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Abstract

The long term AVHRR-NDVI record provides a critical historical perspective on vegetation 

dynamics necessary for global change research.  Despite the proliferation of new sources of global, 

moderate resolution vegetation datasets, the remote sensing community is still struggling to create 

datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for 

time series analysis. To overcome the non-stationary aspect of NDVI, we use an artificial neural 

network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, 

surface type and sensor-specific inputs to account for the differences between the sensors.  The 

NDVI dynamics and range of MODIS NDVI data at one degree is matched and extended through 

the AVHRR record. Four years of overlap between the two sensors is used to train a neural network 

to remove atmospheric and sensor specific effects on the AVHRR NDVI.  In this paper, we present 

the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.

Keywords: Normalized difference vegetation index (NDVI), MODIS, AVHRR, Neural Networks
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1.0 Introduction

Consistent, long term vegetation data records are critical for analysis of the impact of global change 

on terrestrial ecosystems. Continuous observations of terrestrial ecosystems through time are 

necessary to document changes in magnitude or variability in an ecosystem (Eklundh and Olsson, 

2003; Slayback et al., 2003; Tucker et al., 2001).  Satellite remote sensing has been the primary tool 

for scientists to measure global trends in vegetation, as the measurements are both global and 

temporally frequent.  To extend measurements through time, multiple sensors with different design 

and resolution must be used together in the same time series.  This presents significant problems as 

sensor band placement, spectral response, processing, and atmospheric correction of the 

observations can vary significantly and impact the comparability of the measurements (Brown et 

al., 2006).  Even without differences in atmospheric correction, vegetation index values for the 

same target recorded under identical conditions will not be directly comparable because input 

reflectance values differ from sensor to sensor due to differences in sensor design and spectral 

response of the instrument (Miura et al., 2006; Teillet et al., 1997).

Several approaches have been taken to integrate data from multiple sensors.  Steven et al. (2003), 

for example, simulated the spectral response from multiple instruments and with simple linear 

equations created conversion coefficients to transform NDVI data from one sensor to another.  

Their analysis is based on the observation that the vegetation index is critically dependent on the 

spectral response functions of the instrument used to calculate it.   The conversion formulas the 

paper presents cannot be applied to maximum value NDVI datasets because the weighting 

coefficients are land cover and dataset dependent, reducing their efficacy in mixed pixel situations 
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(Steven et al., 2003).   Trishchenko et al. (2002) created a series of quadratic functions to correct 

for differences in the reflectance and NDVI to NOAA-9 AVHRR-equivalents (Trishchenko et al., 

2002). Both the Steven et al. (2003) and the Trishchenko et al. (2002) approaches are land cover 

and dataset dependent and thus cannot be used on global datasets where multiple land covers are 

represented by one pixel.  Miura et al (2006) used hyper-spectral data to investigate the effect of 

different spectral response characteristics between MODIS and AVHRR instruments on both the 

reflectance and NDVI data, showing that the precise characteristics of the spectral response had a 

large effect on the resulting vegetation index. The complex patterns and dependencies on spectral 

band functions were both land cover dependent and strongly non-linear, thus we see that an 

exploration of a non-linear approach may be fruitful.

In this paper we experiment with powerful, non-linear neural networks to identify and remove 

differences in sensor design and variable atmospheric contamination from the AVHRR NDVI 

record in order to match the range and variance of MODIS NDVI without removing the desired 

signal representing the underlying vegetation dynamics.  Neural networks are ‘data transformers’  

(Atkinson and Tatnall, 1997), where the objective is to associate the elements of one set of data to 

the elements in another.  Relationships between the two datasets can be complex and the two 

datasets may have different statistical distributions.  In addition, neural networks incorporate a 

priori knowledge and realistic physical constraints into the analysis, enabling a transformation from 

one dataset into another through a set of weighting functions (Atkinson and Tatnall, 1997).  This 

transformation incorporates additional input data that may account for differences between the two 

datasets. 
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Our objective in this paper is to demonstrate the viability of neural networks as a tool to produce a 

long term dataset based on AVHRR NDVI that has the data range and statistical distribution of 

MODIS NDVI.   Previous work has shown that the relationship between AVHRR and MODIS 

NDVI is complex and nonlinear (Brown et al., 2006; Gallo et al., 2003; Miura et al., 2006), thus 

this problem is well suited to neural networks if appropriate inputs can be found. The impact of 

atmospheric contamination, such as clouds, smoke, pollution and other aerosols, variations in soil 

color and exposure through vegetation, and land cover type has a differential effect on AVHRR 

data as compared to MODIS data. Here we explore how neural networks can be used to account 

for these impacts and create an AVHRR NDVI dataset with similar characteristics as the MODIS 

dataset. Overlapping years of observations are used to train the network. Examination of the 

resulting MODIS-fitted AVHRR dataset both during the overlap period and in the historical dataset 

enabled an evaluation of the efficacy of the neural net approach compared to other approaches to 

merge multiple-sensor NDVI datasets.  

2.0 Neural Networks

Neural networks are algorithms used for either classification or function approximation (Lippmann, 

1987). A good introduction on neural networks is given by Lippmann (1987). Since their first 

introduction, they have been used for almost two decades in remote sensing (Benediktsson et al., 

1990). The most commonly used type of neural network is the Multi-Layer Perceptron, of which 

Kalman filters are one type.  Artificial neural networks (ANN) are made up of input layers, hidden 

layers and output layers.  
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The MLP neural network has an input layer where the data samples are fed, typically after being 

normalized. The data from the input layer is then fed into a number of hidden layers, typically 

either one or two. The choice of how many hidden layers and number of nodes per hidden layer 

that should be used is currently an open research question (Stathakis, 2008). Several heuristics exist 

to assist in selecting the number of nodes in the hidden layers, some of which developed explicitly 

in the domain of remote sensing such as the Kanellopoulos – Wilkinson (1997) rule (Stathakis and 

Vasilakos, 2006). Finally the hidden layers feed one or more input layers.

To summarize the ANN topology, a relation of x:y:z is frequently used. This implies a neural 

network with x input nodes, one hidden layer with y hidden nodes and z output nodes (for example, 

7:20:1). The neural network is trained by adjusting the values of the connections, called weights, 

between nodes. The most commonly used training algorithm is back-propagation introduced by 

Rumelhart et al. (1986). Several modifications to the original algorithm have greatly boosted 

performance (Rumelhart et al., 1986). Neural networks can learn in an either supervised or 

unsupervised mode depending on whether target vectors are presented along with input vectors or 

not. In the supervised mode, several spectral bands (or in this study, time series) per data sample 

are typically presented to the network. At the same time the desired output is also used to modify 

the weights so that the deviation between actual and obtained output is minimized. Typically the 

samples available, i.e. input and output vectors, are split in order to train the network and 

independently validate the results. A three-set strategy has been proposed to offer a more objective 

validation by Bishop (1995). According to this strategy three subsets are created, one of training, 

one for validation and on for testing (Bishop, 1995). 
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One of the main advantages of neural networks is the fact that multiple sources, including non-

spectral, data can be used as input (Benediktsson et al., 1990; Stathakis and Kanellopoulos, 2008). 

This is because neural networks make no assumptions, e.g. about statistical distributions, regarding 

the input data. One of their main drawbacks is that they require experience in selecting values for 

the numerous parameters that need to be set. Recent results show that global search methods can be 

used to make near-optimal choices (Stathakis, 2008). Additionally, neural networks are often 

accused of being black-box techniques because the knowledge learned can not be expressed in a 

meaningful way. Several efforts have been made towards building transparent neural networks. 

One way to do this is to deploy neuro-fuzzy methods (Stathakis and Vasilakos, 2006).  

3.0 Data

This study uses global NDVI products derived from AVHRR and MODIS NDVI sensors at one 

degree resolution and for a monthly time window.  Ancillary files are used in this study to 

determine the impact of clouds and other atmospheric effects on the vegetation measurement from 

different sensors through time.  We have restricted the number of inputs to six besides the AVHRR 

NDVI to reduce redundancy and over-fitting of the neural network.  These are three atmospheric 

products from TOMS, a soil type map, a digital elevation model (DEM), and a land cover map.

3.1 NDVI datasets at one degree

AVHRR and MODIS NDVI products were downsampled to one degree resolution to reduce 

processing time of the artificial neural network and to match the resolution of the atmospheric 
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TOMS inputs. To further reduce processing time, average monthly composites were made of the 

two products. The spatial and temporal downsampling was done by averaging all pixels falling in a 

one-degree cell for the two nearest periods in a month (MODIS products do not respect month 

limits).

The maximum value AVHRR NDVI composites have an 8-km resolution (Holben, 1986; Tucker, 

1979) and were from the NASA Global Inventory Monitoring and Modeling Systems (GIMMS) 

group at the Laboratory for Terrestrial Physics (Brown et al., 2006; Tucker et al., 2005) from July 

1981 to May 2004.  A post-processing satellite drift correction has been applied to this dataset to 

further remove artifacts due to orbital drift and changes in the sun-target-sensor geometry (Pinzon 

et al., 2005).  As a result of AVHRR's wide spectral bands, the AVHRR NDVI is more sensitive to 

water vapor in the atmosphere than MODIS.  An increase in water vapor results in a lower NDVI 

signal, which can be interpreted as an actual change if no correction is applied (Pinheiro et al., 

2004; Pinzon, 2002).  The maximum value composite should lessen these artifacts (Holben, 1986).  

The GIMMS operational dataset incorporates AVHRR data from sensors aboard NOAA-7 through 

14 with the data from the AVHRR on NOAA-16 and 17. 

The Terra-MODIS 16 day L3 land surface NDVI product was selected.   NDVI data for MODIS 

was computed from the (White-Sky) Filled Land Surface Albedo Map Product, which is a value-

added product from the MODIS Atmospheres group. The global, one kilometer, 16 day MODIS 

NDVI composites from February 2000 to December 2004 were used to create averaged one degree 

monthly data for this analysis. The resulting one degree time series include only pixels with more 
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than 50% land and conforms to the ISCLSCP convention as described by Sellers et al. (1996).

(Sellers et al., 1996).       

3.2 Ancillary datasets

To account for the differences between the AVHRR and MODIS data, we use four ancillary data 

products in the neural network: TOMS Data which provides information on water vapor in the 

atmosphere, soil maps, land cover maps and elevation. Each of these accounts for an aspect of the 

sensor design differences and provide key information so that the neural network can work.  

Preliminary work (not described here) demonstrated that the most important factors controlling the 

relationship between the NDVI of MODIS and that of AVHRR are the surface reflectance, the land 

surface type, aerosols and total ozone column.  Variations in atmospheric contamination have direct 

impact on the AVHRR NDVI used here because no atmospheric correction was implemented 

during its processing, only volcanic aerosols and maximum value compositing (Tucker et al., 

2005).  We know that ozone is a key atmospheric absorber of light in the visible region, and water, 

as measured by aerosols, in the infrared. The AVHRR NDVI, calculated using the wide bands of 

the instrument, will therefore be influenced by these elements.

The Nimbus-7 TOMS data is the only source of high resolution global information about the 

atmospheric composition (and hence depression of AVHRR NDVI) for much of the AVHRR 

record. As an instrument that measures the atmosphere back to 1981, TOMS has the advantage of 

being co-located for much of its record on the same platform as AVHRR, which is particularly 

important as the NOAA satellites from which the AVHRR NDVI are derived are subject to non-

linear orbital drift through time (McPeters et al., 1998). The TOMS data is from Version 8, includes 

reflectance, aerosols and ozone measurements and is derived from three sensors: Nimbus 7, Meteor 
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3 and Earth Probe (Table 1).  All three products are used in order to capture the impact of 

atmospheric variations on the uncorrected AVHRR NDVI data.  During the missing period of 

1994-96, we use a climatology created by taking the median value of the preceding 2, 4, and 6 

years and the following 2, 4, and 6 years. This approach was used as ozone has a quasi-biennial 

oscillation (QBO). Although not optimal, this performed well and is required if we want to use 

these datasets for a correction of the entire series.

The NASA Goddard Institute for Space Studies (GISS) soil type map is used to account for the 

difference in sensitivity to underlying soil color from AVHRR and MODIS (Huete et al., 1994; 

Huete and Tucker, 1991).  The soil type map is at one degree resolution and contains 26 soil units, 

and values for water and ice. The soil type data file was derived from the highest level of the FAO 

soil units and is based on the work of Zobler (1986). 

A one degree ‘surface type’ land cover dataset was created from the SPOT Global Land Cover 

(GLC) 2000 dataset (Giri et al., 2004). Previous research has shown that variations in land cover 

affect the strength of the impact of atmospheric thickness (Pinzon, 2002).  This dataset has 22 land 

cover classes based on the FAO land cover classification system. We aggregated the data to a one-

degree resolution using a vote procedure.  We used the GLC2000 data instead of MODIS or 

AVHRR-based land cover datasets as an independent surface classification for the ANN training.  

We use a single land cover map to represent the land cover for the 25 year record. Even though we 

acknowledge that land cover change may have occurred during this period, they are unlikely to 

span an entire one by one degree pixel.  The neural network uses this parameter to identify regions 
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with very low signal due to small amounts of vegetation. These regions are approximately static 

through time globally. 

A one degree DEM was used to ensure the identification and maintenance of mountainous regions 

that may otherwise be confused with clouds or other atmospheric effects.  This DEM was derived 

from the USGS SRTM 90-m dataset, and has been aggregated to one degree using averaging.  

3.3 Global Rainfall Data

We used Global Precipitation Climatology Centre (GPCC) rain gauge data from the Global 

Precipitation Climatology Project (GPCP).  These data were used to evaluate the ability of the 

NDVI data products for capturing interannual vegetation dynamics related to rainfall.  The GPCC 

data are area-averaged and time-integrated precipitation fields based on surface rain gauge 

measurements. The GPCC collects monthly precipitation totals received from the World Weather 

Watch GTS (Global Telecommunication System) of the World Meteorological Organization 

(WMO). The GPCC acquires monthly precipitation data from international/national meteorological 

and hydrological services/institutions.  Surface rain-gauge based monthly precipitation data from 

6700 meteorological stations are analyzed over land areas and gridded using a spatial objective 

analysis method (Rudolf et al., 1994).

4.0  Methods

4.1 Application of the ANN
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When mapping AVHRR to MODIS NDVI using ANNs, factors that explain differences in the 

sensors and their processing must be accounted for by the input variables.  Here we use historical 

data derived from the total ozone mapping spectrometer or TOMS, which is available with some 

interruption back to 1978 (McPeters et al., 1998).  The AVHRR is also more sensitive to 

differences in background soil contamination than MODIS (Huete and Jackson, 1988), thus we use 

a soil type map (Zobler, 1986), a DEM, and a land cover map to account for these differences (see 

section 3 for a description of the datasets).  

The neural network used here is a fully-connected feed-forward Multi-Layer Perceptron with 

7:20:1 topology. Biases are connected to both hidden and output layers. The selection of the nodes 

in the hidden topology conforms well to the Kanellopoulos – Wilkinson rule commonly used in 

remote sensing. In this study we employed a feed-forward ANN with 20 nodes in a single hidden 

layer using a Kalman filter training algorithm.  The Kalman filter algorithm provides rapid 

convergence for the weight estimation and is described by Lary and Mussa, (2004).

Besides the additional data sources, the neural net is trained with time-series data of AVHRR and 

MODIS from the overlapping period of 2000-2003. Subsequently, the resulting weighting functions 

were applied to the AVHRR data from 1982-2003, using the ancillary files.  The functions enable 

the correction of the entire dataset, enabling the production of an AVHRR dataset with similar 

characteristics as the MODIS dataset.  For simplicity, throughout this paper this new dataset will be 

referred to as NNndvi, or the neural net corrected AVHRR NDVI.  The result is an experimental 

product, whose objective is to demonstrate how a seamless AVHRR to MODIS dataset may be 

created.  We do not assume that the method used is the only possible or even the most optimal 
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method, but one that can produce a far closer integration between the datasets than has been 

demonstrated before using the actual processed data instead of modeled data.  For this feasibility 

demonstration we operated on the one degree scale at a monthly resolution to reduce processing 

time of the neural net. The same training procedure could be conducted at a higher temporal and 

spatial resolution with more computing time and/or for smaller areas.  

4.2 Evaluation Methods

The obtained NNndvi dataset is evaluated in two ways to determine if it is closer to the target 

MODIS NDVI than the original AVHRR dataset, and if it retains important interannual vegetation 

dynamics that have previously been identified in the AVHRR data (Bounoua et al., 2000; Zeng et 

al., 1999). First, time series for selected one degree boxes are presented to demonstrate the effect of 

the neural net procedure on particular locations.  Second, the NNndvi is compared to the GPCC 

dataset to determine whether or not the correction has changed the relationship with observed 

rainfall.  

5.0 Results

Figure 1 shows a schematic representation of the neural net mapping of the AVHRR NDVI to the 

MODIS NDVI during the years of overlap.  Table 2 shows that the most important variable for 

linking the two datasets is the AVHRR NDVI (as would be expected) followed by the surface 

reflectance and total ozone column. In the TOMS data, the reflectance includes the degree of 

Page 13 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

14

cloudiness.  Given the wide bands of the AVHRR sensor and the differences in processing, it is 

expected that the TOMS reflectance is important in the correction (Cihlar et al., 2001).  

Figure 2 shows the NDVI difference between the MODIS and AVHRR, and the MODIS and the 

NNndvi by latitude band for a single image from December 2003.  The biggest differences are in 

the tropics which have high concentrations of atmospheric aerosols and water vapor that interfere 

more with the AVHRR NDVI data than with the MODIS data (Huete et al., 2006).  Another 

substantial difference between the datasets is seen in the northern latitudes.  The histogram is from 

January, 2003, so the regions north of 40N have little active photosynthetic activity, the NDVI is 

largely measuring differences in ground cover and atmospheric thickness.  The GIMMS AVHRR 

NDVI reports data over snow, ice, and during periods when there is no light, relying on the NDVI 

to correctly record the very low photosynthetic activity during these months.  MODIS NDVI data 

incorporates much more sophisticated snow and ice detection, which results in large differences 

between the AVHRR and MODIS data.  Because we have inputs into the neural net that can 

account for these differences (soil type, monthly changes in reflectivity), the differences between 

MODIS and AVHRR are considerably reduced by the neural network processing.

Figures 3a and 3b show the spatial average of all pixels in the same latitudinal band for the 

difference between the AVHRR and MODIS (3a) and NNndvi and MODIS (3b).  The plots show 

the significant improvement in the correspondence between the datasets in the tropics and in the 

northern latitudes seen in Figure 2 is present in all years.  Differences at the beginning and end of 

the growing season in the far north are clearly seen.  These differences will be significant to 

scientists attempting to measure changes in phenology through time due to a warming climate.  The 
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northern latitudes have experienced the largest degree of warming, thus these systematic 

differences are important to both recognize and remove if a consistent, sensor-independent dataset 

is to be developed.

The neural network process provides coefficients that were applied to the input data, to produce an 

NDVI fit to MODIS from AVHRR back to 1982.  Figure 4 shows the zonal averages of the 

resulting dataset, displaying both seasonality and interannual variability as is expected.  Table 3

shows the mean and standard deviation of the MODIS, AVHRR and NNndvi datasets.  The mean 

NNndvi is closer to the MODIS data than to the original AVHRR data.  The differences in the 

means can be seen in Figure 5, which shows the root mean square error (RMSE) in NDVI units 

between the AVHRR - MODIS (Figure 5A), and the NNndvi – MODIS (B). The NNndvi dataset is 

on average within 0.2 NDVI units of the MODIS data, removing the land-cover and regional 

differences that can be seen in the top panel.  The scatter above 0.2 RSME are seen in the map of 

the RMSE in Figure 5B as being concentrated along the coastlines and where a sharp land-cover 

gradient is located, such as along the Himalayas and Andes mountain ranges.  This is likely to be 

due to differences in the original land cover map between MODIS, AVHRR and TOMS and the 

other ancillary datasets, as well as averaging procedures to make the one degree datasets.  This 

effect may be ameliorated by using a higher resolution, as at one degree much mixing of vegetated 

and non-vegetated features occurs, particularly along sharp land cover and topographic features 

which reduces the effectiveness of the neural network training.

Figure 6 shows the time series from MODIS, AVHRR, and the NNndvi from six selected one 

degree pixels (Brown et al., 2006). These locations were selected from the Earth Observing System
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land validation core sites described in Brown et al (2006) and were meant to display a range of 

ecosystems and climates.  The figure shows that the NNndvi is much closer to the MODIS series 

than the original GIMMS AVHRR, particularly in areas with high humidity such as in the Cascades 

of Washington state or Ji-Parana, Brazil.  The NNndvi is higher than the GIMMS data, especially 

during the winter months.  In some regions where the match between MODIS and AVHRR was 

fairly good originally, such as in the Harvard Forest, the fit between the datasets is extremely good.  

Figure 7 shows the correlation coefficient, R, between the GPCC monthly gridded rainfall product 

at one degree and the GIMMS AVHRR, NNndvi, and MODIS from 2000-2003.  The maps in the 

top two panels show that the NNndvi has a similar relationship with rainfall in semi-arid regions as 

has been documented with the GIMMS data (Brown et al., 2004).  It demonstrates that at one 

degree, the correction maintains the datasets’ basic integrity and relationship with rainfall in semi-

arid zones.  Panel D shows the histogram of the global correlation, showing a similar structure to 

the data for the three datasets.  

The results of this procedure are fairly robust, but they are not sufficiently good to be used for 

scientific investigations.  To determine if the data are usable immediately, we produced an anomaly 

for August 2003 from each dataset versus the four year August mean for MODIS.  Figure 8 shows 

the histogram of the anomaly for August 2003 (when there was a major drought in Europe), which 

shows the improvement of the NNndvi over AVHRR, but the data is still quite a bit different than 

the MODIS data.  Depending on the user requirements, this may be sufficiently similar.  The bias in 

the AVHRR has been removed so that the NNndvi is far more normally distributed.  The Rp 

statistic, a modified version of the Shapiro-Wilks test, measures the degree of normality of a dataset 
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by correlating the data with the standard normal distribution (Wilks, 1995).  The Rp for the MODIS 

anomaly shown in Figure 8 is 0.17, whereas the NNndvi anomaly has a value of 0.45, and the 

AVHRR 0.47.  So although the neural net correction has improved the data significantly, there are 

still differences that are systematic for every pixel.  The quality of the corrected data is significantly 

better, however, as can be seen in Figure 9.  The removal of cloud contamination in regions, such 

as the Gulf of Guinea, that have always had depressed NDVI signal in the AVHRR dataset, is a 

contribution that should not be underestimated.

6.0  Discussion

The lack of reliable climate observations throughout the AVHRR record is a major limitation in all 

attempts to correct the AVHRR data to match the quality of the MODIS record. In order to remove 

the systematic difference between the AVHRR and MODIS data due to atmospheric water vapor, 

we need accurate observations of the amount of water vapor in the atmosphere at the time of data 

acquisition. For AVHRR, the instrument that provides this data are derived from the Total Ozone 

Mapping Spectrometer (TOMS) data (McPeters et al., 1998). TOMS data has its own problems 

with data continuity and algorithms which may reduce the effectiveness of the neural network 

because the issues may interfere with the NDVI differences we are trying to remove.  

One reason for the lack of strong results in this experiment is the use of aggregated data.  The 

temporal mismatch between the 15 day AVHRR data, the 16 day MODIS data and the monthly 

TOMS datasets has consequences that are difficult to identify.  Although an effort was made to 

minimize these problems through aggregation to the monthly time step, they may confound the 

neural net.  Aggregated data is much cleaner than daily observations, requires far less 
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computational effort (a key factor in running neural networks), and are the most widely used 

products. In addition, daily data for the AVHRR NDVI and reflectances are currently not 

available, thus they are not used here.  

An effort is being made in the context of a NASA funded collaborative project called the Long 

Term Data Record at the University of Maryland.  In this project, daily AVHRR NDVI from 

NOAA 7 through 14 (1981 to 1999) will be combined directly with MODIS data from 2000 

onward.  The data from the year 2003 will be used to relate the two datasets.  The research 

presented in this paper will illuminate the efforts of this project.

7.0 Conclusion

Remote sensing datasets are the result of a complex interaction between the design of a sensor, the 

spectral response function, stability in orbit, the processing of the raw data, compositing schemes, 

and post-processing corrections for various atmospheric effects including clouds and aerosols.  The 

interaction between these various elements is often non-linear and non-additive, where some 

elements increase the vegetation signal to noise ratio (compositing, for example) and others reduce 

it (clouds and volcanic aerosols) (Los, 1998).  Thus, although other authors have used simulated 

data to explore the relationship between AVHRR and MODIS (Trishchenko et al., 2002; van 

Leeuwen et al., 2006), these techniques are not directly useful in producing a sensor-independent 

vegetation dataset that can be used by data users in the near term.  

There are substantial differences between the processed vegetation data from AVHRR and MODIS 

[3, 7].  In order to have long data record that utilizes all available data back to 1981, we must find 
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practical ways of incorporating the AVHRR data into a continuum of observations that include both 

MODIS and VIIRS.  The results in this paper show that the TOMS data record on clouds, ozone 

and aerosols can be used to identify and remove sensor-specific atmospheric contaminants that 

differentially affect the AVHRR over MODIS.  Other sensor-related effects, particularly those of 

changing BRDF, viewing angle, illumination, and other effects that are not accounted for here, 

remain important sources of additional variability.  Although this analysis has not produced a 

dataset with identical properties to MODIS, it has demonstrated that a neural net approach can 

remove most of the atmospheric-related aspects of the differences between the sensors, and match 

the mean, standard deviation and range of the two sensors.  A similar technique can be used for the 

VIIRS sensor once the data is released.
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Captions
Table 1.  Global datasets used in this paper.

Table 2.  Statistics of the MODIS, AVHRR, and NNndvi datasets for 48 months of data (2000-

2003).

Figure 1.  Schematic representation of the neural network used in this paper.

Figure 2.  Graph showing the latitudinal means of the difference between MODIS, AVHRR and 

NNndvi for January 2003.  The figure highlights the zones where the neural net correction is the 

strongest.

Figure 3.  Zonal mean (averaged per latitude) of the difference between MODIS and AVHRR 

(Panel A) and MODIS and NNndvi (Panel B) through time from 2000 to 2003.

Figure 4.  Latitude-averaged mean of NNndvi from 1982 to 2003.

Figure 5.  Root mean square error from MODIS-AVHRR (above) and the MODIS-NNndvi (below) 

from 2000 to 2003 in NDVI units.

Figure 6. Time series plots of six latitude-longitude locations: A. Louga, Senegal (16, -16), Tigray 

Ethiopia (14, 40), Bondville Illinois (10, -88), Cascades Washington (44,-122), Harvard Forest 

Massachusetts (43,-72), and Ji-Parana Brazil (-11,-62).

Figure 7. Correlation coefficient of AVHRR, (A), NNndvi (B), and MODIS (C) vs GPCC rainfall 

data.  Panel D shows the histogram of the correlation coefficient of the NDVI vs gridded rainfall by 

percent.

Figure 8.   The August 2003 anomaly, defined as the difference between the MODIS, AVHRR and 

NNndvi image for August 2003 and the mean of four August MODIS images (2000-2003).

Figure 9.  Africa subset of one degree images for July 2002 for the AVHRR (A), NNndvi (B), and 

the difference between the two (C).
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Table 1.     

Sensor AVHRR NDVI MODIS NDVI GPCC Rain
TOMS reflectivity, ozone and 

aerosol

Data Source
GIMMS NDVIg 

Operational Dataset
MODIS-Land and 

Atmospheres Gridded Gauge data
NASA GSFC Ozone Processing 

Team
Native Spatial 
Resolution 8000 m 250 m 1 degree 26 km
Temporal 
Resolution 15 day 16-day monthly Daily

Period 
Available

July 1981 – present
(NOAA 7, 9, 

11,14,16 and 17) Feb 2000 – present April 1986 – present

11/1978-5/1993(Nimbus 7)
5/1993-11/1994 (Meteor 3)

7/1996-12/2005 (Earth Probe)
Equatorial 
Crossing ~9 AM - ~6 PM 10.30 AM NA ~9 AM - ~6 PM
Field of View 
(FOV) ±55.4º ±55º NA ±55.4º

Table 2.  

Element
Accumulated 

weight
AVHRR NDVI 0.6
TOMS Reflectance 0.5
TOMS Column Ozone 0.3
Land Surface Type 0.3
TOMS Aerosol Index 0.2
Soil cover 0.2
Digital Elevation Model 0.2

Table 3.

Sensor NNndvi AVHRR MODIS
Global Mean 
NDVI 0.4834 0.2982 0.4830
Global Std 
NDVI 0.2384 0.2460 0.2522
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Figure 1.  
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 8.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

500

1000

1500

2000

2500

3000

3500

4000

Anomaly

N
um

be
r 

of
 P

ix
el

s

2003 NN − 4 year MODIS mean
2003 AVHRR − 4 year MODIS mean
2003 MODIS − 4 year MODIS mean

Page 31 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

32

Figure 9.
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