groups of related tags or to

associate a semantic concept to formally de�ne the tag meaning. This notion of context

can be applied to the tags of a folksonomy in two ways, the �rst one uses tags that
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occur together when they are used to annotate the same resource or group of resources

(Mika, 2007), the second one uses tags that are used together by the same user or group

of users (Hamasaki et al., 2007). In addition, context can include also tag or resource

metadata information such as location coordinates and timestamps (Kennedy et al.,

2007).

As mentioned earlier, one of the main problems with folksonomies is that some tags

have more than one meaning. This ambiguity yields inaccurate and irrelevant results

when these tags are used to search and retrieve information. Therefore, a disambigua-

tion activity (Navigli, 2009) is an important step in the semantic association process.

The disambiguation activity can be carried out using external semantic resources,

such as WordNet, and all the tag context information. Some tag disambiguation ap-

proaches, such as those presented in Specia and Motta (2007); Yeung et al. (2007), use

clustering techniques in order to group tags according to the resources they annotate

or to the users who authored the tags. In either case, according to these methods, if

a tag is used to annotate di�erent resource groups or if a tag is used by di�erent user

groups, then the tag is considered to have more than one meaning. In general, this type

of analysis is more focused on identifying the existence of ambiguity, rather than on

identifying the true meaning of a tag.

Finally, the last activity is semantic identi�cation in which tag semantics is

made formal and explicit. This activity consists of creating mappings between tags

and semantic entities, or identifying relations between tags or semantic entities. The

matching process between tags and semantic entities like classes or instances is carried

out using prede�ned ontologies or ontologies retrieved at runtime by means of semantic

Web search engines. This matching process may result in several semantic entities for

a tag (Angeletou et al., 2008), hence aggregation of these entities is required in order to

identify which of them refer to the same topic and which does not. In the case that the

semantic entities refer to more than one topic, a disambiguation task might be carried

out. Furthermore, in this activity could use clustering techniques to identify groups of

synonyms, or social network measures, such as clustering coe�cient and local centrality

(Wasserman et al., 1994), to identify hierarchies of narrower terms and broader terms

similar to the relations found in a thesaurus (Mika, 2007).

In addition to the de�nition of the uni�ed process to compare the di�erent ap-

proaches analyzed in the state of the art of this thesis, we will also categorize existing
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approaches according to the main technique they use. One method for distinguishing

between these approaches is proposed by Angeletou et al. (2008), which is based on

whether they use statistical clustering techniques to implicitly describe their meaning,

or ontology-based techniques to align tags with existing semantic resources. Besides

these two categories, we introduce a hybrid category for those approaches mixing clus-

tering and ontology-based techniques. This categorization is useful since most of the

proposals based on statistical techniques do not state explicitly the meaning of the tags

or the relationships between them, while the ontology-based proposals usually do. On

the other hand, hybrid approaches exploit the bene�ts of statistical and ontology-based

techniques to associate semantics to tags or to �nd groups of related tags.

2.3.3 An illustrative example

In this section we present a simple folksonomy that we will use to illustrate how each

of the approaches presented in the following section works. Let us assume that we

have the folksonomy shown in Figure 2.4, which consists of four users. User A has no

explicit relation with any other user, while user B is explicitly related to users C and

D. These relationships are symmetric, as is usually the case in most social networking

sites. Although not all tagging systems allow for social relations to be established among

users, we will include those relations in the example folksonomy due to the fact that

nowadays more and more tagging systems, such as Delicious and Flickr, are supporting

social relations.

There are �ve tags in the example folksonomy: Co�ee, Java, Language, Program

and Code, which are assumed to have been used by our users to tag three resources R1,

R2, and R3.

R2 R3

B C D

R1

A

coffee java language program code

Figure 2.4: Graphical representation of the folksonomy example
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The tagging carried out by these users is presented in table 2.2. User A tagged R1

with Co�ee and Java. User B tagged R1 with Java, and R2 with Java and Language.

User C tagged R2 with Language and Program. Finally user D tagged R2 with Language

and Program, and also tagged R3 with Program and Code.

Table 2.2: Tagging details of the Folksonomy example

Resources R1 R2 R3

Users/Tags Co�ee Java Java Language Program Program Code

A X X

B X X X

C X X

D X X X X

In the following sections we will described the results that can be obtained for this

simple example from each of the approaches presented next, so that the similarities and

di�erences between them can be better understood.

2.3.4 Approaches based on tag relatedness measures

Most of the early research about extracting semantic information from folksonomies was

based on the de�nition of ad-hoc tag relatedness measures. For instance Mika (2007)

de�nes that two tags are related if they have been used two annotate a similar set of

resources or if they have been used by a similar set of users. These measures were used

in the elicitation of ontologies and validated accordingly. Nevertheless other authors

(e.g., Cattuto et al. (2008) and Markines et al. (2009)) soon recognized that these ad-

hoc measures were just some of the many ways of measuring relatedness and therefore

they stated that there was a lack of surveys regarding tag relatedness measures and

the semantics that these relations convey. Thus they propose di�erent tag relatedness

measures and evaluate them systematically in terms of the semantics that can be elicited

with these measures. In this context, the relatedness measures were de�ned according

to two dimensions. The �rst dimension corresponds to how tags are represented (e.g., as

plain labels or using vector space model), and the second one is how tags are compared

so that they can be classi�ed into related or not related (e.g. using jackard's coe�cient

(Jaccard, 1901)). In this section we describe research works presenting surveys about
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tag relatedness measures. These works are the foundation over which statistical-based

approaches to discover the emergent semantics from folksonomies are designed.

2.3.4.1 Cattuto et al.'s approach

Cattuto et al. (2008) de�ne �ve relatedness measures between two tags: co-occurrence,

tag context, resource context, user context, and FolkRank. Co-occurrence between

two tags measures the number of posts containing them. Thus two tag are considered

related is the post number in which they co-occur is maximal. Tag context measure

is calculated in the vector space <T , where T is the set of tags. For a tag ti each vector

entry v is the number of posts containing both ti and the corresponding entry tag t in

the vector. Resource context measure is calculated in the vector space <R where R

is the set of annotated resources. For a tag ti each vector entry v is the number of times

that the corresponding resource is tagged with ti. User context measure is calculated

in the vector space <U where U is the set users. For a tag ti each vector entry v is

the number of times that the corresponding user use the tag ti. In case of tag context,

resource context, user context relatedness between two tags is de�ned by means of the

cosine measure. Finally, FolkRank, which is based on the PageRank (Brin and Page,

1998) algorithm, produces a ranked list of relevant tags for a given tag.

Authors of this work conclude that tag context and resource context measures iden-

tify more synonyms and spelling variants. They also conclude that FolRank measure

yields more general tags.

2.3.4.2 Markines et al.'s approach

Markines et al. (2009) de�ne di�erent types of tag representation: projection, distri-

butional, macro-aggregation and collaborative. In projection tagging triples <u,t,r>

are transformed into tuples <t,r> thus getting rid of the user dimension. In distribu-

tional tagging triples are turn into <t,r,n>, where n is the number of users that have

annotated r with t. Inmacro aggregation per each user u the tagging triples are turn

into <t,r,m>, where m is 1 if the user u has annotated r with t and 0 otherwise. User

triples are used to calculate a user-based similarity σ between two tags. Thus the �nal

similarity is calculated by summing the individual user similarities. This guarantee that

every user contributes in the same way to the �nal aggregation. Finally collaborative

is similar to macro-aggregation though in this case user resources are required to have
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at least one annotation in common. This is achieved by adding an arti�cial tag to all

the user resources. In this case the user-based similarity σ yields positive values for all

pair of user tags.

For each type of tag representation authors de�ne the following similarity measures:

Matching, Overlap, Jackard, Dice, Cosine and Mutual information. In the projection

case matching similarity is de�ned as the number of resources annotated with both tags.

Overlap similarity is the fraction of resources annotated with both tags with respect

to the minimum number of resources annotated with each tag. Jaccard coe�cient is

the number of resources annotated with both tags divided by the sum of the number

of resources annotated with each tag. Dice coe�cients is similar to the Jaccard

coe�cient but has some di�erent properties. Cosine similarity is measured between

the two vectors in <R representing the two tags. Finally, the mutual information

is calculated according to its de�nition used in information theory (Shannon, 1948).

Authors also provide the de�nition of each of these measures for the distributional,

macro-aggregation and collaborative representations.

Authors of this work conclude that mutual information is the measure that best

extracts semantics similarity information. They also stated that macro-aggregation

produce less semantic relations than the distributional representation. Though not as

good as the aforementioned, collaborative representation is able to extract an important

amount of semantic relationships.

2.3.4.3 Körner et al.'s approach

Körner et al. (2010) evaluates how a tag similarity measure known as tag context behaves

when it is measured on subsets of folksonomies de�ned by users that are identi�ed as

categorizers and describers. Tag context similarity is de�ned in the same way than in

(Cattuto et al., 2008). That is, each tag is represented by a vector in <T , and similarity

between two tags is calculated by measuring the cosine of the corresponding vectors. On

the other hand, to di�erentiate between categorizers and describers they propose a set

of measures based, for instance, on the number of tags of each user, or on the number of

user tags divided by the number of resources annotated by the user, or on the average

number of tags per posts. Users are sorted according to the values of these measures

so that describers are in one extreme of the list and categorizers in the other. Then

di�erent subsets of the folksonomy are created by selecting the annotations of subsets
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of describers and of categorizers. These describers and categorizers subsets are de�ned

according to the percentage of folksonomy users desired in each category. Finally the

tag context measure is calculated per pair of tags in each of the sub-folksonomies.

Authors found that describers, with the exception of some spammers, generates

subsets of folksonomies for which is possible to identify more semantically related tags

according to the de�nition of the tag context similarity measure.

2.3.4.4 Benz et al.'s approach

In (Benz et al., 2011) authors focus on a especial case of relatedness which is de�ned

by hierarchical relations between two concepts. Examples of these relations are sub-

sumption relations, and broader or narrower term. To do so, they de�ne di�erent tag

generality measures (or abstracness measures): frequency-based, entropy-based, central-

ity, and statistical sumbsuption. Frequency-based is a ranking function where tags

are ordered according to the number of posts where they have been used. Entropy-

based assumes that more abstract terms have a higher entropy since they are probably

used at a relatively constant level to annotate a broad range of resources. Centrality

assumes that more central tags in the folksonomy graph are more general tags. In this

work centrality is measured in three ways: degree, betweeness, and closeness. In general

for a given node n in a graph, degree is the number of direct nodes connected to n,

betweeness is the fraction of shortest paths between each pair of nodes in the graph

passing trough n, and closeness is de�ned as the inverse of the farness which in turn

is de�ned as the sum of its distance (shortest path) to all other nodes. These centrality

measures are applied on two di�erent graphs. The �rst graph connects two tags if they

have been concurrently used by an user in a post. The second graph connects two tags

if they are related according to the resource-context measured de�ned in (Cattuto et al.,

2008). Finally statistical subsumption assumes that a tag t subsumes another tag t′

if p(t|t′) > ε and p(t′|t) < ε.

Authors conclude that measures based on frequency and entropy are correlated

with results extracted from gold-standard taxonomies. They also note that centrality

measures on the graph created from tag co-occurrence and the subsumption probabilistic

model yield an important amount of results correlated with the gold standard taxonomy.

Finally, they mention that even the measure based on the tag frequency produces a

considerable correlation to the gold standard taxonomies.
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2.3.5 Statistical-based approaches

Several approaches exist, whose goal is to identify the semantics of tags, that propose to

cluster tags according to some relations among them (Begelman et al., 2006; Hamasaki

et al., 2007; Jäschke et al., 2008; Kennedy et al., 2007; Mika, 2007). Some other works

attempt to organize the tags in a hierarchy (Benz et al., 2010; Heymann and Garcia-

Molina, 2006). In both cases thees approaches relies on tag relatedness measures (see

section 2.3.4). Approaches discovering tag clusters use tag relatedness measures so that

related or similar tags are grouped together. On the other hand approaches generating

hierarchies distinguish between general and speci�c tags to create the hierarchies. In

this section we present research works that exploit tag relatedness measures to �nd

groups of tags as those depicted in Figure 2.5 or to generate tag hierarchies.

Figure 2.5: Tag clustering based on tag co-occurrence when annotating resources (Mika,

2007)
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2.3.5.1 Mika's approach

Mika describes an approach to generate two lightweight ontologies from folksonomies us-

ing statistical techniques (Mika, 2007): an ontology of concepts based on the overlapping

set of user communities (Oac), and an ontology of concepts based on the overlapping

set of resources (Oci). The approach is tested with two data sources; a set of users,

terms and Web pages from the Semantic Web research community, and a folksonomy

extracted from the Delicious website. We use the latter case to describe this approach

following our uniform process detailed in Section 2.3.2.

Data Selection and Cleaning: The data selection and cleaning activity of this

approach is limited to �ltering out from the folksonomy those tags with less than ten

items classi�ed under them and those persons who have used less than �ve tags. The

Delicious dataset used to test the approach consists of 51,852 anotations of 30,790

resources by 10,198 users using 29,476 distinct tags.

Context Identi�cation: The context identi�cation activity is carried out in a dis-

tinct way for each of the resulting ontologies. In the case of the ontology Oci, context is

de�ned as the tags that co-occur with a particular tag when they are used to annotate

a resource. In the case of the ontology Oac, context is de�ned as the tags that co-occur

with a particular tag when they are used by a user or group of users.

Disambiguation: This approach does not explicitly deal with disambiguation prob-

lems.

Semantic Identi�cation: Finally, the semantic identi�cation activity is also carried

out di�erently for each of the ontologies that this approach generates. A graph of

concepts is built for Oci where the edges indicate that two concepts (tags) were used

together when annotating one or more resources. These links are weighted by the

number of resources annotated using both tags. Similarly, a graph of concepts is also

built for Oac where the edges indicate that two concepts were used together by one or

more users. These links are weighted by the number of people who have used both tags.

After this graph generation process, clustering is performed to identify speci�c words

inside each cluster and general words bridging di�erent clusters. Set theory principles

are then applied to de�ne relations between concepts as broader and narrower terms.
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The output is a hierarchy of concepts Oac based on subcommunity relationships and a

classi�cation hierarchy Oci based on resource overlap.

Using our folksonomy example from Section 2.3.3, the ontologies obtained with this

approach are presented in Figure 2.6. In Oac the Language and Code tags are related

because user D used them to tag R2 and R3 respectively, while in Oci these tags are

not related because they were not used to tag the same resource. On the other hand in

Oci tags Java and Program are related because these tags were used to tag the same

resource R2, while in Oac these tags are not related because they were not used together

by any user. Then, if we want to discover in more detail the relations between these

tags, we have to analyze the tag set using set operations. For instance, let us assume

that we are interested in discovering the relation between Java and Language in the

case of Oci. If all the resources annotated with the Java tag are included in the set

of resources annotated with the Language tag, and this last set is large enough, then

according to this approach Language is broader than Java, meaning that all resources

classi�ed under Java are also classi�ed under Language.
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Figure 2.6: Tags relations found by Mika's approach; (a) Left side: Oac tag are related if

used by same user, and (b) Right side: Oci tag are related if used to tag the same resource.

This approach allows re�ecting the ongoing behavior of folksonomies for a set of user

communities. However, there are some limitations to this approach. Tag ambiguity is

one of the main problems present in folksonomies, as described in the introduction,

and it is not clear in this approach how ambiguous tags can a�ect or be re�ected in

the generated ontologies. Furthermore, the identi�ed relations mostly represent co-

ocurrence, rather than any ontological relation such as subclass of or part of. Finally,

there is no explicit catering for misspelled tags, or for tags in morphological variations.
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2.3.5.2 Hamasaki et al.'s approach

Hamasaki and colleagues extended Mika's work with the notion of user neighborhood,

which can be described as the direct contacts of a user (Hamasaki et al., 2007). Partic-

ularly, the Oac ontology is modi�ed by taking into account tagging information of the

user neighbors in the folksonomy. The data source used by Hamasaki et al. to evaluate

this approach is a folksonomy adapted from a community support system for academic

conferences, where users can bookmark documents of interest.

Data Selection and Cleaning: No general rules for data selection and �ltering are

described for this approach. The dataset used to test the approach comprises 314 tags,

297 resources, and 75 users who have bookmarked at least one resource, and a total of

323 users in the social network.

Context Identi�cation: Context is shaped from the user tags along with the tags

used by his neighbors. Tagging information of neighbors could help to overcome any

lack of tagging information for a particular user.

Disambiguation: Unlike Mika's approach, this approach proposes an algorithm for

disambiguation. The algorithm is based on the idea that if a tag is used to annotate

di�erent resources by di�erent groups of users (neighbors), the tag may have di�erent

meanings. Otherwise, the tag has only one (or very similar) meaning. The proposed

algorithm treats each user tag as a pre-concept, and then these pre-concepts are merged

if they have the same labels and share the same users/resources or neighboring users.

Semantic Identi�cation: There is no description in this approach of what concerns

the semantic identi�cation activity. As pointed out above, each pre-concept previously

identi�ed and possibly merged with others is converted into a concept. However, the

relations between those concepts are not explicitly de�ned.

Figure 2.7 shows the O'ac ontology that is obtained when applying this approach

to our sample folksonomy. The Oci ontology remains the same as the one described in

Mika's approach. If we compare this O'ac ontology with the Oac ontology described in

Mika's approach, we can see that two new relations appear. First, the Java and Program

tags are related even though they are not used by the same user. In this case, user B

is related to user C, and following this approach, the tags from user C are considered

to be indirect tags for user B. Therefore, user B uses Java and Program tags, being
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Figure 2.7: Oac tags are related if used by the user or its social network.

the Program tag taken from user C. Secondly, the relation between Java and Code is

established from the relation between users B and D.

This approach presents some advances over Mika's approach. However, the data

source used to evaluate the approach, as described in Hamasaki et al. (2007), has some

characteristics that are not present in real folksonomies. In this data source owners of

resources assign tags to them. However, if a user, other than the resource owner, book-

marks these resources, then the tags assigned previously by the owner are considered to

have also been assigned by this user. Thus, all users who bookmark a document share,

in a mandatory way, the same vocabulary. In contrast, users in major existing folk-

sonomies assign tags freely, and the convergence of a vocabulary for a resource occurs

when several users tag the same resource using a tag recommendation strategy that in-

cludes the most popular tags used by other users to tag the same resource. We want to

note that besides recommendations based on tag popularity, other tag recommendation

strategies have been developed based on collaborative �ltering (Jäschke et al., 2008),

and association rules (Schmitz et al., 2006), among others.

The proposed disambiguation strategy is strongly in�uenced by the group of users

selected and how they tag. However, as explained above, the data source used by the

authors of this approach is biased because all users who bookmark a document are

assumed to share the same tags, and hence it is unclear whether this strategy would be

adequate for open environments. Finally, the approach does not propose any method

to semantically de�ne the meaning of tags and their relationships.
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2.3.5.3 Jäschke et al.'s approach

Jäschke and colleagues proposed a statistical approach for discovering subsets of users

who implicitly agree on common tags for a set of resources in folksonomies (Jäschke

et al., 2008). The approach is tested with three data sources; Delicious and BibSonomy1

folksonomies, and a non folksonomy application called IT baseline security manual.

Data Selection and Cleaning: The data selected for the experiments is a snapshot

of the chosen folksonomies. For instance, in the case of Delicious, authors used as

their dataset all tagging information entered into the system before June 16, 2004. This

dataset contained over 3.3K users, around 30.5K unique tags, over 220K resources, with

close to 617K links. With respect to Bibsonomy, the snapshot included all data up to

November 23, 2006, excluding any automatic insertions (such as DBLP publications)

as well as any automated default tags (such as imported). The Bibsonomy testbed

contained almost 45K tag assignments, 262 users, and over 11K resources (publications)

tagged with close to 6K distinct tags. As for the IT security manual dataset, this was

set up by a closed group of experts and not by an open folksonomy, and used by the

authors as an ontology for analyzing their approach, rather than for discovering any tag

semantics.

Context Identi�cation: Context identi�cation in this approach consisted of mining

all frequent tri-concepts over the selected information in order to obtain a set of triples,

where each triple contains a set of users, a set of tags and a set of resources. Each user

in the set of users has tagged each resource in the set of resources with all the tags in

the set of tags.

Disambiguation: Disambiguation of the tags used in these triples is not addressed

in this approach.

Semantic Identi�cation: The semantic identi�cation of tags is carried out by se-

lecting from the triples found in the previous activities those tag sets which we are

interested in. Then for each tag set a concept lattice is created. A concept lattice is a

hierarchical conceptual clustering of tags. The formal context of the concept lattice is

composed of resources tagged with at least one of the tags in the tag set by a particular

1BibSonomy is a social bookmarking and publication sharing system. http://www.bibsonomy.org/
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number of users, and of tags which were used by the majority of users in a resource. The

graphic representation of this concept lattice could then be used by ontology engineers

to manually build a concept hierarchy that corresponds to the original folksonomy.

With respect to our running example folksonomy, let us extend the tagging of users C

and D with the Java tag to annotate R2. Table 2.3 shows the shared conceptualizations

that can be found in this folksonomy. Users B,C and D agree on the use of Java and

Language as tags for R2. Users C and D agree on the use of Java, Language and Program

as tags for R2. Users A and B agree on the use of Java to tag R1. According to the

authors the sets of users, tags and resources of each shared conceptualization have the

property that none of them can be extended without shrinking one of the other two

sets. That is, if we want to expand the tag set in which users B, C and D agree to

annotate R2 with the tag Program, users B will be eliminated from the user set.

Table 2.3: Groups of users, tags and resources

Shared Conceptualizations

Users B,C,D C,D A,B

Tags Java, Language Java, Language, Program Java

Resources R2 R2 R1

As an example, from these triples we can create a concept lattice to analyze the

tags Java, Language, Program. Let us suppose that the tag Java has been used only

together with the Language tag, while the Language tag has been used independently

in other cases. Thus, in the graphical representation of the concept lattice the Language

tag will be above the Java tag, meaning that all the resources tagged with Java are

also tagged with Language, and that Language has been used in a more general sense

to annotate another group of resources. This hierarchical relation can be then analyzed

by an ontology engineer to �nd the appropriate semantic relation between Java and

Language tags.

Triples and the corresponding concept lattices that are generated by applying this

approach could provide useful information for ontology construction. However, on the

one hand, in this approach two di�erent triples can be generated including the same tag

set, but for di�erent sets of users and resources. This will be the case if some people

35



use the tag set to annotate a resource set, while some other people use the same tag

set to annotate another resource set. Nevertheless the resource sets could be related,

for instance if they are about the same topic, and thus the shared conceptualization

could be extended to cover all users and resources. On the other hand, the output of

the process is a hierarchical representation of tags, but the relationships between tags

in di�erent hierarchical levels are not de�ned semantically, and this task is left to an

ontology engineer. Finally, in this approach there is no strategy to deal with ambiguous

tags.

2.3.5.4 Limpens et al.'s approach

Limpens and colleagues proposed a statistical approach for enriching semantically folk-

sonomies (Limpens et al., 2010). They enrichment consist of suggesting spelling varia-

tions of a tag, other related tags, and more general and more speci�c tags. The approach

is tested with data extracted from a folksonomy generated within a company.

Data Selection and Cleaning: This activity is not considered in this approach.

Nevertheless, authors mention that they hand picked 88 tags from the input folksonomy

to test their approach.

Context Identi�cation: Authors de�ned two di�erent context. First context de�-

nition is called tag-context (Cattuto et al., 2008) and it is based on co-occurring tags.

They represent each tag as a vector of tags and each position in the vector has as value

the frequency of co-occurrence of the tag being represented and the tag corresponding

to that position in the vector (see section 2.3.4.1). The second context for a tag is

de�ned as the users who have used it. First context is used to identify related tags and

second one is used to identify subsumption relations as we will show in the Semantic

Identi�cation activity.

Disambiguation: This approach does not explicitly deal with ambiguous tags.

Semantic Identi�cation: Authors propose to use string similarity metrics over tags

and the folksonomy structure to detect spelling variations, related tags and hyponym

relations. They evaluated 30 di�erent string similarity metrics, and based on the results

of this study authors propose the following heuristic algorithm. They algorithm starts

by collecting related tags using the Monge-Elkan_Soundex metric. Then they use the

36



JaroWinkler similarity to see if the related tags are spelling variants. If it is not the

case, authors propose to use theMongeElkan_QGram metrict to identify hyponym rela-

tions. According to the reported results this algorithm is good when identifying spelling

variations and not that good when detecting related tags and hyponyms. Thus, authors

propose to use other existing approaches exploiting the structure of the folksonomy to

identify related tags and hyponyms. To identify related tags they use the tag-context

similarity measure (see section 2.3.4.1). To identify hyponyms they use Mika (2007)

approach, which is based on measuring the overlap of users of each tag. The intuition

is that a tag ti is more general than a tag tj if the set of users Uj using tj is included

in the set of users Ui using ti. This can be measured using: overlap(Ui, Uj) =
|Ui∩Uj |
|Ui| .

If we apply the string similarity metrics proposed in this approach to our running

example we are not going to �nd related tags since the set of tags are not similar

according to their string representations. If we apply the tag-context similarity metric

and set a minimum threshold of 0.6 we found that the tags Java and Program, and

Language and Code are related. If we apply the heuristic proposed by Mika (2007) with

a minimum threshold of 0.6 we found that Language is more general than Program since

users B, C, and D use Language while users C, and D use Program, thus the overlap of

the user sets is 0.67.

2.3.5.5 Other statistical-based approaches

Other clustering algorithms have been proposed to identify groups of related tags.

Though the main goal is to group tags according to certain characteristics, they re-

sults are rather limited with respect to the semantics of the groups, and therefore we

describe them brie�y. We present three approaches: 1) Begelman et al. (2006) cluster

tags according to tag co-occurrence when annotating resources, 2) Kennedy et al. (2007)

cluster tags based on time and location metadata, and 3) Heymann and Garcia-Molina

(2006) generates a hierarchy of tags where the branches represent topical clusters of

tags. We also presents the modi�cations proposed by Benz et al. (2010) to this last

approach.

Begelman et al. (2006)'s approach proposes to create a graph where the vertices are

tags, and edges between two tags exist if they co-occur in the annotations of one or

more resources. These edges are weighted by their co-ocurrence frequency. A technique

called Spectral bisection is used to split this graph in to clusters, and a modularity
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function is used to compare the quality of the new clusters against the previous one

to evaluate whether the new clusters are accepted or not. This technique is executed

recursively on the new clusters.

On the other hand, Kennedy et al. (2007)'s approach presents a clustering-based

technique to identify tags related to locations and events. The approach relies on the

latitude and longitude of the geotagged resources as well as on the timestamp. Each

tag has an associated spatial and temporal distribution. The spatial distribution is a

list of the geographical coordinates of the pictures annotated with that tag, and the

temporal distribution is a list of the timestamps where the picture was taken or when it

was uploaded to the system. To identify location and event tags, a clustering algorithm

was applied to the spatial distribution to �nd groups of tags sharing spacial patterns,

and on the temporal distribution to �nd tags sharing temporal patterns.

Heymann and Garcia-Molina (2006) presents a greedy algorithm to create tag hier-

archies. In this approach tags are represented using vectors, where each position repre-

sents the times the tag was used to annotate a resource. Those vectors are compared

using as similarity measure the cosine of the angle they form. With this information

a similarity graph is built, where the vertices are tags, and edges are weighted by the

similarity measure calculated previously. Next, for each tag the network centrality is

calculated in the similarity graph. Finally, the tags are ordered in a list according to

this centrality value. This list is processed, starting with the most central tag, to cre-

ate the tag hierarchy. Heymann and Garcia-Molina (2006) work has been extended in

(Benz et al., 2010). Benz et al. (2010) propose to �rst preprocess the folksonomy so that

synonyms are grouped using a tag-context similarity measure (see section 2.3.4.1). This

preprocessed folksonomy is used as the input of the algorithm to generate the hierarchy.

Authors also propose to identify ambiguous tags by applying a clustering algorithm to

each tag context. Each cluster found is a possible meaning. The context for each tag is

created with the most frequently co-occurring tags. Thus, in the main algorithm when

they are considering a tag to be included in the hierarchy they identify if the tag is

ambiguous and attempt to disambiguate it before including it in the hierarchy.

In short Begelman et al. (2006)'s output are groups of related tags, Kennedy et al.

(2007)'s output are groups of tags identi�ed as locations or events, and Heymann and

Garcia-Molina (2006)'s output is a hierarchy of tags. A drawback shared by Begelman

et al. (2006) and Heymann and Garcia-Molina (2006) works is that they do not identify
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the semantics of the clusters, the tags, nor the relations between tags. Kennedy et al.

(2007)'s approach is a step forward to the identi�cation of tag semantics using cluster-

ing techniques based on tag metadata. Nevertheless, this approach is limited to two

semantic classes (i.e., locations and events). Furthermore, relations between the tags

belonging to the same or di�erent groups is not established.

2.3.6 Ontology based approaches

The approaches presented earlier mainly focus on applying statistical techniques to

group tags or to show relatedness between them. In addition to these approaches, there

exists a number of approaches aiming at associating semantic entities to tags as a way

to formally de�ne their meaning (Angeletou et al., 2008; Cantador et al., 2008; García-

Silva et al., 2009; Maala et al., 2008; Passant, 2007; Tesconi et al., 2008). In this section,

we review these works.

2.3.6.1 Angeletou et al.' approach

Angeletou and colleagues proposed an automatic approach to enrich folksonomy tags

with formal semantics by associating them with relevant concepts de�ned in online

ontologies (Angeletou et al., 2008). The data source used to test the approach is a

Flickr data set.

Data Selection and Cleaning: The initial Flickr dataset comprised 250 resources,

and 2819 tags. As in the previous approach, during the data selection and cleaning ac-

tivity, some tags are �ltered out, including numbers, special characters and non English

tags. The main reason to eliminate these tags is that this approach relies on WordNet, a

lexical database for the English language, and usually its entries do not include numbers

or special characters.

Context Identi�cation: The �ltered tags then go through context identi�cation.

For each tag, all of its possible lexical representations, such as singular, plurals, or

various delimited types of compound tags, are generated. The context is de�ned as the

whole �ltered tag set along with their lexical representations.
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Disambiguation: Tags and their contexts are taken as input to the disambiguation

activity. In this activity, if a tag has more than one sense in WordNet, then the hierarchy

of its senses as extracted fromWordNet is used to calculate the similarity with the senses

of all tags in the tag set and thus disambiguating them. The similarity between senses

is calculated using the Wu and Palmer similarity measure (Wu and Palmer, 1994).

Unlike other approaches described so far, in this approach there is a phase of context

expansion after disambiguation. For each tag, synonyms and hypernyms are extracted

from WordNet using the sense assigned in the disambiguation phase. This information

is used later to �nd the right ontology entity that will be associated with each tag.

Semantic Identi�cation: The semantic identi�cation activity in this approach fo-

cuses on relating the expanded set of tags to ontological entities, using the Watson1

semantic search engine. For each tag, several ontological entities may be retrieved,

which are then integrated in order to group similar ontological entities. The similarity

measure used for this integration process compares the entity labels and the semantic

neighborhood information including superclasses and subclasses. Finally, tags are asso-

ciated with one or more ontological entities, comparing the ontological parents of the

merged entities with the tag hypernyms.

The whole process proposed is depicted in Figure 2.8. Table 2.4 presents the result

of applying this approach to some of the tags in our sample folksonomy. In this case,

the most probable sense of the Java tag is Java as a programming language because

most of the tags are related with this sense. Thus, the Java tag is associated with an

instance of the class Java_(programming_language). The Code tag is associated with

the ComputerCode class which is a subclass of the DigitalResource class. The Program

tag is associated with the class Program which is a subclass of the ProgrammingSoftware

Class.

Angeletou and colleagues evaluated their approach, achieving a high precision rate

of 93%, with an initial low recall rate of 24.5%, which then was raised to 49% by

estimating how many of the tags actually could be related with ontological entities

using the information provided by Watson. This evaluation was carried out using 226

photos whose tags were enriched semantically using this approach, and the associations

between tags and ontological entities were manually checked.

1http://watson.kmi.open.ac.uk/
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Figure 2.8: Semantic enrichment process (Angeletou et al., 2008)

Table 2.4: Tags and related semantic entities

Tags Semantic entity

Java http://dbpedia.org/resource/Java

typeOf http://dbpedia.org/resource/Java_(programming_language)

Code http://www.lt4el.eu/CSnCS#ComputerCode

subClassOf http://www.loa-cnr.it/ontologies/IOLite.owl#DigitalResource

Program http://www.lt4el.eu/CSnCS#Program

subClassOf http://www.lt4el.eu/CSnCS#ProgrammingSoftware
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These results are promising, since they show that these types of automatic techniques

can achieve good results. However, there are also some limitations. For instance, this

approach tries to �nd one sense for a tag. While this could be valid for a particular

tag set, there is the possibility that an ambiguous tag is used in more than one sense.

The authors also mention that some tags and their context were not found in the

WordNet hierarchy of senses, and thus the disambiguation activity failed. WordNet is

limited in terms of its terminological coverage, and hence seriously limits the scope of

this approach. Finally, the semantic identi�cation activity tries to match hypernyms

of WordNet with ontological parents. WordNet is a lexical database and its hierarchy

of hypernyms does not necessarily correspond to the hierarchy of concepts found in

ontologies.

2.3.6.2 Cantador et al.'s approach

Cantador and colleagues present an automatic approach to associate folksonomy tags

with domain ontology concepts using Wikipedia1 categories as an intermediate shared

representation between tags and ontology classes (Cantador et al., 2008). The data

source used to test the approach is a tag set extracted from Delicious and Flickr.

Data Selection and Cleaning: The initial tag set contains 28,550 tags, gathered

from Delicious and Flickr. The data selection and cleaning activity, depicted in Figure

2.9, focuses on �ltering out tags which are too small (one letter tags) or too large

(tags with more than 25 characters). Moreover, special characters are converted to

their base form (e.g., ü is converted to u), and tags with a low frequency or that are

common stop-words are removed. Then, each tag is searched in WordNet. If a tag

does not exist in WordNet, then the Google did you mean mechanism is used to correct

any possible tag misspellings, or to break up any compound tags (tags made up of

concatenated words). Otherwise, the tags are assumed to be acronyms, abbreviations

or proper names. In the latter case, those tags are searched in Wikipedia for an agreed

representation. Furthermore, morphologically similar tags are grouped in a single tag

using a singularisation algorithm and a stemming function, and the shortest term in

WordNet is used as the representative tag. Finally, tags which are non-ambiguous

synonyms are merged. The synonym information of each tag is retrieved from WordNet.
1http://en.wikipedia.org/
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Figure 2.9: Tag �ltering process (Cantador et al., 2008)

Context Identi�cation: The context identi�cation activity retrieves information

from Wikipedia for each tag, including the Wikipedia page URL, and the Wikipedia

category list for that page.

Disambiguation: The disambiguation activity is not speci�ed in this approach, al-

though Wikipedia disambiguation pages are pointed out as a possible source of infor-

mation to disambiguate tags.

Semantic Identi�cation: During semantic identi�cation each tag is given a concept

URI using the tags context information, which includes the Wikipedia page name and

the Wikipedia category previously associated with each tag. To this end, the terms in

the context, that is the terms in the category names, are compared against the domain

ontology classes, and the most appropriate ontology classes among the matching ones

are selected. Finally, an instance of each of the ontology classes is created. The URI of

those instances is the Wikipedia page name, and the categories are assigned as instance

labels.

In our sample folksonomy, all the tags are ambiguous according to WordNet and

Wikipedia. However, Wikipedia only displays a disambiguation page for the Program

tag, while for the other tags the most probable page is displayed and in this page there is

a link to the disambiguation page. Therefore, the Program tag is not processed for this

approach because of its ambiguity. The Co�ee tag is related to the Co�ee Wikipedia

page which refers to the co�ee beverage. This page has the categories: Co�ee, Arabic
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culture, Arabic loanwords and Crops. In this case, the Co�ee Wikipedia category will

be selected since it matches exactly the Co�ee tag. Therefore an instance of this class

will be created using the Wikipedia page name as its URI (as shown in Table 2.5).

However, for the other tags the Wikipedia pages displayed are not in the context of

programming languages. For instance, for the Java tag the Wikipedia page refers to

Java as the island in Indonesia.

Table 2.5: Semantic association between tags and ontology concepts

Tags Semantic entity

Co�ee http://en.wikipedia.org/wiki/Co�ee

typeOf http://mydomain.org/userPreferencesOntology/Co�ee

Java http://en.wikipedia.org/wiki/Java

typeOf http://mydomain.org/ProgrammingLangOntology/Java

Language http://en.wikipedia.org/wiki/Language

typeOf http://mydomain.org/ProgrammingLangOntology/FormalLanguage

According to the authors of this approach, the advantage of using Wikipedia as a

shared representation for tags is that Wikipedia is maintained collaboratively by a large

user community. Thus, Wikipedia incorporates new terminology faster than linguistic

resources like WordNet. However, this approach fails when the Wikipedia page is not

directly related with the intended meaning of the tag according to its context, mainly

because the approach lacks a disambiguation process.

2.3.6.3 Tesconi et al.'s approach

Tesconi and colleagues' approach is based on mapping tags to Wikipedia pages and

then associating those tags with other semantic resources (Tesconi et al., 2008). The

approach has been tested using tagging information retrieved from Delicious.

Data Selection and Cleaning: Tagpedia1 is used as a sense repository to �nd the set

of candidate Wikipedia pages related to a particular tag. Tagpedia associates terms to

Wikipedia pages by gathering information from Wikipedia disambiguation and redirec-

tion pages. Thus, morphological variations as well as synonyms are implicitly managed.

1http://www.tagpedia.org/

44

http://www.tagpedia.org/


The data set consists of the tagging information of nine Delicious users comprising 3,520

tags used to annotate 3,926 resources.

Context Identi�cation: The context of a tag consists of the user tags co-occurring

with the tag when annotating any resource tagged by the user, plus the Delicious most

popular tags for the set of resources annotated by the user.

Disambiguation: In this approach, the disambiguation activity calculates for each

relevant Wikipedia page associated to an ambiguous tag a sense-rank value and selects

the one with the highest value. The sense-rank value is calculated by taking into account

co-occurrence or popularity frequency of each tag in the context. Co-occurrence is used

when the tag in the context co-occurrs with the ambigous tag. On the other hand,

popularity is used when the tag in the context was extracted from Delicious popular

tags. In addition, the sense rank value includes the number of occurrences of each one

of the tags in the context in the analized Wikipedia pages.

Semantic Identi�cation: In the semantic identi�cation activity the selectedWikipedia

page is used to �nd the Wikipedia categories containing that page, and the correspond-

ing DBpedia resource. From DBpedia resources authors extract references to YAGO

ontology 1 classes and WordNet Synsets.

The results of applying this approach to our folksonomy example are presented

in Table 2.6. These results are then extended with YAGO concepts and WordNet

synsets. For each DBpedia resource in table 2.6 we looked for the corresponding YAGO

concept. We did not found any YAGO concept related to the dbpedia resources Co�ee,

Java_co�ee, and Programming_language. Nevertheless, we found a YAGO relation for

the dbpedia resource Java_(programming_language) stating that it has an owl#sameAs

relation with the concept yago:Java_(programming_language)

Authors of this approach produced in their evaluation of the disambiguation process

a 89,15% of correct disambiguations of distinct polysemous tags. 11,71% of the tags have

not been associated to any Wikipedia page. In addition, they evaluated the coverage

of Wikipedia categories, YAGO classes and WordNet synsets, and produced 95%, 58%

and 18% accuracy respectively. The accuracy of the disambiguation process seems very

1A semantic knowledge base created from Wikipedia information http://www.mpi-inf.mpg.de/

yago-naga/yago/
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Table 2.6: Semantic association between tags and DBpedia resources

User Tags Semantic entity Resource

A Co�ee dbpedia/resource/Coffee R1

rdf:type dbpedia/ontology/Beverage

B Java dbpedia/resource/Java_coffee R1

skos:subject dbpedia/resource/Category:Coffee

B Java dbpedia/resource/Java_(prog_lang) R2

skos:subject

dbpedia/resource/Category:Object-oriented_prog_lang

C Language dbpedia/resources/prog_lang R2

skos:subject

dbpedia/resource/Category:Computer_languages

promising. However, this approach assumes that users always use ambiguous tags with

just one meaning, which might not be true in some cases.

2.3.6.4 Passant's approach

Passant describes a collaborative approach, where users can manually perform all the

tasks in our uni�ed process. These users are assumed to be the taggers in the folksonomy,

and will share the results of associating semantics to tags. Hence unlike the approaches

above, Passant's approach aims to generate tag-semantics at tag-creation time (Passant,

2007). The data source selected by Passant for the evaluation of this approach is a

folksonomy from a corporate Web blog platform, where blog posts are annotated with

tags.

Data Selection and Cleaning: In this approach, the data selection and cleaning

activity is carried out by each user of the system who can annotate posts. Those tags

used in a post that do not have a semantic association are displayed in a di�erent color,

so that the contributing user can enrich them semantically. The author does not provide

statistics about the data set used to test de approach.

Context identi�cation, disambiguation and semantic identi�cation: These

activities are also carried out by users. The assumption is that users know the context

because they know what the post content is, and thus if the tag is ambiguous they
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are able to choose the right meaning, which is de�ned by concepts or instances of

a prede�ned domain ontology. Polysemic tags can be associated to more than one

ontology concept. In this case, users need to associate blog posts with tags, and with

the concept they represent to avoid ambiguity. Users are provided with a list of URIs

to select from, which are in turn selected from existing ontologies based on how similar

concept names are to the given tags.

For our sample folksonomy, let us suppose that a user has two blog posts R1 and R2

in the system. In R1 the user has used two tags Co�ee and Java. Then, he associates

each tag with an appropriate class in the preference domain ontology. The system

internally associates both tags with the post and their meaning in that post, that is the

ontology classes. With respect to R2, the user uses the Java tag, among others. Then,

he associates this tag with an ontology class in the programming languages domain

ontology. In this case, the system associates the Java tag, with the post and with its

meaning in this post. Therefore, the system is able to di�erentiate between the two

meanings of the Java tag, and also the system knows which meaning has been used in

which post.

Involving users in the process is a straightforward approach to get rid of ambiguity.

However, tagging proved highly successful because of its simplicity of creation. Passant's

approach has been tested in a controlled environment of a corporate blog platform, but

it has not been evaluated in an open environment. It is unclear how taggers would react

to this approach, which controls and restricts their tagging activities. This approach

will not scale very well because of its dependence on users to do most of the work

themselves.

2.3.6.5 Maala et al.'s approach

The approach of Maala and colleagues uses semantic resources to automatically convert

tags of photos into RDF semantic descriptions (Maala et al., 2008). The data source

they used in their approach consists of a set of photos and their tags from Flickr.

Data Selection and Cleaning: In this approach, photos with tags that include at

least a verb were selected. These tags are then transformed into their non in�ectional

form using a stemmer. This selection is carried out because the authors needed to
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semantically describe photos with actions, and in consequence at least a verb is needed.

Authors do not provide statistics about the data set used to test the approaches.

Context Identi�cation: Tag context is taken here to be the set of tags used to an-

notate a particular photo, and thus each photo is processed one at a time. Furthermore,

each tag is classi�ed according to one of the following categories: location, time, event,

people, camera, and activity. This classi�cation is carried out using some semantic

resources including domain ontologies that have been created from external resources

such as WordNet and existing Web sites.

Disambiguation: There are no disambiguation activities de�ned in this approach.

Semantic Identi�cation: The semantic identi�cation activity in this approach cre-

ates RDF descriptions for each photo as follows. First, location tags are ordered accord-

ing to an inclusion relation, and then RDF triples are created stating that the photo

is in the smallest location, and that this location is in a broader location, and so on.

Secondly, all 'time' tags are ordered according to an inclusion relation, and then RDF

triples are created stating that the photo is at the smallest time tag, and that this time

tag is at a broader time tag, and so on. Thirdly, for each event tag an RDF triple is

created stating that the photo event is the current event tag. Fourthly, for each camera

tag an RDF triple is created stating that the photo was shot by the current camera

tag. And �nally, for each activity tag an RDF triple is created stating that the photo

describes an activity. Furthermore, WordNet is used to �nd the arguments of the verb

related to the activity including the subject type of who performs the activity. If any

of the photo tags correspond to the subject type, then a triple is created stating that

the activity agent is that tag.

In the context of our sample folksonomy, let us suppose that we have a photo R1,

and we have tagged it with all the tags, except for the Co�ee tag. In addition, we

have annotated this picture with more tags including Madrid, Spain, January, 2009,

and John. According to this approach, the tags Madrid and Spain are identi�ed as

locations. Hence, we can assert that the photo is in Madrid, and that Madrid is in

Spain. Furthermore, the tags January and 2009 are identi�ed as time tags, and thus,

we can assert that the photo is at January, and that January is at 2009.
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On the other hand, the Program tag is the unique tag that can be considered as

a verb (although it could also be a noun). Therefore, we can assert that the photo

describes a Program. Furthermore, we extract from WordNet the sentence frames of

the Program verb: 1) somebody programs something and 2) somebody programs. From

these two sentence frames we could identify the arguments of the verb consisting of a

mandatory subject of type somebody, and of an optional object of type something. In

this case, the tag John could be identi�ed as an instance of somebody so that we can

assert that John is an agent of Program.

Although the authors of this approach show some examples of use, they do not

provide any evaluation metric about the generated RDF descriptions. In a study about

photo tags in Flickr the authors estimate that about 53 percent of photos include a tag

representing an activity, and thus, the approach leave out of the process the remaining

47 percent of photos.

In the context activity where tags are placed in some prede�ned categories, some

of these tags can be misclassi�ed because of tag ambiguity and the approach does not

provide any technique to �x this problem.

2.3.7 Hybrid approaches

So far we have described approaches aiming to group related tags using statistical

techniques and some others aiming to associate tags to ontologies. In this section we

present some approaches relying on ontologies and clustering techniques whose goal is

either to group related tags (Giannakidou et al., 2008) or to associate semantic entities

to tags (Specia and Motta, 2007).

2.3.7.1 Giannakidou et al.'s approach

Giannakidou and colleagues proposed a statistical approach for discovering the semantic

of tags by clustering tags and resources, being resources represented by their annotations

(Giannakidou et al., 2008). This approach is based on a similarity measure that mixes

tag co-occurrence with semantic similarity. The approach was tested with a set of

Flickr photos depicting cityscape, seaside, mountain, roadside, landscape, sport-scenes

and locations.
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Data Selection and Cleaning: This approach performs tag spelling normalization

where the di�erent spellings of a tag are mapped to a normalized version of that tag.

Infrequent tags are �ltered out, along with those that do not have a corresponding con-

cept in WordNet, which is the terminological resource they use for calculating semantic

similarity. The data set used to test the approach contains 3000 resources. From these

resources the 30 most frequent tags were extracted to be analyzed.

Context Identi�cation: Giannakidou and colleagues consider the context for a tag

to be the set of tags that co-occur with the given tag when anotating resources. Fur-

thermore, the context of a resource is de�ned as the tags the users have assigned to

it.

Disambiguation: This approach does not explicitly deal with disambiguation prob-

lems but authors claim that the grouping of resources and tags found in the next activity

helps to disambiguate the meaning of tags.

Semantic Identi�cation: The semantic identi�cation activity creates a graph where

the resources, and the most frequent tags in the folksonomy, are represented as vertices.

The graph edges associate resources with tags. An edge between a resource and a tag

exists if their similarity value is above a certain threshold. In this approach each resource

is represented by the set of tags used to annotate it so that the similarity between a tag

and a resource is calculated as the maximum similarity value of the tag with each one of

the tags used to annotate the resource. The similarity between two tags is a weitghed

sum of their social similarity and their semantic similarity. Social similarity is based on

the co-ocurrence of both tags when annotating resources. For the semantic similarity

authors propose to map tags to concepts in a semantic resource. Then, the semantic

similarity is calculated proportionally to the path distance between those concepts in

the semantic resource. The bipartite graph relating resources and tags is then clustered

using a spectral graph clustering algorithm whose goal is to create disjoint clusters so

that the elements in the same cluster have high similarity and elements in di�erent

clusters have low similarity.

Let us suppose that the language tag has been also assigned to R1 and R3 in the

example folksonomy. We have extracted from our folksonomy example the bipartite

graph shown in Figure 2.10. This graph relates tags and resources by means of the

similiarity value calculated relying on social and semantic similarity. Besides in the
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bottom of Fig. 2.10 two groups found by the clustering algorithm are shown where the

sum of similarities between elements of the same cluster is maximized while the sum of

similarities of di�erent clusters is minimized.

Java Language CodeCoffee

0.9 0.8 0.1 0.6 0.3 0.7 0.8

R2 R3R1

JavaCoffee Language Code

0.3
0.1

R2R1 R3

0.7 0.80.9 0.8 0.6

Figure 2.10: Tag clusters generated by Giannakidou et al.'s approach. Top: Sample

bipartite graph relating resources and tags using social and semantic similarity. Bottom:

Clustered graph

Giannakidou and colleagues tested their approach with varying weights assigned

to the social and semantic similarity measures to see how each one of these measures

a�ect the clusters found. Authors concluded that social similarity helps to disambiguate

ambiguous tags since the context (i.e co-occurring tags) helps to highlight the meaning

of tags. Authors also stated that semantic similarity allows to �nd groups of synonyms

but fails to handle ambiguous tags. However, this approach clusters tags into disjoints

groups. This means that a tag can belong to just one group and therefore if a tag has

several meanings the approach will only identify the most frequent meaning for that tag

according to the tag co-occurrence pattern. Moreover, the tags are grouped according

to an abstract relation found by the clustering algorithm but this relation is not de�ned

semantically in terms of subclass, part of, synonym or any other relation. Similarly, the

meaning of the tags is not de�ned explicitly.

2.3.7.2 Specia and Motta's approach

Specia and Motta propose a semi-automatic approach using a mix of clustering and

ontology-based techniques (Specia and Motta, 2007), focusing on two data sources
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(Flickr and Delicious), although the approach could be extended to any other folk-

sonomy data source.

Data Selection and Cleaning: The data selection and cleaning activity starts by

�ltering out unusual tags. For instance, it �lters out tags that do not start with a

letter. Then, morphologically-similar tags are grouped using the Levenshtein similarity

metric. Finally, infrequent and isolated tags are �ltered out. The data set used to test

the approach comprised data from Delicious and Flickr. The Delicious data contains

7,164 users, 14,211 resources, and 11,960 tags. On the other hand, the Flickr data

consists of 6,140 users, 49,087 resources, and 17,956 tags.

Context Identi�cation: The goal of the context identi�cation activity here is to

build clusters of related tags. First, the context of a tag is de�ned as the set of tags

that co-occur with the current tag when annotating a resource or when they are used

by the same user. To represent the context of a tag the authors use a vector whose

number of elements is equal to the number of distinct tags in the folksonomy, and the

values of each position correspond to the number of times the tag co-occurs with the

tag corresponding to the current position. In the case where the element of the vector

correspond to the tag that is identifying the vector, the value for that element is the

frequency of use of that tag in the folksonomy. Then, each tag is compared with other

tags using their context vectors in order to �nd similar tags.

Disambiguation: When a tag is ambiguous it can have more than one pattern of

co-occurrence. Thus, the set of similar tags found in the context identi�cation may

include tags with di�erent meanings. The disambiguation activity analyzes each group

of similar tags in order to �nd clusters of related tags based on high co-occurrence.

Semantic Identi�cation: Finally, for each cluster of related tags the semantic iden-

ti�cation activity is carried out manually. A user uses a semantic Web search engine

(e.g, Swoogle1) to look for ontologies containing pairs of tags in the cluster. If an on-

tology is found that contains a pair of tags, then the semantic information about the

tags (type, parents, domain, range) is used to establish relations between them.

The proposed approach is depicted in Figure 2.11. Let us apply this approach to our

folksonomy example. First, we need to create the vectors to represent each tag and its

1http://swoogle.umbc.edu/
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Table 1. Number of tags (with their corresponding users and resources) from del.icio.us and Flickr 

Total Distinct 
# entries # tags # users # resources # tags 

del.icio.us 19,605 89,978 7,164 14,211 11,960 
Flickr 49,087 167,130 6,140 49,087 17,956 

Fig. 1. System architecture 

3.2.1 Pre-processing 

The following shallow pre-processing steps were performed:  
(1) Filter out unusual tags (and corresponding resources, if no other tag remains in that 

annotation). From a social perspective, all tags are relevant, even if they cannot be 
mapped to elements in ontologies. However, at this stage we are interested in tags 
with a more general applicability, which can be possibly found in ontologies, and 
therefore we define the following constraints: tags must start with a letter followed 
by any number of letters, numbers, and symbols like dash, dot, underscore, etc. 

(2) Group morphologically very similar tags using the Levenshtein similarity metric4

with a high threshold to determine “similar” words. This can tackle minor 
morphological variations (by grouping tags such as cat and cats, 

                                                
4As implemented in the package SimMetrics in http://sourceforge.net/projects/simmetrics/ 
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Figure 2.11: Process of associating semantics to tags (Specia and Motta, 2007)

context. Some examples of these vectors are shown in table 2.7. Then, over this matrix

we have to apply the clustering algorithm proposed in the disambiguation activity. As

a result of this activity we can get two two groups of tags. A group with tags Co�ee

and Java, and the other group with tags Language, Java, Program and Code. Then, the

user looks in Swoogle for each pair of tags in each group and tries to establish manually

the relations among tags. The Cyc Ontology1 has a direct relation among the tags

co�ee as a beverage and Java, being the latter an english alias of the former. On the

other hand, in the LT4eL ontology2 we found that Java is a subclass of Language as a

programming language. In addition, we found that Code as source code is subclass of

Program as a computer program. The �nal ontology is depicted in Figure 2.12.

Table 2.7: Tag and context vector representation

Co�ee Java language Program Code

Co�ee 1 1 0 0 0

Java 1 5 3 2 0

Language 0 3 3 2 0

1http://sw.opencyc.org/
2http://www.lt4el.eu/index.php?content=tools#ontology
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Figure 2.12: Tag relations identi�ed within group of tags

One of the main advantages of this approach is that it combines clustering and

ontology-based techniques. However, the approach has also some limitations. For

example, the semantic identi�cation activity requires users to analyze manually the

ontologies retrieved from a Semantic Web search engine like Swoogle. However, an ap-

proach to automate this process has been introduced in Angeletou et al. (2008). Specia

and Motta's approach is highly dependent on �nding relations between tags in existing

ontologies. It is therefore natural to expect that many tag pairs found in folksonomies

will not be found in any ontology libraries, thus limiting the output of this approach.

With respect to evaluation, the authors do not evaluate how well the clusters of

highly co-occurring tags in the similar tag sets help in the disambiguation of tag senses.

2.3.8 Consolidated overview of approaches

In this section we will provide a summary and comparison of the approaches. This

overview is summarized in Table 2.8, which uses the activities identi�ed in our uni�ed

process and some other characteristics that we have considered in our descriptions. In

this table, the �rst column contains the reviewed approaches. The following columns are

the characteristics evaluated using the uni�ed process. The approach type can take the

values of Stat for Statistical-based approaches, Ont for ontology-based approaches, and

Hyb for hybrid approaches. The Auto column describes if the approach is automatic

or manual, and it can take the values of Yes for automatic, No for manual or Semi

for semiautomatic. The data source column shows the folksonomies used to test the

approaches in the original publications. The acronyms used are Del for Delicious, Pol

for Polyphonet, Bib for Bibsonomy, Raw for Rawsugar, Fli for Flicker, and Oth for

other data sources. Then, there are columns to specify if the approaches include or
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not some of the activities of the proposed general process: data selection and cleaning,

context identi�cation, disambiguation and semantic identi�cation.

In addition, the ninth column identi�es the output type of the approach which

can be an ontology (Onto), a hierarchy of tags, clusters of tags, instances of ontology

classes, or enrichments (i.e., tags are related to semantic entities). The tenth column

states, for the cases where the output is an ontology, whether the knowledge in the

ontology has been properly evaluated. By properly we mean assessing the precision and

recall of the classes and relations within the ontology with respect to a given scope,

as well as other ontology quality measures such as modularity. From the review of the

approaches we have identi�ed di�erent types of evaluations performed by their authors

which includes: 1) human-based comparison of the generated ontologies (among them)

in a given domain, 2) descriptive analysis of a small part of the output, 3) the output is

included in a process which is then evaluated (e.g., recommendation systems, or search

engines), and 4) the use of metrics such as precision and recall to evaluate the output.

Eight of the approaches use statistical techniques to identify the hidden

semantics of tags in folksonomies, while �ve more use ontologies to associate

semantics to tags, and just two use a hybrid approach. Statistical techniques are

used most of the time to �nd groups of related tags and hierarchies, whereas ontology-

based approaches are used to associate semantic entities to individual tags.

Most of the approaches are automatic, except for Specia and Motta (2007) and

Limpens et al. (2010), which is semiautomatic, and Passant (2007) which is completely

manual and focuses on user-generated semantic enrichment. The most studied data

sources are Delicious and Flickr. In Hamasaki et al. (2007), the folksonomy was adapted

from an academic conference support system, and in Passant (2007) a folksonomy of

an enterprise blogging platform was used. Almost all the approaches implement a data

selection and cleaning activity, de�ning the initial tag set and �ltering out the tags

they do not want to deal with, except for Benz et al. (2010); Hamasaki et al. (2007);

Limpens et al. (2010) and Heymann and Garcia-Molina (2006) where this activity was

not described.

In all approaches some kind of context identi�cation is included. The

objective of this activity is usually for tag disambiguation or for semantic identi�cation.

Table 2.9 presents the di�erent context de�nitions found in the reviewed approaches.

Most of the approaches rely on tag co-occurrence when annotating resources regardless
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of the user. However, as these approaches ignore the user in the context de�nition, they

are mixing the di�erent meanings of tags given by the di�erent users. Other approaches,

such as Maala et al. (2008) analyzes the tags in the user post getting rid of the use of

tags in di�erent meanings. Tesconi et al. (2008) propose to use the co-occurring tags in

the resources annotated by the user. If a user has used the tag in more than one sense,

then the analysis of this context will result in the most frequent sense for that tag. The

idea behind using the co-occurring tags in the user social network �rst introduced in

Hamasaki et al. (2007), is that groups of people sharing some interest, e.g, scientist

and practitioners, tend to use the same vocabulary in a particular �eld. Finally, only

Kennedy et al. (2007) use tagging metadata information as part of context de�nition.

Table 2.9: Context de�nitions

Approach Context

Maala et al., 2008 Co-occurring tags in the user post

García-Silva et al., 2009

Tesconi et al., 2008 Co-occurring tags when annotating resources tagged by the user

Hamasaki et al., 2007 Co-occurring tags in the user social network

García-Silva et al., 2009

Mika, 2007 Co-occurring tags when they are used to annotate a resource

Giannakidou et al., 2008

Specia and Motta, 2007

Mika, 2007 Co-occurring tags when they are used

Specia and Motta, 2007 by an annotator

Angeletou et al., 2008 All analyzed tags

Kennedy et al., 2007 Latitude and longitude of the geo-tagged

resources and timestamp

Cantador et al., 2008 Wikipedia category list associate to each tag

Six of the research works ignore the disambiguation problem, while the

other ninth suggest some technique to disambiguate tag meanings. Regard-

ing the semantic identi�cation activity Hamasaki et al. (2007), Jäschke et al. (2008),

Begelman et al. (2006), Heymann and Garcia-Molina (2006), and Giannakidou et al.

(2008) do not describe how to de�ne explicitly or formally the tag semantics.

Mika (2007) uses social network metrics and set theory to de�ne a limited semantics

of the relations between tags. Limpens et al. (2010) identify spelling variations and
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homonyms using string similarity metrics and other metrics based on the folksonomy

structure. Benz et al. (2010) generate a tag hierarchy based on more general and more

speci�c terms, and provide sets of synonyms for each tag in the hierarchy. On the

other hand Angeletou et al. (2008); Passant (2007); Specia and Motta (2007); Tesconi

et al. (2008) use external semantic resources. Maala et al. (2008) also use external

semantic resources to de�ne in which category (e.g, location, time, event, etc.), each

tag �ts better, but in the end the RDF triples generated are not related to the semantic

resources, losing the advantage of using the obtained intermediate results. Similarly

Kennedy et al. (2007) categorize tags in two classes, locations and events, though they

do not use external resources but metadata information.

Passant (2007) approach di�ers from all others in that all the activities are carried

out manually by users. For instance, the user is the one who decides which tags are to

be enriched semantically. Also, when the user has to de�ne which ontology concept he

wants to associate with the tag, he has to understand the context in which the tag is

used and if the tag is ambiguous then he has to de�ne the right meaning in order to

associate the best ontology concept. Furthermore, the user will need to understand the

meaning of the ontology concepts the system suggests for the given tags to be able to

select the correct URIs.

From all the approaches only three claim that they generate ontologies

(Hamasaki et al., 2007; Mika, 2007; Specia and Motta, 2007). In fact Hamasaki

et al. (2007) do not provide semantics to the identi�ed group of tags. Mika (2007)

proposes some techniques to identify broader or narrower relations, though in this work

the obtained relations are exempli�ed, but they are not evaluated. In the case of Specia

and Motta (2007) the semantic entities and relations, which have been manually found

in existing ontologies, are not limited to a given scope nor they are evaluated. Kennedy

et al. (2007) and Cantador et al. (2008) classify tags under classes, Heymann and Garcia-

Molina (2006); Jäschke et al. (2008) and Benz et al. (2010) generate hierarchy of tags,

Begelman et al. (2006) and Giannakidou et al. (2008) cluster tags, and Angeletou et al.

(2008); Maala et al. (2008); Passant (2007); Tesconi et al. (2008) and Limpens et al.

(2010) enrich tags with semantic entities.

Finally we want to note that none of the approaches aiming at generating an ontology

narrow the scope of the ontology to a given domain.
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2.3.9 Conclusions

In spite of the amount of research works aiming at generating semantic structures from

folksonomies (i.e., tags networks, clusters, hierarchies, and enrichments) the objective of

obtaining a formal ontology is still a current challenge. For us a formal ontology consists

of concepts and well de�ned relations among them. Most of the e�orts in this respect

have elicited a graph of tags, and in some cases a limited semantics about tag relations

has been suggested. In addition most of the approaches do not di�erentiate the ontology

schema (i.e., concepts and relations) from the facts (i.e., instances). Moreover none of

these approaches have focused on limiting the scoped of these semantic structures to a

given domain. Therefore we can state the following open research problem:

� There is a lack of a method to automatically elicit domain knowledge from folk-

sonomies that can be used in the development of formal domain ontologies.

2.4 Methodologies for building ontologies

The development of ontologies has evolved from an initial stage where authors fol-

low their own set of principles and design rules when developing ontologies, to a more

advance stage where there are available methodologies for building ontologies. These

methodologies provide de�nitions of ontology development processes and ontology life

cycles where these processes are organized. In this section we review four well-known

methodologies for building ontologies from scratch (Methontology, On-to-Knowledge,

and DILIGENT) and a novel methodology (NeOn) that gives support to collaborative

processes for building ontology networks. The NeOn methodology has identi�ed several

possible scenarios for building ontologies, including an scenario where it is possible to

reuse knowledge from non-ontological resources. Non-ontological resources (Villazón-

Terrazas, 2012) are "knowledge resources whose semantics have not been yet formalized

explicitly by means of ontologies". This de�nition of non-ontological resource covers

user-generated classi�cation systems such as Folksonomies since it has been shown that

it is possible to consider these systems as sources of knowledge (Begelman et al., 2006;

Cattuto et al., 2008; Marlow et al., 2006). The objective of this review of methodolo-

gies for building ontologies is to show that existing methodologies lack methods and

techniques to develop ontologies from user-generated classi�cation systems.
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2.4.1 METHONTOLOGY

METHONTOLOGY (Fernández-Lopez et al., 1997) covers distinct activities of the

ontology development process, an ontology development life cycle, and techniques to

carry out the activities related to the development, support and management of the

process.

The ontology life cycle is based on evolutionary prototypes which allow re�ning the

ontology by means of the addition, deletion, or change of terms in the ontology. For each

prototype the development process consists of the following activities: ontology speci�-

cation, conceptualization, formalization, implementation and maintenance. In addition

METHONTOLOGY de�nes support activities such as knowledge acquisition, integra-

tion, merging and alignment, evaluation, documentation, and con�guration manage-

ment. Finally the methodology describes management activities including scheduling,

control and quality assurance.

Note that in this methodology it is possible to reuse existing ontologies since METHON-

TOLOGY includes the support activities of integration and, merging and alignment.

Nevertheless, authors did not provide any activity for the knowledge acquisition from

non ontological resources.

2.4.2 On-To-Knowledge

The objective of the On-To-Knowledge methodology (Sure et al., 2004) is to develop

ontologies �tted to the requirement of knowledge management systems, and thus these

ontologies are highly dependent of the application where they are going to be used.

On-To-knowledge proposes the following processes: feasibility study, ontology kick o�,

re�nement, evaluation, and maintenance. Moreover On-To-Knowledge also describes a

cyclic ontology life cycle, which is based on evolutionary prototyping.

In this methodology authors propose to identify, in the kick o� process, existing

ontologies to be reused in the development process. In addition, the methodology

suggests, in the re�nement process, to apply ontology learning approaches to reduce the

e�orts required to develop new ontologies. Nevertheless ontology learning, at this time,

was limited to knowledge acquisition from text documents.
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2.4.3 DILIGENT

DILIGENT (Pinto et al., 2004) is a methodology for building ontologies in distribu-

tive and collaborative settings. This methodology proposes the following development

phases: build, local adaptation, analysis, revision, and local update. These phases are

arranged in an ontology life cycle model based on evolutionary prototyping. DILIGENT

can be described as an argumentation framework where the di�erent stakeholders of the

development process can discuss about the changes proposed for the ontology in the

di�erent phases of the life cycle. This methodology does not propose to reuse existing

ontologies or non ontological resources in the ontology development process.

2.4.4 NeOn

The NeOn methodology (Suarez-Figueroa, 2010) is a scenario-based methodology for

building ontology networks in collaborative environments. It puts special emphasis on

the reuse and reengineering of knowledge resources. NeOn methodology includes an

ontology development process, life cycle models and techniques and tools to support

the ontology development process. This methodology proposes nine di�erent scenarios

for building ontologies:

� Scenario 1: From speci�cation to implementation.

� Scenario 2: Reusing and re-engineering non-ontological resources.

� Scenario 3: Reusing ontological resources.

� Scenario 4: Reusing and re-engineering ontological resources.

� Scenario 5: Reusing and merging ontological resources.

� Scenario 6: Reusing, merging and re-engineering ontological resources.

� Scenario 7: Reusing ontology design patterns.

� Scenario 8: Restructuring ontological resources.

� Scenario 9: Localizing ontological resources.

Figure 2.13 depicts the di�erent scenarios and the main activities proposed for each

of them. All these scenarios can be mixed during the development of an ontology net-

work. The �rst scenario is mandatory since it contains the core of activities for building

ontologies: speci�cation, scheduling, localization, restructuring, conceptualization, for-

malization, and implementation. The development of ontologies from non-ontological
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resources is covered by the scenario 2. This scenario describes the cases where non-

ontological resources have to be re-engineered to turn them in ontologies.

Figure 2.13: Scenarios for building ontologies in the NeOn methodology

In (Villazón-Terrazas, 2012) the author proposes a complete set of methodological

guidelines, patterns and tools to support the reuse and reengineering of non-ontological

resources in ontologies. The non-ontological resources addressed in this work are: clas-

si�cation schemes, thesauri and lexica. In addition Villazón-Terrazas (2012) identify

user-generated classi�cation systems as resources from which it is possible to elicit

knowledge. However in this work the author does not propose methods and techniques

for the speci�c purpose of developing ontologies from user-generated classi�cation sys-

tems.

2.4.5 Conclusions

In this section we surveyed four of the main methodologies for building ontologies. We

have seen that METHONTOLOGY and DILIGENT do not include in the ontology

development process the possibility of reusing non-ontological resources. In contrast,

On-To-Knowledge considers the use of ontology learning approaches though these ap-

proaches are limited to text documents. From all the surveyed methodologies NeOn

is the methodology that put emphasis on the reuse of non-ontological resources. In

fact, NeOn methodology describes the scenario 2 for building ontologies by reusing and
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reengineering non-ontological resources. This scenario has been addressed in detail in

(Villazón-Terrazas, 2012) where the author has presented methods, patterns and tools

for building ontologies from classi�cation schemes, thesauri and lexica. However in this

work user-generated classi�cation systems are not addressed.

Therefore we can conclude that none of the aforementioned methodologies propose

methods and techniques to tap into user-generated classi�cation systems for building

ontologies.

2.5 Conclusions

We started this chapter presenting named lists as an example of user-generated clas-

si�cation systems in the current web. We concluded through an example that named

lists seem to be an interesting emergent classi�cation system from which we can obtain

knowledge. However these lists have not been studied as source of emergent semantics

that can be used in knowledge acquisition processes. Thus we de�ned the �rst research

problem to be addressed in this thesis: Is it possible to elicit knowledge, in the

form of semantically related terms and explicit relations between them, from

the classi�cation systems emerging from named lists?

Next, we review the di�erent attempts to elicit semantic structures from folk-

sonomies. These approaches range from those grouping and relating tags, according

to tag similarity measures, in the hope that such grouping exposes the tag meanings,

to approaches where tags are associated with existing semantic entities in knowledge

bases so that their meaning can be asserted. The semantic structures produced by the

reviewed approaches include ontologies, tag clusters, tag hierarchies, and tag enrich-

ments. Despite the high number of works reviewed we showed that just a fraction of

them produce formal ontologies. We also showed that most of the works de�nes a very

limited semantics of the relations within the produced ontologies. Finally we noted

that none of these research works de�ne the ontology scope in a given domain. Thus we

de�ned as an open research problem the lack of a method to automatically elicit

domain knowledge from folksonomies that can be used in the development

of formal domain ontologies.

Finally we presented the most representative methodologies for building ontologies

and showed that just On-To-Knowledge and NeOn methodology consider reusing exist-
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ing knowledge. However On-To-Knowledge is limited to ontology learning approaches

from text documents. On the other hand, the NeOn methodology mentions the reuse

of user-generated classi�cation systems in its scenario number 2 building ontologies by

reusing and reengineering non-ontological resources. However, this methodology does

not include a method or techniques to leverage the knowledge of user-generated clas-

si�cation systems. Therefore we stated that current methodologies for building

ontologies lack methods and techniques for building ontologies from user-

generated classi�cation systems.
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CHAPTER 3

OBJECTIVES AND CONTRIBUTIONS

In this chapter we describe the objectives pursued by this thesis together with its main

contributions. In addition we present the open research problems we are addressing

along with the restrictions and assumptions upon which our research relies. Finally

we describe the research methodology that we followed during the development of this

thesis.

The global objective of this thesis is to investigate methods and techniques to

tap into user-generated classi�cation systems and the web of data to develop

ontologies. Thus, this research is framed within the ontology development scenario

(Suárez-Figueroa et al., 2012) where ontology developers want to reuse and re-engineer

existing knowledge sources, which has not been formalized yet, in the ontology develop-

ment process (Villazón-Terrazas, 2012). In this context we list the main contributions

of this thesis.

i) An integrated method to create ontologies from user-generated classi�cation sys-

tems. This method covers di�erent stages of the ontology development process:

� Elicitation of domain terminology by collecting relevant terms from user-

generated classi�cation systems.

� Identi�cation of classes from the extracted terminology by reusing existing

classes of ontologies in the web of data.

� Discovery of relations between the identi�ed classes by reusing existing rela-

tions of ontologies in the web of data.
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ii) We have identi�ed useful techniques for implementing some of the activities in the

method and propose how to adapt them according to the requirements of each of

these activities. We have used the following techniques in our method:

� Spreading activation (Crestani, 1997) for eliciting domain terminology. We

have applied this technique to traverse a network of category names which

has been extracted from user-generated classi�cation systems, so that we can

collect relevant domain terms from it.

� Vector space model (Salton and Mcgill, 1986) for grounding category names

to semantic entities. We have applied this technique to select from a knowl-

edge base the semantic entity that better represents the meaning of a category

name in a given context.

� Dynamic queries (Heim et al., 2010) in SPARQL (Prud'hommeaux and Seaborne,

2008) for identifying classes. We have used this technique to pose SPARQL

queries to traverse all the possible paths in an RDF graph, linking through

same as relations a semantic entity and a class, so that we can identify which

semantic entities are considered as classes in the corresponding knowledge

base.

� Dynamic queries in SPARQL for discovering relations. We have used this

technique to pose SPARQL queries to traverse all the possible paths in an

RDF graph, linking two classes so that we can identify in the corresponding

knowledge base the relationships between a pair of classes.

iii) A study about the emerging semantics in the user-generated classi�cation system

de�ned by Twitter Lists. In this study we established relatedness measures be-

tween category names based on the distinct user roles interacting with the lists.

Then we compare these relatedness values with the results of well-known related-

ness measures based on WordNet. We also included a comparison with relations

found in DBpedia (Bizer et al., 2009b) and some other linked data sets. Our

conclusions included the name of the relations found and the amount of them in

the data set used for the experiments.
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3.1 Objectives

The main objective of this thesis is to propose a method, and identify and adapt tech-

niques to automatically develop domain ontologies leveraging folksonomies and ontolo-

gies in the web of data. This objective can be broken in the following detailed objectives:

O1. To propose methods and techniques to leverage the knowledge in user-generated

classi�cation systems in ontology development.

O2. To propose methods and techniques to reuse ontologies in the web of data within

the development process of a new ontology.

O3. To propose an integrated method to create ontologies relying on user-generated

classi�cation systems and ontologies in the web of data.

O4. To analyse the emerging semantics of twitter lists, a user-generated classi�cation

system which has not been studied as source of knowledge yet.

3.2 Contributions to the State of the Art

We have contributed with a new method, the identi�cation of techniques supporting

the method, and surveys to the two open research problems identi�ed in the state of

the art chapter (see chapter 2). In this section we present the contributions generated

for each of these problems.

I. With regard to the lack of methods and techniques to elicit domain ontologies from

folksonomies and named lists we have generated the following contributions:

C1. An integrated method to develop ontologies from user-generated

classi�cation systems. This method, presented in chapter 4, comprises two

processes and de�nes how di�erent user roles participate in each process.

To present the method and how the processes are arranged in a work�ow

we use the Data-Intensive Systems Process Engineering Language DISPEL

(Martin and Yaikhom, 2011), which allows a clear description of the method

components, their interaction and the data transformation. DISPEL and the

framework used to present the method are described in chapter 4.
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C2. Identi�cation and adaptation of a set of techniques to support the

method processes. We present in chapter 5 a set of techniques to auto-

matically carry out the processes de�ned in the method. These are existing

techniques, some of them applied in other research �elds such as Informa-

tion Retrieval, that we have adapted to ful�ll the objectives de�ned for each

process.

II. With regard to the lack of a study of named lists as source of emergent semantics

we have the following contribution:

C3. A characterisation of the emergent semantics in Twitter lists. Though

folksonomies have drawn the attention of the research community, other clas-

si�cation systems which share many similarities with them, such as named

lists, have been ignored as a source of knowledge. We present, in chapter 6,

a survey of the emerging semantics in Twitter lists, where we carry out an

objective and quantitative analysis of the kind of information that can be

extracted from these user-generated lists.

3.3 Assumptions

The method proposed and the techniques used in this thesis rely on the following as-

sumptions:

A1. It is possible to access public data in user-generated classi�cation systems.

A2. User-generated classi�cation systems contain su�cient individual classi�cations

from which it is possible to identify an emerging vocabulary according to frequency

of use the category names.

A3. Relevant domain terms are those frequently used in that domain.

A4. User-generated classi�cation systems contains to some extent domain data.

A5. There are publicly available ontologies that cover to some extent domain data.

A6. There are techniques which can be adapted to automatize the tasks identi�ed in

the method.
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A7. There are similarity measures based on knowledge bases useful for analyzing the

emergent semantics in user-generated lists.

3.4 Hypotheses

This thesis work was developed based on the following hypotheses:

H1. User-generated classi�cation systems can be mined to collect knowledge pertinent

to a domain so that this knowledge can be used in an ontology development

process.

H2. Ontologies in the web of data can be used to make explicit and formal the knowl-

edge extracted from user-created classi�cation systems.

H3. It is possible to create a method, relying on the hypotheses H1 and H2, to develop

domain ontologies from user-generated classi�cation systems.

H4. It is possible to adapt existing techniques to automatically carry out the processes

proposed in the method.

H5. There is an emergent semantics which result of the aggregation of the individual

classi�cations in named lists.

H6. It is possible to use existing similarity measures based on WordNet to analyze the

emergent semantics in named lists.

H7. It is possible to use existing ontologies published in the web of data to analyze

the emergent semantics in named lists.

3.5 Limitations

Finally we want to mention the restrictions of the method and techniques developed in

this thesis that highlight possible future work.

R1. The data to be extracted from the user-generated classi�cation system is limited

to the information of public use.
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R2. The ontologies to be reused have to be available locally and stored in a unique

repository. Our approach does not reuse ontologies distributed in di�erent repos-

itories.

R3. Domain experts and ontology engineers are involved in the method to provide

only input information required by the proposed method.

R4. The knowledge that can be reused and quanti�ed from existing ontologies is lim-

ited by the knowledge contained in these ontologies.

R5. The produced ontology is in English language. We only bene�t of the category

names written in English in the classi�cation systems and we only reuse ontologies

in English.

R6. The output ontology does not contain instances.

In table 3.1 we present how the contributions of this thesis work ful�ll the objectives

that we posed at the beginning of our research. We also specify the assumptions on

which the contributions relies and the hypotheses that they validate. In addition, we

de�ne the scope of each contribution by means of its associations with the restrictions

that we de�ned in this section.

3.6 Research methodology

This research was inspired by early work in emergent semantics (Aberer et al., 2004),

and the increasing interest in collaborative tagging systems from a knowledge acquisi-

tion perspective (Mika, 2007; Specia and Motta, 2007). Mika (2007) and Specia and

Motta (2007) claimed that it was possible to obtain an emergent semantics from these

classi�cation systems and they identi�ed bene�ts for folksonomy-based systems and

for knowledge acquisition processes. Folksonomy-based systems bene�ts include bet-

ter recommendation and searching functionalities since these functions can rely on the

emergent semantics to improve their results. On the other hand, knowledge acquisi-

tion processes bene�t from folksonomies since these processes have available a dynamic

source of information maintained by potentially large user communities from which

knowledge can be extracted automatically.
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Initially we de�ned a broad research problem: to survey the potential use of the

emergent semantics from folksonomies in innovative knowledge acquisition

processes. To re�ne this research problem and de�ne the objectives and hypotheses of

the thesis we followed an iterative research methodology consisting of two stages (see

�gure 3.1). In the �rst stage we used an exploratory approach (Kothari, 2004). The

objective of exploratory research is to de�ne the research problem and the hypotheses to

be tested. Accordingly, in the �rst stage, we reviewed the state of the art of approaches

mixing the topics of folksonomies and semantics to know more about: i) the problems

being solved with semantics and folksonomies, ii) the approaches proposed to solve these

problems, and iii) the strengths and drawbacks of these approaches. This review of the

state of the art, which was presented in chapter 2, helped us to specify in detail the

de�nition of the research problem and the hypotheses of this work.

Research Methodology

Experimental ResearchExplorative Research

Review of 

State of the Art

Define Problem, Hypoth-

eses, and objectives
Propose Solution Design Experiments

Figure 3.1: Iterative research methodology using exploratory and experimental ap-

proaches.

While we discarded problems such as the use of ontologies to ameliorate interop-

erability issues in folksonomies (Kim et al., 2008b), and the use of the ontologies to

improve the functionalities in systems which were based on folksonomies (Angeletou

et al., 2009), we de�ned our research problem more precisely in terms of leveraging

folksonomies in the development of domain ontologies with a well de�ned

semantics. We emphasized the requirement of a well de�ned semantics for the ontology

since most of the approaches in the state of the art produced ontologies where i) the

relations between terms were established but not de�ned, or in some cases de�ned to a

limited extent, and ii) there were not a clear distinction between classes and instances.

The hypotheses on which we rely to propose a solution for this problem were presented

in chapter 3, and we remark two of them: i) it is possible to obtain a vocabulary

72



from folksonomies pertinent to a given domain, and ii) it is possible to reuse knowledge

in existing ontologies, which have been published under the linked data principles, to

formalize the semantics of that vocabulary.

Once we had de�ned the research problem we proceeded to the second stage where we

follow an experimental approach (Dodig-crnkovic, 2002; Kothari, 2004). Our objective in

the experimental research was to propose a solution based on the hypotheses to ful�ll the

research objectives, and design experiments to validate the hypotheses. In this stage

we investigated existing techniques in other research �elds such as graph theory and

information retrieval which might help to reach the objectives. Then we adapted these

techniques to the requirements de�ned by the particularities of our research. After this

we designed the experiments to validate the proposed solutions. The experiments were

carefully designed so that they can be reproduced by third parties. Therefore, we made

public the datasets of each experiment, and used well-known evaluation metrics. Next,

we carried out an abstraction exercise over the procedure that we had followed when

developing the techniques, and designing and executing the experiments. The objective

was to elicit commonalities in the form of activities, user roles, and a work�ow where

these activities were organized. Thus, with these components (activities, user roles and

the work�ow) we produced the method that we are proposing in this thesis.

During the �rst iteration we addressed folksonomies as source of knowledge for the

ontology development. While we were developing this research we witnessed how some

web applications started allowing users to create named lists as a mean to organize

and share information. We noticed the commonalities between these named lists and

folksonomies and hence we generalized these structures in a conceptualization named

user-generated classi�cation systems. Therefore we carried out a second iteration in the

research process so that we could study if these named lists could be used in the same

manner as folksonomies, that is as a source of knowledge in the ontology development.

We carried out a review of the state of the art about the use of named lists as a source

of knowledge and we did not �nd any research work in this respect. Thus, we surveyed

the emergent semantics that can be elicited in di�erent ways from named lists. This

survey showed that is possible to obtain semantics from these classi�cation systems and

therefore can be leveraged in knowledge acquisition processes. Nevertheless, due to time

constraints the use of named lists in ontology development has been postponed and it

is included in the future work.
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CHAPTER 4

A METHOD FOR DEVELOPING ONTOLOGIES FROM

USER-GENERATED CLASSIFICATION SYSTEMS

In this chapter we describe our method for developing ontologies from user-generated

classi�cation systems. First we present in section 4.1 preliminary information about

i) the terminology used in the method description, ii) the user roles participating in

the method, iii) the formal language used to present the di�erent components of the

method, iv) a model of user-generated classi�cations systems in this language, and v) an

illustrative example which is going to be used throughout this chapter when describing

the di�erent parts of the method. Next in section 4.2 and 4.3 we describe the two

processes making up the method, which are then organized in a ordered sequence in

section 4.4.

4.1 Preliminaries

In this thesis we propose a method, and supporting techniques, to develop domain

ontologies from user-generated classi�cation systems in the Web. Since the termsmethod

and technique are often used as interchangeable words we present the terminology that

we are going to use in the rest of the chapter so that we can shed light on their meaning.

4.1.1 Terminology

We follow throughout this document the de�nitions of method and technique given in

the IEEE standards. A method (IEEE, 1990a) is a �set of orderly processes or procedures
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used in the engineering of a product or performing a service�. A technique (IEEE,

1990b) is �a technical and managerial procedure used to achieve a given objective�. In

�gure 4.1 we show that methods consist of processes and are speci�ed with techniques.

Further, Greenwood (Greenwood, 1973) claims that a method is a general procedure,

whereas a technique is the speci�c application of a method and the way in which the

method is executed. Several techniques are used for applying a given method, and each

technique speci�es what means should be used to execute the method. Though we are

not proposing a methodology, we consider important to note that methodologies consists

of methods and techniques. We use these de�nitions of method and technique to de�ne

the ontology development process so that we can distinguish between the conceptual

descriptions of the processes from their technical implementations.

Figure 4.1: Methods and techniques (Gómez-Pérez et al., 2004)

In addition, methods are comprised of processes. According to IEEE (1990b) a

process is �a sequence of steps performed for a given purpose, including its required

input and output information�. Processes consist of activities, which in turn consist of

tasks. Therefore the relation between processes, activities and tasks is mereological and

it depicts di�erent levels of speci�city of the work that has to be executed.
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4.1.2 User roles

We de�ne two user roles (or pro�les) to distinguish the di�erent skills required to pro-

vide input data to some of the processes of the method. Similarly to what happens

in ontology development methodologies, such as (Gómez-Pérez et al., 2004; Suárez-

Figueroa et al., 2012), and methods (Villazón-Terrazas et al., 2010), we de�ne two user

roles: ontology engineers and domain experts. Ontology engineers have a comprehen-

sive knowledge in methodologies, methods and techniques to develop ontologies, ranging

from ontology speci�cation to ontology implementation and maintenance. In addition

ontology engineers must have knowledge about software engineering and programming

so that they can design and implement scripts and programs that can be helpful when

automatizing some processes. On the other hand, domain experts are users with a

broad experience in the domain of study. They have to be able to provide models of

the domain in a high level abstraction as well as in detailed manner. Domain experts

do not require knowledge about ontology development though having these skills may

help to get better conceptualizations.

4.1.3 Data-intensive systems process engineering language (DISPEL)

To formalize the method and its processes we use the Data-Intensive Systems Process

Engineering Language DISPEL (Martin and Yaikhom, 2011), which was developed un-

der the framework of the ADMIRE project1. DISPEL2 is a high-level scripting language

used to describe abstract work�ows for distributed data-intensive applications. Though

there are commercial work�ow engines, such as WebSphere MQ Work�ow3 and Oracle

Human Work�ow 4, following the Business Process Execution Language BPEL (Juric,

2006), they are focused on modeling and orchestrating business processes and human

actions. In contrast DISPEL is more oriented to controlling computations and managing

data movements.

Abstract work�ows are well suited for describing methods since they are focused on

the description and understandability of the processes rather than in the implementation

1http://www.admire-project.eu
2This section is a summary of the DISPEL description found in the document ADMIRE D 1.9 Final

report on the ADMIRE model, language and ontology. Document available at: http://www.admire-

project.eu/docs/ADMIRE-D1.9-�nal-iteration.pdf
3see http://www-01.ibm.com/software/integration/wmqwf/
4http://www.oracle.com/technetwork/middleware/human-work�ow/
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details. The separation between the speci�cation and the implementation is achieved

by means of gateways that execute concrete work�ows which implement the DISPEL

speci�cations. A gateway may have numerous means to implement the same abstract

work�ow under di�erent circumstances.

In DISPEL work�ows are compositions of processing elements which receive, process,

and produce streams of data. A processing element is de�ned in terms of the input and

output stream of data. A stream of data is a continuous �ow of data. In DISPEL input

and output streams are called connections. A connection interface (see listing 4.1) is

speci�ed by the de�nition of i) the structural type of the pieces of data in the stream,

ii) the domain type of the streamed data, and iii) an identi�er.

Connection[: StructuralType][:: DomainType] identifier (4.1)

Structural type refers to the data type, and it can be one of the basic types including

Integer, Real, String, and Boolean, or an array, or a tuple. Arrays are lists of elements

of a given type (e.g., String[ ] addresses = new String[size]). On the other hand, tuples

are unordered lists of elements which can have di�erent types (e.g., <Real lat, Real

long, string name> GeoPosition = <40.418889,-3.691944,�Madrid�>). Besides prede-

�ned structural types, users can create their own structural types by using the Stype

keyword.

Domain types are used to make explicit the semantics of the streamed data. This

semantics is de�ned by means of ontologies. For instance, a connection de�ning a

stream of strings such as Connection:String str does not provide any formal descrip-

tion of the data stream semantics. Note that, even if the connection identi�er is rep-

resentative of the semantics of the data, this information cannot be leveraged auto-

matically by a program since it conveys only symbolic information. Thus, to de�ne

the semantics of the data stream we use as a domain type an ontology class: Con-

nection:String::http://dbpedia.org/ontology/Country str. In this case we state that the

strings in the stream are instances of the class Country which is part of the DBpedia

ontology1. Since the DBpedia ontology is written in OWL (Web Ontology Language)

other programs can rely on it to elicit more information about the semantics of the

stream, for instance, by inferring or reasoning over the ontology. In this chapter we

1The DBpedia ontology can be found at http://wiki.dbpedia.org/Downloads37
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de�ne the semantics of the input and output data of the di�erent processes making up

the method by means of the ontology presented in Annex A and the resource description

framework RDF1.

Besides the basic processing elements provided by the language, DISPEL supports

complex processes where other processing elements can be orchestrated in an ordered

sequence, therefore de�ning new work�ows. Furthermore, the language allows users to

de�ne their own processing elements. To do so, users can create processing element

types and then instantiate processes of these types. For complex processes de�ning a

work�ow users have to do four things: i) create a processing element type to identify

the complex process, ii) de�ne a constructor function to create a processing element

of the de�ned type, iii) create a processing element of the de�ned type by calling the

constructor function, and �nally iv) create an instance of the processing element so

that it can be executed or used as part of another work�ow. A work�ow is de�ned

by instantiating the processing elements involved in the work�ow, and then connecting

their inputs and outputs so that the work�ow is established.

To illustrate the work�ows we use the graphical representations depicted in �gure

4.2. The left hand side of the �gure shows the icons used to represent the start and

the end of the work�ow, as well as the icons used to connect the inputs and outputs of

the processing elements, and to explicitly redirect the work�ow to a given processing

element. The �gure in the middle represents a processing element instantiation. In

this �gure the top and the bottom rectangles represent the input and output stream

respectively. The rectangle in the middle contains the name of the processing element

instance and its type. Finally, the �gure in the right hand side represents a complex

process created from a function. In this �gure, besides the input, and output streams,

and the name of the processing element instance, there is a rectangle where the name

of the function and the type of the processing element returned by the function are

speci�ed. Below the function name there is a space to de�ne the input arguments of

the function.

Finally we want to note that the DISPEL code presented in this chapter is not

executable since the programs implementing the details of each process in the method

are not deployed yet in a gateway from which they can be executed.

1More information about RDF semantics available at http://www.w3.org/TR/rdf-mt/
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Processing Element Type

Output

Input

Figure 4.2: Graphical units to represent DISPEL work�ows adapted from Martin and

Yaikhom (2011).

4.1.4 Classi�cation system model

The �rst challenge we have to overcome is to formalize in a unique manner the afore-

mentioned user-generated classi�cation systems: folksonomies and named-lists. This

formalization is useful to show precisely, in a mathematical notation, how the data

stream changes when it is transformed by each process in the method. In the lowest

level of detail these systems consist of triples that relate a user, a category name, and a

resource. We call these triples classi�cation instances. Category names represent tags

and names of lists. Thus, a user-generated classi�cation system is a set of classi�cation

instances CI ⊆ U × CN × R where U , CN and, R are �nite sets whose members are

users, category names and resources respectively. We de�ne an individual classi�cation

instance in DISPEL by means of a custom structural type called Classi�cationInst (see

listing 4.1).

package es.upm.oeg{

Stype ClassificationInst is

<String user, categoryName, resource>;

}

Listing 4.1: Classi�cation Instance de�nition in DISPEL.

This structural type is a tuple of three strings corresponding to a user, a category
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name, and a resource. Thus the whole classi�cation system is represented as a �nite

stream of instances of type Classi�cationInst. In addition, the listing shows that the

description of the method is placed in the es.upm.oeg package. This package keeps in the

same namespace all the components of the method, that is structural types, processing

elements, and functions.

4.1.5 Illustrative Example

Throughout this chapter we use a small user-generated classi�cation system to exemplify

how each of the di�erent components of the method transforms the inputs into the

outputs to produce an ontology in the programming domain. This classi�cation system,

presented in table 4.1, is an extension of the folksonomy used in the state of the art

section (see 2.3.3). The example shows annotations of distinct users over resources

related to two distinct topics: co�ee and programming. Though co�ee and programming

are totally di�erent topics, some of these resources share user annotations. Note that

the classi�cation system has been represented as a list of classi�cation instances where

each row in the table is a triple that follows the de�nition given in listing 4.1.

Table 4.1: Example of classi�cation instances representing collaborative tagging over

some resources.

User Category Resource User Category Resource

A Co�ee R1 B 01seq† R2

A Java R1 C language R2

A Brew R1 C Programming† R2

E co�ee† R1 D Languag† R2

E Organic† R1 D Program R2

E FairTrade† R1 D cs4500† R2

B Java R1 D Program R3

B Java R2 D Coding R3

B Language R2 D opensource† R3

Triples marked with a † have been included or modi�ed with respect to

the original example presented in section 2.3.3.

In this example we have included di�erent tag characteristics and annotation pat-

terns that can be found in real life folksonomies. For instance, we have ambiguous
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tags (java), synonyms (programming and coding1), misspellings (Languag), composite

keywords (opensource), nonsense words (cs4500 ), and mixed use of lower- and upper-

case letters (Language vs language). With respect to annotation patterns, the example

shows di�erent users annotating the same resource (users A and E annotate resource

R1), resources annotated by di�erent users (Resource R2 is annotated by users B and

C), resources sharing annotations (Resources R1 and R2 are annotated with the tag

Java), and users sharing annotations (Users B and A use the tag Java).

In the rest of this chapter we describe our method which consists of two main processes:

Terminology Extraction and Semantic Elicitation. The Terminology Extraction process

is in charge of collecting, from the classi�cation system, a set of terms relevant in the

domain. The Semantic Elicitation process identi�es the semantics of the terms gathered

in the previous process. In �gure 4.3 we show the processes and activities involved in

the method, as well as the user roles participating in each activity. To describe each

component (i.e., process, activity, or task) we use the following template. First we

present the component objective followed by guidelines for Ontology Engineers and

Domain Experts about how to carry out the given component. Next we present the

formalization of the component using DISPEL, and �nalize the description exemplifying

its input and output using the illustrative example data. Note that guidelines and

examples are sometimes postponed to more detailed components or to the sections

where the work�ows are presented.

4.2 Process 1. Terminology extraction

The objective of the Terminology Extraction process is to gather from the user-generated

classi�cation system a set of terms that are relevant to a given domain. By relevant we

mean terms that are commonly used in a particular domain. Commonly used terms can

be identi�ed by examining terminology resources used in the domain including glossaries

and thesauri (e.g., Yahoo! �nancial glossary2 or Yahoo! education thesaurus3). This

process queries the classi�cation system and receives a stream of raw data. Thus it must

face relevant and non-relevant and possibly noisy data. Once we have gotten rid of noisy

1Programming and coding are synonyms in the sense of Computer programming.
2http://biz.yahoo.com/f/g/
3http://education.yahoo.com/reference/thesaurus/
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data we have to represent the data according to a prede�ned model that we can exploit

later for the collection of the domain relevant terms. Consequently, to obtain data from

the user-generated classi�cation system and �lter out noisy data we propose a Data

Preprocessing activity. Then we propose to carry out a Term Selection activity which

processes the resulting data from the Data Preprocessing activity to extract the set of

domain relevant terms. During this process, ontology engineers and domain experts

collaborate to de�ne the classi�cation system to be tapped, the criteria used to retrieve

data from the data source, and the strategy to gather the set of relevant terms.

Formalization. In listing 4.2 we present a preliminary formalization of the Extract

Terminology process which is going to be re�ned later through the description of its

activities and tasks. The process is de�ned by means of a processing element called

ExtractTerminology. This type de�nes a processing element that does not receive any

data and generates a stream of contextualized terms. The lack of an input data stream

to the processing element shows that the access to the classi�cation system data is

managed by an internal activity. The output of the processing element is a stream

of tuples de�ned by the structural type ContextualizedTerm. Each tuple consists of a

given term, and its context de�ned as an array of classi�cation instances from which

the term was obtained. The semantics of each tuple of ContextualizedTerm is de�ned

by the domain type ugcs:ContextualizedTerm. ugcs:ContextualizedTerm is a concept in

the ontology presented in annex A. A processing element of type ExtractTerminology

is created by means of the function extractTerminologyFn which receives two input

arguments. The �rst argument UGCS speci�es the user-generated classi�cation system

from which the data are going to be extracted, and the second argument lexicalResource

indicates the lexical resource that may be used in the normalization of category names.

4.2.1 Activity 1.1. Data preprocessing

The objective of this activity is to obtain data from the classi�cation system, which

are then cleaned, normalized, and transformed into a speci�c representation useful for

the subsequent activities. Data Preprocessing is a regular activity in any knowledge

discovery process since it guarantees the quality of the data over which the process is

going to be applied and therefore this activity in�uences the results of the whole process

(Pyle, 1999). In our method we include tasks such as Extraction, Normalization and

Transformation. The Extraction and Normalization activities �lter out non-relevant
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package es.upm.oeg{

namespace ugcs "http://www.upm.es/ontologies/ugcs#";

Stype ContextualizedTerm is

<String term,[ClassificationInst] context>;

Type ExtractTerminology is

PE(<> =>

<Connection:ContextualizedTerm::"ugcs:ContextualizedTerm" term>);

//Constructor of processing elements of type ExtractTerminology

PE(ExtractTerminology) extractTerminologyFn(String UGCS, String lexicalResource){

...

}

}

Listing 4.2: De�nition of the processing element type representing partially the Termi-

nology Extraction process

data while extracting and standardizing the input data respectively. The Transforma-

tion task maps the data from their current format to the format expected by the Term

Selection activity.

Formalization. In listing 4.3 we present the preliminary formalization of the pro-

cessing element type PreprocessData which represents the Data Preprocessing activity.

This type does not receive any input data since the access to the data is delegated to

the Extraction task. On the other hand, the output is a stream of data which is not

constrained to any DISPEL or user generated structural type. This lack of a structural

type represented by the keyword Any in the output connection is intentional since the

data representation to which the data is transformed during this activity depends on

the techniques that are going to be applied in the Term Selection activity. A processing

element of type PreprocessData is created by means of the function preProcessDataFn.

This function receives as arguments the user-generated classi�cation system UGCS from

which the data are going to be extracted, and the lexical resource used in the normal-

ization task.
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package es.upm.oeg{

Type PreprocessData is

PE(<> =>

<Connection:Any transformedInst>);

//Constructor of a processing element of type PreprocessData

PE(PreprocessData) preProcessDataFn(String UGCS, String lexicalResource){

...

}

}

Listing 4.3: Partial de�nition of the processing element type representing the Data Pre-

processing activity

4.2.1.1 Task 1. Extraction

The Extraction task obtains from the source the initial set of classi�cation instances.

The objective is to make data available to the rest of activities in a single format

independent from the data source proprietary representation. This task input is de�ned

by data about the resource to be accessed including its location. The output is a set of

classi�cation instances which may contain data that is relevant to the domain of study.

Guidelines. This activity should be accomplished with the help of domain experts

and ontology engineers. First they have to explore the candidate user-generated clas-

si�cation systems to analyze whether a particular system contains data (i.e.,

category names) related to the domain of study. The objective is to select a

classi�cation system to be used as data source during the rest of the process.

Besides relevant category names, ontology engineers have to take into account other

criteria such as data availability, and publication constraints and mechanisms. The

ontology engineer is responsible for addressing the technical aspects of the

data collection and assessing its feasibility. Normally web applications allow

accessing their data but they also de�ne publication and query constraints to avoid

system overload. For instance, some social networks provide web services to query their

data but they impose usage constraints such as a maximum number of requests per day

or a minimum delay between requests. In these cases the information extraction have

to be incremental. That is an initial set of classi�cation instances is retrieved according

to some query criteria. Then these instances are used to query for instances sharing
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similar characteristics.

In this activity it is possible to implement �lters allowed by the data publication

mechanism. These �lters were identi�ed from the review of the state of the art and

from the expertise gained when accessing these data sources in our experiments. They

are classi�ed in structural, group, and lexical �lters:

� Structural �lters are used to select data according to the components of the

classi�cation systems and their data properties. Thus we can specify a structural

�lter to return classi�cation instances according to a user, a category name, a

resource or the combination of any of them. Moreover, we can narrow the search

to retrieve classi�cation instances according to properties such as creation date or

location in case this information is available.

� Group �lters allow selecting data according to the value of functions that can

be applied on groups of classi�cation instances. In our case, we consider valid

functions those speci�ed in the SQL group functions (i.e., count, sum, max, min,

avg, distinct). For instance, in the case of collaborative classi�cation systems

where some labels are used to categorize resources by one or more users we can

�lter data based on usage statistics of the labels (e.g., frequency of annotation)

to gather the vocabulary agreed by users around resources. In addition, we can

use these �lters to retrieve only instances where the resource has been classi�ed

under a minimum number of categories.

� Lexical �lters are applied on the string of characters associated with each piece

of data, and hence they allow selecting and discarding data according to lexical

characteristics such as the string length, or the type of characters found in each

string. These �lters are suitable to discard, from the beginning, category names

that can be considered noise such as those mixing numbers and characters, or non

alphabetical characters.

In general we recommend to extract the data following standard practices such as

the ones de�ned in the Extract, Transform and Load (ETL) processes (Kimball and

Caserta, 2004). In our experiments presented in chapter 6, we extracted data from

comma-separated values (CSV) dumps provided by Delicious (see section 6.2) and from

the web services providing access to Twitter data (see section 6.4). In the �rst case we

loaded the data in a relational database and used SQL queries to extract the portion
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of data we were interested in. In the second case we used the web services provided by

Twitter to get the data and we store them in a relational database.

Formalization. To represent the extraction task in DISPEL we de�ne, in listing

4.4, the processing element type Extract. A process element of this type is in charge

of retrieving the classi�cation instances from the user generated classi�cation system.

A processing element of type Extract is created by means of the function extractFn.

This function receives as argument the user-generated classi�cation system UGCS from

which the data are extracted. The actual implementation of the data extraction is the

function es.upm.oeg.DataExtractionImpl.

package es.upm.oeg{

//Implementation of a process to extract data from a UGCS

use es.upm.oeg.DataExtractionImpl;

//Processing element type for the extraction process

Type Extract is

PE (<> => <Connection:ClassificationInst::"ugcs:ClassificationInst" inst>);

//Function to create a processing element of type Extract

PE(Extract) extractFn(String UGCS){

//Instantiation of the program to extract data

DataExtractionImpl dataExtraction = new DataExtractionImpl;

//Setting the source of data

|-UGCS-|=>dataExtraction.inputDataSource;

//return the classification instances from the UGCS

return(<>=>

<Connection inst=dataExtraction.ouputClassificationInst>);

}

}

Listing 4.4: De�nition of Extraction task in DISPEL

Example. To exemplify the extraction task we describe the process followed

to obtain the classi�cation instances which make up our example data (table 4.1).

We, as ontology engineers, decided to implement an incremental retrieval of data.

First we query the data source for resources annotated with the tag programming.

This query returns the resource R2. Then we gathered all the classi�cation instances
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where R2 appears, and query the data source for resources annotated with any of

the tags used to annotate R2, which include tags such as java, language, and pro-

gram. These queries retrieve resources R1 and R3 from which we collect their clas-

si�cation instances. Starting from here the process becomes recursive. We use the

set of tags used to annotate the retrieved resources for querying more resources which

in turn are used to collect their tags so that another query loop can start. The out-

put of the extraction task are the classi�cation instances presented in table 4.1 which

are arranged in a stream of data according to the structural type Classi�cationInst :

<A,Co�ee,R1>,<A,Java,R1>,...,<D,Coding,R3>,<D,opensource,R3>.

4.2.1.2 Task 2. Normalization

The Normalization task aims at standardizing category names in classi�cation instances

by converting them to a normative reference. In the case of user-generated classi�cation

systems this normalization is important since category names usually contain spelling

variations that may lead to consider two pieces of data as distinct when they actually

are referring to the same thing. These spelling variations can be due to misspellings,

to the use of plurals, to the mix of upper and lower cases within words, to the di�erent

characters used to separate two words composing a name, or to the use of concatenated

words. The output of this activity is a stream of normalized classi�cation instances

where category names generated by users have been normalized by following a standard

representation.

Guidelines. Ontology Engineers and Domain Experts must agree on a standard

way for representing category names. Examples of standard representations are

words in upper or lower case, words starting with a capital letter and the rest in lower-

case, etc. Another option is to adhere to a third party standard de�ned, for instance, by

a dictionary or by an encyclopedia. For this task, ontology engineers can use stemmers

to reduce words to their root form which can be thought as form of normalization.

We present, in section 5.1.1 a technique to normalize category names based on

approximate matching of the category names to dictionary entries. In addition we have

carried out an experiment with category names extracted from Delicious in section 6.1.

Formalization. Listing 4.5 presents the DISPEL representation of the normaliza-

tion task. We have de�ned a structural type NormalizedClassi�cationInst which adds
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to the classi�cation instance a string representing the normalized version of the cate-

gory name. Having speci�ed what a normalized classi�cation instance is, we de�ne a

processing element type Normalize where the input is the stream of classi�cation in-

stances retrieved in the extraction task, and the output is the stream of normalized

classi�cation instances. A processing element of type Normalize is created by means

of the function normalizeFn which receives as argument the lexical resource to be used

during the normalization. The actual implementation of the normalization program is

the function es.upm.oeg.NormalizationImpl.

package es.upm.oeg{

//Implementation of a program to normalize category names

es.upm.oeg.NormalizationImpl;

//Structural type defining a normalized classification instance

Stype NormalizedClasInst is

<String user, categoryName, normalizedCateName, resource>;

//Processing element type of a Normalize process

Type Normalize is

PE(<Connection:ClassificationInst::"ugcs:ClassificationInstance" inst>

=>

<Connection:NormalizedClasInst::"ugcs:NormalizedClasInst" normalizedInst>

);

//Function to create a processing element of type Normalize

PE(Normalize) normalizeFn(String lexicalResource){

//Instantiation of the program to normalize category names

NormalizationImpl normalizationImpl = new NormalizationImpl;

//Setting the lexical resource to be used in the normalization

|-lexicalResource-|=>normalizationImpl.lexicalResource;

//Connect the input and output streams of the processing element to

//the input and output streams of the program

return(<Connection inst=normalizationImpl.inputInst>

=> <Connection normalizedInst = normalizationImpl.outputNormalizedInst>);

}

}

Listing 4.5: De�nition of the Normalization task in DISPEL
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Example. To normalize the category names found in the stream of classi�cation

instances we use the WordNet lexicon (Fellbaum, 2005). First, we query WordNet with

each category name. In case we �nd an entry we adhere to the WordNet lexical rep-

resentation of this entry. We found entries for all the category names less FairTrade,

01seq, Languag, cs4500, and Opensource. For these cases we use an spelling service

(e.g., the Yahoo! spelling service). These services splits concatenated words, and pro-

duces suggestions for misspelled words. While we did not get any suggestion for 01seq

and cs4500, we got the following suggestion for the rest: fair trade, Language and

open source. We search for these suggestions in WordMet and found entries for all of

them. Therefore the output of this task is the stream of normalized instances which are

presented in table 4.2.

Table 4.2: Normalized classi�cation instances following WordNet entries

<A,Co�ee,co�ee,R1> <B,Language,language,R2>

<A,Java,Java,R1> <C,language,language,R2>

<A,Brew,brew,R1> <C,Programming, programming,R2>

<E,co�ee,co�ee,R1> <D,Languag,language,R2>

<E,Organic, organic,R1> <D,Program,program,R2>

<E,FairTrade,fair trade,R1> <D,Program,program,R3>

<B,Java,Java,R1> <D,Coding,coding,R3>

<B,Java,Java,R2> <D,opensource,open-source,R3>

Note that spelling suggestion services can induce some errors since these services provide

suggestions according to lexical similarities of words to concept names. For instance, a

misspelled category name such as tre may be presented with suggestions such as trek,

tree and trevon. All of them are valid suggestions but a normalization process will pick

up one of them. Thus, when designing the normalization strategy of category names

we have to bear in mind the trade-o� between normalizing a large number of category

names and the accuracy of the normalization.

4.2.1.3 Task 3. Transformation

The �nal task in the Data Preprocessing activity is the Transformation where the nor-

malized data are converted to a particular schema adapted to the needs of the Term
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Selection activity which is the next process in the work�ow. In this activity it is possible

to map data from a lower level of granularity to a higher level.

Guidelines. The Ontology Engineer must select the target schema according to

the information view required during the Term selection, which is the activity where

the data is going to be processed. However di�erent schema representations a�ect

the computational complexities of the operations performed over the data.

For instance, classi�cation systems can be represented as hypergraphs where nodes are

the di�erent components of the classi�cation systems and the edges between nodes

represent relations between the components. Hypergraphs can be modeled in di�erent

ways such as adjacency lists, adjacency matrices, incidence lists, and incidence matrices

(Cormen et al., 2001). Each of these representations uses a data structure to store the

graph in di�erent ways. This data structure a�ects the cost of maintaining operations

and of the traversing of the graph. Adjacency lists are generally preferred because they

e�ciently represent sparse graphs while adjacency matrices are preferred if the graph

is dense (i.e., the number of edges is close to the number of vertices squared) (Cormen

et al., 2001).

Moreover hardware constraints regarding the memory size, or CPU speed

can a�ect the selection of a representation schema. For instance the dimension of

a matrix used to represent a classi�cation system containing a large amount of resources

and categories may not �t in memory due to the high number of cells in the matrix.

A valid alternative is to keep the information in a relational database from which the

data can be accessed e�ciently.

The Transformation task and the Term Selection activity have a high coupling since

the needs of the latter in�uences the output of the former. Thus according to the

algorithm to be used in the Term Selection activity we may need to obtain

a di�erent view of the classi�cation instances which can show the data with a

distinct level of granularity. A possibility is to create a view using the relational operator

of projection and the aggregation function (Date, 2005). Projection allows selecting the

subset of the classi�cation instances that we are interested in, while aggregation enables

to calculate statistics over de�ned groups of instances. Let us suppose we are interested

in a view of the classi�cation system describing the category names used over resources

along with the number of users that have placed each resource in a speci�c category.

This view can be created �rst by grouping classi�cation instances by category names,

92



and resources, counting the number of elements in each group, and �nally projecting the

category name and the resource identifying each group along with the element count.

We recommend to follow the standard transformation practice de�ned in the Extract,

Transform and Load (ETL) processes (Kimball and Caserta, 2004). The transforma-

tion step of this process is entirely carried out in a relation database environment and

therefore data can be transformed using all the capabilities of the SQL language.

In section 5.1.2 we present a technique to carry out the Term Selection activity based

on a graph where the vertices are resources in the user-generated classi�cation system

and there exists an edge between two resources if they share annotations. Therefore the

original user-generated classi�cation system have to be transformed to this graph. In

section 6.3 we present an experiment where we apply this technique over Delicious data.

The data to be transformed (i.e., the classi�cation system) wer stored on a relational

table. We transformed these data, using SQL queries and intermediate tables, to the

graph required by the Term Selection activity which was represented as an adjacency

list stored in a relational table.

Formalization. To represent this task in DISPEL we de�ne a processing element

type Transform (see listing 4.6). This processing element receives the normalized clas-

si�cation instances and returns tuples representing the new view of the data. The

<rest> speci�cation in the output of the processing element type means that we do

not constrain the structural type of the tuples returned by this task, though we require

tuples instead of any other type. A processing element of type Transform is created by

means of the function transformFn. This function creates an instance of the program

TransformImpl which is the actual implementation of the transformation process.

Example. In this task we group the classi�cation instances according to shared

annotations over resources. That is we group them by normalized category names and

resources, and add the count of users who have agreed with this annotation. Therefore

we transform the normalized instances into triples of the form: <normalizedCatego-

ryName, resource, annotationFreq>. Thus the output of this task is the stream of

transformed instances presented in table 4.3.

4.2.1.4 Choreography of the data preprocessing activity

To put together the tasks of the Data Preprocessing activity we de�ne a work�ow that

connects them in an ordered sequence. This work�ow de�nition is presented in listing
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package es.upm.oeg{

//Implementation of a program to transform normalized classification instances

use es.upm.oeg.TransformImpl;

//Processing Element Type of a transformation process

Type Transform is

PE (<Connection:NormalizedClasInst::"ugcs:NormalizedClasInst" normalizedInst>

=> <Connection:<rest> transformedInst>);

//Function to create a processing element of type Transform

PE(Transform) transformFn(){

//Instance of the program to transform the data

TransformImpl transformImpl = new TransformImpl;

//Connecting the input of the processing element to the input of the program

//and the output of the program to the output stream of the processing element

return (<Connection normalizedInst=transformImpl.inputNormalizedInst>

=> <Connection transformedInst=tranformImpl.outputTransformedData>)

}

}

Listing 4.6: De�nition of the Transformation task in DISPEL

4.7 and depicted in �gure 4.4. First we de�ne a function preProcessDataFn which cre-

ates a processing element of type PreprocessData (see listing 4.3). This function creates

processes for the Extraction, Normalization and Transformation tasks which are then

orchestrated as follows. The Extraction process output, which is a stream of classi�-

cation instances, is connected to the Normalization process input. The Normalization

process output (i.e., the normalized classi�cation instances) are connected to the input

of the Transformation process. Finally the transformed classi�cation instances which

Table 4.3: Classi�cation instances grouped according to category names and resources.

<co�ee,R1,2> <fair trade,R1,1> <programming,R2,1>

<Java,R1,2> <Java,R2,1> <program,R3,1>

<brew,R1,1> <language,R2,3> <coding,R3,1>

<organic,R1,1> <program,R2,2> <open-source,R3,1>
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are the output of the Transformation process, are sent through the output of the Data

Preprocessing activity.

package es.upm.oeg{

PE(PreprocessData) preProcessDataFn(String UGCS, String lexicalResource){

//Defines the processing elements for each task

PE<Extract> Extraction = new extractFn(UGCS);

PE<Normalize> Normalization = new normalizeFn(lexicalResource);

PE<Transform> Transformation = new transformFn();

//Instances of the processes

Extraction extractProcInst = new Extraction;

Normalization normalizeProcInst= new Normalization;

Transformation transformProcInst = new Transformation;

//Workflow definition (connecting inputs and outputs)

extractProcInst.inst => normalizeProcInst.inst;

normalizeProcInst.normalizedInst => transformProcInst.normalizedInst;

//Delivers the transformed instances through the output of the preprocessing process.

return PE(<>

=> <Connection transformedInst=transformProcInst.transformedInst>);

}

}

Listing 4.7: De�nition of the Data Preprocessing work�ow in DISPEL

4.2.2 Activity 1.2. Term selection

The goal of the Term Selection activity is to gather, from the set of classi�cation in-

stances delivered by the Data Preprocessing activity, a set of terms that are relevant in

a particular Domain. Therefore the input of this activity are the classi�cation instances

obtained by the Preprocessing activity and the output is a list of terms related to the

domain of study. Besides the terms themselves it is important to include contextual

information that help to understand in subsequent steps, their meaning. This context

can include provenance information so that we can reconstruct the relations of a term

with the components of the classi�cation systems. In other words, given a term we

should be able to obtain all the information about users, resources and category names
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Figure 4.4: Graphical representation of the data preprocessing activity

that are related to that term.

Guidelines. During this activity Domain Experts and Ontology Engineers work

together to de�ne the strategy to collect the relevant terms from the category names

of the classi�cation system. In general, in this process the whole data set has to be

traversed in order to analyze each piece of data regarding the domain of study. Thus

some heuristics have to be de�ned to collect the relevant domain terms.

For instance, an heuristic can be based on the assumption that relevant domain

resources are annotated with relevant domain terms. Thus if we identify domain rel-

evant resources in the classi�cation system we can collect the most frequent category

names under which they are classi�ed as relevant domain terms. Given the amount of

information in user-generated classi�cation systems the identi�cation of domain rele-
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vant resources should be automatic. For instance by comparing the resources with those

listed in a source of relevant domain resources such as an Internet directory. Another

possibility is to use an initial subset of relevant domain resources, automatically or man-

ually de�ned, and then �nd similar resources in the user generated classi�cation system.

This last option requires the de�nition of a similarity measure between resources.

In case the set of instances is very large, traversing it can be a time and resource

consuming operation. Thus some strategies can be de�ned to limit the traversing

of the classi�cation instances to some of them that ful�ll certain conditions.

A possibility to reduce the dataset is to use statistical sampling since it allows extracting

a representative set of data according to prede�ned error rate. Nevertheless, when the

input data is a continuous stream of data it is not possible to use traditional sampling

and therefore more appropriate sampling techniques for dynamic data streams have to

be used.

In section 5.1.2 we propose a technique to carry out this activity which is based on

a graph representation of the user-generated classi�cation systems where the vertices

are resources and there exists an edge between two resources if they share annotations.

We use spreading activation (Crestani, 1997) to traverse the graph and collect domain

relevant terms. In section 6.3 we present an experiment over Delicious data where we

show how applying this technique we are able to obtain a domain terminology.

Formalization. This activity is formalized in listing 4.8 through a SelectTerms

processing element type. The input is a stream of transformed instances which are not

tied to any structural type while the output is a stream of contextualized terms. A

contextualized term was de�ned in listing 4.2 as a structural type that represents a

tuple containing the term itself along with a list of classi�cation instances from which

the term was obtained. A processing element of type SelectTerms is created by means

of the function selectTermFn. This function creates an instance of the program Select-

TermsImpl which is the actual implementation of the term selection process.

Example. To exemplify the extraction of terms we use a heuristic based on the

relevance of the annotated resource to the programming domain. We use a web directory

of programming-related websites where we look for the resources in our classi�cation

systems. If a resource exists in the directory then we conclude that it is relevant for

the domain and use its category names as relevant terms. For this example we use the
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package es.upm.oeg{

//Implementation of a program to select terms

es.upm.oeg.SelectTermsImpl;

//Processing element type for the selection of terms

Type SelectTerms is

PE ( <Connection:Any transformedInst>

=> <Connection:ContextualizedTerm::"ugcs:ContextualizedTerms" contextualizedTerm>);

//Function to create a processing element of type SelectTerms

PE(SelectTerms) selectTermFn(){

//Instance of the program to select terms

SelectTermsImpl selectTermsImpl = new SelectTermsImpl();

//Connects the input defined in the processing element type to the input of the program

//and the output of the program to the output of the processing element type

return (<Connection transformedInst = selectTermsImpl.inputData>

=> <Connection contextualizedTerm = selectTermsImpl.selectedTerms>);

}

}

Listing 4.8: Term Selection activity in DISPEL

programming category in the Yahoo! directory1. Thus from the resources in the stream

of transformed instances presented in 4.3 we found in this directory the resources R2

and R3. Therefore we get rid of R1 and produce a stream of terms with the category

names under which R2 and R3 are annotated (see table 4.4).

Table 4.4: Tuples of relevant terms extracted from the transformed instances

<Java,[<Java,R2,1>]> <program,[<program,R2,2>,<program,R3,1>]>

<language,[<language,R2,3>]> <programming,[<programming,R2,1>]>

<coding,[<coding,R3,1>]> <open-source,[<open-source,R3,1>]>

1http://dir.yahoo.com/Computers_and_Internet/Programming_and_Development/
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4.2.3 Choreography of the terminology extraction process

So far we have de�ned the Data Preprocessing and Term Selection activities that are

carried out during the Extract Terminology Process. To assemble these activities within

the process we create the work�ow described in listing 4.9 and depicted in �gure 4.5.

The Extract Terminology process is created by the function extractTerminology. First,

a Data Preprocessing process and a Term Selection processes are created. Next the

output of the Data Preprocessing activity, which is the set of transformed classi�cation

instances obtained from the classi�cation systems, is connected to the input of the

Term Selection activity. Finally the set of contextualized terms produced by the Term

Selection is delivered through the output of the Terminology Extraction process that is

returned by the function extractTerminologyFn.

package es.upm.oeg{

PE(ExtractTerminology) extractTerminologyFn(String UGCS, String lexicalResource) {

//Defines the processing elements of the activities

PE<PreprocessData> DataPreprocessing = new preProcessDataFn(UGCS, lexicalResource);

PE<SelectTerms> TermSelection= new selectTermsFn();

//Instantiates the processes to be used during this workflow

DataPreprocessing preprocessProcInst = new DataPreprocessing;

TermSelection selectTermsProcInst= new TermSelection;

//Defines the workflow (connecting inputs and outputs)

preprocessProcInst.transformedInst => selectTermsProcInst.transformedInst;

//Delivers as output the stream of contextextualized terms

return PE(<> =>

<Connection contextualizedTerms = selectTermsProcInst.contextualizedTerms>);

}

}

Listing 4.9: Work�ow for the Extract Terminology process
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Figure 4.5: Graphical representation of the extract terminology process

4.3 Process 2. Semantic elicitation

The goal of the semantic elicitation process is to obtain a domain ontology from the

relevant domain terms found in the Extract Terminology process. To achieve this ob-

jective we propose to reuse classes and relations from existing knowledge bases which

are then used to create the ontology. To do so we propose the following activities: i)

Semantic Grounding where terms are linked to entities in the knowledge base, ii) Iden-

ti�cation of Classes where these entities are used to look for classes in the knowledge

base that represent their meaning, and iii) Discovery of Relations where we look for

existing relations between the classes in the knowledge base. With the set of classes

and relations found during the process we produce the initial domain ontology.

The success of this process depends, to a large extent, of the knowledge base used.

The ontology engineer is responsible for the selection of the knowledge base from which

the semantic entities are obtained. He must take into account the coverage of the

knowledge base with respect to the domain of study. A poor domain cover-

age may lead to produce a small ontology with rather general concepts. To improve
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coverage more than one knowledge base can be used, though this solution can intro-

duce new problems arising from heterogeneous representations and from semantic

mismatches regarding the entities.

Heterogeneous representations refer to the fact that di�erent knowledge bases can

use distinct modeling languages, which in turn can be based on di�erent representation

paradigms. This heterogeneity a�ects the interfaces provided to query the knowledge

bases which also can be potentially di�erent.

On the other hand, semantic mismatches can emerge from the di�erent conceptu-

alizations of the same pieces of knowledge. Conceptualizations can vary according to

the di�erent point of view of creators, or to the requirements de�ned for the knowledge

base, among other variables. Nevertheless, these issues can be addressed with the help

of alignment and integration techniques.

In addition, ontology engineers may need to take into account the lexical capa-

bilities of the knowledge base including the representation of possible concepts for

ambiguous words, the representations of concepts that can be referred to with di�er-

ent synonyms, the availability of textual descriptions de�ning the concepts, and the

representation of the di�erent verb conjugations. Another aspect that may in�uence

the selection of the knowledge base is the multilinguality support. Given that the

source of the input terms is a set of category names written by users, they can be writ-

ten in di�erent languages according to the languages that users use to write. Therefore,

if ontology engineers decide to tap into the potential multilingual terms, they have to

select a knowledge base with multilingual information.

To avoid the aforementioned problems we recommend to use knowledge bases: i)

which are comprehensive so that domain knowledge is well covered, ii) which are pub-

lished in standard languages such as RDF, RDFS or OWL, iii) for which the quality of

the links to other data sources have been assessed, and iv) which contain information

of di�erent meanings of words and the di�erent words used to refer to those meanings.

We can �nd some knowledge bases in the Web of Data (Bizer et al., 2009a) which

ful�ll these characteristics. For instance DBpedia (Bizer et al., 2009b) and OpenCyc1

are comprehensive and contains information of di�erent domains. They are published

in RDF and are available through sparql endpoints. The links between concepts of

each of the knowledge bases are created based on the wikipedia pages which describe

1see http://www.opencyc.org/
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each concept. In both cases the association between a concept and a wikipedia page

is supervised by users. Finally, DBpedia has extracted information of Wikipedia dis-

ambiguation pages where candidate concepts for ambiguous words are speci�ed, and

of Wikipedia redirection pages where alternative words to refer to a given concept are

de�ned. Therefore the techniques that we proposed in the next chapter (section 5.2)

to carry out the Semantic Elicitation rely on knowledge bases published in the web of

data.

Formalization. Before going into details of the process we need to de�ne its input

and output. The input is the stream of contextualized terms according to the structural

type ContextualizedTerm which was described in listing 4.2. The output is an ontology

that can be represented as a stream of statements. Each statement is a triple which

consists of a subject, a predicate, and an object and its semantics is de�ned by the

rdf:Statement class1. These statements allow de�ning the classes, relations and restric-

tions making up the ontology according to the syntax and semantics of an ontology

language such as RDFS or OWL2. Thus, having speci�ed the input and output we de-

�ne the processing element type ElicitSemantics to represent this process (see listing

4.10). A processing element of type ElicitSemantics is created by means of the function

elicitSemanticFn. This function receives as an argument the knowledge base from which

we are going to reuse the conceptualizations.

In the following we present the activities involved in the Semantic Elicitation process,

and �nalize the section with the de�nition of the process work�ow where the activities

are arranged in a given order.

4.3.1 Activity 2.1. Semantic grounding

By semantic grounding we mean to give terms explicit semantics on the basis of their

association with entities in knowledge bases. Therefore, the objective of this activity

is to identify for each of the domain relevant terms, obtained in the Terminology Ex-

traction process, the semantic entity that represents its meaning. A semantic entity is

any component of the knowledge base that can be identi�ed uniquely, for instance, by

a URI. Hence, semantic entities are data and object properties, instances and classes.

1see http://www.w3.org/TR/rdf-schema/
2see http://www.w3.org/TR/owl-ref/
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package es.upm.oeg{

Stype Statement is

<String subject, predicate, object>;

Type ElicitSemantics is

PE(<Connection:ContextualizedTerms::"ugcs:ContextualizedTerms" contextualizedTerm>

=> <Connection:Statement::"rdf:statement" ontologicalStatement>);

//Constructor of a processing element of type ElicitSemantic

PE(ElicitSemantics) elicitSemanticsFn(String knowledgeBase){

...

}

}

Listing 4.10: Partial de�nition of the Processing Element Type for the Semantic Elicita-

tion process

Guidelines. When ontology engineers are de�ning the strategy to select the con-

cepts de�ning the meaning for each term they must face the ambiguity of some of them.

Therefore to cope with ambiguity the strategy to be designed has to include a disam-

biguation approach. Synonymy also poses challenges since the approach must be able

to identify when two terms refer to the same concept, so that this kinds of terms are

correctly grounded.

In addition, multilinguality of terms (Gracia et al., 2012) may be considered since

ontology engineers might have to design a procedure to identify the language of terms

so that they can be grounded to the right entities. Similarly, ontology engineers have to

deal with the di�erent representations of multilingual concepts in the knowledge base.

Two terms written in di�erent languages can be represented by a unique concept or by

two di�erent concepts, one for each language. The former representation allows keeping

track of cross-lingual synonyms, though it does not provide support for concepts which

exist in one of the languages but not in the other, while the latter representation does

it.

Distinct strategies can be applied to select the right semantic entity for a

term. Among them we have the selection of the most probable sense for a word

de�ned by a group of users or according to statistics of usage of each meaning

in a corpus or in the knowledge base. Other strategies can use the context of
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the word to select the right sense. These word sense disambiguation strategies has

been tested in (Mendes et al., 2011). Finally the strategy can be automatic or assisted.

An automatic strategy produces as result the most probable concept for each term. In

contrast an assisted one provides a list of candidate concepts from which users can pick

the right one (Gracia et al., 2010).

Given the amount of information presented in user-generated classi�cation systems

an assisted approach for the semantic grounding is unfeasible. In addition the ap-

proaches that give preference to the most frequent use of a word (i.e., default sense or

prior probability) may not select less frequent meanings which can be related to speci�c

domains. Therefore we recommend to use a sense disambiguation approach that

analyse the candidate meanings according to a context and select the one that better

de�ne the meaning of ambiguous word.

We propose a technique to carry out this activity in section 5.2.1 where we use the

Vector Space Model (Salton and Mcgill, 1986) to select among candidates the concept

that better de�nes the meaning of the category name. In section 6.2 we present the

results of an experiment where we grounded a set of multilingual Flickr tags to seman-

tic entities in DBpedia. In addition in section 6.3 we use this technique, within the

framework of a process to develop an initial ontology in the stock market domain, to

ground Delicious tags to semantic entities in DBpedia.

Formalization. Listing 4.11 presents the formalization in DISPEL of the semantic

grounding activity. We de�ne the processing element type Ground. The input is the

list of contextualized terms which are passed directly from the input of the Semantic

Elicitation process. The output is the list of unique semantic entities created from the

union of the entities to which the terms were grounded. Each entity is represented by

a string and its semantics is de�ned by the rdf:Resource class1. A processing element

of type Ground is created by means of the function groundFn. This function receives

as argument the knowledge base used for the semantic grounding of terms, and creates

an instance of the process GroundingImpl which is the actual implementation of the

semantic grounding process.

Example. To ground the stream of terms gathered from the classi�cation system

we use WordNet synsets. In WordNet (Fellbaum, 2005) every word is associated to

one or more synsets, and each synset represents a possible meaning. Thus we retrieved

1see http://www.w3.org/TR/rdf-schema/
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package es.upm.oeg{

//Implementation of a program to ground terms to semantic entities

use es.upm.oeg.GroundingImpl;

//Processing element type defining a semantic grounding process

Type Ground is

PE(<Connection:ContextualizedTerms::"ugcs:ContextualizedTerms" contextualizedTerm>

=> <Connection:String::"rdf:Resource" entity>);

//Constructor of the processing element of type Ground

PE(Ground) groundFn(String knowledgeBase){

//Instance of the program to ground terms to semantic entities

GroundingImpl groundImpl = new GroundingImpl();

//Set the knowledge base used for grounding the terms

|-knowledgeBase-|=>groundImpl.knowledgeBase;

//Connect the stream of contextualized terms with the input data of the program

//and the output data of the program with the output stream of the PE type.

return (<Connection contextualizedTerm = groundImpl.dataToGround> =>

<Connection entity = groundImpl.entities>);

}

}

Listing 4.11: De�nition of the Processing Element Type for the Semantic Grounding

process

the candidate synsets for each term in table 4.4, and then picked the synset which

represents the meaning most related to the programming domain. We found suitable

synsets for all the terms except for coding. The grounding of terms is presented in table

4.5. For each synset we create an RDF resource following the W3C recommendations

in this respect1. A URI for an RDF resource representing a synset has to adhere

to the pattern http://www.w3.org/2006/03/wn/wn20/instances/synset-[Name]-[POS]-

[number] where Name is the synset name, POS is the part of speech, and number

is the synset number which identi�es the meaning of the word. Thus the output of

this activity is the stream of strings representing RDF resources presented in table

4.6. In this table resources have been pre�xed with the wn namespace which refers to

http://www.w3.org/2006/03/wn/wn20/.

1RDF/OWL Representation of WordNet: http://www.w3.org/TR/wordnet-rdf/
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Table 4.5: Grounding of terms to senses in WordNet

Term Synset Description

Java java#n#3 A simple platform-independent

object-oriented programming...

program program#n#7 (computer science) a sequence of in-

structions that a computer...

programming programming#n#2 Creating a sequence of instructions

to enable the...

language programming_language#n#1 (computer science) a language de-

signed for programming...

open-source open-source#a#1 Of or relating to or being computer

software for...

Table 4.6: RDF resources representing WordNet synsets

wn:instances/synset-java-noun-3

wn:instances/synset-program-noun-7

wn:instances/synset-programming-noun-2

wn:instances/synset-programming_language-noun-1

wn:instances/synset-open_source-adverb-1

4.3.2 Activity 2.2. Identi�cation of classes

The Identi�cation of Classes activity aims at obtaining classes in the knowledge base

that correspond directly or are related to the semantic entities gathered by the Semantic

Grounding activity. Each semantic entity may be connected in the knowledge base to

other entities which may represent classes. These connections between entities and

classes can span through di�erent entities and therefore we have to be able to browse

them so that we can obtain the related classes.

Guidelines. The de�nition of semantic entities given above allows them to be on-

tology classes and hence these classes may be collected �rst. Next step is to follow the

relations between semantic entities and classes that are de�ned in the knowledge base.

Speci�cally, we are interested in relations having as domain a class and as range the

semantic entity, or the opposite, relations having as domain the semantic entity and as
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range a class. Note that the relation may not be direct since they can involve interme-

diate entities. Ontology engineers must de�ne the relations they want to bene�t from

to obtain the domain relevant classes. Examples of these relations are equivalence rela-

tions such as owl:sameAs or owl:equivalentClass, relations de�ning instances of classes

rdf:type, relations de�ning subclasses rdfs:subClassOf, or ad-hoc relations which are im-

portant in the domain of study.

Some of the classes obtained from the semantic resources may be too

general to be considered as relevant in the domain. The level of generality of

a given class can be measured by calculating the distance from the class to the root

class in the knowledge base hierarchy (Wu and Palmer, 1994). Usually this distance

is measured as the number of relations or of classes that de�ne a path between the

two classes. A short distance is an indicator of generality while a long distance is an

indicator of speci�city.

Since the Semantic Elicitation process can bene�t from more than one knowledge

base, in this activity we can obtain many classes that are equivalent through

di�erent knowledge bases, and thus ontology engineers must decide how to deal with

those equivalent classes. Current modeling languages and reasoners allows representing

and infering over equivalent classes. Nevertheless, from the user point of view equivalent

classes can hamper the understanding and maintainability of the knowledge base. We

have identi�ed three possible alternatives as to how to include this equivalent classes into

the new ontology. The �rst one is to keep all the equivalent classes, thus sacri�cing the

ontology understanding by users. The second alternative is to keep one of the equivalent

classes and discarding the others. In this alternative some valuable information can be

lost with the discarded classes. The third option is to create a unique class to represent

each group of equivalent classes. These unique classes state the equivalence with the

existing classes using the relation owl:equivalentClass, and they may also aggregate the

data properties of the equivalent classes. This last option o�ers a good solution from the

user point of view while preserving the source information so that reasoning capabilities

are maintained.

In section 5.2.2 we propose a technique to identify classes, in a linked data set, from

semantic entities. The technique searches for all the possible paths connecting, through

sameAs relations, a semantic entity and a class. The search in the linked data set is

done via SPARQL queries. In addition in section 6.3 we have evaluated this technique
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in the context of an experiment to develop a stock market ontology. In this experiment

the semantic entities belong to DBpedia and the classes belong to a linked data set

consisting of DBpedia, OpenCyc, and UMBEL ontologies. In addition to represent the

classes we decided for the third option discussed above which is to create classes in the

ontology and linked them with the existing classes in the linked data set.

Formalization. In listing 4.12 we present the de�nition of the Identi�cation of

Classes activity in DISPEL. We de�ne a processing element type IdentifyClasses. The

input is de�ned by the stream of semantic entities produced in the Semantic Grounding.

The output is a stream of classes represented by triples of rdf:Statement type. The

details of how a class is de�ned using an RDF statement are de�ned in the speci�cation

of the language in which we are creating the ontology. A processing element of type

IdentifyClasses is created by means of the function identifyClassesFn. This function

receives as input the knowledge base used for the class identi�cation. The actual process

to identify classes is implemented in the program IdentifyClassesImpl.

Example. We consider noun synsets as classes to be included in the ontology.

However, not all nouns represent classes and thus including them in the ontology is a

conceptualization error. This is the case of named entities such as cities, monuments, or

people, among other types. For instance, Paris the city is an instance and not a class.

WordNet distinguishes between classes and instances by classifying nouns in Types and

Instances. Therefore from the RDF resources presented in table 4.6 we only select as

classes those noun synsets that are Types. Then we create the RDF triples de�ning

the classes. For each class we also de�ne its labels which correspond to the di�erent

synonyms associated to the synset. The output stream is shown in table 4.7. Note that

class de�nition also include the labels for each class which have been extracted from the

synonyms associated to each synset.

4.3.3 Activity 2.3. Relation discovery

The �nal activity proposed in our method is the discovery of relations between classes.

The goal of this activity is twofold: 1) to gather relations, in the form of object proper-

ties, which relate classes identi�ed in the previous activity, and 2) to produce the �nal

domain ontology. To elicit these relations we propose to rely on the knowledge bases

where we can search and extract them. The ontology is then created with the set of
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package es.upm.oeg{

//Implementation of a program to identify classes

use es.upm.oeg.IdentifyClassesImpl;

//Processing element type to identify classes

Type IdentifyClasses is

PE(<Connection:String::"rdf:Resource" entity>

=> <Connection:Statement::"rdf:Statement" classDefinition>);

//Constructor of the processing element of type IdentifyClasses

PE(IdentifyClasses) identifyClassesFn(String knowledgeBase){

//Instance of the program to identify classes

IdentifyClassesImpl identifyClassesImpl=new IdentifyClassesImpl();

//Set the knowledge base to be used

|-knowledgeBase-|=>identifyClassesImpl.inputKnowledgeBase;

//Connects the stream of semantic entities to the input of the program

//and the output of the program to the stream of class definitions.

return(<Connection entity=identifyClassesImpl.inputEntity>

=> <Connection classDefinition=identifyClassesImpl.outputClassDef>);

}

}

Listing 4.12: De�nition of the Processing Element Type for the Identi�cation of Classes

activity

classes, their de�nitions and the relations among them. Thus, the input of this activ-

ity is the stream of classes and their de�nitions produced by the Class Identi�cation

activity. The output is a list of statements of the form subject predicate object repre-

senting the Ontology. The relations discovered between two classes can span through

some unidenti�ed classes, and thus these new classes may be added to the ontology.

Therefore this activity is recursive in nature since newly identi�ed classes arising from

the discovered relations can be used in a new search for relations among the new and

the existing classes.

Guidelines. General purpose knowledge bases can contain generic relations which

may not �t the requirements of domain ontologies. Examples of these relations areOpen-
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Table 4.7: De�nition of classes for the resources identi�ed in the semantic grounding

<wn:instances/synset-java-noun-3> <rdf:type> <rdfs:Class>.

<wn:instances/synset-java-noun-3> <rdfs:label> �Java�@en.

<wn:instances/synset-program-noun-7> <rdf:type> <rdfs:Class>.

<wn:instances/synset-program-noun-7> <rdfs:label> �program�@en.

<wn:instances/synset-program-noun-7> <rdfs:label> �programme�@en.

<wn:instances/synset-program-noun-7> <rdfs:label> �computer program�@en.

<wn:instances/synset-programming-noun-2> <rdf:type> <rdfs:Class>.

<wn:instances/synset-programming-noun-2> <rdfs:label> �programming�@en.

<wn:instances/synset-programming-noun-2> <rdfs:label> �programing�@en.

<wn:instances/synset-programming-noun-2> <rdfs:label> �computer prog..�@en.

<wn:instances/synset-programming_language-noun-1> <rdf:type> <rdfs:Class>.

<wn:instances/synset-programming_language-noun-1> <rdfs:label> �prog..�@en.

<wn:instances/synset-programming_language-noun-1> <rdfs:label> �prog..�@en.

Cyc:QouteIsa1 which is a relaxed version of the relation rdf:type, and dcterms:subject2

which is used in DBpedia to relate resources to Wikipedia categories. Hence, the on-

tology engineer can de�ne a whitelist with the relations they are interested

in, or otherwise a blacklist for the relations they are not interested in.

As we mention before we are interested not only in direct relations between the

classes, but also in indirect relations spanning other classes. The classes found in-

between of indirect relations are possible related to the domain of study,

though this level of relation may be in�uenced by two factors. The �rst factor

is the number of unidenti�ed classes making up the relation between the classes for

which the relation was searched. A small number of unidenti�ed classes can suggest

that there is a strong relation between them and the domain of study, while a large

number of these classes may indicate the opposite. The second factor is the speci�city

level of the unidenti�ed classes. A relation between to classes, which span through

general classes such as thing or abstract entity, can suggests a low relevance of the

relation to the domain. The speci�city level can be measure in an ontological hierarchy

by the class distance to the root concept. A short distance to the root indicates a low

1http://sw.opencyc.org/concept/Mx4rBVVEokNxEdaAAACgydogAg
2http://purl.org/dc/terms/subject
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level of speci�city while a long distances suggest a high level of speci�city. Thus ontology

engineers must de�ne the guidelines to accept the relations and new classes discovered

in terms of the number of classes which make up the relation and the speci�city of these

classes.

In addition ontology engineers have to take into account the computational

cost of searching and retrieving the relations for a given pair of classes from

the knowledge base. In large knowledge bases this search can be very expensive, in

terms of processing time and machine resources, since usually it implies to traverse the

whole knowledge base. Although the search performance depends, in a large extent,

of the knowledge base implementation and of the machine capabilities over which it is

deployed, some strategies can be designed to limit the scope of the search and help the

knowledge base server in this task. These strategies are framed in what is known as

query, knowledge base, and server tunning, and they varies widely between the di�erent

query languages, knowledge base implementations and operating systems, and hence

we suggest ontology engineer to follow the speci�c tunning guidelines of each of the

aforementioned components.

Finally the decisions taken in the previous activity regarding how to deal

with equivalent classes in�uences how to represent the relations in the �nal

ontology. If the option was to keep all the equivalent classes or just one of them, then

the relations discovered during this activity have to be de�ned for the corresponding

classes. If the option was to create local classes linked to the existing equivalent classes

then the relations discovered have to be de�ned between the local classes.

In section 5.2.3 we present a technique to identify relations among classes in a

linked data set. This technique is based on issuing SPARQL queries to traverse all the

possible paths connecting to classes in the linked data set. In practice the length of

the maximum path to traverse has to be de�ned. We have evaluated this technique in

section 6.3 within the framework of a process to develop an ontology in the sotck market

domain. In this experiment the linked data set consisted of DBpedia, OpenCyc and

UMBEL ontologies. The identi�ed relations were created in the ontology as relations

between the ontology classes.

Formalization. In listing 4.13 we present the de�nition in DISPEL of the process-

ing element type for the Relation Discovery activity. The input is the stream of classes

and their data properties, which are represented by the rdf:Statement structural type.
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The processing element type de�ning this process is DiscoverRelations. The output is

the ontology itself represented by a stream of rdf:Statement variables. Valid statements

depends on the ontology language and they include the de�nition of a class, an object

property, a data property, and the association of a property to another property or to a

class. In this last case when an object property links to classes a relation is established.

The constructor of a processing element of type DiscoverRelations is the function dis-

coverRelationsFn. This function receives as input data the knowledge base used for

discovering the relations. The actual implementation of the process is the program

DiscoverRelationsImpl.

package es.upm.oeg{

//Implementation of a program to discover relations

es.upm.oeg.DiscoverRelationsImpl;

//Processing element type for the process to discover relations

Type DiscoverRelations is

PE (<Connection:Statement::"rdf:Statement" classDefinition>

=> <Connection:Statement::"rdf:Statement" ontologicalStatement>);

//Constructor of a processing element of type DiscoverRelations

PE(DiscoverRelations) discoverRelationsFn(String knowlegeBase){

//Instance of the program to discover relations

DiscoverRelationsImpl discoverRelationsImpl= new DiscoverRelationsImpl();

//Set the knowledge base used for discovering relations

|-knowlegeBase-| => discoverRelationsImpl.inputKnowledgeBase;

//Connect the stream of class definitions to the input stream of the program

//and the output stream of the program to the stream of rdf statements

return (<Connection classDefinition = discoverRelationsImpl.inputClassDef>

=> <Connection ontologicalStatement=discoverRelationsImpl.ouputRDFStatements);

}

}

Listing 4.13: De�nition of the Processing Element Type for the Relation Discovery ac-

tivity

Example. For the discovery of relations we use the WordNet hyponymy hierar-

chy. We translate hyponymy relations between noun synsets, representing types, as

subClassOf ontological relations. First we carry out a pairwise search for paths in the
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hyponomy hierarchy linking the synsets corresponding to the classes found in the previ-

ous activity (see table 4.7). Results are shown in table 4.8. For each pair of synsets we

present the path found in the hyponym hierarchy. Note that whenever the path is estab-

lished through a common superclass in the hierarchy we show the corresponding synset

in bold. For instance program and programming_language share communication#n#2

as common super class. This means that both synsets are types of communications.

Paths including a common superclass have to be interpreted in a di�erent way. That

is previous to the common super class the relation between synsets is Is A while after

it the relation between synset is the inverse of Is A (e.g., Type Of ). All the relations

found in Wordnet, except for the relations between Java and programming language,

include a common superclass.

In total we found 16 new classes setting a path between the previously identi�ed

classes. Therefore we include them in our �nal ontology. In addition we create the sub-

ClassOf relation between the classes according to the hyponomy relations found for each

pair of classes. For instance the relation between java and object-oriented_programming

is formalized as follows: <wn:synset-java-noun-3> <rdfs:subClassOf> <wn:synset-object-

oriented\programming\language-noun-1>. Thus the output stream of this activity is

the ontology itself representing by the triples de�ning the classes we have identi�ed and

the relations between those classes. In �gure 4.6 we depict the obtained ontology.

4.3.4 Choreography of the semantic elicitation process

After de�ning the activities which have to be carried out during the Semantic Elicitation

process we can present how these activities are orchestrated in an ordered sequence to

produce the domain ontology. In listing 4.14 we describe the function elicitSemantics

which is in charge of creating the work�ow (see �gure 4.7). This function creates a

processing element of type SemanticElicitation which represent the process itself. This

process input is a stream of contextualized terms that is connected to the internal con-

nection inputTerms. This stream of terms is then fed into the input of groundProcInst

process. This grounding process carries out the Semantic Grounding activity and obtain

a list of semantic entities. Next the stream of semantic entities is sent to the input of

the getClassesProcInst process which implements the Identi�cation of Classes activity.

The output of this process is a stream of statements describing the ontology classes and

their de�nitions. These statements are the input of the getRelationsProcInst process
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Table 4.8: Relation discovery between classes. Synsets in bold indicates common super-

class.

Class java and Class program

Java#n#3 object-oriented_programming_language#n#1 program-

ming_language#n#1 arti�cial_language#n#1 language#n#1 com-

munication#n#2 written_communication#n#1 writing#n#4 cod-

ing_system#n#1 code#n#3 software#n#1 program#n#7

Class Java and Class programming

Java#n#3 object-oriented_programming_language#n#1 program-

ming_language#n#1 arti�cial_language#n#1 language#n#1 commu-

nication#n#2 abstraction#n#6 psychological_feature#n#1 event#n#1

act#n#2 activity#n#1 creation#n#1 creating_by_mental_acts#n#1

programming#n#2

Class java and Class programming language

Java#n#3 object-oriented_programming_language#n#1 program-

ming_language#n#1

Class program and Class programming

program#n#7 software#n#1 code#n#3 coding_system#n#1 writing#n#4

written_communication#n#1 communication#n#2 abstraction#n#6 psy-

chological_feature#n#1 event#n#1 act#n#2 activity#n#1 creation#n#1

creating_by_mental_acts#n#1 programming#n#2

Class program and Class programming_language

program#n#7 software#n#1 code#n#3 coding_system#n#1 writing#n#4

written_communication#n#1 communication#n#2 language#n#1 arti�-

cial_language#n#1 programming_language#n#1

Class programming and Class programming_language

programming#n#2 creating_by_mental_acts#n#1 creation#n#1 ac-

tivity#n#1 act#n#2 event#n#1 psychological_feature#n#1 abstrac-

tion#n#6 communication#n#2 language#n#1 arti�cial_language#n#1

programming_language#n#1
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Figure 4.6: Programming ontology obtained from the classi�cation system and from the

reuse of WordNet conceptualizations.

which carries out the Relation Discover activity. This process output is the stream of

statements de�ning the ontology which are delivered through the output of the Semantic

Elicitation process.

4.4 Choreography of the method for developing ontologies

In summary the method proposed in this thesis consists of two main processes: the

Terminology Extraction process presented in section 4.2, and the Semantic Elicitation

process described in section 4.3. Both processes have been described and divided in

activities and tasks, and formalized in DISPEL.

The work�ow de�nition (see listing 4.15 and �gure 4.8) starts by creating the process-

ing element of the types de�ned for the Terminology Extraction and Semantic Elicitation

activities. From these types two process are instantiated: extractTerminologyProcInst

and elicitSemanticsProcInst. In addition a results process is created which is in charge

of displaying the generated ontology. Next, the processes are orchestrated. The stream

of terms produced by the extractTerminologyProcInst process is connected to the input

of the elicitSemanticsProcInst process. The elicitSemanticsProcInst process produces
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package es.upm.oeg{

PE(SemanticElicitation) elicitSemantics(String knowledgeBase) {

//Input stream of the Semantic Elicitation process

Connection inputTerms;

//Create the processing elements types of each activity

PE(Ground) Grounding = new groundFn(knowledgeBase);

PE(IdentifyClasses) ClassIdentification = new identifyClassesFn(knowledgeBase);

PE(DiscoverRelations) RelationDiscovery = new discoverRelationsFn(knowledgeBase);

//create instances of the processing elements

Grounding groundProcInst = new Grounding;

ClassIdentification getClassesProcInst = new ClassIdentification;

RelationDiscovery getRelationsProcInst = new RelationDiscovery;

//connect workflow

inputTerms => groundProcInst.contextualizedTerm;

ground.entity => getClassesProcInst.entity;

getClassesProcInst.classDefinition=>getRelationsProcInst.classDefinition;

return PE(<connnection contextualizedTerm = inputTerms>

=> <Connection ontologicalStatement = getRelations.ontologicalStatement>); }}

Listing 4.14: Work�ow for the Semantic Elicitation process

package es.upm.oeg{

//Create the processing element of the types defined for each activity

PE<ExtractTerminology> TerminologyExtraction = new extractTerminologyFn(UGCS,lexicalResource);

PE<ElicitSemantics> SemanticElicitation = new elicitSemanticsFn(knowledgeBase);

//Create instances of the processing elements

TerminologyExtraction extractTerminologyProcInst = new TerminologyExtraction;

SemanticElicitation elicitSemanticsProcInst = new SemanticElicitation;

Results results = new Results;

//connect workflow

extractTerminologyProcInst.contextualizedTerms => elicitSemanticsProcInst.contextualizedTerms;

elicitSemanticsProcInst.ontologicalStatement => results.input; }

Listing 4.15: Work�ow de�ning the method for obtaining ontologies from user-generated

classi�cation systems
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the stream of statements de�ning the ontology. These statements are connected to input

of the results process.

elicitSemanticsProcInst:

ontologicalStatement

F(x):elicitSemanticFn

ElicitSemantics

contextualizedTerm

String: knowledgeBase

groundProcInst

entity

Ground

F(x): groundFn

String: knowledgeBase

contextualizedTerm

getClassesProcInst

classDefinition

IdentifyClasses

F(x): identifyClassesFn

String: knowledgeBase

entity

getRelationsProcInst

ontologicalStatement

DiscoverRelations

F(x): discoverRelationsFn

String: knowledgeBase

classDefinition

Figure 4.7: Graphical representation of the semantic elicitation process

4.5 Conclusions

In this chapter we have presented our method for developing ontologies from user-

generated classi�cation systems. This method was inspired by the activities proposed

in well known ontology development methodologies such as Methontology (Fernández-

Lopez et al., 1997) and the �rst scenario of the NeOn methodology (Suárez-Figueroa

et al., 2012). For instance the �rst activity in Methontology is to create a term glos-

sary. We carry out this task in the Terminology Extraction process where we obtain a

list of relevant domain terms from the user-generated classi�cation system. Next this
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extractTerminologyProcInst:

ContextualizedTerms

F(x):extractTerminologyFn

ExtractTerminology

elicitSemanticsProcInst:

ontologicalStatement

F(x):elicitSemanticFn

ElicitSemantics

contextualizedTerm

String: UGCS

String: lexicalResource

String: knowledgeBase

Figure 4.8: Graphical representation of the method for developint ontologies from folk-

sonomies

methodology proposes to create a taxonomy of concepts and then to identify binary

relations between those concepts. We carry out these two tasks in the Semantic Elic-

itation process where we �rst identify concepts (i.e., classes) from the list of domain

terms and then search for relations between those classes in a linked data set. The main

di�erence is that in our method we do not rely on humans to create the ontology but

in the knowledge already present in the user-generated classi�cation system and in the

ontologies that we are reusing in the process.

Methodologies have evolved from those where experts create the ontologies from

scratch (e.g., Methontology (Fernández-Lopez et al., 1997)) to more sophisticated method-

ologies were it is possible to reuse knowledge from ontological and non-ontological re-

sources (e.g., NeOn methodology (Suárez-Figueroa et al., 2012)). Non-ontological re-

sources are information sources from which it is possible to elicit knowledge, though

this knowledge is not yet formalized in an ontology. Thus user-generated classi�cation

systems fall into the category of non-ontological resources and they have been recog-

nized as such. In (Villazón-Terrazas, 2012) authors propose patterns and techniques to

reuse and reengineering di�erent types of non-ontological resources such as taxonomies,

and thesauri. However they do not propose an approach to develop ontologies from

user-generated classi�cation systems. In addition from the review of the state of the art

we can state that none of the surveyed research works propose an integrated method to

generate a domain ontology.
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We have formalized our method using DISPEL. This formal language allows describ-

ing how the processes are organized and how data are transformed through them. In

addition DISPEL allows de�ning the semantics of the data by means of the association

of the data streams with ontological concepts. These semantics descriptions of the data

improve the understanding of the work�ow by humans and machines.

In chapter 5 we present some techniques to support the main processes and activities

proposed in our method. In addition in chapter 6 we present an experiment where we

applied the method and the techniques to develop an ontology in the market-value

domain from Delicious data and reusing linked data sets.
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CHAPTER 5

TECHNIQUES SUPPORTING THE METHOD

In this chapter we describe a set of techniques that support the implementation of our

method for developing ontologies from user-generated classi�cation systems. In this

context a technique is understood as a speci�c procedure which can be represented by

a sequence of instructions arranged in an algorithm (see section 4.1.1). We propose

to use existing techniques tailored to the needs of each activity. That is, we adapt

techniques that may have been initially created to target a di�erent problem so that

they can ful�ll the requirements of the activities and tasks de�ned in the method. Thus

our contributions are to adapt these techniques to new uses which are distinct from

the ones on which they are applied traditionally, and to arrange them in an organized

sequence so that they contribute to the �nal goal of developing an ontology from user-

generated classi�cation systems.

In �gure 5.1 we show the techniques that we have identi�ed to carry out the processes

of the method for building ontologies. In the Extract Terminology process we de�ne

techniques for: i) the Normalization task of the Preprocessing activity, and ii) the Term

Selection activity. For the Normalization task we use an approximate matching

(Zobel and Dart, 1995) technique (see section 5.1.1). The most common application

of approximate matchers are in spell checking where words are compared to a list of

correct words. If a word does not appear in this list then the most similar words are

retrieved as suggestions. In our case we have a list of normalized words which is a large

dictionary created from Wikipedia article titles and redirection page titles. Then we

apply the approximate matcher to obtain candidate normalizations which are ranked
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according to string similarity and popularity. We measure popularity as the number of

times that a word has been used in Wikipedia.

For the Term Selection activity (see section 5.1.2) we use spreading activation

(Crestani, 1997) to collect relevant domain terms. Spreading activation is used to search

networks of any type and it has been used in information retrieval processes (Crestani,

1997) where the network consists of nodes which represent the documents and terms in

those documents. In our case the network is a graph representing a part of the user-

generated classi�cation systems. Then we traverse this graph, starting from a set of

prede�ned nodes, using spreading activation so that we can collect the category names of

the activated nodes as domain relevant terms. We have de�ned an activation function,

which is applied on each visited node, based on the number of shared annotations

between the previously visited node and the current node.

In the Semantic Elicitation process we de�ne techniques for all the activities. For the

Semantic Grounding activity we use the vector space model (Salton and Mcgill,

1986) to select the concept which represents the meaning of a category name (see section

5.2.1). The Vector space model has been used traditionally in information retrieval

processes (Baeza-Yates and Ribeiro-Neto, 2011); it allows representing documents as

vectors of terms which then can be compared with a query vector to select the most

similar document vectors. In the semantic grounding we consider the category name

and its context as a query and the candidate semantic entities as documents, from

which we have to select the one that better represents the category name meaning.

Thus we create a query vector with the category name and its context and look for the

most similar sense in a candidate set of senses. The candidate set of senses is created

from DBpedia disambiguation resources where the possible concepts representing the

meanings of words are speci�ed.

For the Class Identi�cation and Relation Discovery activities (see sections

5.2.2 and 5.2.3) we use dynamic SPARQL queries (Prud'hommeaux and Seaborne,

2008). Dynamic generation of SPARQL queries has been used in (Heim et al., 2010),

in the context of reusing knowledge from ontologies and linked data, to �nd relations

between two existing resources. In the Class Identi�cation activity we use this technique

to traverse all the possible paths, in the RDF graph de�ned by DBpedia, OpenCyc and

UMBEL ontologies, connecting a given resource, via sameAs links, to a class. In the
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Relation Discovery activity we use this technique to search for relations between classes

in the same RDF graph.

Along with the descriptions of each of these techniques we present the algorithms

in pseudocode. Please note that the procedures and functions of each algorithm are

presented in order of dependency. Non-dependent procedures and functions appear

on top of the algorithm description while dependent ones are at the bottom. When

describing each algorithm we make clear the main procedure from which the reading of

code can be started.

5.1 Terminology extraction

The extraction task in the preprocessing activity depends on the data source and on

how the data are exposed by the owner, and hence is not feasible to propose a unique

technique to carry out the extraction. Nevertheless, many web-based systems have

adopted RESTful web services (Richardson and Ruby, 2007) to allow querying and

updating their data. Thus, regardless of how the classi�cation instances were extracted,

they have to be stored in an initial stage area (e.g., database tables, XML documents

or �at �les) from which the next tasks can query the data.

Continuing with the preprocessing activity, for the normalization task we propose to

use a technique (see section 5.1.1) to search over a dictionary using n-grams and string

similarity measures so that category names can be compared and normalized to the

dictionary entries. Note that we are not providing a technique for the transformation

task in the data preprocessing activity since the transformation details depend on the

storage system selected for the data. For instance for relational databases the transfor-

mation might be de�ned in terms of SQL queries (Chamberlin and Boyce, 1974) and of

sentences in the data de�nition language, while for XML documents the transformation

might involve the use of XSL Transformations (Clark, 1999). Nevertheless the target

schema to which data are transformed depends entirely on the information needs of

the term selection activity. Given that we are also proposing a technique for the term

selection activity (see section 5.1.2) we include a description of the input data schema,

which is the output of the transformation task, required to carry out the activity. The

technique used for the term selection activity is based on a spreading activation strategy

over a graph created from the transformation of the classi�cations instances.
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5.1.1 Approximate matching for normalization

We propose to use a dictionary in the form of a list of words so that category names can

be compared with entries in the dictionary. Category names found in the dictionary

using exact match string comparison, are considered as normalized words. Category

names not found in the dictionary are subjected to an approximate matching process

with the dictionary entries. An approximate string matching process takes as input

a query string and produces as output approximate matches of entries in a lexicon or

dictionary (Zobel and Dart, 1995). A survey of approximate string matching techniques

is presented in Navarro (2001).

To solve this problem we follow the architecture proposed in Zobel and Dart (1995)

which consists of a coarse search of candidate entries in the lexicon, and of a �ne search

to narrow the selection of the right candidates. We have a selected a pragmatic approach

(White, 2005) to address this problem, which is able to deal with large lexicons since

it uses the vector space model (Salton and Mcgill, 1986) for retrieving the candidate

matching entries.

The approximate matching process proposed in White (2005) is based on the com-

parison of the n-grams of a category name and of the dictionary entries. An n-gram is

a contiguous sequence of n items taken from a unit of text. Thus an item can take the

form of a character or a word. Thus, for grams of size 1 (1-grams) we have one item,

for grams of size 2 (2-grams) we have two items, and so forth. For instance, table 5.1

presents n-grams extracted from the category name SemanticWeb with characters as

items and n values ranging from 1 to 4.

We carry out a coarse search, based on n-grams of the dictionary entries, to obtain

an initial set of candidates (Zobel and Dart, 1995). That is, the n-grams of dictionary

entries are compared to the n-grams of a category name so that we can obtain those

entries which are more similar to the category name. To implement an e�cient search

we use the vector space model.

Each entry in the dictionary is represented as a vector in <k where k is the cardinality
of the set created from the union of all n-grams appearing in the entries. Each position

in the vector corresponds to a given n-gram and its value can be de�ned according to any

weighting scheme including term frequency (TF) or term frequency-inverse document

frequency (TF-IDF), though in this case terms are n-grams. Once we have created all
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Table 5.1: N-grams for the SemanticWeb category name

1-gram 2-gram 3-grams 4-grams

S Se Sem Sema

e em eman eman

m ma man mant

a an ant anti

n nt nti ntic

t ti tic ticW

i ic icW icWe

c cW cWe cWeb

W We Web

e eb

b

the vectors for the entries we can use the vector space for approximate matching as

follows. For a category name its n-grams are extracted, and a vector in the same space

(<k) is created. Each position of this vector is assigned a weight of 1 for those n-grams

appearing in the category name and of 0 otherwise. Next, we compare the category

name vector with each entry vector by calculating the cosine of the angle formed by

both vectors. The greater the cosine of the angle, the higher the similarity between the

vectors. Thus we retrieve the set of most similar entries to the category name.

Finally, during the �ne search we compare, using a string similarity measure, the

category name with each of the entries so that we can obtain the most similar one.

Note that string similarity measures can rely on edit distances such as Levenshtein's or

on token based distances such as Jaccard similarity1. Besides the string similarity we

also take into account the popularity of the entries so that most popular entries have

more opportunities to be selected. The popularity of a category name is measured as

the number of times that the corresponding term appears in the dictionary de�nitions.

Example. In the coarse search we retrieve from our dictionary the following en-

tries for the SemanticWeb category name: Semantic_Web, Semantic_net, Semantic,

Semantic_MW, and Semantics. Then we apply Levenshtein's distance between the cat-

1For a review of this kind of measures the reader is referred to Cohen et al. (2003)
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egory name and each one of the entries. Levenshtein's distance measures the minimum

number of characters that have to be inserted, deleted or replaced to convert one string

in another. In our case the smaller distance is 1 and corresponds to the Semantic_Web

entry which is selected as the normalized version of the category name. Please note that

we have postponed the exempli�cation of the vector space model since later, in section

5.2.1, we show an example of how it works.

5.1.1.1 Algorithm

In algorithm 1 we present the pseudocode for the normalization technique. This al-

gorithm presents a procedure createVectorSpace which creates the vector space repre-

sentation for the dictionary entries according to their n-grams. The normalization is

carried out by the normalize function, which receives as input the string to normalize

and returns its normalized version according to the most similar dictionary entry. The

approximate matching is implemented through two functions coarseSearch and �ne-

Search. The former searches in the vector space for candidates similar to the input

string, while the latter selects the most similar of the candidates according to string

similarity and popularity.

Algorithm 1 Normalizing by approximate matching to dictionary entries

. Initialize global variables.

1: allNGrams← getAllNGrams(dict) . Array of all dictionary n-grams.

2: vectorSpaceMatrix←Matrix[length(dict)][length(allNgrams)]

. Create the matrix for the vector space (dic. entries X ngrams)

3: procedure createVectorSpace(dict)

4: i← 0

5: for all entry ∈ dict do
6: j ← 0

7: for all gram ∈ allNGrams do
8: V ectorSpaceMatrix[i][j]← calcTFIDF (dictionary, entry, gram)

9: j ← j + 1

10: end for

11: i← i+ 1
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12: end for

13: end procedure

. Create the vector representing the string to normalize

14: function createQueryVector(strToNormalize)

15: queryV ector ← Array[length(allNgrams)]

16: ngrams[]← getNgrams(strToNormalize)

17: i← 0

18: for all gram ∈ allNGrams do
19: if gram ∈ ngrams then
20: queryV ector[i] = 1

21: else

22: queryV ector[i] = 0

23: end if

24: i← i+ 1

25: end for

26: return queryV ector

27: end function

. Select from the vector space the most similar entry to the string

28: function coarseSearch(strToNormalize)

29: queryV ector ← getQueryV ector(strToNormalize)

30: candidates← Array[length(dict)]

31: i← 0

32: for all entry ∈ dict do
33: entryV ector ← V ectorSpaceMatrix[i]

34: simV alue← calcCosine(queryV ector, entryV ector)

35: candidates[i]← entry

36: setSimV alue(candidates[i], simV alue)

37: i← i+ 1

38: end for

39: sort(candidates, �desc�) . sort candidates by simValue in descending order

40: return topN(candidates) . Return the most similar candidates

41: end function

. Select the most similar candidate entry using string similarity
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42: function fineSearch(queryString,candidates)

43: i← 0

44: while i <= length(getRows(candidates)) do

45: strSimilarity ← calcStringSimilarity(queryString, candidates[i][0])

46: popularity ← calcPopularity(candidates[i][0], dict)

47: setStrSimilarity(candidates[i], strSimilarity)

48: setPopularity(candidates[i], popularity)

49: i← i+ 1

50: end while

51: sort(candidates, �desc�) . sort candidates by strSimilarity and popularity

52: return firstElement(candidates) . Return the most similar candidate

53: end function

. Main function: normalize strToNormalize

Require: createV ectorSpace(dict)

54: function normalize(strToNormalize)

55: if strToNormalize ∈ dict then . if the string is a dictionary entry

56: return strToNormalize

57: else . otherwise use approximate matching to �nd a dictionary entry

58: candidates← coarseSearch(strToNormalize) . Search using n-grams

59: candidate← fineSearch(strToNormalize, candidates) . Search str. sim.

60: return candidate[0] . return the most similar entry as normalization

61: end if

62: end function

5.1.2 Spreading activation for term selection

The technique used for term selection relies on a graph representation of a part of the

classi�cation system information. Classi�cation systems can be represented as a stream

of classi�cation instances (see listing 4.1), or alternatively as a tripartite hyper-graph1

G = (V,E) where V = U ∪ CN ∪R, E = {(u, cn, r)|(u, cn, r) ∈ CI}, and U , CN and,

R are �nite sets whose members are users, category names and resources respectively.

Recall that CI was de�ned previously in chapter 4 as a subset of U × CN × R. This
1A graph is tripartite when the nodes can be divided in three disjoint sets and nodes in the same

set are not adjacent.
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graph representation was �rst introduce by Mika (2007) for folksonomies and he showed

how this triparte graph can be reduced to two and one mode graphs.

We are particularly interested in the one mode graph G′ = (V ′, E′) whose vertices V ′

are the set R of resources, and for which there is an edge between two resources ri and

rj if there is at least a common category name assigned to both resources regardless of

the user. Formally, E′ = {(ri, rj)|∃((u, cnm, ri) ∈ CI∧(u, cnn, rj) ∈ CI∧cnm = cnn)}1.
Vertices of the graph have as attributes the list of category names under which they

have been classi�ed along with the classi�cation frequency, that is the number of times

that users have assigned the category name to the resource. We have chosen this graph

because previous studies on folksonomies such as Golder and Huberman (2006) showed

that tags tend to converge around resources.

Therefore a prerequisite to apply the technique described in this section is that

the normalized classi�cation instances are converted, in the transformation tasks (see

section 4.2.1.3), into tuples which de�ne the edges in the graph G′ and the attributes

of each one of the edge vertices. Please note that for the attributes we require the

normalized versions of category names as opposed to their original versions since they

do not provide any added value to the rest of the process. Thus classi�cation instances

have to be converted into tuples of the form < ri, rj , [< cni, freqi >], [< cnj , freqj >] >

where ri and rj are adjacent vertices in G′ and the lists of tuples represent the attributes

(normalized category name and frequency) of each vertex.

To collect the terms we use spreading activation (Crestani, 1997), a technique that

allows taking decisions over each vertex visited in the graph so that we can gather the

category names associated with each vertex which are relevant to the domain. Spreading

activation is a graph search method initiated by a set of seed nodes2 weighted with an

activation value. Each seed activation value spreads through the linked nodes in the

graph by means of an activation function. The spreading stops when a node activation

value is below a speci�ed threshold. When a node is activated more than once, i.e. it

is reached by the spreading of di�erent seeds, the node activation value can be added

up. To traverse the graph we use a breadth-�rst search (BFS) strategy.

Seeds are the starting point of the spreading activation, and in our case they play

an important role, that of being a source of domain relevant category names. Thus we

1Note that annotations can be made by di�erent users u, however, to keep the notation simple we

don't show this in the formalization.
2Note that vertices and nodes are synonyms in this context.
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require that domain experts provide as input a set of resources S ⊂ R considered highly

pertinent to the domain. We can compare resources connected in G′ with a seed in

terms of shared category names; category names of highly similar resources are added

to the domain term list. Similarity between resources is calculated by the activation

function. Next we follow the edges of the visited nodes and compare the target nodes,

again using the activation function, with the source nodes. The process continues until

the activation value is under a threshold.

The activation value for a node rj (see equation 5.1) is calculated by estimating the

rate of shared category names with ri, being ri the previous visited node from which

we reached rj .

a′(rj) =
|{cn ∈ CN |(u, rj , cn) ∈ CI} ∩ {cn ∈ CN |(u, ri, cn) ∈ CI}|

|{cn ∈ CN |(u, ri, cn) ∈ CI}|
(5.1)

The activation function also depends on the activation value of the previously ac-

tivated node ri. Thus, a(rj) = a′(rj) + a(ri) ∗ λ where 0 ≤ λ ≤ 1 is a real number

representing a decay factor. If a(rj) is greater than a threshold h, then it is marked as

activated and the search continues; otherwise the search stops.

Once all the seeds are processed we calculate weights for the category names of

those activated nodes. We multiply the frequency of each category name by the node

activation value (see equation 5.2). Then we gather all distinct category names used

to classify the activated nodes and added up their weights. Finally the list of category

names is sorted in descending order according to the aggregated weight. As output of

this task we created a set of terms from the list of category names representing a valid

domain terminology.

w(rj , cnk) = |{(u, rj , cnk)|(u, rj , cnk) ∈ CI}| × a(rj) (5.2)

Example. To exemplify this technique we use the graph presented in �gure 5.2

which is an extended version of the user-classi�cation system described in table 4.1. In

this graph nodes are resources. Resource names and activation values are placed below

the node, while category names and classi�cation frequency are above.

Let us suppose that a domain expert de�ned R2 as a prominent resource in the

domain so that we can use it as a seed. In addition we de�ne a decay factor λ of 0.45,

and a threshold h of 0.7. First we visit R2 adjacent nodes R1 and R3 and calculate the

activation value. R1 shares one category name with R2, and thus the activation value is

a(R1) = 1/5+1∗0.45 = 0.650. Given that a(R1) < h we stop the search in this direction.

On the other hand, R3 shares two category names with R2 and hence the activation
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R1

ActVal=0.650

Seed = R2

ActVal=1

R3

ActVal=0.850

R8

R9

R11

R10

R4

ActVal=0.633

R6

ActVal=0.883

R5

R7

ActVal=0.647

<Java,2>,

<Language,3>,

<Programming,1>,

<Program,1>,

<Open-source,2>

<Java,2>,

<Coffee,2>,

<Organic,1>,

<Fair-Trade,1>

<Program,1>,

<Coding,1>,

<Object-oriented,2>,

<Open-source,1>

<Coding,1>,

<encrypt,2>,

<cypher,1>

<Coding,1>,

<Object-oriented,2>,

<Smalltalk,1>,

<method,1>

<strategy,1>,

<method,2>,

<planning,1>

Figure 5.2: Spreading activation over a graph of resources using R2 as a seed, a decay

factor of 0.45 and threshold of 0.7. Nodes with border in bold are those where the spreading

stop. Activated nodes are �lled with gray.

value is a(R2) = 2/5 + 1.0 ∗ 0.45 = 0.850. Since a(R3) ≥ h we activate the node and

collect its associated category names. Then we visit R3 adjacent nodes R4 and R6 and

calculate their corresponding activation values: a(R3) = 1/4+0.850 ∗ 0.45 = 0.633 and

a(R6) = 2/4 + 0.850 ∗ 0.45 = 0.833. We stop the search in R3 direction (a(R3) < h)

while we activate R6 (a(R6) ≥ h) and collect its category names. Next we visit R6

adjacent node R7 and calculate its activation value a(R7) = 1/4 + 0.833 ∗ 0.45 = 0.647

where we �nalize the spreading activation since a(R7) < h and it is the last node to

visit.

After �nalizing the spreading activation we calculate the weights of each of the

category names belonging to the activated nodes R2, R3 and R6 (see table 5.2). Next

we group the category names regardless the resource, added up their weights, and

sort them in descending order according to the weights. The �nal list of categories is

presented in table 5.3. Hence, if we de�ne a lower limit of 1.0 we discard smalltalk and

method, and keep the rest of category names as the output list of terms.

5.1.2.1 Algorithm

Algorithm 2 consists of a main function collectTerms which uses breath �rst search BFS

and spreading activation over the graph. BFS is in charge of traversing the graph G′

starting from an user-de�ned seed. Recall thatG′ is a graph whose vertices are resources,

and there is an edge between two resources if they share at least a category name.

Vertices have as attributes the category names under which they have been classi�ed.
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Table 5.2: Weights per category

Res. Category Name Weight

R2

Java 2.000

Language 3.000

Programming 1.000

Program 1.000

Open-Source 2.000

R3

Program 0.850

Coding 0.850

Object-Oriented 1.700

Open-Source 0.850

R6

Coding 0.883

Object-Oriented 1.765

SmallTalk 0.883

method 0.883

Table 5.3: Aggregated weights per

category

Category Name Sum(Weight)

Object-Oriented 3.465

Language 3.000

Open-Source 2.850

Java 2.000

Program 1.850

Coding 1.733

Programming 1.000

SmallTalk 0.883

method 0.883

For each visited vertex the activation value is calculated using the activationFunction.

We collect category names as relevant terms for those vertices with an activation value

over a prede�ned threshold. The activation value depends on the shared categories

between the vertices, and on the activation value of the source vertex from which we

reached the current vertex.

Algorithm 2 Collecting domain relevant terms with spreading activation

. Breadth �rst search over the G' graph using s as a seed to drive the search

1: function BFS(G′, s)

2: actV ertices← Array[] . Array of activated vertices

3: q ← Queue()

4: enqueue(q, s)

5: setState(s, �visited�)

6: while q 6= empty do

7: v0 ← dequeue(q) . Get vertex to process

8: activationV alue← activationFunction(v0) . Calc Act. Value

9: if activationV alue ≥ threshold then . if the vertex is activated

10: setActV alue(v0, activationV alue)

11: add(actV ertices, v0) . Collect activated vertices

133



12: for all v ∈ adjacent(G′, v0) do . for each adjacent vertex in G'

13: if state(v) 6= �visited� then

14: setState(v, �visited�)

15: setEdgeSrcV ertex(v, v0) . Save the source vertex of the edge

16: enqueue(q, v) . enqueue the adjacent vertix for activation

17: end if

18: end for

19: end if

20: end while

21: return actV ertices

22: end function

. Calc. activation function of the vertex

23: function activationFunction(vertex)

. Get categories of the source vertex

24: srcV ertex← getEdgeSrcV ertex(vertex)

25: if srcV ertex = null then . is a seed?

26: return 1 . return max activation value

27: end if

28: srcCategoryNames← getCategoryNames(srcV ertex) . Array of categories

. Get categories of the current vertex

29: vertexCategoryNames← getCategoryNames(vertex) . Array of categories

30: sharedCategoryNames← 0

31: for all categoryName ∈ vertexCategoryNames do
32: if categoryName ∈ srcCategoryNames then
33: sharedCategoryNames← sharedCategoryNames+ 1

34: end if

35: end for

36: actV al← sharedCategoryNames
length(srcCategoryNames[]) + getActV alue(srcV ertex) ∗ decayFactor

37: return actV al

38: end function

. Assign weights to every category name of each activated vertex

39: procedure calcWeightsForActVertices(actV ertices[])

40: for all vertex ∈ actV ertices do
41: categoryNames← getCategoryNames(vertex)

42: for all category ∈ categoryNames do
43: categoryFreq ← getClassificationFreq(vertex, category)
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44: weight← getActV alue(vertex) ∗ categoryFreq
45: setWeight(category, weight)

46: end for

47: end for

48: end procedure

. Get a list of terms from categories of activated vertices

49: function getCategories(actV ertices[])

50: uniqueCategories← Array[]

. Group category names regardless vertices and sum their weights

51: for all vertex ∈ actV ertices do
52: categoryNames← getCategoryNames(vertex)

53: for all category ∈ categoryNames do
54: if category /∈ uniqueCategories then
55: newCategory ← category

56: setWeight(newCategory, getWeight(category))

57: add(uniqueCategories, newCategory)

58: else

59: existingCategory ← getCategory(uniqueCategories, category)

60: weight← sum(getWeight(existingCategory), getWeight(category))

61: setWeight(existingCategory, weight)

62: update(uniqueCategories, existingCategory)

63: end if

64: end for

65: end for

. sort categories in desc. order of weight and discard using the threshold

66: getTerms(sort(uniqueCategories, �desc�), threshold)

67: end function

. Get relevant terms from the activated vertices

68: function getRelevantTerms(actV ertices[])

69: calcWeightsForActV ertices(actV ertices) . weights per category

70: return getCategories(actV ertices) . group categories

71: end function

. Collect domain relevant terms from the G' graph using a list of seeds

72: function collectTerms(G′, seeds[])

73: allActV ertices← Array[]

74: for all s ∈ seeds do . For each seed run the spreading activation
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75: actV ertices = BFS(G′, s) . Breath �rst search over G′

76: add(allActV ertices, actV ertices) . List of activated vertices

77: end for

78: terms← getRelevantTerms(allActV ertices)

79: return terms

80: end function

5.2 Semantic elicitation

For the semantic elicitation we propose techniques that rely on knowledge bases pub-

lished as linked open data (Bizer et al., 2009a). Nowadays linked data is a popu-

lar recommendation of best practices to expose, share, and interlink knowledge bases.

Publication is done using the resource description framework RDF and uniform resource

identi�ers URI. Our preference for linked data is based on the fact that all data is ex-

posed using one representation scheme (RDF) which allows querying data using only

the SPARQL query language, as opposed to use distinct representation schemes per

knowledge base which can lead to the deal with di�erent languages. In addition data

sets are interlinked among them allowing bene�ting of more than one knowledge base

at a time.

We propose, in section 5.2.1, a technique based on the vector space model for the

disambiguation of terms when we ground them to semantic entities in the knowledge

bases. For the class identi�cation and relation discovery we propose techniques, in

section 5.2.2 and 5.2.3, based on dynamic SPARQL queries which are posed on the

knowledge bases so that we can obtain the classes and relations among them.

5.2.1 Vector space model for semantic grounding

The semantic grounding for non-ambiguous terms is a direct association between the

term and the corresponding entity in the knowledge base. The association is carried

out by an exact string matching between the term and the label of the semantic entity.

However, for ambiguous terms the semantic grounding has to select from a set of can-

didate meanings the right one. Hence, we require a knowledge base where the possible

meanings of a given term are de�ned.

We turn the disambiguation problem into an information retrieval (Baeza-Yates and

Ribeiro-Neto, 2011) one as follows. First the set of meanings are considered as docu-

ments; each document contains the textual description of the corresponding meaning.

Then the ambiguous term and its context are used to pose a query over the documents
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so that the retrieval process must produce the most relevant document based on the

overlapping terms between the query and the documents. To implement the retrieval

process we use the vector space model (Salton and Mcgill, 1986) which represents as

vectors in a multidimensional space documents and queries so that they can be com-

pared using the cosine of the angle formed by the vectors. We de�ne the context of a

tag as the set of additional tags co-occurring in a given annotation.

We create a set V as the union of the top N frequent terms in each of the candidate

meanings. Next for each candidate meaning we create a vector in <|V | where each

position corresponds to an element in an ordered version of the V set. The value wi

associated with the i-th position in the vector is calculated using TF-IDF1 (Baeza-

Yates and Ribeiro-Neto, 2011) for the corresponding i-th term in the ordered set. For

a document and the i-th term in the vector, TF measures how important is a term

in document and corresponds to the frequency of this term in the document. IDF

measures how rare in the document collection is a given term. IDF is calculated, (see

equation 5.3), as the logarithm of the inverse ratio of candidate documents CD which

contain the i-th term with respect to all the candidates. Please note that this approach

contrasts with traditional information retrieval since we use only candidate documents

for extracting the terms used to create the vectors and for calculating IDF, instead of

using the whole set of documents.

IDF (t, CD) = log

(
|CD|

| {cd ∈ CD : t ∈ cd} |

)
(5.3)

Similarly, we create a vector for the term and its context. In this case, wi takes as

value 1 if the i-th term in the ordered set appears in the term context, and 0 if not.

We compare the term vector and each one of the candidate vectors using as similarity

measure the cosine function. Thus, we select the candidate vector with the highest

similarity value with respect to the term vector, and return it as the entity to which

the term has to be grounded.

Example. Let us suppose we have to ground the term programming within a

context de�ned by the terms instruction, order, and computer. The knowledge base

has two candidate meanings for programming. The �rst meaning is scheduling which

is described as �setting an order and time for planned events�. The second meaning is

computer programming which is de�ned as �creating a sequence of instructions to enable

the computer to do something�.

Thus, �rst we create the set V with the terms extracted from the de�nitions of the

1TF-IDF stands for Term Frequency and Inverse Document Frequency
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candidate meanings. Each of the terms extracted from the de�nition were stemmed to

get their root form, and then they were �ltered using a stopword list. The result set is

V = {set, order, time, plan, event, create, sequence, instruction, enable, computer, do,
something}.

Next we represent as vectors in <12 the candidate meanings; one vector position

per each term in V . Note that each term t ∈ V appears in one of the two meanings,

hence IDF = log(2/1) = 0.3 for all of them, and the term frequency will be 1 per each

document term. We normalize TF by dividing each value by the number of words in

each document. Thus for the terms in the �scheduling� meaning TF = 1/5 = 0.2 and

TF − IDF = 0.2 ∗ 0.3 = 0.06. For the terms in the �computer programming� meaning

TF = 1/6 = 0.167 and TF − IDF = 0.167 ∗ 0.3 = 0.043. In table 5.4 we present the

vectors created for each of the candidate meanings and for the ambiguous term and its

context. Due to space constraints each vector is represented by two rows. In the �rst

row we have vector positions from 1 to 6, and in the second row we have positions from

7 to 12.

Table 5.4: Vector Space for candidates and the query representing the ambiguous term

�programming�

scheduling
0.06 0.06 0.06 0.06 0.06 0

0 0 0 0 0 0

computer prog.
0 0 0 0 0 0.043

0.043 0.043 0.043 0.043 0.043 0.043

query
0 1 0 0 0 0

0 1 0 1 0 0

Finally we calculate similarity between the query vector and each one of the can-

didates: cos(query, scheduling) = 0.289 and cos(query, computerprog) = 0.436. Give

than the cosine of the angle formed by the query vector and the computer program-

ming vector is the highest, we chose this candidate as the most probable meaning of

the ambiguous term programming.

5.2.1.1 Algorithm

In algorithm 3 we present the pseudocode for the semantic grounding of terms to se-

mantic entities. The main function is SemanticGrounding which receives as input the

term to ground as well as the context where the term appears. The context consists of

a list of terms. This function retrieves from the knowledge base the set of candidate
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meanings for the term. In the cases where there are more than one candidate a disam-

biguation function is used (disambiguateTerm). This function creates the vector space

of candidates and their terms, as well as a vector for the query which represents the

term context. Then, using the search function, vectors are compared so that the most

similar candidate is retrieved.

Algorithm 3 Semantic grounding of contextualized terms

. Create the matrix representing the vector space (candidates X allTerms)

1: function createVectorSpace(candidates[], allT erms[])

2: vectorSpaceMatrix←Matrix[length(candidates)][length(allTerms)]

3: i← 0

4: for all candidate ∈ candidates do
5: j ← 0

6: for all term ∈ allTerms do
7: V ectorSpaceMatrix[i][j]← calcTFIDF (term, candidate, candidates)

8: j ← j + 1

9: end for

10: i← i+ 1

11: end for

12: return vectorSpaceMatrix

13: end function

. Create the vector representing the term context

14: function createQueryVector(context[], allT erms[])

15: queryV ector ← Array[length(allTerms)]

16: i← 0

17: for all term ∈ allTerms do
18: if term ∈ context then
19: queryV ector[i] = 1

20: else

21: queryV ector[i] = 0

22: end if

23: i← i+ 1

24: end for

25: return queryV ector

26: end function

. Select from the vector space the most similar candidate to the term context
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27: function search(vectorSpaceMatrix[][],queryVector[], candidates[])

28: simCandidates← Array[length(candidates)]

29: i← 0

30: for all candidate ∈ candidates do
31: candidateV ector ← vectorSpaceMatrix[i]

32: simV alue← calcCosine(queryV ector, candidateV ector)

33: simCandidates[i]← candidate

34: setSimV alue(simCandidates[i], simV alue)

35: i← i+ 1

36: end for

37: sort(simCandidates, �desc�) . sort by simValue in descending order

38: if simCandidates[0] ≥ threshold then
39: return simCandidates[0] . Return the most similar candidate

40: else

41: return ��

42: end if

43: end function

. disambiguate the term searching over the list of candidate meanings

44: function disambiguateTerm(termContext[], candidates[])

45: allTerms← getTerms(candidates) . Extract terms of the meanings

46: vectorSpaceMatrix← createV ectorSpace(candidates, allT erms)

47: queryV ector ← getQueryV ector(context, allT erms)

48: return search(vectorSpaceMatrix, queryV ector, candidates)

49: end function

. Get the semantic entity for the term meaning in the context

50: function semanticGrounding(term, context[])

51: candidates← knowledgeBase.getMeanings(term) . Array of meanings

52: if length(candidates) = 0 then

53: return ��

54: else if length(candidates) = 1 then

55: return candidate[0]

56: else

57: return disambiguateTerm(context, candidates)

58: end if

59: end function
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5.2.2 Dynamic SPARQL queries for class identi�cation

To identify classes from the semantic entities to which the terms have been grounded, we

propose to pose SPARQL queries on the knowledge base so that we �gure out whether

the semantic entities correspond to ontological classes. Recall that we require that the

knowledge base is published following the linked data recommendations, and therefore

we can query it with SPARQL.

The most simple case occurs when a term is grounded to a semantic entity which

represents a class in the knowledge base. If a semantic entity represents a class then

must there exists a RDF statement stating that fact. Therefore we can issue an SPARQL

query using the ASK1 query form to check if the entity is a class (see listing 5.1). This

query returns true if the query pattern exists or false otherwise.

ASK{<entity> <rdf:type> <rdfs:Class>}

Listing 5.1: Query to validate if an entity is a class

Nevertheless, there is the possibility that an entity has not been de�ned as a class

directly but through other linked entities. This case happens, for instance, when a

linked data publisher has created a knowledge base KBi which does not include an

ontology, while another publisher has created a knowledge base KBj enriched with an

ontology, and resources of both KBi and KBj are linked with owl:sameAs relations.

Thus, if a term was grounded to a resource in KBi we ought to follow the link between

this resource and the corresponding resource in KBj to �nd out if it is de�ned as a class.

In a scenario where we have many knowledge bases we need to be able to follow the

links between the resources so that we can bene�t the most of the existing information

when looking for classes.

Thus, to identify classes related to an entity s we query, using SPARQL, the knowl-

edge bases in order to �nd paths of sameAs relations and of variable length connecting

s with a target entity c de�ned as a class. We follow a similar approach to Heim et al.

(2010) where queries are used to traverse all the possible paths in the RDF graph con-

necting the two entities. We de�ne the path length L as the number of relationships

found in the path linking s with c. For L = 1 we look for a pattern containing a rela-

tionship relationi linking s with c. As we do not know the direction of relationi, we

search in both directions: 1) s relationi c, and 2) c relationi s. We present in listing

5.2 the two queries representing the search.

1ASK validates the existence of a solution for a query pattern
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SELECT ?class

WHERE{ <entity> ?rel1 ?class. ?class <rdf:type> <rdfs:Class>

FILTER (?rel1 = <owl:sameAs>) }

SELECT ?class

WHERE{ ?class ?rel1 <entity>. ?class <rdf:type> <rdfs:Class>

FILTER (?rel1 = <owl:sameAs>) }

Listing 5.2: SPARQL queries to identify classes (path length 1)

For L = 2 we look for a path containing two relationships and an intermediate re-

source node such as: s relationi node, and node relationj c. Note that each relationship

may have two directions and hence the number of possible paths is 22 = 4. Listing 5.3

presents two of the four queries posed for paths of length 2. For L = 3 we have two

inbetween nodes, three relationship placeholders, and the number of possible paths is

23 = 8. In general, for a path length L we have n =
∑L

l=1 2
l possible paths that can be

traversed by issuing the same number of SPARQL queries on the linked data set.

SELECT ?class

WHERE{ <entity> ?rel1 ?node. ?node ?rel2 ?class.

?class <rdf:type> <rdfs:Class>

FILTER ((?rel1 = <owl:sameAs>) && (?rel2 = <owl:sameAs>)) }

SELECT ?class

WHERE{ ?node ?rel1 <entity>. ?node ?rel2 ?class.

?class <rdf:type> <rdfs:Class>

FILTER ((?rel1 = <owl:sameAs>) && (?rel2 = <owl:sameAs>)) }

Listing 5.3: SPARQL queries to identify classes (path length 2)

Thus for each semantic entity e produced in the semantic grounding task and a

given value of L we pose n SPARQL queries following the aforementioned pattern to

�nd related classes.

Example. Let us suppose we count on a knowledge base which contains information

of three general-purpose linked data sets: DBpedia (Bizer et al., 2009b), OpenCyc1, and

UMBEL2. Resources of these data sets are interlinked among them using owl:sameAs

1OpenCyc home page: http://sw.opencyc.org/
2UMBEL home page: http://www.umbel.org/
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relations. Our goal is to identify if the DBpedia resource dbpr:Programmer corresponds

to a class. In �gure 5.3 we depict part of the RDF graph where this resource appears.

In this graph we can see that dbpr:Programmer is not de�ned as a class in the DBpedia

ontology. Hence, if we replace <entity> by dbpr:Programmer in the query presented in

listing 5.1), we obtain false as a result.

Thus we need to check if a linked entity leads to a class. for L = 1 we pose the 2

queries de�ned in listing 5.2. The �rst query �nds two solutions matching the query pat-

tern. The �rst solution states that dbpr:Programmer and the class ocyc:DevelopmentProgram

are the same. The second solution states that dbpr:Programmer and the class ocyc:Developer

are the same. This leads to conclude that dbpr:Programmer is actually a Class which

is equivalent to the OpenCyc classes ocyc:DevelopmentProgram and ocyc:Developer.

rdf:type

owl:SameAs

owl:SameAs

dbpr:Programmer

owl:Class

rdf:type

ocyc:Development 

program
ocyc:Developer

owl:SameAs

rdf:type

Umbel: 

ComputerProgrammer

Figure 5.3: RDF graph of data linked to dbpr:Programmer. Bold edge nodes repre-

sent classes that are reachable, from the initial node which is depicted in gray, following

owl:sameAs relationships

If we continue the search for the case where L = 2 and pose the correspond-

ing 4 queries we found that the �rst query presented in listing 5.3 �nds a solution.

This solution states that dbpr:Programmer and ocyc:Developer are the same, and that

ocyc:Developer and the class umbel:ComputerProgrammer are the same. Thus we can

add to the conclusions the fact that dbpr:Programmer is a class equivalent to the UM-

BEL class umbel:ComputerProgrammer.

5.2.2.1 Algorithm

In algorithm 4 we present the pseudocode for identifying relevant classes from the set

of semantic entities found in the Semantic Grounding. The main procedure is Identify-

Classes which receives as input the semantic entity and a pre-de�ned path length used

to limit the number of relations in the SPARQL queries. IdentifyClasses uses a proce-

dure (generateQueries) to generate dynamically the SPARQL queries to be posed on

the SPARQL endpoint. Then, these queries are executed and the classes are extracted

from the result sets.
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The generateQueries procedure �rst creates the query (ASK) verifying whether the

semantic entity is a class or not. Next it creates the list of queries per each of the possible

values of i (1..PathLength). Recall that for each path length value i the number of

queries to traverse all the possible paths is 2i. The strategy to generate the queries per

each path length value uses a queue of the resources involved in each query. The queue

is created by the function getResources, and for each path length value the number of

resources in the queue is pathlength+1. For instance for i = 2 we have three resources:

the semantic entity, an intermediate node (node1), and the class variable.

The creation of each list of queries is delegated to an overload function createQueries.

This is a recursive function which creates the queries by adding a query pattern at a

time using a resource extracted from the queue in each recursive call. For instance,

for i = 2, in the �rst call of the createQueries function two resources are dequeue and

22 = 4 queries are created with the following query patterns: 1) ri
rel1→ rj , 2) ri

rel1← rj , 3)

ri
rel1→ rj , and 4) ri

rel1← rj . Note that the direction of the relations is alternated according

to the setRelationDirection function. In a second recursive call, another resource rk is

dequeue, and for each query already created we add new query patterns relating the last

node of the existing query pattern to rk. This results in the following query patterns:

1) ri
rel1→ rj

rel2→ rk, 2) ri
rel1← rj

rel2→ rk, 3) ri
rel1→ rj

rel2← rk and 4) ri
rel1← rj

rel2← rk. Finally

the SPARQL query containing these patterns are created by the function createQuery

for which we do not provide more details since it performs a syntactical transformation

between the aforementioned patterns and the SPARQL query syntax.

Algorithm 4 Algorithm for identifying classes using dynamic SPARQL queries

. Give alternate directions for the relation to be included in the query patterns

1: function setRelationDirection(queryNumber, idRel, currentDirection)

2: if mod(queryNumber, 2idRel−1) = 0 then

3: if currentDirection = �forward� then

4: return �backward�

5: else

6: return �forward�

7: end if

8: end if

9: end function

. Create a query containing a pattern for the input resources

10: function createQuery(resource, nextResource, queryNumber, idRel, direction)

11: direction← setRelationDirection(k, idRel, direction)
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12: rel← �?rel� + idRel . Name of the variable

13: if direction = �forward� then

14: qry ← createQueryPattern(resource, rel, nextResource)

15: else

16: qry ← createQueryPattern(nextResource, rel, Resource)

17: end if

18: return qry

19: end function

. Recursive procedure to create queries for each path length. Queries are created

by adding relations between pair of nodes in each recursive call.

20: procedure createQueries(queries, resourceQueue, currentPathLenght, idRel)

21: if length(resourceQueue) = 0 then . Stop condition of the recursion

22: return queries

23: end if

24: resource← dequeue(resourceQueue) . Get a resource

25: direction← �forward� . Relation direction: x→ y

26: if length(queries) = 0 then . Create the initial 2currentPathLenght queries

27: nextResource← dequeue(resourceQueue) . Get another resource

28: for k = 1→ 2currentPathLenght do . For each query to create

. Create a query with a pattern relating both resources in a direction

29: qry ← createQuery(resource, nextResource, k, idRel, direction)

30: add(queries, qry)

31: k ← k + 1

32: end for

33: idRel← idRel + 1

. Recursive call to add another pattern to the queries

34: createQueries(queries, resourceQueue, currentPathLenght, idrel)

35: else . If the initial queries were already created

36: k = 1

37: for all qry ∈ queries do
. Query for relation between the last node of qry and the resource

38: qryPattern← createQuery(lastNode(qry), resource, k, idRel, direction)

39: qry ← mergeQueries(qry, qryPattern)

40: k ← k + 1

41: end for

42: idRel← idRel + 1
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. Recursive call to add another pattern to the queries

43: createQueries(queries, resourceQueue, currentPathLenght, idrel)

44: end if

45: end procedure

. Create a queue of resources for queries of each path length

46: function getResources(srcResource, targetClass, currentPathLenght)

47: q ← queue()

48: enqueue(q, targetClass)

49: for j = 1→ currentPathLenght− 1 do

50: node← queryPatternV ariable(�node� + j) . node1, node2, etc.

51: enqueue(q, node)

52: j ← j + 1

53: end for

54: enqueue(q, srcResource)

55: return q

56: end function

. Start the query generation.

57: function generateQueries(srcResource, targetClass, pathLength)

58: queries← Array[]

. First query if the srcResource is a class

59: queries[0]← �ASK{� + srcResource+ �rdf:type rdfs:Class}�

60: relationCounter ← 1 . used to name relations: rel1, rel2, etc.

61: for i = 1→ pathLength do . For each i value generates all the 2i queries

. Get the (i+1) resources to be used in the queries of length i

62: resourceQueue← getResources(srcResource, targetClass, i)

. create queries for the current path length (i) using resources in the queue

63: createQueries(queriesPerLength, resourceQueue, i, relationCounter)

64: add(queries, queriesPerLength) . Add the 2i queries to the �nal lists

65: i← i+ 1

66: end for

67: end function

. Main procedure: given a semantic entity, and path length de�ning the number of

links to traverse in the KB, we produce a set of related classes.

68: procedure identifyClasses(semEntity, pathLength)

69: classes← Array[]

70: srcResource← QueryPatternResource(semEntity) . resource <semEntity>
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71: targetClass← queryPatternV ariable(�?class�) . the class variable

72: queries← generateQueries(srcResource, targetClass, pathLength)

73: for all query ∈ queries do . Every query is executed

74: result← exec(�SPARQLEndPoint�, query)

75: add(classes, getClasses(result)) . get classes from the resultset

76: end for

77: end procedure

5.2.3 Dynamic SPARQL queries for relation discovery

To discover relations between the previously identi�ed classes we also pose SPARQL

queries on the knowledge base. We propose to carry out a pairwise search for relation-

ships among the classes. In order to bene�t the most from the linked data graph, we

need to look for variable length paths of relationships. Thus, we follow a similar strat-

egy to the one presented in section 5.2.2 for �nding classes from the semantic entities.

The only di�erence is that in this case we have a concrete source ci and a target cj of

the path. Classes found in a path linking ci and cj are also considered as classes to the

be added to the ontology.

Thus, for a path length L = 1 we pose two queries searching for a relationship

relationm linking ci and cj . That is we search for the query patterns ci relationm cj

and cj relationm ci. Recall that as it was explained in section 5.2.2 the number of

queries per each L value is 2L. For L = 2 we pose 4 queries searching for two relations

relationm and relationn linking an intermediate resource node with the two classes.

An example of this query pattern is ci relationm node. node relationn cj . Intermediate

nodes setting a path between the classes are considered as pertinent classes, and thus

they can be part of the pairwise search of relationships among the classes. In general,

for a path length L we have n =
∑L

l=1 2
l possible paths that can be traversed by issuing

the same number of SPARQL queries on the linked data set.

Example. Figure 5.4 shows RDF graphs depicting existing relationships between

the classes umbel:SoftwareEngineer and umbel:ComputerProgrammer. First we search

for the query patterns de�ned for L = 1. We obtain three solutions (see upper

left part of the �gure) which state: i) that umbel:SoftwareEngineer is subClassOf

umbel:ComputerProgrammer, ii) that umbel:SoftwareEngineer has as broaderTransitive

concept to umbel:ComputerProgrammer, and iii) that umbel:ComputerProgrammer has

as narrowerTransitive concept to umbel:SoftwareEngineer. Next, we search for the query

patterns de�ned for L = 2. In this case we get one solution (see upper right part of the

�gure) stating that umbel:SoftwareEngineer and umbel:ComputerProgrammer are both
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subClassOf umbel:PersonType. Note that if the class umbel:PersonType has not been

identi�ed previously we have discovered a new relevant class. Finally, we search for the

query patterns de�ned for L = 3 and we get one solution involving two new classes (see

bottom part of the �gure): umbel:professional and umbel:ComputerProgrammerProfessional.

This solution states that umbel:SoftwareEngineer and umbel:ComputerProgrammerProfessional

are subClassOf umbel:professional, and that umbel:ComputerProgrammer has as nar-

rowerTransitive concept to umbel:ComputerProgrammerProfessional. If we stop here,

we collected in total 8 relationships and discovered three new classes.

umbel:

SoftwareEngineer

umbel:

ComputerProgrammer

rdfs:subClassOf
skos:

BroaderTransitive

skos:

NarrowerTransitive

umbel:

SoftwareEngineer

umbel:

ComputerProgrammer

rdfs:subClassOf rdfs:subClassOf

umbel:

PersonTypes

umbel:

SoftwareEngineer

umbel:

ComputerProgrammer

Professional

rdfs:subClassOf rdfs:subClassOf

umbel:

Professional

umbel:

ComputerProgrammer

skos:

NarrowerTrans.

Figure 5.4: Searching for relationships among ComputerProgrammer and SoftwareEngi-

neer. Bold edge nodes represent new classes discovered in the process.

5.2.3.1 Algorithm

In algorithm 5 we present the pseudocode to discover relations between two classes.

This algorithm poses SPARQL queries aiming at traversing all the possible paths (of a

prede�ned length) linking the two input classes inside the knowledge base. The main

procedure is relationDiscovery which receives as input the two classes and the maximum

path length limiting the search of relations linking the two classes. This procedure �rst

generate all the queries, using the function generateQueries, which traverse all the

possible paths (of length lesser or equal to the prede�ned length) linking the classes.

Next this queries are executed against the knowledge base SPARQL endpoint, and the

result of each query is saved as an RDFGraph.

Each RDFGraph is traversed by the BFS function, which implements a breath
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�rst search, so that we collect the relations discovered in each query. The BFS function

treats each RDF graph as undirected to reach all the connected nodes, and then obtains

each relation, through the getRelation function, according to the direction of the edges

linking the nodes. From the list of relations we get, using the getClasses function, the

classes which are di�erent from the input classes and collect them.

For the query generation, in the generateQueries function, we use an algorithm

similar to the one used in the algorithm for identifying classes. That is we create the

queries to traverse all the possible paths linking the two input classes using: 1) a queue

of resources to be included in each lists of queries of a given path length, and 2) we

use a recursive function which creates the queries for each path length by adding in

each recursive call a query pattern involving a resource taken from the queue and a

relation. In fact within the code of the generateQueries function we reuse the functions

getResources and createQueries. For details of these algorithms as well as an explanation

of how they work the reader is referred to Algorithm 4.

Algorithm 5 Algorithm for identifying classes using dynamic SPARQL queries

. Start the query generation.

1: function generateQueries(srcResource, trgResource, pathLength)

2: queries← Array[]

3: relationCounter ← 1 . used to name relations: rel1, rel2, etc.

4: for i = 1→ pathLength do . For each i value generates all the 2i queries

. Get the (i+1) resources to be used in the queries of length i. This function is

described in algorithm 4 line number 46

5: resourceQueue← getResources(srcResource, targetClass, i)

. create queries for the current path length (i) using resources in the queue. This

function is described in 4 line number 20

6: createQueries(queriesPerLength, resourceQueue, i, relationCounter)

7: add(queries, queriesPerLength) . Add the 2i queries to the �nal lists

8: i← i+ 1

9: end for

10: end function

. create a relation based on the edge direction linking v0 and v

11: function getRelation(RDFGraph, v0, v)

12: edge← getEdge(RDFGraph, v0, v) .

13: relationName← getEdgeName(edge)

14: subject← getSourceNode(edge)
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15: object← getTargetNode(edge)

16: return setRelation(subject, relationName, object)

17: end function

. Traverse the rdf graph as an undirected graph

18: function BFS(RDFGraph, srcClass, trgClass)

19: relations← Array[] . Array of new relations

20: q ← Queue()

21: enqueue(q, srcClass)

22: setState(srcClass, �visited�)

23: while q 6= empty do

24: v0 ← dequeue(q) . Get vertex to process

25: for all v ∈ adjacent(RDFGraph, v0) do . for each adjacent vertex

26: if state(v) 6= �visited� then

. De�ne a relation using the edge direction information

27: add(relations, getRelation(v0, v))

28: setState(v, �visited�)

29: enqueue(q, v) . enqueue the adjacent vertix for activation

30: end if

31: end for

32: end while

33: return relations

34: end function

. Get a list of rdf graphs containing the relationships of variable length found in

the knowledge base for the two input classes.

35: procedure relationDiscovery(srcClass, trgClass, pathLength)

36: allRelations← Array[]

37: classes← Array[]

38: srcResource← QueryPatternResource(srcClass)

39: trgResource← queryPatternV ariable(trgClass)

40: queries← generateQueries(srcResource, trgResource, pathLength)

41: for all query ∈ queries do . Every query is executed

42: result← exec(�SPARQLEndPoint�, query)

43: rdfGraph← getGraph(result) . Create an RDF graph from the result

44: relations← BFS(RDFgraph) . BFS to traverse and get relations

45: add(allRelations, rdfGraph)

46: end for
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. get the classes from the relations which are di�erent from the input ones

47: classes← getClasses(allRelations)

48: end procedure

5.3 Conclusions

In this chapter we presented the techniques that we identi�ed and adapted to support

the method for developing ontologies from user-generated classi�cation systems. With

respect to the Terminology Extraction process we have described techniques for the

Normalization task which is part of the Data Preprocessing activity, and for the Term

Selection activity. For the Normalization task we propose to use approximate match-

ing to match category names to dictionary entries. If the category name matches, or

approximately matches a dictionary entry we use the dictionary entry as a normalization

of the category name. For the Term Selection we propose to represent the user-generated

classi�cation system as a graph and use spreading activation to traverse the graph

and collect relevant domain category names.

With respect to the Semantic Elicitation process we described techniques for the

three activities that comprise this process: Semantic Grounding, Class Identi�cation,

and Relation Discovery. For the Semantic Grounding we propose to use the vector

space model to select, among a set of candidates, the semantic entity that represents

a category name. For the Class Identi�cation we propose to use SPARQL queries to

identify, in a set of knowledge bases, the semantics entities that correspond to classes.

Similarly for the Relation Discovery we use SPARQL queries to search, in the knowl-

edge bases, for relations between pairs of classes.
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CHAPTER 6

EVALUATION

In this chapter we present the di�erent experiments carried out through the development

of this thesis which aim at validating in speci�c scenarios the method proposed to

obtain ontologies from user-generated classi�cation systems, thus validating the research

hypotheses of this thesis. With the exception of the survey of the emergent semantics

in named lists, due to particularities on its design, all the experiment descriptions are

presented using a template which consists of the following sections: i) Data set where we

provide a description of how the data were obtained and statistics about them, ii) Set up

which is a description of how the evaluation was carried out including the information

of the evaluators and of the evaluation metrics, iii) Evaluation where the resulting data

is tabulated and discussed, and iv) Conclusions where we summarize the �ndings.

In section 6.1 we present an experiment to validate the normalization technique

in terms of precision and coverage, which was applied to a set of tags extracted from

a popular collaborative tagging site. Next, in section 6.2, we present an experiment

about the semantic grounding technique which involved a large number of evaluators

and deal with tags in the touristic domain. In addition, we evaluate, in section 6.3,

the approach for developing ontologies from user-generated classi�cation systems by

generating an initial ontology in the stock market domain from a folksonomy. Finally

we have included in section 6.4 the survey of the emergent semantics in user-generated

lists created in Twitter. We propose to use existing models to obtain related terms from

the classi�cation system, and then we use similarity measures based on WordNet and

queries on linked data sets to identify the semantics of the related terms. This type

of analysis lays the foundation for the design of procedures to extract knowledge from

user-generated lists.

153



6.1 Evaluation of the normalization

We have carried out an experiment involving real tags, taken from an existing collabo-

rative tagging system, to evaluate, in terms of precision and coverage, the normalization

technique proposed in section 5.1.1. First we implement the normalization technique

based on the approximate matching of the category names, in this case tags, to dic-

tionary entries. Next, we execute the normalization for a set of tags which have been

selected randomly. Finally we manually evaluate the suggestions and present the re-

sults in terms of precision and coverage. In the following we present the details of this

experiment.

6.1.1 Data set

We used a data set published by Delicious, known as R5 - Yahoo! Delicious Popular

URLs and Tags, version 1.0, which contains data of 100,000 URLs bookmarked on

Delicious at least 100 times per di�erent users. For each URL it is speci�ed the number

of bookmarks, as well as the ten most commonly used tags along with the number of

times each tag was used to bookmark that resource. In total there are 38,275 tags, and

999,816 assignments of tags to resources.

We selected 5000 distinct tags randomly from the whole set. The random nature

of the selection produced a data set where the tag with the minimum number of times

used was 1 while the one with the maximum number of times used was 842,972. In

average a tag in this data set was used 1,970.149 times with a standard deviation of

21,850.480.

In table 6.1 we show some tags and their frequency of use. To create the table we

sorted the tags in descending order of frequency of use and selected the tags according

to their position in the sorted list. First column in the table corresponds to the �rst 10

tags, second column corresponds to the 10 tags in the middle, and the last column to

the last 10 tags. Note that most frequent tags are easily recognized as well formed word,

while starting with tags in the middle of the list we found tags such as kansascity which

needs to be splitted to form the real name, while there are some others as grl which

may be supposed to be the word girl though to validate this supposition we ought to

use contextual information.

6.1.2 Setup

The normalization technique requires a dictionary where we can look for the entries

which correspond to the input tags, and also a popularity index where the dictionary
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Table 6.1: Tags according to the frequency of use in the data set

Most used tags Tags in the middle Least used tags

free 842972 kansascity 50 Bittorent 1

linux 729632 hypnotoad 50 ayhankaya 1

google 485664 plant 50 cuuuuuuuuuuuuuute 1

search 481558 rox 50 importált 1

php 328694 Pan 50 grl 1

science 293302 steorn 50 caute 1

internet 270838 library_of_congress 50 standings 1

wiki 213568 kmz 50 dis 1

mp3 209779 a 50 Faydali 1

research 187303 wmi 50 ... 1

entries are stored along with their popularity according to a given corpus. Thus �rst we

create the dictionary as a list of words, using the titles of the articles in Wikipedia as

well as the redirection pages. We choose Wikipedia since it is a comprehensive on-line

encyclopedia which contains 3,907,396 articles1. To create the popularity index we also

rely on Wikipedia from which we obtain the number of times that a given word appears

in the articles.

To implement the normalization technique we used the lucene framework (see http:

//lucene.apache.org/). With the help of the SpellChecker library (see http://wiki.

apache.org/jakarta-lucene/SpellChecker) we created a lucene index representing

the dictionary. The dictionary index contains documents; one document per entry in

the dictionary. Each document has as �elds the entry as well as its n-grams. Thus within

the normalization process this index can be queried to identify entries by comparing

the n-grams of both the entry and the query term.

On the other hand, the popularity index contains information of all the articles in

the English Wikipedia. There is a document per each article in Wikipedia, and there

are two �elds, one for the article title, and another for the text in the article. Thus we

can query the popularity index by the frequency of appearance of a given word in the

Wikipedia articles. In other words, we query the index for the number of documents

containing a given word.

In addition we use the Levenshtein distance as similarity measure. This measure

was used to calculate the similarity between each tag and its normalized versions. We

1data reported in en.wikipedia.org as of March 2012.
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set 0.75 as the minimum similarity acceptable between the tag and the normalization.

For each tag in the dataset we queried the dictionary to di�erentiate the tags that do

not need to be normalized, since they already correspond to an entry in the dictionary,

from those that need to be normalized. Then we executed the normalization process

for the tags that do not match a dictionary entry. Next, we asked an evaluator �rst

to assess the feasibility of evaluating the tag and its normalized version, and second to

rate the normalization provided by our approach as valid or not valid. For each tag

ti the evaluator was presented with contextual information consisting of other tags tj
used concurrently when annotating resources in the data set. In addition we asked the

evaluator to identify tags written in other language distinct than English.

Metrics To evaluate the performance of the normalization algorithm we use precision

and coverage as evaluation metrics. The precision is measured as the fraction of nor-

malizations that are valid, while coverage is the fraction of tags for which we obtain a

normalization.

6.1.3 Evaluation and discussion

In table 6.2 we present the results of this evaluation. From the 5000 thousand tags

we found that 1660 (33.2%) required preprocessing to match a dictionary entry. Our

normalization algorithm found an alternative spelling in the dictionary for 1259 of them,

and hence producing a normalized version for 75.843% of the tags. The evaluator was

unable to evaluate 386 (30.659%) of the tags due to the impossibility of understanding

the tag meaning. The evaluator rated, out of the 873 evaluated, 628 normalizations as

valid which leads to a precision of 71.936% and a coverage of 75.843%.

Table 6.2: Evaluation of the normalization of tags using approximate matching

Statistics All tags Tags in English

Processed Tag 1660 1462

Normalized Tags 1259 1061

Precision 71.936% 73.315%

Coverage 75.843% 72.571%

Non Evaluated 30.659% 32.893%

Note that since we found that 11.928% of the tags were written in a language

di�erent than English we include this diferentation in the reported data. For tags only
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in English the precision was improved in 1.379% while the coverage was descreased in

-3.272%. A possible reason explaining why precision increased is the fact that some

words in other languages have a similar spelling to words in English but their meaning

is di�erent leading to a non valid normalization. This is the case of words such as

Precios in spanish which means prizes and Precious in english. On the other hand,

the coverage decreased since when �ltering out non-English tags we are decreasing the

overall number of valid relations while keeping constant the number of tags processed.

Though the coverage in both cases may seems low we consider that it is a satisfactory

value since even for the evaluator was di�cult to asses the meaning of around 30% of

the tags.

Finally in table 6.3 we present some of the tag normalizations. First column shows

valid normalizations where we can see that our technique is able to: 1) normalize plurals

to singular forms (e.g., adjustments), 2) split composed words (e.g., Accountplanning

and Adamandjoe), 3) obtain words from composed strings (e.g., 101cookboks and 6de-

grees), and 4) approximate words in other languages which are very similar to the

corresponding words in English (e.g., directorios in Spanish).

Table 6.3: Examples of tag normalizations. Tags are presented with their corresponding

normalized version.

Valid Normalizations Wrong Normalizations Non-Normalized

Adjustments Adjustment Activemailer Active_�lter 200dinge

Accountplanning Account_planning Bluemark Blueback 21stcenturyskills

Adamandjoe Adam_and_joe Eatability Castability Appleespaña

Direct-action Direct_action Gifs Gifts Firefox:toolbar

Bandwidth-speed Bandwidth_speed Group48 Group_8 360doc

Cdcovers Covers Hyperfocal Hyperlocal 3gb

101cookbooks Cookbooks Jee Jeep 3voor12

6degrees Degrees Owasp Wasp Alink=#�0000""

Directorios Directories Carburante Carborane Bancodedados

Second column shows wrong normalizations which occur mainly because: 1) there

are not corresponding entries in the dictionary for the concepts involved in the tags

(e.g., Activemailer and bluemark), 2) some of the tags do not represent an accepted

concept (e.g., eatability), 3) the tag was wrongly matched with an existing concept

(e.g., Jee refers to J2EE but was normalized to Jeep), and 4) words in other languages

were wrongly matched with similar English words (e.g, Carburante which means fuel in

Spanish).

Finally in the third column we present some tags for which the normalization proce-
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dure did not �nd an entry in the dictionary. In this case we see a variety of tags including:

1) tags mixing words in two di�erent languages (e.g., Appleespaña), 2) tags representing

composed words which are related but do not form a concept (e.g., �refox:toolbar), 3)

tags mixing numbers and non-alphabetical characters (e.g., Alink=#�0000""), and 4)

tags in other languages which are not similar to a word in English (e.g., bancodedados

which means data base in Portuguese)

6.1.4 Conclusions

We have presented an experiment to evaluate the use of approximate matching to nor-

malize tags. In this experiment we found that 33.2% of the tags were not found in the

dictionary. This fact con�rms the need of a preprocessing activity to deal with this per-

centage of tags so that some of them can be normalized according to dictionary entries.

We also showed that not all the tags can be normalized since even humans were not

able to identify the intended meaning of 30.659% of them. In addition we can report,

based on this experiment, that this technique is able to produce normalizations with

precision of 71.936% and coverage of 75.843%.

Since the Normalization task is part of the Data Preprocesing activity of the Termi-

nology Extraction process (see sections 4.2 and 5.1)this experiment is directly related

to the objectives O1 and O3, and contributions C1 and C2 (see chapter 3).

6.2 Evaluation of the semantic grounding

To evaluate the semantic grounding, in terms of precision and recall, we experimented

with tags of a photo sharing site. The set of tags was multilingual and therefore we

adapted the grounding process to deal with multiple languages. We use DBpedia as a

knowledge base where the semantic entities can be considered as concepts which can

be used in the grounding process. We consider di�erent decisions that can be taken in

the process with regard mainly to the source of terms representing each concept in the

vector space model. We run the semantic grounding for each tag in the data set and

ask a group of evaluators to rate manually the results. We use as evaluation metrics

Precision, Recall, Mean Average Precision MAP, and F-Measure on which we base the

discussion of the results. We validated the ratings generated by the evaluators using

standard measures of agreement as Fleiss' kappa statistic.
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6.2.1 Data set

We used as test data a set of tagging activities taken from Flickr1. By exploring Flickr

images we found that some pictures of tourist cities were annotated with multilingual

tags. Thus, we queried the Flickr API2 for pictures tagged with touristic places in Spain

(e.g., Barcelona, Canary Island, Ibiza, etc.). We gathered a total of 764 photos uploaded

to Flickr by 719 distinct users. On average those 764 photos were annotated using 12.4

tags with a standard deviation of 7.85. In addition, our data set consists of 9484 tagging

activities, that is, 9484 triples of the form 〈user, tag, photo〉, where 4153 distinct tags

were used. Each tag was used on average 2.28 times to annotate the pictures with a

standard deviation of 5.69.

6.2.2 Setup

The evaluation focused on determining the precision of the semantic grounding, con-

sidering di�erent decisions that can be taken in the process regarding the context of

ambiguous tags and the words used to represent each sense (i.e., semantic resource) in

the vector space model. In case of context we were interested in de�ning whether we

should use all the tags co-occurring with the ambiguous tag in the annotation activity

in contrast to a more reduced set of related tags. In case of sense representation we

wanted to evaluate whether we should use all the words appearing in the description of

the resource or a smaller set of words taken from its de�nition.

Active Context Selection Traditional disambiguation techniques utilize many con-

text features for disambiguation (part-of-speech, collocation, surrounding words, etc.)

when dealing with ambiguities in well-formed texts and sentences. Unfortunately, these

features are not available in certain Web-based systems, where the context consists of

unstructured bags of words, such tags in folksonomies. We are interested in the tag

meaning in each annotation, and hence we de�ne the context of a tag as the set of

additional tags co-occurring in a given annotation. However, many tags refer to subjec-

tive impressions of users (e.g., my favourite, amazing) or technical details (e.g., Nikon,

photo) which can be useless (or even harmful) for disambiguation. Therefore, we need

to select among all tags in the context those which help most to �gure out the tag

meaning.

To carry out this selection we use a technique described in (Gracia and Mena,

2009) which relies on the following hypothesis: the most suitable context words for
1�ickr home page http://www.flickr.com/
2The API is available here http://www.flickr.com/services/api/
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disambiguation are the ones most highly semantically related to the ambiguous key-

word. Based on that, we use a simple mechanism to select the active context: After

removing repeated words and stop words from the context, we compute the semantic

relatedness between each context word and the word to disambiguate. This relatedness

computation is performed by using a web-based relatedness measure, similar to the

Normalized Google Distance (Cilibrasi and Vitanyi, 2004), which takes into account

the co-occurrence of words on web pages, according to frequency counts, and giving a

value between 0 and 1, which indicates the degree of semantic relatedness that holds

between the compared words. Finally, we construct the active context set with the

context words whose relatedness score above a certain threshold.

Representing Semantic Resources We were interested in evaluating how well the

semantic grounding performs when the keywords representing each sense in the vector

space model are the most frequent terms in the content of the Wikipedia articles related

to each DBpedia resource, in contrast to a more reduced set of terms extracted from

article abstracts (i.e, the �rst paragraph describing the article content).

We also consider a baseline which attempts to directly relate tags to DBpedia resource

names using exact string matching. From now on we use the term SemGro to refer to

the semantic grounding. In our experiment we evaluated the following approaches for

the semantic grounding of tags:

� Baseline: Selection of the sense without disambiguation nor preprocessing.

� SemGro: For each sense we use the whole Wikipedia article as source for frequent

terms.

� SemGroAC: Same as SemGro including the selection of the Active Context.

� SemGroAbs: For each sense we use the �rst paragraph of the Wikipedia article

as source for frequent terms.

� SemGroAbsAC: Same as SemGroAbs including the selection of the Active Con-

text.

We engaged 41 evaluators in the evaluation campaign. Each of them had to evaluate

a set of semantic associations1 generated by each approach, and for that evaluators were

1Tuple of the form 〈user, tag, photo,DBpedia_resource, language〉
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presented with the top 5 semantic entities produced by each approach1. We made sure

that each semantic association was evaluated by at least three evaluators so that we

can use those decisions taken by user majority.

For each tagging activity evaluators decided whether they were able to identify the

semantics of the tag. Then they had to identify the language of the tagging activity

so that they evaluate the semantics associations accordingly. We presented to them

the set of DBpedia resources (title and abstract) returned by all the approaches in the

�rst 5 positions. They were asked to state if each DBpedia resource associated with

the tagging activity was highly related (HR), related (R), or not related (N). Note that

the evaluation was blind since evaluators did not know where the semantic entities

were coming from (i.e, the approach), neither the semantic entities were presented in a

prede�ned order. A screenshot of the evaluation application is shown in �gure 6.1. In

this application the tag to ground is at the top, and the context tags are below in bold.

Figure 6.1: Screenshot of the interface where users evaluated the grounding of tags

Metrics We use precision and recall as evaluation metrics. For a given approach and

tag, precision is de�ned as the fraction of DBpedia resources retrieved by the approach

that are actually related to the tag. Since our �nal goal is to obtain a single related

resource, we measure average precision values taking into account only the �rst results

1Note that evaluators did not know where semantic associations were coming from
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returned by each approach (i.e., precision at one or P@1). For more exhaustive com-

parisons, we also compute P@N , with N = 2, 3, 4, 5. Furthermore, averaging the sum

of P@N values by the number of related resources, we de�ne the mean average preci-

sion MAP . In turn, recall is de�ned as the fraction of DBpedia resources related to

the tag that are successfully retrieved by the approach. Similarly to precision, we also

take into consideration recall at N or R@N , with N = 1, 2, 3, 4, 5. Finally we use the

well known F measure, which is the weighted harmonic mean of precision and recall:

F = 2 · precision · recall/(precision+ recall).

6.2.3 Evaluation and discussion

We evaluated a total of 2260 tagging activities (TAS) corresponding to 764 pictures

tagged with 1112 tags1. Evaluators were able to identify the semantics of 87% of

the TAS. From this subset, 62.6% were considered in English and 87.7% in Spanish.

Statistics about the evaluation are presented table 6.4.

Table 6.4: Description of the evaluated tag assignments.

Users Evaluations
Evaluations/

Pictures Tags TAS
TAS/

user picture

English tags 41 30400
741.46

642 659 1232
1.92

(±206.51) (±0.79)

Spanish tags 41 49568
1208.98

742 816 1727
2.33

(±152.10) (±0.74)

From the set of tags that evaluators were able to identify their meaning and language,

our process associated the 86.9% of tags in English, and 86.7% in Spanish to DBpedia

resources. The preprocessing activity was useful to �nd a DBpedia resource name for

the 76.4% of the tags in English and 76.6% in Spanish.

Precision and Recall Analysis Table 6.5 shows the results obtained by the di�erent

approaches on tags marked as English and Spanish respectively. For a given tag, based

on the three users' evaluations, a semantic entity was considered relevant if at least

two users stated it was highly related (or related/highly related) to the tag. There was

a substantial agreement among users. Fleiss' kappa statistic Fleiss and Cohen (1973)

measuring users' agreement was κ = 0.76 (a value κ = 1 means complete agreement) for

the highly related case, and κ = 0.71 for the related/highly related case. In the reported

results, the former case was used because of its higher agreement level. Similar average

performance results were obtained with the latter case. Precision values were higher and
1Dataset available in www.oeg-upm.net/index.php/en/material-used-papers
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recall values were lower. There were more relevant entities so it was easier to accurately

retrieve a relevant entity, while it was more di�cult to retrieve all relevant entities.

We also measured the agreement when identifying the language. There was an almost

perfect agreement among users. Fleiss' kappa statistic was κ = 0.83.

Table 6.5: Evaluation results achieved by the di�erent approaches.

MAP P@1 P@2 P@3 P@4 P@5 R@1 R@2 R@3 R@4 R@5 F

English tags

Baseline 0.78 0.88 - - - - 0.78 - - - - 0.28

SemGro 0.91 0.89 0.53 0.37 0.29 0.23 0.81 0.91 0.93 0.95 0.96 0.36

SemGroAC 0.90 0.90 0.52 0.36 0.28 0.23 0.82∗ 0.90 0.92 0.93 0.94 0.36

SemGroAbs 0.84 † 0.82∗ 0.48 0.34 0.26 0.22 0.75∗ 0.85 0.89 0.90 0.92 0.34

SemGroAbsAC 0.86 † 0.86 0.48 0.34 0.26 0.22 0.79 0.86 0.89 0.90 0.92 0.34

Spanish tags

Baseline 0.71 0.88 - - - - 0.71 - - - - 0.27

SemGro 0.93 0.93 0.58 0.42 0.33 0.27 0.79 0.90 0.95 0.97 0.98 0.41

SemGroAC 0.93 0.94 0.57 0.42 0.33 0.27 0.80
∗ 0.89 0.93 0.96 0.96 0.40

SemGroAbs 0.88
‡ 0.90∗ 0.53 0.39 0.32 0.26 0.76∗ 0.85 0.90 0.93 0.94 0.39

SemGroAbsAC 0.89
‡ 0.91∗ 0.54 0.40 0.32 0.26 0.77 0.85 0.90 0.93 0.94 0.39

The results shown in the table were obtained from those tagging activities where the

associated semantic entities were known for the evaluators, and in which the correspond-

ing tags were linked to DBpedia resources by at least one approach. Note that recall

is computed assuming that the set of all tags relevant to a given tag is composed by

the relevant (see de�nition above) entities retrieved by the investigated approaches. We

cannot assure that we are able to retrieve all relevant entities but a strong representative

sample of them.

Wilcoxon's statistical tests were performed for MAP,P@1, R@1 and, F -measure

to determine whether there were statistical signi�cance di�erences between the metric

values obtained with the baseline and the proposed approaches, and between the metric

values obtained with SemGro approach and its variants. The statistical tests were ap-

plied on those tagging activities where all approaches (including the baseline) were able

to link at least one DBpedia resource. This allows us to present a more fair compari-

son among approaches, but implies a loss of information that hides a higher statistical

evidence in the di�erences with metric values of approaches able to link DBpedia re-

sources in a large number of cases. In table 6.5 values in underline bold (p=0.01), bold

(p=0.05), and italic bold (p=0.1) indicate a statistical signi�cance di�erence with val-

ues achieved by the baseline approach. Values marked with ‡(p=0.01), †(p=0.05), and
∗(p=0.1) indicate a statistical signi�cance di�erence with values achieved by SemGro

approach.
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Figure 6.2: Ambiguity of tags with relevant results produced by the SemGro

approach

Finally, since the baseline retrieves a single semantic association for each tag, the

metrics P@N and R@N with N = 2, 3, 4, 5 are not reported for that approach. Indeed,

the coverage (recall) of the baseline is low in comparison to the proposed approaches,

as shown in the tables. The following conclusions can be drawn from our study:

� In general, the baseline had a good performance with tags in English and in

Spanish. This fact suggests that a high percentage of the analyzed tags were used

in the sense directly found by the Baseline which corresponds to the Wikipedia

default sense (i.e., those wikipedia pages that editors have de�ned to display �rst

in case of ambiguous terms). Its high P@1 value is due to the fact that in the

90% of TAS in English and 91% in Spanish the correct sense corresponds with the

default sense. Nevertheless, the coverage of the baseline, de�ned as the number

of semantic associations produced by the baseline divided by the total number of

TAS, is extremely low: 27.7% in English and 19.4% in Spanish. This contrast, with

the 79.1% of SemGro coverage in English and 81.4% in Spanish. This di�erence

in coverage is due to the preprocessing activity.

� SemGro and its variants perform better when dealing with Spanish tags. The

amount of information in the Spanish Wikipedia compared with the English ver-

sion is considerably lower1. Less articles in the Spanish version may indicate less

ambiguity in the sense that not all the possible meanings of a word have been

added to the Wikipedia. In fact, the average of senses was 23.3 for English and

10.35 for Spanish. As shown in �gure 6.2 there were less tags in Spanish con-

sidered ambiguous (42%) than in English (61%), and thus the grounding was

straightforward for more tags in Spanish (58% of non ambiguous tags) than for

tags in english (39% of non ambiguous tags).

1As of April 2012, the English and Spanish Wikipedia have 3,921,259 and 882,859 articles respec-

tively
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Table 1: Evaluation results achieved by the dif-
ferent approaches for English and Spanish tags.

MAP P@1 P@5 R@1 R@5 F MRR NDCG
English entities
Baseline 0.78 0.88 - 0.78 - - 0.88 0.81
Sem4Tags 0.91 0.89 0.23 0.81 0.96 0.36 0.93 0.93
Sem4TagsAC 0.90 0.90 0.23 0.82∗ 0.94 0.36 0.93 0.92

Sem4TagsAbs 0.84† 0.82∗ 0.22 0.75∗ 0.92 0.34 0.88∗ 0.87†

Sem4TagsAbsAC 0.86† 0.86 0.22 0.79 0.92 0.34 0.90 0.88†

Spanish entities
Baseline 0.71 0.88 - 0.71 - - 0.88 0.74
Sem4Tags 0.93 0.93 0.27 0.79 0.98 0.41 0.96 0.95
Sem4TagsAC 0.93 0.94 0.27 0.80∗ 0.96 0.40 0.96 0.95

Sem4TagsAbs 0.88‡ 0.90∗ 0.26 0.76∗ 0.94 0.39 0.93∗ 0.91‡

Sem4TagsAbsAC 0.89‡ 0.91∗ 0.26 0.77 0.94 0.39 0.94∗ 0.91‡
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Figure 2: Precision variation according to
context lenght.

Wilcoxon’s statistical test was conducted for MAP, P@1,
R@1, F-measure, MRR and NDCG metrics. Values
in underline bold (p=0.01), bold (p=0.05), and italic
bold (p=0.1) indicate a statistical significance difference
with values achieved by the baseline approach. Values
marked with ‡(p=0.01), †(p=0.05), and ∗(p=0.1) in-
dicate a statistical significance difference with values
achieved by Sem4Tags approach.

For a given tag, based on the three users’ evaluations,
a semantic entity was considered relevant if at least
two users stated it was highly related (or related/highly
related) to the tag. There was a substantial agree-
ment among users. Fleiss’ kappa statistic [17] mea-
suring users’ agreement was κ = 0.76 (a value κ = 1
means complete agreement) for the highly related case,
and κ = 0.71 for the related/highly related case. In
the reported results, the former case was used because
of its higher agreement level. Similar average perfor-
mance results were obtained with the latter case. Pre-
cision values were higher and recall values were lower.
There were more relevant entities so it was easier to
accurately retrieve a relevant entity, while it was more
difficult to retrieve all relevant entities. Similarly to the
definition of relevance agreement, a tag (within a cer-
tain semantic context) was considered in English (Span-
ish) if at least two users chose English (Spanish) or both
options. There was an almost perfect agreement among
users. Fleiss’ kappa statistic was κ = 0.83. In the case
of named and unnamed entities, Fleiss’ kappa statistic
was κ = 0.85. The results shown in the tables were

obtained from those tagging activities where the asso-
ciated semantic entities were known for the evaluators,
and in which the corresponding tags were linked to DB-
pedia resources by at least one approach. The metrics
explained in Section 4.2 (MAP , P@N , R@N , F , MRR
andNDCG) were computed for each approach with En-
glish and Spanish entities. We also computed the metric
values for only (English/Spanish) named and unnamed
entities, though they are not reported for space reasons.
It is important to note that recall is computed assum-
ing that the set of all tags relevant to a given tag is
composed by the relevant (see definition above) entities
retrieved by the investigated approaches. We cannot
assure that we are able to retrieve all relevant entities
but a strong representative sample of them.

Wilcoxon’s statistical tests were performed to determine
whether there were statistical significance differences
between the metric values obtained with the baseline
and the proposed approaches, and between the metric
values obtained with Sem4Tags approach and its vari-
ants Sem4TagsAC, Sem4TagsAbs, and Sem4TagsAbsAC.
The statistical tests were applied on those tagging ac-
tivities where all approaches (including the baseline)
were able to link at least one DBpedia resource. This
allows us to present a more fair comparison among ap-
proaches, but implies a loss of information that hides a
higher statistical evidence in the differences with metric
values of approaches able to link DBpedia resources in
a large number of cases. Finally, note that the baseline
retrieves a single semantic association for each tag. For
this reason, metrics P@N and R@N with N = 2, 3, 4, 5,
and F measure are not reported for that approach. In-
deed, the coverage (recall) of the baseline is low in com-
parison to the proposed approaches, as shown in the
tables. Analyzing the obtained results, the following
conclusions can be drawn from our study.

In general, the baseline obtained high precision with
tags in English and in Spanish. This fact suggests that
a high percentage of the analyzed tags were used in the
sense directly found by the baseline (i.e., the preferred
meaning in Wikipedia). However, as we will discuss
in Section 5.2, the baseline was able to find semantic
resources for just a fraction of the analyzed data set.

All approaches obtained better precision with named
entities than with unnamed entities. The same obser-
vation is applicable to ranking based metrics MRR and
NDCG. The first positions of the approach rankings
tend to have more relevant results for named entities.
This can be explained by the fact Wikipedia is more an
encyclopedia than a dictionary, and thus named enti-
ties are a central part of the Wikipedia compared with
other words.

The precision value for all approaches is high for P@1
and decrease constantly until reach a low value for P@5.

Figure 6.3: Precision variation according to the context length

� SemGro and SemGroAC were the approaches that obtained the best results both

in term of precision and recall. Almost all of these results present statistical

signi�cant di�erences with results obtained with the baseline. Comparing SemGro

and SemGroAC, we do not �nd a clear enhancement of semantic associations when

exploiting the active context. In some cases, it seems that SemGroAC obtains

better P@1 and R@1 values, but the improvements are supported by no or low

statistically evidence. This observation could be biased by the way in which

statistical tests were conducted, as explained before.

� SemGroAbs and SemGroAbsAC are the worst approaches. Abstract terms do not

provide enough information to properly disambiguate the tag meaning. That is,

the scarcity of terms in the abstract decreases the overlapping of these terms with

tags in the context.

� In the 17% and 20% of ambiguous tags in English and in Spanish respectively, the

correct sense was di�erent from the Wikipedia default sense. Therefore validating

the need of a disambiguation activity.

� While SemGro precision is related to the number of tags in the context, it presents

di�erent patterns for tags in English and Spanish (see �gure 6.3). In the case of

tags in English, pictures annotated with between 6 and 15 tags (representing 58%

of the total) produce the highest P@1 reaching a peak for context containing

between 11 and 15 tags. Short contexts with less than 5 tags, or long contexts

with more than 16 tags produce, though satisfactory, lower P@1 values around

71%. Short contexts do not provide enough evidence (i.e., words to measure the

overlapping with words in the candidate senses) to select the right sense for a tag.
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In contrast, long contexts are noisy in the sense that some words in the context

can indicate one possible meaning while other words point to other meaning. In

case of tags in Spanish, short contexts does not a�ect Sem4Tag precision. In

fact, the highest precision is achieved when context length range between 0 an 10.

Nevertheless, starting from 15 precision decreases along with the context length

until it stabilizes around 78%.

The exploitation of the active context of a tag seems to improve the performance of

our approach. Nonetheless, we do not obtain statistically signi�cant evidence to support

that claim. Additional evaluations focused on measuring the importance of semantic

context have to be done.

6.2.4 Conclusions

We have presented an experiment where we evaluate the performance, using precision

and recall, of the semantic grounding of category names, in this case tags, to semantic

resources in the DBpedia knowledge base. We evaluated di�erent versions of this process

which were de�ned according to possible variations of the context de�nition and the

sense representation in the vector space model. We also de�ne a baseline where tags

where grounded to semantic entities with labels equals to the them.

We found that the semantic grounding process performs better when the senses were

represented in the vector space model by all the words found in the Wikipedia articles

which describe the corresponding senses (i.e., the semantic resources in DBpedia). On

the other hand, with respect to the context de�nition we found that the two version

of the context produce similar results. In fact with the collected data we could not

claim any statistical di�erence between the results using both context de�nitions. We

also found that for 90% of the tags in english the correct sense corresponds to the

default sense de�ned in the Wikipedia for the terms, and hence the baseline achieved a

satisfactory precision of 88%. However for the 17% of ambiguous tags in English, which

were 61% of the total, the correct sense was di�erent from the default sense and this

justify the need of disambiguating the meaning of the tags.

Since the Semantic Grounding activity is part of the Semantic Elicitation process

(see section 4.3.1 and 5.2.1) this experiment is directly related to the objectives O1,

O2 and O3, and contributions C1 and C2 (see chapter 3).
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6.3 Evaluation of the method for developing ontologies

To evaluate the method for obtaining ontologies from user-generated classi�cation sys-

tems we carried out an experiment which involves the generation of a preliminary on-

tology in the stock market domain from a folksonomy excerpt extracted from Delicious.

We used general purpose knowledge bases which are published as linked open data.

In addition, we used relevant �nancial resources provided by domain experts as seeds

during the terminology extraction process. We evaluated the results of the two main

processes of the method using, in case of the terminology extraction, an automatic

procedure to compare the output terminology to existing knowledge resources in the

domain, and in case of the semantic elicitation we analyzed the output ontology with

the help of automatic tools as well as with some experts who rated its relevance to the

domain.

6.3.1 Data set

As source of folksonomies we used �Delicious Popular URLs and Tags, version 1.0�

which was introduced previously in section 6.1.1. In short this dataset was comprised of

100,000 URLs; each URL had been saved at least 100 times. The ten most commonly

used tags for each URL as well as the number of times each tag was used were available

in our initial dataset.

6.3.2 Setup

Terminology extraction Recall that spreading activation was the technique de�ned

to be used in the term selection activity which is part of the terminology extraction

process. Spreading activation requires a list of seed nodes from which the traverse of

the graph can start. In this case the seeds must be URL of resources bookmarked

in Delicious. Therefore we asked some domain experts to indicate domain prominent

web pages in the stock market domain which are part of the Delicious dataset. The

suggested seeds are presented in table table 6.6.

Since the terminology gathered by the spreading activation technique depends on

the threshold h, we tested our method with the following h values: 0.5, 0.6, 0.7, and

0.8. Recall that this threshold is used to decide whether the spreading continues or not.

We de�ned 0.5 as the lowest value since it guarantees that at least half of the tags are

shared between the activated resources.

For the purpose of evaluating the relevance of the extracted terms, we compared our
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Website Description

www.google.com/�nance Information including markets, news, currency, etc.

money.cnn.com Fortune and Money �nancial magazines

www.ft.com International business newspaper

www.nasdaq.com NASDAQ Stock Market

www.federalreserve.gov Federal Reserve, the central bank of the United States

www.marketwatch.com Information of business news, analysis and stock market

www.nyse.com New York Stock Exchange market

www.ecb.int European Central Bank

londonstockexchange.com London Stock Exchange market

�nance.yahoo.com Information that includes news, international market

data and stock quotes, etc.

Table 6.6: Financial-related websites used as seeds of the term selection activity.

domain terminology to three �nancial glossaries: Yahoo! Financial Glossary1, Investor

Words 2, and Campbell R. Harvey's Hypertextual Finance Glossary3.

Semantic elicitation For the semantic elicitation process we used as knowledge bases

DBpedia (Bizer et al., 2009b), OpenCyc4, UMBEL5 and YAGO (Suchanek et al., 2008).

All these knowledge bases are general purpose in the sense that they cover not a unique

domain but several, and are published as linked data. DBpedia contains knowledge

from Wikipedia for close to 3.5 million resources; 1.6 million resources are classi�ed in a

cross domain ontology containing 272 classes. OpenCyc is a general purpose knowledge

base; it has nearly 500.000 concepts, around 15.000 types of relationships, and approx-

imately 5 million facts relating these concepts. UMBEL is a vocabulary and reference

concept ontology designed to help content to interoperate on the Web. This ontology

has 28.000 concepts and 38 types of relationships. YAGO is a knowledge base derived

from Wikipedia and WordNet; its core version has over 2.6 million entities and around

33 million facts. These datasets are interlinked among them. DBpedia resources, and

classes are connected to OpenCyc concepts using owl:sameAs, to UMBEL concepts

using umbel#correspondsTo, and to YAGO concepts using rdf:type and owl:sameAs.

The semantic elicitation activities tap into di�erent knowledge bases to carry out

their functions. For instance the semantic grounding uses DBpedia resource to ground

1see http://biz.yahoo.com/f/g/
2see http://www.investorwords.com/
3see http://www.duke.edu/$\sim$charvey/
4OpenCyc home page: http://sw.opencyc.org/
5UMBEL home page: http://www.umbel.org/
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the terminology, leveraging the high degree of interconnection o�ered by this knowledge

base with respect to the linked data sources. On the other hand, the class identi�cation

activity harnesses the DBpedia ontology and interconnected data sets together with

their corresponding ontologies. Similarly, the relation discovery activity uses all the

linked data sets to look for relationships among the previously identi�ed classes.

To evaluate the output ontology we asked to 4 domain experts to assess the relevance

of the classes and relations in the stock market domain. We asked the evaluators to

rate classes in each module according to the relatedness of each class to the �nancial

domain. They were asked to state whether a class was highly related, related, or not

related following some guidelines that we provided. After collecting the results we

measured the precision of the ontology classes over those decisions for which the majority

of evaluators reached an agreement. In other words, at least three evaluators agreed

with the rating of the class. A class was considered relevant if at least three evaluators

asserted that it was highly related or related.

To evaluate the relationships between classes we express them in natural language

sentences using the SWAT tool 1 so that evaluators were able to state the truth value of

them. SWAT receives as input an ontology and produces as output a set of sentences in

natural language describing the ontology axioms. For instance, if we have an ontology

asserting that Stock rdfs:subClassOf Equity and owl:disjointWith LoanNote, the SWAT

tool will produce two sentences: i) A Stock is an Equity and ii) No Stock is a LoanNote.

Thus, we asked the evaluators to rate these sentences as true or false.

We also asked evaluators to validate the existence of each of classes of the output

ontology in the SUMO �nancial ontology. The Suggested Upper Merged Ontology2

(SUMO) is a general ontology which contains knowledge of di�erent domains including

the �nancial. SUMO �nance is a broad ontology including personal banking and stock

market conceptualizations. Thus, we selected the classes that were related to the stock

market sub-domain.

Metrics

To evaluate the Terminology extraction process we compare the extracted terms

with existing terms in glossaries in the �nancial domain. We calculated precision as

the fraction of relevant terms with respect to all the terms found by the terminology

extraction process. A term was considered relevant if it exists in the corresponding

glossary.

1http://swat.open.ac.uk/tools/
2http://www.ontologyportal.org/
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For the Semantic Elicitation process we evaluate the output ontology in terms of

precision, and recall. We calculate precision to evaluate the identi�ed classes and the

discovered relations. For the former case precision was de�ned as the fraction of relevant

classes identi�ed by the domain experts in the ontology. For the latter case precision

was calculated as the fraction of valid relations identi�ed by the domain experts from

the natural language sentences which describe the axioms in the ontology.

On the other hand, recall was calculated for the ontology classes with respect to

existing classes in the stock market sub-domain of the SUMO �nance ontology. Thus,

we measured recall as the fraction of the SUMO classes in the stock market sub-domain

which were equivalent or subsumed by one class of the output ontology.

6.3.3 Evaluation and discussion

Terminology extraction. The precision of the Terminology Extraction process is

reported in Table 6.7. The di�erent lists of terms produced by the spreading activation

when varying the values of the threshold h were compared to the terms in the �nancial

glossaries. Using a threshold of 0.8 we got a terminology with the highest average pre-

cision. We compared the 58 terms against the Yahoo! glossary and reached a precision

of 94.83%. The result we attained when comparing against H. Campbell and Investor's

controlled vocabulary was lower; these thesauri often have terms composed of more

than two words, for instance 'Beggar-thy-neighbor devaluation,' 'Depository Institu-

tions Deregulation' and 'Monetary Control Act.' Such overly specialized terminology

was not found to be common in folksonomies.

Precision

Threshold Terms Yahoo! Investor W. H. Campbell Average

0.5 476 46.01% 32.56% 14.71% 31.09%

0.6 220 48.18% 37.73% 16.36% 34.09%

0.7 114 55.26% 40.35% 17.54% 37.72%

0.8 58 94.83% 48.28% 25.86% 57.32%

Table 6.7: Precision of the terminology gathered by our method using di�erent threshold

values.

Semantic elicitation. We executed the semantic elicitation process for the 58 terms

gathered in the previous phase using a threshold of 0.8. Results are shown in Table

6.8. Our method was able to ground a total of 55 terms to DBpedia resources �94.83%
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corresponding to 42 di�erent resources. The di�erence between the number of grounded

terms and that of DBpedia resources to which they were grounded exposes that some

of the terms refer to the same resource, yet they are di�erent; this can be attributed

to the use of synonyms or spelling variations. From those 42 resources, 23 correspond

to at least one class in the linked data set. In total, 23 local classes were added to the

ontology.

Semantic Elicitation Output Ontology

Grounding Identifying Finding
Classes Relations

Relations
Links

Terms Classes Relationships Types

42 23 378 164
187 378 8

184 26 2

dbpr classes relations new classes ocyc umbel dbpo

Table 6.8: Statistics of the semantic elicitation process and of the output ontology

We also found 378 relationships and 164 new classes. The �nal ontology1 con-

sists of 187 classes linked, by means of the owl:sameAs relationship, to 212 classes

of three di�erent ontologies in the linked data set. The ontology de�nes relation-

ships corresponding to 8 di�erent types: rdfs:subclassOf, owl:disjointWith, owl:sameAs,

ocyc:SiblingDisjointExceptions, ocyc:RewriteOf. ocyc:Facets-Partition, ocyc:TypeGenls,

ocyc:Facets-Generic2. Of the 187 classes, only ten were totally disconnected from the

others. An excerpt of the produced ontology is shown in Figure 6.4.

In order to analyze the knowledge within the generated ontology, we decomposed

it into modules using the partitioning tool PATO (Schlicht and Stuckenschmidt, 2008).

Modules generated by PATO are comprised of nodes for which the strength of the

connection between the nodes inside the module is higher than the strength of any con-

nection to nodes outside the module; the isolated nodes are also identi�ed. Modularity

of an ontology can be considered as a quality indicator since modules facilitates ontology

analysis and maintenance as well as they make easier to avoid inconsistencies and to

identify semantic defects (Schlicht and Stuckenschmidt, 2008).

For our resulting ontology, PATO identi�ed eleven modules of interconnected nodes

and one module of isolated nodes; the interconnected modules are presented in �gure

6.5. From these modules we observed that our ontology was composed of a majority

of topics that are relevant to the �nancial domain. For instance, there are modules

describing: 1) �nancial tasks such as Stock Exchange and Money Transactions, and 2)

agents participating in those activities, including Organizations, Companies, Bankers,
1The �nancial ontology can be downloaded from http://delicias.dia.�.upm.es/wiki/ im-

ages/3/34/FinanceOnto.zip
2For more information regarding openCyc relationships refer to the ontology documentation.
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Figure 6.4: Excerpt from the �nancial ontology showing classes related to the Transaction

class

Persons and Countries.

Organization (30.48%) Stock Exchange (15.51%)
Company (13.90%) Money Transaction (4.81%)
Person (4.81%) Country (3.74%)
Union Company (3.74%) Research (3.21%)
Banker (2.14%) Driver (1.60%)
Human (1.07%) Member (1.07%)

Figure 6.5: Percentage of classes in the ontology modules generated using PATO

Recall that we engaged four domain experts to evaluate the classes on each module.

We have measured the reliability of the agreement between our evaluators using Fleiss'

Kappa Fleiss (1971). This statistic measures how much the observed agreement exceeds

the result that would be expected if all raters made their rates randomly. If a �xed

number of people assign ratings to a number of items, then Kappa can be seen as a

measure for the consistency of ratings. For the domain expert evaluations we obtained

κ=0.137; a value greater than 0, meaning that the agreement exceeds the random result.

Evaluators reached agreements by majority when rating 63.98% of the evaluated classes.

Results of this evaluation are presented in table 6.9.

The overall precision of the ontology generated by our method was 80.67%1. The

1Evaluation data can be found in: http://delicias.dia.�.upm.es/wiki/images/4/45/ FinanceOntoE-

val.zip

172



results con�rm that most of the ontology modules as well as the classes pertain to the

domain. We obtained high precision values for Company, Stock Exchange, and Orga-

nization; we reached 100% precision for modules such as Money Transaction, Country,

Research, and Banker. Evaluators were not consistent when rating. For instance, most

of them chose the classes Organization and Company as relevant, although the same

evaluators stated that some subclasses were not relevant. Only two modules, Union

(Company) and Driver, had a precision lower than 50%, yet they only represent 3.2%

of the classes.

Module
Classes

Module
Classes

Number Precision Number Precision

Organization 57 77,8% Stock Exchange.. 29 84.6%

Company 26 88.5% Money Transaction 9 100%

Person 9 55.6% Country 7 100%

Union (Company) 7 40% Research 6 100%

Banker 4 100% Driver 3 0%

Human 2 100% Member 2 100%

Table 6.9: Precision of the ontology classes

With respect to the evaluation of the natural language sentences describing the rela-

tions in the ontology, the evaluators agreed in 70.33% of their ratings. Considering the

sentences that evaluators were able to rate the 96.4% were valid relations. Finally, with

respect to recall of the classes, 54% of the stock market classes in SUMO were covered by

the output ontology. While the ontology include concepts for stocks and agents involved

in the market transactions, it does not include information of other instruments such as

bonds or annuaties. Nevertheless we cover in more detail some concepts such as money

transactions. Please note that given our objective of developing a preliminary version

of an ontology which allows practitioners to save time when developing an ontology, a

recall of 54% means that we have covered almost half of the classes of a human created

ontology in the domain.

6.3.4 Conclusions

We have presented an experiment where we evaluate, using precision and recall, the

performance of the process to develop ontologies from user generated classi�cation sys-

tems and linked data sets. We evaluated the intermediate results of the Terminology

Extraction process as well as the �nal output produced by the Semantic Elicitation

process. We found that Terminology Extraction process precision depends on the value

173



of the threshold used to decide whether the spreading activation continuous processing

more nodes in the graph. The higher the value of this threshold the more precise the

terminology obtained. However this precise terminology implies a smaller number of

terms. On the other hand, we evaluate the ontology produced in the Semantic Elicita-

tion process �rst by analyzing the modules of classes contained in the ontology, and then

by measuring precision and recall using a human-based evaluation. We found that the

classes in the ontology were grouped in modules which most of the times were relevant

to the stock market domain. In addition the human-driven evaluation of the classes

and the relationships among them con�rm that the ontology was produced with high

precision: 80.67% precision for the classes, and 96.4% precision for the relations. In

addition we compare the classes in the ontology to classes of a domain ontology and

found that we cover 54% of the classes in the stock market domain.

We want to note that the evaluation of the generated ontology was challenging.

Initially we considered an automatic evaluation using a gold standard domain ontology.

Nevertheless to carry out this automatic evaluation we needed to match the labels of

the ontology concepts with the labels of the golden standard ontology which do not

necessarily have to be equal. Thus we were falling into an ontology matching problem

(Euzenat and Shvaiko, 2007). Since we were not interested in solving this problem we

decided to carry out the evaluation using domain experts. They had to asses the domain

relevance of the classes and relationships making up the ontology. Given the fact that

evaluators could have di�erent opinions about the pertinence of a class to the domain,

we required that each piece of information was assessed by di�erent evaluators so that

we can measure their agreement, and use only the decisions taken by majority.

In the context of this experiment we have achieved the thesis objectives 01, 02, and

03 through contributions C1 and C2, and we have proven the hypothesis H1, H2, H3,

and H4, which were described in chapter 3.

6.4 Survey: emergent semantics in Twitter lists

In this section we present a novel survey about the semantics of emergent relations in

Twitter lists. These named lists represent a potentially rich source for harvesting knowl-

edge, since they connect curators, members, subscribers and keywords appearing in list

names. We explore which of such connections lead to emergent semantics and produce

most related keywords. We obtain relations between keywords using the vector space

model (Salton and Mcgill, 1986) and a topic modeling method, the Latent Dirichlet

Allocation (Blei et al., 2003) LDA. Then we use metrics based on the WordNet synset
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structure (Fellbaum, 2005) to measure the semantic similarity between the related key-

words obtained using the vector space model and LDA. In addition, we ground these

keywords to linked data sets and present the relations found between them.

This survey is organized as follows. In section 6.4.1 we present the research frame-

work, where we describe the models that we use for obtaining related keywords (see

section 6.4.1.1), and the techniques that we used to characterise the semantics of the

relations identi�ed between keywords (see section 6.4.1.2). Next, in section 6.4.2, we

present the experiment that we carried out to characterise the emergent semantics in

Twitter lists along with the analysis of the results. Finally we present our conclusions

in section 6.4.3.

6.4.1 Research framework

In this section we �rst present the models used for obtaining related keywords from

Twitter lists. Then, we describe the techniques that we use to characterise the semantics

of the obtained relations.

6.4.1.1 Related keywords in Twitter lists

We use the vector space model (Salton and Mcgill, 1986) to represent list keywords and

their relationships with curators, members and subscribers. Each keyword is represented

by three vectors of di�erent dimension according to the type of relation represented.

The use of vectors allows calculating similarity between them using standard measures

such as the angle cosine.

Twitter lists can be de�ned as a tuple TL = (C,M,S, L,K,Rl, Rk) where C,M,S, L,

and K are sets of curators, members (of lists), subscribers, list names, and keywords

respectively, Rl ⊆ C × L ×M de�nes the relation between curators, lists names, and

members, and Rk ⊆ L ×K represents keywords appearing in a list name. A list φ is

de�ned as (c, l,Mc,l) where Mc,l = {m ∈ M |(c, l,m) ∈ Rl}. A subscription to a list

can be represented then by (s, c, l,Mc,l). To represent keywords we use the following

vectors:

- For the use of a keyword k according to curators we de�ne kcurator as a vector in

<C where entries in the vector wc = |{(c, l,Mc,l)|(l, k) ∈ Rk}| correspond to the number
of lists created by the curator c that contain the keyword k.

- For the use of a keyword k according to members we use a vector kmember in <M

where entries in the vector wm = |{(c, l,m) ∈ Rl|(l, k) ∈ Rk}| correspond to the number
of lists containing the keyword k under which the member m has been listed.
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- For the use of a keyword k according to subscribers we utilize a vector ksubscriber
in <S where entries in the vector ws = |{(s, c, l,Mc,l)|(l, k) ∈ Rk}| correspond to the

number of times that s has subscribed to a list containing the keyword k.

In the vector space model we can measure the similarity between keywords calcu-

lating the cosine of the angle for the corresponding vectors in the same dimension. For

two vectors ki and kj the similarity is sim(ki, kj) =
ki·kj
‖ki‖·‖kj‖ .

We also use Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to obtain similar

keywords. LDA is an unsupervised technique where documents are represented by a

set of topics and each topic consists of a group of words. LDA topic model is an

improvement over bag of words approaches including the vector space model, since

LDA does not require documents to share words to be judged similar. As long as they

share similar words (that appear together with same words in other documents) they

will be judged similar. Thus documents are viewed as a mixture of probabilistic topics

that are represented as a T dimensional random variable θ. For each document, the

topic distribution θ has a Dirichlet prior p(θ|α) ∼ Dir(α). In generative story, each

document is generated by �rst picking a topic distribution θ from the Dirichlet prior

and then use each document's topic distribution to sample latent topic variables zi.

LDA makes the assumption that each word is generated from one topic where zi is a

latent variable indicating the hidden topic assignment for word wi. The probability of

choosing a word wi under topic zi, p(wi|zi, β), depends on di�erent documents.

We use the bag of words model to represent documents as input for LDA. For our

study keywords are documents and words are the di�erent users according to their role

in the list structure. To represent keywords we use the following sets:

- For a keyword k according to curators we use the set kbagCurator = {c ∈ C|(c, l,m) ∈
Rl∧(l, k) ∈ Rk} representing the curators that have created a list containing the keyword
k.

- For a keyword k according to members we use a set kbagMember = {m ∈M |(c, l,m) ∈
Rl ∧ (l, k) ∈ Rk} corresponding to the users who have been classi�ed under lists con-

taining the keyword k.

- For a keyword k according to subscribers we use a set kbagSubscriber = {s ∈
S|(s, c, l,Mc,l) ∧ (l, k) ∈ Rk}, that is the set of users that follow a list containing the

keyword k.

LDA is then executed for all the keywords in the same representation schema (i.e.,

based on curators, members, or subscribers) generating a topic distribution θ for each

document. We can compute similarity between two keywords ki and kj in the same

representation schema by measuring the angle cosine of their corresponding topic dis-
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tributions θi and θj .

6.4.1.2 Characterising relations between keywords

To investigate the relevance and type of the relations between keywords obtained from

twitter lists we use state of the art similarity measures based on WordNet. In addition,

given the limited scope of WordNet we complement our study using SPARQL queries

on knowledge bases published as linked data.

WordNet-based Similarity To validate the relations found from keyword co-occurrence

analysis in Twitter lists, we use similarity measures that tap into WordNet (Fellbaum,

2005). WordNet is a lexical database where synonyms are grouped on synsets, with

each synset expressing a concept.

A natural measure of similarity between words is the length of the path connecting

the corresponding synsets (Jiang and Conrath, 1997; Pedersen et al., 2004). The shorter

the path the higher the similarity. This length is usually calculated in the noun and

verb is-a hierarchy according to the number of synsets in the path connecting the two

words. In the case of two synonyms, both words belong to the same synset and thus

the path length is 1. A path length of 2 indicates an is-a relation. For a path length

of 3 there are two possibilities: (i) both words are under the same hypernym known

as common subsumer, and therefore the words are siblings, and (ii) both words are

connected through an in-between synset de�ning an indirect is-a relation. Starting with

4 the interpretation of the path length is harder.

However, the weakness of using path length as a similarity measure in WordNet is

that it does not take into account the level of speci�city of synsets in the hierarchy. For

instance, measure and communication have a path length of 3 and share abstraction

as a common subsumer. Despite low path length, this relation may not correspond to

the human concept of similarity due to the high level of abstraction of the concepts

involved.

Abstract synsets appear in the top of the hierarchy, while more speci�c ones are

placed at the bottom. Thus, Wu and Palmer (1994) propose a similarity measure which

includes the depth of the synsets and of the least common subsumer (see equation 6.1).

The least common subsumer lcs is the deepest hypernym that subsumes both synsets,

and depth is the length of the path from the root to the synset. This similarity range

between 0 and 1, the larger the value the greater the similarity between the terms. For

terms measure and communication, both synsets have depth 4, and the depth of the lcs

abstraction is 3; therefore, their similarity is 0.75.
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wp(synset1, synset2) = 2 ∗ depth(lcs)/(depth(synset1) + depth(synset2) (6.1)

Jiang and Conrath (1997) propose a distance measure that combines hierarchical

and distributional information. Their formula includes features such as local network

density (i.e., children per synset), synset depth, weight according to the link type, and

information content IC of synsets and of the least common subsumer. The information

content of a synset is calculated as the inverse log of its probability of occurrence in the

WordNet hierarchy. This probability is based on the frequency of words subsumed by the

synset. As the probability of a synset increases, its information content decreases. Jiang

and Conrath distance can be computed using equation 6.2 when only the information

content is used. A shorter distance means a stronger semantic relation. The IC of

measure and communication is 2.95 and 3.07 respectively while abstraction has a IC of

0.78, thus their semantic distance is 4.46.

jc(synset1, synset2) = IC(synset1) + IC(synset2)− 2 ∗ IC(lcs) (6.2)

Linked Data to Identify Relation Types WordNet-based analysis is rather lim-

ited, since WordNet contains a small number of relations between synsets. To over-

come this limitation and improve the detection of relationships, we use general purpose

knowledge bases such as DBpedia (Bizer et al., 2009b), OpenCyc,1 and UMBEL2, which

provide a wealth of well-de�ned relations between concepts and instances.

Our aim is to bind keywords extracted from list names to semantic resources in

these knowledge bases so that we can identify which kind of relations appear between

them. To do so we harness the high degree of interconnection in the linked data cloud

o�ered by DBpedia. We �rst ground keywords to DBpedia (García-Silva et al., 2009),

and then we browse the linked data set for relations connecting the keywords.

After connecting keywords to DBpedia resources we query the linked data set to

search for relations between pairs of resources. We use a similar approach to (Heim

et al., 2010) where SPARQL queries are used to search for relations linking two resources

rs and rt. We de�ne the path length L as the number of objects found in the path

linking rs with rt. For L = 2 we look for a relationi linking rs with rt. As we do not

know the direction of relationi, we search in both directions: 1) rs relationi rt, and

2) rt relationi rs. For L = 3 we look for a path containing two relationships and an

1OpenCyc home page: http://sw.opencyc.org/
2UMBEL home page: http://www.umbel.org/
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intermediate resource node such as: rs relationi node, and node relationj rt. Note that

each relationship may have two directions and hence the number of possible paths is

22 = 4. For L = 4 we have three relationship placeholders and the number of possible

paths is 23 = 8. In general, for a path length L we have n =
∑L

l=2 2
(l−1) possible paths

that can be traversed by issuing the same number of SPARQL queries1 on the linked

data set.

For instance, let us �nd the relation between the keywords Anthropology and Sociol-

ogy. First both keywords are grounded to the respective DBpedia resources, in this case

dbpr:Anthropology and dbpr:Sociology. Figure 6.6 shows linked data relating these DB-

pedia resources. To retrieve this information, we pose the query shown in Listing 6.1.2

The result is the triples making up the path between the resources. In our case we

discard the initial owl:sameAs relation between DBpedia and OpenCyc resources, and

keep the assertion that Anthropology and Sociology are Social Sciences.

dbpr:Anthropology dbpr:Sociology

owl:sameAs owl:sameAs

rdf:type rdf:type

opencyc:anthropology opencyc:sociology

opencyc:

social science

Keyword

anthropology

Keyword 

sociology

grounding grounding

Figure 6.6: Linked data showing the relation between the anthropology and sociology

SELECT *

WHERE{<dbpr:Anthropology> ?relation1 ?node1. ?node1 ?relation2 ?node2.

<dbpr:Sociology> ?relation4 ?node3. ?node3 ?relation3 ?node2. }

Listing 6.1: SPARQL query for �nding relations

6.4.2 Experiment

To analyse the emergent semantics from Twitter lists we carried out an experiment where

we obtained related keywords from a data set extracted from Twitter and characterised

the relations between those keywords using similarity measures based on WordNet and

SPARQL queries over a data set of linked data.

1Note that for large L values the queries can last long time in large data sets.
2Property paths, in SPARQL 1.1 speci�cation, allow simplifying these queries.
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6.4.2.1 Data set

Twitter o�ers an Application Programming Interface (API) for data collection. We

collected a snowball sample of users and lists as follows. Starting with two initial seed

users, we collected all the lists they subscribed to or are members of. There were 260

such lists. Next, we expanded the user layer based on current lists by collecting all other

users who are members of or subscribers to these lists. This yielded an additional set

of 2573 users. In the next iteration, we expanded the list layers by collecting all lists

that these users subscribe to or are members of. In the last step, we collected 297,521

lists under which 2,171,140 users were classi�ed. The lists were created by 215,599

distinct curators, and 616,662 users subscribe to them1. From list names we extracted,

by approximate matching of the names with dictionary entries, 5932 unique keywords;

55% of them were found in WordNet. The dictionary was created from article titles and

redirection pages in Wikipedia.

6.4.2.2 Set up

For each keyword we created the vectors and the bags of words for each of the three user-

based representations de�ned in section 6.4.1.1. We calculated cosine similarity in the

corresponding user-based vector space. We also run the LDA algorithm over the bags

of words and calculated the cosine similarity between the topic distribution produced

for each document. We kept the 5 most similar terms for each keyword according to

the Vector-space and LDA-based similarities.

6.4.2.3 WordNet analysis

For each pair of similar keywords we calculated their similarity according to Jiang and

Conrath (JC) and Wu and Palmer (WP) formulas. To gain an initial insight about

these measures we calculate the correlation between them (see Figure 6.7). We use the

Pearson's coe�cient of correlations which divides the covariance of the two variables by

the product of their standard deviations.

In general these results show that Vector-space and LDA similarity based on mem-

bers produce the most similar results to that of WordNet measures. Vector-space sim-

ilarity based on subscribers and curators also produces correlated results, although

signi�cantly lower. LDA similarity based on subscribers results is correlated to JC dis-

tance but not to WP similarity. Finally LDA based on curators produces results that

are not correlated to WordNet similarities.
1The data set can be found here: http://goo.gl/vCYyD
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Figure 6.7: Coe�cient of correlation between Vector-space and LDA similarity with

respect to WordNet measures
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Figure 6.8: Average Jiang and Conrath distance and Wu and Palmer similarity

Correlation results can be partially explained by measuring the average of JC dis-

tance and WP similarity1 (see �gure 6.8). Vector-space and LDA similarities based on

Members have the shortest JC distance, and two of the top tree WP similarity values.

Vector-space similarity based on subscribers has also a short JC distance, and a high

WP similarity. For the rest of similarities JC distances are longer and WP similarity

lower.

To identify the type of relations found by Vector-space and LDA similarities we

calculate, as shown in table 6.10, the path length of the corresponding relations in

WordNet. To guarantee a base similarity, we use a threshold of 0.1; similarities under

this value were discarded. Note that in WordNet di�erent part of speech categories

have distinct hierarchies and hence the path length can be calculated only for terms

in the same category. According to the path length, the similarity based on members

produce the highest number of synonyms (path length=1), reaching a 10.87% of the

1The averages were calculated over relations for which both terms were in WordNet.
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relations found in WordNet for the case of LDA similarity. In this case, the LDA model

analyzes co-occurrence of groups of members across di�erent keywords to identify related

keywords. Unlike the vector space model, which requires exact members to be present

in similar keywords, LDA allows synonyms, i.e., di�erent members that tend to co-occur

with the same sets of keywords, to contribute to keyword similarity.

Table 6.10: Path length in WordNet for similar Keywords according to Vector-space and

LDA models.

Path Length
Members Subscribers Curators

VSM LDA VSM LDA VSM LDA

1 8.58% 10.87% 3.97% 3.24% 1.24% 0.50%

2 3.42% 3.08% 1.93% 0.47% 0.70% 0.00%

3 2.37% 3.77% 2.96% 2.06% 2.38% 4.03%

>3 67.61% 65.50% 67.27% 67.56% 77.83% 75.81%

Similarity based on subscribers and curators produce a signi�cative lower number

of synonyms. Likewise, similarity based on members produces the highest number of

direct is-a relations (path length=2). LDA similarity based on curators produce the

highest number of keywords directly related by a common superclass or an indirect is-a

relation (path length=3).

Given that the majority of relations found in WordNet have a path length greater

than or equal to 3, we decided to categorize them according to whether the relation is

based on a common subsumer or whether it is based on linked is-a relations. In average

97.65% of the relations with a path length ≥ 3 involve a common subsumer.

As it was argued before, the depth of the least common subsumer in�uences the

relevance of a relation. A manual inspection of the WordNet hierarchy shows that

synsets being at a distance greater than or equal to 5 from the root may be considered

as more speci�c. Figure 6.9 shows the percentage of relations according to the depth of

the least common subsumer in the WordNet hierarchy. For a depth of the LCS greater

than or equal to 5 and to 6 the Vector-space similarity based on subscribers produces

the highest percentage of relations (39.19% and 20.62% for each case) followed by the

Vector-space similarity based on members (37.07% and 17.96%). Starting from a depth

of the LCS greater than or equal to 7 until 9 the LDA and Vector-space similarity based

on members gathers the highest percentage of relations.

In addition to the depth of the LCS, the other variable to explore is the length of the

path setting up the relation. The stacked columns in �gure 6.10 show the cumulative
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Figure 6.9: Relations according to the depth of the least common subsumer LCS.
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Figure 6.10: Relations according to the path length for those cases where the least

common subsumer has depth greater or equal to 5.

percentage of relations found by Vector-space and LDA models according to the path

length of the relation in WordNet, with a depth of the least common subsumer greater

than or equal to 5. From the chart we can state that Vector-space similarity based on

subscribers produces the highest percentage of relations (26.19%) with a path length

≤ 10. This measure also produces the highest percentage of relations for path lengths

ranging from 9 to 4. The Vector-space similarity based on members produces the second

highest percentage of relations for path lengths from 10 to 6.

In summary, we have shown that similarity models based on members produce the

results that are most directly related to the results of similarity measures based on

WordNet. These models �nd more synonyms and direct relations is-a when compared

to the models based on subscribers and curators. These results suggest that some users
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are classi�ed under di�erent lists named with synonyms or with keywords representing

a concept in a distinct level of speci�city. We also discovered that the majority of

relations found by any model have a path length ≥ 3 and involve a common subsumer.

Vector-space model based on subscribers produces the highest number of relations that

can be considered speci�c (depth of LCS ≥ 5 or 6). However, for more speci�c relations

( 7 ≤ depth of LCS ≤ 9) similarity models based on members produce a higher number.

In addition we considered the path length, for those relations containing a LCS placed

in a depth ≥ 5 in the hierarchy, as a variable in�uencing the relevance of a relation.

Vector-space model based on subscriber �nds the highest number of relations with 4 ≤
length ≤ 10. In general similarity models based on curators produce a lower number of

relations. We think this may be due to the scarcity of lists per curator. In our dataset

each curator has created 1.38 lists in average.

6.4.2.4 Linked Data analysis

Our approach found DBpedia resources for 63.77% of the keywords extracted from

Twitter Lists. In average for the 41.74% of relations we found the related keywords

in DBpedia. For each relation found by Vector-space or LDA similarity we query the

linked data set looking for patterns between the related keywords. Figure 6.11 shows

the results according to the path length of the relations found in the linked data set.

These results are similar to the ones produced by WordNet similarity measures. That

is, similarity based on Members produce the highest number of synonyms and direct

relations though in this case Vector-space similarity produces more synonyms than

LDA. Vector-space similarity based on subscribers has the highest number of relations

of length 3, followed by Vector-space and LDA similarity based on members.
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Figure 6.11: Relations identi�ed from linked data queries.

Given that the Vector-space model based on members found the majority of direct
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relations, we present, in table 6.11, the relations identi�ed in the linked data set. Broad

term and subClassOf are among the most frequent relations. This means that members

of lists are usually classi�ed in lists named with keywords representing a concept with

a di�erent level of speci�city. Other relations that are di�cult to elicit from traditional

lexicons are also obtained, such as developer, genre or largest city.

In addition we also investigate the type of relations of length 3 elicited using the

Vector-space model based on subscribers. The most common patterns found in the

linked data set were rs
relation1→ object

relation2← rt, and rs
relation1← object

relation2→ rt with

54.73% and 43.49% of the relations respectively. Table 6.12 shows the obtained relations

according to each pattern.

With respect to the �rst pattern, 97.96% of the related keywords can be considered

siblings since they are associated via typeOf or subClassOf relations with a common

class. That is, some subscribers follow lists that share a common super concept. On the

other hand, the second pattern shows a wider range of relations. Keywords are related

since they are genres, occupations, products, industries, or main interest that appear

together in the description of an individual in the linked data set.

Table 6.11: Direct relations established by the vector-space model based on members.

Relation type Example of keywords

Broader Term 26% life-science biotech

subClassOf 26% authors writers

developer 11% google google_apps

genre 11% funland comedy

largest city 6% houston texas

6.4.3 Conclusions

We have evaluated di�erent models to elicit semantic relations from Twitter lists. These

models represent keyword co-occurrence in lists based on three user roles: curators,

subscribers and members. We measure similarity between keywords using the vector-

space model and a topic based model known as Latent Dirichlet Allocation. Then we

use Wordnet similarity measures including Wu and Palmer, and Jiang and Conrath

distance, to compare the results of the vector-space and LDA models.

Results show that applying vector-space and LDA metrics based on members pro-

duce the most correlated results to those of WordNet-based metrics. We found that
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Table 6.12: Indirect relations of length 3 found in the linked data set for the relations

established by the vector-space model based on subscribers

rs
relation1→ object

relation2← rt

Relations Example

type type 67.35% nokia → company ← intel

subClassOf subClassOf 30.61% philanthropy → activities ← fundraising

rs
relation1← object

relation2→ rt

Relations Example

genre genre 12.43% theater ← Aesthetica → �lm

genre occupation 10.27% �ction ← Adam Maxwell → writer

occupation occupation 8.11% poet ← Alina Tugend → writer

product product 7.57% clothes ← ChenOne → fashion

product industry 9.73% blogs ← UserLand Software → internet

occupation known for 5.41% author ← Adeline Yen Mah → writing

known for known for 3.78% skeptics ← Rebecca Watson → atheist

main interest main interest 3.24% politics ← Aristotle → government

these measures produce relations with the shortest Jiang and Conrath distance and

high Wu and Palmer similarities. In addition, we categorize the relations found by each

model according to the path length in WordNet. Models based on members produce the

highest number of synonyms and of direct is-a relations. However, most of the relations

have a path length ≥ 3 and have a common subsumer. We analyze these relations using

the depth of the LCS and the path length as variables that help to identify the relevance

of relations. This analysis shows that the vector-space model based on subscribers �nds

the highest number of relations when relevance is de�ned by a depth of LCS ≥ 5, and

the path length of relations is between 10 and 4.

We also investigate the type of relations found by each of the models using general

knowledge bases published as linked data. We categorize the relations elicited by each

model according to the path length in the linked data set. These results con�rm that the

models based on members produce the highest number of synonyms and direct relations.

In addition, we �nd that direct relations obtained from models based on members are

mostly Broader Term and subclassOf. Finally, we study the type of relations obtained

from the vector-space model based on subscribers with a path length of 3 and �nd that

mostly they represent sibling keywords sharing a common class, and subjects that are
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related through an individual.

In the context of this experiment we have achieved the thesis objective 04 through

contribution C1, and we have proven the hypothesis H5, H6 and H7, which were

described in chapter 3.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The active involvement of users in the generation of content on the Web 2.0 has led to

the creation of a massive amount of information resources that need to be organized

so that they can be better retrieved and managed. Di�erent strategies have been used

to overcome this information overload problem, including the use of tags to annotate

resources in folksonomies, and the use of lists or collections to organize them. The

bottom-up nature of these user-generated classi�cation systems, as opposed to systems

maintained by a small group of experts, have made them interesting sources for acquiring

knowledge.

In parallel with the Web 2.0 a new Web of data has been developed as part of the

Semantic Web (Berners-Lee et al., 2001), which has emerged from the creation of data

sets published following the linked data principles (Bizer et al., 2009a). Some of these

datasets are large general purpose ontologies such as DBpedia, OpenCyc, WordNet,

UMBEL, and YAGO which have been created manually or automatically by extracting

knowledge from unstructured and structured resources such as Wikipedia and WordNet.

The fact that these ontologies are interconnected among them and can be accessed

through a unique query language turn them into interesting resources to reuse existing

conceptualisations.

Thus, we framed this thesis work in a global objective of researching novel methods

and techniques to automatically develop domain ontologies leveraging user-generated

classi�cation systems and the Web of data. Ontologies are a cornerstone of the Semantic

Web since they can provide semantics to raw data so that these data can be consumed

automatically by software agents. However building ontologies is a complex process

where ontology engineers face the so-called knowledge acquisition bottleneck. That

189



is, they have to obtain knowledge from domain experts or domain relevant resources

including standards and existing taxonomies to represent it in the form of an ontology.

Thus, we aim at automatically developing an initial version of an ontology from user-

generated classi�cation systems and existing ontologies in the Web of Data so that

ontology engineers do not have to start from scratch when developing domain ontologies.

When surveying the state of the art we identi�ed two open research problems. First,

we found that di�erent methods have been proposed to extract ontologies from folk-

sonomies. However from our survey we concluded that current methods produce shallow

and limited ontologies where, in some cases, there was no distinction between classes

and instances, neither there was a clear de�nition of the relations in the ontology. In

addition we found that none of the surveyed approaches produce domain ontologies.

That is in these approaches they do not narrow the scope of the produced ontology

to relevant concepts in a domain. Hence we stated that the development of a method,

and its supporting techniques, to automatic elicit formal domain ontologies from folk-

sonomies is still an open research problem (see section 2.3.9). Second, we found that

user-generated lists were not used in knowledge acquisition processes and there was

not any quantitative or qualitative survey about the emergent semantics which can be

extracted from them. Therefore we considered that there is a lack of a survey about

the semantics that can be elicited from user-generated lists. Such surveys lay the foun-

dations over which knowledge acquisition processes can be built since they identify the

amount and the type of information that can be obtained from knowledge sources, in

this case user-generated lists.

To cope with these open research problems we de�ned objectives, and hypotheses

on which the contributions to achieve these objectives rely. We also carried out some

experiments where we verify the hypotheses through the evaluation of the method de-

veloped and techniques adapted in this thesis. In the following we describe in short the

objectives, hypotheses, contributions and the experiments associated with each of the

two open research problems.

Ontology development from user-generated classi�cation systems

With respect to the development of a method to automatic elicit formal domain ontolo-

gies from folksonomies relying on linked data sets we de�ne the following objectives:

O1. To propose methods and techniques to leverage the knowledge in user-generated

classi�cation systems in the ontology development.

190



O2. To propose methods and techniques to reuse ontologies published as linked data

in the ontology development process.

O3. To propose an integrated method to create ontologies relying on folksonomies and

linked data.

We rely on the following hypotheses to achieve the aforementioned objectives.

H1. User-generated classi�cation systems can be mined to collect knowledge pertinent

to a domain so that this knowledge can be used in an ontology development

process.

H2. Ontologies published as linked data can be used to make explicit and formal the

knowledge extracted from user-created classi�cation systems.

H3. It is possible to create a method, relying on the hypotheses H3 and H4, to create

a domain ontology.

H4. It is possible to use existing techniques to automatically carry out the processes

proposed in the method.

Based on these hypotheses and with the aim to achieve the objectives that we have

posed in this thesis we have generated the following contributions:

C1. An integrated method to develop an ontology schema from user-generated

classi�cation systems relying on linked data. This method covers di�erent

stages of the ontology development process:

� Elicitation of domain terminology by collecting relevant terms from user-

generated classi�cation systems.

� Identi�cation of classes from the extracted terminology by reusing existing

classes of ontologies published following the linked data principles.

� Discovery of relations between the identi�ed classes by reusing existing rela-

tions of ontologies published following the linked data principles.

C2. A set of techniques to support the distinct activities and tasks proposed

in the method. We have adapted the following techniques to achieve the goals

of each of the processes.

� Spreading activation for eliciting domain terminology.
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� Vector space model and dynamic queries in SPARQL for identifying classes.

� Dynamic queries in SPARQL for discovering relations.

We designed di�erent experiments to evaluate the method and techniques proposed to

generate domain ontologies and to verify the hypotheses we posed in this thesis. Thus in

section 6.1 we evaluated the Normalization task which is part of the Data Preprocessing

Activity of the Terminology Extraction process. Similarly, in section 6.2 we evaluated

the Semantic Grounding activity which is part of the Semantic Elicitation process. Next,

we evaluated in section 6.3 the whole approach, which comprises contributions C1 and

C2, to obtain an ontology in the stock market domain from a folksonomy generated

in the Delicious bookmarking site and reusing the DBpedia, OpenCyc and UMBEL

ontologies. The results of this experiment where satisfactory in terms of precision and

recall of the generated ontology and therefore in this context we veri�ed hypothesis H1,

H2, H3 and H4.

Emergent semantics from user-generated lists

Regarding the survey of the semantics that can be elicited from user generated lists we

de�ne the following objective:

O4. To analyse the emerging semantics of Twitter lists, a user-generated classi�cation

system which has not been studied as source of knowledge yet.

To achieve this objective we rely on the following hypotheses:

H5. There is an emergent semantics which result of the aggregation of the individual

classi�cations in user-generated lists.

H6. It is possible to use existing similarity measures based on WordNet to analyze the

emergent semantics in user-generated lists.

H7. It is possible to use existing ontologies published as linked data to analyze the

emergent semantics in user-generated lists.

Based on these hypotheses and with the aim to ful�ll the objective we have generated

the following contribution:

C3. A survey of the emergent semantics in Twitter lists. We presented a survey

of the emerging semantics in Twitter lists where we quantify and characterise the
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knowledge that can be extracted from this user-generated lists. To do so we rely

on the vector space model and the Latent Dirichlet Allocation to elicit related

terms from this user-generated list. Then we use similarity measures based on

WordNet and queries over linked data sets to characterise the semantic of the

relations between the related terms.

To survey this user-generated list we carried out an experiment, presented in section

6.4, where we were able to verify the hypotheses H5, H6, and H7.

Future Work

While developing this thesis we were identifying new opportunities and research prob-

lems that did not fall into the scope that we have de�ned for this thesis work and

therefore we decided to postpone them. In the following we present our future work:

� Apply the method generated in this thesis to user-generated lists. In

this thesis we have shown that it is possible to elicit keywords from user-generated

lists which are related semantically. Since user-generated lists are user-generated

classi�cation systems we can apply the method to obtain ontologies from them

relying on the Web of Data.

� Survey the emergent semantics of user-generated lists produced in novel

applications. In addition to Twitter, other web applications have started allow-

ing users to create lists. For instance in Pinterest1 and Flickr2 users create lists to

arrange pictures, while in Delicious3 they do it to organize bookmarks. These lists

can be shared and used by other users in the platform and therefore we can bene�t

not only of the individual contribution of the list creator but of the aggregated

use given by the community. Thus, these user-generated classi�cation systems are

novel sources for which an emergent semantics can be characterised. According to

the results obtained in this charaterisation we could apply the method to obtain

ontologies developed in this thesis.

� Multilingual ontologies. The user-generated classi�cation systems in which we

are interested are created by large user communities in Web applications with a

worldwide scope, therefore reaching users with di�erent languages. These classi�-

cation systems contain names (i.e., tags and list names) de�ned by users which are
1see http://pinterest.com
2http://www.�ickr.com
3http://delicious.com/
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written in their own languages. This fact turns user-generated classi�cation sys-

tems into knowledge sources from which multilingual information can be elicited.

Thus a future line of research is to exploit these classi�cation systems to obtain

multilingual ontologies.

� Using ontologies to improve recommendation and search functionalities

in web applications relying on user-generated classi�cation systems. We

can improve recommendation and search functionalities in web applications from

which we are obtaining the ontologies. In folksonomies, tag recommendation can

be based on the ontological relations associated with the concept representing the

tag meaning. For instance, when the user type a tag the system can suggest su-

perclasses and object properties related to the concept representing that tag in the

ontology. In case of user-generated lists a resource recommendation system can

suggest for a given list other resources which are classi�ed under lists with names

which are synonyms or superclasses of that list. On the other hand, search pro-

cesses may bene�t of the ontologies so that they can carry out i) query expansion

processes based on superclasses and object properties of the class representing the

keyword used in the query, and ii) query disambiguation by asking or identifying

automatically the meaning (i.e., the ontology concept) of the keyword used in

the query and use the classes in the ontological context to pose less ambiguous

queries.
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ANNEXA

ONTOLOGY FOR DESCRIBING THE METHOD DATA

In this annex we present the ontology (see �gure A.1) designed to model the input

and output data of the processes, activities and tasks making up the method. This

ontology1, developed in OWL-DL 2, was designed by reusing existing ontologies, and

following ontology design best practices de�ned by the World Wide Web Consortium

W3C such as the part-whole best practices which are described later in this section.

Figure A.1: Ontology modeling the data structures presented in the method.

1The ontology is available at http://www.oeg-upm.net/index.php/ontologies/

288-ontologies-user-generated-classification-systems
2OWL speci�cation is available at: http://www.w3.org/TR/owl-guide/
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The classi�cation system is represented by the class Classi�cationSystem which is

modeled as a list of classi�cation instances, which in turn are represented by the class

Classi�cationInst. To model a list we reuse the ontology OWLlist 1 which has been

proposed in Drummond et al. (2006). In this ontology a list is a sequence of nodes

where each node contains data and a link to the next node in the list. Thus to model

the list a node class is created as a subclass of OWLlist, and then the hasContent and

isFollowedBy object properties have to be de�ned. While the hasContent relates the

node with the class containing the data, the isFollowedBy de�nes the class of the next

node in the list. Therefore in the case of the Classi�cationSystem class we de�ned it as

subClassOf OWLlist and set the hasContent property to a Classi�cationInstance class

and the isFollowedBy property to a Classi�cationSystem class.

A classi�cation instance consists of a user, a category name and classi�ed resource

which are represented in the ontology by the corresponding classes. The consists of rela-

tion has been modeled in two ways. �rst we have created the object properties hasUser,

hasCategoryName and hasClassi�edResource to specify the classi�cation instance parts.

On the other hand, we have modeled the partOf relation between the constituent parts

and the classi�cation instance following the best practices in this respect provided by

the W3C 2. One of the best practices recommends to de�ne the partOf as a taxon-

omy. To do so, �rst the partOf is de�ned as an object property. Then each of the

constituent parts has to be declared as subclass of a restriction over the range of values

that the PartOf can take, which in this case is Classi�cationInst. As we require that

all users, category names and classi�ed resources are part of at least one classi�cation

instance, we create the restriction using an existential quanti�er. In addition we require

that users, category names, and classi�ed resources only can be part of classi�cation

instances, and hence we create another restriction using an universal quanti�er. All the

partOf relations presented in this ontology follows the recommend best practice and use

both, existential and universal quanti�ers when de�ning the restriction over the range

of the partOf object property.

A normalized classi�cation instance, represented by the class NormalizedClasInst,

is a classi�cation instance plus a normalized category name, which is represented by

the class NormalizedCateName. Therefore the NormalizedClasInst class is subclass of

Classi�cationInst, and is related to the class NormalizedCateName by means of the

object property hasNormalizedCateName. In addition, the normalizedCateName class

1OWLlist is available in http://www.co-ode.org/ontologies/lists/2008/09/11/list.owl
2Part-whole best practices published in : http://www.w3.org/2001/sw/BestPractices/OEP/

SimplePartWhole/simple-part-whole-relations-v1.3.html
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is de�ned as partOf of the NormalizedClasInst class.

A contextualized term, represented by the class ContextualizedTerm, consists of a

term and its context, which in turn are represented by the class Term and ContextList.

The consists of relation has been modeled using the object properties hasTerm and

hasTermContext. On the other hand, we have de�ned a partOf relation between the

constituent parts Term and ContextList, and the ContextualizedTerm class. The Con-

textList is a list of classi�cation instances. Therefore it is de�ned a subclass of OWLlist.

its hasContent and isFollowedBy object properties are set to the class Classi�cationIn-

stance and to the class ContextList respectively. Finally, we have included an standalone

TransformationInstance class to represent the instances which has been transformed in

the Data Preprocessing activity of the method. Note that is not possible to de�ne in

advance the semantics of this class since it depends on the data structure which is de-

�ned during the execution of the method. And therefore the ontology engineer must

adapt this ontology according to the circumstances de�ned by the method execution.

In the following we present the de�nitions of the the di�erent classes and object

properties making up the ontology.

A.1 Classes

OWLList

This class is imported from the ontology list.owl and it represents a lists. The list is

de�ned by specifying the content of each node in the list (hasContent object property)

and a link to the next node in the list (isFollowedBy object property).

Classi�cationSystem

This class represents the classi�cation systems as a list of classi�cation instances. It is

de�ned as:

Classi�cationSystem v OWLList

Classi�cationSystem v ∀ hasContents Classi�cationInst
Classi�cationSystem v ∀ isFollowedBy Classi�cationSystem

Classi�cationInst

This class represents a classi�cation instance which is an individual classi�cation of a

resource in the classi�cation system. That is, the relation between a user who has used
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a category name to classify a resource.

User

This class represents a user in the classi�cation system. A user is, at least and only, part

of a classi�cation instance. In addition users, category names, and classi�ed resources

are disjoint. It is de�ned as:

User v ∀ partOf Classi�cationInst
User v ∃ partOf Classi�cationInst
User v ¬ CategoryName

User v ¬ Classi�edResource

Classi�edResource

This class represents a classi�ed resource (e.g., Web pages, pictures, and users) that

users classify in the system. These resources are, at least and only, part of a classi�ca-

tion instance. In addition, classi�ed resources, category names and users are disjoint.

It is de�ned as:

Classi�edResource v ∀ partOf Classi�cationInst
Classi�edResource v ∃ partOf Classi�cationInst
Classi�edResource v ¬ CategoryName

Classi�edResource v ¬ User

CategoryName

This class represents the category names (e.g., tags or list names) that users assign to

classify resources in the system. These category names are, at least and only, part of a

classi�cation instance. In addition, category names, classi�ed resources, and users are

disjoint. It is de�ned as:

CategoryName v ∀ partOf Classi�cationInst
CategoryName v ∃ partOf Classi�cationInst
CategoryName v ¬ Classi�edResource

CategoryName v ¬ User
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NormalizedClasInst

This class represents the normalized version of a classi�cation instance, where the cat-

egory name has been turn into a normalized category name. This class is subclass of

the Classi�cationInst class. It is de�ned as:

NormalizedClasInst v Classi�cationInst

NormalizedCateName

This class represents the normalized version of a category name. A normalized category

name is, at least and only, part of a normalized classi�cation instance. It is de�ned as:

NormalizedCateName v ∀ partOf NormalizedClasInst
NormalizedCateName v ∃ partOf NormalizedClasInst

ContextualizedTerm

This class represents a contextualized term. That is a given term and the list of classi-

�cation instances where this term appears as a category name.

Term

This class represents a term. A term corresponds to a normalized category name which

has been extracted from the classi�cation system. A term is, at least and only, part of

a contextualized term. It is de�ned as:

Term v ∀ partOf ContextualizedTerm
Term v ∃ partOf ContextualizedTerm

ContextList

This class represents the context of a given term. The context is de�ned as a list of

classi�cation instances where the term was used as a Category Name. The list is de-

�ned by specifying the hasContents object property as classi�cation instances, and the

isFollowedBy as another ContextList. In addition, a context list is, at least and only,

part of a contextualized term. It is de�ned as:

ContextList v OWLList
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ContextList v ∀ hasContents Classi�cationInst
ContextList v ∀ isFollowedBy ContextList

ContextList v ∃ partOf ContextualizedTerm
ContextList v ∀ partOf ContextualizedTerm

TransformationInstance

This class represents the di�erent ways that a normalized classi�cation instance can be

turn into during the preprocessing activity. According to the de�ned transformation at

execution time this class semantics has to be de�ned by meas of its association with

existing or new classes.

A.2 Object properties

hasContents

This object property de�nes the content of each node in the list. Its semantics is de�ned

in the list.owl ontology.

isFollowedBy

This object property de�nes the class of the next node in the list. Its semantics is

de�ned in the list.owl ontology.

partOf

This object property de�nes a part of relation. Its inverse relation is hasPart. It is

de�ned as:

partOf ≡ hasPart−

hasPart

This object property de�nes a has part relation. Its inverse relation is partOf. It is

de�ned as:

partOf ≡ hasPart−
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hasUser

This object property de�nes the relation has user which is stated always between a

classi�cation instance (domain) and a user (range). It is de�ned as:

∃ hasUser Thing v Classi�cationInst

> v ∀ hasUser User

hasCategoryName

This object property de�nes the relation has category name which is stated always be-

tween a classi�cation instance (domain) and a category name (range). It is de�ned as:

∃ hasCategoryName Thing v Classi�cationInst

> v ∀ hasCategoryName CategoryName

hasClassi�edResource

This object property de�nes the relation has classi�ed resource which is stated always

between a classi�cation instance (domain) and a classi�ed resource(range). It is de�ned

as:

∃ hasClassi�edResource Thing v Classi�cationInst

> v ∀ hasClassi�edResource Classi�edResource

hasNormalizedCateName

This object property de�nes the relation has normalized category name which is stated

always between a normalized classi�cation instance (domain) and a normalized category

name (range). It is de�ned as:

∃ hasNormalizedCateName Thing v NormalizedClasInst

> v ∀ hasNormalizedCateName NormalizedCateName

hasTerm

This object property de�nes the relation has term which is stated always between a

contextualized term (domain) and a term (range). It is de�ned as:
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∃ hasTerm Thing v ContextualizedTerm

> v ∀ hasTerm Term

hasTermContext

This object property de�nes the relation has context term which is stated always be-

tween a contextualized term (domain) and a context list (range). It is de�ned as:

∃ hasTermContext Thing v ContextualizedTerm

> v ∀ hasTermContext ContextList
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