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ON THE COMPLETENESS OF S4
AND THE ALGEBRA OF POSSIBLE WORLDS

JEREMY SILVER

ABsTrRACT. This thesis will discuss two methods of proving completeness of the S4 modal
system with respect to the class of reflexive, transitive frames. The first is based on the
standard "modern proof" of Makinson (1966), which uses the concept of a maximal consistent
set to construct a canonical model. The other approach is algebraic. In 1948, McKinsey and
Tarski showed that S4 can be characterized by the class of closure algebras. Then in 1951,
Tarski and Jonsson extended the Stone Representation Theorem (1936) to show that every
closure algebra is representable as an algebra of sets with an additional operation arising
from a reflexive, transitive relation. Using this representation, Tarski could have obtained the
completeness result; however, he overlooked the connection between modal logic and algebra,
and it was not until 1963 that Saul Kripke proved the completeness of S4. In this thesis I
will explore both the modern and algebraic proofs, demonstrating that they are essentially

identical.

1. PRELIMINARIES

Modal Logic. In this paper we are concerned with the S4 modal system. In defining this
system, we take as our language the set of modal formulas constructed from a denumerable set
of proposition letters {pg,p1,ps2, ...} closed under finite application of the logical operators —
(negation) and A (conjunction), and the unary modal operator O (necessity). The following are
some useful abbreviations:

(o and B are propositional variables which stand for arbitrary formulas)

aVp = —(-aA-p) (Disjunction)

a—f:=-aVp (Material Implication)
aefBi=(a= )AL= a) (Material Equivalence)
a—» f:=0(a—P) (Strict Implication)
a=p = (a—>» )AL —a) (Strict Equivalence)
Oa := —O-a (Possibility)

Definition 1.1. A modal logic is a set of modal formulas that includes all classical tautologies
and is closed under modus ponens (from o — f and «, infer 8) and wuniform substitution
(substitution by any formula of all occurrences of a given proposition letter).

A normal modal logic is a modal logic that additionally includes formulas of the form

(K) O(a — B8) = (Oa — 0Op)



and is closed under:
(Nec) from «, infer D

For a modal logic L, we say that a formula « is a theorem of L (abbreviated br, «) if « € L.

A subset of formulas S of a modal logic L is derivationally consistent if, for any subset
{ai,...,a,} of S, the formula =(ay A--- A ay) is not a theorem of L. A single formula « is
derivationally consistent if —« is not a theorem of L.

The minimal modal logic Lg is the normal modal logic that has only the tautologies and

instances of (K) as its axioms.!

Definition 1.2. The S4 modal system is the extension of Lo obtained by adding to it the

following two axiom schemas:

(T) Ooa — «
(4) Oa — 00«

Semantics for Modal Logic. The ordinary propositional calculus is interpreted via truth
valuations, in which each sentence letter is assigned a truth value (0 or 1) and the logical
connectives are interpreted as their corresponding Boolean truth functions. In this way every
formula receives a truth value. A modal operator, on the other hand, is not truth functional
(otherwise it could be reduced to a composition of the existing truth functions). These operators
capture the “modality” of a proposition, i.e., the circumstances determining its truth conditions.
The simplistic notion of a truth valuation therefore needs to be enriched to incorporate these

differing circumstances.
Definition 1.3. A Kripke frame is a structure F = (W, R) such that

(1) W is a non-empty set (the set of “worlds”).

(2) R is a binary relation on W (the “accessibility relation”).
Definition 1.4. A Kripke model is a structure M = (F,v) such that

(1) F is a Kripke frame.
(2) v is a valuation function that assigns a truth value to each pair (p,u), where p is a
proposition letter and u € W.
The domain of v can be extended from the set of proposition letters to the set of all formulas
inductively as follows:
v(ma,u) =1 iff v(o,u)=0
viaAB,u) =1 iff v(a,u)=v(B,u)=1
v(Oa,u) =1 iff v(a,v) =1 for all v € W such that uRv.?

1By “axioms” I mean a subset of the theorems for which the complete set can be obtained by finite application
of the rules of inference, starting with only this subset. An “axiom schema” is a generalization that describes a
set of axioms having a certain form.

°In general, for binary relations I will use 2Ry to abbreviate the condition (z,y) € R.



The expected results will arise for the other truth-conditional connectives V, —, and <>, and we

also have
Theorem 1.5. v(Qa,u) =1 iff v(a,v) =1 for some v € W such that uRv.
Proof.

v(Qo,u) =1 < v(-O-a,u) =1 < v(O-a,u) =0
< Jv e W, uRv, v(-a,v) =0

< Jv e W, uRv, v(a,v) =1

Definition 1.6. A formula « is said to be

e Valid in a model>* M = (W, R,v) if for all u € W, v(a,u) = 1.

e Valid in a frame F = (W, R) if for every valuation function v, « is valid in the model
(F,v).

e Valid in a class of frames F if « is valid in every frame in F.

We use ‘IFg o’ to denote that « is valid in S, where S is a model, frame, or class of frames.

Definition 1.7. A formula « is said to be satisfied in a model M = (W, R, v) if there exists
some u € W for which v(a,u) = 1. A set of formulas I' is satisfied in M if there exists some

u € W for which v(y,u) =1 for every v € S.

Let L be a modal logic and F be a class of frames.

e L is sound with respect to F if i1, « implies IFr « for every formula a.

e L is complete with respect to F if g a implies 1, a for every formula a.

Theorem 1.8. The following are two conditions equivalent to completeness of L with respect
to a class of frames F:

(1) For every formula « that is not a theorem of L, there exists a model M = (F,v) for
which F belongs to F and « is not valid in M.

(2) For every formula « that is derivationally consistent in L, there exists a model M = (F,v)
for which F belongs to F and « is satisfied in M.

Proof. Completeness is the condition that for any formula «, IFr o implies Fr, . Taking the
contrapositive, if « is not a theorem of L it is not valid with respect to F. This latter condition
is equivalent to the existence of a frame F belonging to F for which « is not valid, which is
equivalent to the existence of a model M = (F,v) for which « is not valid. Hence completeness
is equivalent to condition (1).

We now show (1) and (2) are equivalent. Suppose the former holds. Let o be a L-consistent

formula, i.e. =« is not a theorem of L. Then by (1), there exists a model M = (F,v) for which

SHenceforth I may omit “Kripke” when using the terms “model” and “frame.”



F belongs to F and —« is not valid, which means there is a u € W such that v(—«, u) = 0, which
implies v(a, u) = 1, and hence « is satisfied in M. Now suppose (2) holds. If « is not a theorem
of L, then ——« is also not a theorem (or else & would be derivable by tautological consequence).
This implies the consistency of -, which by (2) entails the existence of a model M = (F,v)
for which F belongs to F and v(—a,u) = 1 for some u € W. Consequently v(a,u) = 0, and so
« is not valid in M. O

The subject of this paper is to the completeness of S4 with respect to the class of Kripke frames
whose accessibility relation is reflexive and transitive. S4 is also sound with respect to this class
of frames, but the proof is routine and left to the reader. Kripke showed completeness in 1963
using a somewhat complicated proof using his “method of tableaux,’* but in the next section we
will roughly follow a revised proof that uses the notion of maximal consistent sets to construct

a canonical model.

4See Kripke [8].



2. THE “MODERN” PROOF:
COMPLETENESS VIA MAXIMAL CONSISTENT SETS

A standard proof of the completeness of S4 is found in Makinson [10], and in this section we

will closely follow his method.

Definition 2.1. A quasi-ordering is a reflexive, transitive binary relation.

A frame (W, R) is quasi-ordered if R is a quasi-ordering on the elements of W.

Theorem 2.2. The modal system S4 is complete with respect to the class of quasi-ordered

frames.

By Theorem 1.8 it suffices to show that every derivationally consistent formula « has a Kripke
model with a quasi-ordered frame that satisfies . Makinson actually proves a strong complete-
ness result, that in fact every consistent set of formulas has such a Kripke model satisfying that
set. Since this result takes hardly more work to prove than the weaker completeness result, we

will do so here.

Definition 2.3. A set of formulas I" of a modal logic L is a mazimal consistent set (MCS) if:

(1) it is derivationally consistent, and (2) for every formula «, at least one of o and -« is in T.

Lemma 2.4. (Properties of MCS’s) Let L be a modal logic and T' be an MCS of L. Then the
following properties hold:

(1) For every formula «, precisely one of a and —« is in T.

(2) Every theorem of L belongs to T.

(8) Ifa el and a — B €T, then BT

(4) a A B €T iff both a and B are in T.

Proof.

(1) By definition of MCS, at least one of o and —« is in I". Suppose both are. Then since
Fr —(a A —a) by tautology, it follows that I is inconsistent, which is a contradiction.

(2) Suppose 1, @ and « ¢ I'. Then by (1), ma € I'. But it follows from kg, =—a that T is
inconsistent, a contradiction. Hence a € T'.

(3) Supposea € Tanda — S € T. If 8 ¢ T', then by (1), =8 € T. But b, =(aA (e — S)A—f)
by tautology, and this leads to the inconsistency of I', a contradiction. Hence g € T'.

(4) Suppose a A 5 € T and (without loss of generality) o ¢ I". Then -« € T', which yields
inconsistency of T' in light of Fr, =((a A 8) A —«). Conversely, suppose both « and 3 are in T,
but anf ¢ T, ie. ~(aApB) €T. Then by, =(aABA-(aAB)) again leads to a contradiction. [

Lemma 2.5. (Lindenbaum’s Lemma) If ¥ is an L-consistent set of formulas, then there is a
mazximal consistent set ¥ of L such that ¥ C T,

Proof. First note that it is possible to enumerate the formulas of the modal language L. For
instance, we can write the proposition letters as p,p’,p”,..., and if we use prefix notation

for the operators, we may dispense with parentheses for disambiguation. We assign a unique



“code digit” to each symbol p, ', =, A, and 0. To each formula we then assign a code number
that is the concatenation of the code digits of the symbols comprising it. From there we can
list the formulas in order of increasing code number, in order to get a denumerable sequence
Y0,7Y1, Y2, - - - of formulas.

Given a consistent set of formulas ¥, we can form an increasing chain of consistent sets as
follows:

Yo =3

Y, U {7y}, if this is consistent
2n—i—l =
Yn U{=vn}, otherwise

»t = U Y
n>0

It is obvious that ¥ C XF. Also, it follows by construction that for every formula, either
it or its negation is in ¥ 7. Next, we show X, is consistent for all n. The argument is from
induction. ¥ is consistent by assumption. Now suppose Y, is consistent. We check to see
if 3,41 is consistent. By construction, it could only be inconsistent if both ¥, U {v,} and
¥, U {7} are inconsistent. Suppose this is the case. Then there exist formulas a; and as
which are conjunctions of finite subsets of ¥,, such that Fr, =(ay A 7)) and Fr, =(ag A =y,).
Letting v abbreviate a; A, it follows that Fr, =(aAv,) and Fr, (e A—,,). Then b, a — —y,
and ki, @ = 7y, from which follows Fr, & — (v, A =y, ). From tautological consequence, i, —a,
but since « is a conjunction of a finite subset of 3,, this contradicts that X, is consistent,
which we have by induction. Therefore ¥, is consistent for all n. From this it follows that T
must be consistent. For suppose otherwise. Then there exists a finite set of formulas in X7,
Yoy« -y Vi, (Ko < -+ < k), such that Fr, =(yx, A -+ Ak, ). But from the construction, it
must be the case that X 41 also contains vg,,...,7Vk,,, and therefore Xy i is inconsistent,
a contradiction. Hence X7 is consistent. These conditions together imply that T is an MCS
satisfying ¥ C 2+. O

For a normal modal logic L, we construct the canonical Kripke model My, = (W, R,v) as follows:

e W is the set of all MCS’s of L.
o If u,v € W, then uRv iff for every L-formula «, o € v whenever Oa € wu.

e For any proposition letter p and u € W, v(p,u) =1 iff p € w.

Lemma 2.6. (Existence Lemma) If u is an MCS and Qo € u, then there is an MCS v such
that uRv and o € v.

Proof. Let X be the set of formulas consisting of o together with all 8 such that (O3 € u. This
set is consistent. For suppose otherwise; then there is a finite subset Sy, ..., 3, of the 8’s such
that =(8y A -+ A B, A ) is a theorem of L. By (Nec) this would imply O=(8g A -+ A By A @)
is also a theorem, and this is equivalent to Fr, =0(8y A ... By A @). Tt is possible to derive from
this, using tautology, substitution, detachment, and the (K) axiom for normal modal logics, that
Fr, =(880 A -+ - AOB, A Q). But this contradicts that u is an MCS. Therefore 3 is consistent,



and by Lindenbaum’s Lemma can be extended to an MCS v = ¥, v contains « since ¥ did,
and uRv holds because we constructed ¥ to contain all 8 such that 08 € u, and ¥ C v. O

Theorem 2.7. For any consistent set X of formulas of L, the canonical model My, satisfies 3.
It will suffice to prove the following:
Lemma 2.8. (Truth Lemma) For any L-formula o, v(a,u) =1 iff € u.

For if this results holds, suppose ¥ is an L-consistent set. Then by Lindenbaum’s Lemma, there
is an MCS u = X% that contains every formula in ¥, and by the above lemma, v(a,u) = 1 for
all a € X, i.e. My, satisfies X.

The proof is by induction on the length of a.

e If o is a proposition letter, the result follows immediately from the definition of v.

e v(=f,u)=1 iff v(B,u)=0 i B¢ u iff —f € wu. The final equivalence holds by
property (1) of Lemma 2.4.

e v(BAv,u)=1 iff v(B,u)=v(y,u)=1 if Sceuandyeu iff BA~v€E€u The
final equivalence holds by property (4) of the same lemma.

e y(OB,u) =1 iff Vo,uRv,v(B,v) =1 iff Vo,uRv,8 € v iff OB € u. The final
equivalence requires some explanation. The right-to-left direction follows directly from
the definition of R. For the other direction, suppose 08 ¢ w. Then by property (1)
of Lemma 2.4, =008 € u. By property (3), MCS’s are closed under entailment, and so
¢—f € u. By Lemma 2.6, there is an MCS v such that uRv and -8 € v, which implies
B ¢ v, thus falsifying the condition Vv, uRuv, 8 € v.

We now show that S4 is complete with respect to the class of quasi-ordered frames. As indicated
earlier, Theorem 1.8 tells us that we only have to show that for each S4-consistent formula «,
there is a model with a quasi-ordered frame that satisfies . Since we want to show strong
completeness, we will show that for every set of S4-consistent formulas, there is a model with a
quasi-ordered frame that satisfies that set. How do we find such a model? Simple. We now know
from Theorem 2.7 that the canonical model Mgy satisfies any consistent set of S4 formulas.

Therefore, we need only prove that Mgy has a quasi-ordered frame.

Theorem 2.9. If Mgy = (W, R, v) is the canonical model of S4, then R is a quasi-ordering on
w.

Proof. For reflexivity, let « be an MCS and O« € u. We know from property (2) of Lemma 2.4
that the (T) axiom of S4, Oa — «, is also in u. From property (3) of the same lemma, o must
be in u, and so uRu holds.

For transitivity, suppose u, v, and w are MCS’s such that uRv and vRw. Now suppose
Oa € u. The (4) axiom of S4, Ja — OO, must also be in w, so it follows that OO« € u. Since

uRv, we know Oa € v, and since vRw, it follows that o € w. Thus uRw. g



We have shown the strong completeness of S4 with respect to quasi-ordered frames, and Theo-

rem 2.2 follows a fortiori.

The Finite Model Property. We know that for a normal modal logic, any consistent set of
formulas has a model satisfying it. This was proven by showing that there exists a single model,
the canonical model, that represents the entire logic. However, this model is not only infinite,

but uncountable.

Theorem 2.10. If My, = (W, R,v) is the canonical model of a normal modal logic L, W must

be an uncountable set.

Proof. First, if L has a canonical model, L cannot be the inconsistent logic (the logic in which
every formula is a theorem). For then there would be no consistent sets, and so W would be
the empty set, which is not allowed for a Kripke model. So we assume L is not inconsistent.
Consider the collection 2 of sets {(—)po, (—)p1, (—)p2, ... } that contain every proposition letter
or its negation (but not both), and no other propositions. There are 2% such sets, uncountably
many. Moreover, each of these sets is consistent. For suppose otherwise. Then there would be
an L-theorem of the form —((—p;, A--- A =pi,.) A (Pjo A+ - Apj,)). By uniform subsitution, we
could replace all the p;’s with some arbitrary formula o and replace all the p;’s with -, from
which we would obtain « as a theorem. Therefore every formula is a theorem, and so L is the
inconsistent logic, which contradicts our assumption. We conclude that each of the sets in Z is
consistent, and by Lindenbaum’s Lemma can be extended to an MCS. It is easily verified that
these MCS’s must all be distinct, and hence the set W of all MCS’s is uncountable. 0

While the existence of a canonical model assures us that S4 is complete, it does not give us a
practical way of testing for the validity of arbitrary formulas. In order to do this, the previous
claim tells us we would have to check the truth of a formula at uncountably many points u in
W. Thus the canonical model is of little use toward the practical task of decidability. However,
it is possible to establish the finite model property for S4, which does in fact provide a procedure

for efficiently determining the validity of a formula.

Theorem 2.11. (Finite Model Property) If a is a consistent formula of S4, then there exists

a finite model that satisfies a.

The proof is very similar to that of the non-finite case; the difference is that we will essentially

“miniaturize” the canonical model to be only concerned with a finite set of formulas.

Definition 2.12. A subformula of a formula « is any formula which occurs as a part of a. Any
formula is a subformula of itself.

An a-formula is any formula that is either a subformula of « or a negation of a subformula
of a.

A set of a-formulas I' is an a-mazimal consistent set (a-MCS) if: (1) it is derivationally

consistent, and (2) for every a-formula 3, at least one of § and -3 is in I.



a-MCS’s naturally have the same properties as given in Lemma 2.4 for regular MCS’s, except
that the formulas under consideration are restricted to a-formulas. The proof is identical. Sim-
ilarly, an analog of Lindenbaum’s Lemma can be proven: every consistent set of a-formulas can
be extended to an a-MCS. The proof is basically the same, but it is made slightly simpler by
the fact that the chain of increasingly large consistent sets will terminate, and the largest one

is the desired a-MCS, so it is unnecessary to take the union over the whole chain.

We are now ready to construct the canonical finite model M, = (W, R, v) that will satisfy a:

e IV is the set of all a-MCS’s.

o If u,v € W, then uRwv iff for every a-formula 8, whenever [JS is in u, both 8 and I8
are in v.

e For any proposition letter p occurring in « and u € W, v(p,u) = 1 iff p € u. For all

other proposition letters ¢ not occurring in «, v(g,u) =0 for all u € W.

Since a contains a finite number of subformulas, there can only be a finite number of a-formulas.
Suppose there are n distinct a-formulas. Then there are at most 2" sets of a-formulas, so there
can only be a finite number of a-MCS’s, and hence W is finite. We now have to show that M,

satisfies o.

Lemma 2.13. If u is an a-MCS and OB € u, then there is an a-MCS v such that uRv and
B €.

Proof. Let ¥ be the set of a-formulas consisting of 5 together with all [y such that Oy € w.
This set is consistent. For if not, then there is a finite subset ~g,...,v, of the ¥’s such that
=(OvoA---AOvy, AB) is a theorem of S4. From this it is possible to derive that Fgq —(O0v0 A
- -AOOy, AQB), and by the (4) axiom this implies Fgq ~(OygA- - -ATY, AQS), which contradicts
that u is an a-MCS. Therefore ¥ is consistent, and by the modified version of Lindenbaum’s
Lemma, it can be extended to an a-MCS v. v contains [ since ¥ did, and it likewise contains
all Oy that were in u. But by the (T) axiom and the fact that a-MCS’s are closed under
detachment (provided the entailed formula is an a-formula, which + is in this case), it follows

that all v belong to v as well, and therefore uRv holds. O

Theorem 2.11 follows from a proof identical to that of Theorem 2.7, and it makes use of the above
lemma. The induction on length still works because any subformula of an a-formula is still an a-
formula. Also note that the model’s valuation of non-a-formulas is completely inconsequential,
because the goal is simply to show that M, satisfies o, which is itself an a-formula. It therefore
does not matter what v assigns to proposition letters not occurring in a.

Why did we impose the stronger condition on uRv that both g € v and 005 € v must follow
from OB € u? Our aim was to “miniaturize” the canonical model, so in the case of S4 we should
hope that it has the same property as Mgy of having a quasi-ordered frame. But suppose
R were the same relation as in Mgy4. In trying to prove transitivity, we would encounter a

problem. For assume we have uRv, vRw, and OB € u. In the infinite case, we were guaranteed



that OO5 € w. But in the finite case, this is not necessarily so, since is it possible for (S to
be an a-formula without OO also being one. Without this step we cannot ensure that g € w.

But the property holds if we assume the stronger relation:

Theorem 2.14. If M, = (W, R,v) is the canonical finite model satisfying «, then R is a

quasi-ordering on W.

Proof. For reflexivity, let u be an a-MCS and S € u. Since S is an a-formula entailed by (3
via the (T) axiom, 8 € u, and so wRu holds.

For transitivity, suppose uRv and vRw for a-MCS’s u,v, and w, and OF € u. Then by
definition of R, OB € v, and hence OB € w. Then 8 € w by detachment, so uRw holds. g

The finite model property gives a method for determining the validity (and by completeness,
theoremhood) of an arbitrary formula . Suppose we know an upper bound on the size of the
canonical finite model satisfying —« (this number can be computed as a function of the length
of o). We consider all models whose size is less than or equal to this upper bound, but only
the ones that assign zero at all worlds to all proposition letters not appearing in a. Up to
isomorphism, there are only finitely many models to consider. We check this set of models, and
if =« is satisfied on any one of them, then « is not valid, and therefore not a theorem of S4.
If on the other hand, —« is not satisfied on any of them, then —« is not consistent, and hence
« is a theorem of S4. In this way, we have a means of deciding theoremhood for S4, albeit a
cumbersome one. (It may also save time to search for proofs of @ while simultaneously searching

for models satisfying —a).

10



3. McKINSEY:
S4 MATRICES AND THE ALGEBRAIC FINITE MODEL PROPERTY

The proof of completeness in the previous section is rather straightforward. In this section, we
will instead look at modal logic through the lens of algebra, as J.C.C. McKinsey did in his 1941
paper.® As the first step to obtaining the completeness of S4 algebraically, we will reinterpret
formulas as elements of “modal algebras” whose operations correspond to the logical operators.
From this we will get an intermediate completeness result: for every non-theorem « of S4, a

special kind of algebra can be constructed to “falsify” «.

Definition 3.1. A matriz is an a structure 9 = {K, D, —, X, *}, where K is a set, D a non-
empty proper subset of K (the set of “designated” elements), — and * are unary functions on
K, X is a binary function on K, and K is closed under —, x, and *. Moreover, the symbols ‘+,

‘=", and ‘<’ will abbreviate the following binary functions:

a+b:= —(—ax—b)
a=b:= —*ax-b)
asb:=(a=b)x (b= a)

A matrix interprets a modal formula in the following way. Every proposition letter is assigned
an element of K, and each logical operator corresponds to an algebraic operation: — for negation,
x for conjunction, and * for possibility. It is easily seen that +, =, and < correspond to
disjunction, strict implication, and strict equivalence respectively, and the box can be interpreted
by the sequence of operations —*
K.

A matrix is said to satisfy a modal formula « if for every assignment of elements of K to the

—. In this way, every formula is interpreted as an element of

proposition letters of «, the evaluation results in an element belonging to D.

An S/-matriz is a matrix that satisfies all the theorems of S4.

An S4-characteristic matriz is an S4-matrix such that the only formulas it satisfies are the
theorems of S4.

Definition 3.2. A matrix is normal® if for any a,b € K the following three conditions are met:

(1) ifae Dand be D, thena xbe D
(2) fa=beDanda€ D, thenbe D
(3) ifaebe D, thena="b

Theorem 3.3. There exists a normal S4-characteristic matriz, M = {K, D, —, X, *}.

Proof. To begin, we define an equivalence relation on the set of modal formulas. For formulas

a and 3, we will say a ~ B if Fgs a = B.7 Tt is easily seen that ~ is an equivalence relation.

5See McKinsey [11].

6The properties of normality actually correspond to the rules of inference given for Lewis’s original system of
“strict implication,” which is entirely equivalent to our system S4 (see Lewis & Langford [9] and Gddel [4]).
However, McKinsey was not yet aware of this equivalence.

"Note the strict equivalence. However, the (Nec) rule ensures that Fg4 o = 8 whenever Fgyq a +> (.
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We denote the equivalence class of « (the set of formulas equivalent to «) by [a]. We will now
construct the matrix 9.

Let K be the set of equivalence classes of formulas, and let D be the set of equivalence classes
of S4 theorems (by detachment, if « is a theorem of S4, all elements in its equivalence class are
theorems of S4). If [a] is an element of K, then —[a] = [~¢], and *[a] = [O«]. If [a] and [5] are
elements of K, then [a] x [8] = [a A S].

We first show that 9 is an S4-matrix. Suppose « is a theorem of S4. Let b be the result of
some evaluation of « in 9, that is, assigning elements of K to each proposition letter in a and
applying the matrix operations to obtain some element b in K. 9 will satisfy « if b € D for all
such assignments. But it is obvious from the definitions of the matrix operations that b is just
an equivalence class of some formula § that is a result of uniform substitution on «, and by the
rule of uniform substitution, it is an equivalence class of an S4 theorem, and thus belongs to D.
Hence 9 is an S4-matrix.

To show that it is S4-characteristic, suppose « is a formula satisfied by 91. Then every
assignment of elements of K to proposition letters of a evaluates to an element in D. In
particular, if we assign to each proposition letter the equivalence class to which it belongs, then
the resulting equivalence class (which is just the equivalence class of « itself) will be an element
of D, and hence « is a theorem of S4.

We move on to the three conditions for normality:

(1) Suppose [a] and [G] are elements of D, and hence a and § are theorems of S4. A simple
S4 proof shows that g4 v A 8, and so [a] x [5] € D.

(2) Suppose [a] = [5] and [@] are elements of D. Then Fgq4 o — 8 and Fgq . Fgqa a0 —
implies Fgq o — 3, from which modus ponens yields g4 8, and therefore [3] € D.

(3) Suppose [a] & [f] is in D. Then kg4 o = B, which means [a] = [3].

Hence 9 is a normal S4-characteristic matrix. O

The 9 we have constructed is called the “Lindenbaum-Tarski matrix” of the logic. The fact that
it is S4-characteristic yields a “soundness and completeness” result of sorts; 9 is an algebraic
structure that fails to satisfy all and only the non-theorems of S4 on the given interpretation.

It will take some work, however, to show how to obtain a Kripke model from this matrix.

Definition 3.4. Let B = (K, —, x) be a structure in which K is a set closed under a unary

operation — and a binary operation X. B is a Boolean algebra if the following postulates hold:

(1) K contains at least two elements.

(2) axb=bxa (Commutativity)
B)(axb)xc=ax(bxc) (Associativity)
(4) axa (Idempotence)
(5) —(—(axb)x —(ax—=b)=a

12



We can define the binary operation + as: a +b = —(—a x —b), with which the last postulate

can be tidied up as:
(5a) (axb)+(ax—b)=a

K is obviously closed under this addition operation, and from postulates 2—4, + is commu-
tative, associative, and idempotent.

Additionally we can define a binary relation < by: a < b iff a = a x b. From the postulates
it is easily verified that it is a (partial) ordering relation.

Finally, in a Boolean algebra it can be shown that K contains a unique element 0 such that
a+0=a for all a in K, and a unique element 1 such that a x 1 = a for all @ in K (i.e. 0 is an
additive identity and 1 is a multiplicative identity). Simply let 0 = a X —a and 1 = a + —a for
some element a € K. I leave the proof of their uniqueness to the reader, as well as the proofs of

the following distributivity properties:

It will be noted that there are many alternative axiomatizations of a Boolean algebra, with
different operations primary and the others defined, but they are all equivalent to the system

given here.®

Definition 3.5. Let € = (K, —, x,*) be a structure where (K, —, X) is a Boolean algebra and
K is closed under a unary operation *. Then € is a closure algebra if the following additional

postulates hold:

(1) a < *a
(2) *0 =0
(3) **a =*a

(4) *(a+b) = *a+*b

(where < and + are the same abbreviations as used above).

The unary operation satisfying these four postulates is called the closure algebra’s closure oper-
ation. We can now extend the notion of a closure algebra to a matrix by simply including with

it a set of distinguished elements:

Definition 3.6. A matrix M = (K, D, —, X, *) is called a generalized closure matriz if (K, —, x,*)
is a closure algebra and D is a proper subset of K that contains the unit element 1. 9 is called a

closure matriz if, moreover, D is the singleton set containing only the unit element, i.e. D = {1}.

8See Huntington [6].
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Theorem 3.7. If M = (K, D, —, x, ® is a normal S4-matriz, then it is a generalized closure

matrix.

Proof. Suppose 9 is a normal S4-matrix. We first show that K is a Boolean algebra with respect
to — and X. Since D is a non-empty proper subset of K, we know K must contain at least two
elements. For commutativity, we know that Fgq (« A 8) = (8 A «). Since 9 is an S4-matrix,
(axb) < (bxa) € D for any a,b in K, and since 9 is normal, this implies a x b = b x a. We can
similarly verify postulates 3-5 by acknowledging that (a« AB) Ay = aA(BAY), (aAa) = «, and
(a AB)V (a A=) = «a are all theorems (tautologies) of S4. Furthermore, since Fgq (0 V —av),
we know that (a + —a) =1 € D.

It remains to show that the system also satisfies the four postulates for closure algebra. For the
first, observe that Fg4 a = aAQa is deducible from the (T) axiom of S4, and therefore a = ax*a,
or a < *a. Next, it can be shown that ¢(a A ~a) = (a A —a) is provable in S4, which yields
the second postulate. The third results from a simple derivation of Fg4 OOa = Qa from the (T)
and (4) axioms of S4. Finally, the last postulate is obtained from g4 O(aV ) = a VvV 8. O

Theorem 3.8. If a is a formula that is not a theorem of S4, then there exists a closure matriz

that fails to satisfy c.

Proof. From Theorem 3.3 there is a normal S4-characteristic matrix 9t = (K, D, —, x,*), which
by definition fails to satisfy all non-theorems of S4, including «. 9t is also normal and is
therefore a generalized closure matrix. But we can in fact show that D = {1}. Recall that
the designated elements of 9T are the equivalence classes of S4 theorems. Suppose § and v are
theorems of S4. By tautological consequence, Fgq 8 — v and Fgq4 v — (8, from which the (Nec)
rule provides Fg4 8 = 7. This means all S4 theorems are in the same equivalence class, and so
D can only contain one element, which must be 1. Hence if « is a non-theorem, 91 is a closure

matrix that fails to satisfy it. 0

We will ultimately show that every closure matrix is representable as a Kripke model. Before
we set about this task, however, we first present an even stronger result of McKinsey (1941)
that will afford us two ways of proving the completeness theorem. This is the algebraic finite

model property.

Theorem 3.9. (Algebraic Finite Model Property) Let « be a formula that is not a theorem of
S4, where o contains r subformulas. Then there exists a normal S{-matriz with at most 22

elements that fails to satisfy .
We begin with a lemma.

Lemma 3.10. Let M = (K, D, —, x, ® be a normal S4-matriz, and let a1, aq,...,a, be a finite
sequence of elements of K. Then there exists a normal S4-matriz My = (Kq, D1, —1, X1, 1)
with at most 22 elements such that K, contains a sequence of elements by, ba, ... b, satisfying

the following conditions:
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()CLZ‘ED iff b; € Dy

() —ai:aj iff —1bi:bj

(3) a; X a; = ag iff bixlijbk
(4)

if *ai = aj, then *1[),’ = bj

The proof is quite tedious and can be found in McKinsey [11], so we will provide only an
outline. We construct 91; in the following way: K; is the Boolean subalgebra of K generated
by ai,as,...,a,. That is, K7 is the set of all elements obtained from finite application of
— and X on those elements. D; is the intersection of D and K;. —; and X; are just —
and x with their domains restricted to the elements of K;. Finally, *; is defined as follows:
* o =*ry X *xg X -+ X *x,,, where x1, 22, ..., 7, are the elements of Ky that cover z. If x and
y are elements of K, we say that y covers z if x = y = 1 and *y € K;. Finally, we simply let
b; = a; for all i.

With these definitions it is possible to show that the conditions of the lemma hold. Clearly
all the b; belong to K;. Condition 1 holds by the way D; was defined, since all a; are in K;.
Conditions 2-4 follow from the definitions of —1, X1, and *;.

Mty is also a normal S4-matrix. To prove this, it suffices to show that it is a closure matrix
and then apply the claim that every closure matrix is a normal S4-matrix, which can be proven
by showing that every closure matrix satisfies the S4 axioms, satisfies valid inferences from S4
theorems, and obeys the normality conditions.

Finally, K; contains at most 22 elements. Using properties of finite Boolean algebras, we
know that since K7 was generated from a finite set of a;, every element can be written as a sum

of products of the form
H :i:ai
i=1

where the element 0 is taken to be the empty sum. There are 2" products of the above form,

and hence 22" possible sums, giving a total of at most 22 elements in K.

We now apply this lemma to prove Theorem 3.9. Suppose « is a non-theorem of S4 with
r subformulas aj,as,...,a,. Then it fails to be satisfied by the S4-characteristic matrix
M =(K, {1}, —, x,*). That is, some assignment of K-elements to proposition letters produces
a non-1 element. If aq,...,q, are the proposition letters occurring in «, let aq,...,a, be one
such assignment of K-elements to aq, ..., a,. Now for the remaining subformulas oy, 41, ..., a;,
let ap41,...,a, be the corresponding elements of K that result from the evaluation of each
subformula under the given assignment. Without loss of generality, we let a,. = «, and so
ar # 1.

Using Lemma 3.10, there exists a normal S4-matrix 9y = (K, {1}, —1, X1, *1) with no more
than 22" elements, and a sequence by, ..., b, with all b; € K, satisfying the four specified con-
ditions. Now suppose we assign by, ..., b, to the proposition letters of . From conditions 2-4
of the lemma, it is seen from induction that each subformula «o; evaluates to b;. In particular,

o, (which is just «) evaluates to b,. By condition 1, since a, # 1, b, # 1, and hence I fails to
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satisfy «. This proves the algebraic finite model property for S4.

The next corollary, which is a stronger version of Theorem 3.8, follows immediately:

Corollary 3.11. If « is a formula that is not a theorem of S4, then there exists a finite closure

matriz that fails to satisfy «.

Proof. A formula a can only have a finite number of subformulas, and so by Theorem 3.9, some
finite normal S4-matrix 9, fails to satisfy a. By Theorem 3.7, 91, is a generalized closure
matrix. But D; must contain the 1 element, so if we shrink D; to contain only the 1 element,
the same assignment of Ki-elements to proposition letters of a will evaluate to an element not
equal to 1, and hence this matrix (which is a closure matrix) fails to satisfy a. (Alternatively
we can simply observe that Dy = DN K; = {1} N K; =1, since all Boolean subalgebras must

contain 1). O

From here there are two routes to obtain the representation of closure matrices as Kripke models,
one using the algebraic finite model property, and the other based on the more general repre-
sentation that can apply directly to the Lindenbaum-Tarski matrix, which is necessarily infinite
(to see this, note that for instance, the equivalence classes of individual proposition letters are

distinct, and there are infinitely many).
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4. THE FINITE CASE
From Algebra to Topology.

Definition 4.1. A power set algebra (P(I),”,N) is a Boolean algebra whose elements are the
subsets of some index set I, and ~ and N are the operations of set complementation and set
intersection, respectively. A simple set theoretic argument will show that the operation U and
the relation C (set union and subset) are entirely analagous to the defined symbols + and <.

A subalgebra of a power set algebra is called a set algebra.

It is easily seen that any set I induces a power set algebra, since the usual set-theoretic operations
obey the postulates for a Boolean algebra. We can say that (P(I),”,N) is the power set algebra
of I.

Definition 4.2. A topological matriz (P(I),{I},”,N,C) is a closure matrix in which (P(I),~,N)
is the power set algebra of a set I, I is the sole distinguished element, and C'is a unary operation
on sets that obeys essentially the same postulates as * did in the previous section. The postulates

for C are thus seen to correspond to the Kuratowski closure axioms for a topological space:

C1: 5CC(S)

C2: C(0)=0

C3: C(C(S)) =C(S)

C4: C(S1US2) =C(S1)UC(Ss)

Theorem 4.3. (Monotonicity) If S C S, then C(S) C C(S5").

Proof. Suppose S C S’. Then S’ = S U (S'\S). By axiom C5,
C(8") = C(S)uC(S'\S), and therefore C(S) C C(5"). O

Our next major objective is to show that finite closure matrices and finite topological matrices

are in fact identical up to isomorphism.

Definition 4.4. If a and b are elements of a Boolean algebra, then a is a proper part of b if
a<b,a+#0,and a #b.

An atom is a nonzero element that has no proper parts.

A Boolean algebra is atomic if for every nonzero element b, there is an atom a such that
a<hb.

A Boolean algebra is complete if every set of elements has a supremum (i.e. a sum).
Lemma 4.5. FEvery finite Boolean algebra is complete and atomic.

Proof. Completeness is guaranteed by the simple observation that every set of elements under
consideration is a finite set, and therefore the sum is just a finite number of applications of
binary sums, which are guaranteed to exist in any Boolean algebra.

For atomicity, consider a nonzero element b of a finite Boolean algebra %B. If b is an atom,

then certainly it has an atom below? it, since b < b. If b is not an atom, then it has a proper

9An element a is said to be “below” b if a < b. Note that any element is below itself.
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part a. If a is an atom we are done, and if not then it must have a proper part. By continuing
this process we see that b must have a proper part that is an atom, or else there is an infinite

strictly descending chain of nonzero elements, contradicting that 95 is finite. O

Lemma 4.6. Let b be an element of a complete, atomic Boolean algebra B. Then
b= Z a;

where {a;} is the set of atoms such that a; < b. In other words, every element is the sum of

atoms below it.

Proof. We take the empty sum to be the 0 element, so the result trivially holds for b = 0. Now
suppose b is a nonzero element.

We note that < is antisymmetric, for ¢ < d and d < ¢ both hold if and only if c=c¢ x d = d.
So it suffices to show that the relation holds in both directions.

For the right-to-left direction, suppose a1 < b and ay < b. Then a; = a1 X b and as = as X b,
s0 a1 +az = (a1 X b) + (a2 x b) = (a1 + az) x b. Therefore a; + as < b. Extending this to
arbitrary sum (via induction and completeness), we obtain Y a; < b.

For the other direction, note that b < 3 a; is equivalent to bx—(>_ a;) = 0, which is equivalent
to b x [[(—a;) = 0. Assume the contrary. Then since B is atomic, there is an atom a such that
a <bx[[(—a;) <b. This means a must belong to the set of a;. But then a < [[(—a;) < —a,
which can only hold if a = 0, contradicting that a is an atom. Thus b < Y a;. O

Theorem 4.7. Every complete, atomic Boolean algebra is isomorphic to the power set algebra

of its set of atoms.

Proof. Let B = (K, —, x) be a complete, atomic Boolean algebra, with At(K) the set of atoms in
K. Let B’ = (P(At(K)),”,N) be the power set algebra of At(K). Then the map ¢ : B — B,
¢(b) = {a € At(K)|a < b} is an isomorphism.

Suppose ¢(b1) = ¢(bs) for by, by € K. Then by and be have identical sets of atoms below
them. B is complete and atomic, so by Lemma 4.6, b; and by are equal to the sum of the same
set of atoms, and hence are equal to each other. ¢ is thus injective.

¢ is also surjective. For suppose A is some set of atoms of K. Let b be the sum of elements
in A. Then ¢(b) = A. For right-to-left inclusion, note that if a € A, then a < b and so
a € ¢(b). For the other direction, suppose a € ¢(b), that is, a is an atom and @ < b . Then
a=axb=ax>{a; € A} => {a x a;|a; € A} by distributivity. Since a is nonzero, there
must be an a; for which a x a; # 0. But in fact a = a;, for otherwise their product would be a
proper part of both of them, which contradicts that they are atoms. Hence a € A.

The inverse map of ¢ is therefore seen to be the following: if A is a set of atoms, ¢p~1(A4) =
> {a; € A}.

It remains only to show ¢ is homomorphic with respect to the two operations of the Boolean
algebra:

6(—b) = {a € At(K)|a < —b} = {a € AHK) |a £ b} = 3(05)
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The second equality holds by the following argument: Let a be an atom of K. For left-to-right
inclusion, suppose both a < —b and a < b. Then a = a X —b = a X b, which implies a = 0,
a contradiction. Conversely, suppose a £ b, i.e. a # a x b We know that a <1 = b+ —b, so
a=ax(b+ -b)=(axb)+ (a x —=b). Since a is an atom, either a = a x b or a = a x —b, for

otherwise a would have a proper part. Because a # a x b, we deduce a = a X —b, and so a < —b.

¢(b1><b2) = {aeAt(K)\aSblxbg}:{aeAt(KHaSblandagbg}
— {ac AK)|a < b} n{ac AHK)|a < b} = ¢(b1) N b(bs)

Again the second equality holds as follows: Left-to-right inclusion is obvious from a < by xby < by
and a < by xXby < by. For the other direction, suppose a < by and a < by. Then a = axb; = axbs.
Multiplying on the right by by, we get ax by Xbs = axX by Xbs = ax by = a, whence a < by xby. [

It takes only a little more work to show the following:
Theorem 4.8. Fvery finite closure matriz is isomorphic to a topological matrix.

Proof. Let € = (B, {1},*) be a finite closure matrix (we can write it as a “Boolean algebra part”
with the two other entries added). Since B = (K, —, X) is a finite Boolean algebra, we know
by Lemma 4.5 that it is complete and atomic. The previous theorem provides an isomorphism
¢ between B and the power set algebra of its set of atoms. Note that since K is a finite set
of which At(K) is a subset, P(At(K)) must also be a finite set. To complete the proof, it
only remains to specify the distinguished elements and the closure operation for the topological
matrix, and to show the map ¢ preserves these. Let ¢’ = (B, {A¢(K)}, C) be the topological
matrix for which 9B’ is the power set algebra of At(K) and C is defined as follows: if A is a
set of atoms, C(A) = ¢(*¢~1(A)), that is, C(A) is the set of atoms below *b, where b is the
sum of atoms in A. Clearly P(A¢(K)) is closed under C, and we now show that C' satisfies the

Kuratowski axioms:

C1: Suppose a € A. Then a < ¢~1(A) < *¢~1(A), and hence a € C(A).

C2: C(0) = o(*¢~(0)) = ¢(*0) = ¢(0) = 0

C3: C(C(A) = o(*¢~(o(*o~1(A))) = ¢(* ¢~ (4)) = (¢~ (A

C4: C(A1 U Ag) = ¢(*¢~ (A1 U A2)) = ¢(*(2{ai € A1 U Az})) =
(o7 (A1) + 071 (A2))) = d(*d~ (A1) + *o~

P(*¢~ (A1) Ud(*o (A2)) = C(A1) UC(A2)

) =C(4)

H(Az)) =

Moreover, ¢ is homomorphic with respect to *, for we have

C(6(b)) = o(*¢~ 1 (6(b))) = ¢(*b)

Finally, ¢ carries {1} to {At(K)} because all atoms of K are below the 1 element.

Hence ¢ is an isomorphism between € and €. g

This result provides the next step toward completeness:
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Corollary 4.9. If a is a formula that is not a theorem of S4, then there exists a finite topological

matriz that fails to satisfy «.

Proof. By Corollary 3.11, there is a finite closure matrix that fails to satisfy «, and by the
previous theorem this closure matrix is isomorphic to a topological matrix. Hence there is a

finite topological matrix that fails to satisfy «. O

Rings of subsets. We now proceed into what seems a digression from the matter at hand, but

it will in fact be used to prove a crucial result.

Definition 4.10. A completely distributive topology on a set I is a unary operation
C : P(I) — P(I) which satisfies the first three Kuratowski closure axioms and also the

following axiom, which is a strengthening of C4 to arbitrary unions:

C5: if § = US;, then C(S) = UC(S;)

Note that in the case where [ is a finite set, all unions are finite, so C5 is equivalent to C4.

Definition 4.11. A family of subsets R of a set I forms a ring of subsets of I if for any two
sets S and T in R, SUT and SNT are also contained in fR.

A ring of subsets is full if it contains both the universal set I and the null set (.

A ring of subsets is complete if it contains, for every subfamily of sets S;, the sum US; and
the product NS;.

It is easily seen that if I is a finite set, all of its rings of subsets are complete.

Birkhoff (1937) proves the following result:'°

Theorem. “The [full] complete rings of subsets of I can be identified with the different quasi-

orderings of I or with the different completely distributive topologies on I.”

By “identified with” he means there is a bijective mapping between full complete rings of subsets
and completely distributive topologies, and likewise with quasi-orderings. The composition of
these mappings will then establish the crucial bijection between closure operations and quasi-

orderings, with which topological matrices can be represented as ‘“relational” matrices.

Let the classes of completely distributive topologies on I, full complete rings of subsets of
I, and quasi-orderings on I be denoted by 77, #Z;, and 2 respectively. We first show the
bijection between Z; and J7.

10gee Birkhoff [1], Theorem 1.
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Definition 4.12. Let ¢; be the function that maps a full complete ring of subsets R of I to
the unary operation P : P(I) — P(I) defined by:

Lemma 4.13. For any S € I, P(S) € A.
Proof. P(S) is a product of sets in R, so by completeness of R it is itself in R. O
Lemma 4.14. SR iff P(S)=S5.

Proof. It S € R, then the intersection of sets in R containing S is just S itself, hence P(S) = S.
Conversely, assume that P(S) = S. Then S is the product of sets in R containing it. But since
R is complete, this product is itself in R, so S € fR. d

Lemma 4.15. If S C S’, then P(S) C P(5).
Proof. Suppose S C S’.

PS)= () T, PS)= () T
T;€R,T;: DS T/eR, T2’

Since T} 2 8" 2 S for all j, every T} is a T;, and so the former intersection is a subset of the

latter. Hence P(S) C P(S"). O

We now check that the operation P = ¢ (R) satisfies the four axioms for a completely distribu-
tive topology.

C1: P(S) is the intersection of all sets in PR containing S; each of these sets contains S,
so the intersection contains S. Hence S C P(S5).

C2: P(0) is the intersection of all sets in SR containing @, and since the empty set belongs
to any full ring of subsets, P(0) = 0.

C3: Immediately from Lemmas 4.13 and 4.14.

C5: Suppose S = US;. Then for all 4, S 2 S;, and so P(S) 2 P(S;) by Lemma 4.15;
therefore P(S) D UP(S;).
For the opposite inclusion, consider UP(S;). By Lemma 4.13, P(S;) € R for all i,
whence UP(S;) € R by completeness of SR. Now, axiom C1 provides S; C P(S;), and
so US; =S CUP(S;). Again using Lemma 4.15, P(S) C P(UP(S;)), but P(UP(S;)) =
UP(S;) by Lemma 4.14, and therefore P(S) C UP(S;).

@1 is thus a well-defined function from Z; to 9. We now show that it is a bijection.

For injectivity, suppose fR; and Rs are full complete rings of subsets of I, and J8; # Ry. Then
without loss of generality, there is a set S that belongs to $8; but not Ry. Let P = ¢1(R1),
P, = ¢1(R2). By Lemma 4.14, P;(S) = S but P,(S) # S. Hence P; and P, are not the same
operation, i.e. ¢1(R1) # d1(Ra).

To show ¢, is surjective, we will define a function 1, that turns out to be the inverse of ¢;.
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Definition 4.16. If C is a completely distributive topology on I, let ¥1(C) = Re, where
Re ={S CI|C(S)=S}. That is, R¢ is the family of closed sets, where a set S is “closed” if
c(s)==5.

We first check that R¢ is a full complete ring of subsets of 1.

e Suppose R¢ contains some collection of S;. By definition of R, C(S;) = S; for each
i. By axiom C5, C(US;) = UC(S;) = US;, and so US; € Re. Now consider the
product. NS; = NC(S;). Since NS; C S; for all 4, it follows from monotonicity that
C(nS;) C C(S;) = S; for all ¢, and therefore C(NS;) C NS;. By C1, we also have
C(NS;) 2 NS;, so C(NS;) = NS;, hence NS; € Re. Thus Re meets the completeness
condition, and is a fortiori a ring of subsets of I.

e ] C C(I) by Cl, but since I is the largest set in P(I), C(I) = I, which means I € R¢.
Furthermore, C() = 0 by C2, so 0 € R¢. Therefore R is full.

Hence 97 is a well-defined function from 97 to #Z;. It remains only to show the following:
Claim. ¢1(¢1(C)) = C for all C € I7.

Proof. Let Re and Pe abbreviate 11 (C) and ¢4 (1)1 (C)) respectively. We need to show that for
all S C I, Po(S) = C(S). Fix such an S.

Po(S)= (] T

T;eRe,T: 28

= ﬂ T,

T;28,C(T:)=T;

= N C(Ty)

T;28,C(T:)=T;

From axiom C3 and monotonicity, the condition C(T;) D S implies that C(T;) D C(S). Thus,
because this condition holds for all C'(T}), it holds for their product, and so Pc(S) 2 C(S).

Now for the other direction. Again from axiom C3 we have that C(S) € R¢, and by Cl1,
C(S) 2 S. Therefore C(S) belongs to the set of T; D S that belong to Re. Thus,

c$)2 () Ti=Pe(S)

TieRce,T: 28

Putting these results together, the following theorem has been proven:
Theorem 4.17. ¢ is a bijective map from Xy to Tr with inverse ¢p7' = 1.
We now show the bijection between #; and 2.

Definition 4.18. Let ¢ be the function that maps a full complete ring of subsets R of I to
the relation on I given by R = {(z,y) |VS € R, ify € S, x € S}.

We check that R = ¢2(R) is a quasi-ordering on I.
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e Reflexive. Trivially, if z € S, then x € S. Hence zRx for all z € I.
e Transitive. Suppose xRy and yRz. Then for all S € R, y € S implies x € S, and z € S
implies y € S. So z € S implies € S. Therefore xRz.

Hence ¢5 is a well-defined function from %; to 2;.

Definition 4.19. Given a quasi-ordering @ on I, for every element y € I, we let fo(y) =
{z € I'lzQy}.

Lemma 4.20. If R = ¢2(R),
= () T

T, eR,yeT;

Proof. Follows immediately from Definitions 4.18 and 4.19. 0
Theorem 4.21. SR iff (ye€ SAzRy) >z €S.

Proof. The left-to-right direction follows immediately from Definition 4.18. Now suppose the
latter condition holds. Given an S, for every y € S, S also contains all the = such that zRy.
That is, S D fr(y). Furthermore,

S=J fr(v)

yeS
For suppose z € S. By reflexivity of R, 2Rz, and hence z € fr(z) C U,cs fr(y). Conversely,
suppose 2 € |J,cg fr(y). Then there exists a y € S for which z € fr(y). But fr(y) C S, so
z€S.
Using Lemma 4.20 and the fact that 9 is complete, fr(y) € R for all y € S, and therefore
(again by completeness of R), S € R. O

We are now ready to show that ¢- is injective. Suppose R; and o are full complete rings
of subsets of I, and R; # My. Then without loss of generality, there is a set S that belongs
to Ry but not Ry. Let Ry = ¢2(R1), Ra = ¢2(R2). By Theorem 4.21, since S € Ry, Vaz,y,
(y € SAzR1y) — x € S. And since S ¢ Ry, Iz,y, (y € SAzRey Az ¢ S). But if Ry = Ry,
these statements would create a contradiction. Therefore Ry # Ra, i.e. ¢ is injective.

For surjectivity, we define a function 15 that turns out to be the inverse of ¢s.

Definition 4.22. If Q) is a quasi-ordering on I, let

P2(Q) ={SCI|(y € SNzQy) —»z €S}

Denoting 12(Q) by R¢, we check that Rg is a full complete ring of subsets of I.

e Suppose R contains some collection of S;. Then for each i, if y € S; and zQy, then
x € S;. Now suppose xQy and y € US;. Then for some i, y € S;, whence z € S5; C US;.
Now consider the product. Suppose zQy and y € NS;. Then for all i, y € S;, whence
x € S;. This implies x € NS;. With these results, it follows from Definition 4.22 that
US; € Mg and NS; € R. Hence PR is a complete ring of subsets of 1.
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e Since () is a relation on I, all elements = and y such that xQy must be members of I,
so I € Rg. As for the empty set, the condition for membership in R is vacuously met
since there is no element y € () to satisfy its antecedent. Thus §) € Rg, so R is full.

1o is therefore a well-defined function from 2; to %;.

Claim. ¢2(12(Q)) = Q for all Q € 2;.

Proof. Let Rg and Rg abbreviate 12(Q) and ¢2(¢2(Q)) respectively. We need to show that
Rgo =Q.

Suppose zQy. Take any S € Rq, that is, an S for which y € SA2zQy — x € S. Then if y is
in S, z isin S. So by Definition 4.18, zRqy.

Conversely, suppose zRgy. For a given y, consider fo(y). Suppose 2Qz and z € fo(y). Then
2Qy, so by transitivity of @, xQy. Therefore x € fo(y), and so fo(y) € Rg by Definition 4.22.
Moreover, for every y, y € fo(y) by reflexivity. Now, since we assumed zRgy, this means that
for all S in R, y € S implies x € S. Since fo(y) € R and y € fo(y), consequently x € fo(y),
ie. zQy. O

We have proven the following theorem:
Theorem 4.23. ¢5 is a bijective map from Z; to 25 with inverse ¢2—1 = 1.

It immediately follows from Theorems 4.17 and 4.23 that the composition ¢o o t; furnishes a
bijection between completely distributive topologies and quasi-orderings on I. The next objec-
tive is to directly define this composition map and its inverse without invoking rings of subsets

as an intermediary.
Let w = ¢ 0 91 be the bijective map from 77 to 2; with inverse w™! = w;l ) qb;l = ¢1 0 YPs.
Theorem 4.24. If C' is a completely distributive topology on I, then
w(C)={(z,y) VS CLye S—zeC(9)}
Proof. Let

Ry =w(C) = d2(91(C)) = p2({S C I C(S) = S})
={(z,y)|VSCI1,C(S)=S,ye S —azcS}

Ry ={(z,y)|VSCLyeS—azecC(S))}

Suppose zRyy. Now for any S C I, suppose y € S. Let T'= C(S). By axiom C1, S C C(95),
so y € C(S). By axiom C3, C(T) = T, and because xRy, x € T = C(S). Therefore xRoy.

Now suppose zRyy. Then for all S C I, y € S implies x € C(S). In particular, for all those
S for which C(S) =S, y € S implies x € C(S) = S, and hence zRyy.

So R; = Rz, concluding the proof. O
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Theorem 4.25. If Q is a quasi-ordering on I, then for any S C I,
w H(Q)(S) = {z |3y € S, zQy}
Proof. Let

Pi(S) =w H(Q)(S) = ¢1(¥2(Q))(S)
=0 ({TCI(yeTANxQy) — x € T})(S)

:ﬂTi\TiQS,(yeTi/\ny)%xeTi

Py(S) = {z|Fy € 5, 2Qy}

To show P1(S) 2 Pa(S), suppose ' € P»(S). Then there is a ' in S for which 2'Qy’.
Consider each T; O S for which the property (y € T; A zQy) — x € T; holds. ¢’ is in S, so it
is in T;, and since 2’Qy’ holds, =’ € T; must hold. This is true for all such Tj, so it is true for
their intersection, and hence z’ € P;(.5).

For the opposite inclusion, it suffices to show that .S C P»(S) and that P»(S) has the property
(y € P2(S) AxQy) — z € Py(S), for then obviously P;(S) C P(S).

Suppose z € S. Then x € P»(S) since xQx holds by reflexivity of @. Hence S C P5(5).

Suppose y € P»(S) and xQy. The first condition implies that there is a z € S for which yQz
holds. By transitivity of @, then, xQz, and so z € P,(S).

Thus Py (S) = P»(S), and the theorem is proven. O

Relational Matrices.

Definition 4.26. A relational matriz (P(I),{I},7,N,C) is a topological matrix for which there
exists a quasi-ordering R on I such that for all S C I,

C(S)={xeI|3yesS, xRy}

The bijection w from the previous section provides a fundamental connection between finite

topological matrices and relational matrices.
Theorem 4.27. FEvery finite topological matriz is a relational matriz.

Proof. Given a finite topological matrix ¥ = (P(I),{I},7,N, C), it suffices to show the existence
of a quasi-ordering R satisfying the condition in Definition 4.26.

We first observe that C is a completely distributive topology on I. By Definition 4.2, C'
satisfies the Kuratowski axioms C1-C4, but as remarked earlier, in the case of finite I, all unions
taken over P(I) must be finite and can therefore be obtained from a finite number of binary
unions. Axiom C5 therefore reduces to C4, so C' is a completely distributive topology.

From the previous section, there is a one-to-one correspondence between completely dis-

tributive topologies on I and quasi-orderings on I, and from Theorem 4.24 the quasi-ordering
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corresponding to C' is given by:
R:=w(C)={(z,y)|VSCILye S—zeC(5)}

Then, since C = w1 (w(C)) = w™!(R), it follows immediately from Theorem 4.25 that for
all S C 1,
C(S) ={z|3y € S, zRy}

and hence ¥ is a relational matrix. O

Corollary 4.28. If a is a formula that is not a theorem of S4, then there exists a (finite)

relational matriz that fails to satisfy «.

Proof. Follows immediately from the previous theorem and Corollary 4.9. g

From Relational Matrices to Kripke Models. The final task is at hand. From the previous
corollary, every non-theorem of S4 has a relational matrix that fails to satisfy it. To prove the
desired completeness result, it suffices by Theorem 1.8 to find for each non-theorem « a Kripke
model M, with a quasi-ordered frame such that « is not valid in M.

Suppose a formula « is a non-theorem of S4. Then there exists a (finite) relational matrix
T=(P(I),{I},~,N,C) and an assignment p of subsets of I to the proposition letters of o such
that when « is evaluated in ¥ under this assignment, it results in a proper subset of I. This
evaluation can be made concrete by simply extending p’s domain to the set of all formulas built

up from «’s proposition letters, using the following inductive rules:
o 1(=8) = n(B)
o u(BAY) =pB)Nu(y)
o u(0B) = C(u(B))

As indicated above, then, u(a) C I.

We now construct a Kripke model M, = (W, R, v) as follows:

e W = 1. Since ¥ is a matrix, P(I) contains at least 2 elements, so I cannot be empty.
Therefore W is non-empty.

e R=w(C). R is a quasi-ordering since it is in the image of w.

e For any proposition letter p occurring in & and uw € W, v(p,u) = 1 iff u € u(p). For all

other proposition letters ¢ not occurring in «, v(q,u) = 0 for all u € W.

Claim. « is not valid in M.

Since p(a) C W, there exists a ' € W for which u’ ¢ p(«). It suffices to show:
Lemma 4.29. v(a,u) =1 iff u e p(a).

From this it will immediately follow that v(a,u') = 0 and thus « is not valid. To prove the

lemma, we use induction on the length of «.
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If « is a proposition letter, the result follows immediately from the definition of v.

V=fu)=1 I v(Buw)=0 iff ugu(f) i uen(B) = u(-H)

viBAv,u) =1 it v(Bu) =viyu) =1 i uwe pB) and u € ply) iff
u € p(B)Nu(y) =B A7)

e v(0B,u) =1 i Fv,uRv,v(B,v)=1 il Fv,uRv,v € pu(B) il ue C(uB)) =u(0s)

(The o = 0P case follows easily since O can be defined in terms of ¢.)

Therefore « is not valid in M,, and we have proven the completeness of S4 with respect
to the class of quasi-ordered frames. Not only this, but if we use the algebraic finite model
property, it is assured that M, is always finite, and thus we have proven the same finite model

property as in Section 2.
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5. THE JONSSON & TARSKI THEOREM

In the previous section we used the algebraic finite model property to represent finite closure
matrices as relational matrices. We now show that a similar representation is possible even for

infinite closure matrices.

Theorem 5.1. (Jonsson & Tarski Theorem) FEvery closure algebra is isomorphic to a set algebra
of some set W with an additional operation Cr arising from a quasi-ordering R on W by the
stipulation Cr(S) = {u|3Fv € S, uRv}.

Definition 5.2. Let B = (K, —, x) be a Boolean algebra. A filter of 98 is a subset F' C K such
that:

(1) 1erF

(2) If a,b € F,thena xbe F.

(3) fae Fand a <b, then b € F.
Fis a proper filter of 9B if it is a filter and a proper subset of K. An wltrafilter is a proper filter
that additionally satisfies:

(4) For every a € K, either a € F or —a € F.

This last condition actually implies an exclusive or. For suppose both a and —a belong to a
filter F. Then by (2), a x —a =0 € F. 0 is below every element of K, so by (3), F = K. Thus

F' is not a proper filter and hence not an ultrafilter.

Definition 5.3. If a is an element of the Boolean algebra 9, the up-set of a is defined as
Ta={be K|a<b}, that is, the set of elements of K that a is below.

Claim. 1 a is a filter of 3.

Proof. a < 1 fulfills the first condition. For the second, suppose b,¢c €1 a. Then a < b and
a < ¢, which implies a < b X ¢, so b X ¢ €1 a. The third property follows readily from the fact
that < is transitive. O

An up-set is in fact a special case of a filter that is generated by a set of elements.

Definition 5.4. Given a non-empty subset A C K, the filter generated by A is the set Fy =
{be K|3ay,...,a, € Ast. a3 X -+ X a, < b}.

We show this set is in fact a filter:

(1) Every element of A is below 1, so 1 belongs to Fj.

(2) Suppose by, by € F4. Then there exist aq, ..., a,, and al17 e ,a/n in A such that [Ta; < by
and [] a;- < by. From Boolean algebra it is easily seen that [Ja; x [] a; < by X by, and
hence by X by € Fy.

(3) Suppose by < by and by € F4. Then there exist ay, ..., a,, in A for which [Ja; < by < bo,
S0 by € Fy.
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A subset A C K is said to have the finite meet property if there exists no finite subset {a1,...,a,}

of A such that a; x -+ x a,, =0.
Lemma 5.5. If a set A C K has the finite meet property, then Fa is a proper filter.

Proof. Assume the contrary. Then F'4 = K, and in particular 0 € F'4, which implies that there
exists a finite set {a1,...,a,} of A such that a; x -+ x a, <0, ie a3 X -+ X a, = 0. This

contradicts that A has the finite meet property. O

Lemma 5.6. (Ultrafilter Lemma) Let F' be a proper filter of B. Then F is contained in an
ultrafilter of B.

Proof. Consider the set P of all proper filters of % containing F', with a partial order induced
by C. Let @ be a chain in P, that is, a non-empty subset of P whose elements are pairwise
ordered by C. We now show that UQ € P:

(1) Every element of @ is a filter and therefore contains 1, hence 1 € UQ.

(2) Suppose a,b € UQ. Then there exist filters Fy, F5 € @ for which a € Fy,b € Fy. Since @
is a chain, we can say without loss of generality that F; C F5. Therefore both a and b are in
F>,s0a xbe F, CUQ.

(3) Suppose a < b and a € UQ. Then a € F; for some filter F; in @, and therefore b must
also be in F1, so b € UQ.

UQ is also proper. For suppose it contained 0. Then some F; € @ would contain 0, which
contradicts that all elements of @) are proper filters.

Finally, F' C UQ since all filters F; € Q C P contain F. Therefore UQ € P.

Moreover, UQ is an upper bound of @ since every element of @) is contained in it. By
Zorn’s Lemma, P contains a maximal element, which we will call u. We now show that u is an
ultrafilter.

Assume the contrary. Then there is an element a € K such that neither a or —a is in .
Consider the filters F; and Fy generated by u U {a} and u U {—a}, respectively. By maximality
of u, neither of these filters belongs to P, but since they both contain F', they must be improper
filters. So 0 € F; and 0 € F5. By Lemma 5.5, then, these filters fail to have the finite meet
b, € wsuch that by X -+ X by, X a = 0

property. Hence there are elements by, ...,b,, € u, bll, ..by,

and by X --- x b, X —a = 0. By distributivity, (by X -+ X by, X a) 4 (by X -+ X by, X —a) =
by X -- X by =04 (by X -+ X by, X —a) = by X -+ X by, X —a. Hence by X -+ X by, < —a.
Similarly b x --- x b, < a, and it follows that by X -+ X by, x b, X --- x b, = 0. Therefore u

contains 0, contradicting that it is a proper filter. O

Theorem 5.7. Let B = (K, —, x) be a Boolean algebra, a an element of K, and F a proper
filter of B that does not contain a. Then there exists an ultrafilter containing F' that does not

contain a.

Proof. Consider the set G = F U {—a}. This set has the finite meet property. For if it didn’t,

there would be a finite or empty set of elements by, ..., b, € F such that by X --- x b, x —a = 0.
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If the set is empty, then —a = 0, which implies @ = 1. But all filters contain 1, and therefore
a € F, a contradiction. So the set of b; must be a finite, non-empty set. From distributivity it
is seen that by x - -+ x b, < a. But since b; X --- x b, € F, this implies once again that a € F,
a contradiction. Hence G has the finite meet property, and by Lemma 5.5, F is a proper
filter, which by the Ultrafilter Lemma is contained in an ultrafilter u. u contains F' because

F C G C Fg C u. Furthermore, u does not contain a because —a € G C w implies a ¢ u. O

Definition 5.8. Given a closure algebra € = (K, —, x,*), we construct the ultrafilter frame of
¢, Fe = (UfC, R), where UfC denotes the set of all ultrafilters of €, and R is a relation on this
set of ultrafilters given by the condition:

uRv iff Vx e K, if x € v, then *z € w.
Theorem 5.9. uRv iff Vax € K, if —*—x € u, then x € v.

Proof. From the definition of R, it suffices to show that x € v — *z € u is equivalent to
—*—x € u — = € v. Suppose the former condition holds. Now, say —*—z € u. Since u is an
ultrafilter, *—x ¢ u, so by hypothesis —z ¢ v, and likewise since v is an ultrafilter, z € v. The

opposite direction is proven analagously. O
Theorem 5.10. R is a quasi-ordering on Uf€.

Proof. For reflexivity, let © be some element of an ultrafilter u. Since x < *z, it follows that
*z € u. Hence uRu.
For transitivity, suppose uRv and vRw. If x € w, then *x € v and therefore **z € . But in

a closure algebra, **x = *x, so the condition for uRw is met. O

Definition 5.11. Let F = (W, R) be a frame. Then the structure
FT =(P(W),7,n,CR) is the complex algebra of F, where (P(W),,N) is the power set algebra
of W, and Cp is the unary operation on P(W) given by Cr(S) = {u|3Jv € S, uRv}.

If F¢ is the ultrafilter frame of a closure algebra €, then }'&L is called the canonical embedding

algebra of €.

Letting W = Uf€, we see that since R is a quasi-ordering on W and Cr(S) = {u|Jv € S, uRv},
the Jénsson & Tarski Theorem can be proven directly by identifying an isomorphic map from €
to a subalgebra of ]—'é“ . In other words, we must find an embedding (injective homomorphism)

of € into Ff. This is precisely the Stone embedding:
p: K — P(UfC)
p(z) ={ue Uf¢|z € u}
To show that p is injective, suppose a and b are distinct elements of K. Without loss of
generality, we can say b £ a. The element a therefore does not belong to the up-set of b, which
is a filter. By Theorem 5.7, there is an ultrafilter u containing 1 b that also does not contain a.

But then u € p(b) and u ¢ p(a), and hence p(a) # p(b), proving injectivity.

We now show that p is homomorphic with respect to the operations of the closure algebra:
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e p(—a) = p(a). All ultrafilters containing —a do not contain a, and vice versa.

e p(a x b) = p(a) N p(b). An ultrafilter contains a x b iff it contains both a and b iff it
belongs to p(a) N p(b).

e p(*a) = Cgr(p(a)). The right-to-left inclusion is easy to prove. Suppose u € Cr(p(a)).
Then there exists a v € p(a) such that uRv. Since a € v and uRv, it follows that *a € u,
and hence u € p(*a). The other direction is the tricky one. Suppose u € p(*a), i.e.
*a € u. We need to show the existence of an ultrafilter v such that a € v and uRwv.

Let S = {z € K|-*—2 € u}. S is closed under x. For suppose —*—z; € u and
—*—x9 € u. Then (—*—z1) x (—*—x3) € u since ultrafilters are closed under x. But
(—*—x1) X (—*—x2) = —((*—21) + (*—x2)) = —*(—21 + —22) = —*—(21 X x3), and so
—*—(x1 X 22) € u, giving the desired result.

Now consider the set T'= {a x |z € S}. T has the finite meet property. For assume
the contrary. Then there is a finite set 1, ... z, € S such that (axx1) x- - x (axxy) =
(ax--xa)X(zxy X - X2xp)=ax(xy1 X -+ Xx,)=0. Since S is closed under x, a
finite product of such x; will also be in S, and so it suffices to show that for any z € 5,
a x x = 0 will lead to a contradiction. For if a x z = 0, then ¢ < —z, from which it
follows that *a <*—z.1' Recall that *a € u. Therefore *—2 € u, which contradicts that
x € S. Hence T has the finite meet property.

T is a subset of K with the finite meet property. By Lemmas 5.5 and 5.6, there is an
ultrafilter v that contains T'. Additionally, S C v. For suppose x € S. Then a X x € v,
and since a X z < z, x is in v.

Finally, we show that a € v and uRv. The first condition holds because 1 € S, and
therefore a € T' C v. For the second condition, suppose that —*—z € u. Thenz € S C v,
which implies uRv by Theorem 5.9.

With this, the Jénsson & Tarski Theorem has been proven. The next corollary follows right
away from the fact that the Stone embedding always maps the closure algebra’s 1 element to

the set of all ultrafilters, because all ultrafilters contain 1.
Corollary 5.12. FEwvery closure matrixz is isomorphic to a relational matriz.

As we have seen, the Jonsson & Tarski Theorem is a means of obtaining this result without
resort to the algebraic finite model property. Combining it with Theorem 3.8, we have shown
that every non-theorem of S4 has a relational matrix that fails to satisfy it. Although we have
not guaranteed that this matrix is finite, the same construction of a Kripke model that we
discussed in Section 4 will yield the desired completeness result.

However, if we want to see how the algebraic method developed in this section precisely
parallels the completeness proof of Section 2, we can directly construct a “canonical model”
algebraically. This canonical model will be a single model for which all and only the theorems
of S4 are valid.

HThis property is easily derivable from postulate (4) of a closure algebra. See Lemma 6.11.
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Recall from Section 3 the Lindenbaum-Tarski matrix 91 for S4, that is, the normal S4-
characteristic matrix whose elements consist of the equivalence classes of S4 formulas, and
whose designated elements are the equivalence classes of S4 theorems. In the proof of Theorem
3.8, it was shown that 91 is a closure algebra with a single designated element, 1 (since all
theorems are in the same equivalence class). Let € be the closure algebra part of 9, called the

Lindenbaum-Tarski algebra. We construct the canonical model M = (W, R, v) as follows:

e (W, R) is the ultrafilter frame F¢. That is, W = Uf€, and vRv iff x € v implies *z € u
for all x € K.
e For any proposition letter p and v € W, v(p,u) = 1 iff [p] € u.

To show completeness, we first prove the following:
Lemma 5.13. v(o,u) =1 iff [o] € u.

Proof by induction on the length of «.

e If o is a proposition letter, the result follows immediately from the definition of v.

o v(—p,u) =1 iff v(B,u)=0 iff [f] ¢u iff —[8] =[] € u. The last equivalence
holds since w is an ultrafilter.

e v(BAv,u) =1 iff v(B,u) =v(y,u)=1iff [f] €uvand[y] €u iff [B]x[y]=[BAY] € u.

o v(OB,u) =1 iff Jv,uRv,v(B,v) =1 iff Jv,uRv,[B] € v iff *[8] = [0F] € u. To show
the last equivalence, the left-to-right direction follows by definition of R. For the other
direction, recall that the embedding p has the property p(*[8]) = Cr(p([5])). Therefore,
any ultrafilter containing *[(] is such that Jv € p([f]), uRv, i.e. v contains [J].

We can now prove completeness easily. Suppose « is valid in M. Then for all u € W, v(a, u) = 1.
By the above lemma, [a] € u for all w € W = Uf€. That is, p([a]) = Uf€. Since p is injective
and p(1) = Uf€, we see that [a] is the 1 element of the Lindenbaum-Tarski algebra. Therefore o
is in the equivalence class of S4 theorems, and hence a theorem itself. Also, R is a quasi-ordering

on W by Theorem 5.10, so we are done.

Correspondence Between Modern and Algebraic Proofs. It should be clear to the reader
by now just how similar are the two methods we used to construct canonical models for S4. In
fact, the models are not just similar, but they are for practical purposes exactly the same! In
Section 2, we built our Kripke frame out of maximal consistent sets of formulas. In the present
section, we considered the equivalence classes of formulas as elements of a closure algebra, and
then built the Kripke frame out of the ultrafilters of that closure algebra. But in fact, the
ultrafilters are maximal consistent sets, once we “unpack” the equivalence classes into their
constituent sets of formulas.

The following table should elucidate the correspondence between the two approaches we have

used:
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Logic Algebra
Formulas Equivalence classes of formulas

= A0 —, X, *

Fsaa—f [a] < (8]

Fsa a4 3 [a] = (8]

Set of S4 theorems 1
Consistency Finite Meet Property
Maximal consistent sets Ultrafilters

This identification of ultrafilters with MCS’s is apparent from the definition of each. An
ultrafilter is merely a “condensed” way of viewing an MCS, because we know that if a formula
belongs to an MCS, by consistency all provably equivalent formulas belong to that MCS, i.e. its
equivalence class belongs to that MCS (ultrafilter).

With this correspondence in mind, observe how the algebraic completeness proof is essen-
tially the same as the modern completeness proof. We will outline the proofs in parallel. The
modern proof begins with a lemma enumerating four properties of MCS’s. These properties
have analogues in the properties of ultrafilters. As an example, for every formula «, precisely
one of {a, —a} is in any MCS. Likewise, precisely one of {[a], [-a]} is in any ultrafilter.

The next step is to prove Lindenbaum’s Lemma, that every consistent set can be extended
to an MCS. In the algebraic proof, the Ultrafilter Lemma serves the same role: every proper
filter can be extended to an ultrafilter, and hence any set with the finite meet property can
be extended to one. Note that the proofs of these lemmas are slightly different. In proving
Lindenbaum’s Lemma, we can enumerate the formulas and add each formula or its negation
successively to the consistent set to obtain an MCS. The Ultrafilter Lemma, on the other hand,
is more general and does not assume countability of the algebraic elements. The proof therefore
requires Zorn’s Lemma.

If we were to prove the Ultrafilter Lemma more specifically with respect to the Lindenbaum-
Tarski algebra, we could actually use the same method as for Lindenbaum’s Lemma. That is,
we could enumerate the equivalence classes of formulas in the following way: Using the Axiom
of Choice, select from each equivalence class a formula of minimum length. That formula has
an associated “code number,” and since no two formulas of different equivalence classes can have
the same code number, we can order the equivalence classes by code number of the selected
formulas. From there the proof proceeds exactly as for Lindenbaum’s Lemma.

The canonical models we construct are basically the same in both approaches: W is the set of
MCS’s, or ultrafilters. R is the relation for which uRv iff o € v implies ¢ € u; equivalently, iff
[a] € v implies *[a] = [0a] € u. The valuation function v is the function that makes p true at u
precisely when p belongs to the MCS u, or when [p] belongs to the ultrafilter u. The reflexivity
and transitivity of R are proven easily in both cases, either by the (T) and (4) axioms of S4, or
by postulates (1) and (3) of a closure algebra given in Definition 3.5.

The remainder of the two proofs vary in the details. The algebraic proof is more general and

utilizes a deep algebraic result: the Jonsson & Tarski Theorem. But the basic idea is the same
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for both proofs. We show that the canonical model invalidates all non-theorems of S4. The
proof of this involves “lifting” the “truth as membership” condition for proposition letters to the
same condition for all formulas. This is done via induction, and it hinges on a crucial “existence
lemma.” In the logic proof, it is Lemma 2.6: If 0« € u, there exists a v such that uRv and
a € v. In the algebraic proof, this corresponds to the condition p(*[a]) = Cr(p([@])), which
implies that if [Qa] € u, there exists a v such that uRv and [o] € v.

The proofs of these are, unsurprisingly, almost identical. We assume that « (or [a]) is in
the MCS /ultrafilter u. We then form the set of propositions/elements of u that are “necessary”
(ie. B € ust. bFgq OB, or, —*—[8] € u) and show that this set is consistent when « is
adjoined (or has the finite model property when [a] is multiplied to each element). Then by
Lindenbaum’s/Ultrafilter Lemma the set can be extended to an MCS/ultrafilter v such that
uRv and « € v (or [a] € v).

Hence we see that the algebraic proof is an almost equivalent formulation of the modern
proof. It invokes the heavier machinery of the Jonsson & Tarski Theorem, but the canonical
model it constructs is essentially the same as Makinson’s, once we realize that ultrafilters of
equivalence classes can be identified with maximal consistent sets.

It is left to the reader to uncover a similar correspondence between the two proofs of the

finite model property we have given in Sections 2 and 4.
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6. THE EXTENSION THEOREM

In the previous section, we provided a proof of the Jonsson & Tarski Theorem by means of the
Stone embedding map that took algebra elements to the set of ultrafilters containing them. In
their actual 1951 paper, however, Jonsson and Tarski took a different route. Their aim was
broader, as they were concerned not only with closure algebras, but in general with “BAQOs”
(Boolean algebras with operators), of which a closure algebra is just one particular instance.

Recall from Theorem 4.7 that every complete, atomic Boolean algebra is isomorphic to the
power set algebra of its set of atoms. This was subsequently used to show that every finite
closure matrix is isomorphic to a topological matrix. Moreover, since the operation on this
topological matrix is a completely distributive topology, the matrix can in fact be represented
as a relational matrix.

We can also generalize the same procedure to non-finite closure matrices of a certain kind.

Definition 6.1. On a Boolean algebra, a unary function f is additive if f(a+b) = f(a) + f(b)
for all a, b.

It is completely additive if f(>_ a) =3 f(a) for arbitrary sums of elements.

An n-ary function f is additive if it is additive in each argument. That is, when f is viewed
as a unary function of each argument, holding all other arguments constant, that function is

additive. Likewise, f is completely additive if it is completely additive in each argument.
We can now make the following definition:

Definition 6.2. A closure algebra is a complete, atomic closure algebra if: 1) the Boolean

algebra part is complete and atomic, and 2) the closure operation is completely additive.

In the proof of Theorem 4.7, we only used the finitude of the closure algebra to guarantee its
Boolean algebra was complete and atomic. But if we assume these properties initially, we get

the following:

Theorem 6.3. Fvery complete, atomic closure matriz'? is isomorphic to a topological matriz

whose closure operation is a completely distributive topology.

Proof. Let € = (K, {1}, —, X,*) be a complete, atomic closure matrix. The isomorphism is the
same as before; it is the map ¢ which takes each algebra element to the set of atoms below it.

¢ maps € to the topological matrix ¢ = (P(At(K)),{At(K)},~,N,C), where C(A) =
d(*¢~1(A)). We now show that if * is completely additive, then C is a completely distributive
topology on At(K). We already know that C satisfies the Kuratowski axioms, so it suffices to
show that if S = US; is an arbitrary union of sets in P(At(K)), then C(S) = UC(S;).

12Recall that a closure matrix is just a closure algebra with the 1 element designated, so they are only trivially
distinct concepts.
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C(S) = p(*¢~* ¢(*> fae S} =) {*alac s}
:{b|b§Z{*a\aeS}}:{b|b§ZZ{*a|a€Si}}

The crucial third equality holds by complete additivity of *. Similarly,

e qu*qs U¢ Y H{aesih)=Jo> {*alac s}
= U{b|b§ Z{*a|a€ S}y ={p1b<> > {*alac Si}}
These two items are equal, so C' is a completely distributive topology. O

The relational matrix representation of a complete, atomic closure matrix comes as a corollary
of the following, whose proof is identical to that of Theorem 4.27 without the extra assumption

of a finite matrix.

Theorem 6.4. FEvery topological matrix whose closure operation is a completely distributive

topology is a relational matriz.

This is excellent progress, but still not as strong a result as the Jonsson & Tarski Theorem,
which assures us that any closure matrix is representable as a relational matrix.

It suffices to prove the following theorem:

Theorem 6.5. (Extension Theorem) Any closure algebra is a subalgebra of a complete, atomic

closure algebra.

We see that Theorem 5.1 directly follows from this. For suppose € is a closure algebra that is
a subalgebra of ©, where © is complete and atomic. Then ® is isomorphic, via ¢, to a power
set algebra ©’ whose closure operation corresponds to a quasi-ordering on the atoms of ©. An
isomorphism carries subalgebras to subalgebras, and therefore € is isomorphic to a subalgebra
of ®'.

Jonsson and Tarski proved a more general form of the Extension Theorem for Boolean alge-
bras with arbitrarily many operators of any arity.'® In this section, however, we will prove the

theorem only in the case of closure algebras.

Suppose € = (K, —, X, f) is a closure algebra (we have changed the notation from * to f for
convenience). We seek to find a complete, atomic closure algebra © = (K7, —1, X1, f1) of which

¢ is a subalgebra.

Theorem 6.6. (Stone Extension) Any Boolean algebra is a subalgebra of a complete, atomic

Boolean algebra.
133ee Jénsson and Tarski [7].
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Proof. This statement is a consequence of our earlier Stone Representation Theorem. The Stone
mapping p embeds a Boolean algebra into a power set algebra, and power set algebras are always
complete and atomic (the atoms are the singleton sets). Thus, a Boolean algebra B is isomorphic
to a set algebra %’ which is a subalgebra of a (complete and atomic) power set algebra 2A'. We
can construct the complete atomic extension 2l of 9B by simply “replacing” each element of B’

in 21 by the corresponding element of B. g

Using this theorem, we can simply let the Boolean algebra part of ©, (K7, —1, X1}, be the Stone
extension of (K, —, x). For ease of notation, we will write (K7, —1, x1) as (L, —, X), keeping in
mind that these — and x are technically defined over the larger domain L, but they are the
same as — and x for € when their domain is restricted to K. To show that € is a subalgebra of
D, it only remains to find f; so that f1(z) = f(x) for all z € K.

Definition 6.7. Let (K, —, x) be a Boolean subalgebra of (L, —, x). An element 2 € L is closed

if
x:Hy

r<yeK

Lemma 6.8. If x € K, then x is closed.

Proof. The set of y € K such that = < y includes « itself, so by definition of <, the product of

this set is equal to x. (|

Definition 6.9. Let C denote the set of closed elements in L. If f : K — K, let fT : L — L

be the function:
fFay=> I f&

z>yeC y<zeK

Lemma 6.10. Ify is closed, then

o= 11 r@

y<zeK

Proof. Suppose y is closed. Then
o= 11 &+ > 11 1
y<zeK y>y'eC y'<zeK

For each ¢ € C, y' < vy, consider

I 7

y'<zeK
Since 3y’ < y, the set of z occurring in this product is a superset of the set of z € K, y < z.

Therefore,
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IT r@» < I @
y'<zeK y<z€K
> II f» < 1] f=

y>y'€C y'<zeK y<zeK

()

II 7

y<zeK

Lemma 6.11. (Monotonicity) If f is additive, then if x <y, f(z) < f(y).

Proof. Suppose x <y. Then y =z +y, so f(y) = f(z +y) = f(z) + f(y), Le. f(z) < fly). O
Theorem 6.12. If f is additive, then f = fT\K. That is, Vo € K, fT(z) = f(2).

Proof. Using the previous three lemmas, if z € K,
ffay=1I re=r@x I e =1rw@
z<zeK r<zeK
The last equality holds because for each z > z, f(x) < f(z) holds by monotonicity, and hence
fl@) <I1f(2). O

Since f is additive by closure algebra postulate (4), we can let f; = fT, and this theorem
guarantees f = fT\K, which implies that € is a subalgebra of . It remains to show that © is
a complete, atomic closure algebra. The Stone extension assures us that ©’s Boolean algebra is

complete and atomic. Moreover, f is completely additive by the following theorem:
Theorem 6.13. If f is additive, then fT is completely additive.

The proof is very tedious and can be found in Jonsson and Tarski 7], Theorem 2.4.

It only remains to show that © satisfies the four postulates for a closure algebra.

(2) fH(0)=0
Since 0 is an element of K, by Theorem 6.12 we have f*(0) = f(0) = 0.

(4) fHa+b) = f(a)+ fH(D)

fT is completely additive, and therefore additive.

(1) a < f*(a)
(3) fH(f*(a)) = f*(a)

These two conditions are much harder to prove by definition. Instead we will employ the

following theorem:
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Theorem 6.14. If f is an additive function of arity m, and g1, ga, . . ., gm are additive functions
of arity n, then
(f(glag27 v >gn))+ = f+<gfr’g;r7 s ’g:)

That is, composition of additive functions is preserved under +.

Note that in Definition 6.9, * was only defined for unary functions. This was done for clarity,
but the definition can be easily extended to functions of any arity. The proof of Theorem 6.14
is again very complicated, and the reader may refer to Jonsson and Tarski [7], Theorem 2.10 for

the more generalized version.

Now, let Idx and Idj be the identity maps on K and L respectively.
Theorem 6.15. Id}; =Idy.

The proof will take some work. First, it should be disclosed that the actual extension theorem
found in Stone appears in a stronger (and much more esoteric) form than the version we presented

in Theorem 6.6. Jénsson and Tarski paraphrase it as:

Theorem. “Every Boolean algebra is isomorphic to a set-field consisting of all open and closed

sets in a totally-disconnected compact space.”

Although we will not delve into further details here, this result has an important consequence

in that the Stone extension (L, —, x) has an additional property:

e If u and v are distinct atoms of (L, —, X ), then there exists an element k € K such that
u<kandvxk=0.

To prove Theorem 6.15, we begin with a lemma:
Lemma 6.16. If u is an atom of ©, then u is closed.

Proof. Let

ZZHy

ulyeK
Using the above property of the Stone extension,

Since ®’s Boolean algebra is complete and atomic, by Lemma 4.6 the latter product can be
written as a sum of the atoms below it. Let this set of atoms be A. We know that u belongs to
A. Therefore

z:kav:kx(u—i— Z v)=kXu=u

vEA vEA, VAU
where we have again used the additional property of the Stone extension, and also distribu-

tivity. We now have
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And hence u is closed. O

We can now prove Theorem 6.15.

Proof.
Idj(x) = Z H Ik (2) = Z H z
z>yeC y<zeK z>yeC y<zeK
= 2 v= X vt )
z>yeC x>yeAt(L) z>yeCy¢ At(L)
=

The second-to-last equality is a result of the previous lemma that all atoms are closed, and
the last equality holds because the first term is just x and the second term is a sum of elements

below x. Hence we have proven Id;r( =Idy,. O

In a similar fashion, it can be shown that the — and x operations of the extension © are really

just —T and x* for the corresponding operations of €.
We finally return to the task of proving closure algebra postulates (1) and (3) for ©.

Let hg : K — K be the function hg(x) =  x f(z), and hy, : L — L be the corresponding
function on domain L, hy(z) = x x fT(x). We see that hy is the composition of x with Idx
and f, and hp, is the composition of x* with Id; and fT. By Theorem 6.14,

hie = (x(Idg, )T = x*(Idje, f7) = x*(Idy, f7) = hy

Since € satisfies postulate (1), we know that a < f(a), or equivalently, a = a x f(a). This
corresponds to the condition Idx = hg. Applying the T operator to both sides, we get Id} =
hj., i.e. Id;, = hy, which means that D also satisfies postulate (1).

For postulate (3), we know that f(f(a)) = f(a). Applying T to the composition of f with
itself, we get (f(f))* = fT(fT), by Theorem 6.14. Hence f(f) = fT, and ® satisfies postu-
late (3).

The proof of the extension theorem is done, for we have shown that € is a subalgebra of a

complete, atomic closure algebra, ©.
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7. CONCLUSION

Given the parallelism we have seen between the algebra and logic, it is clear that the work
of McKinsey, Tarski and Jonsson could have been used to prove the completeness of S4 (and
several other modal systems) years before Kripke. The method of constructing an relational
canonical model comes directly from applying the Jonsson & Tarski Theorem to McKinsey’s
“S4-characteristic matrix,” which is just the Lindenbaum-Tarski algebra of equivalence classes
of formulas. Alternatively, completeness could have been shown using McKinsey’s algebraic
finite model property in conjunction with the identification of finite topological matrices with
relational matrices, which can be extracted from Birkhoff’s paper on Rings of Sets. Hence the
completeness of S4 could have been proven as early as 1951 by the former method, or as early as
1941 by the latter. Alfred Tarski, having worked extensively on both modal logic and algebra,
would have been the likely candidate to discover the link between the two.

Yet despite all the crucial components now floating around in the literature, Tarski somehow
overlooked the connection. While working on representations for BAOs, he simply did not have
modal logic on his mind. Instead he was focused on the algebra of binary relations; in fact,
the second half of Jonsson and Tarski [7] dealt almost wholly with “relation algebras.” Even as
late as 1962, Tarski told Kripke that he could not see the connection between his representation
theorem and Kripke’s work. Kripke was the first to discover it, and he mentions in a footnote
that the insight struck him just as he was finishing up the completeness proof.

Goldblatt [5] poses the question, “Could Tarski have invented Kripke semantics?” I would
reply that, given the conspicuous parallels we have seen between logic and algebra, it was
certainly within his capacity to do so. By historical accident, he failed to connect the dots before
moving on to a different line of research. I concede, however, that without the preestablished
conceptual framework of “possible worlds” that semanticists now take for granted, it would
have been much more difficult to instinctively grasp what was going on. “Possible worlds”
harmonize with our modal intuitions far more readily than do “ultrafilters.” Neverthless, Tarski’s
obliviousness serves as a reminder that mathematical disciplines are not insular, and that we

can make important discoveries by bridging the gaps between them.
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