Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-187-2022
https://doi.org/10.5194/nhess-22-187-2022
Research article
 | 
28 Jan 2022
Research article |  | 28 Jan 2022

Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa

Sunna Kupfer, Sara Santamaria-Aguilar, Lara van Niekerk, Melanie Lück-Vogel, and Athanasios T. Vafeidis

Related authors

A multivariate statistical framework for mixed populations in compound flood analysis
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Andrew Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-1122,https://doi.org/10.5194/egusphere-2024-1122, 2024
Short summary
Sea Level Rise in Europe: Adaptation Measures and Decision Making Principles
Giulia Galluccio, Alexander Bisaro, Elisa Fiorini Beckauser, Rebeca Biancardi Aleu, Jochen Hinkel, Maria Florencia Casas, Océane Espin, Athanasios Thomas Vafeidis, and Pierpaolo Campostrini
State Planet Discuss., https://doi.org/10.5194/sp-2023-35,https://doi.org/10.5194/sp-2023-35, 2024
Revised manuscript accepted for SP
Short summary
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023,https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis
Athanasios T. Vafeidis, Mark Schuerch, Claudia Wolff, Tom Spencer, Jan L. Merkens, Jochen Hinkel, Daniel Lincke, Sally Brown, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 19, 973–984, https://doi.org/10.5194/nhess-19-973-2019,https://doi.org/10.5194/nhess-19-973-2019, 2019
Short summary
Investigating compound flooding in an estuary using hydrodynamic modelling: a case study from the Shoalhaven River, Australia
Kristian Kumbier, Rafael C. Carvalho, Athanasios T. Vafeidis, and Colin D. Woodroffe
Nat. Hazards Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/nhess-18-463-2018,https://doi.org/10.5194/nhess-18-463-2018, 2018
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024,https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary

Cited articles

AVISO: FES2014 – Global tide model: FES2014 was produced by Noveltis, Legos and CLS and distributed by Aviso+, with support from Cnes, AVISO [data set], https://www.aviso.altimetry.fr/es/data/products/auxiliary-products/global-tide-fes.html (last access: 13 November 2020), 2014. 
Basson, G., van Zyl, J., Bosman, E., Sawadago, O., and Vonkeman, J.: Conduct a coastal vulnerability: Breede River Estuary Floodline Assessment, Technical Report, DEA&DP, Western Cape, South Africa, 313 pp., 2017. 
Bastidas, L. A., Knighton, J., and Kline, S. W.: Parameter sensitivity and uncertainty analysis for a storm surge and wave model, Nat. Hazards Earth Syst. Sci., 16, 2195–2210, https://doi.org/10.5194/nhess-16-2195-2016, 2016. 
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Science Advances, 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. 
Bilskie, M. V. and Hagen, S. C.: Defining Flood Zone Transitions in Low-Gradient Coastal Regions, Geophys. Res. Lett., 45, 2761–2770, https://doi.org/10.1002/2018GL077524, 2018. 
Download
Short summary
In coastal regions, flooding can occur from combined tides, storms, river discharge, and waves. Effects of waves are commonly neglected when assessing flooding, although these may strongly contribute to extreme water levels. We find that waves combined with tides and river discharge at Breede Estuary, South Africa, increased flood extent and depth and caused earlier flooding than when waves were neglected. This highlights the need to consider all major flood drivers in future flood assessments.
Altmetrics
Final-revised paper
Preprint