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Abstract
The Morse potential one-dimensional quantum system is a realistic model for
studying vibrations of atoms in a diatomic molecule. This system is very close
to the harmonic oscillator one. We thus propose a construction of squeezed
coherent states similar to the one of the harmonic oscillator using ladder
operators. The properties of these states are analysed with respect to the
localization in position, minimal Heisenberg uncertainty relation, the statistical
properties and illustrated with examples using the finite number of states in a
well-known diatomic molecule.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

PACS numbers: 03.65.Aa, 03.65.−w

(Some figures may appear in colour only in the online journal)

1. Introduction

Coherent and squeezed states are known to be very important in many fields of physics.
Coherent states (CS) were discovered in 1926 by Schrödinger [1], while squeezed states
were introduced by Kennard in 1927 [2]. However, these works were, in the main, ignored or
forgotten until the 1960s, when these states became very popular and received a lot of attention
from both fields, mathematics and physics. Among many important papers, let us mention the
works of Glauber [3], Klauder [4, 5] and Nieto [6]. In the particular field of quantum optics,
the books of Walls and Milburn [7], Gazeau [8] and Rand [9] make very good reading and also
consider applications. The study of squeezed states for systems admitting an infinite discrete
spectrum, obtained as a generalization of CS, has recently been the centre of much attention
(see, for example, [10–14]).
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In modern developments, CS are standardly defined in three equivalent ways: displacement
operator method, ladder (annihilation) operator method and minimum uncertainty method
(for a review, see for example [6]). Initially defined for the case of the harmonic oscillator,
CS have been generalized for other systems. We can use, for example, the definition of
Klauder [15] saying that they are obtained as the following superposition of energy eigenstates
{|ψn〉, n ∈ N} :

ψ(z) = 1√
N (|z|2)

∑
n∈I

zn

√
ρ(n)

|ψn〉. (1)

The sum is taken over all the discrete values of n and the set I is usually infinite. The parameter
z is a complex variable in general, N is a normalization factor and {ρ(n), n ∈ N} is a set of
strictly positive parameters, usually depending on the energy of the system under consideration.
The last quantities correspond to a moment problem (see [15] for details).

For a quantum system which admits an infinite discrete spectrum {|ψn〉, n = 0, 1, . . .},
and ladder operators A− and A+ acting on the energy eigenstates as

A−|ψn〉 =
√

k(n) |ψn−1〉, A+|ψn〉 =
√

k(n + 1) |ψn+1〉, (2)

these CS are defined as eigenstates of A−. We thus obtain [15]

ρ(n) =
n∏

i=1

k(i), ρ(0) = 1. (3)

(Note that the quantity k(i) is not unique and can be chosen to impose additional constraints
on the ladder operators. In particular, for the harmonic oscillator, we have k(i) = i,

[A−, A+] = I, Hho = �ω
(
A+A− + 1

2

)
, (4)

and expression (1) gives the usual CS.)
Now, for a quantum system which admits a finite discrete spectrum like the one which

involves the Morse potential, various constructions of CS have been adapted [16–19]. In
a recent paper [20], we have used ladder operators [21, 22] to construct different types of
CS of the Morse potential and have compared them with the so-called Gaussian CS [23].
In particular, such a construction has been inspired by the approach mentioned above (see
formula (1)) but where the set I of values of n is now finite. The CS are not exactly eigenstates
of the annihilation operator A− but we have shown [20] that, in practice, the last terms on the
right-hand side of the sum in (1) do not contribute significantly. In some approaches (see, for
example, [24]), these states are called pseudo-CS.

To our knowledge, squeezed coherent states (SCS) for the Morse potential have not been
constructed. The aim of this paper is thus to show that such a construction can be closely related
to the one for infinite spectrum systems. In fact, these states would be almost eigenstates of
a linear combination of the ladder operators. Moreover, we demonstrate using numerical
evaluations that one set of these states, the energy-like, behave properly as squeezed states.

In section 2, we give a review of relevant results on SCS and minimal uncertainty relations
for a quantum system with an infinite spectrum. In section 3, starting with the definition of the
Morse model and its ladder operators, we define the corresponding SCS. We thus obtain two
types of states called oscillator-like and energy-like. In section 4, we show that the energy-like
states have stable trajectories in the phase space and minimize the uncertainty relation. Due to
the complexity of the expressions of those states, numerical calculations are used. We conclude
the paper in section 5.
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2. SCS for a quantum system with an infinite spectrum

As in the case of the harmonic oscillator, general SCS [6], for a quantum system with an
infinite discrete energy spectrum, may be constructed as solutions of the eigenvalue equation:

(A− + γ A+)ψ(z, γ ) = zψ(z, γ ), z, γ ∈ C. (5)

The mixing of A− and A+ is said to be controlled by a squeezing parameter γ and z is called
the coherent parameter. The CS are special solutions when γ = 0. Conditions on γ must be
imposed for the states to be normalizable.

SCS based on su(2) or su(1, 1) algebras [12, 13] and also direct sums of these algebras
with the algebra h(2) [14] have been constructed using group theoretical methods. This
involves, in particular, the operator displacement D and squeezing S similar to the ones of the
harmonic oscillator. In fact, for su(2) or su(1, 1) algebras, k(n) is a quadratic function of n.

More generally, equation (5) may be solved by using a direct expansion of ψ(z, γ ) in the
form

ψ(z, γ ) = 1√
Ng(z, γ )

∞∑
n=0

Z(z, γ , n)√
ρ(n)

|ψn〉, (6)

with

Ng(z, γ ) =
∞∑

n=0

|Z(z, γ , n)|2
ρ(n)

, (7)

where ρ(n) is given by (3). Indeed, for the case γ �= 0, inserting (6) into (5), we obtain a
three-term recurrence relation,

Z(z, γ , n + 1) − z Z(z, γ , n) + γ k(n)Z(z, γ , n − 1) = 0, n = 1, 2, . . . , (8)

and without restriction, we take Z(z, γ , 0) = 1 and thus Z(z, γ , 1) = z.
For the harmonic oscillator, ρ(n) = n! and we obtain explicitly [14, 25]

Zho(z, γ , n) =
[ n

2 ]∑
i=0

n!

i!(n − 2i)!

(
−γ

2

)i
z(n−2i) =

(γ

2

) n
2 H

(
n,

z√
2γ

)
. (9)

It is well known that |γ | < 1 for the states to be normalizable in this case. In (9), we see
that the Hermite polynomials H(n, w) take values on C. These polynomials have interesting
properties in terms of orthogonality, measure and resolution of the identity [26].

For the harmonic oscillator, these states minimize the Schrödinger–Robertson uncertainty
relation [27] which becomes the usual Heisenberg uncertainty relation for γ real. Indeed, we
obtain

(�x̂)
2 = 1

1 + γ
− 1

2
, (� p̂)

2 = 1

1 − γ
− 1

2
, (10)

and the uncertainty becomes

�(z, γ ) = (�x̂)
2
(�p̂)

2 = 1
4 . (11)

We see that this implies the reduction of the ‘quantum noise’ on one of the observables while
increasing it on the other. In the following, we will treat the case when the quantum noise is
reduced on the observable x because we want a good localization in the position.

3. The Morse potential and different types of SCS

The Morse potential quantum system is a realistic model for studying vibrations of atoms in a
diatomic molecule. Since this system is very close to the harmonic oscillator, the SCS will be
constructed following the procedure given for the harmonic oscillator, but we will deal with a
finite number of eigenstates.

3
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3.1. The model

The one-dimensional Morse model is given by the energy eigenvalue equation (see, for
example, [21])

Ĥ ψ(x) =
(

p̂2

2mr
+ VM(x)

)
ψ(x) = Eψ(x), (12)

where mr is the reduced mass of the oscillating system composed of two atoms of masses m1

and m2, i.e. 1
mr

= 1
m1

+ 1
m2

. The potential is VM(x) = V0(e−2βx − 2e−βx), where the space
variable x represents the displacement of the two atoms from their equilibrium positions, V0

is a scaling energy constant representing the depth of the potential well at equilibrium x = 0
and β is the parameter of the model (related to the characteristics of the well, such as its depth
and width).

The finite discrete spectrum is known as

En = − �
2

2mr
β2 εn

2, (13)

where

εn = ν − 1

2
− n = p − n, ν =

√
8mrV0

�2β2
, (14)

and {n = 0, 1, 2, . . . , [p]}, with [p] the integer part of p = ν−1
2 . The following shifted energies

e(n) = 2mr

�2β2
(En − E0) = ε2

0 − ε2
n = n(2p − n) (15)

are useful for the construction of SCS. Using the change of variable y = νe−βx, we obtain
the energy eigenfunctions, for the discrete spectrum, in terms of the associated Laguerre
polynomials, denoted by L2εn

n , as

ψν
n (x) = Nn e− y

2 yεn L2εn
n (y), (16)

where Nn is a normalization factor given by

Nn =
√

β(ν − 2n − 1)
(n + 1)


(ν − n)
=

√
2β(p − n)
(n + 1)


(2p − n + 1)
. (17)

Since p is related to physical parameters (see (14)), it is not an integer in practice and N is
never zero as expected.

For many applications, it is convenient to introduce the number operator N̂ such that

N̂ψν
n (x) = n ψν

n (x) (18)

and we see from (13) that Ĥ can in fact be written as Ĥ = − �
2

2mr
β2 (p − N̂)2.

3.2. Ladder operators

The ladder operators of the Morse system are defined as in (2); however, the set of
eigenfunctions {|ψn〉} is finite. As mentioned in the introduction, the quantity k(n) in (2)
is not unique and we consider two natural choices [20]. The first choice, the ‘oscillator-like’,
corresponds to k(n) = n. The ladder operators satisfy an h(2) algebra. The second choice,
the ‘energy-like’, corresponds to k(n) = e(n), as given in (15). Ladder operators satisfy an
su(1, 1) algebra. In what follows, the subscripts o and e will be used to refer to these choices.
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Although our future calculations do not need the explicit form of the ladder operators, we
give them for completeness [19, 21, 28, 29]. For example, we obtain [21]

A− = −
[

d

dy
(ν − 2N) − (ν − 2N − 1)(ν − 2N)

2y
+ ν

2

]√
K(N), (19)

A+ = (
√

K(N))−1

[
d

dy
(ν − 2N − 2) + (ν − 2N − 1)(ν − 2N − 2)

2y
− ν

2

]
, (20)

where K(n) is related to k(n) by

k(n) = n(ν − n)(ν − 2n − 1)

ν − 2n + 1
K(n). (21)

These relations are valid for any integer n in the interval [0, [p] − 1]. Note that, for n = [p],
we obtain a permitted energy eigenstate ψν

[p](x) of the Morse potential but the action of
the creation operators on this state does not give zero in general. It gives a state which
may not be normalizable with respect to our scalar product. This problem has already been
mentioned in some contributions (see, for example, [21, 28]). For arbitrary p, the special
choice k(n) = n([p] + 1 − n) leads to A+ψν

[p](x) = 0 and A+ψν
[p]−1(x) = √

[p]ψν
[p](x).

The ‘oscillator-like’ ladder operators are thus obtained by taking

Ko(n) = ν − 2n + 1

(ν − n)(ν − 2n − 1)
, (22)

while we see that Ke(n) = Ko(n)(ν − 1 − n) for the ‘energy-like’ ladder operators.

3.3. The harmonic oscillator limit

The harmonic oscillator limit [22] is obtained by first shifting the Morse potential by V0 = k′
2β2

to obtain

V1 = V0(1 − e−βx)2 = VM + V0, (23)

and then taking β → 0 so that V1 → 1
2 k′x2 where k′ is the force constant. Note that the new

Hamiltonian with potential V1 has thus the energy levels shifted and we obtain

E1
n = − �

2

2mr
β2

[(
ν − 1

2
− n

)2

−
(ν

2

)2
]

. (24)

Since ν is given by (14), we obtain here ν = 2
√

mrk′
β2�

. The oscillator limit is obtained when
ν → ∞ giving, as expected, an infinite spectrum and the good limit for the energies,

lim
ν→∞ E1

n = �

√
k′

mr

(
n + 1

2

)
.

Second, we have to take the limit on the ladder operators. We replace β by its expression in

terms of ν and define c =
√

4mrk′
�2 . The annihilation operator A−, given in (19), thus takes the

form

A− =
√

K(n)

[
e
√

c
ν

x

√
c ν

(ν − 2n)
d

dx
+ e

√
c
ν

x

2ν
(ν − 2n − 1)(ν − 2n) − ν

2

]
. (25)

Since K(n) depends also on ν, we have to take the limit carefully. To solve it, just take the
Taylor expansion of the exponential to the first order. We then see that K(n) must behave as
ν−1, which is exactly what we obtain from (22) and we find

lim
ν→∞ A− = 1√

c

(
d

dx
+ c

2
x

)
. (26)

A similar calculation gives the expected limit for A+.

5
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3.4. SCS and their time evolution

The SCS of the Morse Hamiltonian are now defined as the finite sum

�ν(z, γ , x) = 1√
N ν (z, γ )

[p]−1∑
n=0

Z(z, γ , n)√
ρ(n)

ψν
n (x), (27)

where ρ(n) is given in (3), Z(z, γ , n) satisfies (8) and

N ν (z, γ ) =
[p]−1∑
n=0

|Z(z, γ , n)|2
ρ(n)

. (28)

Such a definition is relevant since we have seen in the preceding subsection that the
‘oscillator-like’ ladder operators tend to the ones of the harmonic oscillator when k(n) = n
and the appropriate limit is taken. Moreover, these states are ‘almost’ eigenstates of a linear
combination of the generic ladder operators A− and A+ which can be written as

(A− + γ A+) �ν(z, γ , x) ≈ z�ν(z, γ , x). (29)

In fact, the correction can be computed using the recurrence relation (8) and we find

χν(z, γ , [p], x) = 1(z, γ , [p])ψν
[p]−1(x) + 0(z, γ , [p])ψν

[p](x), (30)

where

1(z, γ , [p]) = 1√
ρ[p]−1

Z(z, γ , [p]),

0(z, γ , [p]) = 1√
ρ[p]

γ k([p])Z(z, γ , [p] − 1). (31)

In practice, the last two terms of the sum in (27) have a very weak contribution which justifies
thus the term ‘almost’ eigenstates used above.

Other constructions of SCS have been considered (see, for example, [19, 22]). They
implicitly use the displacement operator D. It must be questioned first because we deal with a
finite number of eigenstates in (27). Indeed, the action of this operator is not well defined even
if we take a finite development of the exponentials. Moreover, the Baker–Campbell–Hausdorff
formulae for expanding D (as products of exponentials of simple operators) are not necessarily
valid (see, for example [29]). Secondly, only one parameter is involved in this displacement
operator, which is the reason why they are called CS by these authors [19, 22]. They are, in
fact, special cases of our SCS where z and γ are not independent (γ �= 0).

Since our SCS are closely related to the ones of the harmonic oscillator, we are interested
in the behaviour of these states in the physical observable position x and observable momentum
p. Here these observables are not obtained as linear combinations of the ladder operators (as
we can see from (19) and (20)) and we must compute the mean values explicitly.

For an arbitrary observable θ , we have 〈θ〉(z, γ ; t) = 〈�ν(z, γ , x; t)|θ |�ν(z, γ , x; t)〉,
where the time evolution of our SCS is given by

�ν(z, γ , x; t) = 1√
N ν (z, γ )

[p]−1∑
n=0

Z(z, γ , n)√
ρ(n)

e− iEn
�

tψν
n (x) (32)

and we obtain explicitly

〈θ〉(z, γ ; t) = 1

N ν (z, γ )

(
[p]−1∑
n=0

|Z(z, γ , n)|2
ρ(n)

〈θ〉n,n +
[p]−1∑
n=0

[p]−1−n∑
k=1

Z∗(z, γ , n + k)√
ρ(n + k)

Z(z, γ , n)√
ρ(n)

×(
e− i(En+k−En )

�
t〈θ〉n,n+k + e

i(En+k−En )

�
t〈θ〉n+k,n

))
, (33)

6
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where

〈θ〉m,n = 〈
ψν

m

∣∣θ ∣∣ψν
n

〉
. (34)

In the following developments, we consider observables which are such that 〈θ〉m,n are
symmetric or skew-symmetric with respect to the exchange of m and n. We are thus led to two
different cases. If 〈θ〉n+k,n = 〈θ〉n,n+k, we obtain

〈θ〉(z, γ ; t) = 1

N ν (z, γ )

(
[p]−1∑
n=0

|Z(z, γ , n)|2
ρ(n)

〈θ〉n,n

+ 2
[p]−1∑
n=0

[p]−1−n∑
k=1

Z∗(z, γ , n + k)√
ρ(n + k)

Z(z, γ , n)√
ρ(n)

cos(α(n, k)t)〈θ〉n+k,n

)
, (35)

where

α(n, k) = �β2

2mr
k(2(p − n) − k). (36)

If 〈θ〉n+k,n = −〈θ〉n,n+k, we obtain

〈θ〉(z, γ ; t) = 2i

N ν (z, γ )

[p]−1∑
n=0

[p]−1−n∑
k=1

Z∗(z, γ , n + k)√
ρ(n + k)

Z(z, γ , n)√
ρ(n)

sin(α(n, k)t)〈θ〉n+k,n. (37)

We obtain, from [30], the mean values of x̂ and p̂ (with β = 1),

〈x̂〉n+k,n = (−1)k+1Nn+kNn

(ν − k − n)

k(ν − k − 1 − 2n)n!
, k �= 0, (38)

〈x̂〉n,n = ln ν − �(0, ν − 1 − 2n) +
n∑

j=1

1

ν − n − j
, (39)

where the function �(0, z) = d
dz ln 
(z) and

〈p̂〉n+k,n = i�(−1)k+1Nn+kNn

(ν − k − n)

2 n!
(1 − δk0). (40)

We also obtain after some calculations

〈p̂2〉n+k,n = �
2(−1)k+1Nn+kNn


(ν − k − n)

4 n!
((k − 1)ν − k(k + 2n + 1)), k �= 0 (41)

and

〈p̂2〉n,n = −�
2 (2n + 1)(2n + 1 − ν)

4
. (42)

The computation of the mean values of x̂2 is more tricky since it involves the functions �(0, z)
and �(1, z). We do not have an analytic expression but will be able to compute explicitly
〈x̂2〉n+k,n and 〈x̂2〉n,n since we have a finite number of these expressions to plug in 〈x̂2〉(z, γ ; t).

3.5. Oscillator-like SCS

In this case, in accordance with the expression of ρ(n) given in (3), we take k(i) = i and
ρ(n) = n! and we obtain Zo(z, γ , n) = Zho(z, γ , n) = (9). For the special case where γ = 0,
we obtain Zho(z, 0, n) = zn, while for the squeezed vacuum z = 0, we obtain

Zo(0, γ , 2n) = (2n)!

n!

(
−γ

2

)n
, Zo(0, γ , 2n + 1) = 0. (43)

7



J. Phys. A: Math. Theor. 45 (2012) 244007 M Angelova et al

Moreover, in those states, we obtain the same probability distribution as for the harmonic
oscillator:

Po(z, γ , n) = |〈ψnν(x)|ψ(z, γ , x)〉|2 = 1

N ν
o (z, γ )

( |γ |
2

)n
∣∣H(

n, z√
2γ

)∣∣2

n!
, (44)

with

N ν
o (z, γ ) =

[p]−1∑
n=0

( |γ |
2

)n
∣∣H(

n, z√
2γ

)∣∣2

n!
. (45)

The mean value and dispersion of the number operator N̂ are now given by

〈N̂〉o =
[p]−1∑
n=0

n Po(z, γ , n), (�N̂)2
o =

[p]−1∑
n=0

n2Po(z, γ , n) −
(

[p]−1∑
n=0

n Po(z, γ , n)

)2

. (46)

The statistical properties of these states are similar to the ones of the harmonic oscillator since
we obtain essentially the same quantity for Mandel’s Q-parameter [31] given in general by

Q(z, γ ) = (�N̂)2 − 〈N̂〉
〈N̂〉 . (47)

The only difference is that, in the calculation of the dispersion and mean values in N̂, the sums
are now finite. In particular, it is well known (see, for example, [7]) that the probability density
is a Poisson distribution in the special coherent case (γ = 0).

3.6. Energy-like SCS

In this case, in accordance with the expression of ρ(n) given in (3), we take k(i) = i(2p − i)
and ρ(n) = (−1)nn!(1 − 2p)n where (a)n is the usual notation for the Pochhammer symbol

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) = 
(a + n)


(a)
. (48)

The exact (infinite) recurrence relation (8) can be solved directly in terms of hypergeometric
functions. The solution is

Ze(z, γ , n) = (−1)nγ
n
2


(2p)


(2p − n)
2F1

(
−n,− z

2
√

γ
+ 1−2p

2

1 − 2p
; 2

)
, n = 1, 2, . . . , [p] − 1.

(49)

Since this result is far from being trivial, we give some details of the proof and also the
expressions of few first polynomials of this sequence.

Let us first set

k(n) = n(A − n), A ∈ R, (50)

so that the recurrence relation (8) becomes

Z(z, γ , n + 1) − z Z(z, γ , n) + γ n(A − n)Z(z, γ , n − 1) = 0, n = 1, 2, . . . , (51)

with Z(z, γ , 0) = 1 and thus Z(z, γ , 1) = z. Since we know the solution for the harmonic
oscillator (i.e. when k(n) = n), we follow the same lines to solve (51) for an infinite sequence
of values of n. We introduce the new complex variable w = z√

2γ
and take

Z(z, γ , n) =
(γ

2

) n
2

f (n, w). (52)
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We thus obtain a new recurrence relation on the functions f (n, w):

f (n + 1, w) − 2w f (n, w) + 2n(A − n) f (n − 1, w) = 0,

f (1, w) = 2w, f (0, w) = 1, n = 1, 2, . . . . (53)

It is easy to see that f (n, w) is in fact a polynomial of degree n in w. Moreover, it can be
expressed in terms of hypergeometric functions of the type 2F1. We explicitly obtain

f (n, w) = 2
n
2 (−A + 1)n 2F1

(−n,− w√
2

+ 1−A
2

1 − A
; 2

)
(54)

and the hypergeometric function is in fact a polynomial in w since we have

2F1

(
−n,−v

1 − A
; 2

)
=

n∑
k=0

2k

k!

(−n)k(−v)k

(−A + 1)k
. (55)

The original function (52) thus takes the form (49) when A = 2p as expected. It is valid
for any real value of A and in fact, we see that the first polynomials of the sequence are given
by

Ze(z, γ , 0) = 1, Z(z, γ , 1) = z,

Ze(z, γ , 2) = z2 − (A − 1)γ ,

Ze(z, γ , 3) = z3 − (3A − 5)γ z,

Ze(z, γ , 4) = z4 − 2(3A − 7)z2γ + 3(A − 1)(A − 3)γ 2.

To be complete, let us mention that for the special case where A is an integer, we see
that the recurrence relation (53) splits into two different ones. Indeed, we first obtain a finite
sequence of f (n, w) satisfying (53) for n = 1, 2, . . . , A − 1 and second, an infinite sequence
of f (n, w) for n = A, A + 1, . . . satisfying the recurrence relation

f (A + k + 1, w) − 2w f (A + k, w) − 2k(A + k) f (A + k − 1, w) = 0, k = 0, 1, 2, . . . .

(56)

Since for k = 0 we obtain f (A + 1, w) = 2w f (A, w), we can write f (A + k, w) =
h(k, w) f (A, w) where h(k, w) is a polynomial of degree k in w satisfying the recurrence
relation

h(k + 1, w) − 2w h(k, w) + 2k(−A − k) h(k − 1, w) = 0,

h(1, w) = 2w, h(0, w) = 1, k = 1, 2, . . . , (57)

which is (53) where A has been replaced by −A. The polynomials h(k, w) are thus given by

h(k, w) = 2
k
2 (A + 1)k 2F1

(−k,− w√
2

+ 1+A
2

1 + A
; 2

)
, k = 0, 1, 2, . . . . (58)

The solutions f (n, w) satisfying (53) for n = 1, 2, . . . , A − 1 are in fact associated with a
finite sequence of Krawtchouk polynomials, while the solutions h(n, w) for n = 0, 1, . . . are
associated with Meixner polynomials [32]. They both satisfy discrete orthogonality relations
on the variable w but these are not relevant in our context since w is a continuous parameter.

When γ = 0, we obtain Ze(z, 0, n) = zn leading to CS, while for the squeezed vacuum
(z = 0), we obtain

Ze(0, γ , 2n) = 4(n−1)(1 − 2p)(3/2)n−1(3/2 − p)n−1γ
n, Ze(0, γ , 2n + 1) = 0. (59)
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Now the probability distribution, denoted by Pe(z, γ , n)e, is given by

Pe(z, γ , n) = 1

N ν
e (z, γ )


(2p − n)


(2p)n!
|Z(z, γ , n)|2, (60)

where

N ν
e (z, γ ) =

[p]−1∑
n=0


(2p − n)


(2p)n!
|Z(z, γ , n)|2. (61)

Similar expressions for 〈N̂〉e and (�N̂)2
e are obtained as in (46).

4. Behaviour of the SCS for the case of the hydrogen chloride molecule

For the hydrogen chloride molecule 1H35Cl (already considered in a previous paper [20]), we
will fix the values of the physical parameter ν given in (14) with published values of mr, β

and V0, or as most often in practice, using ν = ωe/ωexe, the ratio between the experimentally
measured molecular harmonicity ωe and anharmonicity ωexe constants (see, for example,
[33–36]). For the ground state, X1�+, we have ν ≈ 57.44 and [p] = 28. We also choose the
units such that �

2mr
= 1 and β = 1.

Let us start with some general facts. First, the squeezing parameter must be restricted
to |γ | < 1 for the states to be normalizable (as for the harmonic oscillator). Second, the
minimization of the Heisenberg uncertainty relation depends on the values of z when γ is real
(and less than 1). Finally, we will see that the squeezing effect (reduction of the dispersion
of one observable at the price of increasing it in the other) is always present even for γ = 0.
Moreover, the dispersion in x̂ may be chosen smaller for the energy-like than for the oscillator-
like states leading to a better localization for the energy-like states.

In order to compare our results with the well-known ones for the harmonic oscillator,
we restrict ourselves to the positive real values of z and γ with γ < 1. In fact, no dramatic
difference appears when z and/or γ are negatives.

4.1. Coherent system of states (γ = 0)

The oscillator-like and energy-like states differ only by the denominator (and the normalization
factor) in development (27). In figure 1, we show the trajectories for both states with z = 2
and t ∈ [0, 1] and we see that the oscillator-like states are less stable than the energy-like ones
for the same value of z. This is true when z < 20. We also see that, even if γ = 0, squeezing
always appears in the coherent system of states for the Morse potential.

At t = 0, the uncertainty product �(z, 0) = (�x)2(�p)2 and the dispersion (�x)2

show a very stable behaviour in z for the energy-like states (see figure 2). These states are
mostly minimal uncertainty states and the dispersion in x is very small leading to a very good
localization (at least for z < 20). This last fact is confirmed by the large eccentricity (in fact,
it is very close to 1) of the ellipses obtained before. Interestingly, if we want to minimize
the dispersion in p, we see, again in figure 2, that �(z, 0) is no longer minimized. Also,
reducing the dispersion in p increases the dispersion in x. Moreover, we can easily see that the
best minimization of the dispersion in p is observed in this special case, i.e. for γ = 0. The
oscillator-like states have almost the same behaviour but �(z, 0) increases faster for smaller
values of z (around z = 3).

Finally, the density probabilities of both types of states have been computed to confirm
the preceding results. In figure 3, the energy-like states show again a better behaviour than the
oscillator-like states as time evolves.
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Figure 1. Phase-space trajectories for oscillator-like (dashed line) and energy-like (plain line)
states when (z, γ ) = (2, 0) and t ∈ [0, 1].
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Figure 2. Uncertainty and dispersions for the energy-like states at γ = 0, � and (�x̂)2 with
z ∈ ]0, 25] (left) and �, (�x̂)2 and (�p̂)2 with z ∈ [10, 27] (right).

4.2. Squeezed vacuum (z = 0)

In this case, both types of states are polynomials in γ and only even combinations of
eigenfunctions appear (see (43) and (59)). Again, the energy-like states have more stable
trajectories but for small values of γ . In figure 4, we have compared the trajectories for the
energy-like states when γ = 0.2, 0.5 and 0.7.
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Figure 3. Density probability |�ν
e (1, 0, x; t)|2 (left) and |�ν

o (1, 0, x; t)|2 (right) for x ∈ [−1, 2]
and t ∈ [0, 1].
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Figure 4. Phase-space trajectories for energy-like states in the vacuum with γ = 0.2, 0.5, 0.7 and
t ∈ [0, 1].

At t = 0, the uncertainty product �(0, γ ) = (�x)2(�p)2 and the dispersion (�x)2 take
almost the same values for both types of states. Minimal uncertainty is satisfied for γ ∈ [0, 0.2]
and we obtain very small values of the dispersion in x for the same values of γ . The behaviour
is similar to the one in figure 2.

With respect to the statistical properties, figure 5 shows bunching effects of Q(0, γ ) > 0
both for the energy-like and oscillator-like states. It confirms that both types of states have
similar statistical behaviour. Finally, the density probability has been computed for the energy-
like states. In figure 6, we see that the best localization occurs when γ is smaller than 0.2. We
see also, by observing the time evolution, that the vacuum states are less stable than the CS.
Similar behaviour is observed for the oscillator-like states.

12



J. Phys. A: Math. Theor. 45 (2012) 244007 M Angelova et al

−4 −2 2 4

5

10

15

Qe(0, r)

Qo(0, r)

Figure 5. Comparison of the Mandel parameter Q(0, γ ) in the vacuum for the energy-like and
oscillator-like squeezed states as a function of r such that γ = tanh r.
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Figure 6. Density probability |�ν
e (0, γ , x; t)|2 in the vacuum for energy-like CS for x ∈ [−1, 2]

as a function of γ ∈ [0, 1] with t = 0 (left) and a function of t ∈ [0, 1] with γ = 0.2 (right).
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Figure 7. Comparison between the Mandel parameter for the energy-like and oscillator-like
squeezed states as a function of r such that γ = tanh r for z = 2.

4.3. General system of states

In this case, we observe that the trajectories deviate quickly from closed curves while the
minimum uncertainty is still realized but when γ < 0.2. The graphs for the Mandel parameter
for z = 2 are given in figure 7. Bunching and anti-bunching are observed for both types
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of states; the bunching is more prominent for energy-like states for all values of r. A more
significant anti-bunching effect is observed for oscillator-like states showing a steady effect
for r < 0 and a minimum for r > 0 (when γ ≈ 0.2).

The calculations of observables for other diatomic molecules can be performed in a similar
way. For example, we have performed such calculations for the molecule 133Cs2 which has a
larger value for ν. Indeed, we have ν ≈ 524.55 and thus [p] = 261. We have obtained similar
behaviour for both types of states that is not relevant to produce here.

5. Conclusions

In this paper, we have introduced squeezed coherent states of a quantum system with a finite
discrete energy spectrum described by the Morse potential. These states are almost eigenstates
of linear combination of ladder operators and are characterized by two continuous parameters
z and γ . We have considered two different types of ladder operators and constructed the
corresponding oscillator-like and energy-like squeezed coherent states.

We have investigated the behaviour of these states regarding localization and minimum
uncertainty. The calculation of the dispersions and mean values has been performed analytically
except for the mean value of x̂2 for which the analytical form is not known. We have computed
the Mandel parameter to investigate the statistical properties of our states.

The oscillator-like squeezed coherent states are closely related to the similar states of
the harmonic oscillator. However, they do not have a very good localization except for the
vacuum case for γ small and they exhibit a certain deviation from the minimal uncertainty
principle. The energy-like squeezed coherent states minimize better the uncertainty relation
for the case γ = 0 and we get a good localization in position. They are more stable in time
than the oscillator-like states. Both types of states have similar statistical properties.
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