
Similarity Search for Adaptive Ellipsoid Queries

Using Spatial Transformation

Yasushi Sakurai† Masatoshi Yoshikawa§ Ryoji Kataoka† Shunsuke Uemura§

† NTT Cyber Space Laboratories, Japan
§ Nara Institute of Science and Technology, Japan

Abstract

Similarity retrieval mechanisms should utilize generalized quadratic form distance func-
tions as well as the Euclidean distance function since ellipsoid queries parameters may vary
with the user and situation. In this paper, we present a spatial transformation technique
that yields a new search method for adaptive ellipsoid queries. The technique is based on
the notion of spatial transformation and efficiently supports adaptive ellipsoid queries with
quadratic form distance functions. Although conventional search methods can support el-
lipsoid queries by using multi-dimensional index structures, these methods incur high CPU-
cost for measuring distances between a query point and bounding rectangles with respect
to quadratic form distance functions, which exceeds disk access cost on search processing.
The basic idea is to transform the bounding rectangles in the original space, wherein dis-
tance from a query point is measured by quadratic form distance functions, into spatial
objects in a new space wherein distance is measured by Euclidean distance functions. Since
bounding rectangles in the original space are transformed into multi-dimensional polygons
in the new space, and thus incurring high CPU-cost for distance calculations, our proposed
method approximates a polygon by the rectangle that totally encloses the polygon, and
measures the distance from the query point to the rectangle instead to the polygon in the
Euclidean space. It follows that the spatial transformation technique guarantees no false
drops. In contrast to the conventional methods, our proposed method significantly reduces
CPU-cost due to the distance approximation by the spatial transformation; exact distance
evaluations are avoided for most of the accessed bounding rectangles in the index structures.
We also present the multiple spatial transformation technique as an extension of the spa-
tial transformation technique. The multiple spatial transformation technique adjusts the
tree structures to suit typical ellipsoid queries; the search algorithm utilizes the adjusted
structure. This technique reduces both page accesses and CPU time for ellipsoid queries.
Experiments using various matrices and index structures demonstrate the superiority of the
proposed methods.

1 Introduction

Multimedia content-based retrieval systems use feature values extracted from mul-
timedia data; they find data objects whose feature values are most similar to those
of the query object. These systems include various pattern recognition mechanisms,
and the databases on which they operate continue to grow in size. This means that,
multimedia systems and spatial databases require (1) information retrieval methods
with more general distance functions, and (2) improved search performance.
Since the Euclidean distance space makes all dimensions independent of each

other, it fails to adequately represent the user’s intention. Therefore, multimedia
systems require the use of generalized quadratic form distance functions as well

1

(a) Euclidean distance (b) weighted Euclidean distance (c) quadratic form distance

Figure 1: Isosurfaces for various distance functions.

as the Euclidean distance function. Since quadratic form distance functions can
represent correlations between dimensions, retrieval mechanisms using them have
high search quality [HSE+95]. The quadratic form distance function d2

M (p, q) =
(p − q) · M · (p − q)t is calculated from a similarity matrix M which is positive
definite (i.e. d2

M (p, q) > 0), where q is a query point and p is a data object in a
data set. In d-dimensional spaces, the Euclidean distance function has circles for
isosurfaces, and weighted Euclidean distance functions correspond to iso-oriented
ellipsoids, whose major axis is aligned to the coordinate axis. Quadratic form dis-
tance functions have arbitrarily oriented ellipsoids that are not necessarily aligned to
the coordinate axis (see Figure 1). Quadratic form distance functions are regarded
as a generalization of the Euclidean distance function and weighted Euclidean dis-
tance functions. MindReader [ISF98] is an example of the application of quadratic
form distance functions; based on relevance feedback, it guesses the correlations
between dimensions, which reflect the user’s preference. Unlike the Euclidean dis-
tance function, quadratic form distance functions more faithfully reflect the user’s
intention.
Given that the size of multimedia databases will continue to grow and that

the dimensionality of feature data will continue to increase, high-performance data
retrieval methods are essential. Many index methods have been proposed so far
[GG98]. They include data-partitioning index trees (e.g. the R*-tree [BKSS90],
the X-tree [BKK96] and the A-tree [SYUK00]). Nearest neighbor search methods
using such indices have also been proposed [RKV95] [HS95]. In particular, the
A-tree is reported to offer good performance for high-dimensional data [SYUK00].
Unfortunately, most spatial access methods were designed for searches based on the
Euclidean distance function, so new spatial access methods that suit ellipsoid queries
based on quadratic form distance functions are needed. In addition, image retrieval
mechanisms using various user-adaptable distance functions [FSA+95] [HSE+95]
and relevance feedback mechanisms that guess the user’s desires, such as MARS
[RHM97] and MindReader [ISF98], deal with queries whose parameters can vary
with the user and situation. These mechanisms require search methods that can
support the adaptive queries.
The goal of our work is to create a search method for adaptive ellipsoid queries

that can find similar objects efficiently. Various metric indices (e.g. the M-tree
[CPZ97] and the mvp-tree [BO97]) have been proposed as indexing methods for
arbitrary distance functions. However, these indices cannot be applied to systems
that handle changeable distance functions and, thus, they are not functionally ad-
equate to support adaptive ellipsoid queries. In [SK97], Seidl et al. presented a
search algorithm for adaptive ellipsoid queries on index structures that calculates

2

exact distances between query points and MBRs (Minimum Bounding Rectangles).
This search method supports adaptive ellipsoid queries whose distance functions
are changeable, by using index structures. However, the calculations of distance
between query points and MBRs incurs CPU-costs as high as O(ω ·d2) time, where
d is dimensionality and ω denotes the number of iterations, which exceeds disk access
time on retrieval processing. In [ABKS98], Ankerst et al. presented a search method
that reduces the number of exact quadratic form distance calculations needed and
so reduces the CPU time by using MBB (Minimum Bounding Box) distance func-
tions and MBS (Minimum Bounding Sphere) distance functions. The following
definitions formalize the MBB distance function and the MBS distance function for
d-dimensional spaces:

d2
MBB(M)(p, q) =

d
max
i=1

(
(pi − qi)2

(M−1)ii

)
, (1)

d2
MBS(M)(p, q) = λMmin · (p − q)2, (2)

where λMi (i = 1, · · · , d) are the eigenvalues of M , and λMmin is the lowest eigen-
value of M . The MBB distance functions approximate an ellipsoid query area by a
bounding box that totally encloses the query area. The MBS distance functions use
a bounding sphere for the approximation. Both approximation techniques require
O(d) time for calculations. The search algorithm in [ABKS98] lowers CPU-cost by
using MBB and MBS distance functions as well as exact quadratic form distance
functions, which we call the MBB-MBS approximation technique in this paper.
However, the MBB-MBS approximation technique has two problems: first, approx-
imation quality degrades as either dimensionality grows or query ellipse becomes
flatter. Low approximation quality increases the CPU time. Second, spatial access
methods construct index structures to find target objects in the Euclidean space ef-
ficiently, and then the MBB-MBS approximation technique invokes ellipsoid queries
using the constructed index structures. Due to the use of indices based on the Eu-
clidean distance function, the number of accesses for bounding rectangles and data
objects increases as either dimensionality grows or query ellipse becomes flatter;
consequently, both CPU-cost and the number of page accesses increase.
We introduce an approximation technique that efficiently works with high ma-

trix flatness and dimensionality. Motivated by the disadvantages of the MBB-MBS
approximation technique for ellipsoid queries, we develop the Spatial Transforma-
tion Technique (STT). The basic idea of STT is to transform the MBRs whose
distance from a query point is measured by the quadratic form distance functions,
into rectangles whose distance is measured by the Euclidean distance functions.
With regard to the first problem, even though STT has low CPU-cost, it provides
high approximation quality for high dimensionality and matrix flatness. Against the
second problem, we provide the multiple spatial transformation technique (MSTT).
MSTT adjust the tree structures to suit typical ellipsoid queries; this technique
reduces the number of page accesses as well as the CPU-cost since the search algo-
rithm utilizes the adjusted structure.
The remainder of this paper is organized as follows. Section 2 analyzes the MBB-

MBS approximation technique based on experiments using real data. Based on the
analysis, Section 3 describes the motivation, definitions and algorithms of STT.
Section 4 presents MSTT. Section 5 gives the results of a performance evaluation
of STT and MSTT. Finally, Section 6 concludes the paper.

3

Table 1: Variance of eigenvalues.
wr 1 10 100 1000
d = 8 0.0307 76.489 7998.6 800214

σ2
M d = 27 64.777 93372 9.29e8 9.29e12

2 Problems of Search Methods for Ellipsoid Queries

This section discusses the properties and problems of the MBB-MBS approximation
technique. We evaluated its performance using real data sets with size of 100,000.
For the data sets, 8-D and 27-D feature vectors of color histograms were extracted
from images. In assessing search performance, the page access number and CPU
time were measured by the average of 100 queries. In our evaluation, we used 20-
nearest neighbor queries; query data were different from the point data included
in the indices, that is, query points were generated randomly and independently of
data points. Page size was 8KB. CPU time was measured on a SUN UltraSPARC-II
450MHz. We used the A-tree [SYUK00], which provides superior performance for
high-dimensional data, and chose the code with size of 6 bits per dimension for
approximating the bounding rectangles and data objects in the A-tree structure.
In order to obtain similarity matrices M , we calculated the components mij of M
using the following formula [HSE+95] [ABKS98]:

mij = exp(−α(dw(ci, cj)/dmax)2),

where α is a positive constant, and dw(ci, cj) denotes the weighted Euclidean dis-
tance between the color ci and cj . The factors w = (wr, wg, wb) represents the
weighting of the red, green and blue components in RGB color space. In our eval-
uation, α was 10, wg and wb were fixed to 1. wr was varied from 1 to 1,000. We
calculated the eigenvalues of every matrix for 8-D and 27-D data. The variance σ2

M

of eigenvalues was determined as follows:

σ2
M =

d∑
i=1

(λMi − λM)2, λM =
d∑

j=0

λMj

d
,

where det(M) = 1, λMi is the i-th dimensional eigenvalue and λM is the average of
the eigenvalues of M .
Table 1 enumerates this formula for various values of wr. Before calculating σ2

M ,
all matrices were normalized1 with det(M) = 1. In this paper, the variance σ2

M

is called the flatness of M . Here, the flatness of the unit matrix that represents
searching in the Euclidean space, is 0. As shown in Table 1, matrix flatness increases
as wr grows when α, wg and wb are fixed.
Figure 2 shows the CPU time of the MBB-MBS approximation technique for var-

ious matrices with different flatness. Throughout this paper, horizontal axis Weight
denotes wr. CPU time for ellipsoid queries increases as dimensionality grows, which
is similar to searches in the Euclidean distance space. One observation specific to
ellipsoid queries is that CPU time increases with matrix flatness. To establish the
link between flatness and CPU time on ellipsoid queries, we conducted a detailed

1 Normalization of matrices is described in Section 4.4.

4

 0

200

400

600

800

1000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

 0

2000

4000

6000

8000

10000

12000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

(a) d = 8 (b) d = 27

Figure 2: CPU time for the MBB-MBS approximation technique.

 0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

R
at

e
of

 fi
lte

re
d

ex
ac

t c
al

cu
la

tio
ns

 (
%

)

Weight

MBB
MBS

MBB-MBS

 0

 5

10

15

20

1 10 100 1000

R
at

e
of

 fi
lte

re
d

ex
ac

t c
al

cu
la

tio
ns

 (
%

)

Weight

MBB
MBS

MBB-MBS

(a) d = 8 (b) d = 27

Figure 3: Rate of filtered exact distance calculations for the MBB-MBS approximation tech-
nique.

analysis. Figure 3 shows the percentage of exact distance calculations filtered by
the MBB-MBS approximation technique. For the calculation of distance between
query points and bounding rectangles, Figure 3 demonstrates the characteristics of
MBB approximation, MBS approximation and MBB-MBS approximation. The fig-
ure shows that approximation quality decreases as flatness increases for both MBB
and MBS approximations. Moreover, both approximation techniques are ineffective
against 27-dimensional data. Although Equations (1)(2) suggest this property for
MBB and MBS approximations, Figure 3 indicates it more clearly.
Matrices with high flatness require more node accesses. As a result, as shown

in Figure 4, the number of page accesses increases as matrix flatness grows. Unlike
CPU time, the number of node accesses is quite independent of the approximation
quality. The reason for the increase in the number of node accesses is that the
index structures focus on searches in the Euclidean space. That is, spatial access
methods construct index structures to find target objects in the Euclidean space
efficiently; the MBB-MBS approximation technique performs ellipsoid queries using

5

 0

 10

 20

 30

 40

 50

 60

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

 0

 20

 40

 60

 80

100

120

140

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

(a) d = 8 (b) d = 27

Figure 4: The number of page accesses for the MBB-MBS approximation technique.

the constructed index structures. Due to the use of indices based on the Euclidean
distance function, the number of accesses for bounding rectangles and data objects
increases as matrix flatness grows; this, consequently, leads to increases in both
CPU time and the number of page accesses.
Our discussions in this section are summarized below:

(R1) CPU time
For both MBB and MBS approximation functions, approximation quality de-
crease as either dimensionality or matrix flatness grows. As a result, the
number of exact quadratic form distance calculations increases, thus leading
to high CPU time.

(R2) Node accesses
Index structures are constructed to find target objects in the Euclidean space
efficiently, and the search algorithms utilize the resulting index structures.
Therefore, as matrix flatness grows, the number of node accesses increases.
This leads to increases in both CPU time and the number of page accesses.

To cope with (R1), we propose the spatial transform technique in Section 3; the
technique achieves high quality approximations and superior performance. To over-
come (R2), we present the multiple spatial transformation technique in Section 4;
it is an extension of the spatial transformation technique. This technique reduces
both CPU time and the number of page accesses.

3 The Spatial Transformation Technique

In this section, we describe the Spatial Transformation Technique (STT) for efficient
ellipsoid queries, which approximates the quadratic form distance between a query
point and a bounding rectangle. The STT guarantees no false drops like the MBB-
MBS approximation technique and so returns exact answers to any query.

3.1 Basic Ideas

In computing the exact distance for quadratic form distance functions, calculating
the distance between a query point and MBRs in the index structures incurs high

6

CPU-cost, moreover, the calculations need to be iterated. That is, the complexity
is O(ω · d2), where ω denotes the number of iterations. The basic idea of STT
is to transform the MBRs, whose distance from a query point is measured by the
quadratic form distance functions, into rectangles whose distance is measured by the
Euclidean distance functions. STT requires no iteration. The transformation used
in STT effectively contributes to reducing CPU-cost. As shown in the evaluation
result (R1), the MBB-MBS approximation technique is not effective when either
the dimensionality or flatness of query matrices is high. STT requires less CPU-
cost, and offers great efficiency even for high dimensionality and matrix flatness
due to its high approximation quality. In this section, we first define the spatial
transformation, and then describe a spatial transformation technique for bounding
rectangles in index structures.

3.2 Definition of Spatial Transformation

Given a query matrix M and a query point q, the quadratic form distance between
q and a point p in a d-dimensional space S is defined as follows:

d2
M (p, q) = (p − q) ·M · (p − q)t. (3)

Since M is positive definite, the spectral decomposition of M can be calculated as:

M = EM · ΛM · Et
M , (4)

where EM is the set of the eigenvectors of M , the diagonal matrix
ΛM = diag(λM1 , λM2 , . . . , λMd

) consists of the eigenvalues λM1, λM2 , . . . , λMd
of M .

From Equations (3)(4), we obtain:

d2
M (p, q) = (p− q) · EM · ΛM ·Et

M · (p− q)t. (5)

When considering point p′ = (p−q)·EM ·Λ
1
2
M in the Euclidean space S ′, Equation (5)

denotes that the Euclidean distance between the origin O and p′ in S ′ is equal to the
quadratic form distance d2

M (p, q) (i.e. d2
M (p, q) = p′ · p′t). Here, the transformation

matrix of M is defined as:

AM = EM · Λ
1
2
M . (6)

AM transforms the quadratic form distances within S into the Euclidean distances
within S ′. It yields the so called spatial transformation of p into p′.

3.3 Spatial Transformation of Rectangles for Distance Calculation

STT gives the spatial transformation of rectangles in index structures. Figure 5
illustrates the spatial transformation of a rectangle. In this figure, the bounding
rectangle P in S is transformed into the d-dimensional parallelogram P ′ in S ′. Since
the calculation of distance between the origin O and polygons in high-dimensional
spaces incurs high CPU-cost, STT approximates P ′ by rectangle R as shown in
Figure 5(b). This approximation reduces the calculation cost of ellipsoid queries.
We assume a rectangle P within S and a query point q. Let pa and pb be

endpoints of the major diagonal of P , and li be the i-th dimensional edge length of

7

q(2,2) P

S

p (4,1)a

p (6,2)b

p (6,1)c

p (4,2)d
P’

S’

p’(-4,2)b

p’(-5,1.5)c

r (-5,0.5)a

r (-2,2)bR

O
p’(-3,0.5)a

p’(-2,1)d

(a) A rectangle in the original space (b) A rectangle calculated by STT

Figure 5: An example of spatial transformation.

P . It follows that point p′a in S ′ can be calculated by the spatial transformation of
pa:

p′a = (pa − q) ·AM . (7)

We extract the following components from the components aij of AM :

φij =

{
aij (aij < 0)
0 (otherwise),

ψij =

{
aij (aij > 0)
0 (otherwise).

(8)

From Equations (7)(8), the rectangle R that totally encloses the d-dimensional
parallelogram with respect to the spatial transformation of P can be calculated as
2 :

R = (ra, rb) (9)

raj = p′aj
+

d∑
i=1

li · φij , rbj
= p′aj

+
d∑

i=1

li · ψij , (1 ≤ j ≤ d),

where ra and rb are endpoints of the major diagonal of R. Since R totally encloses
P ′ in S ′, The search algorithm can use the Euclidean distance d2(R,O) instead of
the quadratic form distance d2

M (P, q) (i.e. d2(R,O) ≤ d2
M (P, q)).

For example, as shown in Figure 5, the query point q = (2, 2) and matrix:

M =

(
1.25 −0.75
−0.75 1.25

)

are given. When using M , the vertices pa, pb, pc and pd of the bounding rectangle
P in S are transformed into the vertices p′a, p′b, p

′
c and p′d of the parallelogram P ′

in S ′, respectively. Also, R = (ra, rb) encloses P ′. d2
M (q, P) is approximated by

d2(R,O), and we can utilize d2(R,O) instead of d2
M (q, P).

2 The proof of Equation (9) is described in Appendix A.

8

3.4 Search Algorithm

Range queries and k-nearest neighbor queries are useful for multi-dimensional databases.
An algorithm based on spatial transformation can efficiently support both types of
queries. Since k-nearest neighbor queries are more complex and require higher cost
than range queries, we focus on k-nearest neighbor search in this paper, and de-
scribe one such algorithm for STT. Note that the idea of STT can be applied to
any range query.
We show Equations (6)(7)(8)(9), for spatial transformation in Section 3.2 and

Section 3.3. CPU-cost would become excessive if a search required the spatial trans-
formation of all accessed rectangles using these formulas. Therefore, we introduce
the following two ideas to reduce CPU-cost.
First, the result of Equations (6)(8) does not depend on the position of the

bounding rectangles accessed. Thus, the search algorithm solves these formulas be-
fore accessing the rectangles. The result can be applied to the spatial transformation
of all rectangles visited.
Second, we reduce the calculation time relative to Equation (9). Note that, in

average, half of the components φij and ψij are 0. Therefore, in the implementation,
the algorithm searches for all pairs of row number i and column number j whose
components are φij �= 0, ψij �= 0 before accessing nodes in index structures. This
preprocessing halves the CPU-cost when calculating R (i.e. raj and rbj

) using
Equation (9).
Let caj be the number of components in the j-th column where φij �= 0, and ujk

be caj row numbers of the components in the j-th column (k = 1, . . . , caj). Similarly,
for ψij , let cbj

be the number of components in the j-th column where ψij �= 0, and
vjk be cbj

row numbers of the components in the j-that column (k = 1, . . . , cbj
).

A function that calculates the position of R with less computation time can be
obtained by using ujk and vjk:

R = (ra, rb) (10)

raj = p′aj
+

caj∑
k=1

lk · φ(ujk)j , rbj
= p′aj

+
cbj∑
k=1

lk · ψ(vjk)j , (1 ≤ j ≤ d)

where each caj and cbj
averages d/2.

Figure 6 shows the search algorithm for ellipsoid queries using tree structures of
the R-tree family. The search algorithm utilizes the spatial transformation of rect-
angles to evaluate the distance of a query point to the rectangles. STT and MBB-
MBS approximation techniques incur lower CPU-cost than the exact quadratic
form distance function for distance calculations. Therefore, the search algorithm
first calculates the approximation distance between a query point and a bounding
rectangle when evaluating the distance to the bounding rectangle. If the calculated
approximation distance is less than or equal to the distance of the query point to
the actual k-th nearest neighbor, the exact distance to the rectangle is evaluated
using the exact quadratic form distance function.
In Procedure search (see Figure 6), for initialization, the transformation matrix

is calculated and its components are checked (step 1), and then the pair of a pointer
to the root and 0 is stored in the priority queue (step 2). In step 4, the function
dequeue() dequeues the pair from the top of the priority queue, and extracts a
node N . If N is a data node, the MBB-MBS approximation distance of every
data object in the node is evaluated. Then, if the approximation distance is less

9

Procedure search(point query, matrix M, integer k)
1. ΦM := analyzeMatrix(M);
2. enqueue(a pointer to the root, 0);
3. for i = 1 to k, nnlist[i].dist := ∞;
4. while emptyQueue() = false do
5. N := dequeue();
6. if N is a data node then
7. for each entry ∈ N do
8. if dMBB-MBS(M)(query, entry.vector) ≤ nnlist[k].dist then
9. if dM(query, entry.vector) ≤ nnlist[k].dist then

10. nnlist[k].id := entry.id;
11. nnlist[k].dist := dM(query, entry.vector);
12. sort nnlist by distance;
13. pruneQueue(nnlist[k].dist);
14. endif
15. else
16. for each entry ∈ N do
17. if dMBB-MBS(M)(query, entry.rectangle) ≤ nnlist[k].dist then
18. R := spatialTransformation(query, entry.rectangle, ΦM);
19. if d(R, O) ≤ nnlist[k].dist then
20. if dM(query, entry.rectangle) ≤ nnlist[k].dist then
21. enqueue(entry.ptr, dM (query, entry.rectangle));
22. endif
23. endif
24. enddo
25. output(nnlist);

Figure 6: k-nearest neighbor search algorithm for ellipsoid queries.

than or equal to the actual k-th nearest neighbor distance, the exact distance is
evaluated (steps 5 to 8), and the data object together with its distance is stored in
the nearest neighbor list. (steps 9 to 12). If N is not a data node, the MBB-MBS
approximation distance of every bounding rectangle is evaluated (step 16). Then,
if the MBB-MBS approximation distance of a rectangle is less than or equal to the
actual k-th nearest neighbor distance, the spatial transformation of the rectangle is
calculated from ΦM (step 17). In step 18, the Euclidean distance between O and R
obtained by the spatial transformation, is evaluated. If the distance calculated by
the spatial transformation is less than or equal to the actual k-that nearest neighbor
distance, the exact distance is evaluated (step 19).
In the following experiments, we use not only the A-tree but also the R*-tree.

The A-tree is useful for ellipsoid queries as well as queries based on the Euclidean
distance function. The A-tree search algorithm differs somewhat from the other
methods in the R-tree family. Details of the A-tree search algorithm are described
in [SYUK00].

10

3.5 Dimensionality Reduction

When the flatness of a query matrix is high, there are eigenvectors whose eigen-
value is small. In the space created by spatial transformation, the dimensions
corresponding to the eigenvalues contribute less to approximation quality although
the dimensions require the same CPU-cost as the others do. The STT with dimen-
sionality reduction eliminates the dimensions whose eigenvalues are small in order
to save CPU-cost.
Let r = (r1, r2, . . . , rd) be the point in R, which is the closest to O in S ′ created

by the spatial transformation. When using dimensionality reduction, the distance
of R to O can be determined as:

d̃(O,R) =

(
n∑

i=1

(ri)2
) 1

2

, n = COUNT

(
λi ≥ η

d
·

d∑
i=1

λi

)
(n ≤ d), (11)

where η is a threshold for dimensionality reduction, and λi is arranged in descending
order (i.e. λ1 ≥ λ2 ≥ . . . ≥ λd > 0). The function COUNT (Γ) gives the number
of elements that satisfy requirement Γ. This formula shows that the dimensionality
for distance calculation in S ′ is limited to n. Thus, the STT with dimensionality
reduction reduces the calculation time relative to Equations (7)(8)(10) as well as
Equation (11) to n/d. As query matrix flatness increases, the reduction rate n/d
decreases and higher efficiency is achieved for the distance calculations.

4 The Multiple Spatial Transformation Technique

In this section, we present the Multiple Spatial Transformation Technique (MSTT),
which is an extension of STT. STT provides high approximation quality, however,
the number of node accesses increases as query matrix flatness grows, since STT,
as well as conventional search methods, utilizes the structure constructed by the
Euclidean distance function. To overcome this problem, MSTT constructs tree
structures based on various quadratic form distance functions, and then chooses
a desirable structure for improving search performance; the search algorithm de-
scribed in Section 3.4 utilizes the chosen structure.

4.1 Basic Ideas

We indicate the problem of node accesses in the evaluation result (R2). Search
methods for adaptive ellipsoid queries presented in [SK97] and [ABKS98] use index
structures based on the Euclidean distance function. Accordingly, the number of
node accesses increases as query matrix flatness grows, which leads to an increase
in CPU-cost and the number of page accesses. MSTT overcomes this problem by
selecting an arbitrary quadratic form distance function before constructing the index
structures; the search algorithm utilizes the resulting structure. MSTT reduces both
page accesses and CPU-cost for ellipsoid queries.
MSTT can handle more than one index structure. For multimedia systems that

attach importance to retrieval performance and can well afford the disk space, using
more than one structure is effective in improving search performance. Figure 7 il-
lustrates a retrieval mechanism based on MSTT. The mechanism first determines a
typical ellipsoid query matrix Xi (i = 1, . . . , ε) from the user’s query logs, and then
constructs index structures based on Xi. In query processing, the matrix Xsimilar

11

X1 Xsimilar

query

Xε

Figure 7: The multiple spatial transformation technique.

closest to the query matrix M is chosen, and target objects are found using the
structure constructed by Xsimilar. Especially, the query shown in Figure 7 requires
search processing based on the Euclidean distance function if M = Xsimilar. This
retrieval mechanism that adopts multiple indexing can accelerate search perfor-
mance.
Recently, disk price continues to fall and disk unit capacity is increasing rapidly.

[GG97] shows that disk unit capacity and storage cost have increased /decreased
hundred times and ten thousand times, respectively; whereas disk access speeds
have increased only ten-fold in the last twenty years. The resulting trend is to
emphasize disk access speed counts over storage cost. In addition, reducing the
search cost has higher priority than reducing the insertion cost in many multimedia
databases. It follows from these trends that the retrieval mechanism has a very
good reason to use more than one index to accelerate search performance.

4.2 Indexing and Retrieval Mechanisms

Structure Construction:

Let C be a matrix to construct an index structure. The transformation matrix AC

of C is:

AC = EC · Λ
1
2
C .

All data points included in the data set for constructing an index are transformed
by AC . For instance, AC transforms a data point p in the data set into p′ = p ·AC .
The MSTT constructs an index structure IC based on the transformed data points
such as p′. IC can well support queries whose matrix is C.

Query Processing by MSTT:

For a query point q and a query matrix M , we first transform q into q′ = q ·AC to
perform this query using IC . Considering a new matrixM ′ for the query processing
of M using IC :

M ′ = A−1
C ·M · (A−1

C)t, (12)

12

then the quadratic form distance of M between p and q is expanded as follows:

d2
M (p, q) = (p− q) ·M · (p− q)t

= (p′ − q′) · A−1
C · M · (A−1

C)t · (p′ − q′)t

= (p′ − q′) · M ′ · (p′ − q′)t.

Thus, the query whose matrix is M ′ and point is q′ using IC leads to the search
result of the ellipsoid query of M . Especially, if M = C, IC can well support the
query whose matrix is M since M ′ is unit matrix, which means a search based on
the Euclidean distance function.

4.3 Similarity of Matrices

When more than one index structure is constructed, the search process must choose
one of them for access. We define the dissimilarity between a query matrix M and
an index IC using the matrix flatness.
Queries of M using IC utilizes M ′, calculated by Equation (12), as the query

matrix. Let λM ′
i
be the i-th dimensional eigenvalue of M ′ and λM ′ be the average

of the eigenvalues of M ′. The variance σ2
M ′ of eigenvalues of M ′ is determined as

follows:

σ2
M ′ =

d∑
i=1

(λM ′
i
− λM ′)2, λM ′ =

d∑
j=0

λM ′
j

d
(13)

We define σ2
M ′ as the dissimilarity between M and IC . For similarity search using

MSTT, the effectiveness of IC against M improves as σ2
M ′ decrease.

4.4 Normalization of Matrices

In order to calculate the dissimilarity of queries and indices, all matrices must be
normalized, i.e. det(C) = det(M) = 1 for matrices C and M . Normalized matrix
N of M is obtained by:

N = EM · ΛN · Et
M , λNi = λMi ·

(
d∏

i=1

λMi

)− 1
d

where the diagonal matrix ΛN consists of the eigenvalues λNi (i = 1, . . . , d) of N .
C can also normalized in the same way.

5 Performance Evaluation

To verify the effectiveness of STT, we implemented the algorithm and compared it
to the MBB-MBS approximation technique. We then measured the performance of
MSTT. The measurements used the same conditions used for the tests in Section
2. For the dimensionality reduction technique of STT, the best threshold η = 0.01
from among three alternatives, η = 0.1, η = 0.01, η = 0.001, was chosen. With
respect to the matrices created in our experiments, Table 2 shows the dimensions
n used for STT.

13

Table 2: Dimensions used for ellipsoid queries.
wr 1 10 100 1000
d = 8 8 8 4 4

n
d = 27 27 18 9 9

 0

200

400

600

800

1000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

STT (DR)
STT

MBB-MBS

 0

2000

4000

6000

8000

10000

12000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

STT (DR)
STT

MBB-MBS

(a) d = 8 (b) d = 27

Figure 8: Comparison of STT against the MBB-MBS approximation technique in terms of
CPU-cost.

5.1 Search Performance

Figure 8 compares STT to the MBB-MBS approximation technique in terms of
CPU-cost. The A-tree was used as an index structure. The symbol STT(DR) means
the CPU-cost for the STT with dimensionality reduction. The number of page
accesses is shown in Figure 4. Since STT and the MBB-MBS approximation tech-
nique utilize exact quadratic form distance functions, both require the same number
of page accesses to perform ellipsoid queries. Thus, the difference in search time
between STT and the MBB-MBS approximation technique depends on calculation
complexity. As described in Section 1, ellipsoid queries incur much costs in calcu-
lating the distance between bounding rectangles and query points. Figure 8 shows
that STT reduces CPU-cost for all data sets, and reveals the superiority of STT.
In particular, the effectiveness of STT increases as either dimensionality or matrix
flatness grows. Especially, STT achieves a 74 % reduction in CPU-cost for high
dimensionality and matrix flatness.
Figure 9(a) compares STT to the MBB-MBS approximation technique in terms

of CPU-cost when using the R*-tree. Figure 9(b) shows the number of page accesses.
This experiment utilized only 8-D data. With the available hardware the 27-D data
lead to excessively long run times. STT using either the R*-tree or the A-tree was
superior to the MBB-MBS approximation technique.

5.2 Analysis of Approximation Techniques for Elliptical Queries

STT does not utilize the exact quadratic form distance functions to access bounding
rectangles whose approximation distance from the query point exceeds the actual

14

 0

 20

 40

 60

 80

100

120

140

160

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

STT (DR)
STT

MBB-MBS

 0

 50

100

150

200

250

300

350

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

(a) CPU time (b) Page accesses

Figure 9: Search performance using the R*-tree.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

1 10 100 1000

R
at

e
of

 fi
lte

re
d

ex
ac

t c
al

cu
la

tio
ns

 (
%

)

Weight

STT (DR)
STT

MBB-MBS

 0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

R
at

e
of

 fi
lte

re
d

ex
ac

t c
al

cu
la

tio
ns

 (
%

)

Weight

STT (DR)
STT

MBB-MBS

(a) d = 8 (b) d = 27

Figure 10: Rate of filtered exact distance calculations for STT.

k-nearest neighbor distance, similar to the MBB-MBS approximation technique.
Figure 10 presents the percentage of filtered exact quadratic form distance calcula-
tions to the number of bounding rectangles accessed in search processing, that is,
this figure illustrates the effectiveness of the approximation techniques. Although
the efficiency of the MBB-MBS approximation technique decreases as the flatness of
query matrix grows, the STT approximations efficiently filter exact quadratic form
distance calculations for all queries. STT proves to be highly effective with high-
dimensional data and queries whose matrix flatness is high as well as those with
lower dimensionality and flatness. The effectiveness of STT yields low CPU-cost as
shown in Figure 8.
The idea of the dimensionality reduction provided by STT is eliminating dimen-

sions that make only a slight contribution to the approximation of distance between
query points and bounding rectangles. This technique is more effective in ellipsoid
searches as the flatness of query matrices increases. Since the flatness of query
wr = 1 is relatively low, the query uses all dimensions in the search as shown in
Table 2. On the other hand, for queries wr = 100 and wr = 1000, both of which
have flat ellipsoids, distance calculations are based on lower dimensionality. As Fig-

15

 50

100

150

200

250

300

350

400

450

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

Unit
Wr=10

Wr=1000

 10

 15

 20

 25

 30

 35

 40

 45

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

Unit
Wr=10

Wr=1000

(a) CPU time, d = 8 (b) Page accesses, d = 8

 0

500

1000

1500

2000

2500

3000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

Unit
Wr=10

Wr=1000

 20

 30

 40

 50

 60

 70

 80

 90

100

110

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

Unit
Wr=10

Wr=1000

(c) CPU time, d = 27 (d) Page accesses, d = 27

Figure 11: Search performance for MSTT.

ure 10 depicts, STT provides high approximation efficiency both with and without
dimensionality reduction; as a result, the STT with dimensionality reduction has
superior performance and offers lower CPU-cost.

5.3 Effectiveness of MSTT

Section 4 proposed the MSTT as a development of STT. For a given query ma-
trix, this technique constructs an index structure based on the query matrix in
order to support the query more efficiently. In these experiments, we measured the
performance of MSTT with the following structures:

(1) Unit: the index structures constructed by the unit matrix.

(2) Wr = 10: the index structures constructed by the matrix wr = 10.

(3) Wr = 1000: the index structures constructed by the matrix wr = 1000.

Figure 11 depicts the search performance for ellipsoid queries using these index
structures. Table 3 shows the dissimilarities between the three index structures
and the four ellipsoid queries for 8-D and 27-D dimensions. The dissimilarities of
index structures to queries were calculated using Equation (13) in Section 4.3. For
any query, choosing the index structure that is most similar to the query minimizes

16

Table 3: Dissimilarity of matrices.
(a) Unit

wr 1 10 100 1000
d = 8 0.031 76.490 7999 800214

σ2
M ′

d = 27 64.777 93372 9.29e8 9.29e12
(b) Wr = 10

wr 1 10 100 1000
d = 8 71.296 0 194.99 19892

σ2
M ′

d = 27 42467 0 127814 1.30e9

(c) Wr = 1000

wr 1 10 100 1000
d = 8 748634 19892 196.01 0

σ2
M ′

d = 27 4.37e12 1.33e9 132022 0

search cost of the query. MSTT is very successful in reducing CPU-costs and the
number of page accesses for any query.
In addition, search cost is not proportional to dissimilarity. For example, queries

whose dissimilarity is 0 incur some search cost since similarity searches entail some
cost even in the Euclidean distance space. Note that the function is not a cost model.
Dissimilarity allows the search algorithm to choose a desirable index structure.
In practical situations, the dissimilarity of a given query matrix to each index

must be calculated when choosing from the various index structures. The number of
dissimilarity calculations grows as the number of created indices increases since the
number of dissimilarity calculations equals the number of indices. However, each
calculation incurs only a small CPU-cost: 2 ms for 27-D data in our experiments.
Since this is negligible compared to the overall search time, constructing various
structures substantially improves search performance.

5.4 Property of the dissimilarity function

In this section, we analyze the property of the dissimilarity function defined in
Section 4.3. We created 30 query matrices for 8 and 27 dimensions using weight wr

as follows:
wr = 10random,

where random is a randomly generated number between 0 and 3. Figure 12 shows
how the dissimilarity function chooses an index structure. Each search cost for 30
queries was measured by the average of 100 queries. This experiment used three
kinds of index, Unit, Wr = 10 and Wr = 1000, such as the experiment shown
in Section 5.3. The figure shows the following search costs:

(1) Dissimilarity: the cost of search using index structures chose by the dissim-
ilarity function.

(2) Unit: the search cost on index structures constructed by the unit matrix.

(3) Best: the best search cost using the optimal index structure for each query
matrix.

17

 0

100

200

300

400

500

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

dissimilarity
Unit
Best

 0

 10

 20

 30

 40

 50

 60

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

dissimilarity
Unit
Best

(a) CPU time, d = 8 (b) Page accesses, d = 8

 0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

Dissimilarity
Unit
Best

 0

 20

 40

 60

 80

100

120

140

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

dissimilarity
Unit
Best

(c) CPU time, d = 27 (d) Page accesses, d = 27

Figure 12: Behavior of the dissimilarity function.

In the experiment using 27-dimensional data, the dissimilarity function chooses the
index structure Unit for the query matrices whose weight wr lies between 1 and 3,
Wr = 10 for the weight between 3 and 100, and Wr = 1000 for the weight be-
tween 100 and 1,000. The choice of indices for 8-dimensional data is quite similar to
that for 27-D. Although search cost determined by the function is not exactly equal
to the search cost achieved by the optimal index structures, the function chooses
a desirable structure for most of the query matrices. Moreover, compared to the
search cost with the index structure based on the Euclidean distance, index struc-
tures chosen by the dissimilarity function greatly reduce the search cost. Unlike the
previous works presented in [SK97] and [ABKS98] that focus on the index structure
based on the Euclidean distance, MSTT constructs various index structures, which
allows the dissimilarity function to choose a desirable structure according to the
query matrices. This mechanism offers high effectiveness as shown in this figure.

6 Conclusions

This paper has presented the Spatial Transformation Technique (STT); it offers
excellent performance when searching for adaptive ellipsoid queries. First, we an-
alyzed the MBB-MBS approximation technique and discussed its problems. Based

18

on this analysis, we developed STT to overcome the problems and so achieve higher
search performance.
STT achieves high performance due to its use of spatial transformation. Since

the spatial transformation provides highly accurate approximations of the distance
between query points and bounding rectangles, STT eliminates exact distance eval-
uations for most of accessed bounding rectangles in the index structures. The mech-
anism of STT is remarkably efficient, especially for queries whose dimensionality
or matrix flatness is high. This technique guarantees no false drops as does the
MBB-MBS approximation technique. In experiments using various matrices and
index structures, STT was found to superior to the conventional search method,
the MBB-MBS approximation technique.
We also presented a new technique, MSTT. MSTT adjusts tree structures to

suit ellipsoid queries; the search algorithm utilizes the adjusted structures. This
technique reduces both page access number and CPU-cost for ellipsoid queries.
MSTT can support ellipsoid queries efficiently because one or more index struc-

tures can be used. In the future, we plan to consider an algorithm that determines
matrices from a log of user’s queries to create various indices. We will present a
matrix decision algorithm whose parameters are a log of queries and the number of
indices that can be stored on disk.

References

[ABKS98] Mihael Ankerst, Bernhard Braunmüller, Hans-Peter Kriegel, and
Thomas Seidl: “Improving Adaptable Similarity Query Processing by
Using Approximations”, in Proc. of the 24th International Conference
on Very Large Data Bases (VLDB), pp. 206–217, New York City, NY,
August 1998.

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel: “The X-
tree: An Index Structure for High-Dimensional Data”, in Proc. of the
22nd International Conference on Very Large Data Bases (VLDB), pp.
28–39, Bombay, September 1996.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger: “The R*-tree: An Efficient and Robust Access Method for Points
and Rectangles”, in Proc. ACM SIGMOD Conf., pp. 322–331, Atlantic
City, NJ, May 1990.

[BO97] Tolga Bozkaya and Meral Ozoyoglu: “Distance-Based Indexing for High-
Dimensional Metric Spaces”, in Proc. ACM SIGMOD International
Conference on Management of Data, pp. 357–368, May 1997.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula: “M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces”, in Proc. of the
23rd International Conference on Very Large Data Bases (VLDB), pp.
426—435, Athens, August 1997.

[FSA+95] M. Flickner, H. S. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker: “Query by
image and video content: the QBIC system”, IEEE Computer, Vol. 28,
No. 9, pp. 23–32, September 1995.

19

[GG97] Jim Gray and Goetz Graefe: “The Five-Minute Rule Ten Years Later
and Other Computer Storage Rules of Thumb”, SIGMOD Record,
Vol. 26, No. 4, pp. 63–68, December 1997.

[GG98] Volker Gaede and Oliver Günther: “Multidimensional Access Methods”,
ACM Computing Surveys, Vol. 30, No. 2, pp. 170–231, June 1998.

[HS95] G. R. Hjaltason and H. Samet: “Ranking in Spatial Databases”, in Pro-
ceedings of the 4th Symposium on Spatial Databases, pp. 83–95, Port-
land, Maine, August 1995.

[HSE+95] James L. Hafner, Harpreet S. Sawhney, William Equitz, Myron Flickner,
and Wayne Niblack: “Efficient Color Histogram Indexing for Quadratic
Form Distance Functions”, IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, Vol. 17, No. 7, pp. 729–736, July 1995.

[ISF98] Yoshiharu Ishikawa, Ravishankar Subramanya, and Christos Faloutsos:
“MindReader: Querying databases through multiple examples”, in Proc.
of the 24th International Conference on Very Large Data Bases (VLDB),
pp. 218–227, New York City, NY, August 1998.

[RHM97] Y. Rui, T. S. Huang, and S. Mehrotra: “Content-based Image Retrieval
with Relevance Feedback in MARS”, in Proc. of IEEE International
Conference on Image Processing, pp. II–815–818, October 1997.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent: “Nearest
Neighbor Queries”, in Proc. ACM SIGMOD International Conference
on Management of Data, pp. 71–79, May 1995.

[SK97] Thomas Seidl and Hans-Peter Kriegel: “Efficient User-Adaptable Sim-
ilarity Search in Large Multimedia Databases”, in Proc. of the 23rd
International Conference on Very Large Data Bases (VLDB), pp. 506—
515, Athens, August 1997.

[SYUK00] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, and
Haruhiko Kojima: “The A-tree: An Index Structure for High-
Dimensional Spaces Using Relative Approximation”, in Proc. of the
26th International Conference on Very Large Data Bases (VLDB), pp.
516–526, Cairo, Egypt, September 2000.

A Proof of Equation (9)

Let t be an arbitrary vertex of P . The i-th dimensional coordinate value of t is:

ti = pai + li · βi,

where βi is the number of 0 or 1. Since the spatial transformation of t is t′ = t ·AM ,
the j-th dimensional coordinate of t′ is:

t′j =
d∑

i=1

ti · aij

= p′aj
+

d∑
i=1

li · βi · aij .

20

Here, we assume that t′k is the highest coordinate value of P
′ for k dimensions. t′k

can be represented as:

t′k = p′ak
+

d∑
i=1

li · βi · aik,

βi =

{
1 (aik > 0)
0 (otherwise).

Therefore, t′k = rbk
. We can say that rb has the highest coordinate values of P ′ for

all dimensions. Similarly, If t′k is the lowest coordinate value of P
′ for k dimensions,

t′k can be represented as:

t′k = p′ak
+

d∑
i=1

li · βi · aik

= rak
,

where

βi =

{
1 (aik < 0)
0 (otherwise).

Therefore, ra has the lowest coordinate values of P ′ for all dimensions. ✷

21

