
BreakApp: Automated, Flexible Application
Compartmentalization

Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon, Jonathan M. Smith
University of Pennsylvania

{nvas, karel, nroess, ndd, andre, jms}@seas.upenn.edu

Abstract—Developers of large-scale software systems may
use third-party modules to reduce costs and accelerate release
cycles, at some risk to safety and security. BREAKAPP exploits
module boundaries to automate compartmentalization of sys-
tems and enforce security policies, enhancing reliability and
security. BREAKAPP transparently spawns modules in protected
compartments while preserving their original behavior. Optional
high-level policies decouple security assumptions made during
development from requirements imposed for module composition
and use. These policies allow fine-tuning trade-offs such as
security and performance based on changing threat models
or load patterns. Evaluation of BREAKAPP with a prototype
implementation for JavaScript demonstrates feasibility by en-
abling simplified security hardening of existing systems with low
performance overhead.

I. INTRODUCTION

Software development is changing in scale, process, and
basis for trust. Early open-source software such as the Linux
kernel or Apache had many people focused on the quality and
security of a single codebase. Yet even such cohesive efforts
failed to prevent a slate of vulnerabilities [7], [9].

Current software makes extensive use of third-party mod-
ules created by different authors and accessed via language-
specific package repositories. For example, JavaScript’s Node
Package Manager [46] hosts more than half a million packages
from over 100K authors and serves hundreds of millions of
package downloads per day. Such public repositories provide
no guarantees on modules beyond availability; anyone can
create an account and share packages.

A sample of large-scale applications (Section IX) shows
that foreign code accounts for up to 99.9% of that released to
clients, and thus most code is neither written nor reviewed by
its nominal developers. In practice, glue code stitches together
many specialized modules comprising the application into a
system with deep, intricate interdependencies. As we show,
several hundred third-party dependencies occur in an average
application due to recursive imports. This gives rise to security
vulnerabilities, as these modules execute with no isolation or
privilege separation beyond what type safety provides.

Further problems increase these risks. With popular mod-
ules averaging tens of thousands of lines of code, understand-
ing the internals of a complex package and verifying that it will
not behave in unintended ways [15], [33] are both extremely
difficult tasks. The popularity of certain packages—depended-
upon by thousands of other packages—allows vulnerabilities
deep in the dependency graph to cause widespread difficul-
ties [30], [23], [60]. Discovered vulnerabilities are becoming
harder to eradicate, since some updates are fetched automati-
cally [43], and module unpublishing is becoming a multi-step
process in order to avoid breaking dependency chains [59].

Software supply chain attacks are becoming an important
concern. Instead of merely reacting to announced vulnera-
bilities [28], [8], [51] or avoiding composition altogether due
to security concerns, we propose leveraging the trend towards
more and smaller modules to enhance, or retrofit, application
security. The core idea is to exploit programming language
properties (e.g., abstraction, encapsulation, trust boundaries) to
automatically transform a program at the module boundaries
and offload enforcement to the operating or runtime system
(e.g., address space isolation, LXC/namespaces, sandboxing).

BREAKAPP is a drop-in replacement for a language run-
times module system that pioneers the use of module bound-
aries as a guide to placing code into protected compartments.
BREAKAPP is centered around a parametrizable transforma-
tion technique that spawns modules in their own compartments
during runtime. Automated transformations (e.g., function calls
to remote procedure invocations, garbage collection propaga-
tion) hide compartment boundaries, providing the benefits of
compartmentalization with low developer effort.

Optional runtime policy expressions fix the aforementioned
parameters, effectively decoupling assumptions made during
module development from requirements present during module
composition. Certain powerful linguistic features, such as
introspection and global variables (Section III-A), pose high
risks for inter-module attacks. Allowing developers to disable
them when their side of the code does not use them eliminates
classes of attacks. Since the same module can be used by
several different applications, each with its own assumptions
and sensitivities, it is important to let the application developer
choose which module behaviors to disallow based on their
side of the code instead of whether vulnerabilities for the
modules in use have already been discovered. Moreover, the
aforementioned transformations for creating compartments and
maintaining the illusion of a single runtime open a rich space
of security and performance trade-offs. Thus policies can also
improve BREAKAPP’s performance by allowing programmers
to customize the provided functionality on a per-import basis.

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23131
www.ndss-symposium.org

Fig. 1. A simplified server application with multiple third-party modules of varying trust.

BREAKAPP does not require any annotations, does not
require any tracing or inference (pre-)runs, and does not
require manual rewriting of source code. Policy expressions
are backward-compatible with existing codebases and forward-
compatible with unmodified module systems. The system
lowers potential barriers to widespread adoption and makes
incremental security retrofit in existing systems possible.

We demonstrate a prototype of our system, breakapp,
targeting JavaScript. We leverage JavaScript’s flourishing pack-
age ecosystem to show that it mitigates several classes of dis-
covered vulnerabilities, as well as wider classes of hypothetical
vulnerabilities. We show that good parameter choices can give
acceptable performance results, hitting a sweet spot between
security and performance.

Our contributions include:

• identifying an opportunity in today’s applications; the
use of many third-party modules, although risky, offers
clear boundaries of trust (Section III).

• formulating a parametrizable technique for automat-
ically transforming modules to standalone compart-
ments, allowing users to compartmentalize applica-
tions at the boundaries of untrusted modules (Sec-
tions IV, VI).

• proposing a concrete set of policies for configuring
the aforementioned parameters, effectively allowing
users to fine-tune the security, compatibility, and per-
formance trade-offs (Section V) during runtime.

• building an open source, prototype implementation of
our technique (Section VIII), and evaluating applica-
bility, security, and performance, leading to configu-
rations that work well in practice (Section IX).

II. OVERVIEW

While our concerns with third-party code are language-
independent, the problem and proposed solution are developed
here for an interpreted language where source code is available.
We sketch additional challenges for compiled languages in
Section VII.

A. A Blogging Platform

To highlight typical module usage in modern applications,
we consider Ghost, an open source blogging platform. Ghost
imports 62 top-level packages and makes use of 981 packages
in total. The snippet below presents a simplified version of

the core functionality behind such a blogging platform’s search
capability:

1 var dbc = require("./dbc.json");
2 var ejs = require("ejs");
3 function search(req, res) {
4 var f = db.getFiles(dbc);
5 var m = require("minimatch");
6 var r = m.match(f, req.query);
7 res.body = ejs.render(template, r);
8 }

Function search takes a request and a response object.
It populates results in the response object based on query
data from the request and the result-page template from the
developer. Each require statement imports a module into the
current scope. More specifically, it returns the value assigned
to the module’s module.exports variable.

Fig. 1-a shows the simplified application running. Boxes
correspond to the context of different modules, with the outer
box corresponding to the top-level context. All these logically
unrelated packages execute within the same address space; a
problem in any one of the packages exposes other packages,
too. But what can go wrong when we are talking about a high-
level, memory-safe, managed programming language?

Problem 1 As a simple example, suppose that Ghost
generates HTML from templates using ejs (line 2). Since
this package is susceptible to remote code execution (Table I),
a malicious version of this module or a user using the service
could try to get access to the database credentials (dbc)
by a number of different execution paths: (i) attempt to
read the global, singleton dbc object by taking advantage of
JavaScript’s default-is-global variable resolution mechanism,
the complex this semantics, or by reaching to the caller’s
environment if strict mode is not being used; (ii) access the
dbc object by dynamically patching the top-level object and
interposing on its access; (iii) access the loaded config module
by traversing the cache of loaded modules; or (iv) directly
import the dbc.json config file.

Problem 2 Suppose Ghost provides search functionality
using the minimatch module, which converts “glob” expres-
sions to regular expressions (line 5). Even if we assume that
minimatch itself is benign, our application is still vulnerable.
Because it is supplied user-generated strings, a malicious user
can launch a RegEx DoS attack by providing pathological
regular expressions. Since most JavaScript implementations
follow an event-driven, cooperative concurrency model, a

2

problematic search query will cause the application to freeze
until the pathological request completes.

B. Strategy: Disabling Features

Language features illustrated in Section II-A above and
detailed in Section III-A below are good to have some of the
time, and may be vital in certain cases. For example, users
should be able to introspect and rewrite state dynamically,
share global variables, compile code, access unsafe code, and
traverse the module cache. However, with the prevalence and
simplicity of third-party code there are cases when users need
to selectively disable some of these features. Within their
dedicated compartments, modules should still have unrestricted
access to all these features, but some of them should stop ex-
actly at the compartment boundary. It is the module client who
should decide which features are allowed to cross boundaries
and which ones cannot. This insight is the driving force behind
the design of automated compartmentalization.

The first challenge is giving users the ability to build
boundaries within an application as easily as importing third-
party packages in their application. This is solved by providing
a technique, discussed in Section IV and illustrated in Fig. 1-
b, to transparently spawn modules in their own fresh com-
partments. Isolated modules can only communicate through a
tight interface (the module’s API) and cannot access state from
other modules without using the API. In the earlier example
of a simplified blogging platform (Section II-A), the system
can spawn ejs in a compartment separate from dbc.json
and minimatch in multiple compartment replicas.

The second challenge is giving users the ability to select
the behaviors they need to disable between boundaries and
when. This is solved through a policy scheme, discussed in
Section V, that allows users to parametrize several aspects of
the compartment types for a particular runtime instance (Fig. 1-
c). Even if two applications use exactly the same third-party
modules, their safety assumptions, use of these modules, the
intended deployment environment, and the sensitivity of the
non-third-party code justifies disabling very different features
— irrespective of whether and what vulnerabilities have been
discovered in these modules. For example, a development
machine could place all third party code (i.e., both ejs and
minimatch) in a single compartment with restricted access
to the developer’s file system.

The third challenge is having the compartmentalized ap-
plication maintain the semantics of the original application
executing on a single runtime. This is solved using further
transformations, discussed in Section VI. Such transformations
include converting pointers to distributed references, propagat-
ing changes in copied primitive values, and reflecting garbage
collection events. For example, when a developer decides to
manually unload a module using the interactive interpreter, this
should lead to the destruction of the respective compartment
and reclamation of its resources.

III. BACKGROUND, THREATS, AND OPPORTUNITIES

This section discusses more problems related to third-party
modules and outlines which threats fall within our model.

A. More Problems

The two examples presented in Section II-A only scratch
the surface of the risks posed by problematic modules. In this
section we outline further potential problems. These problems
(except (c)) are not specific to JavaScript; substantially similar
problems affect languages such as Java, Go, Objective-C,
Ruby, and Python. We give each problem a circled letter to
allow us to refer back to them when explaining how our system
can mitigate each problem (e.g., Table III in Section V-B).

Developer Intentions A common source of problems has to
do with development patterns or mistakes. A common pattern
with unintended consequences is global variables a©; for
example, having a global, singleton object for an application-
wide database or logger configuration [16], [18]. Mistakes
include accidentally exposing state at the wrong level b© or
making a typo [55] while importing a package (e.g., is it
“coffeescript” or “coffee-script”?).

Runtime Capabilities Another set of problems has to do
with powerful reflection and introspection capabilities, avail-
able in many programming languages. These allow any part
of the program, including a buggy or malicious module, to
examine c© and alter d© the program’s own structure and be-
havior during runtime. Implementations often allow inspecting
the call stack for debugging purposes, enabling code to read
data from the calling context e©. Runtime code evaluation with
eval or exec in many dynamic languages allows malicious
code to hide its intentions f©.

Language and Runtime Environment Further problems
can arise from the design of the language. In the case of
JavaScript, for instance, common problems include: default-
is-global, where resolution of a name not in scope continues
to outer contexts until it reaches the global context (where it
might hit something valuable) g©; prototype poisoning, where
code at inner contexts can affect objects higher in the prototype
chain (effectively mutating all children) h©; a wide range of
mutability attacks, where code can edit properties or even
rewrite code before calling it i©, meaning there is no guarantee
that your code will run as expected; self-reference (i.e., this)
semantics that might resolve differently depending on how the
object is being called j©. Other problems are implementation-
specific; for example, several high-performance implementa-
tions employ cooperative concurrency, choking at seemingly
innocuous calls that block the event loop k© [1].

The Module System A largely undiscovered set of problems
has to do with the inherent implementation of the module
system. Module systems do not have the notion of authority:
everything is accessible at any point during the execution of the

TABLE I. EIGHT MAJOR VULNERABILITY CLASSES AND SPECIFIC
INSTANCES OF PACKAGES AVAILABLE ON NPM; “++” INDICATES THAT

MANY MORE PACKAGES WITH SIMILAR PROBLEMS EXIST.

Problem Example Package
Directory Traversal l© hostr, bitty, restafary, ++
Denial of Service k© o© ejs, node-uuid, minimatch, ++
Remote Code Execution c© d© ejs, pouchdb, reduce-calc, ++
Timing Attack p© fernet, cookie-signature, ++
Uninitialized Mem. Exposure e© mongoose, bl, request, ws, ++
Command Injection f© git-ls-remote, shell-quote, ++
Native Code Vulnerabilities q© libxmljs, libyaml
Sensitive Info. Exposure n© airbrake

3

program. A malicious module can use built-in modules to ac-
cess system resources with the same authority as the rest of the
application l©, with code such as fs = require("fs");
fs.readFile("/etc/passwd"). Worse, module sys-
tems tend to cache loaded modules to avoid overheads from
loading and to ensure consistency of any state within the
module. As a result, a malicious module can enjoy direct,
unrestricted access to the latest instance of any module that is
already loaded (e.g., require.cache) m©. In many cases,
it can even read or write built-in functionality (e.g., overwrite
built-in fs handlers) m©+ i©.

The Broader Environment Some problems are more general
and have to do with the wider system on which an application is
running. For instance, modules have direct access to the calling
environment with process.env and process.args n©.
Malicious code within the module or malicious input from
users aware of its use can accidentally or intentionally exhaust
resources o©. Modules can also leak timing information about
their state, computation, or underlying resources from observ-
able changes of how long it takes to execute a request p©.

Native Modules Finally, modules can interface with code
written in other languages. Reuse of existing libraries via
foreign functions is a compelling proposition, but use of unsafe
code nullifies the safety guarantees of a high-level, memory-
managed programming language q©.

B. Threat Model

The general model of threats arising from the use of
modules is quite broad. In practice, however, users are expected
to shield applications against only a specific subset of these
threats.

Source of Attacks In terms of attack origin, we care about
three broad types: (i) a malicious module directly attempting
an unintended action (e.g., cause a DoS attack by looping in-
finitely); (ii) a malicious module indirectly coercing a different
module in the dependency graph with a known vulnerability
into performing an unintended action (e.g., cause DoS by
carefully using another module’s API); (iii) a user feeding a
problematic module input that triggers an unintended action
(e.g., cause a DoS by submitting problematic search queries).

Attacks We want users to be able to protect against code
that attempts to violate the confidentiality (e.g., read global
state, load other modules, exfiltrate data) and integrity (e.g.,
write global state or tamper with the module cache) of appli-
cation data and code. Moreover, the code can attempt to read
or write the broader environment within which the application
is executing, including environment variables, hardware coun-
ters, the file system, or network. We want to mitigate these
attack vectors by allowing users to disable access to specific
variables, specific modules, or system-level capabilities, such
as file system or networking primitives.

We additionally seek to weaken attacks on availability.
Pathological inputs from attackers can disrupt otherwise benign
modules within an application (e.g., RegEx matching [10] or
JSON parsing [47]). Potential mitigations range from simple
reporting, to back-pressuring malicious input, to decreasing
resources of malicious compartments, to shutting down offend-
ing compartments.

We also want to make it possible for users to shield time-
sensitive modules from timing attacks. In particular, we want to
allow users to set specific minimum response times for cross-
boundary calls.

Assumptions We assume that the core language runtime and
built-in libraries such as fs and net can be trusted. As we
show in Section IX, our technique allows spawning built-in
modules in their own dedicated compartments. However, the
system requires a minimum of trusted functionality from the
underlying system, such as the ability to locate and load the
right program files required by a module. This can be achieved
by including a trusted (say, formally verified) version of a mini
standard library (e.g., enough to locate files, load modules etc.).
We do not explore these options in this work.

BREAKAPP can be run either as a third-party module
loader on a per application basis or as a system-wide mod-
ule loader replacement. In the former case, we assume that
users load BREAKAPP before any other module; otherwise,
a malicious module could dynamically rewrite BREAKAPP’s
code. Using a defense-in-depth approach, BREAKAPP checks
whether other modules attempt to rewrite any of its core
structure using both static checks (the moment BREAKAPP
loads other modules, it parses their source code) and dynamic
interposition hooks on its internal objects (Section VI-E).
Moreover, most of its core structure is immutable: hidden
object properties are set to non-enumerable, non-writable, and
non-configurable modes; and policies are by-default frozen
after the initial configuration.

Limitations Attacks targeting package managers are related
to, but distinct from, those we protect against. Most package
managers implement pre-install, post-install, testing, and other
scripts that are package-specific. Since these scripts are Turing-
complete programs similar to full-fledged modules, they can
be used to launch attacks to the system before, during, or after
package installation similar to the ones described earlier (e.g.,
read environment variables, denial-of-service attacks etc.).
However, these are beyond the scope of this work and are
better addressed with other methods [6].

IV. TRANSFORMATIONS: MODULE DECOMPOSITION

This section discusses automation related to spawning
modules in their own dedicated compartments.

At its core, BREAKAPP changes the implementation of all
module import statements to (i) spawn a new compartment
for each previously unseen module, (ii) modify the return
value so that use of module’s members (property accesses
and function calls) will invoke RPC proxies to the newly-
spawned compartment, and (iii) redirect module-specific side-
effects, such as console output or exceptions, to the importing
compartment. BREAKAPP also monitors the health and status
of all compartments.

A. Compartment Setup and DAG Transformations

Whenever the program executes an import statement, con-
trol jumps to BREAKAPP. Consulting the policies (Section V)
associated with this import statement, it chooses whether it
should spawn a new compartment. If the policy dictates that
it should, it creates a new child compartment for the imported

4

transform (e : DAG) (toRPC: Fun -> Fun) : DAG :=

match e with

| Obj ((k, v) :: xs) => Obj ((k, transform v) :: mt xs)

| Arr x::xs => Arr ((transform x) :: mt xs)

| Fun f => toRPC(e)

| _ => interpose(copy(e))

end

where mt = map transform

Fig. 2. The core transformation; example result in Fig. 3

module and sets up a new communication channel between the
two. It replaces core functionality on the child compartment,
such as console printing, in order to propagate certain side-
effects to the parent compartment.

Within the child, BREAKAPP copies and transforms the
return value for the raw imported module before sending it to
the parent compartment. The general case of such a value is a
directed acyclic graph (DAG). The system walks the DAG and
transforms its component values so that function and method
calls propagate to the compartment.

The exact transformation is parametrizable on several as-
pects related to policies, but it can be summarized as follows:

• primitive values are copied unmodified and wrapped
with an interposition mechanism that records changes.

• function values are replaced with an RPC stub that,
when called, will serialize arguments, send them to the
current compartment, and deserialize the return values.

• objects are recursively copied and transformed, with
their getter and setter functions replaced with RPC
stubs similar to function values.

If the specified module throws an exception while being
loaded, the exception is caught by BREAKAPP running on the
child, serialized, and re-thrown by the parent compartment.

If the specified module is already loaded and the policy
associated with this import statement allows module reuse,
BREAKAPP simply retrieves the channel pointer and returns
the previously-transformed DAG copy. Fig. 2 summarizes the
transformation algorithm. We discuss an example transforma-
tion (Fig. 3) at the end of Section VI.

B. Function Calls as RPCs

BREAKAPP mediates between the parent and child com-
partments. Synchronous calls yield to the module scheduler,
which serializes arguments, sends them through the channel to
the child, and blocks for a response. The child-side wrapper
deserializes arguments, calls the required method, and sends
results back through the channel. For asynchronous function
calls, the parent module wrapper registers an event that invokes
the provided continuation (with the available results) when a
result is made available on the channel.

In cases when something does not go as expected in the
child’s execution, its code will throw an exception which
BREAKAPP serializes and returns to the caller compartment.

BREAKAPP on the parent compartment will inspect the ex-
ception and, if it is related to any violations (i.e., it is not
an exception coming from BREAKAPP itself), it will re-
throw it. BREAKAPP-specific exceptions are handled specially,
depending on the violation.

V. POLICIES: TUNING TRADE-OFFS

This section discusses policies and how they automate
control over tradeoffs among security, compatibility, and per-
formance.

A. Expressing Policies

Policies (Table II) can be expressed both at the level of
the whole application and the level of each module. In both
cases they are optional. BreakApp’s default policy is overriden
by application-wide policies, which are in turn overriden by
per-module policies.

Application-wide policies generally describe coarse guide-
lines on how to decompose the application. Typical coarse
guidelines include the maximum number of compartments
(LEVEL), action to take in case of violations (ON_FAIL),
compartment type (BOX), and application-wide global vari-
ables (CONTEXT). They can be expressed at the point of
BREAKAPP’s initialization:

require("breakapp")({box: require.boxes.SBX});

The line above specifies that all modules should be loaded
in their own, fresh, software-isolated sandboxes (SBX). It
creates a new runtime context with fresh built-ins and top-
level objects for each module.

Module-specific policies give developers fine-grained con-
trol over decomposition, allowing them to capture intuition
about the properties (regarding security or performance) of the
modules they use. Per-module policies are expressed at the
module’s import statement:

require("minimatch", {box: require.boxes.PROC});

The line above specifies that the minimatch module
should be loaded in its own, fresh process. It creates a new
address space, and lets the operating system provide support
for isolation, scheduling, and interprocess communication. If
minimatch is a module written in C, it cannot even forge
a pointer to poke into the main application’s address space.
However, it may take a bit longer to load and communicate
than the rest of the sandbox-based compartments.

The combination of the two policies above should now be
clear: load each module in its own software-isolated sandboxes
but load minimatch in a new process. If minimatch
is already loaded in its own compartment, BREAKAPP will
spawn a new instance of minimatch in its own process.

Notable characteristics of policy expressions include:

Generation: In all cases the policy object can be generated
programatically during runtime (e.g., from command line ar-
guments, from the environment, or through a pre-processing
stage). This gives programmers considerable flexibility, and
allows tools built on top of BREAKAPP to generate policies

5

TABLE II. EXAMPLES OF INTERESTING POLICIES.

Policy Example Options Explanation Section
BOX SBX, PROC, LXC Compartment type V-B
IPC TCP, UDS, FIFO Communication type V-B
CONTEXT {global: global} Share pointers with parent V-B
LEVEL 0, 1, .. Depth at which to decompose V-C
GROUP subtree.json Group dependency subtrees V-C
TRUST ["fs", "http"] Whitelist trusted modules V-C
DOUBT ["ejs"] Blacklist untrusted modules V-C
INSTANCES FUSE, PART Fresh compartment per import V-D
REPLICAS true, 23 Multiple replicas (round-robin) V-D
ONFAIL (e) => {..} Action upon failure (function) V-E
COMPOSE OURS, THEIRS Priority in policy conflicts V-F

TABLE III. DIFFERENT COMPARTMENT TYPES AND PROBLEMS THEY
MITIGATE: VANILLA MODULE SYSTEM (NONE), SANDBOXES (SBX),

PROCESSES (PROC), AND CONTAINERS (LXC)

NONE SBX PROC LXC Notes
a© b© 8 4 4 4 globals, state
c© d© 8 4 4 4 introspection
e© 8 — 4 4 stack inspection
f© 8 — 4 4 evaluation
g© h© i© j© 8 — 4 4 context
l© 8 8 8 4 fs, net (leaks)

m© 8 8 4 4 module cache
n© 8 8 4 4 process args
n© 8 8 8 4 process env
k© o© 8 8 4 4 denial of service
p© 8 8 8 4 side-channels
q© 8 8 4 4 unsafe extensions

dynamically in response to changing load patterns or evolving
threat models.

Compatibility: Per module policy expressions are fully
compatible with existing codebases. Expressing policies is
backward-compatible with systems that do not provide a
BREAKAPP-enabled module system; due to variadic argu-
ments, the policy argument is ignored by the built-in require
function. Not specifying policies (i.e., all of the code out there
today) is forward-compatible with systems that do provide
a BREAKAPP-enabled module system: as explained earlier,
BREAKAPP will use the application-wide default configura-
tion.

Extensibility: Policies are extensible. BREAKAPP allows
users to override most of the functionality during initialization
(i.e., the application-wide policies described earlier) by passing
in functions. The sets of policies described here are simply
default extensions bundled together with the system. If users
need to provide further functionality (e.g., use a different type
of compartment or take different actions upon failure), they
can hook up their own implementations.

B. Isolation Primitives

Different compartment types provide different guarantees
in terms of isolation, but also affect performance directly.
Table III shows how different isolation primitives mitigate
different types of problems described in Section III-A:

• Sandbox Isolation (SBX): This creates a new software-
isolated context within the same runtime. Built-in
utility functions (e.g., Math.pow) and top-level ob-
jects (e.g., Function.call) are fresh, and global
variables not explicitly white-listed are not shared. The
sandbox shares the same heap and event queue with
the rest of the application.

• Address Space Isolation (PROC): This creates a new
runtime instance as a new process, with its own
address space, stream and IPC handles. The system
leverages the OS kernel to synchronize communica-
tion and set scheduling priorities between compart-
ments.

• Container Isolation (LXC): This creates a new runtime
instance within a fresh container instance. Contain-
ers can restrict process-trees from accessing arbitrary
parts of the filesystem. They can also restrict access
to the network and set resource restrictions to the use
of CPU and memory.

Heavier compartment types and hence more expensive per-
formance costs are positively correlated with better isolation.
However, after fixing the compartment type, there is room
for further tuning performance and isolation independently
of each other. Isolation guarantees can be fine-tuned without
affecting performance by declaring which state compartments
are allowed to share (CONTEXT). For instance, users can share
some of the global variables, some of the built-ins, and choose
to allow access to the module cache. Performance costs can be
fine-tuned without affecting isolation by choosing one of the
available communication channel types (IPC). For instance, in
the case of process-level isolation, TCP streams provide better
throughput, but Unix Domain Sockets and Unix FIFO Pipes
offer lower latencies (Table VIII).

C. Decomposition Granularity

Decomposition granularity affects how many modules to
launch into separate compartments and is directly related to the
number of compartments created. This, in turn, is positively
correlated with finer-grained security, since there are fewer
components to which a piece of code has unrestricted access.
The increase in security generally assumes that, all other
things equal (e.g., programming language, code paths etc.),
there is a correlation between lines of code and exploitable
bugs [31]. However, a larger number of compartments can
affect performance negatively by increasing startup times and
communication costs.

There are many ways of guiding the BREAKAPP compart-
mentalization scope. At a coarse granularity of specification,
users have two knobs: vertically, define the level (LEVEL) at
which to decompose (e.g., only top-level, every level, only last
level etc.); and horizontally, define the granularity (GROUP) of
dependency subtrees (e.g., package-level, file-level, etc.). At a
fine granularity of specification, they can blacklist components
that should always launch in a new compartment (DOUBT) and
whitelist compartments that are trusted and should always stay
with the parent compartment (TRUST). BREAKAPP already
uses module whitelisting to avoid spawning built-in modules
and its own trusted dependencies.

D. Instantiation and Replication

Identical-looking import statements might get resolved into
different absolute filenames depending on where they are
called in the dependency chain. By default, BREAKAPP takes
this into account and spawns new compartments only when
the vanilla module system would actually import a module.
However, users can request BREAKAPP to further replicate

6

a module to address DoS concerns (REPLICAS). Replication
requires user insight because modules that encapsulate state
have the potential to introduce state inconsistencies. When
used, the number of replicas can be declared statically upon
startup or inferred dynamically in response to changes in
the load and module response rate. Users can also select a
scheduling policy (SCHED) from an existing set (e.g., round-
robin) or can define and pass a custom one.

E. Other Policies

When a violation is detected, BREAKAPP can select be-
tween several actions, depending on the type of the exception
(ON_FAIL). Among other things, it can log the violation,
email an administrator, kill or restart the compartment, or
launch a new replica. Other policies include scanning the
module’s source code to pro-actively spawn compartments
in parallel before they are requested (PRELOAD), encrypting
communication between compartments (ENCRYPT), setting
minimum response times (TIMER), whitelisting environment
variables (ENV), and soft-reloading modules without restarting
the compartments (RELOAD).

F. Conflict Resolution

The introduction of BREAKAPP to a package ecosystem
will inevitably lead to conflicts of policies. First, third-party
packages will start importing other packages using what they
think are the right policies. Then, applications importing these
packages might choose to use different policies. There is
no single way for resolving these conflicts: in some cases
the library developer knows better, but in others the top-
level application developer knows more about the intended
audience—until, of course, their application is used as another
application’s library.

To solve this, BREAKAPP comes with a number of
conflict resolution options (e.g., accept-ours, accept-theirs,
accept-most-restrictive, accept-most-permissive). All policies
can “lock” at top level, trumping any other policy expression
found in third-party modules.

There is no conflict between different versions of
BREAKAPP, since there is only one version running: the
one starting with the application at top-level. Even if other
modules import BREAKAPP later, the BREAKAPP instance
that is already loaded will bypass these imports as no-ops
(i.e., ignore their application-wide policies) and return its own
singleton instance.

VI. MAINTAINING A SINGLE RUNTIME

This section describes several technical details related to
transformations intended to maintain the original application
behavior.

A. Maintaining Pointers

Generally, since BREAKAPP starts its transformation from
the object returned from a module (e.g., module.exports),
values are associated with a name: the name of the attribute
associated with that value. However, not all values in messages
include a meaningful name. For instance, a function can be

anonymous and an object can just be a bytebuffer. To fa-
cilitate cross-compartment addressing, the child compartment
maintains a hash table mapping object and function IDs (e.g.,
SHA256 checksums) to their in-compartment pointers. These
IDs can be thought as distributed, shared-memory pointers
which RPCs include in their messages. Whenever it receives
an RPC message, BREAKAPP on the child compartment looks
into the table and routes freshly-deserialized arguments to the
right function or object method.

B. DAG Structure and Reference Equality

The creation of object copies during transformation and
serialization breaks reference equality. BREAKAPP takes care
to preserve it. When an RPC leads to a new memory alias
in the remote compartment, the return message from the
remote compartment will include an alias entry containing
the remote object ID. BREAKAPP on the child compartment
then creates and returns a reference to an existing object. The
same consideration must be extended to preserving reference
equality for the root of the DAG between RPCs. A common
pattern in many languages is to have methods that return
self; such code would break if the return value of the RPC
was a fresh copy of the method receiver.

C. Ordering

Messages get assigned a sequence number. Although com-
munication primitives are reliable, messages should be re-
ceived at the correct call order. For example, an asynchronous
call to the printing function will be shown before the next call
to the same function.

D. Calls to Constructors

Constructors, usually prefixed by the new keyword, slightly
change the semantics of a function call: at the very least,
new memory may need to be allocated. The RPC stub uses
additional logic to detect this case.1 If the function is indeed
called with as a constructor, the RPC message has a special
type signifying that the target function should also be called
with new. The return value from a constructor is itself an
object whose methods are RPC stubs as described earlier: the
true object lies within its compartment.

E. Move vs. Copy Semantics

It is worth clarifying the distinction between values that
are remotely referenced and ones that are copied to the parent
compartment. When all nodes in the returned DAG are meth-
ods, they are transformed to RPC stubs referencing values that
live within the remote compartment. State updates targeting
such well-encapsulated modules or objects call directly into
the remote object. When some nodes in the DAG are primitive
values however, they result in deep copies of values. Writes to
such values or the RPC stubs themselves2 need to be detected
and propagated to the original object.

1There are many possible ways of doing this; in JavaScript, the simplest
one is to check the value of new.target within the wrapped function’s scope.

2Whether this is allowed or not is a policy-specific question, discussed in
Section V; here, we merely show how our mechanism has the ability to detect
it.

7

var Point = (x, y) => {
 this.x = x; this.y = y;
};
Point.prototype.toStr = () => {
 `(${this.x}, ${this.y})`
};
module.exports = {
 create: (x, y) => {
 new Point(x, y)
 }

};

var _create = (..args) => {
 var o = create.apply(args);
 var id = generateId(o);
 return _BA.Proxify({
 x: o.x, //copy
 y: o.y, //copy
 toString: (..args) => {

 return _BA.RPC({
 "mod": "point.js",
 "obj": id, //07c2b7..
 "fun": "toStr",
 "arg": _BA.from(args)
 "fun": "toStr",
 });
 };
 };
};

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

module.exports = {
 create: (..args) => {
 return _BA.RPC({
 "mod": "point.js",
 "obj": "exports",
 "fun": "_create",
 "arg": _BA.from(args)
 });
 };
};

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

Fig. 3. A simplified example of BREAKAPP-related transformations. _BA corresponds to the BREAKAPP library.

To achieve this, we wrap the transformed output DAG
with an interposition mechanism that provides reflection ca-
pabilities and gets invoked upon attribute accesses. A special
BREAKAPP Proxy wrapper3 detects and records changes
to any of the object’s properties. Property values that are
themselves objects require nested proxies (Fig. 2). These state
updates are compressed into changesets, and propagated lazily
by piggybacking on future RPC calls.

F. The Class Hierarchy

In object-oriented programming languages, an object might
invoke methods inherited from an object higher in the class
hierarchy. These superclasses (or prototypes, for prototype-
based languages such as Lua and JavaScript) might have been
imported from a different module. A naive implementation
of transformations to RPC stubs can then lead to a series of
nested boundary-crossings until the outer RPC reaches its final
destination. BREAKAPP detects class (prototype) hierarchy
levels while traversing the DAG and crafts RPC stubs so that
they immediately redirect to their final destination.

G. Native Functionality

Objects high in the prototype chain are supported natively.
Functionality is either implemented internally in the runtime
(e.g., serialization and cryptography modules) or wraps OS-
level subsystems (e.g., networking and filesystem modules). In
most cases, a copy of these objects can be found in the trusted
copy of the runtime (see Section III-B) which BREAKAPP
includes in the new compartment. Examples include modules
such as crypto, http-parse, and fs, and globals such as
timer functions and top-level objects.

There are cases when this is not possible, however. Specific
global or pseudo-global4 objects in the child compartment
require redirection to the top-level compartment. Examples
of such objects include console and process to refer to
terminal output and process-level data, respectively.

If compartments live in different address spaces, writes
to the child compartment’s out and error streams must be
transmitted to the top-level process. Upon first import, the
system shadows log, warn, and error with such redirecting
proxies. Similarly, it shadows stream input functions with
functions that request this functionality from the top-level
compartment, which sends the results back to the child.5

3 Metatables in Lua or reflect in Java provide similar capabilities.
4Server-side JavaScript implementations make several objects that are not

part of the EcmaScript specification available in the global scope, such as
process and console.

5In practice, modules asking for top-level user input are extremely rare.

H. Garbage Collection

The standard runtime garbage collector (GC) cannot “see
through” compartment boundaries to collect objects within
translation tables. So, in addition to reflecting method calls be-
tween compartments using RPCs, BREAKAPP also propagates
garbage collection events by adding a GC hook to every object
that is the result of a transformation. When such an object is
about to be collected, BREAKAPP sends a message to the child
compartment to remove any references to this object.

Whole modules are more difficult to go out of scope for
the GC to kick in and reclaim their memory. This is because
there are multiple references to a module in the cache of
the loaded modules. However, modules are often unloaded or
reloaded manually, which should destroy or restart the child
compartment. To maintain this behavior, BREAKAPP wraps
the module cache structure, detects invalidations, and forces
the child compartment to exit. Malicious modules cannot cause
other modules to exit, because child compartments do not have
access to other cache entries.

I. Monitoring

BREAKAPP interposes on inter-compartment communica-
tion, tracking the load placements and frequency of calls on
each channel. It monitors the health (i.e., crashed, not respond-
ing) of child compartments periodically and upon remote invo-
cations. It takes curative actions based on the compartment’s
status (e.g., restart, kill, or spawn more compartments). This
is helpful in cases where the module within the compartment
is launching a DoS attach or where asynchronous execution
has lead to exceptions. Child compartments use OS primitives
(e.g., SIGHUP on Linux) to be notified upon parent exit.

J. Wrapping Up

Fig. 3 shows the result of a simple module after two
stages of transformations. The first transformed the return
value (create) of the module, and the second transformed
the return value of a call into the module (a Point object).
These transformations are done during runtime and captured
only for illustrative purposes.

The left-most column contains most of the original module
and its export statement. The right-most column exports a
wrapper for create that serializes arguments and calls back
to the original function. The middle two columns show the
result of transforming a newly _created Point instance:
generateId will store the object to a translation table, and
return a remote reference. The transformed toStr will always

8

call back into the original object, whereas access to its x and
y fields is Proxyied through the interposition object.

VII. OTHER LANGUAGES

The work described so far is not tied to a particular
programming language; whenever we use JavaScript and its
ecosystem, it is only for illustrative purposes.

Interpreted languages are a particularly good fit for run-
time compartmentalization. They expose a single function
or function-like operator that takes care of locating a mod-
ule, interpreting it, and exposing its interface in the caller
context. Because all of this happens during runtime, the
boundary detection that occurs at the import statement is
conveniently unified with runtime compartment construction
and code transformations. Moreover, the ability to (re-)bind
different functions to the same variable names and interpose
on object accesses further simplify things. We could see a
straightforward implementation of BREAKAPP in languages
such as Lua, Python, and Ruby.

Compiled languages do not enjoy these conveniences. The
work done at runtime for JavaScript would need to be split
across three phases: compile, link, and runtime. An implemen-
tation of BREAKAPP for compiled code would also face further
challenges. First, modules may be linked and loaded statically
or dynamically, which complicates the choice of how to divide
work between the three phases. Second, type information
may not be present at either compile time or run time in
languages like C, thus complicating object introspection and
marshalling. Finally, source code may not be available for
all untrusted modules. Without source code, compiler-driven
transformations become infeasible.

Some of these individual challenges have been recently ad-
dressed in the literature. For example, C-Strider [45] provides
type-aware heap traversal for C programs. Concurrent with our
work, researchers are just starting to tackle automated module
isolation in compiled languages such as C [24] and Rust [54].
We believe this provides evidence that adapting BREAKAPP
for compiled languages would be feasible, albeit nontrivial.

VIII. IMPLEMENTATION

This section describes a concrete implementation of our
system targeting the JavaScript ecosystem, breakapp, along
with some of its technical challenges and how they were
addressed.

We built our prototype on top of Andromeda [56], a
system aimed at simplifying the development of large-scale,
distributed, general-purpose applications. The hosted version
of Andromeda runs each node as a userspace process. Node
management, synchronization, and communication are handled
by Andromeda’s built-in services. Low-level internals are
handled by Node.js [11], a runtime that bundles (i) Google’s
V8, a fast JIT compiler, (ii) libUV, cross-platform wrappers for
file-system and network operations, and (iii) several standard
libraries, including OpenSSL used for hashing (SHA256). The
breakapp package is open source and available for download
via npm install -g breakapp.

Excluding all Andromeda code, the current prototype is
approximately 2K lines of JavaScript. One third of them is

for handling policies and other configuration parameters, and
the rest supports transformations, serialization and low-level
handling of different isolation primitives. For encryption, we
use Dan Bernstein’s NaCL library [4], compiled to JavaScript
using Emscripten (adding another 2K LoC). Our implementa-
tion does not make use of any non-JavaScript features beyond
the GC hooks mentioned in Section VI-H. For these, we use
V8’s weak finalizers with callbacks that fire when an object is
about to be garbage collected.

Static Analysis There are several challenges related to
policies that depend on the structure of the dependency tree.
First, there is a one-to-one correspondence between source
files and modules. There is little to no information during
runtime about which packages file-level modules belong to.
Second, deduplication causes the Node Package Manager to
not install dependencies in a deterministic way. As a result,
high-level granularity policies (e.g., LEVEL, GROUP) can
lead to different compartmentalization results depending on
the package installation order. To mitigate these problems,
breakapp statically analyzes information upon startup in
order to make policy expressions meaningful. Starting from
the leaves of the dependency tree, it creates a map from
files to their source package. It also uses information from
the various package.json files and the directory structure
to infer a canonical dependency structure. This functionality
is accessible through the tool’s command line interface via
breakapp --create-map (or -c), which makes it easy
to use as a post-install hook for any package manager (e.g.,
Yarn).

Non-blocking I/O A key challenge in the implementation
of process and container isolation had to do with a conflict
between Node.js’s (i) non-blocking I/O and (ii) blocking
require statement. To ensure that the require call returns
only after the compartment has been created, breakapp in
the parent compartment polls the filesystem constantly for
a file that confirms that the child compartment has created
the channel. Polling allows the system to actively check a
number of different sources during each iteration (and timeout
after a while). Since the channel is created before launching
the new compartment, an alternative solution was to block
on the channel for an ACK message. However, compartment
creation might fail; thus, there is no guarantee that the parent
compartment will not block indefinitely. Environments that
expose any kind of preemptive multi-threading should not face
similar issues.

IX. EVALUATION

We use Node.js 6.9.1 (bundled with V8 v.5.1.281.84, libUV
v.1.9.1, OpenSSL v.1.0.2j). Experiments were run on a Linux
server with 512GB of memory and 160 hyper-threaded cores
on Intel Xeon E7-8860 processors running at 2.27 GHz. We
use Docker 17.06.0-ce for our container infrastructure.

A. Applicability

The techniques described in this paper are predicated on
the hypothesis that applications today make extensive use of
third-party packages. What are the modularity characteristics
of JavaScript applications out in the wild? Table IV outlines
the dependency characteristics of popular JavaScript programs

9

TABLE IV. FIVE CLASSES OF JAVASCRIPT PROGRAMS ALONG WITH THREE WIDELY USED INSTANCES AND THEIR DEPENDENCY CHARACTERISTICS.

Application Direct Total Files Depth ALoC TLOC TLoC/File
cash 15 84 3554 5 1486 48540 13.84

commands eslint 34 135 4689 6 187801 74893 39.97
yo 30 301 5829 6 107713 106393 18.45
popcorn 46 765 34322 10 14304 411706 12.34

desktop twitter 10 120 4051 8 2514 165066 41.29
atom 57 358 5252 9 15939 548642 107.1
hackernews 5 871 49406 10 309 317144 6.42

mobile mattermost 17 521 13672 8 6296 286388 21.37
stockmarket 14 44 1985 5 2440 199119 101.48
express 26 42 217 3 10159 2261 54.93

server ghost 62 981 22029 9 42467 386676 19.35
strider 64 659 10357 8 21090 303527 30.41
chalk 3 4 9 2 217 10 18.44

utils natural 3 3 193 1 12483 4116 81.51
winston 6 6 83 1 4274 2326 79.52

average 26.13 326.27 10376.53 6.07 28632 190453.8 43.09

drawn from five different classes.6 The table shows: (i) direct
dependencies, referring top-level packages the application im-
ports, (ii) total dependencies, including all packages in the
dependency graph, (iii) total of file-level modules, (iv) the
depth of the dependency tree, (v) non-third-party lines of
code, i.e., lines the author wrote, (vi) total lines in third-party,
imported code, and (vii) the average lines of code per third-
party file-level module.

Third party code is a non-trivial portion of today’s applica-
tions. In our sample set, imported code is on average 4 times
larger than homegrown; but the ratio is much worse for large
applications (1:120 for hackernews vs. 2:1 chalk). Different
applications spread third-party code differently. For example,
in mobile applications, more than 99% of their third-party code
comes from a single package—the mobile framework in use
(e.g., Ionic, ReactNative). Server-side applications feature the
largest amounts of total third-party counts, followed immedi-
ately by desktop applications.

Direct module counts, the boundaries of trust between the
code that a developer writes and its third-party dependencies,
are somewhere between 2 and 65. These numbers highlight
the minimum number of compartments (average: 26.1). More
fine-grained compartmentalization at the level of individual
packages requires an order of magnitude more compartments
(average: 326.2). Since there is a one-to-one correspondence
between files and modules, file-level compartmentalization is
possible but would require 1-2 orders of magnitude more com-
partments (e.g., popcorn has more than 10K JavaScript files).
Interestingly, analyzing more than 1K imports (translating to
more than 100K file-level modules) reveals an average ratio
of 43 lines of code per file, exceeding our expectations for
least-privilege decomposition.7

B. Security

Does the system mitigate vulnerabilities (both discovered
and hypothetical) similar to the ones outlined in Section III?

6 We do not discuss client-side web apps, since the emphasis of our
work is language-agnostic, system-level decomposition (it just happens to use
JavaScript, historically created for client-side web development). To address
the reader’s curiosity, however, here are some numbers: 1060 modules for
apple.com, 1050 modules for the mobile version of reddit.com, and 365
modules for keybase.io.

7 As a point of comparison, Minix 3 [21], a modern microkernel that
championed least-privilege separation, comes with userspace servers on the
order of thousands of lines of code.

TABLE V. VARIOUS REAL (TOP) AND HYPOTHETICAL (BOTTOM)
VULNERABILITIES, AND THE POLICIES USED TO MITIGATE THEM.

Package Ver. Type R/H Mitigation
qs 6.0.0 introspection, poisoning c© d© g© R sandbox
serialize-to-js 0.4.8 eval f© R sandbox
fernet 0.0.9 timing attack p© R sandbox
uri-js 2.1.1 denial of service k© o© R process
libxml 0.16 unsafe extension q© R process
hostr 2.3.2 read file-system l© R container
glob.js — global variables a© b© H sandbox
this.js — context c© H sandbox
mod.js — module cache m© H sandbox
argv.js — process args n© H process
env.js — user environment variables n© H process
stack.js — inspect call stack e© H process

Table V presents twelve vulnerable modules, along with the
compartment types used to mitigate their effects. The first six
are public packages, and their vulnerable version is shown in
the second column. For these packages, we use the exploit
attached to the original vulnerability report. The last six are
hypothetical vulnerabilities; although we were not able to find
any packages with these specific vulnerability types in any
vulnerability databases, we know they are possible to construct.
All of them can be found in the online appendix.

Most of the first six packages can be used for a number
of attacks. For example, serialize makes use of the
Turing-complete eval function; user code can access global
variables, patch system APIs, and inspect loaded modules.
Launching it in a fresh V8 sandbox (SBX) defends against
inspection and patching of the main program’s data and
structures. Since it is not written in C, it cannot forge pointers
to bypass the language’s safety features; therefore, launching
a process would only add protection against denial-of-service
attacks (e.g., using eval to start an infinite loop), process
arguments, and the shared environment. This highlights the
core benefit of policies: they let developers specify what they
care about based on their application structure and needs.

Over half of the problems can be mitigating sim-
ply by using sandbox (SBX). Defending against glob.js
and this.js required explicit whitelisting of references
(CONTEXT). Shielding against snooping the environment was
possible via process-level isolation (PROC) and selective shad-
owing of environment variables and process arguments. Such
shadowing (e.g., ENV) creates an artificial copy of selected
variables right after launching the compartment but before
loading the module. Since the module system is grafted atop

10

http://apple.com
http://m.reddit.com
http://keybase.io

TABLE VI. TOP-LEVEL CHARACTERISTICS OF PACKAGES CHOSEN FOR PERFORMANCE EVALUATION; CALLING FUNCTIONS OR CONSTRUCTORS
GENERATES FURTHER DAG NODES.

Package PLoC Files Nodes Depth Fan-out Functions Highlights
http-verbs 29 1 28 2 27.0 0 small, flat, string-to-string mapping; stress interposition proxies
left-pad 52 1 1 1 1.0 1 small function; stress RPCs

cash 451725 10839 75 7 314.0 49 large libraries; system calls; stress loading time
chalk 145706 9630 5 3 5.3 2 stress builder objects/cascading calls; encoding
debug 554746 8657 34 4 51.3 14 stress non-functional updates; varargs; console output back to parent

ejs 59396 4950 25 4 12.0 11 extensive, pure, testing fixtures
tweet-nacl 94686 5387 54 5 40.8 42 crypto; stress processing; (incl. encoding/decoding)

dns 4826 1 60 3 34.0 16 built-in module; async calls

TABLE VII. COMPARTMENTALIZATION COSTS: COMPARTMENT
STARTUP TIMES.

Compartments Standard Sandbox Process Container
5 4.3ms 12.9ms 342.5ms 5.9s
50 30.2ms 76.6ms 3.2s 32.8s
500 136.4ms 524.7ms 35.2s 332.2s
5K 1.7s 7.8s 362.4s 3330.5s
abs. / +1 cmpt 0.3ms 1.5ms 72ms 666.1ms
rel. / +1 cmpt (baseline) 5× 240× 2220×

TABLE VIII. COMPARTMENTALIZATION COSTS: THROUGHPUT AND
LATENCY.

Comp/nts Function Pipe UDS TCP
5 192.3GB/s 18.3GB/s 149.5MB/s 158.1MB/s

6.5ns 1.3–1.4ms 17.8–73.8ms 17.7–36.6ms
50 157.1GB/s 17.5GB/s 127.0MB/s 134MB/s

90.18ns 11.6–13.2ms 244.5–536.6ms 210.3–566.8ms
500 46.5GB/s 3.6GB/s 16.4MB/s 20.9MB/s

294.3ns 154.3–160.3ms 3.71–11.95s 6.5–15.6s

V8, separate V8 sandboxes do not have access to already
loaded modules if not explicitly shared during sandbox con-
struction. mod.js required whiltelisting the module module
with a fresh module cache. The call stack and event queue are
shared between different V8 sandboxes; disabling access to
the call stack for stack.js requires a separate process. Mit-
igating timing channels for fernet required only a sandbox
(SBX) and a constant minimum response time (TIMER). Mit-
igating url-js’s DoS problems required processes (PROC),
replication (REPLICAS), and a special scheduling policy
(SCHED). We will see the details in Section IX-E.

C. Micro-benchmarks

What are the overheads of different isolation mechanisms
related to policies? Tables VII and VIII highlight the costs
of starting up new compartments and crossing compartment
boundaries under various configurations.

For the first experiment (Table VII), we minimize the
effects of module sizes by making modules return a single
integer and launch compartments sequentially. Standard is how
the vanilla module system works: it looks up a module on the
filesystem using a resolution algorithm, wraps it so that its
global variables do not leak to the outer context (and to provide
some global-looking variables, e.g., filename), and evaluates
the code in the current context. Sandbox creates a new V8
context for each module and selectively whitelists shared
variables from the parent context. Process and Container use
OS processes and Docker containers to isolate compartments
between each other, resulting in higher startup costs.

For the second experiment (Table VIII), we process an in-
memory (/dev/shm/) stream of 1GB using a linear pipeline
of mostly-empty stages. Pipeline stages only flush some timing

metadata when they detect the end of a stream. Streaming starts
only after all connections have been established (i.e., no TCP
handshake costs included).

D. Performance

What is the performance overhead of spawning modules
in their dedicated compartments using BREAKAPP? We opt
for single-module, single-compartment setups over multi-level
compartmentalization to zoom into the exact sources of over-
head under various configurations. We use a diverse set of
eight modules to isolate and account for various different
behaviors (e.g., interposition, RPCs, etc.). These modules are
running under the Node.js framework, serving HTTP requests.
Table VI summarizes the source-level aspects of the modules
used. Generally, lines of code and files correlate with import
times; number of nodes, depth, average fanout correlate with
interposition transformation costs; and the number of functions
correlates with the function-to-RPC transformation costs — a
much heavier transformation compared to interposition prox-
ies.

Fig. 4 breaks down startup latencies into various sources
(e.g., transformations, interposition etc.) between the main
four different compartment types. IPC was set to TCP to
account for its heavy setup period (yellow segment; 17.6–
35ms); this choice affected communication latencies too (pur-
ple segment; 11.6–24.8ms). To ease comparisons, we did not
include system-level costs of spawning each compartment;
these are presented in Table VII. Startup costs are dominated
by the number of modules (i.e., files) read from the
file system. A good example is cash where importing all
the sources takes 798.2–1049.1ms compared to 138.5ms of
launching a new process and 847.9ms of launching a new
container. For smaller modules such as http-verbs and
left-pad the overhead of launching the compartment is
more pronounced, but these modules tend to be used for long-
running processes (e.g., web servers); in these cases, a startup
time of few hundred milliseconds gets amortized over a period
of days. Transformation overheads were generally on the order
of 0.2–1.3ms for the addition of interposition proxies and 0.5–
6.1ms for all the rest.

Fig. 5 shows their execution latencies. IPC is set to PIPE;
each IPC segment on the figure includes the overhead of a
serialization and deserialization pair. To account for a more
realistic setup, modules are loaded as part of a larger “no-op”
HTTP application which does not do any other processing be-
yond calling the dedicated module. Latencies are averages over
1K requests following 100 warmup requests. Some of the more
processing-heavy modules (e.g., left-pad, tweet-nacl)
were tested under different types of workloads: a small 5B
workload and a larger 5MB one.

11

Fig. 4. Startup breakdown of eight packages under various configurations: vanilla, sandbox, process, and container.

Fig. 5. Latency breakdown of 10 different workloads with four compartment types for each: vanilla, sandbox, process, container.

Fig. 6. Denial-of-service attack against a blogging platorm: (i) vanilla setup
(blue); (ii) two process-level compartments (green + red).

Since HTTP request and response handling in Node.js
dominate latency, compartmentalization overheads (IPC re-
quest and response) account for a small part of the overall
latency. Even in the case of the heavier compartment types,
they are responsible for 2 to 15% of the overall latency. The
vast majority of this overhead is concentrated on the calling
side. Returning results is much cheaper because the return
values in our experiments were typically smaller.

The overhead of proxy (interposition) objects is barely
visible in these plots, and generally much smaller than initially
expected. To understand the costs of object proxying better, we
created objects with a fanout of 12 for 8 levels (i.e., with 128

internal nodes — roughly .5GB memory footprint). Traversing
one million 12-hop random paths to access properties of the
object took 167.2ms on the original object and 595.7ms on
the proxy-augmented object (i.e., all calls went through the
proxy object). To put these numbers into perspective, the object
allocation took nearly 16 seconds, meaning that applications
will likely hit other bottlenecks before the overhead of
interposition becomes noticeable.

E. Denial of Service Mitigation

Can BREAKAPP be used to mitigate DoS attacks? Fig. 6
shows latencies of issuing 500 HTTP requests to a slightly
modified Ghost server where url-js is susceptible to DoS
attack. The workload consists of 90% benign read requests of
various posts; 8% benign search requests; and 2% malicious
search requests. Malicious search requests block the event loop
for 40–60ms.

In the first configuration (blue line), all modules run in a
single process. Read requests reaching the server right after a
malicious search query get delayed significantly or, at higher
rates (not shown here), timeout. In the second configuration
(green line: 90% reads; red line 10% queries), the url-js
module runs in a separate compartment with a policy of PROC
and PIPE. Although it takes slightly longer to process search
requests (+1ms on average), malicious search requests do not
block benign read requests: it is only the subset that goes
through the search functionality that remains paralyzed by the
DoS attack.

In a different experiment, we increased both the number of
malicious requests as well as their latency. Due to monitoring,
breakapp is aware that some requests are taking significantly
more time than expected. By examining the input to the most
recent RPC, it can distinguish between problematic inputs and
non-problematic ones. We experimented with four ON_FAIL
policies: (i) shut the child compartment down and report;
(ii) restart the compartment; (iii) spawn a new replica and
use a scheduling policy (e.g., round robin) to schedule RPC
calls to these replicas; or (iv) pushback based on recently-
seen inputs. We crafted careful “asymmetric” attacks where a
small number of malicious requests blocks the event loop for
extended periods of time.

The combination of multiple utl-js replicas and caching

12

of results from requests that take longer than 0.5s with a 30s
age timeout was successful at mitigating them. This was a
serious improvement over the previous setup: we were not able
to saturate the system without generating additional malicious
strings.

In our final experiment, we overrode the round-robin
scheduling policy during runtime by passing a function that
implements priorities. BREAKAPP split requests into 100 dif-
ferent queues based on the length of the input string. Benign,
small input strings (i.e., nine out of ten requests) always had
available resources.

Further mitigation is possible. Parallel spawn of (i) 500
compartments took 2.82 seconds, and of (ii) 5K compartments
took 24.3 seconds, indicating good elasticity characteristics
until system administrators act upon notifications.

X. RELATED WORK

Supply Chain Attacks Our concerns about large-scale
reliance on loose supply chains are echoed by both
academia [30], [25] and industry [28], [8], [51]. Academic
studies have shown the increasing risks of the reliance on third-
party code (although they generally do not consider the scope
of problems we do in Section III). Several recent companies
[36], [38], [51] provide third-party module assurances by
having more people audit and recommend packages in the
wild or crawl public repositories for open vulnerabilities. In
practice, they do not offer any guarantees similar to com-
partmentalization, but can be used complementary to our
work: users (or libraries that are built on top of BREAKAPP)
can use these recommendations to choose which modules to
quarantine. Package managers have added support for locking
dependencies between deployments [37]. However, this does
not necessarily rule out extant problems; on the contrary, users
forego valuable bug and vulnerability fixes, while experiencing
a more convoluted dependency management.

JavaScript Isolation In the case of JavaScript specifically,
much effort has gone into client-side compartmentalization
(e.g., execution isolation [33], object capabilities [34], sand-
boxing [53], [2] information flow control [52]). These works
focused primarily on client-side, web-based setups which are
different from our focus in many ways: isolation primitives
(i.e., iframes), origin (i.e., explicit sources), threat model
(i.e., no C/C++ modules; no valid access to “/etc/passwd”),
compartment numbers (i.e., few), and developer effort (i.e.,
manual annotations or rewrite).

Microservices Microservice architectures, a style for build-
ing server applications as sets of loosely-coupled compo-
nents [17], [35], are often touted as enabling fine-grained,
Least-Privilege decomposition inspired by the Unix philoso-
phy. Even more so, lambda architectures [14], [20] are emerg-
ing as a lighter-weight, evolutionary step beyond microservices
that use runtime contexts to offer improved elasticity. In
practice, however, both are vastly more coarse-grained than
the applications shown here, with each microservice usually
built on top of hundreds of packages similar to the server-
side applications outlined in Table IV. Moreover, (i) commu-
nication between services is request-response style and usu-

ally explicitly exposed to the application,8 (ii) decomposition
is a manual process that requires a careful design process
(including agreeing on the interfaces) prior to development.
These are antithetical to our technique that hides the underlying
compartment boundaries.

Containerization Many other system-level sandboxing
primitives can be used (e.g., SELinux [29], AppArmor [3]).
We experimented with Docker [32] primarily because it is
becoming an industry standard: most users are expected to
use (and seek numbers about) Docker more than any other
container infrastructure. Coarse-grained compartmentalization,
however, such as by wrapping a language runtime with a layer
of virtualization, is ill-equipped to address risks described in
Sections II-A and III: a malicious module is still able to access
trusted state, exfiltrate data, or launch a DoS attack.

System Decomposition There is a long history of alternative
system structures with a focus on least privilege decomposi-
tion [44] and, more generally, separation of concerns [13] (e.g.,
microkernels [22], [27], [21], capability systems [26], [48],
and separation kernels [42]). Increasing security requirements
brought decomposition to the foreground [40], culminating
with systems such as Crowbar [5] and SOAAP [19] that as-
sist programmers into decomposing applications into multiple
compartments with reduced privileges. Other systems have
focused on abstractions and mechanisms that allow efficient
separation [12], [58], [57]. Despite their advances, systematic
adoption has been impeded by the lack of automation [30], the
primary focus of BREAKAPP.

Unsound Program Transformations There is a recent emer-
gence of unsound program transformations [41], [39], [49],
[50] to mitigate failures and attacks via self-healing. Such
transformations change the semantics of the original program
in principled ways. Our work can be seen as a set of potentially
unsound transformations at the module boundaries: users can
decide how to break the semantics of the program by choosing
which behaviors to disable. However, our transformations are
proactive rather than reactive. They are also based on the
assumption that there are cases in which a legacy program
runs the risk of breaking either way: developers can choose
whether it will be due to third-party modules (unprincipled
way) or due to altered semantics (principled way).

XI. FUTURE

BREAKAPP is the first step towards the goal of having
applications with many, potentially risky, third-party modules
be more secure than their monolithic counter-parts specifically
built for security. There is ample potential for improvement,
that can build upon the core model and mechanism of module-
driven compartmentalization.

Automating Security Policies One direction is automatically
inferring policies that improve an application’s security without
breaking its functionality. This clearly depends on a threat
model, but our experience with BREAKAPP shows that there
is plenty of room for hardening application security before
starting to break compatibility. The challenge here is to detect
“good enough” policies: (i) static analysis is not trivial in

8It usually relies on HTTP — much more heavyweight than the channels
described in this work.

13

an environment with zero type annotations and compiled,
unsafe modules from multiple languages; (ii) dynamic analysis
requires tracing pre-runs and does not have clear cut-offs
(i.e., how do we know we are not tracing adversarial module
behavior?).

Optimizing Performance BREAKAPP’s mechanisms exe-
cute at program runtime, raising the tantalizing possibility
of dynamically separating and coalescing modules, driven by
runtime profiling feedback. The challenge here is to formalize
the requirements as an online optimization problem: security
benefits are difficult to quantify and the overhead budget has
multiple dimensions (e.g., latency, throughput etc.)

Incremental Hot-Patching A further direction is patching
applications by updating individual modules during runtime.
Given isolated modules from BREAKAPP, compartments can
be used to enable incremental, restart-free updating of applica-
tions, which can benefit security and performance. Significant
challenges include migrating state of individual modules from
the old to the new version and the frequency of updates in
applications comprising of hundreds of modules.

XII. CONCLUSIONS

Third-party, untrusted modules have simplified application
development at the cost of security and reliability. This work
demonstrates, with a working prototype, that it is possible
to take advantage of third-party modules to offer signifi-
cant automation improvements to compartmentalization. The
core technique can spawn a module in its own compartment
while maintaining its interface intact. Significant automation
is focused at three levels: (i) transformations for spawning
modules into their own compartments, (ii) declarative policy
expressions, where each policy can have multiple effects at
various different levels, (iii) transformations and interposition
to maintain the illusion of a single runtime. A concrete
implementation for JavaScript shows that BREAKAPP simpli-
fies security hardening of existing systems while maintaining
acceptable performance levels.

ACKNOWLEDGMENTS

We would like to thank Athur Azevedo de Amorim, An-
dreas Haeberlen, Cătălin Hriţcu, Björn Knutsson, Benjamin C.
Pierce, John Sonchack, Nik Sultana, and the anonymous re-
viewers for helpful feedback. This research was funded in part
by National Science Foundation grant CNS-1513687. Any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] “CVE-2016-2537.” Available from MITRE, CVE-ID CVE-
2016-2537., 2016. https://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2016-2537

[2] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and
F. Piessens, “Jsand: Complete client-side sandboxing of third-party
javascript without browser modifications,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ser. ACSAC ’12.
New York, NY, USA: ACM, 2012, pp. 1–10.

[3] M. Bauer, “Paranoid penguin: Apparmor in ubuntu 9,” Linux Journal,
vol. 2009, no. 185, p. 9, 2009, accessed: 2016-09-30.

[4] D. J. Bernstein, B. Van Gastel, W. Janssen, T. Lange, P. Schwabe,
and S. Smetsers, “Tweetnacl: A crypto library in 100 tweets,” in
International Conference on Cryptology and Information Security in
Latin America. Springer, 2014, pp. 64–83.

[5] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
applications into reduced-privilege compartments,” in Proceedings
of the 5th USENIX Symposium on Networked Systems Design
and Implementation, ser. NSDI’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 309–322.

[6] F. Brown, A. Mirian, A. Jaiswal, A. Notzli, and D. Stefan, “SPAM:
a Secure Package Manager,” 2017. https://cseweb.ucsd.edu/∼dstefan/
pubs/brown:2017:spam.pdf

[7] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 209–224.

[8] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking
known security vulnerabilities in proprietary software systems,” in
Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on. IEEE, 2015, pp. 516–519.

[9] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: State-of-the-art defenses and
open problems,” in Proceedings of the Second Asia-Pacific Workshop
on Systems, ser. APSys ’11. New York, NY, USA: ACM, 2011, pp.
5:1–5:5.

[10] S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic
complexity attacks,” in Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, ser. SSYM’03. Berkeley, CA, USA:
USENIX Association, 2003, pp. 3–3.

[11] R. Dahl and the Node.js Foundation. (2009) Node.js. Accessed:
2017-06-11. https://nodejs.org

[12] U. Dhawan, A. Kwon, E. Kadric, C. Hritcu, B. C. Pierce, J. M.
Smith, A. DeHon, G. Malecha, G. Morrisett, T. F. Knight et al.,
“Hardware support for safety interlocks and introspection,” in Self-
Adaptive and Self-Organizing Systems Workshops (SASOW), 2012 IEEE
Sixth International Conference on. IEEE, 2012, pp. 1–8.

[13] E. W. Dijkstra, “On the role of scientific thought,” in Selected writings
on computing: a personal perspective. Springer, 1982, pp. 60–66.

[14] M. Eriksen, “Your server as a function,” in Proceedings of the Seventh
Workshop on Programming Languages and Operating Systems, ser.
PLOS ’13. New York, NY, USA: ACM, 2013, pp. 5:1–5:7.

[15] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits, “Fully abstract compilation to javascript,” in Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’13. New York, NY, USA:
ACM, 2013, pp. 371–384.

[16] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley Professional, 1999.

[17] M. Fowler and J. Lewis. (2014) Microservices. Accessed: 2015-02-17.
http://martinfowler.com/articles/microservices.html

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:
Abstraction and reuse of object-oriented design,” in European Confer-
ence on Object-Oriented Programming. Springer, 1993, pp. 406–431.

[19] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
I. Marinos, P. G. Neumann, and A. Richardson, “Clean application
compartmentalization with soaap,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: ACM, 2015, pp. 1016–1031.

[20] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16). Denver, CO: USENIX Association, 2016.

[21] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Minix 3: A highly reliable, self-repairing operating system,” SIGOPS
Oper. Syst. Rev., vol. 40, no. 3, pp. 80–89, Jul. 2006.

[22] M. J. Accetta, R. Baron, W. J. Bolosky, D. B. Golub, R. F. Rashid,
A. Tevanian, and M. Wayne Young, “Mach: A New Kernel Foundation
for UNIX Development,” in USENIX Summer Technical Conference.
Usenix, 06 1986, pp. 93–113.

14

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-2537
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-2537
https://cseweb.ucsd.edu/~dstefan/pubs/brown:2017:spam.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/brown:2017:spam.pdf
https://nodejs.org
http://martinfowler.com/articles/microservices.html

[23] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos, “Diplomat:
Using delegations to protect community repositories,” in 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). Santa Clara, CA: USENIX Association, 2016, pp. 567–581.

[24] B. Lamowski, C. Weinhold, A. Lackorzynski, and H. Härtig,
“Sandcrust: Automatic sandboxing of unsafe components in rust,” in
Proceedings of the 9th Workshop on Programming Languages and
Operating Systems, ser. PLOS’17. New York, NY, USA: ACM, 2017,
pp. 51–57.

[25] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA,
2 2017.

[26] H. M. Levy, Capability-Based Computer Systems. Newton, MA,
USA: Butterworth-Heinemann, 1984.

[27] J. Liedtke, K. Elphinstone, S. Schonberg, H. Hartig, G. Heiser,
N. Islam, and T. Jaeger, “Achieved ipc performance (still the
foundation for extensibility),” in Operating Systems, 1997., The Sixth
Workshop on Hot Topics in. IEEE, 1997, pp. 28–31.

[28] J. Long. (2015) Owasp dependency check. Accessed: 2017-02-17.
https://www.owasp.org/index.php/OWASP Dependency Check

[29] P. Loscocco and S. Smalley, “Integrating flexible support for
security policies into the linux operating system,” in Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2001, pp. 29–42.

[30] M. Maass, “A theory and tools for applying sandboxes effectively,”
Ph.D. dissertation, CMU, 2016.

[31] S. McConnell, Code complete. Pearson Education, 2004.
[32] D. Merkel, “Docker: Lightweight linux containers for consistent

development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[33] J. Mickens, “Pivot: Fast, synchronous mashup isolation using generator

chains,” in 2014 IEEE Symposium on Security and Privacy, May 2014,
pp. 261–275.

[34] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay, “Safe
active content in sanitized javascript,” Google, Inc., Tech. Rep, 2008.

[35] S. Newman, Building Microservices. O’Reilly Media, Inc., 2015.
[36] Node Security. (2016) Continuous security monitoring for your node

apps. https://nodesecurity.io/. Accessed: 2017-01-01.
[37] npm, Inc. (2012) npm-shrinkwrap: Lock down dependency versions.

Accessed: 2017-02-03. https://docs.npmjs.com/cli/shrinkwrap
[38] E. Oftedal et al. (2016) Retirejs. Accessed: 2017-05-18. http:

//retirejs.github.io/retire.js/
[39] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,

M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching
errors in deployed software,” in Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, ser. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 87–102.

[40] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation,” in Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, ser. SSYM’03. Berkeley, CA, USA:
USENIX Association, 2003, pp. 16–16.

[41] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
W. S. Beebee, Jr., “Enhancing server availability and security through
failure-oblivious computing,” in Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume
6, ser. OSDI’04. Berkeley, CA, USA: USENIX Association, 2004,
pp. 21–21.

[42] J. M. Rushby, “Design and verification of secure systems,” in
Proceedings of the Eighth ACM Symposium on Operating Systems
Principles, ser. SOSP ’81. New York, NY, USA: ACM, 1981, pp.
12–21.

[43] S. Saccone. (2016) npm fails to restrict the actions of malicious npm
packages. https://www.kb.cert.org/vuls/id/319816. Accessed: 2017-06-
05.

[44] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp.
1278–1308, 1975.

[45] K. Saur, M. Hicks, and J. S. Foster, “C-strider: Type-aware heap
traversal for c,” Softw. Pract. Exper., vol. 46, no. 6, pp. 767–788, Jun.
2016.

[46] I. Z. Schlueter et al. (2010) Node package manager. Accessed:
2017-02-17. https://npmjs.com

[47] N. Seriot, “Parsing JSON is a minefield,” 2016. http://seriot.ch/parsing
json.php

[48] J. S. Shapiro, J. M. Smith, and D. J. Farber, “Eros: A fast capability
system,” in Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’99. New York, NY, USA:
ACM, 1999, pp. 170–185.

[49] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “Assure: Automatic software self-healing using rescue
points,” in Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XIV. New York, NY, USA: ACM, 2009, pp.
37–48.

[50] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis,
“Building a reactive immune system for software services,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIX Association,
2005, pp. 11–11.

[51] Snyk. (2016) Find, fix and monitor for known vulnerabilities in node.js
and ruby packages. https://snyk.io/. Accessed: 2017-05-18.

[52] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp,
and D. Mazières, “Protecting users by confining javascript with
cowl,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). Broomfield, CO: USENIX Association,
2014, pp. 131–146.

[53] J. Terrace, S. R. Beard, and N. P. K. Katta, “Javascript in javascript
(js.js): Sandboxing third-party scripts,” in Presented as part of the 3rd
USENIX Conference on Web Application Development (WebApps 12).
Boston, MA: USENIX, 2012, pp. 95–100.

[54] S. Tsampas, A. El-Korashy, M. Patrignani, D. Devriese, D. Garg, and
F. Piessens, “Towards automatic compartmentalization of c programs
on capability machines,” in Workshop on Foundations of Computer
Security 2017, ser. FCS’17, 2017, pp. 1–14.

[55] N. P. Tschacher, “Typosquatting in programming language package
managers,” Bachelor Thesis, University of Hamburg, March 2016.

[56] N. Vasilakis, B. Karel, and J. M. Smith, “From lone dwarfs to giant
superclusters: Rethinking operating system abstractions for the cloud,”
in 15th Workshop on Hot Topics in Operating Systems (HotOS XV).
Kartause Ittingen, Switzerland: USENIX Association, May 2015.

[57] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic,
“The risc-v instruction set manual volume ii: Privileged architecture
version 1.7,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2015-49, 2015.

[58] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al.,
“Cheri: A hybrid capability-system architecture for scalable software
compartmentalization,” in 2015 IEEE Symposium on Security and
Privacy. IEEE, 2015, pp. 20–37.

[59] A. G. Williams. (2016) Changes to npm’s unpublish policy. http://blog.
npmjs.org/post/141905368000/changes-to-npms-unpublish-policy.

[60] S. Yegulalp. (2016) How one yanked javascript package
wreaked havoc. http://www.infoworld.com/article/3047177/javascript/
how-one-yanked-javascript-package-wreaked-havoc.html.

15

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://nodesecurity.io/
https://docs.npmjs.com/cli/shrinkwrap
http://retirejs.github.io/retire.js/
http://retirejs.github.io/retire.js/
https://www.kb.cert.org/vuls/id/319816
https://npmjs.com
http://seriot.ch/parsing_json.php
http://seriot.ch/parsing_json.php
https://snyk.io/
http://blog.npmjs.org/post/141905368000/changes-to-npms-unpublish-policy
http://blog.npmjs.org/post/141905368000/changes-to-npms-unpublish-policy
http://www.infoworld.com/article/3047177/javascript/how-one-yanked-javascript-package-wreaked-havoc.html
http://www.infoworld.com/article/3047177/javascript/how-one-yanked-javascript-package-wreaked-havoc.html

	Introduction
	Overview
	A Blogging Platform
	Strategy: Disabling Features

	Background, Threats, and Opportunities
	More Problems
	Threat Model

	Transformations: Module Decomposition
	Compartment Setup and DAG Transformations
	Function Calls as RPCs

	Policies: Tuning trade-offs
	Expressing Policies
	Isolation Primitives
	Decomposition Granularity
	Instantiation and Replication
	Other Policies
	Conflict Resolution

	Maintaining a Single Runtime
	Maintaining Pointers
	DAG Structure and Reference Equality
	Ordering
	Calls to Constructors
	Move vs. Copy Semantics
	The Class Hierarchy
	Native Functionality
	Garbage Collection
	Monitoring
	Wrapping Up

	Other Languages
	Implementation
	Evaluation
	Applicability
	Security
	Micro-benchmarks
	Performance
	Denial of Service Mitigation

	Related Work
	Future
	Conclusions
	References

