Bibliometric analysis of literature on diabetes (1995 – 2004)

G. Krishnamoorthy¹, J. Ramakrishnan² and S. Devi³

¹University Librarian, Anna University Chennai, Chennai – 600 025.

²Deputy Librarian, Regional Medical Library, The Tamil Nadu Dr. M.G.R. Medical University, Chennai – 600 032.

³Assistant Librarian, Regional Medical Library, The Tamil Nadu Dr. M.G.R. Medical University, Chennai – 600 032.

Bibliometric analysis of diabetes literature indexed the MEDLINE database for the period 1995-2004 shows that maximum number of records (13244) was during 2003, followed by 12690 in 2002 and 11061 in 2001. Relative Growth Rate (RGR) was found to be decreasing year wise. The Doubling Time (Dt) was found to increase every year. Ranking of the journals based on the quantum of research output on diabetes during 1995-2004 shows that USA in the largest contributor of literature on diabetes research. The research productivity of diabetes conforms to Bradford's Law of Scattering.

Introduction

Bibliometrics has become a standard tool of science policy and research management in the past decades. All significant compilations of science indicators, to a large extent rely on publication and citation statistics and other bibliometric techniques.

Many extensive bibliometric studies of important science fields have appeared during the last two decades. The aims of these studies were to measure national research performance in the international context or to describe the development of a science field with the help of bibliometrics.

Bibliometric analysis of the literature on a few diseases exists. Ramesh Babu and Ramakrishnan studied Indian contributions to the field of Hepatitis (1984-2003) and used Bradford Law to identify the core journals¹. Patra and Prakash Chand² studied HIV/AIDS research in India. They also used Bradford's Law to identify core journals.

Diabetes mellitus is a syndrome characterized by disordered metabolism and abnormally high blood sugar (hyperglycaemia) resulting from low levels of the hormone insulin with or without abnormal resistance to insulin's effects.

Arunachalam and Gunasekaran³ mapped diabetes research in India and China, based on papers published

during 1990-1999 and indexed in PubMed, Science Citation Index (SCI) and Biochemistry and Biophysics Citation Index (BBCI) and citations to each one of these papers up to 2000. They have identified institutions carrying out diabetes research, journals used to publish the results, subfields in which the two countries have published often, and the impact of the work as seen from actual citations to the papers. They have also assessed the extent of international collaboration in diabetes research in these two countries, based on papers indexed in SCI and BBCI. There is an enormous mismatch between the disease burden and the share of research performed in both countries. Apoor and others⁴ studied author self-citation in the diabetes literature. Nearly onefifth of all citations to articles about diabetes mellitus in clinical journals in the year 2000 were author self-citations. Lewin⁵ studied diabetes mellitus publication patterns from 1984 - 2005. PubMed searches were conducted to determine the number of publications for each year from 1984 to 2005. This study examined patterns of publication of diabetes literature indexed in MEDLINE. It is noticed that the diabetes publications represent a larger portion in 2005 than they did in 1984.

Although a few bibliometric studies on diabetes have been carried out as discussed above, these are based on the PubMed database. The present study is based on the MEDLINE database. Further, Relative Growth Rate (RGR) and Doubling Time (Dt) of diabetes literature have also been calculated which have not been done in the earlier studies on diabetes that have been reviewed here.

Objectives of the study

The objectives of this study are:

- 1. To study the growth of literature in the field of diabetes as reflected in the MEDLINE database, and
- 2. To identify the core journals in the field of diabetes.

Methodology

The records published during 1995-2004 in the field of diabetes which are covered in the MEDLINE CD ROM database was searched and bibliographic details like author, title, publication type, language, year, address of the contributors, country of publication, source etc. were collected. The retrieved records were converted into FoxPro and loaded in SPSS for the purpose of analysis. The data was also analysed with the toolbox named as Bibexcel developed by Olle Persson, Inforsk, Umeå Univ (Sweden)⁶. The data was analyzed in terms of growth rate and core journals in the field of diabetes. Relative Growth Rate (RGR) and Doubling time (Dt) of diabetes literature have also been calculated. Bradford's Law of scattering was used to identify the core journals in field of diabetes. The keyword 'Diabetes' has been used for extracting the number of records available in the above said database.

Relative Growth Rate (RGR)

The Relative Growth Rate (RGR) is the increase in number of articles/pages per unit of time. This definition is derived from the definition of relative growth rates in the study of growth analysis of individual plants and effectively applied in the field of Botany⁷, which in turn, had its origin from the study of the rate of interest in the financial investment⁸. The mean Relative Growth Rate (R) over the specific period of interval can be calculated from the following equation:

$$1-2^{\bar{R}} = \frac{Log_{e_2}W - log_{e_1}W}{\sum_{j=1}^{T} \sum_{j=1}^{T}}$$

whereas

1-2 <i>R</i>	=	mean relative growth rate over the specific period of interval
$log_{e_{-1}}W$	=	log of initial number of articles
	=	log of final number of articles after a
$_{2}T{1}T$	=	specific period of interval the unit difference between the initial time and the final time

The year can be taken here as the unit of time. The RGR for articles is hereby calculated.

Therefore

1 - 2^{R} (aa -1 year -1) can represent the mean relative growth rate per unit of articles per unit of year over a specific period of interval.

Doubling Time (Dt)

There exists a direct equivalence between the relative growth rate and the doubling time⁹. If the number of articles/pages of a subject doubles during a given period then the difference between the logarithms of numbers at the beginning and end of this period must be logarithms of number 2. If natural logarithm is used this difference has a value of 0.693. Thus the corresponding doubling time for each specific period of interval and for both articles and pages can be calculated by the formula:

Doubling time (Dt) =
$$\frac{0.693}{\overline{R}}$$

Therefore,
Doubling time = $\frac{0.693}{1 - 2 \overline{R} (aa-1 \text{ year-1})}$
and
Doubling time for pages Dt (p) = $\frac{0.693}{1 - 2 \overline{R} (pp-1 \text{ year-1})}$

Analysis

Quantum of diabetes research productivity

The research productivity on 'diabetes' covered in MEDLINE for the period 1995 to 2004 database is shown

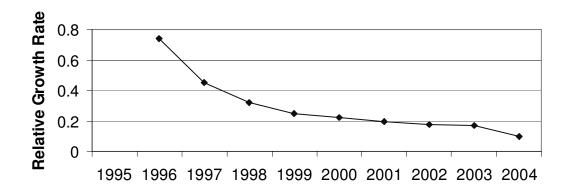


Fig. 1 — Relative growth rate for research output in diabetes

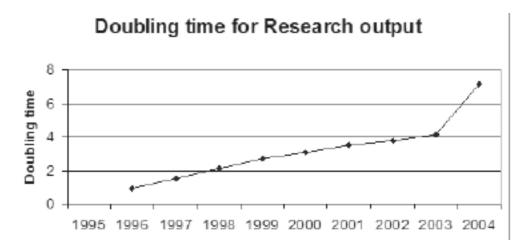


Fig. 2 — Doubling time for research output in diabetes

Table 1 — Quantum of literature published on			Table 2 — Publication type				
		'Diabet	es' year-wise		Publication type	Total	%
. No.	Years	Records on diabetes	Total no. of records	Percentage	Journal articles	79023	81.09
	1995	7075	409785	1.73	Clinical trials	6167	6.33
	1996	7646	419024	1.82	Comments	2262	2.32
	1997	8484	430526	1.97	Comments		2.32
	1998	8710	445333	1.96	Letters	1667	1.71
	1999	9222	456123	2.02		(00)	0.62
	2000	9982	482635	2.07	Editorials	609	0.62
	2001	11061	499059	2.21	Practice-Guidelines	228	0.23
	2002	12690	515377	2.46	Thenee Suidennes	220	0.25
	2003	13244	535447	2.47	Others	7498	7.70
).	2004	9340	371687	2.51			
otal		97454	4564996	2.13	Total	97454	100%

Year	Quantum of output	Cumulative total of output	\mathbf{W}_{1}	W ₂	$\frac{1\text{-}2^{\tilde{R}^{(aa^{-1}} y ear^{-1})}}{RGR}$	Dt(a)
1995	7075			8.86		
1996	7646	14721	8.86	9.60	0.74	0.94
1997	8484	23205	9.6	10.05	0.45	1.53
1998	8710	31915	10.05	10.37	0.32	2.16
1999	9222	41137	10.37	10.62	0.25	2.72
2000	9982	51119	10.62	10.84	0.22	3.12
2001	11061	62180	10.84	11.04	0.20	3.50
2002	12690	74870	11.04	11.22	0.18	3.78
2003	13244	88114	11.22	11.39	0.17	4.16
2004	9340	97454	11.39	11.49	0.10	7.13

Table 3 — RGR and Dt for diabetes research output by year-wise

in Table1. Total of 97454 records are covered in the database MEDLINE on diabetes. It is found that the maximum number of records (13244) was published during 2003, followed by 12690 in 2002 and 11061 in 2001. On the whole, it is noticed that from 1995 onwards there is a gradual increase of diabetes research productivity every year.

Publication types of diabetes research

Table 2 reveals that 81.09% are journal articles, 6.33% are clinical trials and 2.33% are comment. The literature published as other bibliographic forms such as editorials and practice guidelines is less than 10%.

Relative growth rate (RGR) and doubling time (Dt)

It is seen from Table 3 and Fig. 1 that RGR has been decreasing from 1995 (0.74) to 2004 (0.10). On the other hand, the Doubling Time (Dt) has shown an increasing trend. The data in Table 3 reveals that Doubling time has increased from 0.94 in the year 1995 to 7.13 in the year 2004 (Figure 2).

Ranking of journals in diabetes research

Ranking of the journals along with the country of origin based on the research output on diabetes for the year 1995-2004 is given Table 4. *Diabetes Care* and *Diabetes* both published from USA are the top two leading journals that publish the maximum articles.

Distribution of journals in diabetes based on Bradford Law of Scattering

As per the Bradford Law⁹, the journals are grouped into three zones producing similar number of articles. The distribution of journal by zone wise is given in the Table 5. It is seen from Table 5 that 42 core journals grouped in zone 1 published 32286 articles accounting for one third of the total output. Similarly, the second zone comprises of 312 journals and 3565 journals are grouped in third zone. The Bradford's Law states that the number of periodicals in zones, the first zone and second zone will be 1: n: n²---- Accordingly the relationship is the zone will be 42: 312: 3565. On comparison with the data in Table 5, it is clear that the trend of research publication confirms the implication of Bradford's Law.

Conclusion

Bibliometric analysis is a reliable tool to evaluate the development and quality of scientific production. It can be inferred from this study that Diabetes is a developing branch in Health Sciences. The data suggest that there

Table 4 — Ranking of journals in diabetes research

S.No.	Name of the journal	No. of records	%	Country of origin	Rank
1	Diabetes Care	4729	4.85	USA	1
2	Diabetes	3650	3.75	USA	2
3	Diabetic Medicine	1900	1.95	England	3
4	Diabetologia	1860	1.91	Germany	4
5	Diabetes Research and Clinical Practice	1172	1.20	Ireland	5
6	Journal of Clinical Endocrinology and Metabolism	1074	1.10	USA	6
7	Nippon-Rinsho	1034	1.06	Japan	7
8	Experimental and Clinical	985	1.01	Germany	8
	Endocrinology & Diabetes			2	
9	Metabolism : Clinical and	902	0.93	USA	9
	experimental metabolism				
10	Diabetes and Metabolism	867	0.89	France	10
11	Transplantation Proceedings	809	0.83	USA	11
12	Journal of Biological Chemistry	750	0.77	USA	12
13	Lancet	577	0.59	England	13
14	Circulation	574	0.59	USA	13
15	Journal of Diabetes and its Complications	555	0.57	USA	14
16	Diabetes Educator	543	0.56	USA	15
17	American Journal of Cardiology	509	0.52	USA	16
18	American Journal of Kidney	477	0.49	USA	17
	Diseases				
19	Transplantation	473	0.49	USA	17
20	Nephrology Dialysis	467	0.48	England	18
	Transplantation				
21	BMJ	459	0.47	USA	19
22	Journal of Clinical Investigation	450	0.46	USA	20
23	Proceedings of the National Academy of Sciences of the United States of America	448	0.46	USA	20
24	Kidney International	439	0.45	USA	21
25	JAMA	421	0.43	USA	22
26	Diabetes Technology & Therapeutics	408	0.42	USA	23
27	Biochemical and Biophysical Research	401	0.41	USA	24
	Communications				
28	Annals of the New York Academy of Sciences	394	0.40	USA	25
29	Diabetes Obesity & Metabolism	388	0.39	England	26
30	Journal of Pediatric Endocrinology and Metabolism	386	0.39	England	26
31	Endocrinology	374	0.38	USA	27
32	Hormone and Metabolic Research	366	0.38	Germany	27
33	New England Journal of Medicine	364	0.37	England	28
34	American Journal of Physiology	360	0.37	USA	28
35	Diabetes Forecast	359	0.37	USA	28
36	International Journal of Obesity and Related Metabolic Disorders	357	0.37	England	28
37	Diabetes/Metabolism Research and reviews	349	0.36	England	29
38	Archives of Internal Medicine	343	0.35	USA	30
39	Journal of the American College of Cardiology	333	0.34	USA	31
40	Journal of Immunology	333	0.34	USA	31
41	Journal of the American Society of Nephrology	327	0.33	USA	32
42	Atherosclerosis	320	0.32	Ireland	33

Table 5 — Distribution by zone of cited journals and	
references in diabetes	

Zone	No. of	No. of journals		No. of papers		
	No.	(%)	No.	(%)		
Zone 1	42	1.07	32286	33.13		
Zone 2	312	7.96	32515	33.36		
Zone 3	3565	90.97	32653	33.51		
Total	3919	100	97454	100		

was a significant research activity in the field of Diabetes during the study period. The contributors of authors to published literature and countries indicate the healthy pattern of progress in this field. The Indian contribution to the body of literature on Diabetes could be improved with more contentious efforts by the researchers. Further the research productivity of Diabetes conforms to the implications of Bradford's Law of Scattering.

References

- Ramesh Babu B and Ramakrishnan J, Indian contributions to the field of hepatitis (1984-2003): A Scientometric Study. In: Third International Conference on Webometrics, Informetrics, Scientometrics Science and Society & Eighth COLLNET Meeting. 2007. ICAR Symposium Hall, National Agriculture Science Complex; New Delhi (India). pp.22-32.
- Patra S K and Prakash Chand, HIV/AIDS Research in India: A bibliometric study, *Library and Information Science Research*, 29 (2007) 124-134.
- 3. Arunachalam S and Gunasekaran S, Diabetes research in India and China Today: from literature-based mapping to health-care policy, *Current Science*, 82 (9) (2002) 1086-97.
- Apoor S G, Victor M M, Nancy L, Wilczynski and Brain H, Author self-citation in the diabetes literature, *Canadian Medical Association Journal*, 170 (13) (2004) 1925 – 1927.
- Lewin H S, Diabetes Mellitus publication patterns, 1984-2005, Journal of Medical Library Association, 86(2) (2008) 155-158.
- 6. http//www.umu se/infrsk/Bibexcel
- 7. Hunt R, Plant growth analysis: London: Edward Arnold.1978.
- Blackman V H, The compound interest law and plant growth, *Annals of Botany*, 33 (1919) 353-360.
- 9. Bradford S C, Sources of Information on specific subjects, *Engineering*, 137 (1934) 85-86.