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Abstract

Early detection of malignant melanoma skin cancer is crucial for treating the disease and saving lives. Many
computerized techniques have been reported in the literature to diagnose and classify the disease with satis-
factory skin cancer detection performance. However, reducing the false detection rate is still challenging and
preoccupying because false positives trigger the alarm and require intervention by an expert pathologist for
further examination and screening. In this paper, an automatic skin cancer diagnosis system that combines
different textural and color features is proposed. New textural and color features are used in a bag-of-features
approach for efficient and accurate detection. We particularly claim that the Histogram of Gradients (HG)
and the Histogram of Lines (HL) are more suitable for the analysis and classification of dermoscopic and
standard skin images than the conventional Histogram of Oriented Gradient (HOG) and the Histogram of
Oriented Lines (HOL), respectively. The HG and HL are bagged separately using a codebook for each and
then combined with other bagged color vector angles and Zernike moments to exploit the color information.
The overall system has been assessed through intensive experiments using different classifiers on a dermo-
scopic image dataset and another standard dataset. Experimental results have shown the superiority of the
proposed system over state-of-the-art techniques.

Keywords: Malignant melanoma, skin cancer diagnosis, dermoscopic images, standard skin images, textural
and color features.

1. Introduction

Malignant melanoma is one of the most aggres-
sive form of skin cancer and its incidence has been
rapidly increasing over the last few decades, caus-
ing the majority of deaths related to skin cancer (Ko-
rotkov and Garcia, 2012; Silveira et al., 2009). For-
tunately, if melanoma skin cancer is detected at its
early stages, it can be curative for the patient. How-
ever, distinguishing melanoma in its early stages
from other pigmented skin lesions is still challeng-
ing. Many techniques have been used to predict and
classify melanoma skin cancer. Image processing
tools for skin cancer detection usually require pre-
processing operations for enhancing images and seg-
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menting the regions of interest to extract efficient
features. Dermoscopic and standard images captured
from skin usually have some noisy artifacts such as
applied oil and hair and this should be removed prior
to segmentation. In this context, Dull Razor medi-
cal software was first developed by Lee et al. (1997)
to remove hairs from pigmented areas. However, the
system has been criticized for disrupting the normal
skin pattern over the area covered by the hairs (She
et al., 2006). The fast median filtering was later
adopted to remove noise from the acquired skin im-
ages (Tanaka et al., 2004). In (Kiani and Sharafat,
2011), an improved version of the Dull Razor med-
ical software, called E-shaver, has been proposed.
The technique mainly enhances hair detection and
removals by identifying light-colored hairs in addi-
tion to dark hairs. Barata et al. (2012) proposed two
important steps for reflective artifacts and hair detec-
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tion and removals using a bank of directional filters.
Once a skin lesion image is enhanced via artifacts
and hair removal techniques, the lesion area is seg-
mented (Lee and Chen, 2015). Many segmentation
techniques have been developed in the literature for
melanoma skin cancer diagnosis in dermoscopic im-
ages (Silveira et al., 2009). Among these techniques,
the region-based approach selects a set of seed points
and from each point a region grows up if the neigh-
bouring pixels have similar properties to that of the
seed point. Region growing often generates irregular
boundaries and small holes (Zhu and Yuille, 1996). It
also has some drawbacks such as sensitivity to noise
and often results in over segmentation (Tobias and
Seara, 2002). In (Nock and Nielsen, 2004), a statis-
tical region merging (SRM) algorithm has been pro-
posed.
One of the common features used by dermatologists
for diagnosing melanoma skin cancer is the rule-
based approach, called ABCD, and based on mor-
phological analysis of lesions in dermoscopic im-
ages. This is used to distinguish between melanoma
skin cancer and non melanomas (Nachbar et al.,
1994). It is a medical diagnostic method that is
based on four criteria, i.e., asymmetry, border ir-
regularity, color variegation, and different structure.
The 7-point checklist is another medical diagnostic
method that is widely used by researchers and is
based on a set of different characteristics depend-
ing on color, shape, and texture (Argenziano et al.,
1998). These features can be categorized into color
and texture features. In (Barata et al., 2014a), the
authors investigated the role of color and texture fea-
tures for skin melanoma cancer detection and con-
cluded that color features are more efficient than tex-
ture in dermoscopic images. They also showed that
the features which are locally extracted from the im-
ages bring more information about the lesion than
global features. In (Barata et al., 2014b), the authors
demonstrated, via experiments, that color descriptors
deliver better performance in detecting melanoma
skin lesions than texture descriptors. The authors
in (Barata et al., 2012) adopted a set of directional
filters and a connected component analysis to extract
five different features for pigment network detection
in dermoscopic images. In (Barata et al., 2013),
the role of key-point sampling in a bag of features

approach was investigated. The authors suggested
that performance of the system can be influenced
by the number of detected key-points. In (Barata
et al., 2015), color constancy has been explored to
overcome the problem of changes that may occur
during the skin image acquisition process. The au-
thors in (Riaz et al., 2014) proposed a combination
of texture and color features for the classification of
melanoma and non-melanoma skin images. A vari-
ation of the local binary patterns (LBP) was used
for the texture features to extract scale adaptive pat-
terns. As for the color information, the histograms
of the HSV (Hue, Saturation, Value) color space was
adopted. More recently, Ruela et al. (2015) have ex-
plored the importance of shape and symmetry fea-
tures in Melanoma diagnosis in order to determine
the type of features that play a crucial role in clas-
sification. In (Abuzaghleh et al., 2015), the authors
proposed a combination of Lesion Variation Pattern
Features (LVPF) with some extracted shape, color
and texture features including the pigment network
feature set, the lesion shape feature, the lesion ori-
entation feature, the lesion margin feature, the lesion
intensity pattern feature, and the lesion variation pat-
tern feature. In (Vasconcelos et al., 2015), color fea-
tures have been derived from the ABCD rule where
the authors proposed a clustering approach to ad-
just the system to different datasets and image types.
In (Kruk et al., 2015), different texture and statisti-
cal features were adopted, including the numerical
descriptors based on the Kolmogorov-Smirnov (KS)
statistical distance, the classical Haralick descriptors
and fractal texture analysis-based descriptors. In (Gi-
otis et al., 2015), physician annotations for skin le-
sions, referred to as visual diagnostic attributes, were
combined with lesion color and lesion texture for
melanoma skin detection in non-dermoscopic im-
ages. Very recently, three types of features have been
used in (Chakravorty et al., 2016), namely, geome-
try features, color features, and finally structural fea-
tures. More recently, the authors in (Oliveira et al.,
2016) adopted asymmetry, border, color and texture
features followed by an SVM classifier for the clas-
sification of pigmented skin lesions in macroscopic
(standard) images.

In this paper, an automatic skin cancer diagnosis
system that combines different textural and color fea-
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tures is proposed. New textural and color features are
introduced in a bag of features approach for efficient
and accurate skin cancer detection. We particularly
claim that the Histogram of Gradients (HG) and the
Histogram of Lines (HL) are more suitable for the
analysis and classification of dermoscopic and stan-
dard skin images than the conventional Histogram
of Oriented Gradient (HOG) and the Histogram of
Oriented Lines (HOL), respectively. This is because
the orientation of melanoma edges and texture is
not a discriminating feature when compared to non
melanoma lesions. Therefore, the use of edge and
line orientation in skin images reduces the inter class
dissimilarity, and this causes an adversary effect on
classification. The HG and HL are bagged sepa-
rately using a codebook for each and then combined
with other bagged Color Vector Angles (CVA) and
Zernike moments to exploit the color information.
Experimental results demonstrate the efficiency of
the proposed texture and color features as well as the
superiority of the overall system over state-of-the-
art melanoma skin cancer detection techniques. The
rest of the paper is organized as follows. Section 2
describes the proposed system and the features ex-
tracted whereas section 3 provides a discussion of ex-
perimental results obtained. Conclusions are drawn
in section 4.

2. Proposed system

The proposed system consists of six main stages at
the training phase, namely: preprocessing, key-point
detection, segmentation, patch extraction and selec-
tion (region of interest), feature extraction, codebook
generation, histogram building, features concatena-
tion, and classification. Fig. 1 illustrates the pro-
posed approach.

2.1. Pre-processing

For efficient feature extraction, a process of image
enhancement is first conducted. The reason for this
is that the original acquired images may have some
air bubbles and artifacts caused by gel applied be-
fore the capture of the images in addition to hairs
and other noise. The same procedures that have been
implemented in (Alfed et al., 2015) which is based
on method proposed by Barata et al. (2012) which
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Figure 1: The training phase of the proposed system

consists of detecting and removing two undesirable
patterns: reflective artifacts and hair. To detect ar-
tifacts reflection, a simple thresholding algorithm is
adopted where every pixel with a certain brightness
in the image is compared against its neighbourhood.
If the pixel of interest is distinguished from its neigh-
bourhood with a clearly larger luminance, the pixel
is said to be an artifact reflection. Once artifacts are
detected, an inpainting operation is applied accord-
ingly. Fig. 2 illustrates the process of converting the
original color image (a) into a grey-scale image (b)
and then removal of artifacts is obtained in (c).

(a) (b) (c)

Figure 2: Pre-processing for artifacts removal; (a):original im-
age, (b):grey-scale image, (c ):after artifacts removal

Hair detection and removal is another big chal-
lenge especially when hair lines are not accurately
detected. The directional Gabor filters are first ap-
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plied and then followed by finding the local max-
imum at each pixel location. The parameters of
the Gaussian filters used here have been adopted
from (Barata et al., 2012). The hair detection algo-
rithm uses a bank of 64 directional filters to perform
the detection. Again, once hair is detected, an in-
painting operation is applied on the corresponding
area. Fig. 3 illustrates hair detection and removal us-
ing the directional Gabor filers.

(a) (b) (c)

Figure 3: Pre-processing for artefacts and hair removal; (a):
original image, (b): blue component image, (c ): after hair de-
tection and removal

2.2. Key-points detection
Lowe (2004) presented an efficient method for de-

tecting key points from images that are invariant to
image scale and rotation to perform reliable match-
ing between different views of an object. The pro-
posed Lowe’s approach was named the Scale In-
variant Feature Transform (SIFT). The SIFT method
can be used for transforming image data into scale-
invariant coordinates relative to local features. It
generates a good number of features over the whole
range of scales and locations that fully describe the
image (Lowe, 1999). Cascade filtering is widely
used for Key-points detection. It uses efficient algo-
rithms to identify the locations of the feature-point
candidates, subsequently; these candidates are sub-
jected to further analysis. Thus, searching for stable
key-points through all continuous possible scales is
an important step to determine the locations, which
are known as scale invariant features. First, denote
by L(x, y, σ) the convolution of an image I(x, y) with
a Gaussian kernel G(x, y, σ) at scale SIGMA as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

where ∗ denotes the convolution process and the
Gaussian operator is defined by:

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2
(2)

With the standard deviation σ of the Gaussian distri-
bution. Lowe proposed searching for the scale-space
extrema in a difference-of-Gaussian function (DoG)
to detect stable key-point locations efficiently. DoG
can be computed by finding the differences of the ad-
jacent scales of image I and separated by a constant
multiplicative factor k which is defined as:

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) (3)

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (4)

The detection of local extrema in the DoG image can
be obtained by comparing each sample pixel to its
26 neighbours: 8 at the same image scale and 9 pix-
els at the above and below immediately scales (see
Fig. 4). If the pixel value is the maximum or mini-
mum among all compared pixels, it is selected as a
candidate key-point.

Figure 4: Key-point detection, Copyright OpenCV-Python

Once candidate key points are detected, the key
points with low contrast are discarded to maintain
only stable points. This is performed by comparing
the second-order Taylor expansion of the DoG at the
corresponding key points location against a certain
threshold.

2.3. Segmentation

In this work, it is meant by segmentation the detec-
tion of the lesion area in a skin image. Here, the Sta-
tistical Region Merging (SRM) algorithm has been
adopted. This is an unsupervised learning approach
for border detection proposed by Nock and Nielsen
(2004). This method has become well known and
is widely used in the segmentation process due to
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its efficiency, simplicity, and accurate performance
without the use of quantization or colour space trans-
formations. The SRM algorithm is used to evaluate
the pixel values within a regional area and grouped
them based on homogeneous properties attaining a
smaller list. Two important components that to de-
fine this algorithm are merging (test) and order in
merging. It basically accumulates couples of adja-
cent pixels in the image I to be in one set S I . These
couples are then sorted in an ascending order of a
real function f(p, p′), with p and p′ being pixels of I
and traversing this order only once. The current re-
gion to which p belongs to, is taken as the test. Then
the R(p) and R(p′) are merged if the corresponding
function f returns true. Fig. 5 illustrates skin lesion
detection from a dermoscopic image.

Figure 5: Image lesion detection (ROI). First column: Original
images. Second column: Skin lesion.

2.4. Patches extraction and selection
In this section, the patches are extracted based on

detected key-points. Each of these key-points is to be
considered as the center of a candidate square patch.
The selection of only the patches with areas of more
than 50% inside the segmented lesion is performed.
The selected patches that are extracted from the en-
hanced image have been used for the next step of ex-
tracting local features.

2.5. Feature extraction
In this work, a number of efficient features have

been extracted from each selected patch in order to
describe skin lesions efficiently. This consists of the
HG, HL, CVA, and the 3rd order Zernike moments.
As will be demonstrated later, HG and HL outper-
form the conventional HOG and HOL, respectively.

2.5.1. Histogram of Gradients (HG)
Lowe (2004) has first used a variant of the his-

togram of oriented gradients (HOG) as a descriptor
with orientation alignment. Dalal and Triggs (2005)

later proposed the HOG descriptor for pedestrian
detection. This has then been widely applied in
object detection and image recognition applications.
The rational behind the HOG descriptor is that local
features in an image can be described by the dis-
tribution of intensity gradients and edge directions.
In this work, however, we ignore the orientation of
edges and texture and propose to use the histogram
of gradients for each selected patch. The idea is
basically to compute the gradient magnitude m(x, y)
for each patch as

∂xI = I(x + 1, y) − I(x − 1, y) (5)

∂yI = I(x, y + 1) − I(x, y − 1) (6)

m(x, y) =

√
(∂xI)2 + (∂yI)2 (7)

Recall that a skin image is divided into a number
of patches. Each patch can be described by a HG
accordingly where the boundaries used to calculate
the histograms are determined by the minimum and
maximum values of all the gradient magnitudes of
the image. Then, each HG is L2-normalized. We
emphasize here that the gradient orientation is ne-
glected because it does not bring any useful infor-
mation on dermoscopic and standard skin images.
Indeed, regardless of the lesion type and class, its
gradient orientation cannot be discriminative as illus-
trated by Fig. 6 and Fig. 7 (see third column), respec-
tively. As a result, the use of the gradient orientation
may reduce the inter class dissimilarity and, hence,
deteriorate the classification performance.

Figure 6: Gradient magnitude and orientation for normal and
abnormal dermoscopic images. First row: Normal images. Sec-
ond row: Abnormal images. First column: Original image.
Second column: Gradient magnitude. Third column: Gradient
orientation.
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Figure 7: Gradient magnitude and orientation for normal and
abnormal standard skin images. First row: Normal images.
Second row: Abnormal images. First column: Original image.
Second column: Gradient magnitude. Third column: Gradient
orientation.

On the other hand, the gradient magnitude can dis-
criminate normal lesions from abnormal ones in the
sense that skin cancer lesions are less textured than
normal lesions (see the second column of Fig. 6 and
Fig. 7). In Fig. 8, the HOG and HG of a block of
melanoma and non melanoma lesion are illustrated.
The corresponding Chi-square measures between the
histograms of melanoma and non melanoma blocks
are depicted in Table 1 for both HG and HOG. As can
be seen, the dissimilarity with HG is more significant
than that with HOG.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

Figure 8: HOG and HG for normal and abnormal dermoscopic
images. First row: Normal image. Second row: Abnormal
image. First column: HOG. Second column: HG.

Table 1: Difference of HOG and HG between a skin cancer le-
sion and another normal lesion in terms of the Chi-square mea-
sure.

Histogram HOG HG
Chi-square 0.34 0.45

2.5.2. Histogram of Lines (HL)

The Histogram of Oriented Lines (HOL) was ini-
tially adopted in (Jia et al., 2014) for palm-print iden-
tification. It basically uses the same approach as the
HOG but computes the directed lines in the image
instead of gradients. Practically, the summation of
image pixels over a certain set of lines can be ob-
tained via the finite Radon transform (FRAT) (Do
and Vetterli, 2003). Indeed, in a textured image, a
line can be detected by the FRAT from the neighbor-
hood of each pixel in a small local area. However,
because the FRAT treats the input image as a peri-
odic signal, Huang et al. (2008) proposed a Modified
Finite Radon transform (MFRAT) to highlight line
patterns effectively through a filtering-like process.
The authors of (Jia et al., 2014) used the MFRAT im-
age to generate a HOL descriptor for palm-prints by
adopting the same steps of the HOG descriptor. One
beneficial property of the HOL is that it has good in-
variance to changes of illumination than the HOG.
Moreover, the HOL is robust against transformations
because slight translations and rotations lead to only
small histogram value changes (Jia et al., 2014).

The MFRAT of a real function f (x,y) on the finite
grid Z2

p centered at (x0, y0) is defined as

r(Lk(x0, y0)) =
∑

x,yεLk

f (x, y) (8)

where f (x, y) is the pixel value located in (x, y) and
Lk denotes the set of points that make up a line on
the lattice Z2

p, which means that:

Lk(x0, y0) = {(x, y) : y = k(x−x0)+y0, (x, y)εZ2
p} (9)

where (x0, y0) denotes the centre point of the lattice
Z2

p and k is the corresponding slope of Lk. If the cen-
tre of lattice Z2

p moves over an image pixel by pixel
(or pixels by pixels), the energies and directions of
all pixels are calculated. Two new images, direction
and magnitude images respectively can be created,
if the values of all pixels for an image I(x, y) of size
n×m are replaced by their directions and energies. In
this work, we compute the energy function for each
pixel at (x0, y0) as

E(x0, y0) = min(r(Lk(x0, y0)) (10)
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The equation below show how the new energy im-
ages can be created (Huang et al., 2008):

FE =

∣∣∣∣∣∣∣∣∣∣∣
E(1, 1) E(1, 2) ... E(1,m)
E(2, 1) E(2, 2) ... E(2,m)
... ... ... ...

E(n, 1) E(n, 2) ... E(n,m)

∣∣∣∣∣∣∣∣∣∣∣ , (11)

where FE is the energy matrix. The same steps for
computing the histogram of gradients will be used
here for computing the histogram of lines, denoted
by HL. The HL extracted from each patch is adopted
as a feature vector instead of HOL. Note that the line
orientation is neglected because it does not bring any
useful information on dermoscopic and standard skin
images as discussed earlier in section 2.5.1. Obvi-
ously, as can be seen in Fig. 9 the dissimilarity with
HL is better than that with HOL for normal and ab-
normal images.
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Figure 9: HOL and HL for normal and abnormal dermoscopic
images. First row: Normal image. Second row: Abnormal
image. First column: HOL. Second column: HL.

Furthermore, the analysis of the two previous le-
sions using the Chi-Square measure has been in-
cluded in Table 2. As shown, the dissimilarity with
HL is more significant than that with HOL.

Table 2: Difference of HOL and HL between a skin cancer le-
sion and another normal lesion in terms of the Chi-square mea-
sure.

Histogram HOL HL
Chi-square 0.31 0.55

2.5.3. Color vector angle (CVA)
Vector angle is effective in evaluating color con-

trast and can be used for extracting color features.
Color Vector Angles (CVA) have been widely used
in edge detection, image hashing and image re-
trieval (Tang et al., 2014). CVA is used for identify-
ing color edges because it is insensitive to variations
in intensity while being sensitive to differences in
hue and saturation (Dony and Wesolkowski, 1999).
In this work, CVA is adopted in extracting color fea-
tures from dermoscopic and standard skin images.
As angle calculation needs two colors, a reference
color is generated from Pre f = [Rre f ,Gre f , Bre f ]T ,
where Rre f , Gre f and Bre f are the means of the
red, green and blue components of all pixels. There-
fore, for each pixel, the color vector angle between
its RGB vector and Pre f is calculated. The advan-
tage of color vector angle is attributed to its sensi-
tivity to hue differences. Let P1 = [R1,G1, B1]T and
P2 = [R2,G2, B2]T be the vectors of two colors. The
angle ∆ between two pixels P1 and P2 can be com-
puted by

∆ = arcsin


1 −

(
PT

1 P2

)2

PT
1 P1PT

2 P2


1
2
 (12)

where arcsin(.) is the operation arcsin. Once a ma-
trix of angles ∆ is extracted from an image patch, a
histogram is constructed using a certain number of
bins. This constitutes the feature vector correspond-
ing to the CVA.

2.5.4. Zernike moments
Zernike moments have been used in shape-based

image retrieval and edge detection as they are essen-
tially retrieved from geometric moments by replac-
ing the conventional transform kernel with orthog-
onal Zernike polynomials (Khotanzad and Hong,
1990). In general, orthogonal moments are bet-
ter than other types of moments in terms of in-
formation redundancy and image representation and
they have important advantages such as the rota-
tional invariance, robustness to noise and expres-
sion efficiency (Zhao et al., 2013). In fact, because
Zernike polynomials are orthogonal to each other,
Zernike moments can represent the properties of an
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image with no redundancy or overlap of information.
Therefore, a skin lesion can be comprehensively de-
scribed by the Zernike moments. Zernike Moments
(ZM) with different orders have been implemented in
this work according to the following equation. The
best performance is obtained when using the 3rd or-
der moment, and therefore it has been used here.
Zernike Moments are defined as:

Zα,β =
α + 1
π

∑
(p,θ)ε unit disk

∑
I (p, θ) V∗α,β (p, θ) (13)

where Vα,β(p, θ) is a Zernike polynomial of order α
and repetition β and the symbol ∗ denotes the com-
plex conjugate. The form of these polynomials is
given as (Zhao et al., 2013)

Vα,β (p, θ) = Rα,β (p) e jβθ (14)

where α is either a positive integer or zero and β
is subject to the constraint that α − |β| is even, and
0 ≤ |β| ≤ α, and Rα,β (p) are the radial polynomi-
als (Zhao et al., 2013). Table 3 lists for each or-
der α the corresponding number of moments which
were experimentally tested. Five Zernike moments
at the third order are extracted from each color plane
of a patch in the RGB color representation. The re-
spective set of features consists of the L2-normalized
fifteen Zernike moments (e.g. five from each color
channel).

Table 3: List of Zernike moments up to order three
α Moments No. of moments
1 Z1,1 1
2 Z2,0,Z2,2 2
3 Z3,1,Z3,3 2

2.6. Codebook generation
At the training stage, a large number of feature

vectors, where each is extracted from a patch of
a training image, are used to generate a codebook.
This will then serve as a dictionary to represent each
test image as a histogram since each patch corre-
sponds to a codeword. Three codebooks have been
generated for each type of features, i.e. HG, HL, and
CVA+ZM. The first codebook is for HG features, the
second one is for the HL features, and the third code-
book is generated using a concatenation of CVA and

the 3rd order Zernike Moments (ZM). The K-means
method is adopted in this work for generating the
centroids (codewords) in each codebook. The idea
of codebook generation is that each feature vector
extracted from a patch of any training image is used
to form a codebook via K-means with a certain num-
ber of centroids (also called codewords).

2.7. Building histograms and concatenation

Once the codebooks are generated, each patch of
an image is assigned a label corresponding to the
closest centroid according to the Euclidean distance.
For each codebook, the image is described by the
frequency of labels in the form of a histogram. As
mentioned earlier, this applies to the three types of
features. Therefore, the final descriptor Fd is a con-
catenation of three histograms as

Fd = [CHG,CHL,CCVA+ZM] (15)

where CHG, CHL, and CCVA+ZM represent the his-
togram of gradients, the histogram of lines, and the
histogram of CVA and ZM corresponding to their re-
spective features, accordingly.

2.8. Classification

Given a number of descriptors, Fd, obtained from
medically annotated images, a binary classifier is
trained on two classes, i.e., melanoma and non
melanoma.
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Once trained, the classifier can be used for
melanoma skin cancer diagnosis. Once the code-
books are generated and the classifier is trained, the
testing phase follows the same steps as shown in
Fig. 10. When a test image is presented to the sys-
tem, it is first subjected to the pre-processing stage,
segmentation, path extraction and selection, and fea-
ture extraction prior to the obtention of the descriptor
via the constructed codebooks. The descriptor is then
presented to the trained classifier in order to detect
the presence of melanoma skin cancer.

3. Experimental results

In our experiments, five-fold cross-validation
is carried out for training and testing the pro-
posed system. A dataset of 200 medically an-
notated dermoscopic images (40 melanomas and
160 non-melanomas) with a truth table obtained
from the database of the Hospital Pedro Hispano
(HPH) (Mendonc et al., 2015) has been used here
for classification purposes. The system has also
been tested on the Dermofit database where 236 stan-
dard images were used (76 melanomas and 160 non-
melanomas). This has been obtained from the Uni-
versity of Edinburgh (Ballerini et al., 2013). Unless
otherwise stated, the setting used in our experiments
for the process of feature and descriptor extraction is
listed in Table 4.

Table 4: Parameters setting of the system
Features Parameter Value

codebook size 100
CVA patch size 30 × 30

bins per patch 15
codebook size 100

ZM patch size 30 × 30
moments per patch 15

codebook size 100
HG patch size 120 × 120

bins per patch 15
codebook size 100

HL patch size 120 × 120
bins per patch 15

It is worth mentioning that only the patches whose
area covers more than 50% of the lesion were se-
lected for feature extraction. The measures used in
our experiments consist of the False Positive rate

(FP), the False Negative rate (FN), Sensitivity (SE),
Specificity (SP), and Accuracy (Acc).

3.1. System analysis

In the first set of experiments, the combination of
color moments and color histograms, as proposed
in (Barata et al., 2014a,b), have been assessed in the
bag of features approach as opposed to our combined
CVA+ZM features. This is to illustrate the contribu-
tion of the proposed color features and Zernike mo-
ments. To this end, three different classifiers were
used, namely the SVM, AdaBoost, and an Artificial
Neural Network (ANN) with 120 neurons in the hid-
den layer and the Radial Basis Function (RBF) as an
activation function. The results on the dermoscopy
HPH dataset are depicted in Tables 5 and 6.

Table 5: Comparisons of color features
CRGB+M COpp+M

FN FP SE% SP% FN FP SE% SP%
SVM 0.21 0.35 78.75 65.33 0.16 0.31 84.29 69.21
AdaBoost 0.14 0.39 86.26 60.67 0.11 0.35 89.36 64.62
ANN (RBF) 0.11 0.28 89.45 71.89 0.09 0.29 91.39 70.51

Table 6: Comparisons of color features
CCVA+ZM

FN FP SE% SP%
SVM 0.15 0.32 85 68.39
AdaBoost 0.09 0.33 90.96 67.29
ANN (RBF) 0.06 0.14 93.73 86.29

As can be seen, the proposed CVA+ZM features
appear more powerful than the conventional combi-
nation of color histograms (using the Opponent color
model) and color moments (using the first, second
and third order statistical moments). Next, the per-
formance of the Histogram of Gradients (HG) and
the Histogram of Lines (HL) is evaluated in compar-
ison to the HOG and HOL, respectively on the same
dataset. This is to verify our claim on the negative af-
fect of texture and edge orientation in the bag of fea-
tures approach. Note that the orientation of the gra-
dient was used in exiting techniques such as (Barata
et al., 2014a,b; Alfed et al., 2016). The classification
results are shown in Tables 7 and 8, respectively.
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Table 7: Comparisons of HOG and HG
CHOG CHG

FN FP SE% SP% FN FP SE% SP%
SVM 0.15 0.30 84.93 70.17 0.15 0.23 85.05 76.56
AdaBoost 0.08 0.34 91.99 66.29 0.09 0.27 91.34 73.29
ANN (RBF) 0.06 0.16 93.84 83.83 0.05 0.15 94.65 84.6

Table 8: Comparisons of HOL and HL
CHOL CHL

FN FP SE% SP% FN FP SE% SP%
SVM 0.15 0.26 84.65 74.17 0.12 0.26 88.26 74.24
AdaBoost 0.08 0.31 92.29 68.56 0.07 0.33 93.15 67.24
ANN (RBF) 0.04 0.19 95.65 80.67 0.05 0.16 95.15 84.11

It is clear that the orientation of gradients and lines
in HOG and HOL, respectively, decreases the perfor-
mance when compared to HG and HL. This can also
be noticed in Table 9 where the HOG was combined
with HOL and compared to the other combination of
HG and HL. Interestingly, one can observe that the
combination of HG and HL enhances the accuracy.

Table 9: Combination of texture features
[CHOG,CHOL] [CHG,CHL]

FN FP SE% SP% FN FP SE% SP%
SVM 0.1 0.22 90.43 77.56 0.08 0.23 92.41 77
AdaBoost 0.07 0.18 93.22 82.1 0.04 0.18 95.6 82.43
ANN (RBF) 0.04 0.1 95.76 90.14 0.02 0.08 97.5 91.51

To gauge the performance of the complete system,
the previously assessed features, i.e., CVA+ZM, HG
and HL are combined as proposed in (15). The cor-
responding results are depicted in Table 10 where a
combination of conventional texture and color fea-
tures is also considered.

Table 10: Combinations of texture and color features
[CHOG,CHOL,COpp+M] [CHG,CHL,CCVA+ZM]

FN FP SE% SP% FN FP SE% SP%
SVM 0.12 0.28 88.12 72.39 0.02 0.06 97.6 93.96
AdaBoost 0.06 0.37 93.53 62.83 0.01 0.04 98.8 96.18
ANN (RBF) 0.07 0.15 93.19 85.5 0.01 0.02 99.41 98.18

Obviously, the proposed combination of features
significantly outperforms the competing one. This is
adopted in the rest of the paper for further analysis
and comparisons with state-of-the-art systems.

3.2. Comparison with existing systems
For comparison purposes, the authors have repro-

duced a number of melanoma skin cancer detec-
tion systems that used the bag of features approach,

in particular (Barata et al., 2014a), (Barata et al.,
2014b), (Alfed et al., 2015) and (Alfed et al., 2016).
Furthermore, since the HPH dataset has been widely
used in the literature with the same settings, we have
collected the results of other related systems as re-
ported in their original papers on 200 dermoscopy
images. The reported techniques are listed in Ta-
ble 11.

Table 11: List of acronyms used for describing existing tech-
niques and strategies

Existing techniques Acronym
Pigment Network and Bank of directional Filters PNBF (Barata et al., 2012)
Sparse key-point sampling using Harris Laplace HLaplace (Barata et al., 2013)
Color Moments CM (Barata et al., 2014b)
Local color-based features LCB (Barata et al., 2014a)
Color Constancy (shades of gray) CC (Barata et al., 2015)
Scale Adaptive Local Binary Patterns LBP − based (Riaz et al., 2014)
Combination of shape, color and texture features SCT (Abuzaghleh et al., 2015)
Mean color vector-based symmetry features MCV (Ruela et al., 2015)
Pigment network-based Standard deviations PNStds (Alfed et al., 2015)
Detection of Pigment Networks DPN (Eltayef et al., 2017)

Table 12 lists the results of the aforementioned
techniques on the HPH dataset (Mendonc et al.,
2015). Note that local features normally yield bet-
ter performance than global features as illustrated
in (Barata et al., 2014a). It is also worth mentioning
that the combination of color and texture plays a ma-
jor role in melanoma skin lesion diagnosis. This can
be justified by the low performance of the systems
that used color features only, in particular (Barata
et al., 2015) and (Barata et al., 2014b) or, on the other
hand, the systems that used texture features only such
as in (Barata et al., 2012) and (Riaz et al., 2014). Ob-
viously, the performance has been improved when
color, shape and texture features are combined such
as in (Abuzaghleh et al., 2015) or even by combin-
ing color and texture features such as the system pre-
sented in this work.

Table 12: Performance of existing techniques on the Der-
moscopy HPH image database

Technique FN FP SE% SP% Acc%
PNBF (Barata et al., 2012) 0.09 0.18 91.1 82.1 86.6
HLaplace (Barata et al., 2013) 0.02 0.14 98 86 92
CM (Barata et al., 2014b) 0.07 0.12 93 88 90.5
LCB (Barata et al., 2014a) 0 0.25 100 75 87.5
CC (Barata et al., 2015) 0.07 0.24 92.5 76.3 84.4
LBP − based (Riaz et al., 2014) 0.16 0.06 84 94 89
SCT (Abuzaghleh et al., 2015) 0 0.08 100 91.5 95.75
MCV (Ruela et al., 2015) 0.04 0.17 96 83 89.5
PNStds (Alfed et al., 2015) 0.05 0.08 95.45 92.33 93.89
[CHOG,COpp+M] (Alfed et al., 2016) 0.09 0.15 91 85 88
DPN (Eltayef et al., 2017) 0.08 0.05 92.3 95.0 90.0
This work 0.01 0.02 99.41 98.18 98.79

10



Overall, the proposed system delivers the third
lowest score on the HPH dataset in terms of FN,
slightly outperformed by SCT and LCB that seem
to detect all test cancer images. However, these
two systems perform poorly in terms of FP where
a good number of false skin cancer detections were
noticed. As a consequence, the proposed system
appears more reliable in terms of the overall accu-
racy, beating the closest competitor by 3% approxi-
mately. Finally, 256 standard images have been used
from the Dermofit dataset, namely 76 of malignant
melanoma and 180 non-melanoma images. The non-
melanoma images have been selected from 9 differ-
ent types of lesions as depicted in Table 13.

Table 13: Categories of lesions and number of selected images
used in the Dermofit database

Dermofit database
Lesion Type Total images Selected images

Actinic Keratosis 45 20
Basal Cell Carcinoma 239 20
Melanocytic Nevus (mole) 231 20
Seborrhoeic Keratosis 257 20
Squamous Cell Carcinoma 88 20
Intraepithelial Carcinoma 78 20
Pyogenic Granuloma 24 20
Haemangioma 97 20
Dermatofibroma 65 20
Malignant Melanoma 76 76

In Table 14, the performance is displayed for the
proposed system as well as the competing techniques
that use a bag of features approach.

Table 14: Performance of existing techniques using standard
images from the Dermofit database

FN FP SE% SP% Acc%
LCB (Barata et al., 2014a) 0.04 0.28 95.59 72.02 88.27
CM (Barata et al., 2014b) 0.05 0.30 94.62 70.49 87.11
PNStds (Alfed et al., 2015) 0.08 0.27 92.23 73.28 85.94
[CHOG,COpp+M] (Alfed et al., 2016) 0.19 0.29 81.32 70.86 78.13
This work 0.04 0.15 96.04 84.78 92.96

For the Dermofit standard database, the proposed
system clearly has the upper hand in every aspect
and outperforms the competing techniques by more
than 4.5% of overall accuracy. It is also worth noting
that standard images appear less efficient than der-
moscopic images for melanoma skin cancer diagno-
sis as can be seen from the drop in performance. This
can be justified by the fact that dermoscopic images

are characterised by more details and texture, hence
more discriminative features, than standard images.

4. Conclusion

In this paper, a melanoma skin cancer detection
system has been presented. The system relies on
a bag of features approach using multiple code-
books where new color and textural features are pro-
posed for describing skin cancer lesions efficiently,
namely, the histogram of gradients (HG), the his-
togram of lines (HL), the 3rd order Zernike moments,
and color vector angles. It has been claimed and
demonstrated that the orientation information in the
conventional histogram of oriented gradients (HOG)
and the histogram of oriented lines (HOL) reduces
the inter class dissimilarity and consequently de-
creases the discriminative nature of the respective
features in skin cancer detection. The histogram of
gradients and the histogram of lines are used sepa-
rately to create two respective codebooks whereas
the color vector angles and the 3rd order Zernike
moments are combined for the creation of a third
codebook. The automated skin cancer detection sys-
tem has been assessed on two different datasets,
namely the HPH dermoscopy database and the Der-
mofit standard database. Results have shown that
the proposed system can reach 98.79% of overall ac-
curacy on HPH and 92.96% on the standard Der-
mofit. Compared with related state-of-the-art tech-
niques, the system outperforms its closest competitor
by, approximately, 3% on HPH and 4% on Dermofit.
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