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Abstract 

Digital signatures are used to detect unauthorized modifications to data and to authenticate the identity 
of the signatory. In addition, the recipient of signed data can use a digital signature as evidence in 
demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. This is 
known as non-repudiation since the signatory cannot easily repudiate the signature at a later time. This 
standard specifies ML-DSA, a set of algorithms that can be used to generate and verify digital signatures. 
ML-DSA is believed to be secure, even against adversaries in possession of a large-scale quantum computer. 

Keywords: cryptography; digital signatures; Federal Information Processing Standards; lattice; post-
quantum; public-key cryptography. 
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Federal Information Processing Standards Publication 204 

Published: August 13, 2024 
Effective: August 13, 2024 

Announcing the 

Module-Lattice-Based Digital Signature Standard 

Federal Information Processing Standards (FIPS) publications are developed by the National Institute of 
Standards and Technology (NIST) under 15 U.S.C. 278g-3 and issued by the Secretary of Commerce under 
40 U.S.C. 11331. 

1. Name of Standard. Module-Lattice-Based Digital Signature Standard (FIPS 204). 

2. Category of Standard. Computer Security. Subcategory. Cryptography. 

3. Explanation. This standard specifies ML-DSA, a lattice-based digital signature algorithm for applications 
that require a digital signature rather than a written signature. Additional digital signature schemes are 
specified and approved in other NIST Special Publications and FIPS publications (e.g., FIPS 186-5 [1]). 
A digital signature is represented in a computer as a string of bits and computed using a set of rules 
and parameters that allow the identity of the signatory and the integrity of the data to be verified. 
Digital signatures may be generated on both stored and transmitted data. 

Signature generation uses a private key to generate a digital signature. Signature verification uses 
a public key that corresponds to but is not the same as the private key. Each signatory possesses a 
key-pair composed of a private key and a corresponding public key. Public keys may be known by 
the public, but private keys must be kept secret. Anyone can verify the signature by employing the 
signatory’s public key. Only the user who possesses the private key can generate a signature that can 
be verified by the corresponding public key. 

The digital signature is provided to the intended verifier along with the signed data. The verifying 
entity verifies the signature by using the claimed signatory’s public key. Similar procedures may be 
used to generate and verify signatures for both stored and transmitted data. 

This standard specifies several parameter sets for ML-DSA that are approved for use. Additional 
parameter sets may be specified and approved in future NIST Special Publications. 

4. Approving Authority. Secretary of Commerce. 

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Technology, 
Information Technology Laboratory (ITL). 

6. Applicability. This standard is applicable to all federal departments and agencies for the protection of 
sensitive unclassified information that is not subject to section 2315 of Title 10, United States Code, 
or section 3502 (2) of Title 44, United States Code. Either this standard, FIPS 205, FIPS 186-5, or NIST 
Special Publication 800-208 shall be used in designing and implementing public-key-based signature 
systems that federal departments and agencies operate or that are operated for them under contract. 
In the future, additional digital signature schemes may be specified and approved in FIPS or NIST 
Special Publications. 

The adoption and use of this standard are available to private and commercial organizations. 
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7. Applications. A digital signature algorithm allows an entity to authenticate the integrity of signed 
data and the identity of the signatory. The recipient of a signed message can use a digital signature as 
evidence in demonstrating to a third party that the signature was, in fact, generated by the claimed 
signatory. This is known as non-repudiation since the signatory cannot easily repudiate the signature 
at a later time. A digital signature algorithm is intended for use in electronic mail, electronic funds 
transfer, electronic data interchange, software distribution, data storage, and other applications that 
require data integrity assurance and data origin authentication. 

8. Implementations. A digital signature algorithm may be implemented in software, firmware, hardware, 
or any combination thereof. NIST will develop a validation program to test implementations for 
conformance to the algorithm in this standard. For every computational procedure that is specified in 
this standard, a conforming implementation may replace the given set of steps with any mathematically 
equivalent set of steps. In other words, different procedures that produce the correct output for every 
input are permitted. 

Information about validation programs is available at https://csrc.nist.gov/projects/cmvp. Examples 
for digital signature algorithms are available at https://csrc.nist.gov/projects/cryptographic-standards 
-and-guidelines/example-values. 

Agencies are advised that digital signature key pairs shall not be used for other purposes. 

9. Other Approved Security Functions. Digital signature implementations that comply with this standard 
shall employ cryptographic algorithms that have been approved for protecting Federal Government-

sensitive information. Approved cryptographic algorithms and techniques include those that are 
either: 

a. Specified in a Federal Information Processing Standards (FIPS) publication, 

b. Adopted in a FIPS or NIST recommendation, or 

c. Specified in the list of approved security functions in SP 800-140C. 

10. Export Control. Certain cryptographic devices and technical data regarding them are subject to federal 
export controls. Exports of cryptographic modules that implement this standard and technical data 
regarding them must comply with these federal regulations and be licensed by the Bureau of Industry 
and Security of the U.S. Department of Commerce. Information about export regulations is available 
at https://www.bis.doc.gov. 

11. Patents. The algorithm in this standard may be covered by U.S. or foreign patents. 

12. Implementation Schedule. This standard becomes effective immediately upon final publication. 

13. Specifications. Federal Information Processing Standards (FIPS) 204, Module-Lattice-Based Digital 
Signature Standard (affixed). 

14. Qualifications. The security of a digital signature system depends on maintaining the secrecy of the 
signatory’s private keys. Signatories shall, therefore, guard against the disclosure of their private 
keys. While it is the intent of this standard to specify general security requirements for generating 
digital signatures, conformance to this standard does not ensure that a particular implementation is 
secure. It is the responsibility of an implementer to ensure that any module that implements a digital 
signature capability is designed and built in a secure manner. 

Similarly, the use of a product containing an implementation that conforms to this standard does not 
guarantee the security of the overall system in which the product is used. The responsible authority in 
each agency or department shall ensure that an overall implementation provides an acceptable level 
of security. 
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Since a standard of this nature must be flexible enough to adapt to advancements and innovations in 
science and technology, this standard will be reviewed every five years in order to assess its adequacy. 

15. Waiver Procedure. The Federal Information Security Management Act (FISMA) does not allow for 
waivers to Federal Information Processing Standards (FIPS) that are made mandatory by the Secretary 
of Commerce. 

16. Where to Obtain Copies of the Standard. This publication is available by accessing https://csrc.nist. 
gov/publications. Other computer security publications are available at the same website. 

17. How to Cite This Publication. NIST has assigned NIST FIPS 204 as the publication identifier for this 
FIPS, per the NIST Technical Series Publication Identifier Syntax. NIST recommends that it be cited as 
follows: 

National Institute of Standards and Technology (2024) Module-Lattice-Based Digital Signa-
ture Standard. (Department of Commerce, Washington, D.C.), Federal Information Pro-
cessing Standards Publication (FIPS) NIST FIPS 204. https://doi.org/10.6028/NIST.FIPS.204 

18. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to fips-204-
comments@nist.gov. 
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1. Introduction 

1.1 Purpose and Scope 

This standard defines a digital signature scheme, which includes a method for digital signature generation 
that can be used for the protection of binary data (commonly called a “message”) and a method for the 
verification and validation of those digital signatures. NIST Special Publication (SP) 800-175B [2], Guideline 
for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms, includes a 
general discussion of digital signatures. 

This standard specifies the mathematical steps that need to be performed for key generation, signature 
generation, and signature verification. In order for digital signatures to be valid, additional assurances 
are required, such as assurance of identity and of private key possession. SP 800-89, Recommendation 
for Obtaining Assurances for Digital Signature Applications [3], specifies the required assurances and the 
methods for obtaining them. 

The digital signature scheme approved in this standard is the Module-Lattice-Based Digital Signature 
Algorithm (ML-DSA), which is based on the Module Learning With Errors problem [4]. ML-DSA is believed 
to be secure, even against adversaries in possession of a large-scale fault-tolerant quantum computer. In 
particular, ML-DSA is believed to be strongly unforgeable, which implies that the scheme can be used to 
detect unauthorized modifications to data and to authenticate the identity of the signatory (one bound 
to the possession of the private-key). In addition, a signature generated by this scheme can be used 
as evidence in demonstrating to a third party that the signature was, in fact, generated by the claimed 
signatory. The latter property is known as non-repudiation since the signatory cannot easily repudiate the 
signature at a later time. 

This standard gives algorithms for ML-DSA key generation, signature generation, and signature verification 
(Section 5), and for supporting algorithms used by them (Section 7). ML-DSA is standardized with three 
possible parameter sets, each of which corresponds to a different security strength. Section 4 describes 
the global parameters used by these algorithms and enumerates the parameter sets for ML-DSA that are 
approved by this standard. ML-DSA can be used in place of other digital signature schemes specified in 
NIST FIPS and Special Publications (e.g., FIPS 186-5, Digital Signature Standard (DSS) [1]). 

1.2 Context 

Over the past several years, there has been steady progress toward building quantum computers. The 
security of many commonly used public-key cryptosystems will be at risk if large-scale quantum computers 
are ever realized. This would include key-establishment schemes and digital signatures that are based on 
integer factorization and discrete logarithms (both over finite fields and elliptic curves). As a result, in 2016, 
NIST initiated a public Post-Quantum Cryptography (PQC) Standardization process to select quantum-

resistant public-key cryptographic algorithms for standardization. A total of 82 candidate algorithms were 
submitted to NIST for consideration. 

After three rounds of evaluation and analysis, NIST selected the first four algorithms for standardization. 
ML-DSA is derived from one of the selected schemes, CRYSTALS-DILITHIUM [5, 6], and is intended to protect 
sensitive U.S. Government information well into the foreseeable future, including after the advent of 
cryptographically relevant quantum computers. For the differences between ML-DSA and CRYSTALS-
DILITHIUM, see Appendix D. 

1 
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2. Glossary of Terms, Acronyms, and Symbols 

2.1 Terms and Definitions 

approved FIPS-approved and/or NIST-recommended. An algorithm or technique that 
is either 1) specified in a FIPS or NIST recommendation, 2) adopted in a FIPS 
or NIST recommendation, or 3) specified in a list of NIST-approved security 
functions. 

assurance of 
possession 

Confidence that an entity possesses a private key and any associated keying 
material. 

asymmetric 
cryptography 

Cryptography that uses two separate keys to exchange data — one to encrypt 
or digitally sign the data and one to decrypt the data or verify the digital 
signature. Also known as public-key cryptography. 

bit string An ordered sequence of zeros and ones. 

byte An integer from the set {0, 1, 2, …, 255}. 

byte string An ordered sequence of bytes. 

certificate A set of data that uniquely identifies a public key that has a corresponding 
private key and an owner that is authorized to use the key pair. The certificate 
contains the owner’s public key and possibly other information and is digitally 
signed by a certification authority (i.e., a trusted party), thereby binding the 
public key to the owner. 

certification authority The entity in a public-key infrastructure (PKI) that is responsible for issuing 
certificates and exacting compliance with a PKI policy. (CA) 

claimed signatory From the verifier’s perspective, the claimed signatory is the entity that pur-
portedly generated a digital signature. 

destroy An action applied to a key or a piece of secret data. After a key or a piece of 
secret data is destroyed, no information about its value can be recovered. 

digital signature The result of a cryptographic transformation of data that, when properly 
implemented, provides a mechanism to verify origin authenticity and data 
integrity and to enforce signatory non-repudiation. 

entity An individual person, organization, device, or process. Used interchangeably 
with party. 

equivalent process Two processes are equivalent if the same output is produced when the same 
values are input to each process (either as input parameters, as values made 
available during the process, or both). 

eXtendable-Output 
Function (XOF) 

A function on bit strings in which the output can be extended to any desired 
length. Approved XOFs (e.g., those specified in FIPS 202 [7]) are designed 
to satisfy the following properties as long as the specified output length is 
sufficiently long to prevent trivial attacks: 
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1. (One-way) It is computationally infeasible to find any input that maps to 
any new pre-specified output. 

2. (Collision-resistant) It is computationally infeasible to find any two dis-
tinct inputs that map to the same output. 

fresh random value A previously unused output of a random bit generator. 

hash function A function on bit strings in which the length of the output is fixed. Approved 
hash functions (such as those specified in FIPS 180 [8] and FIPS 202 [7]) are 
designed to satisfy the following properties: 

1. (One-way) It is computationally infeasible to find any input that maps to 
any new pre-specified output. 

2. (Collision-resistant) It is computationally infeasible to find any two dis-
tinct inputs that map to the same output. 

hash value See message digest. 

key A parameter used in conjunction with a cryptographic algorithm that deter-
mines its operation. Examples of cryptographic algorithms applicable to this 
standard include: 

1. The computation of a digital signature from data 

2. The verification of a digital signature 

key pair A public key and its corresponding private key. 

little-endian The property of a byte string having its bytes positioned in order of increasing 
significance. In particular, the leftmost (first) byte is the least significant, 
and the rightmost (last) byte is the most significant. The term “little-endian” 
may also be applied in the same manner to bit strings (e.g., the 8-bit string 
11010001 corresponds to the byte 20 + 21 + 23 + 27 = 139). 

message The data that is signed. Also known as signed data during the signature 
verification and validation process. 

message digest The result of applying a hash function to a message. Also known as a hash 
value. 

non-repudiation A service that is used to provide assurance of the integrity and origin of data 
in such a way that the integrity and origin can be verified and validated by 
a third party as having originated from a specific entity in possession of the 
private key (i.e., the signatory). 

owner A key pair owner is the entity authorized to use the private key of a key pair. 

party An individual person, organization, device, or process. Used interchangeably 
with entity. 

public-key 
infrastructure (PKI) 

A framework that is established to issue, maintain, and revoke public key 
certificates. 
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private key A cryptographic key that is used with an asymmetric (public-key) cryptographic 
algorithm. The private key is uniquely associated with the owner and is not 
made public. The private key is used to compute a digital signature that may 
be verified using the corresponding public key. 

pseudorandom A process or data produced by a process is said to be pseudorandom when the 
outcome is deterministic yet also effectively random as long as the internal 
action of the process is hidden from observation. For cryptographic purposes, 
“effectively random” means “computationally indistinguishable from random 
within the limits of the intended security strength.” 

public key A cryptographic key that is used with an asymmetric (public-key) cryptographic 
algorithm and is associated with a private key. The public key is associated 
with an owner and may be made public. In the case of digital signatures, the 
public key is used to verify a digital signature that was generated using the 
corresponding private key. 

security category A number associated with the security strength of a post-quantum crypto-
graphic algorithm, as specified by NIST (see [9, Sect. 5.6]). 

security strength A number associated with the amount of work (i.e., the number of operations) 
that is required to break a cryptographic algorithm or system. 

seed A bit string used as input to a pseudorandom process. 

shall Used to indicate a requirement of this standard. 

should Used to indicate a strong recommendation but not a requirement of this 
standard. Ignoring the recommendation could lead to undesirable results. 

signatory The entity that generates a digital signature on data using a private key. 

signature generation The process of using a digital signature algorithm and a private key to generate 
a digital signature on data. 

signature validation The mathematical verification of the digital signature along with obtaining the 
appropriate assurances (e.g., public-key validity, private-key possession, etc.). 

signature verification The process of using a digital signature algorithm and a public key to verify a 
digital signature on data. 

signed data The data or message upon which a digital signature has been computed. Also 
see message. 

trusted third party 
(TTP) 

An entity other than the key pair owner and the verifier that is trusted by the 
owner, the verifier, or both. Sometimes shortened to “trusted party.” 

verifier The entity that verifies the authenticity of a digital signature using the public 
key of the signatory. 
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2.2 Acronyms 

AES Advanced Encryption Standard 

API Application Programming Interface 

DER Distinguished Encoding Rules 

FIPS Federal Information Processing Standard 

ML-DSA Module-Lattice-Based Digital Signature Algorithm 

MLWE Module Learning With Errors 

NIST National Institute of Standards and Technology 

NIST IR NIST Interagency or Internal Report 

NTT Number Theoretic Transform 

OID Object Identifier 

PQC Post-Quantum Cryptography 

RBG Random Bit Generator 

SHA Secure Hash Algorithm 

SHAKE Secure Hash Algorithm KECCAK 

SP Special Publication 

SUF-CMA Strongly existentially UnForgeable under Chosen Message Attack 

XOF eXtendable-Output Function 

2.3 Mathematical Symbols 

The following symbols and mathematical expressions are used in this standard. 

𝑞 23The prime number 𝑞 = 2 − 213 + 1 = 8380417. 

𝔹 The set {0, 1, … , 255} of integers represented by a byte. 

ℕ The set of natural numbers {1, 2, 3, …}. 

ℤ The ring of integers. 

ℤ𝑚 The ring of integers modulo 𝑚 whose set of elements is {0, 1, … , 𝑚 − 1}. 

ℤ𝑛
𝑚 The set of 𝑛-tuples over ℤ𝑚 equipped  with the ℤ-module structure. 

𝑅       ℤ  𝑋256 The ring of single-variable polynomials over modulo + 1, also denoted by 
ℤ[𝑋]/(𝑋256 + 1). 

𝑅𝑚 
256The ring of single-variable polynomials over ℤ𝑚 modulo  𝑋  + 1, also denoted by 

ℤ𝑚[𝑋]/(𝑋256 + 1). 
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𝐵𝜏 
255 𝑖The set   of all polynomials 𝑝 = ∑ 𝑝𝑖𝑋 in 𝑅𝑞 that are such that exactly 𝜏 of  the 𝑖=0 

coefficients of 𝑝𝑖 are  from the set {−1, 1}, and all other coefficients are zero. (See 
Section 7.3.) 

Π Used to denote a direct product of two or more rings, where addition and multipli-

cation are performed componentwise. 

𝑇𝑞 
255The ring Π  
𝑗=0 ℤ𝑞.

𝐴 × 𝐵 Cartesian product of two sets 𝐴, 𝐵. 

[𝑎, 𝑏] For two integers 𝑎 ≤ 𝑏, [𝑎, 𝑏] denotes the set of integers {𝑎, 𝑎 + 1, … , 𝑏}. 

bitlen 𝑎 The bit length of a positive integer 𝑎. The bit length of 𝑎 is the number of digits that 
would appear in a base-2 representation of 𝑎, where the most significant digit in 
the representation is assumed to be a 1 (e.g., bitlen 32 = 6 and bitlen 31 = 5). 1 

1 In this specification, bitlen 𝑎 is only ever called with a small finite number of values for 𝑎, so it may be helpful to 
precompute bitlen 𝑎 for these values and hard code the results, rather than computing them on the fly. 

BitRev8(𝑟) Bit reversal of an 8-bit integer 𝑟. If 𝑟 = 𝑟0 +2𝑟1 with , +4𝑟2 +…+128𝑟7  𝑟𝑖 ∈ {0, 1}  
then BitRev8(𝑟) = 𝑟7 + 2𝑟6 + 4𝑟5 + … + 128𝑟0. 

0x Prefix to an integer written in hexadecimal representation. 

log2 𝑥 The base 2 logarithm of 𝑥. For example, log2(16) = 4. 

mod If 𝛼 is a positive integer and 𝑚 ∈ ℤ or 𝑚 ∈ ℤ𝛼, then 𝑚 mod 𝛼 denotes the unique 
element 𝑚′  ∈ ℤ in the range 0 ≤ 𝑚 ′ < 𝛼 ′such that 𝑚 and 𝑚  are congruent 
modulo 𝛼. 

±mod If 𝛼 is a positive integer and 𝑚 ∈ ℤ or 𝑚 ∈ ℤ𝛼, then 𝑚 ±mod 𝛼 denotes the unique 
element 𝑚′  ∈ ℤ in the range −⌈𝛼/2⌉ < 𝑚 ′ ≤ ⌊𝛼/2⌋ ′such that 𝑚 and 𝑚  are 
congruent modulo 𝛼. 

⌊𝑥⌋ The largest integer less than or equal to the real number 𝑥, called the floor of 𝑥. For 
example, ⌊2.1⌋ = 2, and ⌊4⌋ = 4. 

⌈𝑥⌉ The least integer greater than or equal to the real number 𝑥, called the ceiling of 𝑥. 
For example, ⌈5⌉ = 5 and ⌈5.3⌉ = 6. 

‖⋅‖ ∞ 
The infinity norm. For an element 𝑤 ∈ ℤ, ‖𝑤‖ = |𝑤|, the absolute value of ∞ 
𝑤. For an element 𝑤 ∈ ℤ ±

𝑞,‖𝑤‖ = ∣𝑤 mod 𝑞∣ . For an element 𝑤 of 𝑅 or 𝑅∞ 𝑞,

‖𝑤‖ = max0≤𝑖<256 ‖𝑤𝑖‖ . For a length-𝑚 vector with entries from or ,∞   𝐰    𝑅  𝑅  ∞ 𝑞
‖𝐰‖ = max0≤𝑖<𝑚 ‖𝑤[𝑖]‖ .∞ ∞ 

𝑎! The factorial quantity 1 ⋅ 2 ⋅ 3 ⋅ … ⋅ 𝑎. The value 0! is defined as 1. 

(𝑎
𝑏) For 𝑎 ≥ 𝑏, the quantity 𝑎!/(𝑏!(𝑎 − 𝑏)!). 

𝑠 ← 𝑥 In pseudocode, this notation means that the variable 𝑠 is assigned the value of the 
expression 𝑥. 

𝑠 ← 𝔹ℓ In pseudocode, this notation means that the variable 𝑠 is assigned the value of an 
array of ℓ random bytes. The bytes must be generated using randomness from an 
approved RBG. See Section 3.6.1. 

6 



FIPS 204 MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

𝑥 ∈ 𝑆 ← 𝑦 Type casting. The variable 𝑥 is assigned a value in a set 𝑆 that is constructed from 
the value of an expression 𝑦 in a possibly different set 𝑇. The set 𝑇 and the mapping 
from 𝑇 to 𝑆 are not explicitly specified, but they should be obvious from the context 
in which this statement appears. 

[[𝑎 < 𝑏]] A Boolean predicate. A comparison operator inside double square brackets [[𝑎 < 𝑏]] 
denotes that the expression should be evaluated as a Boolean. Booleans can also 
be interpreted as elements of ℤ2 with 1 denoting true and 0 denoting false. 

⟨⟨𝑓(𝑥)⟩⟩ A temporary variable that stores the output of a computation 𝑓(𝑥) so that it can be 
used many times without needing to be recomputed. This is equivalent to defining a 
temporary variable 𝑦 ← 𝑓(𝑥). Naming the variable ⟨⟨𝑓(𝑥)⟩⟩ makes the pseudocode 
less cluttered. 

𝑎||𝑏 Concatenation of two bit or byte strings 𝑎 and 𝑏. 

𝑎 ∘ 𝑏 Multiplication of 𝑎 and 𝑏 in the ring 𝑇𝑞. 

𝑎 ⋅ 𝑏 or 𝑎𝑏 Multiplication in any of the rings ℤ, ℤ𝑚, 𝑅, or 𝑅𝑚. 

𝑎 + 𝑏 Addition of 𝑎 and 𝑏. 

𝑎/𝑏 Division of integers. When this notation is used, 𝑎 and 𝑏 are always integers. If 𝑏 
cannot be assumed to divide 𝑎, then either ⌊𝑎/𝑏⌋ or ⌈𝑎/𝑏⌉ is used. 

⊥ Blank symbol that indicates failure or the lack of an output from an algorithm. 

2.4 Notation 

2.4.1 Rings 

Elements of the rings ℤ, ℤ𝑞, ℤ2, 𝑅, and 𝑅𝑞 are denoted by italicized lowercase letters (e.g., 𝑤). Elements 
of the ring 𝑇𝑞 are length-256 arrays of elements of ℤ𝑞, and they are denoted by italicized letters with a 
hat symbol (e.g., �̂�). The addition and multiplication of elements of 𝑇𝑞 are performed entry-wise. Thus, 
the 𝑖th entry of the product of two elements �̂� and 𝑣 ̂ of 𝑇𝑞 is 𝑢[𝑖] ⋅ 𝑣[𝑖] ∈ ℤ𝑞. The multiplication operation ̂ ̂ 
in 𝑇𝑞 is denoted by the symbol ∘ (see Section 2.3). 

When a product 𝑎 ⋅ 𝑏 or a sum 𝑎 + 𝑏 is written and either 𝑎 or 𝑏 is a congruence class modulo 𝑚 (i.e., if 
either 𝑎 or 𝑏 is an element of ℤ𝑚 or 𝑅𝑚), then the product or sum is also understood to be a congruence 
class modulo 𝑚 (i.e., an element of ℤ𝑚 or 𝑅𝑚). Likewise, an element of 𝑅 or ℤ may be “typecast” to an 
element of 𝑅𝑚 or ℤ𝑚, respectively, and may be used as the input of a function specified to act on an 
element of 𝑅𝑚 or ℤ𝑚, respectively. In both cases, the element itself or its coefficients are mapped from 
ℤ to ℤ𝑚 by taking the unique congruence class modulo 𝑚 that contains the integer. 

The coefficients of an element 𝑤 of 𝑅 or 𝑅𝑚 are denoted by 𝑤𝑖 so that 𝑤 = 𝑤0 + 𝑤1𝑋 + … + 𝑤255𝑋255 . 
If 𝑤 is in 𝑅 (respectively, 𝑅𝑚) and 𝑡 is in ℤ (respectively, ℤ𝑑), then 𝑤(𝑡) denotes the polynomial 𝑤 = 
𝑤0 + 𝑤1𝑋 + … + 𝑤255𝑋255 evaluated at 𝑋 = 𝑡. 

2.4.2 Vectors and Matrices 

Vectors with elements in 𝑅 or 𝑅𝑚 are denoted by bold lowercase letters (e.g., 𝐯). Matrices with elements 
in 𝑅 or 𝑅𝑚 are denoted by bold uppercase letters (e.g., 𝐀). 
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If 𝑆 is a ring and 𝐯 is a length-𝐿 vector over 𝑆, then the entries in the vector 𝐯 are expressed as 

𝑣[0], 𝑣[1], … , 𝑣[𝐿 − 1]. 

The entries of a 𝐾 × 𝐿 matrix 𝐀 over 𝑆 are denoted as 𝐀[𝑖, 𝑗], where 0 ≤ 𝑖 < 𝐾 and 0 ≤ 𝑗 < 𝐿. 

The set of all length-𝐿 vectors over 𝑆 is denoted by 𝑆𝐿 . The set of all 𝐾 × 𝐿 matrices over 𝑆 is denoted 
by 𝑆𝐾×𝐿 . A length-𝐿 vector can also be treated as an 𝐿 × 1 matrix. 

2.5 NTT Representation 

The Number Theoretic Transform (NTT) is a specific isomorphism between the rings 𝑅𝑞 and 𝑇𝑞. Let 
𝜁 = 1753 ∈ ℤ𝑞, which is a 512th root of unity. If 𝑤 ∈ 𝑅𝑞, then 

NTT(𝑤) = (𝑤(𝜁0), 𝑤(𝜁1), … , 𝑤(𝜁255)) ∈ 𝑇𝑞, (2.1) 

where 𝜁𝑖 = 𝑤(𝜁2BitRev8(𝑖)+1) mod 𝑞. See Section 7.5 for an implementation discussion for NTT and NTT−1 . 

The motivation for using NTT is that multiplication is considerably faster in the ring 𝑇𝑞. Since NTT is an 
isomorphism, for any 𝑎, 𝑏 ∈ 𝑅𝑞, 

NTT(𝑎𝑏) = NTT(𝑎) ∘ NTT(𝑏). (2.2) 

If 𝐀 is a matrix with entries from 𝑅𝑞, then NTT(𝐀) denotes the matrix computed via the entry-wise 
application of NTT to 𝐀. The symbol ∘ is also used to denote the matrix multiplication of matrices with 
entries in 𝑇𝑞. Thus, NTT(𝐀𝐁) = NTT(𝐀) ∘ NTT(𝐁). Explicit algorithms for linear algebra over 𝑇𝑞 are 
given in Section 7.6. 
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3. Overview of the ML-DSA Signature Scheme 

ML-DSA is a digital signature scheme based on CRYSTALS-DILITHIUM [6]. It consists of three main algorithms: 
ML-DSA.KeyGen (Algorithm 1), ML-DSA.Sign (Algorithm 2), and ML-DSA.Verify (Algorithm 3). The 
ML-DSA scheme uses the Fiat-Shamir With Aborts construction [10, 11] and bears the most resemblance 
to the schemes proposed in [12, 13]. 

This document also defines a closely related but domain-separated signature scheme, HashML-DSA, which 
differs from ML-DSA in that it includes an additional pre-hashing step before signing. It consists of three 
main algorithms: ML-DSA.KeyGen (Algorithm 1), which is the same key generation algorithm used for 
ML-DSA; HashML-DSA.Sign (Algorithm 4); and HashML-DSA.Verify (Algorithm 5). 

3.1 Security Properties 

ML-DSA is designed to be strongly existentially unforgeable under chosen message attack (SUF-CMA). 
That is, it is expected that even if an adversary can get the honest party to sign arbitrary messages, the 
adversary cannot create any additional valid signatures based on the signer’s public key, including on 
messages for which the signer has already provided a signature. 

Beyond unforgeability, ML-DSA is designed to satisfy additional security properties described in [14]. 

3.2 Computational Assumptions 

Security for lattice-based digital signature schemes is typically related to the Learning With Errors (LWE) 
problem and the short integer solution (SIS) problem. The LWE problem [15] is to recover a vector 𝐬 ∈ ℤ𝑛

𝑞 

given a set of random “noisy” linear equations2 

2Specifically, the LWE problem is to solve a system of equations of the form 𝐀𝐬 + 𝐞 = 𝑏, where 𝐀 and 𝑏 are given 
and 𝐞 is not given but known to be small. 

satisfied by 𝐬. The SIS problem is to find a non-zero solution 
𝐭 ∈ ℤ𝑛

𝑞 for a given linear system over ℤ𝑞 of the form 𝐀𝐭 = 𝟎 such that ‖𝐭‖∞ 
is small. For appropriate 

choices of parameters, these problems are intractable for the best known techniques, including Gaussian 
elimination. 

When the module ℤ𝑛
𝑞 in LWE and SIS is replaced by a module over a ring larger than ℤ𝑞 (e.g., 𝑅𝑞), the 

resulting problems are called Module Learning With Errors (MLWE) [4] and Module Short Integer Solution 
(MSIS). The security of ML-DSA is based on the MLWE problem over 𝑅𝑞 and a nonstandard variant of 
MSIS called SelfTargetMSIS [16]. 

3.3 ML-DSA Construction 

ML-DSA is a Schnorr-like signature with several optimizations. The Schnorr signature scheme applies the 
Fiat-Shamir heuristic to an interactive protocol between a verifier who knows 𝑔 (the generator of a group in 
which discrete logs are believed to be difficult) and the value 𝑦 = 𝑔𝑥 and a prover who knows 𝑔 and 𝑥. The 
interactive protocol, where the prover demonstrates knowledge of 𝑥 to the verifier, consists of three steps: 

1. Commitment: The prover generates a random positive integer 𝑟 that is less than the order of 𝑔 and 
commits to its value by sending 𝑔𝑟 to the verifier. 

2. Challenge: The verifier sends a random positive integer 𝑐 that is less than the order of 𝑔 to the 
prover. 

9 



FIPS 204 MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

3. Response: The prover returns 𝑠 = 𝑟 − 𝑐𝑥 reduced modulo the order of 𝑔, and the verifier checks 
whether 𝑔𝑠 ⋅ 𝑦𝑐 = 𝑔𝑟 . 

This protocol is made noninteractive and turned into a signature scheme by replacing the verifier’s random 
choice of 𝑐 in step 2 with a deterministic process that pseudorandomly derives 𝑐 from a hash of the 
commitment 𝑔𝑟 concatenated with the message to be signed. For this signature scheme, 𝑦 is the public 
key, and 𝑥 is the private key. 

The basic idea of ML-DSA and similar lattice signature schemes is to build a signature scheme from 
, 𝐒1 ∈ ℤ𝐿×𝑛 an analogous interactive protocol, where a prover who knows matrices 𝐀 ∈ ℤ𝐾×𝐿

𝑞 𝑞 , and 
𝐒2 ∈ ℤ𝐾×𝑛

𝑞 with small coefficients (for 𝐒1 and 𝐒2) demonstrates knowledge of these matrices to a verifier 
who knows 𝐀 and 𝐓 ∈ ℤ𝐾×𝑛

𝑞 = 𝐀𝐒1 + 𝐒2. Such an interactive protocol would proceed as follows: 

1. Commitment: The prover generates 𝐲 ∈ ℤ𝐿
𝑞 with small coefficients and commits to its value by 

sending 𝐰Approx = 𝐀𝐲 + 𝐲2 to the verifier, where 𝐲2 ∈ ℤ𝐾
𝑞 is a vector with small coefficients. 

2. Challenge: The verifier sends a vector 𝐜 ∈ ℤ𝑛
𝑞 with small coefficients to the prover. 

3. Response: The prover returns 𝐳 = 𝐲 + 𝐒1𝐜, and the verifier checks that 𝐳 has small coefficients 
and that 𝐀𝐳 − 𝐓𝐜 ≈ 𝐰Approx. 

As written, the above protocol has a security flaw: the response 𝐳 will be biased in a direction related 
to the private value 𝐒1. Likewise 𝐫 = 𝐰Approx − 𝐀𝐳 + 𝐓𝐜 = 𝐲2 + 𝐒2𝐜 is biased in a direction related 
to the private value 𝐒2. However, this flaw can be corrected when converting the interactive protocol 
into a signature scheme. As with Schnorr signatures, the signer derives the challenge by a pseudorandom 
process from a hash of the commitment concatenated with the message. To correct the bias, the signer 
applies rejection sampling to 𝐳; if coefficients of 𝐳 fall outside of a specified range, the signing process is 
aborted, and the signer starts over from a new value of 𝐲. Likewise, similar rejection sampling must also 
be applied to 𝐫. These checks are analogous to those done at Line 23 of Algorithm 7. In the simplified 
Fiat-Shamir With Aborts signature, the public key is (𝐀, 𝐓), and the private key is (𝐒1, 𝐒2). 

In the ML-DSA standard, a number of tweaks and modifications are added to this basic framework for 
security or efficiency reasons: 

• To reduce key and signature size and to use fast NTT-based polynomial multiplication, ML-DSA 
uses module-structured matrices. Relative to the basic scheme described above, it replaces 
dimension-𝑛 × 𝑛 blocks of matrices and dimension-𝑛 blocks of vectors with polynomials in the ring 

, 𝐒1 ∈ ℤ𝐿×𝑛 , 𝐒𝟐 ∈ ℤ𝐾×𝑛 𝑅𝑞. Thus, instead of 𝐀 ∈ ℤ𝑞
𝐾×𝐿 , 𝐓 ∈ ℤ𝑞

𝐾×𝑛 
𝑞 𝑞 , 𝐲 ∈ ℤ𝐿

𝑞 , 𝐜 ∈ ℤ𝑞
𝑛 , ML-DSA 

has 𝐀 ∈ 𝑅𝑞
𝑘×ℓ , 𝐭 ∈ 𝑅𝑞

𝑘 , 𝐬1 ∈ 𝑅𝑞
ℓ , 𝐬2 ∈ 𝑅𝑞

𝑘 , 𝐲 ∈ 𝑅𝑞
ℓ , 𝑐 ∈ 𝑅𝑞, where ℓ = 𝐿/𝑛 and 𝑘 = 𝐾/𝑛. 

• To further reduce the size of the public key, the matrix 𝐀 is pseudorandomly derived from a 256-bit 
public seed 𝜌, which is included in the ML-DSA public key in place of 𝐀. 

• For a still further reduction in public key size, the ML-DSA public key substitutes a compressed 
value 𝐭1 for 𝐭, which drops the 𝑑 low-order bits of each coefficient. 

• To obtain beyond unforgeability (BUFF) properties noted in [14], ML-DSA does not directly sign 
the message 𝑀 but rather signs a message representative 𝜇 that is obtained by hashing the 
concatenation of a hash of the public key and 𝑀. 
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• To reduce signature size, rather than including the commitment 𝐰Approx = 𝐀𝐲+𝐲2 in the signature, 
the ML-DSA signature uses a rounded version of 𝐰 = 𝐀𝐲 as a commitment 𝐰1 and includes only 
the hash 𝑐 ̃of 𝐰1||𝜇. 

• To ensure that 𝐰1 can be reconstructed by the verifier from 𝐳 and the compressed value 𝐭1, the 
signature must also include a hint 𝐡 ∈ 𝑅2

𝑘 computed by the signer using the signer’s private key. 

• Additionally, to ensure correctness, a second stage of rejection sampling must be included (Line 28 
of Algorithm 7) 

In this document, the abbreviations ML-DSA-44, ML-DSA-65, and ML-DSA-87 are used to refer to ML-DSA 
with the parameter choices given in Table 1. In these abbreviations, the numerical suffix refers to the 
dimension of the matrix 𝐀. For example, in ML-DSA-65, the matrix 𝐀 is a 6 × 5 matrix over 𝑅𝑞. 

3.4 Hedged and Deterministic Signing 

For ML-DSA to be secure, the signer’s commitment value 𝐲 must not be used to sign more than one 
message, and it must not be easily guessed by an attacker. This requires randomness. In principle, the 
randomness leading to 𝐲 can be produced either with the use of fresh randomness at signing time or 
pseudorandomly from the message being signed and a precomputed random value included in the signer’s 
private key. 

By default, this standard specifies the signing algorithm to use both types of randomness. This is referred 
to as the “hedged” variant of the signing procedure. The use of fresh randomness during signing helps 
mitigate side-channel attacks, while the use of precomputed randomness protects against the possibility 
that there may be flaws in the random number generator used by the signer at signing time. 

This document also permits a fully deterministic variant of the signing procedure in case the signer has 
no access to a fresh source of randomness at signing time. However, the lack of randomness in the 
deterministic variant makes the risk of side-channel attacks (particularly fault attacks) more difficult to 
mitigate. Therefore, this variant should not be used on platforms where side-channel attacks are a concern 
and where they cannot be otherwise mitigated. 

Only implementing the hedged variant (i.e., without the deterministic variant) is sufficient to guarantee 
interoperability. The same verification algorithm will work to verify signatures produced by either variant, 
so implementing the deterministic variant in addition to the hedged variant does not enhance interoper-
ability. The hedged and deterministic signing procedure differ only at line 5 of Algorithm 2 and line 5 of 
Algorithm 4. 

3.5 Use of Digital Signatures 

Secure key management is an essential requirement for the use of digital signatures. This is context-
dependent and involves more than the key generation, signing, and signature verification algorithms in 
this document. Guidance for key management is provided in the SP 800-57 series [9, 17, 18]. 

Digital signatures are most useful when bound to an identity. Binding a public key to an identity requires 
proof of possession of the private key. In the PKI context, issuing certificates involves assurances of identity 
and proof of possession. When a public-key certificate is not available, users of digital signatures should 
determine whether a public key needs to be bound to an identity. Methods for obtaining assurances of 
identity and proof of possession are provided in [3]. 
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3.6 Additional Requirements 

This section describes several required assurances when implementing ML-DSA. These are in addition to 
the considerations in Section 3.5. 

3.6.1 Randomness Generation 

Algorithm 1, implementing key generation for ML-DSA, uses an RBG to generate the 256-bit random seed 
𝜉. The seed 𝜉 shall be a fresh (i.e., not previously used) random value generated using an approved RBG, 
as prescribed in SP 800-90A, SP 800-90B, and SP 800-90C [19, 20, 21]. Moreover, the RBG used shall have 
a security strength of at least 192 bits for ML-DSA-65 and 256 bits for ML-DSA-87. For ML-DSA-44, the 
RBG should have a security strength of at least 192 bits and shall have a security strength of at least 128 
bits. If an approved RBG with at least 128 bits of security but less than 192 bits of security is used, then 
the claimed security strength of ML-DSA-44 is reduced from category 2 to category 1. 

Additionally, the value 𝑟𝑛𝑑 is generated using an RBG in the default “hedged” variants of Algorithms 2 
and 4 for ML-DSA and HashML-DSA signing, respectively. While this value should ideally be generated by 
an approved RBG, other methods for generating fresh random values may be used. The primary purpose 
of 𝑟𝑛𝑑 is to facilitate countermeasures to side-channel attacks and fault attacks on deterministic signatures, 
such as [22, 23, 24].3 

3In addition, when signing is deterministic, there is leakage through timing side channels of information about 
the message but not the private key). If the signer does not want to reveal the message being signed, hedged 
signatures should be used (see Section 3.2 in [6]). 

For this purpose, even a weak RBG may be preferable to the fully deterministic 
variants of Algorithms 2 and 4. 

3.6.2 Public-Key and Signature Length Checks 

Algorithm 3, implementing verification for ML-DSA, and Algorithm 5, implementing verification for HashML-

DSA, specify the length of the signature 𝜎 and the public key 𝑝𝑘 in terms of the parameters described in 
Table 1. If an implementation of ML-DSA can accept inputs for 𝜎 or 𝑝𝑘 of any other length, it shall return 
false whenever the lengths of either of these inputs differ from their lengths specified in this standard. 
Failing to check the length of 𝑝𝑘 or 𝜎 may interfere with the security properties that ML-DSA is designed 
to have, like strong unforgeability. 

3.6.3 Intermediate Values 

The data used internally by the key generation and signing algorithms in intermediate computation steps 
could be used by an adversary to gain information about the private key and thereby compromise security. 
The data used internally by verification algorithms is similarly sensitive for some applications, including 
the verification of signatures that are used as bearer tokens (i.e., authentication secrets) or the verification 
of signatures on plaintext messages that are intended to be confidential. Intermediate values of the 
verification algorithm may reveal information about its inputs (i.e., the message, signature, and public 
key), and in some applications, security or privacy requires one or more of these inputs to be confidential. 
Therefore, implementations of ML-DSA shall ensure that any potentially sensitive intermediate data is 
destroyed as soon as it is no longer needed. 

Two particular cases in which implementations may refrain from destroying intermediate data are: 

1. The seed 𝜉 generated in step 1 of ML-DSA.KeyGen can be stored for the purpose of later expansion 
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using ML-DSA.KeyGen_internal. As the seed can be used to compute the private key, it is sensitive 
data and shall be treated with the same safeguards as a private key. 

2. The matrix �̂� generated in step 3 of ML-DSA.KeyGen_internal can be stored so that it need not 
be recomputed in later operations. Likewise, the matrix �̂� generated in step 5 of the verification 
algorithm ML-DSA.Verify_internal can also be stored. In either case, the matrix �̂� is data that is 
easily computed from the public key and does not require any special protections. 

In certain situations (e.g., deterministic signing and the verification of confidential messages and signa-
tures), additional care must be taken to protect implementations against side-channel attacks or fault 
attacks. A cryptographic device may leak critical information through side channels, which allows internal 
data or keying material to be extracted without breaking the cryptographic primitives. 

3.6.4 No Floating-Point Arithmetic 

Implementations of ML-DSA shall not use floating-point arithmetic, as rounding errors in floating point 
operations may lead to incorrect results in some cases. Either ⌊𝑥/𝑦⌋ or ⌈𝑥/𝑦⌉ is used in all pseudocode 
in this standard in which division is performed (e.g., 𝑥/𝑦), and 𝑦 may not divide 𝑥. Both of these can 
be computed without floating-point arithmetic, as ordinary integer division 𝑥/𝑦 computes ⌊𝑥/𝑦⌋, and 
⌈𝑥/𝑦⌉ = ⌊(𝑥 + 𝑦 − 1)/𝑦⌋ for non-negative integers 𝑥 and positive integers 𝑦. If 𝑦 is a power of two, it 
may be more efficient to use bit shift operations than integer division. 

3.7 Use of Symmetric Cryptography 

This standard makes use of the functions SHAKE256 and SHAKE128, as defined in FIPS 202 [7]. While FIPS 
202 specifies these functions as inputting and outputting bit strings, most implementations treat inputs 
and outputs as byte strings. 

This standard will always call these functions with an output length of a multiple of eight bits and treat the 
output of these functions as a byte string, which will be the same byte string that would result from taking 
the bit string expected from a literal reading of FIPS 202 and processing it with BitsToBytes. However, 
to allow the signing of messages that are not a whole number of bytes, this document will overload 
SHAKE256 so that its input may be a bit string but will usually be a byte string. The following equivalence 
will hold for any byte string str and integer ℓ ≥ 1: 

SHAKE256(str, 8ℓ) = SHAKE256(BytesToBits(str), 8ℓ). 

In addition to using a mostly byte-oriented variant of the API defined in FIPS 202 for SHAKE256 and 
SHAKE128, this standard sometimes makes use of the incremental API defined in SP 800-185 [25]. This API 
consists of three functions for each variant of SHAKE. These functions can be used to absorb a sequence 
of arbitrary-length strings and squeeze a sequence of arbitrary-length strings. These functions perform 
buffering to handle any incomplete data blocks while absorbing or squeezing. For example, for SHAKE256: 

• ctx ← SHAKE256.Init() 
Initializes a hash function context. 

• ctx ← SHAKE256.Absorb(ctx, str) 
Injects data to be used in the absorbing phase of SHAKE256 and updates context ctx. 
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• (ctx, out) ← SHAKE256.Squeeze(ctx, 8ℓ) 
Extracts ℓ output bytes produced during the squeezing phase of SHAKE256 and updates context 
ctx. 

While the above functions are specified in terms of the Keccak-𝑓 permutation rather than the eXtendable-
Output Function (XOF), SHAKE256, they are defined so that any series of commands of the following 
form: 

1. ctx ← SHAKE256.Init() 

2. For 𝑖 = 1 to 𝑚: ctx ← SHAKE256.Absorb(ctx, str𝑖) 

3. For 𝑗 = 1 to 𝑘: (ctx, out𝑗) ← SHAKE256.Squeeze(ctx, 8𝑏𝑗) 

4. output ← out1|| … ||out𝑘 

will yield the same output as a single SHAKE256 call: 

output ← SHAKE256(str1|| … ||str𝑚, 8𝑏1 + … + 8𝑏𝑘). 

This equivalence holds whether or not |str𝑖| and 𝑏𝑗 are multiples of the SHAKE256 block length. 

Since all outputs of SHAKE128 and SHAKE256 in this document give a whole number of bytes, the wrapper 
functions H and G are defined as follows: 

1. H(str, ℓ) = SHAKE256(str, 8ℓ) 

2. G(str, ℓ) = SHAKE128(str, 8ℓ) 

3. H.Init() = SHAKE256.Init() 

4. G.Init() = SHAKE128.Init() 

5. H.Absorb(ctx, str) = SHAKE256.Absorb(ctx, str) 

6. G.Absorb(ctx, str) = SHAKE128.Absorb(ctx, str) 

7. H.Squeeze(ctx, ℓ) = SHAKE256.Squeeze(ctx, 8ℓ) 

8. G.Squeeze(ctx, ℓ) = SHAKE128.Squeeze(ctx, 8ℓ) 

In addition to SHAKE128 and SHAKE256, HashML-DSA.Sign and HashML-DSA.Verify may call other 
approved hash functions for pre-hashing. The pseudocode in this standard also treats these functions 
as returning a byte string as output while supporting either a bit string or a byte string as input. Here, it 
should be noted that the hash functions defined in [8] use different rules (i.e., big-endian ordering) to 
relate bits, bytes, and words. 
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4. Parameter Sets 

Table 1. ML-DSA parameter sets 

Parameters Values assigned by each parameter set 
(see Sections 6.1 and 6.2 of this document) ML-DSA-44 ML-DSA-65 ML-DSA-87 

𝑞 - modulus [see §6.1] 8380417 8380417 8380417 
𝜁 - a 512th root of unity in ℤ𝑞 [see §7.5] 1753 1753 1753 
𝑑 - # of dropped bits from 𝐭 [see §6.1] 13 13 13 
𝜏 - # of ±1’s in polynomial 𝑐 [see §6.2] 39 49 60 

𝜆 - collision strength of 𝑐 ̃[see §6.2] 128 192 256 
217 219 219𝛾1 - coefficient range of 𝐲 [see §6.2]

𝛾2 - low-order rounding range [see §6.2] (𝑞 − 1)/88 (𝑞 − 1)/32 (𝑞 − 1)/32 
(𝑘, ℓ) - dimensions of 𝐀 [see §6.1] (4,4) (6,5) (8,7)

𝜂 - private key range [see §6.1] 2 4 2 
𝛽 = 𝜏 ⋅ 𝜂 [see §6.2] 78 196 120 

𝜔 - max # of 1’s in the hint 𝐡 [see §6.2] 80 55 75 
Challenge entropy log2 (

256 
𝜏 ) + 𝜏 [see §6.2] 192 225 257 

Repetitions (see explanation below) 4.25 5.1 3.85 
Claimed security strength Category 2 Category 3 Category 5 

Three ML-DSA parameter sets are included in Table 1. Each parameter set assigns values for all of the 
parameters used in the ML-DSA algorithms for key generation, signing, and verification. For informational 
purposes, some parameters used in the analysis of these algorithms are also included in the table. In 
particular, “repetitions” refers to the expected number of repetitions of the main loop in the signing 
algorithm from eq. 5 in [5]. The names of the parameter sets are of the form “ML-DSA-𝑘ℓ,” where (𝑘, ℓ) 
are the dimensions of the matrix 𝐀. 

These parameter sets were designed to meet certain security strength categories defined by NIST in its 
original Call for Proposals [26]. These security strength categories are explained further in SP 800-57, Part 
1 [9]. 

Using this approach, security strength is not described by a single number, such as “128 bits of security.” 
Instead, each ML-DSA parameter set is claimed to be at least as secure as a generic block cipher with a 
prescribed key size or a generic hash function with a prescribed output length. More precisely, it is claimed 
that the computational resources needed to break ML-DSA are greater than or equal to the computational 
resources needed to break the block cipher or hash function when these computational resources are 
estimated using any realistic model of computation. Different models of computation can be more or less 
realistic and, accordingly, lead to more or less accurate estimates of security strength. Some commonly 
studied models are discussed in [27]. 

Concretely, the parameter set ML-DSA-44 is claimed to be in security strength category 2, ML-DSA-65 is 
claimed to be in category 3, and ML-DSA-87 is claimed to be in category 5 [6]. For additional discussion of 
the security strength of MLWE-based cryptosystems, see [28]. 

The sizes of keys and signatures that correspond to each parameter set are given in Table 2. Certain 
optimizations are possible when storing ML-DSA public and private keys. If additional space is available, 
one can precompute and store �̂� to speed up signing and verifying. Alternatively, if one wants to reduce 
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the space needed for the private key, one can store only the 32-byte seed 𝜉, which is sufficient to generate 
the other parts of the private key. For additional details, see Section 3.1 in [6]. 

Table 2. Sizes (in bytes) of keys and signatures of ML-DSA 

Private Key Public Key Signature Size 
ML-DSA-44 2560 1312 2420 
ML-DSA-65 4032 1952 3309 
ML-DSA-87 4896 2592 4627 
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5. External Functions 

The signing, verifying, and key generation functions can be split into “external” and “internal” components 
to simplify APIs and Cryptographic Algorithm Validation Program (CAVP) testing. The external components 
generate randomness and perform various checks before calling their internal counterparts. The internal 
components are deterministic and can assume that the external components did not encounter error 
conditions. 

The distinction between external and internal functions also simplifies the presentation of algorithms 
for signing and verification by grouping the operations that are shared between ML-DSA.Sign and 
HashML-DSA.Sign in ML-DSA.Sign_internal and grouping the operations that are shared between 
ML-DSA.Verify and HashML-DSA.Verify in ML-DSA.Verify_internal. 

5.1 ML-DSA Key Generation 

The key generation algorithm ML-DSA.KeyGen takes no input and outputs a public key and a private key, 
which are both encoded as byte strings. 

The algorithm uses an approved RBG to generate a 256-bit (32-byte) random seed 𝜉 that is given as input 
to ML-DSA.KeyGen_internal (Algorithm 6), which produces the public and private keys. 

Algorithm 1 ML-DSA.KeyGen() 

Generates a public-private key pair. 

Output: Public key 𝑝𝑘 ∈ 𝔹32+32𝑘(bitlen (𝑞−1)−𝑑) 

1: 

2: 

3: 

32+32+64+32⋅((ℓ+𝑘)⋅and private key 𝑠𝑘 ∈ 𝔹 bitlen (2𝜂)+𝑑𝑘). 

𝜉 ← 𝔹32 

if 𝜉 = NULL then 
return ⊥ ▷ return an error indication if random bit generation failed 

▷ choose random seed 

4: 

5: 

end if 
return ML-DSA.KeyGen_internal (𝜉) 

5.2 ML-DSA Signing 

The signing algorithm ML-DSA.Sign (Algorithm 2) takes a private key, a message, and a context string as 
input4

4By default, the context is the empty string, though applications may specify the use of a non-empty context string. 

. It outputs a signature that is encoded as a byte string. 

For the default “hedged” version of ML-DSA signing, the algorithm (at line 5) uses an approved RBG to 
generate a 256-bit (32-byte) random seed 𝑟𝑛𝑑. If the deterministic variant is desired, then 𝑟𝑛𝑑 is set 
to the fixed zero string {0}32 . The value 𝑟𝑛𝑑, the private key, and the encoded message are input to 
ML-DSA.Sign_internal (Algorithm 7), which produces the signature. 
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Algorithm 2 ML-DSA.Sign(𝑠𝑘, 𝑀, 𝑐𝑡𝑥) 

Generates an ML-DSA signature. 

Input: Private key 𝑠𝑘 ∈ 𝔹32+32+64+32⋅((ℓ+𝑘)⋅bitlen (2𝜂)+𝑑𝑘), message 𝑀 ∈ {0, 1}∗ , 
context string 𝑐𝑡𝑥 (a byte string of 255 or fewer bytes). 
Output: Signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘. 

1: if |𝑐𝑡𝑥| > 255 then 
2: return ⊥ ▷ return an error indication if the context string is too long 
3: end if 
4: 

5: 𝑟𝑛𝑑 ← 𝔹32 ▷ for the optional deterministic variant, substitute 𝑟𝑛𝑑 ← {0}32 

6: if 𝑟𝑛𝑑 = NULL then 
7: return ⊥ ▷ return an error indication if random bit generation failed 
8: end if 
9: 

10: 𝑀 ′ ← BytesToBits(IntegerToBytes(0, 1) ∥ IntegerToBytes(|𝑐𝑡𝑥|, 1) ∥ 𝑐𝑡𝑥) ∥ 𝑀 
11: 𝜎 ← ML-DSA.Sign_internal(𝑠𝑘, 𝑀 ′, 𝑟𝑛𝑑) 
12: return 𝜎 

5.3 ML-DSA Verifying 

The verification algorithm ML-DSA.Verify (Algorithm 3) takes a public key, a message, a signature, and a 
context string as input. The public key, signature, and context string are all encoded as byte strings, while 
the message is a bit string. ML-DSA.Verify outputs a Boolean value that is true if the signature is valid 
with respect to the message and the public key and false if the signature is invalid. The verification is 
accomplished by calling ML-DSA.Verify_internal (Algorithm 8) with the public key, the encoded message, 
and the signature. 

Algorithm 3 ML-DSA.Verify(𝑝𝑘, 𝑀, 𝜎, 𝑐𝑡𝑥) 

Verifies a signature 𝜎 for a message 𝑀. 

Input: Public key 𝑝𝑘 ∈ 𝔹32+32𝑘(bitlen (𝑞−1)−𝑑), message 𝑀 ∈ {0, 1}∗ , 
signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘, 
context string 𝑐𝑡𝑥 (a byte string of 255 or fewer bytes). 
Output: Boolean. 

1: if |𝑐𝑡𝑥| > 255 then 
2: return ⊥ ▷ return an error indication if the context string is too long 
3: end if 
4: 

5: 𝑀 ′ ← BytesToBits(IntegerToBytes(0, 1) ∥ IntegerToBytes(|𝑐𝑡𝑥|, 1) ∥ 𝑐𝑡𝑥) ∥ 𝑀 
6: return ML-DSA.Verify_internal(𝑝𝑘, 𝑀 ′, 𝜎) 

5.4 Pre-Hash ML-DSA 

For some cryptographic modules that generate ML-DSA signatures, hashing the message in step 6 of 
ML-DSA.Sign_internal may result in unacceptable performance if the message 𝑀 is large. For example, 
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the platform may require hardware support for hashing to achieve acceptable performance but lack 
hardware support for SHAKE256 specifically. For some use cases, this may be addressed by signing a 
digest of the message along with some domain separation information rather than signing the message 
directly. This version of ML-DSA is known as “pre-hash” ML-DSA or HashML-DSA . In general, the “pure” 
ML-DSA version is preferred. 

While key generation for HashML-DSA is the same as for ML-DSA, it is not the same for the signing algorithm 
HashML-DSA.Sign or the verification algorithm HashML-DSA.Verify. Like ML-DSA, the signing algorithm 
of HashML-DSA takes the content to be signed, the private key, and a context as input, as well as a hash 
function or XOF that is to be used to pre-hash the content to be signed. The context string has a maximum 
length of 255 bytes. By default, the context is the empty string, though applications may specify the use 
of a non-empty context string. 

The identifier for a signature (e.g., the object identifier [OID]) should indicate whether the signature is a 
ML-DSA signature or a pre-hash HashML-DSA signature. In the case of pre-hash signatures, the identifier 
should also indicate the hash function or XOF used to compute the pre-hash. 5 

5In the case of a XOF this would also include the length of the output from the XOF. 

While a single key pair 
may be used for both ML-DSA and HashML-DSA signatures, it is recommended that each key pair only 
be used for one version or the other. If a non-empty context string is to be used, this should either be 
indicated by the signature’s identifier or by the application with which the signature is being used. 

If the default “hedged” variant of is used, the 32-byte random value 𝑟𝑛𝑑 shall be generated by the 
cryptographic module that generates the signature (i.e., that runs ML-DSA.Sign_internal). However, all 
other steps of signing may be performed outside of the cryptographic module that generates the signature. 
In the case of pre-hashing, the hash or XOF of the content to be signed must be computed within a FIPS 
140-validated cryptographic module, but it may be a different cryptographic module than the one that 
generates the signature. 

If the content to be signed is large, hashing of the content is often performed at the application level. 
For example, in the Cryptographic Message Syntax [29], a digest of the content may be computed, and 
that digest is signed along with other attributes. If the content is not hashed at the application level, the 
pre-hash version of ML-DSA signing may be used. 

In order to maintain the same level of security strength when the content is hashed at the application level 
or using HashML-DSA , the digest that is signed needs to be generated using an approved hash function 
or XOF (e.g., from FIPS 180 [8] or FIPS 202 [7]) that provides at least 𝜆 bits of classical security strength 
against both collision and second preimage attacks [7, Table 4]. 6 

6 Obtaining at least 𝜆 bits of classical security strength against collision attacks requires that the digest to be signed 
be at least 2𝜆 bits in length. 

The verification of a signature that is 
created in this way will require the verify function to generate a digest from the message in the same way 
to be used as input for the verification function. 

5.4.1 HashML-DSA Signing and Verifying 

In the HashML-DSA version, the message input to ML-DSA.Sign_internal is the result of applying either a 
hash function or a XOF to the content to be signed. The output of the hash function or XOF is prepended 
by a one-byte domain separator, one byte that indicates the length of the context string, the context 
string, and the distinguished encoding rules (DER) encoding of the hash function or XOF’s OID. The domain 
separator has a value of one for “pre-hash” signing. The DER encoding of the OID includes the tag and 
length. 
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Algorithm 4 shows the DER encodings of the OIDs for SHA-256, SHA-512, and SHAKE128. However, it may 
be used with other hash functions or XOFs. 

Algorithm 4 HashML-DSA.Sign(𝑠𝑘, 𝑀, 𝑐𝑡𝑥, PH) 

Generate a “pre-hash” ML-DSA signature. 

Input: Private key 𝑠𝑘 ∈ 𝔹32+32+64+32⋅((ℓ+𝑘)⋅bitlen (2𝜂)+𝑑𝑘) , message 𝑀 ∈ {0, 1}∗ , 
context string 𝑐𝑡𝑥 (a byte string of 255 or fewer bytes), pre-hash function PH. 
Output: ML-DSA signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘 . 

1: if |𝑐𝑡𝑥| > 255 then 
2: return ⊥ ▷ return an error indication if the context string is too long 
3: end if 
4: 

▷       𝑟𝑛𝑑 ← {0}32 
5: 𝑟𝑛𝑑 ← 𝔹32  for the optional deterministic variant, substitute

6: if 𝑟𝑛𝑑 = NULL then 
7: return ⊥ ▷ return an error indication if random bit generation failed 
8: end if 
9: 

10: switch PH do 
11: case SHA-256: 
12: OID ← 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01 

▷ 2.16.840.1.101.3.4.2.1 
13: PH𝑀 ← SHA256(𝑀) 

14: case SHA-512: 
15: OID ← 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03 

▷ 2.16.840.1.101.3.4.2.3 
16: PH𝑀 ← SHA512(𝑀) 

17: case SHAKE128: 
18: OID ← 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0B 

▷ 2.16.840.1.101.3.4.2.11 
19: PH𝑀 ← SHAKE128(𝑀, 256) 

20: case … 
21: … 
22: end switch 

′
23: 𝑀  ← BytesToBits(IntegerToBytes(1, 1) ∥ IntegerToBytes(|𝑐𝑡𝑥|, 1) ∥ 𝑐𝑡𝑥 ∥ OID ∥ PH𝑀) 

ML-DSA Sign internal ′
24: 𝜎 ← . _ (𝑠𝑘, 𝑀  , 𝑟𝑛𝑑) 
25: return 𝜎 

Algorithm 5 presents the signature verification for HashML-DSA . This function constructs 𝑀 ′ in the same 
way as Algorithm 4 and passes the resulting 𝑀 ′ to Algorithm ML-DSA.Verify_internal for verification. As 
with the pre-hash signature generation, 𝑀 ′ may be constructed outside of the cryptographic module 
that performs ML-DSA.Verify_internal. However, in the case of HashML-DSA , the hash or XOF of the 
content must be computed within a FIPS 140-validated cryptographic module, which may be a different 
cryptographic module than the one that performs ML-DSA.Verify_internal. 

As noted in Section 5.4, the identifier associated with the signature should indicate whether ML-DSA or 
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the pre-hash version HashML-DSA of signature verification should be used, as well as the hash function or 
XOF to be used to compute the pre-hash. A non-empty context string should be used in verification if one 
is specified either in the signature’s identifier or by the application with which the signature is being used. 

Algorithm 5 HashML-DSA.Verify(𝑝𝑘, 𝑀, 𝜎, 𝑐𝑡𝑥, PH) 

Verifies a pre-hash HashML-DSA signature. 

Input: Public key 𝑝𝑘 ∈ 𝔹32+32𝑘(bitlen (𝑞−1)−𝑑) , message 𝑀 ∈ {0, 1}∗ , 
signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘 , 
context string 𝑐𝑡𝑥 (a byte string of 255 or fewer bytes), pre-hash function PH. 
Output: Boolean. 

1: if |𝑐𝑡𝑥| > 255 then 
2: return false 
3: end if 
4: 

5: switch PH do 
6: case SHA-256: 
7: OID ← 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01 

▷ 2.16.840.1.101.3.4.2.1 
8: PH𝑀 ← SHA256(𝑀) 

9: case SHA-512: 
10: OID ← 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03 

▷ 2.16.840.1.101.3.4.2.3 
11: PH𝑀 ← SHA512(𝑀) 

12: case SHAKE128: 
13: OID ← 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0B 

▷ 2.16.840.1.101.3.4.2.11 
14: PH𝑀 ← SHAKE128(𝑀, 256) 

15: case … 
16: … 
17: end switch 
18: 𝑀 ′ ← BytesToBits(IntegerToBytes(1, 1) ∥ IntegerToBytes(|𝑐𝑡𝑥|, 1) ∥ 𝑐𝑡𝑥 ∥ OID ∥ PH𝑀) 
19: return ML-DSA.Verify_internal(𝑝𝑘, 𝑀 ′ , 𝜎) 
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6. Internal Functions 

This section describes the functions for ML-DSA key generation, signature generation, and signature 
verification. Where randomness is required, the random values are provided as inputs to the functions. 
The interfaces specified in this section will be used when testing of ML-DSA implementations is performed 
through the CAVP. 

Other than for testing purposes, the interfaces for key generation and signature generation specified 
in this section should not be made available to applications, as any random values required for key 
generation and signature generation shall be generated by the cryptographic module. Section 5 provides 
guidance on the interfaces to be made available to applications.7 

7In some cases, it is permissible to modify the format of the private key in these interfaces (see Sections 4 and 3.6.3.) 

6.1 ML-DSA Key Generation (Internal) 

The internal key generation algorithm ML-DSA.KeyGen_internal takes a 32-byte random seed as input 
and outputs a public key and a private key that are both encoded as byte strings. 

The seed 𝜉 is expanded as needed using an XOF (i.e., a byte-variant of SHAKE256) denoted by H to produce 
other random values.8 

8Single-byte encodings of the parameters 𝑘 and ℓ are included in the XOF input for domain separation. For 
implementations that use the seed in place of the private key, this ensures that the expansion will produce an 
unrelated key if the seed is mistakenly expanded using a parameter set other than the one originally intended. 

̂

In particular: 

• A 32-byte public random seed 𝜌. Using this seed, a polynomial matrix 𝐀 ∈ 𝑅𝑞
𝑘×ℓ is pseudorandomly 

sampled9 

9More precisely, since only the NTT form of 𝐀, 𝐀 ∈ 𝑇𝑞
𝑘×ℓ = NTT(𝐀) is needed in subsequent calculations, the 

code actually computes �̂� as a pseudorandom sample over 𝑇𝑞
𝑘×ℓ , and the sampling of 𝐀 = NTT−1(𝐀)̂ is only 

implicit (i.e., it could be computed but is not). 

from 𝑅𝑞
𝑘×ℓ . 

• A 64-byte private random seed 𝜌′ . Using this seed, the polynomial vectors 𝐬1 ∈ 𝑅𝑞
ℓ and 𝐬2 ∈ 𝑅𝑞

𝑘 

are pseudorandomly sampled from the subset of polynomial vectors whose coordinate polynomials 
have short coefficients (i.e., in the range [−𝜂, 𝜂]). 

• A 32-byte private random seed 𝐾 for use during signing. 

The core cryptographic operation computes the public value 

𝐭 = 𝐀𝐬1 + 𝐬2. 

The vector 𝐭 together with the matrix 𝐀 may be considered an expanded form of the public key. The vector 
𝐭 is compressed in the actual public key by dropping the 𝑑 least significant bits from each coefficient, thus 
producing the polynomial vector 𝐭1. This compression is an optimization for performance, not security. 
The low-order bits of 𝐭 can be reconstructed from a small number of signatures and, therefore, need not 
be regarded as secret. 

The ML-DSA public key 𝑝𝑘 is a byte encoding of the public random seed 𝜌 and the compressed polynomial 
vector 𝐭1. 

The ML-DSA private key 𝑠𝑘 is a byte encoding of the public random seed 𝜌, a private random seed 𝐾 
for use during signing, a 64-byte hash 𝑡𝑟 of the public key for use during signing, the secret polynomial 
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vectors 𝐬1 and 𝐬2, and a polynomial vector 𝐭0 encoding the 𝑑 least significant bits of each coefficient of 
the uncompressed public-key polynomial 𝐭. 

Algorithm 6 ML-DSA.KeyGen_internal(𝜉) 

Generates a public-private key pair from a seed. 

Input: Seed 𝜉 ∈ 𝔹32 

Output: Public key 𝑝𝑘 ∈ 𝔹32+32𝑘(bitlen (𝑞−1)−𝑑) 

and private key 𝑠𝑘 ∈ 𝔹32+32+64+32⋅((ℓ+𝑘)⋅bitlen (2𝜂)+𝑑𝑘). 

1: (𝜌, 𝜌′, 𝐾) ∈ 𝔹32 × 𝔹64 × 𝔹32 ← H(𝜉||IntegerToBytes(𝑘, 1)||IntegerToBytes(ℓ, 1), 128) 
2: ▷ expand seed 

̂ ̂3: 𝐀 ← ExpandA(𝜌) ▷ 𝐀 is generated and stored in NTT representation as 𝐀 
4: (𝐬1, 𝐬2) ← ExpandS(𝜌′) 
5: 𝐭 ← NTT−1(𝐀 ∘̂ NTT(𝐬1)) + 𝐬2 ▷ compute 𝐭 = 𝐀𝐬1 + 𝐬2 
6: (𝐭1, 𝐭0) ← Power2Round(𝐭) ▷ compress 𝐭 
7: ▷ PowerTwoRound is applied componentwise (see explanatory text in Section 7.4) 
8: 𝑝𝑘 ← pkEncode(𝜌, 𝐭1) 
9: 𝑡𝑟 ← H(𝑝𝑘, 64) 

10: 𝑠𝑘 ← skEncode(𝜌, 𝐾, 𝑡𝑟, 𝐬1, 𝐬2, 𝐭0) ▷ 𝐾 and 𝑡𝑟 are for use in signing 
11: return (𝑝𝑘, 𝑠𝑘) 

6.2 ML-DSA Signing (Internal) 

ML-DSA.Sign_internal (Algorithm 7) outputs a signature encoded as a byte string. It takes a private 
key 𝑠𝑘 encoded as a byte string, a formatted message 𝑀 ′ encoded as a bit string, and a 32-byte string 
𝑟𝑛𝑑 as input. There are two ways that a signing algorithm can use ML-DSA.Sign_internal: “hedged” 
and “deterministic.” The default “hedged” variants of ML-DSA.Sign and HashML-DSA.Sign use a fresh 
random value for 𝑟𝑛𝑑, while the optional deterministic variants use the constant byte string {0}32 (see 
Section 3). 

In both variants, the signer first extracts the following from the private key: the public random seed 𝜌, 
the 32-byte private random seed 𝐾, the 64-byte hash of the public key 𝑡𝑟, the secret polynomial vectors 
𝐬1 and 𝐬2, and the polynomial vector 𝐭0 encoding the 𝑑 least significant bits of each coefficient of the 
uncompressed public-key polynomial 𝐭. 𝜌 is then expanded to the same matrix 𝐀 as in key generation. 

Before the message 𝑀 is signed, it is concatenated with the public-key hash 𝑡𝑟 and hashed down to a 
64-byte message representative 𝜇 using H. 

The signer produces an additional 64-byte seed 𝜌″ for private randomness during each signing operation. 
𝜌″ is computed as 𝜌″ ← H(𝐾||𝑟𝑛𝑑||𝜇, 64). In the default hedged variant, 𝑟𝑛𝑑 is the output of an RBG, 
while in the deterministic variant, 𝑟𝑛𝑑 is a 32-byte string that consists entirely of zeros. This is the only 
difference between the deterministic and hedged variant of ML-DSA.Sign. 

The main part of the signing algorithm consists of a rejection sampling loop in which each iteration of the 
loop either produces a valid signature or an invalid signature whose release would leak information about 
the private key. The loop is repeated until a valid signature is produced, which can then be encoded as a 
byte string and output.10 

10Implementations may limit the number of iterations in this loop to not exceed a finite maximum value. If this 

The rejection sampling loop follows the Fiat-Shamir With Aborts paradigm [10] 
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and (aside from the rejection step) is similar in structure to Schnorr signatures [30] (e.g., EdDSA [31]). The 
signer first produces a “commitment” 𝐰1 and then pseudorandomly derives a “challenge” 𝑐 from 𝐰1 and 
the message representative 𝜇. Finally, the signer computes a response 𝐳. 

In more detail, the main computations involved in the rejection sampling loop are as follows: 

• Using the ExpandMask function (Algorithm 34), the seed 𝜌″ , and a counter 𝜅, a polynomial vector 
𝐲 ∈ 𝑅𝑞

ℓ is pseudorandomly sampled from the subset of polynomial vectors whose coefficients are 
moderately short (i.e., in the range [−𝛾1 + 1, 𝛾1]). 

• From 𝐲, the signer computes the commitment 𝐰1 by computing 𝐰 = 𝐀𝐲 and then rounding to a 
nearby multiple of 2𝛾2 using HighBits (Algorithm 37). 

• 𝐰1 and 𝜇 are concatenated and hashed to produce the commitment hash 𝑐.̃ This uses the function 
w1Encode (Algorithm 28). The byte string 𝑐 ̃is used to pseudorandomly sample a polynomial 𝑐 ∈ 𝑅𝑞 
that has coefficients in {−1, 0, 1} and Hamming weight 𝜏. The sampling is done with the function 
SampleInBall (Algorithm 29).11 

11The length of 𝑐 ̃is determined by the desired security with respect to the “message-bound signatures” property 
described in [14]. Here, a length of 𝜆/4 bytes or equivalently 2𝜆 bits is required for 𝜆 bits of classical security. 

• The signer computes the response 𝐳 = 𝐲 + 𝑐𝐬1 and performs various validity checks. If any of the 
checks fails, the signer will continue the rejection sampling loop. 

• If the checks pass, the signer can compute a hint polynomial 𝐡, which will allow the verifier to 
reconstruct 𝐰1 using the compressed public key along with the other components of the signature. 
This uses the function MakeHint (Algorithm 39). The signer will then output the final signature, 
which is a byte encoding of the commitment hash 𝑐,̃ the response 𝐳, and the hint 𝐡. 

In addition, there is an alternative way of implementing the validity checks on 𝐳 and the computation of 
𝐡, which is described in Section 5.1 of [6]. This method may also be used in implementations of ML-DSA. 

In Algorithm 7, variables are sometimes used to store products to avoid recomputing them later in the 
signing algorithm. These precomputed products are denoted in the pseudocode by a pair of double angle 
brackets enclosing the variables being multiplied (e.g., ⟨⟨𝑐𝐬1⟩⟩). 

option is used and the maximum number of iterations is exceeded without producing a valid signature, the signing 
algorithm shall return a constant that represents an error and no other output, destroying the results of the 
unsuccessful signing attempts. See Appendix C. 
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Algorithm 7 ML-DSA.Sign_internal(𝑠𝑘, 𝑀 ′, 𝑟𝑛𝑑) 

Deterministic algorithm to generate a signature for a formatted message 𝑀 ′ . 

Input: Private key 𝑠𝑘 ∈ 𝔹32+32+64+32⋅((ℓ+𝑘)⋅bitlen (2𝜂)+𝑑𝑘), formatted message 𝑀 ′ ∈ {0, 1}∗ , and 
per message randomness or dummy variable 𝑟𝑛𝑑 ∈ 𝔹32 . 
Output: Signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘. 
1: (𝜌, 𝐾, 𝑡𝑟, 𝐬1, 𝐬2, 𝐭0) ← skDecode(𝑠𝑘) 
2: 𝐬1̂ ← NTT(𝐬1) 
3: 𝐬2̂ ← NTT(𝐬2) 
4: 𝐭0̂ ← NTT(𝐭0)

̂ ̂5: 𝐀 ← ExpandA(𝜌) ▷ 𝐀 is generated and stored in NTT representation as 𝐀 
6: 𝜇 ← H(BytesToBits(𝑡𝑟)||𝑀 ′, 64) ▷ message representative that may optionally be 

computed in a different cryptographic module 
7: 𝜌″ ← H(𝐾||𝑟𝑛𝑑||𝜇, 64) ▷ compute private random seed 
8: 𝜅 ← 0 ▷ initialize counter 𝜅 
9: (𝐳, 𝐡) ← ⊥ 

10: while (𝐳, 𝐡) = ⊥ do ▷ rejection sampling loop 
11: 𝐲 ∈ 𝑅𝑞

ℓ ← ExpandMask(𝜌″, 𝜅) 

12: 𝐰 ← NTT−1(𝐀 ∘̂ NTT(𝐲)) 
13: 𝐰1 ← HighBits(𝐰) ▷ signer’s commitment 
14: ▷ HighBits is applied componentwise (see explanatory text in Section 7.4) 
15: ̃ ▷ commitment hash𝑐 ← H(𝜇||w1Encode(𝐰1), 𝜆/4) 
16: 𝑐 ∈ 𝑅𝑞 ← SampleInBall(𝑐)̃ ▷ verifier’s challenge 
17: ̂𝑐 ← NTT(𝑐) 
18: ⟨⟨𝑐𝐬1⟩⟩ ← NTT−1(𝑐 ∘̂ 𝐬1̂ ) 
19: ⟨⟨𝑐𝐬2⟩⟩ ← NTT−1(𝑐 ∘̂ 𝐬2̂ ) 
20: 𝐳 ← 𝐲 + ⟨⟨𝑐𝐬1⟩⟩ ▷ signer’s response 
21: 𝐫0 ← LowBits(𝐰 − ⟨⟨𝑐𝐬2⟩⟩) 
22: ▷ LowBits is applied componentwise (see explanatory text in Section 7.4) 
23: if ||𝐳||∞ ≥ 𝛾1 − 𝛽 or ||𝐫0||∞ ≥ 𝛾2 − 𝛽 then (z, h) ← ⊥ ▷ validity checks 
24: else 
25: ⟨⟨𝑐𝐭0⟩⟩ ← NTT−1(𝑐 ∘̂ 𝐭0̂ ) 
26: 𝐡 ← MakeHint(−⟨⟨𝑐𝐭0⟩⟩, 𝐰 − ⟨⟨𝑐𝐬2⟩⟩ + ⟨⟨𝑐𝐭0⟩⟩) ▷ Signer’s hint 
27: ▷ MakeHint is applied componentwise (see explanatory text in Section 7.4) 
28: if ||⟨⟨𝑐𝐭0⟩⟩||∞ ≥ 𝛾2 or the number of 1’s in 𝐡 is greater than 𝜔, then (z, h) ← ⊥ 
29: end if 
30: end if 
31: 𝜅 ← 𝜅 + ℓ ▷ increment counter 
32: end while 
33: 𝜎 ← sigEncode(𝑐, 𝐳̃ mod±𝑞, 𝐡) 
34: return 𝜎 

6.3 ML-DSA Verifying (Internal) 

The algorithm ML-DSA.Verify_internal (Algorithm 8) takes a public key 𝑝𝑘 encoded as a byte string, a 
message 𝑀 encoded as a bit string, and a signature 𝜎 encoded as a byte string as input. No randomness is 
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required for ML-DSA.Verify_internal. It produces a Boolean value (i.e., a value that is true if the signature 
is valid with respect to the message and public key and false if the signature is invalid) as output. Algorithm 8 
specifies the lengths of the signature 𝜎 and the public key 𝑝𝑘 in terms of the parameters described in 
Table 1. If an implementation of ML-DSA.Verify_internal can accept inputs for 𝜎 or 𝑝𝑘 of any other 
length, it shall return false whenever the length of either of these inputs differs from its specified length. 

The verifier first extracts the public random seed 𝜌 and the compressed polynomial vector 𝐭1 from the 
public key 𝑝𝑘 and then extracts the signer’s commitment hash 𝑐,̃ response 𝐳, and hint 𝐡 from the signature 
𝜎. The verifier may find that the hint was not properly byte-encoded, denoted by the symbol “⊥,” in 
which case the verification algorithm will immediately return false to indicate that the signature is invalid. 

Assuming that the signature is successfully extracted from its byte encoding, the verifier pseudorandomly 
derives 𝐀 from 𝜌, as is done in key generation and signing, and creates a message representative 𝜇 by 
hashing the concatenation of 𝑡𝑟 (i.e., the hash of the public key 𝑝𝑘) and the message 𝑀. The verifier 
then attempts to reconstruct the signer’s commitment (i.e., the polynomial vector 𝐰1) from the public 
key 𝑝𝑘 and the signature 𝜎. In ML-DSA.Sign_internal, 𝐰1 is computed by rounding 𝐰 = 𝐀𝐲. In 
ML-DSA.Verify_internal, the reconstructed value of 𝐰1 is called 𝐰′

1 since it may have been computed in 
a different way if the signature is invalid. This 𝐰′

1 is computed through the following process: 

• Derive the challenge polynomial 𝑐 from the signer’s commitment hash 𝑐,̃ just as similarly is done in 
ML-DSA.Sign_internal. 

• Use the signer’s response 𝐳 to compute 

𝐰′ = 𝐀𝐳 − 𝑐𝐭1 ⋅ 2𝑑.Approx 

Assuming the signature was computed correctly, as in ML-DSA.Sign_internal, it follows that 

𝐰 = 𝐀𝐲 = 𝐀𝐳 − 𝑐𝐭 + 𝑐𝐬2 ≈ 𝐰′ = 𝐀𝐳 − 𝑐𝐭1 ⋅ 2𝑑 
Approx 

because 𝑐 and 𝐬2 have small coefficients, and 𝐭1 ⋅ 2𝑑 ≈ 𝐭 . 

• Use the signer’s hint 𝐡 to obtain 𝐰′
1 from 𝐰′ 

Approx. 

Finally, the verifier checks that the signer’s response 𝐳 and the signer’s hint 𝐡 are valid and that the 
reconstructed 𝐰′

1 is consistent with the signer’s commitment hash 𝑐.̃ More precisely, the verifier checks 
that all of the coefficients of 𝐳 are sufficiently small (i.e., in the range (−(𝛾1 − 𝛽), 𝛾1 − 𝛽)), 𝐡 contains no 
more than 𝜔 nonzero coefficients, and 𝑐 ̃matches the hash 𝑐′̃ of the message representative 𝜇 concatenated 
with 𝐰′

1 (represented as a byte string). If all of these checks succeed, then ML-DSA.Verify_internal returns 
true. Otherwise, it returns false. 
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Algorithm 8 ML-DSA.Verify_internal(𝑝𝑘, 𝑀 ′, 𝜎) 

Internal function to verify a signature 𝜎 for a formatted message 𝑀 ′ . 

Input: Public key 𝑝𝑘 ∈ 𝔹32+32𝑘(bitlen (𝑞−1)−𝑑) and message 𝑀 ′ ∈ {0, 1}∗ . 
Input: Signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘. 
Output: Boolean 
1: (𝜌, 𝐭1) ← pkDecode(𝑝𝑘) 
2: (𝑐, 𝐳, 𝐡) ← sigDecode(𝜎) 𝑐,̃ response 𝐳, and hint 𝐡 ̃ ▷ signer’s commitment hash 
3: if 𝐡 = ⊥ then return false ▷ hint was not properly encoded 
4: end if

̂ ̂5: 𝐀 ← ExpandA(𝜌) ▷ 𝐀 is generated and stored in NTT representation as 𝐀 
6: 𝑡𝑟 ← H(𝑝𝑘, 64) 
7: 𝜇 ← (H(BytesToBits(𝑡𝑟)||𝑀 ′, 64)) ▷ message representative that may optionally be 

computed in a different cryptographic module 
8: 𝑐 ∈ 𝑅𝑞 ← SampleInBall(𝑐)̃ ▷ compute verifier’s challenge from 𝑐 ̃ 

9: 𝐰′ ← NTT−1(𝐀 ∘̂ NTT(𝐳) − NTT(𝑐) ∘ NTT(𝐭1 ⋅ 2𝑑)) ▷ 𝐰′ = 𝐀𝐳 − 𝑐𝐭1 ⋅ 2𝑑 
Approx Approx 

10: 𝐰1
′ ← UseHint(𝐡, 𝐰′ ) ▷ reconstruction of signer’s commitment Approx 

11: ▷ UseHint is applied componentwise (see explanatory text in Section 7.4) 
12: 𝑐′̃ ← H(𝜇||w1Encode(𝐰′

1), 𝜆/4) ▷ hash it; this should match 𝑐 ̃ 
13: return [[ ||𝐳||∞ < 𝛾1 − 𝛽]] and [[𝑐 ̃ = 𝑐′̃ ]] 
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7. Auxiliary Functions 

This section provides pseudocode for subroutines utilized by ML-DSA, including functions for data-type 
conversions, arithmetic, and sampling. 

7.1 Conversion Between Data Types 

While the primary data type in ML-DSA is a byte string, other data types are used as well. The goal in 
this section is to construct procedures for translating between the various algebraic objects defined in 
Section 2.3. Algorithms 9–13 are intermediate procedures for converting between bit strings, byte strings, 
and integers. 

Algorithm 9 IntegerToBits(𝑥, 𝛼) 

Computes a base-2 representation of 𝑥 mod 2𝛼 using little-endian order. 

Input: A nonnegative integer 𝑥 and a positive integer 𝛼. 
Output: A bit string 𝑦 of length 𝛼. 
1: 𝑥 ′ ← 𝑥 
2: for 𝑖 from 0 to 𝛼 − 1 do 
3: 𝑦[𝑖] ← 𝑥 ′ mod 2 
4: 𝑥 ′ ← ⌊𝑥 ′ /2⌋ 
5: end for 
6: return 𝑦 

Algorithm 10 BitsToInteger(𝑦, 𝛼) 

Computes the integer value expressed by a bit string using little-endian order. 

Input: A positive integer 𝛼 and a bit string 𝑦 of length 𝛼. 
Output: A nonnegative integer 𝑥. 
1: 𝑥 ← 0 
2: for 𝑖 from 1 to 𝛼 do 
3: 𝑥 ← 2𝑥 + 𝑦[𝛼 − 𝑖] 
4: end for 
5: return 𝑥 

Algorithm 11 IntegerToBytes(𝑥, 𝛼) 

Computes a base-256 representation of 𝑥 mod 256𝛼 using little-endian order. 

Input: A nonnegative integer 𝑥 and a positive integer 𝛼. 
Output: A byte string 𝑦 of length 𝛼. 
1: 𝑥′  ← 𝑥 
2: for 𝑖 from 0 to 𝛼 − 1 do 
3: 𝑦[𝑖] ← 𝑥 ′ mod 256 
4: 𝑥 ′ ← ⌊𝑥 ′ /256⌋ 
5: end for 
6: return 𝑦 
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Algorithm 12 BitsToBytes(𝑦) 

Converts a bit string into a byte string using little-endian order. 

Input: A bit string 𝑦 of length 𝛼. 
Output: A byte string 𝑧 of length ⌈𝛼/8⌉. 
1: 𝑧 ∈ 𝔹⌈𝛼/8⌉ ← 0⌈𝛼/8⌉ 

2: for 𝑖 from 0 to 𝛼 − 1 do 
3: 𝑧 [⌊𝑖/8⌋] ← 𝑧 [⌊𝑖/8⌋] + 𝑦[𝑖] ⋅ 2𝑖 mod 8 

4: end for 
5: return 𝑧 

Algorithm 13 BytesToBits(𝑧) 

Converts a byte string into a bit string using little-endian order. 

Input: A byte string 𝑧 of length 𝛼. 
Output: A bit string 𝑦 of length 8𝛼. 
1: 𝑧 ′ ← 𝑧 
2: for 𝑖 from 0 to 𝛼 − 1 do 
3: for 𝑗 from 0 to 7 do ▷ convert the byte 𝑧[𝑖] into 8 bits 
4: 𝑦[8𝑖 + 𝑗] ← 𝑧 ′ [𝑖] mod 2 
5: 𝑧 ′ [𝑖] ← ⌊𝑧 ′ [𝑖]/2⌋ 
6: end for 
7: end for 
8: return 𝑦 

Algorithms 14 and 15 translate byte strings into coefficients of polynomials in 𝑅. CoeffFromThreeBytes 
uses a 3-byte string to either generate an element of {0, 1, … , 𝑞 − 1} or return the blank symbol ⊥. 
CoeffFromHalfByte uses an element of {0, 1, … , 15} to either generate an element of {−𝜂, −𝜂+1, … , 𝜂} 
or return ⊥. These two procedures will be used in the uniform sampling algorithms RejNTTPoly and 
RejBoundedPoly, which are discussed in Section 7.3. 

Algorithm 14 CoeffFromThreeBytes(𝑏0, 𝑏1, 𝑏2) 

Generates an element of {0, 1, 2, … , 𝑞 − 1} ∪ {⊥}. 
Input: Bytes 𝑏0, 𝑏1, 𝑏2. 
Output: An integer modulo 𝑞 or ⊥. 

1: 𝑏′ 
2 ← 𝑏2 

2: ′if 𝑏  
2 > 127 then 

3: 𝑏′ 
2 ← 𝑏′ 

2 − 128 ▷ set the top bit of 𝑏′ 
2 to zero 

4: end if 
5: 𝑧 ← 216 ⋅ 𝑏 ′ 

2 + 28 ⋅ 𝑏1 + 𝑏0 ▷ 0 ≤ 𝑧 ≤ 223 − 1 
6: if 𝑧 < 𝑞 then return 𝑧 ▷ rejection sampling 
7: else return ⊥ 
8: end if 
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Algorithm 15 CoeffFromHalfByte(𝑏) 

Let 𝜂 ∈ {2, 4}. Generates an element of {−𝜂, −𝜂 + 1, … , 𝜂} ∪ {⊥}. 
Input: Integer 𝑏 ∈ {0, 1, … , 15}. 
Output: An integer between −𝜂 and 𝜂, or ⊥. 

1: if 𝜂 = 2 and 𝑏 < 15 then return 2 − (𝑏 mod 5) ▷ rejection sampling from {−2, … , 2} 
2: else 
3: 

4: 

if 𝜂 = 4 and 𝑏 < 9 then return 4 − 𝑏 
else return ⊥ 

▷ rejection sampling from {−4, … , 4} 

5: end if 
6: end if 

Algorithms 16–19 efficiently translate an element 𝑤 ∈ 𝑅 into a byte string and vice versa under the 
assumption that the coefficients of 𝑤 are in a restricted range. SimpleBitPack assumes that 𝑤𝑖 ∈ [0, 𝑏] 
for some positive integer 𝑏 and packs 𝑤 into a byte string of length 32 ⋅ bitlen 𝑏. BitPack allows for the 
more general restriction 𝑤𝑖 ∈ [−𝑎, 𝑏]. The BitPack algorithm works by merely subtracting 𝑤 from the 
polynomial ∑255 

.𝑖=0 
𝑏𝑋𝑖 

Algorithm 16 SimpleBitPack(𝑤, 𝑏) 

Encodes a polynomial 𝑤 into a byte string. 

Input: 𝑏 ∈ ℕ and 𝑤 ∈ 𝑅 such that the coefficients of 𝑤 are all in [0, 𝑏]. 
Output: A byte string of length 32 ⋅ bitlen 𝑏. 
1: 𝑧 ← () ▷ set 𝑧 to the empty bit string 
2: for 𝑖 from 0 to 255 do 
3: 𝑧 ← 𝑧||IntegerToBits(𝑤𝑖, bitlen 𝑏) 
4: end for 
5: return BitsToBytes(𝑧) 

Algorithm 17 BitPack(𝑤, 𝑎, 𝑏) 

Encodes a polynomial 𝑤 into a byte string. 

Input: 𝑎, 𝑏 ∈ ℕ and 𝑤 ∈ 𝑅 such that the coefficients of 𝑤 are all in [−𝑎, 𝑏]. 
Output: A byte string of length 32 ⋅ bitlen (𝑎 + 𝑏). 
1: 𝑧 ← () ▷ set 𝑧 to the empty bit string 
2: for 𝑖 from 0 to 255 do 
3: 𝑧 ← 𝑧||IntegerToBits(𝑏 − 𝑤𝑖, bitlen (𝑎 + 𝑏)) 
4: end for 
5: return BitsToBytes(𝑧) 

SimpleBitUnpack and BitUnpack are used to decode the byte strings produced by the above functions. 
For some choices of 𝑎 and 𝑏, there exist malformed byte strings that will cause SimpleBitUnpack and 
BitUnpack to output polynomials whose coefficients are not in the ranges [0, 𝑏] and [−𝑎, 𝑏], respectively. 
This can be a concern when running SimpleBitUnpack and BitUnpack on inputs that may come from an 
untrusted source. 
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Algorithm 18 SimpleBitUnpack(𝑣, 𝑏) 

Reverses the procedure SimpleBitPack. 
Input: 𝑏 ∈ ℕ and a byte string 𝑣 of length 32 ⋅ bitlen 𝑏. 
Output: A polynomial 𝑤 ∈ 𝑅 with coefficients in [0, 2𝑐 − 1], where 𝑐 = bitlen 𝑏. 
When 𝑏 + 1 is a power of 2, the coefficients are in [0, 𝑏]. 
1: 𝑐 ← bitlen 𝑏 
2: 𝑧 ← BytesToBits(𝑣) 
3: for 𝑖 from 0 to 255 do 
4: 𝑤𝑖 ← BitsToInteger((𝑧[𝑖𝑐], 𝑧[𝑖𝑐 + 1], … 𝑧[𝑖𝑐 + 𝑐 − 1]), 𝑐) 
5: end for 
6: return 𝑤 

Algorithm 19 BitUnpack(𝑣, 𝑎, 𝑏) 

Reverses the procedure BitPack. 
Input: 𝑎, 𝑏 ∈ ℕ and a byte string 𝑣 of length 32 ⋅ bitlen (𝑎 + 𝑏). 
Output: A polynomial 𝑤 ∈ 𝑅 with coefficients in [𝑏 − 2𝑐 + 1, 𝑏], where 𝑐 = bitlen (𝑎 + 𝑏). 
When 𝑎 + 𝑏 + 1 is a power of 2, the coefficients are in [−𝑎, 𝑏]. 
1: 𝑐 ← bitlen (𝑎 + 𝑏) 
2: 𝑧 ← BytesToBits(𝑣) 
3: for 𝑖 from 0 to 255 do 
4: 𝑤𝑖 ← 𝑏 − BitsToInteger((𝑧[𝑖𝑐], 𝑧[𝑖𝑐 + 1], … 𝑧[𝑖𝑐 + 𝑐 − 1]), 𝑐) 
5: end for 
6: return 𝑤 

Algorithms 20 and 21 carry out byte-string-to-polynomial conversions for polynomials with sparse binary 
coefficients. In particular, the signing and verification algorithms (Sections 6.2 and 6.3) make use of a “hint,” 
which is a vector of polynomials 𝐡 ∈ 𝑅2

𝑘 such that the total number of coefficients in 𝐡[0], 𝐡[1], … , 𝐡[𝑘−1] 
that are equal to 1 is no more than 𝜔. This constraint enables encoding and decoding procedures that are 
more efficient (although more complex) than BitPack and BitUnpack. 

HintBitPack (𝐡) outputs a byte string 𝑦 of length 𝜔 + 𝑘. The last 𝑘 bytes of 𝑦 contain information about 
how many nonzero coefficients are present in each of the polynomials 𝐡[0], 𝐡[1], … , 𝐡[𝑘 − 1], and the 
first 𝜔 bytes of 𝑦 contain information about exactly where those nonzero terms occur. HintBitUnpack 
reverses the procedure performed by HintBitPack and recovers the vector 𝐡. 
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Algorithm 20 HintBitPack(𝐡) 

Encodes a polynomial vector 𝐡 with binary coefficients into a byte string. 

Input: A polynomial vector 𝐡 ∈ 𝑅2
𝑘 such that the polynomials 𝐡[0], 𝐡[1],...,𝐡[𝑘 − 1] have 

collectively at most 𝜔 nonzero coefficients. 
Output: A byte string 𝑦 of length 𝜔 + 𝑘 that encodes 𝐡 as described above. 

1: 𝑦 ∈ 𝔹𝜔+𝑘 ← 0𝜔+𝑘 

2: Index ← 0 ▷ Index for writing the first 𝜔 bytes of 𝑦 
3: for 𝑖 from 0 to 𝑘 − 1 do ▷ look at 𝐡[𝑖] 
4: for 𝑗 from 0 to 255 do 
5: if 𝐡[𝑖]𝑗 ≠ 0 then 
6: 𝑦[Index] ← 𝑗 ▷ store the locations of the nonzero coefficients in 𝐡[𝑖] 
7: Index ← Index + 1 
8: end if 
9: end for 

10: 𝑦[𝜔 + 𝑖] ← Index ▷ after processing 𝐡[𝑖], store the value of Index 
11: end for 
12: return 𝑦 

Algorithm 21 HintBitUnpack(𝑦) 

Reverses the procedure HintBitPack. 
Input: A byte string 𝑦 of length 𝜔 + 𝑘 that encodes 𝐡 as described above. 
Output: A polynomial vector 𝐡 ∈ 𝑅2

𝑘 or ⊥. 

1: 𝐡 ∈ 𝑅2
𝑘 ← 0𝑘 

2: Index ← 0 ▷ Index for reading the first 𝜔 bytes of 𝑦 
3: for 𝑖 from 0 to 𝑘 − 1 do ▷ reconstruct 𝐡[𝑖] 
4: if 𝑦[𝜔 + 𝑖] < Index or 𝑦[𝜔 + 𝑖] > 𝜔 then return ⊥ ▷ malformed input 
5: end if 
6: First ← Index 
7: while Index < 𝑦[𝜔 + 𝑖] do ▷ 𝑦[𝜔 + 𝑖] says how far one can advance Index 
8: if Index > First then 
9: if 𝑦[Index − 1] ≥ 𝑦[Index] then return ⊥ ▷ malformed input 

10: end if 
11: end if 
12: 𝐡[𝑖]𝑦[Index] ← 1 ▷ 𝑦[Index] says which coefficient in 𝐡[𝑖] should be 1 
13: Index ← Index + 1 
14: end while 
15: end for 
16: for 𝑖 from Index to 𝜔 − 1 do ▷ read any leftover bytes in the first 𝜔 bytes of 𝑦 
17: if 𝑦[𝑖] ≠ 0 then return ⊥ ▷ malformed input 
18: end if 
19: end for 
20: return 𝐡 

32 



FIPS 204 MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

7.2 Encodings of ML-DSA Keys and Signatures 

Algorithms 22–27 translate keys and signatures for ML-DSA into byte strings. These procedures take 
certain sequences of algebraic objects, encode them consecutively into byte strings, and perform the 
respective decoding procedures. 

First, pkEncode and pkDecode translate ML-DSA public keys into byte strings and vice versa. When 
verifying a signature, pkDecode might be run on an input that comes from an untrusted source. Thus, 
care is required when using SimpleBitUnpack. As used here, SimpleBitUnpack always returns values in 
the correct range. 

Algorithm 22 pkEncode(𝜌, 𝐭1) 

Encodes a public key for ML-DSA into a byte string. 

Input:𝜌 ∈ 𝔹32, 𝐭1 ∈ 𝑅𝑘 with coefficients in [0, 2bitlen (𝑞−1)−𝑑 − 1]. 
Output: Public key 𝑝𝑘 ∈ 𝔹32+32𝑘(bitlen (𝑞−1)−𝑑). 

1: 𝑝𝑘 ← 𝜌 
2: for 𝑖 from 0 to 𝑘 − 1 do 
3: 𝑝𝑘 ← 𝑝𝑘 || SimpleBitPack (𝐭1[𝑖], 2bitlen (𝑞−1)−𝑑 − 1) 
4: end for 
5: return 𝑝𝑘 

Algorithm 23 pkDecode(𝑝𝑘) 

Reverses the procedure pkEncode. 
Input: Public key 𝑝𝑘 ∈ 𝔹32+32𝑘(bitlen (𝑞−1)−𝑑). 
Output: 𝜌 ∈ 𝔹32, 𝐭1 ∈ 𝑅𝑘 with coefficients in [0, 2bitlen (𝑞−1)−𝑑 − 1]. 

(𝜌, 𝑧0, … , 𝑧𝑘−1) ∈ 𝔹32 × (𝔹32(bitlen (𝑞−1)−𝑑))𝑘 ← 𝑝𝑘 1: 

2: for 𝑖 from 0 to 𝑘 − 1 do 
3: 𝐭1[𝑖] ← SimpleBitUnpack(𝑧𝑖, 2bitlen (𝑞−1)−𝑑 − 1) ▷ This is always in the correct range 
4: end for 
5: return (𝜌, 𝐭1) 

Next, skEncode and skDecode translate ML-DSA secret keys into byte strings and vice versa. Note that 
there exist malformed inputs that can cause skDecode to return values that are not in the correct range. 
Hence, skDecode should only be run on inputs that come from trusted sources. 
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Algorithm 24 skEncode(𝜌, 𝐾, 𝑡𝑟, 𝐬1, 𝐬2, 𝐭0) 

Encodes a secret key for ML-DSA into a byte string. 

Input: 𝜌 ∈ 𝔹32, 𝐾 ∈ 𝔹32, 𝑡𝑟 ∈ 𝔹64 , 𝐬1 ∈ 𝑅ℓ with coefficients in [−𝜂, 𝜂], 𝐬2 ∈ 𝑅𝑘 with 
coefficients in [−𝜂, 𝜂], 𝐭0 ∈ 𝑅𝑘 with coefficients in [−2𝑑−1 + 1, 2𝑑−1]. 
Output: Private key 𝑠𝑘 ∈ 𝔹32+32+64+32⋅((𝑘+ℓ)⋅bitlen (2𝜂)+𝑑𝑘). 

1: 𝑠𝑘 ← 𝜌||𝐾||𝑡𝑟 
2: for 𝑖 from 0 to ℓ − 1 do 
3: 𝑠𝑘 ← 𝑠𝑘 || BitPack (𝐬1[𝑖], 𝜂, 𝜂) 
4: end for 
5: for 𝑖 from 0 to 𝑘 − 1 do 
6: 𝑠𝑘 ← 𝑠𝑘 || BitPack (𝐬2[𝑖], 𝜂, 𝜂) 
7: end for 
8: for 𝑖 from 0 to 𝑘 − 1 do 
9: 𝑠𝑘 ← 𝑠𝑘 || BitPack (𝐭0[𝑖], 2𝑑−1 − 1, 2𝑑−1) 

10: end for 
11: return 𝑠𝑘 

Algorithm 25 skDecode(𝑠𝑘) 

Reverses the procedure skEncode. 
Input: Private key 𝑠𝑘 ∈ 𝔹32+32+64+32⋅((ℓ+𝑘)⋅bitlen (2𝜂)+𝑑𝑘). 
Output: 𝜌 ∈ 𝔹32, 𝐾 ∈ 𝔹32, 𝑡𝑟 ∈ 𝔹64 , 
𝐬1 ∈ 𝑅ℓ , 𝐬2 ∈ 𝑅𝑘 , 𝐭0 ∈ 𝑅𝑘 with coefficients in [−2𝑑−1 + 1, 2𝑑−1]. 
1: (𝜌, 𝐾, 𝑡𝑟, 𝑦0, … , 𝑦ℓ−1, 𝑧0, … , 𝑧𝑘−1, 𝑤0, … , 𝑤𝑘−1) ∈ 𝔹32 × 𝔹32 × 𝔹64 × (𝔹32⋅bitlen (2𝜂))ℓ × 

(𝔹32⋅bitlen (2𝜂))𝑘 × (𝔹32𝑑)𝑘 ← 𝑠𝑘 
2: for 𝑖 from 0 to ℓ − 1 do 
3: 𝐬1[𝑖] ← BitUnpack(𝑦𝑖, 𝜂, 𝜂) ▷ this may lie outside [−𝜂, 𝜂] if input is malformed 
4: end for 
5: for 𝑖 from 0 to 𝑘 − 1 do 
6: 𝐬2[𝑖] ← BitUnpack(𝑧𝑖, 𝜂, 𝜂) ▷ this may lie outside [−𝜂, 𝜂] if input is malformed 
7: end for 
8: for 𝑖 from 0 to 𝑘 − 1 do 
9: 𝐭0[𝑖] ← BitUnpack(𝑤𝑖, 2𝑑−1 − 1, 2𝑑−1) ▷ this is always in the correct range 

10: end for 
11: return (𝜌, 𝐾, 𝑡𝑟, 𝐬1, 𝐬2, 𝐭0) 

Next, sigEncode and sigDecode translate ML-DSA signatures into byte strings and vice versa. When 
verifying a signature, sigDecode might take input that comes from an untrusted source. Thus, care is 
required when using BitUnpack. As used here, BitUnpack always returns values in the correct range. 
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Algorithm 26 sigEncode( ̃𝑐, 𝐳, 𝐡) 

Encodes a signature into a byte string. 

Input: ̃ 2 .𝑐 ∈ 𝔹𝜆/4, 𝐳 ∈ 𝑅ℓ with coefficients in [−𝛾1 + 1, 𝛾1], 𝐡 ∈ 𝑅𝑘 

Output: Signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘. 

1: 𝜎 ← 𝑐 ̃ 
2: for 𝑖 from 0 to ℓ − 1 do 
3: 𝜎 ← 𝜎 || BitPack (𝐳[𝑖], 𝛾1 − 1, 𝛾1) 
4: end for 
5: 𝜎 ← 𝜎 || HintBitPack (𝐡) 
6: return 𝜎 

Algorithm 27 sigDecode(𝜎) 

Reverses the procedure sigEncode. 
Input: Signature 𝜎 ∈ 𝔹𝜆/4+ℓ⋅32⋅(1+bitlen (𝛾1−1))+𝜔+𝑘. 
Output: ̃ 2 , or ⊥.𝑐 ∈ 𝔹𝜆/4, 𝐳 ∈ 𝑅ℓ with coefficients in [−𝛾1 + 1, 𝛾1], 𝐡 ∈ 𝑅𝑘 

1: (𝑐, 𝑥̃ 0, … , 𝑥ℓ−1, 𝑦) ∈ 𝔹𝜆/4 × (𝔹32⋅(1+bitlen (𝛾1−1)))ℓ × 𝔹𝜔+𝑘 ← 𝜎 
2: for 𝑖 from 0 to ℓ − 1 do 
3: 𝐳[𝑖] ← BitUnpack(𝑥𝑖, 𝛾1 − 1, 𝛾1) ▷ this is in the correct range, as 𝛾1 is a power of 2 
4: end for 
5: 𝐡 ← HintBitUnpack(𝑦) 
6: return (𝑐, 𝐳, 𝐡)̃ 

w1Encode is a specific subroutine used in ML-DSA.Sign. The procedure w1Encode encodes a polynomial 
vector 𝐰1 into a string of bytes so that it can be processed by the function H. 

Algorithm 28 w1Encode(𝐰1) 

Encodes a polynomial vector 𝐰1 into a byte string. 

Input: 𝐰1 ∈ 𝑅𝑘 whose polynomial coordinates have coefficients in [0, (𝑞 − 1)/(2𝛾2) − 1]. 
𝐰1 ∈ 𝔹32𝑘⋅bitlen ((𝑞−1)/(2𝛾2)−1)Output: A byte string representation ̃ . 

1: �̃�1 ← () 
2: for 𝑖 from 0 to 𝑘 − 1 do 
3: �̃�1 ← �̃�1 || SimpleBitPack (𝐰1[𝑖], (𝑞 − 1)/(2𝛾2) − 1) 
4: end for 
5: return �̃� 1 
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7.3 Pseudorandom Sampling 

This section specifies various algorithms for generating algebraic objects pseudorandomly from a seed 
𝜌, where 𝜌 is a byte string whose length varies depending on the algorithm. The first procedure to be 
defined is SampleInBall. As in Section 2.3, 𝐵𝜏 denotes the set of all polynomials 𝑐 ∈ 𝑅 such that 

• Each coefficient of 𝑐 is either −1, 0, or 1, and 

• Exactly 𝜏 of the coefficients of 𝑐 are nonzero. 

SampleInBall pseudorandomly generates an element of 𝐵𝜏 using the XOF of a seed 𝜌. The procedure 
is based on the Fisher-Yates shuffle. H is applied to 𝜌, and the first 8 bytes of the output are used to 

12

12The parameter 𝜏 is always less than or equal to 64, and thus 8 bytes are sufficient to choose the signs for all 𝜏 
nonzero entries of 𝐜. 

choose the signs of the nonzero entries of 𝑐. Subsequent bytes are used to choose the positions of 
those nonzero entries. 

Algorithm 29 SampleInBall(𝜌) 

Samples a polynomial 𝑐 ∈ 𝑅 with coefficients from {−1, 0, 1} and Hamming weight 𝜏 ≤ 64. 
Input: A seed 𝜌 ∈ 𝔹𝜆/4 

Output: A polynomial 𝑐 in 𝑅. 

1: 𝑐 ← 0 
2: ctx ← H.Init() 
3: ctx ← H.Absorb(ctx, 𝜌) 
4: (ctx, 𝑠) ← H.Squeeze(ctx, 8) 
5: ℎ ← BytesToBits(𝑠) ▷ ℎ is a bit string of length 64 
6: for 𝑖 from 256 − 𝜏 to 255 do 
7: (ctx, 𝑗) ← H.Squeeze(ctx, 1) 
8: while 𝑗 > 𝑖 do ▷ rejection sampling in {0, … , 𝑖} 
9: (ctx, 𝑗) ← H.Squeeze(ctx, 1) 

10: end while ▷ 𝑗 is a pseudorandom byte that is ≤ 𝑖 
11: 𝑐𝑖 ← 𝑐𝑗 

𝑐𝑗 ← (−1)ℎ[𝑖+𝜏−256] 
12: 

13: end for 
14: return 𝑐 

Algorithms 30–34 are the pseudorandom procedures RejNTTPoly, RejBoundedPoly, ExpandA, ExpandS, 
and ExpandMask. Each generates elements of 𝑅 or 𝑇𝑞 under different input and output conditions. 
RejNTTPoly and ExpandA make use of the more efficient XOF G, whereas the other three procedures 
use the XOF H. 

The procedure ExpandMask (Algorithm 34) generates a polynomial vector 𝐲 in 𝑅𝑘 that disguises the 
secret key in the ML-DSA.Sign_internal procedure (Algorithm 7). In addition to the seed 𝜌, ExpandMask 
also accepts an integer input 𝜇 that is incorporated into the pseudorandom procedure that generates 𝐬. 
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Algorithm 30 RejNTTPoly(𝜌) 

Samples a polynomial ∈ 𝑇𝑞. 

Input: A seed 𝜌 ∈ 𝔹34 . 
Output: An element ̂𝑎 ∈ 𝑇𝑞. 

1: 𝑗 ← 0 
2: ctx ← G.Init() 
3: ctx ← G.Absorb(ctx, 𝜌) 
4: while 𝑗 < 256 do 
5: (ctx, 𝑠) ← G.Squeeze(ctx, 3) 
6: ̂𝑎[𝑗] ← CoeffFromThreeBytes(𝑠[0], 𝑠[1], 𝑠[2]) 
7: if 𝑎[𝑗] ≠ ⊥ then̂ 
8: 𝑗 ← 𝑗 + 1 
9: end if 

10: end while 
11: return 𝑎̂ 

Algorithm 31 RejBoundedPoly(𝜌) 

Samples an element 𝑎 ∈ 𝑅 with coefficients in [−𝜂, 𝜂] computed via rejection sampling from 𝜌. 
Input: A seed 𝜌 ∈ 𝔹66 . 
Output: A polynomial 𝑎 ∈ 𝑅. 

1: 𝑗 ← 0 
2: ctx ← H.Init() 
3: ctx ← H.Absorb(ctx, 𝜌) 
4: while 𝑗 < 256 do 
5: 𝑧 ← H.Squeeze(ctx, 1) 
6: 𝑧0 ← CoeffFromHalfByte(𝑧 mod 16) 
7: 𝑧1 ← CoeffFromHalfByte(⌊𝑧/16⌋) 
8: if 𝑧0 ≠ ⊥ then 
9: 𝑎𝑗 ← 𝑧0 

10: 𝑗 ← 𝑗 + 1 
11: end if 
12: if 𝑧1 ≠ ⊥ and 𝑗 < 256 then 
13: 𝑎𝑗 ← 𝑧1 
14: 𝑗 ← 𝑗 + 1 
15: end if 
16: end while 
17: return 𝑎 
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Algorithm 32 ExpandA(𝜌) 

Samples a 𝑘 × ℓ matrix �̂� of elements of 𝑇𝑞. 

Input: A seed 𝜌 ∈ 𝔹32 .
̂Output: Matrix 𝐀 ∈ (𝑇𝑞)𝑘×ℓ . 

1: for 𝑟 from 0 to 𝑘 − 1 do 
2: for 𝑠 from 0 to ℓ − 1 do 
3: 𝜌′ ← 𝜌||IntegerToBytes(𝑠, 1)||IntegerToBytes(𝑟, 1) 

̂4: 𝐀[𝑟, 𝑠] ← RejNTTPoly(𝜌′) ▷ seed 𝜌′ depends on 𝑠 and 𝑟 
5: end for 
6: end for 
7: return �̂� 

Algorithm 33 ExpandS(𝜌) 

Samples vectors 𝐬1 ∈ 𝑅ℓ and 𝐬2 ∈ 𝑅𝑘 , each with polynomial coordinates whose coefficients are 
in the interval [−𝜂, 𝜂]. 
Input: A seed 𝜌 ∈ 𝔹64 . 
Output: Vectors 𝐬1, 𝐬2 of polynomials in 𝑅. 

1: for 𝑟 from 0 to ℓ − 1 do 
2: 𝐬𝟏[𝑟] ← RejBoundedPoly(𝜌||IntegerToBytes(𝑟, 2)) ▷ seed depends on 𝑟 
3: end for 
4: for 𝑟 from 0 to 𝑘 − 1 do 
5: 𝐬𝟐[𝑟] ← RejBoundedPoly(𝜌||IntegerToBytes(𝑟 + ℓ, 2)) ▷ seed depends on 𝑟 + ℓ 
6: end for 
7: return (𝐬𝟏, 𝐬𝟐) 

Algorithm 34 ExpandMask(𝜌, 𝜇) 

Samples a vector 𝐲 ∈ 𝑅ℓ such that each polynomial 𝐲[𝑟] has coefficients between −𝛾1 + 1 and 
𝛾1. 

Input: A seed 𝜌 ∈ 𝔹64 and a nonnegative integer 𝜇. 
Output: Vector 𝐲 ∈ 𝑅ℓ . 

1: 𝑐 ← 1 + bitlen (𝛾1 − 1) ▷ 𝛾1 is always a power of 2 
2: for 𝑟 from 0 to ℓ − 1 do 
3: 𝜌′ ← 𝜌||IntegerToBytes(𝜇 + 𝑟, 2) 
4: 𝑣 ← H(𝜌′, 32𝑐) ▷ seed depends on 𝜇 + 𝑟 
5: 𝐲[𝑟] ← BitUnpack(𝑣, 𝛾1 − 1, 𝛾1) 
6: end for 
7: return 𝐲 
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7.4 High-Order and Low-Order Bits and Hints 

This specification uses the auxiliary functions Power2Round, Decompose, HighBits, LowBits, MakeHint, 
and UseHint and explicitly defines these functions, where 𝑟 ∈ ℤ𝑞, 𝑟1, 𝑟0 ∈ ℤ, and ℎ is a Boolean (or 
equivalently an element of ℤ2). However, this specification also uses these functions where 𝐫, 𝐳 ∈ 𝑅𝑞

𝑘 , 
𝐫1, 𝐫0 ∈ 𝑅𝑘 , and 𝐡 ∈ 𝑅2

𝑘 . In this case, the functions are applied coefficientwise to the polynomials in the 
vectors. In particular: 

• For 𝐫 ∈ 𝑅𝑞
𝑘 , define (𝐫1, 𝐫0) ∈ (𝑅𝑘)2 = Power2Round(𝐫) so that: 

((𝐫1[𝑖])𝑗, (𝐫0[𝑖])𝑗) = Power2Round((𝐫[𝑖])𝑗). 

• For 𝐫 ∈ 𝑅𝑞
𝑘 , define (𝐫1, 𝐫0) ∈ (𝑅𝑘)2 = Decompose(𝐫) so that: 

((𝐫1[𝑖])𝑗, (𝐫0[𝑖])𝑗) = Decompose((𝐫[𝑖])𝑗). 

• For 𝐫 ∈ 𝑅𝑞
𝑘 , define 𝐫1 = HighBits (𝐫) so that: 

(𝐫1[𝑖])𝑗 = HighBits((𝐫[𝑖])𝑗). 

• For 𝐫 ∈ 𝑅𝑞
𝑘 , define 𝐫0 = LowBits(𝐫) so that: 

(𝐫0[𝑖])𝑗 = LowBits((𝐫[𝑖])𝑗). 

• For 𝐳, 𝐫 ∈ 𝑅𝑞
𝑘 , define 𝐡 ∈ 𝑅2

𝑘 = MakeHint(𝐳, 𝐫) so that: 

(𝐡[𝑖])𝑗 = MakeHint((𝐳[𝑖])𝑗, (𝐫[𝑖])𝑗). 

• For 𝐡 ∈ 𝑅2
𝑘 and 𝐫 ∈ 𝑅𝑞

𝑘 , define 𝐫1 ∈ 𝑅𝑘 = UseHint(𝐡, 𝐫) so that: 

𝐫1[𝑖]𝑗 = UseHint((𝐡[𝑖])𝑗, (𝐫[𝑖])𝑗). 

These algorithms are used to support the key compression optimization of ML-DSA. They involve dropping 
the 𝑑 low-order bits of each coefficient of the polynomial vector 𝐭 from the public key using the function 
Power2Round. However, in order to make this optimization work, additional information called a “hint” 
needs to be provided in the signature to allow the verifier to reconstruct enough of the information in 
the dropped public-key bits to verify the signature. Hints are created during signing and used during 
verification by the functions MakeHint and UseHint, respectively. In the verification of a valid signature, 
the hint allows the verifier to recover 𝐰1 ∈ 𝑅𝑘 , which represents 𝐰 ∈ 𝑅𝑞

𝑘 rounded to a nearby multiple 
of 𝛼 = 2𝛾2. The signer directly obtains 𝐰1 using the function HighBits, and the part rounded off (i.e., 𝐫0) 
is obtained by LowBits. 𝐫0 is used by the signer in the rejection sampling procedure. 

Power2Round decomposes an input 𝑟 ∈ ℤ𝑞 into integers that represent the high- and low-order bits of 
𝑟 mod 𝑞 in the straightforward bitwise way, 𝑟 mod 𝑞 = 𝑟1 ⋅ 2𝑑 + 𝑟0, where 𝑟0 = (𝑟 mod 𝑞) mod±2𝑑 and 
𝑟1 = (𝑟 mod 𝑞 − 𝑟0)/2𝑑 . 

However, for the purpose of computations related to hints, this method of decomposing 𝑟 has the 
undesirable property that when 𝑟 is close to 𝑞 − 1 or 0, a small rounding error in 𝑟 can cause 𝑟1 to change 
by more than 1, even accounting for wrap-around. In contrast to other unequal pairs of values of 𝑟1 ⋅ 2𝑑 

and 𝑟1
′ ⋅ 2𝑑 , the distance (mod𝑞) between ⌊𝑞/2𝑑⌋ ⋅ 2𝑑 and 0 may be very small. 
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To avoid this problem, this specification defines Decompose, which is similar to Power2Round except: 

• 𝑟 is generally decomposed as 𝑟 mod 𝑞 = 𝑟1 ⋅ 𝛼 + 𝑟0, where 𝛼 = 2𝛾2 is a divisor of 𝑞 − 1. 

• If the straightforward rounding procedure would return (𝑟1 = (𝑞 − 1)/𝛼, 𝑟0 ∈ [−(𝛼/2) + 1, 𝛼/2]), 
Decompose instead returns (𝑟1 = 0, 𝑟0 − 1). 

The functions HighBits and LowBits — which only return 𝑟1 and 𝑟0, respectively — and MakeHint and 
UseHint use Decompose. For additional discussion of the mathematical properties of these functions 
that are relevant to the correctness and security of ML-DSA, see Section 2.4 in [6]. 

Algorithm 35 Power2Round(𝑟) 

Decomposes 𝑟 into (𝑟1, 𝑟0) such that 𝑟 ≡ 𝑟12𝑑 + 𝑟0 mod 𝑞. 
Input: 𝑟 ∈ ℤ𝑞. 
Output: Integers (𝑟1, 𝑟0). 
1: 𝑟+ ← 𝑟 mod 𝑞 

±2𝑑 
2: 𝑟0 ← 𝑟+ mod 
3: return ((𝑟+ − 𝑟0)/2𝑑, 𝑟0) 

Algorithm 36 Decompose(𝑟) 

Decomposes 𝑟 into (𝑟1, 𝑟0) such that 𝑟 ≡ 𝑟1(2𝛾2) + 𝑟0 mod 𝑞. 
Input: 𝑟 ∈ ℤ𝑞. 
Output: Integers (𝑟1, 𝑟0). 
1: 𝑟+ ← 𝑟 mod 𝑞 
2: 𝑟0 ← 𝑟+ mod±(2𝛾2) 
3: if 𝑟+ − 𝑟0 = 𝑞 − 1 then 
4: 𝑟1 ← 0 
5: 𝑟0 ← 𝑟0 − 1 
6: else 𝑟1 ← (𝑟+ − 𝑟0)/(2𝛾2) 
7: end if 
8: return (𝑟1, 𝑟0) 

Algorithm 37 HighBits(𝑟) 

Returns 𝑟1 from the output of Decompose (𝑟). 
Input: 𝑟 ∈ ℤ𝑞. 
Output: Integer 𝑟1. 

1: (𝑟1, 𝑟0) ← Decompose(𝑟) 
2: return 𝑟1 

40 



FIPS 204 MODULE-LATTICE-BASED DIGITAL SIGNATURE STANDARD 

Algorithm 38 LowBits(𝑟) 

Returns 𝑟0 from the output of Decompose (𝑟). 
Input: 𝑟 ∈ ℤ𝑞. 
Output: Integer 𝑟0. 

1: (𝑟1, 𝑟0) ← Decompose(𝑟) 
2: return 𝑟0 

Algorithm 39 MakeHint(𝑧, 𝑟) 

Computes hint bit indicating whether adding 𝑧 to 𝑟 alters the high bits of 𝑟. 
Input: 𝑧, 𝑟 ∈ ℤ𝑞. 
Output: Boolean. 

1: 𝑟1 ← HighBits(𝑟) 
2: 𝑣1 ← HighBits(𝑟 + 𝑧) 
3: return [[𝑟1 ≠ 𝑣1]] 

Algorithm 40 UseHint(ℎ, 𝑟) 

Returns the high bits of 𝑟 adjusted according to hint ℎ. 
Input: Boolean ℎ, 𝑟 ∈ ℤ𝑞. 
Output: 𝑟1 ∈ ℤ with 0 ≤ 𝑟1 ≤ 𝑞−1 

.2𝛾2 

1: 𝑚 ← (𝑞 − 1)/(2𝛾2) 
2: (𝑟1, 𝑟0) ← Decompose(𝑟) 
3: if ℎ = 1 and 𝑟0 > 0 return (𝑟1 + 1) mod 𝑚 
4: if ℎ = 1 and 𝑟0 ≤ 0 return (𝑟1 − 1) mod 𝑚 
5: return 𝑟1 
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 −17.5 NTT and NTT 

The following algorithms implement the NTT and its inverse (NTT−1), which is important for efficiency. 
There are other optimizations that are not included in this standard. In particular, mod 𝑞 and mod±𝑞 are 
expensive operations whose use can be minimized by using Montgomery Multiplication (see Appendix A). 

An element of 𝑅𝑞 is a polynomial in ℤ𝑞[𝑋]/(𝑋256 + 1), and an element of 𝑇𝑞 is a tuple in Π255
𝑗=0ℤ𝑞. The 

NTT algorithm takes a polynomial 𝑤 ∈ 𝑅𝑞 as input and returns ̂ ̂𝑤 ∈ 𝑇𝑞. NTT−1 takes 𝑤 ∈ 𝑇𝑞 as input 
and returns 𝑤 such that �̂� = NTT(𝑤). 

This document always distinguishes between elements of 𝑅𝑞 and elements of 𝑇𝑞. However, the natural 
data structure for both of these sets is as an integer array of size 256. This would allow the NTT and 
NTT−1 algorithms to perform computation in place on an integer array passed by reference. That 
optimization is not included in this document. 

In Section 2.5, 𝜁 = 1753 ∈ ℤ𝑞, which is a 512th root of unity modulo 𝑞. On input 𝑤 ∈ 𝑅𝑞, the algorithm 
outputs 

NTT(𝑤) = (𝑤(𝜁0), 𝑤(𝜁1), … , 𝑤(𝜁255)) ∈ 𝑇𝑞, (7.1) 

where 𝜁𝑖 = 𝑤(𝜁2BitRev8(𝑖)+1) mod 𝑞. 

The values 𝜁BitRev8(𝑘) mod 𝑞 for 𝑘 = 1, … , 255 used in line 10 of Algorithms 41 and 42 are pre-computed 
into an array zetas[1..255]. The table of zetas is given in Appendix B. If Montgomery Multiplication is used 
(see Appendix A), then the zetas array would typically be stored in Montgomery form. 

NTT and NTT−1 use BitRev8, which reverses the order of bits in an 8-bit integer. 
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Algorithm 41 NTT(𝑤) 

Computes the NTT. 

Input: Polynomial 𝑤(𝑋) = ∑255 
𝑗=0 

𝑤𝑗𝑋𝑗 ∈ 𝑅𝑞. 

Output: ̂ ̂ ̂𝑤 = (𝑤[0], … , 𝑤[255]) ∈ 𝑇𝑞. 

1: for 𝑗 from 0 to 255 do 
2: �̂�[𝑗] ← 𝑤𝑗 
3: end for 
4: 𝑚 ← 0 
5: 𝑙𝑒𝑛 ← 128 
6: while 𝑙𝑒𝑛 ≥ 1 do 
7: 𝑠𝑡𝑎𝑟𝑡 ← 0 
8: while 𝑠𝑡𝑎𝑟𝑡 < 256 do 
9: 𝑚 ← 𝑚 + 1 

10: 𝑧 ← zetas[𝑚] ▷ 𝑧 ← 𝜁BitRev8(𝑚) mod 𝑞 
11: for 𝑗 from 𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑒𝑛 − 1 do 
12: 𝑡 ← (𝑧 ⋅ 𝑤[𝑗 + 𝑙𝑒𝑛]) mod 𝑞 ̂ 
13: ̂ ̂𝑤[𝑗 + 𝑙𝑒𝑛] ← (𝑤[𝑗] − 𝑡) mod 𝑞 
14: ̂ ̂𝑤[𝑗] ← (𝑤[𝑗] + 𝑡) mod 𝑞 
15: end for 
16: 𝑠𝑡𝑎𝑟𝑡 ← 𝑠𝑡𝑎𝑟𝑡 + 2 ⋅ 𝑙𝑒𝑛 
17: end while 
18: 𝑙𝑒𝑛 ← ⌊𝑙𝑒𝑛/2⌋ 
19: end while 
20: return �̂� 
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Algorithm 42 NTT−1(𝑤)̂ 
Computes the inverse of the NTT. 

Input: ̂ ̂ ̂𝑤 = (𝑤[0], … , 𝑤[255]) ∈ 𝑇𝑞. 

Output: Polynomial 𝑤(𝑋) = ∑255 
𝑗=0 

𝑤𝑗𝑋𝑗 ∈ 𝑅𝑞. 

1: for 𝑗 from 0 to 255 do 
2: 𝑤𝑗 ← �̂�[𝑗] 
3: end for 
4: 𝑚 ← 256 
5: 𝑙𝑒𝑛 ← 1 
6: while 𝑙𝑒𝑛 < 256 do 
7: 𝑠𝑡𝑎𝑟𝑡 ← 0 
8: while 𝑠𝑡𝑎𝑟𝑡 < 256 do 
9: 𝑚 ← 𝑚 − 1 

10: 𝑧 ← −𝑧𝑒𝑡𝑎𝑠[𝑚] ▷ 𝑧 ← −𝜁BitRev8(𝑚) mod 𝑞 
11: for 𝑗 from 𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑒𝑛 − 1 do 
12: 𝑡 ← 𝑤𝑗 
13: 𝑤𝑗 ← (𝑡 + 𝑤𝑗+𝑙𝑒𝑛) mod 𝑞 
14: 𝑤𝑗+𝑙𝑒𝑛 ← (𝑡 − 𝑤𝑗+𝑙𝑒𝑛) mod 𝑞 
15: 𝑤𝑗+𝑙𝑒𝑛 ← (𝑧 ⋅ 𝑤𝑗+𝑙𝑒𝑛) mod 𝑞 
16: end for 
17: 𝑠𝑡𝑎𝑟𝑡 ← 𝑠𝑡𝑎𝑟𝑡 + 2 ⋅ 𝑙𝑒𝑛 
18: end while 
19: 𝑙𝑒𝑛 ← 2 ⋅ 𝑙𝑒𝑛 
20: end while 
21: 𝑓 ← 8347681 ▷ 𝑓 = 256−1 mod 𝑞 
22: for 𝑗 from 0 to 255 do 
23: 𝑤𝑗 ← (𝑓 ⋅ 𝑤𝑗) mod 𝑞 
24: end for 
25: return 𝑤 

Algorithm 43 BitRev8(𝑚) 

Transforms a byte by reversing the order of bits in its 8-bit binary expansion. 

Input: A byte 𝑚 ∈ [0, 255]. 
Output: A byte 𝑟 ∈ [0, 255]. 
1: 𝑏 ← IntegerToBits(𝑚, 8) 
2: 𝑏 ∈ {0, 1}8 ← (0, … , 0) rev 
3: for 𝑖 from 0 to 7 do 
4: 𝑏 [𝑖] ← 𝑏 [7 − 𝑖] rev 
5: end for 
6: 𝑟 ← BitsToInteger(𝑏 , 8) rev 
7: return r 
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7.6 Arithmetic Under NTT 

The NTT converts elements of the ring 𝑅𝑞 (where addition and multiplication are denoted by + and ⋅, 
respectively) into elements of the ring 𝑇𝑞 (where addition and multiplication are denoted by + and ∘, 
respectively). This section gives explicit algorithms for linear algebra over the ring 𝑇𝑞. 

The ring 𝑇𝑞 is defined to be the direct product ring Π255
𝑖=0ℤ𝑞. Thus, an element ̂𝑎 ∈ 𝑇𝑞 is an array of length 

256, and its elements are denoted by ̂ ̂ ̂𝑎[0], 𝑎[1], … , 𝑎[255] ∈ ℤ𝑞. 

Algorithm 44 AddNTT(𝑎,̂ 𝑏)̂ 

Computes the sum ̂ 𝑏 of two elements 𝑎, 𝑏 ∈ 𝑇𝑞.𝑎 + ̂ ̂ ̂ 

̂Input: 𝑎,̂ 𝑏 ∈ 𝑇𝑞. 
Output: ̂𝑐 ∈ 𝑇𝑞. 

1: for 𝑖 from 0 to 255 do 
2: ̂ ̂ 𝑏[𝑖]̂𝑐[𝑖] ← 𝑎[𝑖] + 
3: end for 
4: return 𝑐 ̂ 

Algorithm 45 MultiplyNTT(𝑎,̂ 𝑏)̂ 

̂ ̂Computes the product 𝑎 ∘̂ 𝑏 of two elements 𝑎,̂ 𝑏 ∈ 𝑇𝑞. 

̂Input: 𝑎,̂ 𝑏 ∈ 𝑇𝑞. 
Output: ̂𝑐 ∈ 𝑇𝑞. 

1: for 𝑖 from 0 to 255 do 
2: ̂ ̂ 𝑏[𝑖]̂𝑐[𝑖] ← 𝑎[𝑖] ⋅ 
3: end for 
4: return 𝑐 ̂ 

Algorithm 46 AddVectorNTT(𝐯,̂ 𝐰)̂ 
Computes the sum ̂ ̂ ̂ ̂𝐯 + 𝐰 of two vectors 𝐯, 𝐰 over 𝑇𝑞. 

Input: ℓ ∈ ℕ, ̂ 𝑞 , ̂ 𝑞 .𝐯 ∈ 𝑇 ℓ 𝐰 ∈ 𝑇 ℓ 

Output: ̂ 𝑞 .𝐮 ∈ 𝑇 ℓ 

1: for 𝑖 from 0 to ℓ − 1 do 
2: ̂ ̂ ̂𝐮[𝑖] ← AddNTT(𝐯[𝑖], 𝐰[𝑖]) 
3: end for 
4: return �̂� 
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Algorithm 47 ScalarVectorNTT(𝑐,̂ 𝐯)̂ 
Computes the product 𝑐 ∘̂ �̂� of a scalar 𝑐 ̂and a vector �̂� over 𝑇𝑞. 

Input: ̂ ̂ 𝑞 .𝑐 ∈ 𝑇𝑞, ℓ ∈ ℕ, 𝐯 ∈ 𝑇 ℓ 

Output: ̂ 𝑞 .𝐰 ∈ 𝑇 ℓ 

1: for 𝑖 from 0 to ℓ − 1 do 
2: ̂ ̂ ̂𝐰[𝑖] ← MultiplyNTT(𝑐, 𝐯[𝑖]) 
3: end for 
4: return �̂� 

Algorithm 48 MatrixVectorNTT(𝐌,̂ 𝐯)̂ 

Computes the product 𝐌 ∘̂ �̂� of a matrix �̂� and a vector �̂� over 𝑇𝑞. 

Input: 𝑘, ℓ ∈ ℕ, 𝐌 ∈ 𝑇𝑞
𝑘×ℓ ̂ 𝑞 . ̂ , 𝐯 ∈ 𝑇 ℓ 

Output: ̂ 𝑞 .𝐰 ∈ 𝑇 𝑘 

1: �̂� ← 0𝑘 

2: for 𝑖 from 0 to 𝑘 − 1 do 
3: for 𝑗 from 0 to ℓ − 1 do 
4: ̂ ̂ 𝐌[𝑖, 𝑗], 𝐯[𝑗])) 𝐰[𝑖] ← AddNTT(𝐰[𝑖], MultiplyNTT( ̂ ̂ 
5: end for 
6: end for 
7: return �̂� 
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Appendix A — Montgomery Multiplication 

This document uses modular multiplications of the form 𝑎 ⋅ 𝑏 modulo 𝑞. This is an expensive operation 
that is often sped up in practice through the use of Montgomery Multiplication. 

If 𝑎 is an integer modulo 𝑞, then its Montgomery form with multiplier 232 is 𝑟 ≡ 𝑎 ⋅ 232 mod 𝑞. 13 

13This section does not distinguish between different versions of the “mod” operator. There are three such versions 
of “𝑥 = 𝑎 modulo 𝑞”: i) 𝑥 ∈ [0, 𝑞 − 1]; ii) 𝑥 ∈ [−⌈𝑞/2⌉, ⌊𝑞/2⌋] ; iii) 𝑥 ∈ [−𝑞 + 1, 𝑞 − 1]. The last version 
corresponds to the ‶ % ″ operator in most programming languages. 

Suppose that two integers 𝑢 and 𝑣 modulo 𝑞 are in Montgomery form. Their product modulo 𝑞 is 
𝑐 = 𝑢 ⋅ 𝑣 ⋅ 2−32 , which is also in Montgomery form. If the integer product of 𝑢 and 𝑣 does not overflow a 
64-bit signed integer, then one can compute 𝑐 by first performing the integer multiplication 𝑢 ⋅ 𝑣 and then 
“reducing” the product by multiplying by 2−32 modulo 𝑞. This last operation can be done efficiently as 
follows. 

The MontgomeryReduce function takes an integer 𝑎 with absolute value at most 231𝑞 as input. It returns 
an integer 𝑟 such that 𝑟 = 𝑎 ⋅ 2−32 mod 𝑞. The output is in Montgomery form with multiplier 232 mod 𝑞. 
An implementation would typically input a 64-bit input and return a 32-bit output. The “modulo 232” 
operation simply extracts the 32 least significant bits of a 64-bit value. The value (𝑎 − 𝑡 ⋅ 𝑞) on line 3 is an 
integer divisible by 232 . Therefore, the division consists of simply taking the most significant 32 bits of a 
64-bit value. Extracting the four low- or high-order bytes is often done using typecasting. 

Algorithm 49 MontgomeryReduce(𝑎) 

Computes 𝑎 ⋅ 2−32 mod 𝑞. 
31 31Input: Integer 𝑎 with −2 𝑞 ≤ 𝑎 ≤ 2 𝑞. 

−32 Output: 𝑟 ≡ 𝑎 ⋅ 2 mod 𝑞. 
1: QINV ← 58728449 ▷ the inverse of 𝑞 modulo 232 

2: 𝑡 ← ((𝑎 mod 232) ⋅ QINV) mod 232 

3:
32 𝑟 ← (𝑎 − 𝑡 ⋅ 𝑞)/2  

4: return 𝑟 

With this algorithm, the modular product of 𝑎 and 𝑏 is 𝑐 = MontgomeryReduce(𝑎 ⋅ 𝑏), where 𝑎, 𝑏, and 𝑐 
are in Montgomery form. The return value of the algorithm is not necessarily less than 𝑞 in absolute value, 
but it is less than 2𝑞 in absolute value. This is not a concern in practice since the objective of Montgomery 
Multiplication is to efficiently work with modular values that fit in a 32-bit register. If necessary, the result 
can be normalized to an integer in (−𝑞, 𝑞) using a comparison and an integer addition. 

Converting an integer modulo 𝑞 to Montgomery form by multiplying by 232 modulo 𝑞 is an expensive 
operation. When a sequence of modular operations is to be performed, the operands are converted once 
to Montgomery form. The operations are then performed, and the factor 232 is extracted from the final 
result. 
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Appendix B — Zetas Array 

The values 𝜁BitRev8(𝑘) mod 𝑞 for 𝑘 = 1, … , 255 used in the NTT Algorithms 41 and 42 may be pre-computed 
and stored in an array zetas[1..255]. This table of zetas is given below. 

zetas[0..255] = { 

0, 4808194, 3765607, 3761513, 5178923, 5496691, 5234739, 5178987, 

7778734, 3542485, 2682288, 2129892, 3764867, 7375178, 557458, 7159240, 

5010068, 4317364, 2663378, 6705802, 4855975, 7946292, 676590, 7044481, 

5152541, 1714295, 2453983, 1460718, 7737789, 4795319, 2815639, 2283733, 

3602218, 3182878, 2740543, 4793971, 5269599, 2101410, 3704823, 1159875, 

394148, 928749, 1095468, 4874037, 2071829, 4361428, 3241972, 2156050, 

3415069, 1759347, 7562881, 4805951, 3756790, 6444618, 6663429, 4430364, 

5483103, 3192354, 556856, 3870317, 2917338, 1853806, 3345963, 1858416, 

3073009, 1277625, 5744944, 3852015, 4183372, 5157610, 5258977, 8106357, 

2508980, 2028118, 1937570, 4564692, 2811291, 5396636, 7270901, 4158088, 

1528066, 482649, 1148858, 5418153, 7814814, 169688, 2462444, 5046034, 

4213992, 4892034, 1987814, 5183169, 1736313, 235407, 5130263, 3258457, 

5801164, 1787943, 5989328, 6125690, 3482206, 4197502, 7080401, 6018354, 

7062739, 2461387, 3035980, 621164, 3901472, 7153756, 2925816, 3374250, 

1356448, 5604662, 2683270, 5601629, 4912752, 2312838, 7727142, 7921254, 

348812, 8052569, 1011223, 6026202, 4561790, 6458164, 6143691, 1744507, 

1753, 6444997, 5720892, 6924527, 2660408, 6600190, 8321269, 2772600, 

1182243, 87208, 636927, 4415111, 4423672, 6084020, 5095502, 4663471, 

8352605, 822541, 1009365, 5926272, 6400920, 1596822, 4423473, 4620952, 

6695264, 4969849, 2678278, 4611469, 4829411, 635956, 8129971, 5925040, 

4234153, 6607829, 2192938, 6653329, 2387513, 4768667, 8111961, 5199961, 

3747250, 2296099, 1239911, 4541938, 3195676, 2642980, 1254190, 8368000, 

2998219, 141835, 8291116, 2513018, 7025525, 613238, 7070156, 6161950, 

7921677, 6458423, 4040196, 4908348, 2039144, 6500539, 7561656, 6201452, 

6757063, 2105286, 6006015, 6346610, 586241, 7200804, 527981, 5637006, 

6903432, 1994046, 2491325, 6987258, 507927, 7192532, 7655613, 6545891, 

5346675, 8041997, 2647994, 3009748, 5767564, 4148469, 749577, 4357667, 

3980599, 2569011, 6764887, 1723229, 1665318, 2028038, 1163598, 5011144, 

3994671, 8368538, 7009900, 3020393, 3363542, 214880, 545376, 7609976, 

3105558, 7277073, 508145, 7826699, 860144, 3430436, 140244, 6866265, 

6195333, 3123762, 2358373, 6187330, 5365997, 6663603, 2926054, 7987710, 

8077412, 3531229, 4405932, 4606686, 1900052, 7598542, 1054478, 7648983 } 
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Appendix C — Loop Bounds 

There are four algorithms in this standard with loops that iterate an indeterminate number of times, 
though the expected number of iterations is a small constant in each case. Three of the four algorithms 
involve sampling from the output of an XOF, where the amount of output required from the XOF is 
proportional to the number of iterations that are performed. 

Implementations should not bound the number of iterations in these loops or the amount of output that 
is extracted from the XOFs when executing these functions.14 

14RejBoundedPoly, RejNTTPoly, and SampleInBall use the incremental APIs described in Section 3.7 in order to 
extract the amount of output needed from the XOFs, given that the amount needed is not known in advance. 

If an implementation bounds the number of 
iterations or the number of bytes that may be extracted from the XOF, it shall not use a limit lower than 
those presented in Table 3. The limits yield a probability of approximately 2−256 (or less) of being reached 
in a correct implementation of this standard. The probability is calculated under standard assumptions 
about the output distributions of XOFs and hash functions. 

Table 3. While loop and XOF output limits for a 2−256 or less probability of failure 

Algorithm Minimum allowable limit 

(Loop iterations) 

Minimum allowable limit 

(XOF output bytes) 

ML-DSA.Sign_internal 814 N/A 

RejBoundedPoly 481 481 

RejNTTPoly 298 894 

SampleInBall 121 221 

Implementations may limit the number of iterations of a while loop or the number of bytes drawn from 
the XOF to not exceed the maximum values in Table 3. If this option is used and the maximum number of 
iterations or XOF output bytes is exceeded, the algorithm shall destroy all intermediate results. If a return 
value or exception is produced, it shall be the same for any execution in which the maximum number of 
iterations or output bytes is exceeded. 

There is essentially no performance penalty for using a larger than necessary limit, as the limit will only 
be reached on a faulty execution of the loop. Because of this, limits were chosen that lower-bound the 
probability of reaching them to 2−256 . 

ML-DSA.Sign_internal 

Table 1 contains the expected repetitions in the rejection sampling loop of ML-DSA.Sign_internal. These 
are 4.25, 5.1, and 3.85 for Categories 2, 3, and 5, respectively. Therefore, the probability that the number 

)𝑛 )𝑛 ≤ 2−256of repetitions exceeds 𝑛 is less than or equal to (5.1−1 for all categories. Solving (5.1−1
5.1 5.1 

yields 𝑛 = 814. 

RejBoundedPoly 

Let 𝑋 be the number of coefficients generated in 𝑛 iterations of the while loop of RejBoundedPoly15

15Note that 0, 1, or 2 coefficients are generated in each iteration. 

. 
9 15Then 𝑋 is 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2𝑛, 𝜃), where 𝜃 is either 16 or 16 , depending on the parameter 𝜂. For 𝜃 = 16

9 , 
the probability that fewer than 256 coefficients are generated in 481 iterations of the main loop in 
RejBoundedPoly is less than 2−256 . Each iteration consumes one byte of output from H. 
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RejNTTPoly 

The number of valid coefficients generated in 𝑛 calls to G.Squeeze in RejNTTPoly is 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 2−23𝑞). 
It follows that after 298 calls, the probability of failure is less than 2−256 . Each iteration consumes three 
bytes of output from G. 

SampleInBall 

Step 9 in SampleInBall is executed every time a pseudorandom byte is greater than a value 𝑖 in the range 
[256 − 𝜏, 255]. The parameter 𝜏 is 39, 49, and 60 for categories 2, 3, and 5, respectively. Therefore, the 
probability that this step is executed more than 𝑛 times in a single iteration of the for loop is less than or 
equal to ( 59 

256)𝑛 . Solving ( 59
256)𝑛 ≤ ( 𝜏 

256)𝑛 ≤ 2−256 yields a bound of 𝑛 = 121 for the while loop on step 
8 of SampleInBall. Each iteration consumes one byte of output from H. 

Each call to SampleInBall extracts eight bytes from H and then performs 𝜏 iterations of the for loop, each 
of which extracts an indeterminate amount of data from H. The probability that more than 𝑛 bytes of 
output will be required from H during an execution of SampleInBall for a given value of 𝜏 is 

𝑃 (𝑛, 60) is less than 2−256 when 𝑛 is 221 or greater. Implementations may limit the number of bytes 
extracted from H to 𝑛 ≥ 221. Such implementations must stop the execution of SampleInBall, return a 
constant that represents an error and no other output, and destroy all intermediate results after 𝑛 bytes 
of output have been consumed. 
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Appendix D — Differences from the CRYSTALS-DILITHIUM Submission 

ML-DSA is derived from Version 3.1 of CRYSTALS-DILITHIUM [6]. Version 3.1 differs slightly from the most 
recent version that appears on the NIST website (i.e., Version 3 CRYSTALS-DILITHIUM [5]). Appendices D.1, 
D.2, and D.3 document the differences between Versions 3 and 3.1, the differences between Version 3.1 
and the initial public draft of the ML-DSA, and the differences between the initial public draft and the 
ML-DSA standard as published in this document, respectively. 

D.1 Differences Between Version 3.1 and the Round 3 Version of CRYSTALS-
DILITHIUM 

The lengths of the variables 𝜌′ (private random seed) and 𝜇 (message representative) in the signing 
algorithm were increased from 384 to 512 bits. The increase in the length of 𝜇 corrects a security flaw 
that appeared in the third-round submission, where a collision attack against SHAKE256 with a 384-bit 
output would make it so that parameters targeting NIST security strength category 5 could only meet 
category 4 [32]. 

Additionally, the length of the variable 𝑡𝑟 (the hash of the public key) was reduced from 384 to 256 bits. 
In key generation, the variable 𝜍 was relabeled as 𝜌′ and increased in size from 256 bits to 512 bits. 

D.2 Differences Between Version 3.1 of CRYSTALS-DILITHIUM and FIPS 204 
Initial Public Draft 

In order to ensure the properties noted in [14], ML-DSA increases the length of 𝑡𝑟 to 512 bits and increases 
the length of 𝑐 ̃to 384 and 512 bits for the parameter sets ML-DSA-65 and ML-DSA-87, respectively. In 
draft ML-DSA, only the first 256 bits of 𝑐 ̃are used in the generation of 𝑐. 

In Version 3.1 of the CRYSTALS-DILITHIUM submission, the default version of the signing algorithm is 
deterministic with 𝜌′ being generated pseudorandomly from the signer’s private key and the message, 
and an optional version of the signing algorithm has 𝜌′ sampled instead as a 512-bit random string. In 
ML-DSA, 𝜌′ is generated by a “hedged” procedure in which 𝜌′ is pseudorandomly derived from the signer’s 
private key, the message, and a 256-bit string 𝑟𝑛𝑑, which should be generated by an Approved RBG by 
default. The ML-DSA standard also allows for an optional deterministic version in which 𝑟𝑛𝑑 is a 256-bit 
constant string. 

The draft ML-DSA standard also included pseudocode that unintentionally omitted a check for malformed 
input while unpacking the hint [33]. Failure to perform this check results in a signature scheme that is not 
strongly existentially unforgeable [34]. 

D.3 Changes From FIPS 204 Initial Public Draft 

In the final version of the ML-DSA standard, the omitted malformed input check was restored to the hint 
unpacking algorithm (Algorithm 21). Additionally, in the final version of ML-DSA, all of the bits of 𝑐 ̃are 
used in the generation of 𝑐 (Algorithm 29), and ExpandMask (Algorithm 34) is modified to take output 
bits from the beginning of the output of H. 

Based on comments that were submitted on the draft version, more details were provided for the pre-hash 
version HashML-DSA in Section 5.4. These modifications include domain separation for the cases in which 
the message is signed directly and cases in which a digest of the message is signed. The changes were 
made by explicitly defining external functions for both versions of the signing and verification functions 
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that call an internal function corresponding to the signing or verification functions from the draft FIPS. 
Domain separation is included in the input to the internal function (see Algorithms 2, 3, 4, 5, 7, and 8). 
To simplify APIs and for testing purposes, this document also introduced a similar external/internal split 
for key generation (see Algorithms 1 and 6), but this is a purely editorial change, as the external key 
generation algorithm is functionally equivalent to the key-generation algorithm from the draft FIPS. 

Finally, to offer misuse resistance against the possibility that keys for different parameter sets might be 
expanded from the same seed [35], domain separation was added to line 1 of Algorithm 6. 
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