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Abstract  10 

Measurements of vegetation structure have become a valuable tool for ecological 11 

research and environmental management. However, data describing the thermal 3D 12 

structure of canopies and how they vary both spatially and temporally remain sparse. 13 

Coincident RGB and thermal imagery from a UAV platform were collected of both a 14 

standalone tree and a relatively dense forest stand in the sub-alpine Eastern Swiss 15 

Alps. For the first time, SfM-MVS methods were used to develop 3D RGB and thermal 16 

point clouds of the two sites with point densities of 35,245 and 776 points per m2, 17 

respectively, compared to 78 points per m2 for an airborne LiDAR dataset of the same 18 

area. Despite the low resolution of the thermal imagery compared to RGB photosets, 19 

forest structural elements were accurately resolved in both point clouds. 20 

Improvements in the quality of the thermal 3D data were gained through the 21 

application of a distance filter based on the proximity of these data to the RGB 3D 22 

point data. Vertical temperature gradients of trees were negative with increasing height 23 
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at the standalone tree, but were positive in the dense stand largely due to increased 24 

self-shading of incoming shortwave energy. Repeat surveys across a single morning 25 

during the snowmelt period revealed changes in the spatial distribution of canopy 26 

temperatures which are consistent with canopy warming from direct solar radiation. 27 

This is the first time that coincidentally acquired RGB and thermal imagery have been 28 

combined to generate separate RGB and thermal point clouds of 3D structures. These 29 

methods and findings demonstrate important implications for atmospheric, 30 

hydrological and ecological modeling, and have wide application for effective thermal 31 

measurements of remote environmental landscapes. 32 
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1. Introduction 51 

Forests cover approximately 31% of the total global surface area (FAO 2010), 52 

regulating local and global energy balance and biogeochemical cycles, providing 53 

wildlife habitat and supporting biodiversity. Understanding, management and 54 

prediction of forest processes depends greatly on measurement of forested 55 

environments (e.g. structure, biomass, temperature, habitat quality and biodiversity) 56 

at sufficient spatial and temporal resolution. To this end, three-dimensional (3D) 57 

mapping of forest canopies has become a valuable tool for obtaining forest canopy 58 

structure information, such as effective leaf area index, fractional cover and canopy 59 

closure (Morsdorf et al. 2006; Solberg et al. 2009). These forest canopy structure 60 

parameters have been applied to carbon accounting (Houghton et al. 2009; Kobayashi 61 

et al. 2012), canopy structure modeling for ecosystem analysis (Zhao and Popescu 62 

2009), energy balance (Musselman et al. 2013) and radiative transfer modeling 63 

(Essery et al. 2008a), as well as search and rescue logistics (Rudol and Doherty 2008).  64 

Remotely sensed data describing 3D forest structures have been retrieved using 65 

airborne or terrestrial light detection and ranging methods (LiDAR; Kankare et al. 2013; 66 

Liang et al. 2012; Lucas et al. 2008; Srinivasan et al. 2014; Wagner et al. 2008). LiDAR 67 

data can be acquired across large (> 50,000 ha) areas in a series of repeat over-68 

flights. However, the commission of LiDAR flights or data purchase can exceed 69 

USD$20,000 per flight (Erdody and Moskal 2010), particularly when data at high 70 

spatial and temporal resolutions are required. More recently, improvements in the 71 

affordability and accessibility of lightweight unmanned aerial vehicle (UAV, or ‘drone’) 72 

technology has facilitated low-cost methods of low-altitude (< 150 m flying height) 73 

photographic and videographic data collection in a range of environments (e.g. Cohen 74 
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et al. 2005; Dandois and Ellis 2013; Faye et al. 2016; Morgenroth and Gomez 2014). 75 

The deployment of lightweight fixed-wing or multi-rotor UAV systems with on-board 76 

digital imaging sensors facilitates the collection of remotely sensed data at increasingly 77 

high spatial and temporal resolutions. Further advances in the development of flight 78 

planning software now facilitate GPS-guided flight repeatability.   79 

The recent emergence of a new generation of digital photogrammetric and computer 80 

vision-based algorithms for reconstructing 3D scene topography from 2D input 81 

imagery, popularly known as ‘Structure-from-Motion’ (SfM) has revolutionized the field 82 

of 3D data acquisition and analysis (e.g. Carrivick et al. 2016; James and Robson 83 

2012; Snavely et al. 2008; Westoby et al. 2012), and originates from advances in the 84 

computer vision community (e.g. Spetsakis and Aloimonos, 1991; Boufama et al., 85 

1993; Szeliski and Kang, 1994). Unlike conventional photogrammetric techniques, 86 

SfM methods identify matching features in overlapping digital images and use this 87 

information as input to an iterative bundle adjustment which simultaneously solves for 88 

the interior and exterior camera parameters and generates a sparse 3D point-cloud. 89 

This process can be enhanced through the use of input imagery which has been 90 

geotagged using GPS technology. SfM algorithms are commonly used in conjunction 91 

with multi-view stereo methods (SfM-MVS) to increase 3D point densities, typically by 92 

an order of magnitude or more (Carrivick et al. 2016; James and Robson 2012; 93 

Westoby et al. 2012), whilst the addition of ground control points (GCP) with known 94 

xyz positions in the scene facilitates the georegistration of SfM-derived 3D data.  95 

A number of recent studies have employed SfM-MVS methods to derive 3D models of 96 

forest canopy structure from RGB imagery acquired from UAVs (e.g. Dandois and Ellis 97 

2010; Dandois and Ellis 2013; Mlambo et al. 2017). Example applications of SfM-MVS 98 
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for vegetation analysis include the use of color channel segmentation to facilitate 99 

species identification and the analysis of plant stress and seasonal development 100 

(Dandois and Ellis 2013), and the estimation of above-ground biomass volumes 101 

(Bendig et al. 2014). Significantly, Dandois and Ellis (2013) found that tree heights 102 

extracted from SfM-MVS-derived point-clouds correlated well with equivalent data 103 

extracted from airborne LiDAR (R2 = 0.87) and field measurements (R2 = 0.63-0.84), 104 

whilst additional studies have also found the accuracy of SfM-MVS-derived datasets 105 

to closely mirror those obtained using terrestrial or airborne LiDAR (Hernández-106 

Clemente et al. 2014; Wallace et al. 2016). Furthermore, Faye et al. (2016) have 107 

demonstrated a workflow for simultaneous, two-dimensional (2D) thermal infrared 108 

(TIR) and RGB airborne imaging in ecological monitoring. While these studies have 109 

demonstrated significant advances in the remote sensing of vegetation structure, the 110 

integration of thermal information into 3D forest canopy structure models has to date 111 

received limited attention. 112 

Measurements of forest canopy temperature at a range of spatial scales can provide 113 

insights into energy flux (Webster et al. 2016), evapotranspiration and photosynthesis 114 

(Solberg et al. 2009), and plant stress (Erdody and Moskal 2010; Morsdorf et al. 2006). 115 

Forest canopy temperature is therefore an important parameter in environmental 116 

monitoring and modeling. Thermal imaging technology has advanced to the stage 117 

where survey grade, portable, and easy to use cameras are readily available and 118 

relatively affordable (<USD$12,000). This increasing availability has allowed for 119 

diverse applications of TIR imagery in remote environments for a number of 120 

environmental monitoring and modeling applications, including water management 121 

and agriculture (Anderson et al. 2012; Berni et al. 2009; Gago et al. 2015; Leinonen 122 
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et al. 2006), visualization of lava flow evolution (James et al. 2009), volcanic activity 123 

(Spampinato et al. 2011), and groundwater movement (Luscombe et al. 2015; Pfister 124 

et al. 2010). Studies employing airborne thermal imagery have generally utilized 2D 125 

imaging outputs, however, the processing of 2D thermal imagery to produce fully 3D 126 

models containing thermal information has yet to be fully explored in the context of 127 

forest canopy structure. Significantly, to date no single instrument or imaging system 128 

has been demonstrated to have the capacity for retrieving both structural and thermal 129 

observations of forest canopies in 3D and at high spatial and temporal resolutions. 130 

This paper appraises the capacity of SfM-MVS methods for retrieving structural and 131 

thermal 3D data of vegetation structures using coincident RGB and thermal imagery 132 

acquired from a UAV. We first present and discuss the acquisition, generation, and 133 

analysis of 3D RGB and thermal data for a single, standalone tree, before 134 

demonstrating and discussing the utility of our workflow for characterizing the structure 135 

and thermal signature of a heterogeneous alpine forested area during the northern 136 

hemisphere snowmelt season.  137 

 138 

2. Study sites 139 

Two sub-alpine forest study sites near the town of Davos, Switzerland were selected 140 

for analysis (Figure 1a). The first site is a standalone Norway Spruce (Picea abies) 141 

tree located in the Dischma valley (46.757°N, 9.879°E; Figure 1b). The tree is ~18 m 142 

high, and has a diameter of 8 m. The second site is a relatively dense forest stand of 143 

predominantly Norway Spruce (~30 m × 30 m) close to Davos Laret, Switzerland 144 

(46.843°N, 9.875°E; Figure 1c,d). Tree heights in this area range between 12-40 m.  145 
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 146 

Figure 1: Overview of the two field locations, showing a. relative location between the tree in 147 
Dischma Valley and the forest field site in Laret; b. aerial image of single tree in Dischma 148 
Valley; c. aerial image and outline of flight area over the forest field site in Laret; d. airborne 149 
LiDAR point-cloud data of forest field site in Laret showing canopy distribution and surface 150 
height. Aerial images and background images from © CNES, Spot Image, reproduced with 151 
permission from Swisstopo, NPOC (JA100118). 152 

 153 

The use of single-species forested environments for thermal imaging is largely 154 

straightforward compared to other land surfaces as emissivity is typically strongly 155 

homogeneous (Price and Petzold 1984). Flights over land surfaces with a variable 156 

surface emissivity, such as agricultural cropland, would require a further step in post-157 

processing to ensure accurate surface temperatures are calculated (e.g. Faye et al. 158 

2016). Additionally, the collection of data across the forest stand during winter when 159 
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seasonal snow was present on the ground surface allowed strong thermal contrast 160 

between the canopy and the forest floor, creating an obvious mask between the two 161 

features. 162 

 163 

3. Methods and data products 164 

3.1. UAV platform and sensors 165 

UAV flights were undertaken with a DJI S1000 octocopter (Figure 2a). RGB imagery 166 

was acquired using a Panasonic Lumix DMC-GH4 digital SLR camera (Figure 2b) at 167 

an original resolution of 4608 × 2592 pixels (1:0.57 scaling) and with manual exposure 168 

and focusing settings enabled. The camera was triggered using an intervalometer, set 169 

at a 1-second interval. Thermal imagery was acquired in the form of raw .csv files 170 

using an Optris PI450 Thermal Imager, controlled using an on-board NetBox running 171 

a Windows XP Professional operating system and PI Connect software (Figure 2b). 172 

The NetBox is a miniature PC attached to the camera that allows the IR camera to 173 

operate as a stand-alone unit. This permits longer distances between the camera and 174 

the monitoring system (traditional PC), allowing it to functionally operate on remote 175 

systems such as the UAV in this study. The PI450 thermal imager has a resolution of 176 

382 × 288 pixels and obtains thermal data in the spectral range 7.5 - 13µm. The imager 177 

is self-calibrating and has a manufacturer-stated measurement accuracy of  2% or  178 

2°C and provides a raw output in °C. The emissivity of the scene was set to 1 for all 179 

thermal imagery, which were acquired at 1-second intervals. The use of an emissivity 180 

of 1 assumes there is zero reflectance from the canopy. The maximum image timing 181 
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offset between sequential RGB and thermal images is < 2 s. A summary of the 182 

instrumentation specifications is provided in Table 1.  183 

 184 

Table 1: Specifications of imaging instrumentation 185 

 Panasonic Lumix Optris PI450 

Lens (FOV) 46.8° x 32.2° 38° x 29°  

 

Optical resolution 4608 × 2592 pixels 382 × 288 pixels 

Spectral range - 7.5 - 13µm 

Temperature range - -20-100C 

Accuracy -  2% or  2°C 

Weight 560g 320g 

Azimuth during imaging 0° 0° 

 186 

The two sensors were mounted underneath the UAV using a custom bracket attached 187 

to a motorized, gyroscopically stabilized gimbal in a configuration which dampens 188 

vibrations and helps to maintains sensor stability in the xy plane when the sensors are 189 

positioned in a downward-facing (nadir) perspective (Figure 2b). This configuration 190 

also ensured a general correspondence between RGB and thermal image centers at 191 

operational flying heights, whilst the ground footprint of each sensor varied slightly as 192 

a function of sensor resolution and radial distortion effects. Including batteries, the 193 

UAV and multi-sensor imaging system weighed ~12 kg. The UAV included an on-194 
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board navigation system, including integrated Global Navigation Satellite Systems 195 

(GNSS), Inertial Measurement Unit (IMU) and barometer and compass components, 196 

which facilitate high positional accuracy and UAV stabilization in winds up to 28 km/h 197 

and in temperatures of >-5C. 198 

 199 

 200 

Figure 2: a. DJI S1000 Octocopter in flight fitted with; b. gimbal with Optris PI450 imager (I), 201 
NetBox (II) and Panasonic Lumix RGB camera (III); c. example of thermal ground control point; 202 
d. example of airborne thermal image over forested area with ground control points circled.  203 

 204 

3.2. Data acquisition  205 

Flight missions over the single standalone tree at the Dischma test site (Figure 1b) 206 

were manually controlled and assisted by an on-board first-person-view (FPV) 207 

camera, connected to a monitor via a 5.8GHz connection. Flight elevation was 208 
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maintained at 25 m, < 10 m above the top of the tree and the thermal camera was 209 

focused at approximately 15 m distance with a depth of field of approximately 5.3 m.  210 

A flying speed of 1 ms-1 was maintained throughout the flight, which was < 5 minutes 211 

in duration due to the small spatial coverage required. The ground was completely 212 

snow-free during data acquisition at the Dischma site.  213 

Flight missions for the forest stand at the Laret test site were planned using DJI PC 214 

Ground Station software (v. 4.0.11.) installed on a portable field laptop computer with 215 

a 2.4 GHz wireless data link, allowing continuous radio communication for real-time 216 

flight monitoring and intervention. Flight plans were programmed in a predetermined 217 

square-parallel sweep pattern using a constant flying height of 50 m (< 10 m above 218 

the canopy) and a forward flight speed of 1 ms-1, corresponding to forward and side 219 

image overlap of 80% and 40%. Transects were 18.5m long and spaced 5.8m apart. 220 

The thermal camera was manually focused at approximately 25 m distance with a 221 

depth of field of approximately 7.6 m. Maximum flight time was < 10 minutes using a 222 

16000 mAh battery, which was sufficient to survey the entire field site in a single flight. 223 

Specific meteorological and canopy conditions were required for collection of airborne 224 

thermal imagery. Flights across the forest stand during winter were carried out when 225 

there was no intercepted snow on the canopy in order to allow full thermal visualization 226 

of a snow-free canopy surface. The ground was completely snow covered with no bare 227 

ground in the sub-canopy. Additionally, this removed possible error in 3D 228 

reconstruction arising from snow present in the canopy and on the ground having the 229 

same spectral characteristics in the RGB and thermal images. Meteorological 230 

conditions (incoming shortwave radiation, air temperature) were recorded at a weather 231 



12 

 

station installed in a local open site approximately 300 m to the northwest of the forest 232 

flight area and 2km northwest of the Dischma single tree site.  233 

Effects on image accuracy arising from surface roughness, air temperature changes 234 

and humidity were to be negligible due to the proximity of the canopy to the camera (< 235 

10m). Corrections for atmospheric influences on thermal imaging accuracy were not 236 

required as these effects influence temperature accuracy when the target is greater 237 

than 100m from the imager (Ball and Pinkerton 2006). 238 

A network of ground control points (GCPs) was established prior to UAV deployment 239 

at each field site, and their xyz location surveyed using a Leica TPS 1200 total station 240 

and Trimble GR5 RTK differential GPS. GCPs measured 0.8 × 0.5 m and consisted of 241 

a material with a relatively large reflectance in the IR domain with a border of adhesive 242 

black plastic (Figure 2c). These materials were chosen due to their contrasting 243 

emissivity, which produced a clear boundary between the two materials and the 244 

ground when viewed in a thermal image (Figure 2d). GCPs were equally visible in the 245 

corresponding RGB imagery. At the single tree, twelve GCPs were arranged in 246 

concentric inner and outer circles around the standalone tree. At the forest stand, the 247 

twelve GCPs were positioned across the forest area in a quasi-uniform grid pattern in 248 

small gaps between the trees in order to maximize their visibility during aerial 249 

surveying. Snow height was measured below the GCPs in the forest stand site and 250 

each z location was corrected in post-processing to correspond to ground height.  251 

 252 
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3.3. SfM-MVS model generation 253 

A summary of the full workflow for SfM-MVS (Structure-from-Motion multi-view stereo 254 

methods) model generation is presented in Figure 3. Raw thermal .csv files contained 255 

288x382 cells, each representing the recorded temperature of a pixel from the imager. 256 

Previous calibration of the PI450 imager showed a non-uniformity in recorded 257 

temperature across the field of view which varied by less than 2K, which is within the 258 

manufacturer specified error of the imager (Smigaj et al., 2015). Images were therefore 259 

not corrected for non-uniformity.  260 

Raw thermal files were converted to grayscale .png digital images (382 × 288 pixels) 261 

using MATLAB software (R2015) with a temperature (°C) assigned to each pixel (e.g. 262 

Figure 2d). All images from a single flight were set to have the same color scale. 263 

Greyscale images were more desirable over color images as they have a single color 264 

channel (compared to a three color channel in RGB images), thus can easily be 265 

converted back to a single temperature value. Minimum temperature was set to 0°C 266 

in all thermal images in order to 1) remove thermal variation at the snow surface and 267 

2) increase the visual contrast of the forest to aid point recognition in 3D model 268 

generation. All pixels with a recorded temperature below 0C were therefore not 269 

included in further analysis. Air temperature during imaging was above 0°C, thus it 270 

was assumed canopy temperature was also warmer than the snow surface 271 

temperature (Jarvis et al. 1976). Snow-covered ground was automatically masked in 272 

the RGB and thermal photosets for the forest stand site and were excluded from scene 273 

reconstruction. Ground conditions were entirely snow-free at the single tree site.  274 
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 275 

Figure 3: Data collection and SfM-MVS processing workflow for constructing georeferenced 276 
3D point-clouds of forest structures from coincident RGB and thermal infrared imagery 277 
acquired using a lightweight UAS. Steps colored in gray were applied exclusively to thermal 278 
data. 279 

 280 

RGB and thermal datasets were processed separately in Agisoft PhotoScan 281 

Professional Edition software (2015, v. 1.1.6).  PhotoScan employs a standard SfM-282 

MVS workflow, beginning with the identification of unique image key points and the 283 
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assignment of key point descriptors, which are stable under variations in perspective 284 

and illumination. Key point descriptors were used to establish key point 285 

correspondences between photographs (Lowe 2004), before an iterative, self-286 

calibrating bundle adjustment was used to solve for internal and external camera 287 

orientation parameters and produced a sparse, or coarse, 3D point-cloud. Following 288 

initial camera alignment and sparse scene reconstruction, 3D points with a 289 

reprojection error >0.5 pixels were removed, as were points which were visible in fewer 290 

than three photographs. The point-cloud data were transformed to the Swiss grid co-291 

ordinate system (CH1903+/LV95) through the identification of known GCP locations. 292 

These GCPs provided additional scene control and were used to improve the 293 

estimation of camera orientation parameters and reduce model alignment errors using 294 

PhotoScan’s ‘optimization’ tool. Whilst each set of images were not digitally geotagged 295 

during acquisition, the photogrammetrically reconstructed xyz positions of the RGB 296 

photographs were exported and used to estimate initial camera positions for the 297 

corresponding thermal images, with an associated accuracy buffer of ± 2 m. This 298 

additional and often non-standard SfM-MVS processing step improved the accuracy 299 

and processing speed of the initial camera alignment and retrieval of the lens distortion 300 

parameters for the thermal imager. Following project georegistration and optimization, 301 

dense point-cloud reconstruction was undertaken using MVS methods, which 302 

increased point densities by over an order of magnitude. The reconstruction ‘quality’, 303 

for the dense point-clouds was specified as ‘ultra high’ for all models, which ensures 304 

that the thermal information for a given point has been retrieved from the original input 305 

images, with no image downscaling and associated averaging of thermal data (Agisoft, 306 

2015). Dense point-clouds were manually scrutinized in CloudCompare (v.2.6) 307 
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software to remove errors, followed by the application of a statistical outlier removal 308 

algorithm to eliminate points which are further away than the mean distance between 309 

the six nearest neighboring points. Finally, site-specific RGB and thermal 3D datasets 310 

were co-registered using iterative closest point (ICP) methods (Srinivasan et al. 2014). 311 

Project alignment statistics are displayed in Table 2. 312 

 313 

Table 2: Summary of UAV survey data products. Number of RGB and thermal images in 314 
brackets refers to original input images, whilst number without brackets refers to input images 315 
which were successfully aligned by Agisoft PhotoScan. Similarly, number in brackets indicate 316 
number of GCPs (ground control points) successfully projected and used for RGB 3D 317 
reconstruction of both sites, whilst the number without brackets reflects the number of 318 
projected ground control point positions in the thermal data. 319 

Survey 
area 

Survey 
date and 
time 
(GMT)  

No. 
RGB 
images  

No. 
therm
al 
image
s 

Mean 
T

air 
(°C)  

Mean 
ISWR 

(Wm
-2

)  

Solar 
zenith 
angle 

() 

No. 
GCP
s 

SfM-MVS internal 
georeferencing 
error  
(xyz RMS; m)  

RGB-
thermal 
ICP 
alignment 
error (m)  

RGB  Therm
al  

 

Single 
tree 

29/04/16   
08:55 

139 
(139) 

186 
(249) 

5.2  994  44 12 
(12)  

0.016  0.081  0.046  

Forest 
(1) 

01/04/16   
10:45  

165 
(165)  

53 
(102) 

8.5  501  43 9 (9)  

0.432  

0.086  0.167  

Forest 
(2) 

01/04/16   
12:55  

23 
(87)_ 

10.4  553  46 6 (9)  0.074  0.150  

 320 

Following ICP alignment, the grayscale value of each thermally reconstructed 3D point 321 

was back-calculated to temperature (°C) from the 8-bit grayscale image using: 322 

 𝑇(𝑥,𝑦) = (𝐺𝐿(𝑥,𝑦) ∙ 𝑇𝑟𝑎𝑛𝑔𝑒) − 𝑇𝑚𝑖𝑛 1 

where T(x,y) is the calculated temperature of each point (x,y); GL(x,y) is the grey level of 323 

the point (x,y) in the point cloud, which is comprised of X,Y,Z and GL information at 324 

each point; Trange is the difference between maximum and minimum temperature in the 325 
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point cloud; and Tmin is the minimum temperature. Trange was pre-determined from the 326 

raw data files during initial conversion to grayscale images.  327 

.  328 

 329 

3.4. Aerial LiDAR 330 

LiDAR data over the Davos Laret site were collected in September 2010 using a Riegl 331 

LMS Q560 sensor from multiple helicopter flyovers at a nominal flying altitude of 700m 332 

for a total area of ~90km-2. The wavelength emitted was 1550 nm with pulse durations 333 

of 5 ns and up to 7 returns were detected per pulse for a maximum scan angle of 15. 334 

Post-processing yielded an average echo density of 36 pulses per m2
 of the flyover 335 

domain and 19 pulses per square meter for the last returns (shot density) within the 336 

domain area. LiDAR data were subsequently decimated to 0.5 horizontal resolution 337 

using classified ground returns.  338 

 339 

4. Results 340 

4.2. Single tree 341 

4.2.1. Geometric characterization 342 

In total, 139 RGB photographs and 249 thermal images of the single tree were used 343 

as input to SfM-MVS processing, of which 139 and 186 were aligned by PhotoScan. 344 

Remaining input thermal images were not aligned or used for 3D scene reconstruction, 345 

most likely due to a combination of factors which include the tree canopy appearing in 346 

peripheral portions of the image, where distortion effects are greatest, and poor image 347 

texture relative to the remaining images. In such instances, tie-point identification and 348 
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image matching become unviable, and these photographs are discarded from the 349 

remainder of the reconstruction workflow. A calibration procedure to correct for this 350 

distortion was carried out following Vidas et al. (2012), however it did not increase the 351 

number of images retained through the scene reconstruction. Inspection of RGB and 352 

thermal 3D point-clouds for the single tree revealed a consistent geometric 353 

correspondence between datasets and the tree (Figure 4a-c). Residual alignment 354 

errors were 0.016 m and 0.081 m for the RGB and thermal datasets, respectively, and 355 

indicate good internal consistency for point-cloud reconstruction and georegistration 356 

(Table 2). Measured positions of the GCPs around the base of the tree varied by 2.14 357 

m in the vertical (z) plane covering only 8% of the total vertical distance in the 3D 358 

scene of the tree (18 m). This limited elevation range does not appear to have had a 359 

detrimental effect on the accuracy of the vertical component of the 3D reconstruction 360 

and alignment; the mean cloud-to-cloud distance between RGB and thermal 361 

reconstructed 3D point-clouds was 0.046 m. No obvious systematic model doming or 362 

deformation effects were observed (James and Robson 2012). Both the RGB and 363 

thermal point-clouds reconstructed elements of 3D canopy structure across the full 364 

height of the tree. 3D point clusters generally corresponded to individual branches, or 365 

branch clusters, which were visible from the nadir view perspective of each imaging 366 

sensor.  367 

 368 
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 369 

Figure 4: North-south profile of the single tree: a. RGB image of single tree taken looking east; 370 
b. RGB point-cloud dataset; c. thermal point-cloud dataset before cloud-to-cloud filtering and 371 
d. thermal point-cloud dataset after cloud-to-cloud filtering.  372 

 373 

Occlusion of underlying canopy by skyward-facing branches largely accounted for 374 

intermittency of the 3D reconstruction across the full height and interior of the tree in 375 

both datasets (Figure 4b-c). The largest data gap, found on the western edge of the 376 

tree, is attributed to heavy shadowing from shortwave radiation at the time of data 377 

acquisition, when the sun was in the south-east. Such shading caused issues with key 378 

point identification, matching, and scene reconstruction due to the comparatively 379 

homogenous textural signature of the shaded area in RGB imagery. Similar errors 380 

were seen in the thermal point-cloud, where the lack of thermal variation, and therefore 381 

image texture and contrast, resulted in a gap in the thermal point-cloud corresponding 382 

to the same location in the RGB point-cloud.  383 

 384 
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4.2.2. Thermal point-cloud refinement  385 

RGB point-cloud data closely matched the physical structure of the single tree, 386 

particularly in the absence of points between the ground and base of the tree canopy, 387 

in agreement with real-world tree structure (Figure 4b; ~1526 m to 1528 m a.s.l.). The 388 

occlusion of the tree trunk from the perspective of a downward-facing camera meant 389 

that the SfM-MVS model was unable to reconstruct its position. Within the equivalent 390 

thermal data, however, the area between ~1526-1528 m contained numerous 3D 391 

points (Figure 4c). Additionally, there is a presence of thermal 3D points between 392 

branch clusters, which otherwise remain empty in the RGB 3D data (Figure 4c). 393 

A further inconsistency between RGB and thermal point-clouds was an increase in the 394 

number of points in the thermal point-cloud, between 1528-1530 m, which did not 395 

match the physical position of the lower tree branch clusters. On closer inspection, the 396 

thermal signature of these additional points had more in common with the surrounding 397 

snow-free ground surface, which generally had a higher temperature relative to the 398 

tree in areas exposed to direct sunlight, and a lower relative temperature in the 399 

shaded, north-western sector of the model. These incorrectly placed points could be 400 

attributed to a number of factors, such as the comparatively homogenous texture of 401 

the ground surface in the thermal imagery. A further cause of the incorrectly placed 402 

points could be the pixel footprint size, which is likely to have proved challenging for 403 

accurate depth reconstruction. This predominantly occurs because a single pixel in 404 

the thermal imagery encompasses elements of both canopy and the ground, leading 405 

to the different components being averaged into a single pixel. The result is the 406 

incorrect placement of these points in the vertical (z) plane and an artificially increased 407 

point density, especially in the lower portions of the thermal point-cloud. Additionally, 408 
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the field of view of both the RGB camera and the thermal imager are such that interior 409 

canopy detail often appears at the periphery of the input imagery, where the view 410 

perspective becomes increasingly oblique (assuming that the image has a nadir 411 

orientation) and where the magnitude of lens distortion increases. Scrutiny of the 412 

thermal point cloud of the standalone tree reveals that these incorrectly placed points 413 

are concentrated towards the interior of the lower canopy. It is feasible that 414 

inaccuracies in the estimated interior camera lens distortion parameters translate into 415 

poor positional accuracy for 3D points which are identified and matched across 416 

marginal areas of the input thermal imagery. 417 

In light of these results, the thermal point-cloud was therefore further refined by the 418 

inclusion of an additional post-processing step, whereby the RGB point-cloud was 419 

used to filter points from the coincident thermal data. RGB-to-thermal cloud-to-cloud 420 

(C2C) distances were calculated in CloudCompare software, and thermal points were 421 

iteratively retained or removed depending on their 3D position within a given Euclidean 422 

distance threshold of an RGB point. Reducing the threshold distance resulted in a 423 

linear reduction in the number of retained points, as well as a reduction in the overall 424 

mean and median cloud-to-cloud distance (Table 3; Figure 4). Importantly, even with 425 

the application of a coarse (0.50 m) C2C distance tolerance, the empty volume 426 

between the ground surface and base of the canopy was resolved in the thermal data 427 

(Figure 5). Further decreases in the C2C threshold distance from 50 cm down to 10cm 428 

modified the mean vertical temperature profile in the lower section of the model (red 429 

lines in Figure 5). This decrease reflected the removal of ground points (warmer) that 430 

were erroneously classified as tree points during SfM-MVS post-processing. The use 431 

of a 0.1 m threshold resulted in removal of up to ~50% of the thermal data points. 432 
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However, this resulted in no substantial modification to the vertical temperature profile 433 

in the highest two thirds of the tree (Figure 5).  434 

 435 

 436 

Figure 5: Point densities through filtering procedure using cloud-to-cloud distances between 437 
RGB and thermal points. 438 

  439 
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Table 3: Summary statistics for point cloud reduction following cloud-to-cloud distance 440 
thresholding.  441 

C2C threshold 
distance (m)  

n points  
% points 
retained  

Mean C2C 
distance (m)  

Median C2C 
distance (m)  

Raw  59,167  100  0.194  0.098  
0.50  52,807  89  0.121  0.083  
0.45  51,869  88  0.108  0.078  
0.40  50,733  86  0.108  0.078  
0.35  49,293  83  0.100  0.075  
0.30  47,747  81  0.093  0.072  
0.25  45,646  77  0.085  0.068  
0.20  42,434  72  0.074  0.062  
0.15  37,698  64  0.062  0.055  
0.10  30,077  51  0.046  0.043  

 442 

 443 

4.2.3. Thermal characterization 444 

Temperature profiles of the single tree are shown in Figure 6. Average air temperature 445 

during the data acquisition period, measured at a weather station located 2km up-446 

valley to the north-west, was 5.2°C. Tree and ground temperatures in the entire point-447 

cloud ranged from 0.3 to 20°C and were warmer in the lower third of the tree (1527-448 

1530m) compared to the upper two thirds. Vertical profiles show only a small number 449 

of points in the north and west (shaded) sectors of the 3D thermal model. Most points 450 

within the thermal point-clouds were located at the base and top of the tree, and along 451 

the south and east (sunny) sides.  452 

Division of the thermal point-cloud into its cardinal quadrants revealed differences in 453 

vertical temperature profiles between aspects (Figure 6c-f). Temperatures were 454 

highest in the lower third of the tree in the north, east and south profiles, and data from 455 

this region of the tree were missing in the west quadrant due to the self-shading. 456 
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Overall highest temperatures were recorded in the south and east quadrants where 457 

average temperatures reached up to 15°C, reflecting the direction of exposure of the 458 

tree to direct solar radiation. Temperatures in the north and west quadrants were 459 

comparatively lower. Above 1530 m (the upper two-thirds of the tree), vertical 460 

temperature profiles were relatively consistent between all four quadrants, and ranged 461 

between 7-8°C, on average 2°C above measured air temperature.  462 

 463 

 464 

Figure 6: East-west (a) and north-south (b) perspectives of thermal point-cloud demonstrating 465 
temperature distribution of the 3D tree reconstruction. Bottom panel (c-f) demonstrates 466 
temperature distribution with height in each of the four cardinal direction wedges. Red lines 467 
represent average temperature through the vertical profile.  468 

 469 
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Ground temperatures also differed between the four quadrants. In particular, the 470 

ground in the west quadrant was coldest, ranging between 0-10°C as a result of 471 

shading from the tree. The ground in the north was warmer, between 5-15°C, as a 472 

result of direct shortwave radiation earlier in the day when the direct shortwave 473 

radiation was closer to the east of the tree. The cloud-to-cloud filtering process 474 

appears to have removed all ground points within the east and south quadrants. On 475 

closer inspection of the raw C2C results, it appears that greater local C2C distances 476 

(up to 50 cm) are reported in the vicinity of the ground surface in these quadrants, 477 

implying weaker geometric correspondence between the dense RGB and thermal 3D 478 

datasets. Scrutiny of the RGB and thermal imagery for the single tree overflight reveals 479 

that fewer photographs of the lower portions of the tree are captured in these 480 

quadrants, which may have lowered the reconstruction accuracy. Such issues might 481 

be resolved with a revised flightplan that more equally captures the tree geometry, 482 

including the acquisition of additional, oblique imagery. 483 

 484 

4.3.  Forest stand 485 

4.3.1. Geometric and thermal characterization 486 

Two flights were carried out over the forest stand area on 1 April 2016 at 10:45 and 487 

12:55. Initial SfM-MVS reconstruction used the RGB images obtained during both 488 

flights in order to increase point-cloud density and reduce gaps in the point-cloud 489 

resulting from solar shading of canopy structures. Whilst incorporating images from 490 

multiple flights is appropriate for RGB imagery where the structure and appearance of 491 

a scene remains constant, separate thermal 3D point-clouds were generated for each 492 

of the two flights due to temporal evolution of canopy surface temperatures between 493 
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flights. SfM-MVS reconstruction yielded 16.8 million 3D points for the RGB photoset, 494 

and 206,500 and 148,300 3D points for the two thermal flights. By comparison, LiDAR 495 

data of the flight area yielded approximately 63,000 points, including ground returns, 496 

which were excluded from thermal and RGB datasets due to masking of the snow 497 

surface prior to point-cloud generation. The internal georeferencing error for the RGB 498 

forest flight data was 0.432 m, and sub-decimeter for the thermal data (Table 2). 499 

Residual errors for subsequent RGB-thermal ICP alignment were 0.167 m and 0.150 500 

m for thermal flight 1 and 2, respectively. It is noted that, whilst the internal 501 

georeferencing error for the RGB data is substantially higher than the equivalent 502 

thermal data, only 52% and 26% of the thermal photographs were successfully aligned 503 

during bundle adjustment in PhotoScan, whereas 100% of the RGB input photographs 504 

were aligned. Further, only 6 of 9 GCPs were successfully projected and used for 505 

georeferencing of the thermal dataset from the second UAV flight due to issues with 506 

high wind speeds, which precluded the capture of stable imagery in the south-eastern 507 

sector of the forest site. Without any independent data to verify the accuracy of the 508 

data, caution is advised in interpreting these metrics in a manner which suggests that 509 

the RGB data outperform the corresponding thermal data in terms of internal model 510 

consistency or accuracy. 511 

Comparison of RGB and thermal 3D point-clouds with equivalent LiDAR data over the 512 

flight area demonstrated a much greater point-cloud density of the RGB and thermal 513 

SfM-MVS data (Figure ). Even with 3D ground points removed from the RGB and 514 

thermal datasets, point densities for the clouds shown in Figure 7 were 35,254 and 515 

776 points per m-2, respectively, compared to 78 points per m-2 for the LiDAR point-516 

cloud. Trees in the north-east of the flight area were not present in the thermal point 517 
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cloud compared to the RGB and LiDAR point clouds. Despite differences in point-518 

cloud densities and lower areal coverage in the thermal point cloud, canopy structures 519 

and tree clusters were well represented in all three methods.  520 

 521 
 522 

 523 

Figure 7: Top-down view of the LiDAR, RGB and Thermal (Flight 1) point-clouds of the forest 524 
stand flight area. Snow/ground surface is masked out in all three point-clouds. Black lines 525 
indicate location of transects shown in Figure 8. 526 

 527 

Differences in overlap of the three point-clouds are shown in Figure , along the cross-528 

section shown in Figure 7. The upper canopy is particularly well represented by all 529 

three methods, although it is represented in greater detail in both the RGB and thermal 530 

point-clouds. Although sparser, the LiDAR point-cloud does not appear to 531 

misrepresent any element of the canopy structure compared to the RGB and thermal 532 

SfM-MVS point-clouds.  533 
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 534 

Figure 8: Cross-sections (Figure 7) of a 22 x 5 m swath of forest (south-north)at the Laret 535 
forest stand site produced from RGB SfM-MVS methods compared to LiDAR (a) and thermal 536 
SfM-MVS methods (b). Note horizontal scale exaggerated relative to vertical scale.  537 

 538 

4.3.2. Temporal characterization 539 

Repeat flights across the two-hour period on 1 April demonstrated increasing canopy 540 

temperatures between 10:45 and 12:55 (Figure  9). The maximum forest temperature 541 

during flight 1 was 17.5°C, which increased to 19.8°C during flight 2. Increased forest 542 

temperature corresponded to an increase in local air temperature between 8.5-10.4°C 543 

between the two flights. Furthermore, the crowns of the trees were uniformly warmer 544 

during flight 2 compared to flight 1. In particular, warming at the top of the canopy 545 

during flight 1 was concentrated along south-east-facing sides of the trees (similar to 546 
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the single tree), while canopy temperatures were relatively uniform around tree crowns 547 

in all directions during flight 2. These patterns accurately reflect the response of the 548 

canopy to increased exposure to direct shortwave radiation, particularly due to the 549 

increased solar elevation angle.  550 

 551 

 552 

Figure 9: Top-down view of the thermal point-clouds generated from Flight 1 and Flight 2 553 
colored by temperature. Dashed box indicates area over which temperatures were averaged 554 
for vertical profiles shown in Figure 10. Arrows indicate solar azimuth and direction of direct 555 
shortwave radiation. 556 

 557 

Two vertical profiles of average canopy temperatures (Figure 10) taken from 558 

overlapping areas of the point-clouds (dashed box outline in Figure 9) show cooler 559 

surface temperatures in the lower canopy compared to the upper canopy. Average 560 

canopy temperatures during flight 1 increased from 6.7-9.7°C in the lower 10 m, up to 561 

11.8°C at the top of the canopy. By comparison, surface temperatures during flight 2 562 

ranged between 9.9-12.3°C in the lower 10 m, increasing to 15.6°C at the top of the 563 

canopy. The vertical canopy temperature profiles show an overall canopy warming of 564 
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1-4°C between 10:45 and 12:55. Warming was greatest in the upper profile of the 565 

canopy, where increases in average tree crown temperature were approximately 4°C. 566 

Temperature increases in the lower 10 m of the canopy (relatively shaded) were 567 

between 1-2°C.  568 

 569 

 570 

Figure 10: Average vertical canopy temperature profile of each flight averaged across the 571 
overlapping area shown in Figure 9. Air temperature and incoming shortwave radiation from 572 
the weather station at the open site are shown and times of each flight are indicated by vertical 573 
lines.  574 

 575 

5. Discussion 576 

5.1. Generating 3D point-clouds of forest structures 577 

RGB and thermal point-clouds generated in this study further demonstrate the 578 

suitability of UAV-acquired RGB imagery combined with SfM-MVS processing 579 

methods for retrieving accurate models of forest canopy structures (Dandois and Ellis 580 

2013; Wallace et al. 2016). In particular, the high density of the RGB point-clouds of 581 

both the single tree and the forest stand, demonstrate an effective method for 582 
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characterizing conifer forest structures. At both field sites, the geometric 583 

characterization of tree structures from thermal SfM-MVS models was sufficiently 584 

detailed to permit the identification of individual branch clusters. 585 

Discrepancies in the number of 3D points in the RGB and thermal point clouds 586 

recovered during SfM-MVS processing are explained, in the first instance, as a 587 

function of the vastly different image resolutions; 4608 × 2592 pixels for the RGB 588 

sensor and 288 × 382 pixels for the thermal imager. The pixel density of the RGB 589 

sensor exceeds the thermal sensor by an order of magnitude, resulting in the 590 

identification of fewer image key points for a given pair of corresponding RGB and 591 

thermal images. It is likely, however, that the use of a higher resolution thermal 592 

imagery or a lower flying height would reduce these discrepancies.  593 

Of the 186 thermal images acquired during Flight 1, 249 (75%) aligned to form the 594 

thermal point cloud, compared to 100% of the RGB images being included in the RGB 595 

point clouds. This limited alignment of thermal images is likely a combination of two 596 

artifacts of the thermal imager. The first is simply due to the lower resolution of the 597 

camera in combination with the changing viewpoint as the UAV moves across the 598 

forested area. Trunks of trees are visible in the outer regions of images, however when 599 

the tree is in the center of the image the trunk is largely obscured from the imager, as 600 

at the single tree. The second explanation is also due to the changing angles of the 601 

viewpoint of the imager, which alters the area over which a single pixel averages for 602 

one temperature, thus changing the temperature of the object of interest between 603 

sequential images. These errors could be avoided through flying higher and using a 604 

camera with a higher pixel resolution or angular view.  605 
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Areal coverage of the thermal point clouds compared to the equivalent RGB point 606 

clouds was also smaller, particularly in the north-west of the flight area during flight 1 607 

and in the south-east of the flight area during flight 2. The RGB camera used here had 608 

a much greater field of view compared to the thermal camera, capturing a larger area 609 

of the forest. This allowed for calculation of more key points compared to the limited 610 

field of view of the thermal imager, particularly in the areas around the edge of the 611 

flight area where canopy features were in a smaller number of thermal images 612 

compared to the RGB images.  613 

SfM-MVS reconstruction of the single tree revealed the presence of incorrectly placed 614 

3D points in the thermal data. Closer inspection of the thermal signature of these 615 

incorrectly placed points revealed them to be associated with the ground surface 616 

(grass), which was warmer than the tree canopy. The abundance of incorrectly placed 617 

3D thermal points, or false positives, might be explained by the ’mixed pixel’ 618 

phenomenon, where a pixel incorporates the temperature both of the canopy and 619 

ground surface. The lower resolution of the thermal imager and resulting blurred edge 620 

definition of the tree structure in the thermal images remains a challenge for accurate 621 

depth reconstruction. Similarly, generation of false image matching parallaxes, 622 

resulting from slight displacement of image features because of wind-driven canopy 623 

movement, may be an additional factor. However, these effects were minimized by the 624 

simultaneous acquisition of RGB and thermal images. User-guided filtering of thermal 625 

point-cloud data using the coincident RGB 3D model proved to be a highly effective 626 

way of removing most incorrectly placed points, but inevitably it can also remove 627 

accurately placed thermal data. The combination of a high quality RGB camera, used 628 

coincidentally with the thermal camera can overcome some of the apparent issues 629 
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associated with using a lower resolution imager to capture thermal data and 630 

represents a substantial technological advancement. Furthermore, it is likely that 631 

future improvements in lightweight, survey grade thermal sensor technology, 632 

specifically sensor resolution and fidelity, will improve the robustness of 3D 633 

reconstruction.  634 

The high density of the RGB point-clouds, when compared to the LiDAR data over the 635 

same forest stand, represent an improvement on current methods for obtaining 636 

information on forest structures. Point-cloud densities between 20 and 67 points per 637 

m2 for LiDAR and SfM-derived datasets, respectively, have been presented in 638 

previous UAV-SfM-based studies of forest structures (e.g. Dandois and Ellis 2013), 639 

compared to 78 and 35,245 points m2 presented in this study, an increase in density 640 

of 452%. The increased point densities in this study are attributed to differences in 641 

above-canopy flying heights which were generally far lower than existing studies. A 642 

necessary trade-off exists between areal coverage, which is primarily a function of 643 

flying height and sensor view-shed, and point-cloud density or resolution. Increased 644 

areal coverage is achievable through increased UAV flying height and range, whilst 645 

preserving data densities and accuracies which are achievable by surveying at low 646 

altitudes is only possible through the use of increased image sensor resolution. 647 

Consequently, further work is required to fully explore the potential of areal upscaling 648 

from the scale of individual trees and small forest stands, to geometric and thermal 649 

characterization of entire forests and plantations. 650 

The LiDAR point-cloud information used in this study has previously been applied to 651 

the derivation of canopy structure metrics (Moeser et al. 2015a) and the development 652 

of a snow interception model (Moeser et al. 2015b). Further afield, LiDAR data of forest 653 
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structures have successfully been used for mapping landscape-scale conifer forest 654 

structures, improving on lower resolution satellite methods (Morsdorf et al. 2006; 655 

Solberg et al. 2009). The accuracy and resolution of RGB imagery point-clouds 656 

presented in this study compared to LiDAR suggest methods for mapping forest 657 

structures previously developed using LiDAR data can be suitably be applied using 658 

RGB point-clouds where LiDAR data are unavailable. In particular, the data acquisition 659 

time in this study (< 10 minutes) demonstrates the ease at which 3D canopy structure 660 

information can be obtained across forest stand scales. Specifically, the use of RGB 661 

point-clouds combined with the increased affordability and accessibility of UAV 662 

technologies are likely to make forest structure metrics such as effective leaf area 663 

index (Solberg et al. 2009) and fractional forest cover (Morsdorf et al. 2006) more 664 

straightforward to obtain in the future. 665 

 666 

5.2. Thermal analysis of forest canopies using remote sensing 667 

Canopy temperatures are less commonly measured than air temperatures, despite a 668 

strong relevance in radiation and biogeochemical cycles in forested environments. 669 

Previous studies have used ground-based IR imagery to capture canopy temperatures 670 

due to their relationship with meteorological variations such as air temperature and 671 

solar radiation (Howard and Stull 2013; Pomeroy et al. 2009). This study significantly 672 

advances the ability to remotely quantify spatial and temporal variations in forest 673 

canopy temperatures through the use of 3D models derived from coarse resolution 674 

thermal imagery. It builds upon the existing use of 2D mapping methods (e.g. Faye et 675 

al. 2016), which restricts post-analysis, interpretation and application to only the 676 

horizontal dimension. Additionally, it improves on existing research applications of 3D 677 



35 

 

thermal data which map 2D thermographic information onto RGB or LiDAR-derived 678 

3D topographic models (e.g. Luscombe et al. 2015; Nishar et al. 2016); however, such 679 

an approach is unsuitable for geometrically complex environments such as forests.  680 

3D thermal reconstruction of the single tree demonstrated both horizontal and vertical 681 

variations in surface temperatures. The model accurately captured warmer 682 

temperatures in the eastern and southern sectors of the tree, where it was exposed to 683 

direct solar heating, and cooler temperatures in the northern and western sectors. 684 

Additionally, warmest temperatures were found in the lower third of the tree, likely due 685 

to the increased surface area and heat retention capacity of the branches. Canopy 686 

temperatures decreased with height in all four quadrants of the tree, resulting in tree 687 

temperatures which were on average 2°C above the measured air temperature. The 688 

consistent reduction in canopy surface temperature with increasing height, regardless 689 

of direction of exposure to sunlight, can be explained by the small boundary layer 690 

resistance of conifer needles, which makes up an increasing proportion of the tree with 691 

increasing height. The low resistance (high conductance) to heat transfer by the 692 

needles lead to rapid exchange of sensible heat (Jarvis et al. 1976), combined with an 693 

increase in wind exposure with increasing height, reducing the average temperature 694 

of the upper tree compared to the lower tree which is comprised of more woody 695 

elements (trunk and branches) which retain heat more efficiently.  696 

Repeat flights demonstrated canopy temperature variations throughout the stand 697 

scale are strongly coupled to incoming shortwave radiation, although this has 698 

previously only been demonstrated through ground-based thermal imagery (Pomeroy 699 

et al. 2009; Webster et al. 2016). A lack of variation in canopy temperatures around 700 

tree crowns during the second flight over the forested area when compared to flight 1 701 
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demonstrated a more uniform exposure of the canopy crowns to direct heating by solar 702 

radiation as a result of increased solar angle between the two flights. Earlier in the 703 

morning, the canopy was only exposed to direct solar radiation in areas facing 704 

southeast. As the solar angle increases, tree crowns become increasingly exposed in 705 

all directions. This is particularly relevant along shaded sides of forest gaps or 706 

clearings and edges, as exposure to shortwave radiation from above and behind leads 707 

to warmer temperatures in the upper canopy compared to the lower canopy (Webster 708 

et al. submitted). Vertical profiles of average canopy temperature also imply that 709 

exposure to solar radiation has a stronger influence on vertical canopy temperature 710 

profiles in forested areas where the lower canopy is often shaded. An additional 711 

process influencing temperature distribution in canopies is that the irradiance to the 712 

lower canopy from the ground is typically less than the irradiance from the atmosphere 713 

to the upper canopy. These 3D results presented here demonstrate multiple layers in 714 

the vertical variation of the canopy energy balance.   715 

 716 

5.3. Wider applications of thermal imagery  717 

Airborne thermal imagery of the 30 × 30m forest site in this study revealed horizontal 718 

and vertical variation in canopy surface temperatures ranging from 1-20°C. The 719 

methods presented here therefore work to improve understanding of the sub-grid 720 

heterogeneity of canopy temperatures in relation to coarser scale satellite products. 721 

For example, satellite infrared remote sensing of surface temperatures is currently 722 

limited to 90 m pixel resolution (ASTER, Yamaguchi et al. 1998), often missing critical 723 

sub-grid scale temperature variations such as those demonstrated here. The methods 724 

presented here therefore increase the capacity to combine high spatial and temporal 725 
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resolution data to improve interpretation of satellite information across landscape 726 

scales. Extension of these localized methods to application at larger landscape scales 727 

can be facilitated through improved knowledge regarding the vertical canopy 728 

temperature profiles. These profiles can be integrated with satellite land surface 729 

temperature information that ultimately provides the average top of canopy 730 

temperature within each pixel. A known relationship between the temperatures of the 731 

upper and lower canopy can facilitate the use of canopy temperature in larger scale 732 

radiative models using airborne or satellite measurements as input variables. Applying 733 

calculated vertical temperature profiles to satellite information of canopy temperatures 734 

thus provides sub-canopy temperature information across larger spatial scales for 735 

input into local to regional to hemisphere scale land surface models.  736 

The methodology presented in this paper demonstrates the ability to capture 3D 737 

thermal information of forest canopy structure at the stand scale. These methods can 738 

be applied within a number of environmental applications, including energy balance 739 

modeling, particularly longwave radiation (Essery et al. 2008b), evapotranspiration 740 

prediction (Leinonen et al. 2006) and crop-stress detection (Berni et al. 2009). 741 

Additionally, these UAV imaging and post-processing techniques are equally 742 

applicable to enhance remote measurement of largely inaccessible physical 743 

environments, where 3D thermal data may be of use for advanced process analysis, 744 

such as  glacier surfaces (Bhardwaj et al. 2016) or areas of volcanic and geothermal 745 

activity (Mori et al. 2016; Nishar et al. 2016).  746 

 747 
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6. Conclusions 748 

Coincident thermal and RGB imagery from a UAV were used to produce 3D RGB and 749 

thermal models of standalone trees and forest stands. SfM-MVS methods were used 750 

to accurately recover 3D forest canopy thermal structure from thermal imagery. 751 

Although thermal imagery was lower in point density than coincident RGB images, 752 

thermal 3D point-clouds of both the standalone tree and forest site accurately 753 

reproduced complex upper-canopy structures. However, the coarse resolution of 754 

thermal imagery proved challenging for accurate depth reconstruction of 3D points in 755 

the lower forest canopy. These issues could be resolved through the combination of 756 

the high quality RGB point cloud and cloud-to-cloud filtering processes to remove 757 

incorrectly placed thermal points created through mixed pixels.  758 

RGB and thermal imagery from two UAV flights were acquired of a 30 × 30 m forest 759 

stand on a single morning during the snowmelt season. RGB and thermal point-cloud 760 

densities were 35,254 and 776 points per m-2, compared to 78 points per m-2 for a 761 

LiDAR dataset of the same area. Thermal point-clouds acquired from two repeat UAV 762 

surveys (10:45 and 12:55 on the same day) showed the response of canopy 763 

temperatures to increasing shortwave radiation. Warmer average and maximum 764 

temperatures were recorded during the second survey. Temperature distributions of 765 

tree crowns during the second survey revealed a more uniform temperature 766 

distribution and additional heating of shorter trees as a response to increased solar 767 

angle and penetration of shortwave radiation to lower regions of the canopy. Vertical 768 

temperature variations demonstrated cooler canopy temperatures in the lower profile 769 

of the forest stand due to shading by the surrounding canopy, compared to the 770 

standalone tree which was sun-lit along the entire vertical profile. The ability to quantify 771 
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3D surface temperatures of forest canopy structures at high spatial and temporal 772 

resolutions has important implications for atmospheric, hydrological and ecological 773 

modeling, and has wider applications for thermal measurement of further remote 774 

environmental landscapes. 775 
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List of figure captions 992 

Figure 1: Overview of the two field locations, showing a. relative location between the tree in 993 
Dischma Valley and the forest field site in Laret; b. aerial image of single tree in Dischma 994 
Valley; c. aerial image and outline of flight area over the forest field site in Laret; d. airborne 995 
LiDAR point-cloud data of forest field site in Laret showing canopy distribution and surface 996 
height. Aerial images and background images from © CNES, Spot Image, reproduced with 997 
permission from Swisstopo, NPOC (JA100118). 998 

 999 

Figure 2: a. DJI S1000 Octocopter in flight fitted with; b. gimbal with Optris PI450 imager (I), 1000 
NetBox (II) and Panasonic Lumix RGB camera (III); c. example of thermal ground control point; 1001 
d. example of airborne thermal image over forested area with ground control points circled.  1002 

 1003 

Figure 3: Data collection and SfM-MVS processing workflow for constructing georeferenced 1004 
3D point-clouds of forest structures from coincident RGB and thermal infrared imagery 1005 
acquired using a lightweight UAS. Steps colored in gray were applied exclusively to thermal 1006 
data. 1007 

 1008 

Figure 4: North-south profile of the single tree: a. RGB image of single tree taken looking east; 1009 
b. RGB point-cloud dataset; c. thermal point-cloud dataset before cloud-to-cloud filtering and 1010 
d. thermal point-cloud dataset after cloud-to-cloud filtering.  1011 

 1012 

Figure 5: Point densities through filtering procedure using cloud-to-cloud distances between 1013 
RGB and thermal points. 1014 

 1015 

Figure 6: East-west (a) and north-south (b) perspectives of thermal point-cloud demonstrating 1016 
temperature distribution of the 3D tree reconstruction. Bottom panel (c-f) demonstrates 1017 
temperature distribution with height in each of the four cardinal direction wedges. Red lines 1018 
represent average temperature through the vertical profile.  1019 

 1020 

Figure 7: Top-down view of the LiDAR, RGB and Thermal (Flight 1) point-clouds of the forest 1021 
stand flight area. Snow/ground surface is masked out in all three point-clouds. Black lines 1022 
indicate location of transects shown in Figure 8. 1023 

 1024 
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Figure 8: Cross-sections (Figure 7) of a 22 x 5 m swath of forest (south-north)at the Laret 1025 
forest stand site produced from RGB SfM-MVS methods compared to LiDAR (a) and thermal 1026 
SfM-MVS methods (b). Note horizontal scale exaggerated relative to vertical scale.  1027 

 1028 

Figure 9: Top-down view of the thermal point-clouds generated from Flight 1 and Flight 2 1029 
colored by temperature. Dashed box indicates area over which temperatures were averaged 1030 
for vertical profiles shown in Figure 10. Arrows indicate solar azimuth and direction of direct 1031 
shortwave radiation. 1032 

 1033 

Figure 10: Average vertical canopy temperature profile of each flight averaged across the 1034 
overlapping area shown in Figure 9. Air temperature and incoming shortwave radiation from 1035 
the weather station at the open site are shown and times of each flight are indicated by vertical 1036 
lines.  1037 

 1038 


