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Neural Incremental Speech Recognition

Towards Simultaneous Speech Translation∗

Sashi Novitasari

Abstract

Simultaneous speech interpretation or translation is a required task to bridge a

real-time multilingual human-to-human communication. Speech-to-speech trans-

lation (S2ST) system attempts to mimic human interpreters to translate a speech.

As a pipeline, S2ST system consists of three components: automatic speech recog-

nition (ASR), machine translation (MT), and text-to-speech synthesis (TTS)

systems. Unlike human interpreter who can do a simultaneous interpretation,

conventional S2ST system costs a high output latency because the data pass-

ing between the components is done based on the complete input and output

sequences. To enable automatic speech translation in a real-time situation, a

simultaneous S2ST system that works within a low delay is required.

Among all components, ASR has a critical role to determine the performance

and delay of a simultaneous S2ST system in the first place. Despite its remark-

able performance, the state-of-the-art attention-based neural ASR costs a high

recognition delay because of the global attention mechanism. As a result, it can-

not be used for a simultaneous S2ST task. Several studies recently proposed the

sequence mechanisms for incremental speech recognition (ISR) that produces the

output within a low delay. To do a low delay recognition, ISR model needs to

decide the incremental steps to begin or end the recognition of a short part of

the speech input. For this reason, the existing neural ISR systems use a more

difficult training mechanism and framework than the standard non-incremental

neural ASR.

∗Master’s Thesis, Graduate School of Science and Technology, Nara Institute of Science and
Technology, September 16, 2020.
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Towards simultaneous S2ST, this thesis focuses on addressing the current

ISR problem by investigating whether possible to perform ISR and handle the

input segmentation without introducing a complicated training mechanism. By

using the standard neural ASR as the base, the challenges here are to (1) reducing

recognition delay, (2) keeping system complexity, and (3) maintaining recognition

performance.

We perform two tasks to achieve our goal. First, as our proposal, we con-

struct a neural ISR system using attention transfer from a standard neural ASR

model with an identical structure. Transfer learning is a method to train a stu-

dent model by using the knowledge that a teacher model has. In our proposed

method, we treat the standard neural ASR as a teacher model that transfers its

attention-based knowledge to an ISR model, the student. Our experiments show

that the proposed ISR with a recognition delay of 0.54 sec can achieve a close

performance to the teacher model whose delay is more than 6 sec. In the second

task, we utilize the proposed ISR in speech translation task and see how ISR af-

fect MT performance. We explored various approaches to adapt the ISR output

in accordance with MT input unit to achieve a good translation performance.

Our experiments on English-French translation task show that end-to-end ISR

with the matching subword representation as MT input side achieves the best

speech recognition and translation performance.

Keywords:

attention transfer, incremental speech recognition, simultaneous speech-to-speech

translation
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Chapter 1

Introduction

1.1. Speech-to-speech Translation for Multilin-

gual Conversation

Speech is one of tools that humans use to express their thoughts and communi-

cate with others. In this era, as globalization rapidly expands, language barriers

continue to be the most notorious restriction on free communication among dif-

ferent language speakers. One of the ways to break those barriers is by learning

the languages by ourselves. However, as there are many languages in this world,

learning all languages is impossible for a human. Another way is by asking an-

other person, an interpreter, who understands the language to translate it for

us.

Human interpreter is able to break the language barrier by translating a speech

into another language that can be understood by the listener. They perform the

task simultaneously to the timing of the source speech, so the source speaker and

the listener can do a direct communication even though they speak in different

languages. Despite the high demand, interpretation is a complex skill that takes

many years to master, therefore, using a professional interpretation service can

be expensive. The availability of language pairs also remains scarce.

The automation of speech translation to bridge multi-language communica-

tion can be done with speech-to-speech translation (S2ST) system. S2ST tech-

nology [8], in the other words automatically recognizing a speech and translating
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it into a speech in a different language, is an innovative technology that can

support many everyday situations that relate to multi-language communication.

S2ST system consists of three components: automatic speech recognition (ASR),

machine translation (MT), and text-to-speech synthesis (TTS) systems. In the

conventional pipeline S2ST system, as shown in Figure 1.1(a), the three compo-

nents are interconnected and each of them processes the output of the previous

adjacent component.

S2ST system process begins with the source speech recognition by the ASR

system. In the conventional system, ASR system performs a recognition process

on a completed speech and passes the output to the MT system. MT system

does the translation textually from the ASR output into another language [9]

and then passes the translation result to the TTS system. By taking the MT’s

completed output, TTS system synthesizes a speech signal, which speech has the

same meaning as the source speech but in a different language [10]. Not only the

pipeline system but the recent studies also took an interest in end-to-end S2ST

systems [11, 12, 13] that perform all processes within a single model.

The conventional pipeline and end-to-end S2ST systems, however, cost a long

processing delay. These systems need to wait for a completed speech to begin

the process. As a result, the longer the source speech is, the longer the waiting

time will be. Consequently, such systems are not practical in situations where

the time delay between the source speech and translation speech is critical. The

example of such a situation is real-time lecture translation, where the lecturer’s

speech and its translation should be delivered at the same time so the audience

can follow the lecture. A solution to this problem is a real-time or simultaneous

S2ST system that mimics human interpreters, who are able to recognize and

translate the speech simultaneously to the time when the speech is uttered.

1.2. Simultaneous Speech-to-speech Translation

Simultaneous S2ST system is a system that automatically translates a speech

and delivers the output as a speech in a different language, where the time delay

between the start timing of the source and the output speech is very small.

This system aims to do the speech translation in a similar way to the human

2



Today I am

MT
MT

Today I am going to talk about climate

Aujourd'hui je vais parler du climat

TTS

going to talk

Aujourd'hui je 

MT

vais parler

TTS TTS

Conventional S2ST Real-time S2ST

...

(a) (b)

Delay

t0

Delay

ASR t0 ASR ASR

Figure 1.1. Pipeline S2ST systems: conventional framework (a) and real-time or
simultaneous framework (b). Examples in English-French translation task.

interpreter, who does the translation simultaneously to the source speech [14, 15,

16].

Simultaneous S2ST system needs to perform low-latency processing in the

ASR that is followed by a low-latency MT and a low-latency TTS. An illustration

of the simultaneous S2ST system is shown in Figure 1.1(b). Simultaneous S2ST

system consists of the same components as the conventional S2ST system. The

main difference between the conventional and the simultaneous S2ST systems

lies in the starting condition of each component’s process. In the conventional

system, each component has to wait for the complete output from the previous

component. On the other hand, the simultaneous S2ST system does not limit

the components to wait for a complete output from the previous one. They just

wait for a part of the input, instead of a complete input, and works on the fly.

The performance of the simultaneous S2ST task is affected by the output

delivery speed and the translation quality. Output delivery speed corresponds to

the delay or lag that occurs during the speech translation process. Here delay

is the time difference between the start time of the source speech and the initial

time when the system produces the output[17]. The minimum S2ST delay by

the conventional system (Figure 1.1(a)) equals the length of the complete source

speech. On the other hand, the minimum delay in the simultaneous system

3



(Figure 1.1(b)) equals the size of the first-recognized speech segment, which is

shorter than the conventional system’s delay. The actual delay also includes the

computational delay.

For human interpreters, translation delay can cause an impact on their per-

formance. In many situations, speech translation with a short delay is preferable.

A short translation delay is able to relax the target listeners and facilitate the

communication between the original speaker and the target listeners [14]. In the

simultaneous speech translation of English speech by human interpreters, the de-

lay generally ranges from two to six seconds [18, 19], or roughly about four to

twelve words [20, 21]. Translation with a short delay is also can be beneficial for

human interpreters because it can reduce their short-term memory burden. On

the other hand, a long term information can provide clearer information about

the message in the source speech, better than the short term information, so the

understanding of it for translation will be better [22], even though the waiting

delay is long. In the case of human interpreters, translation with a long delay

may burden their working memory so the translation quality may also decrease

in some cases. But unlike the human interpreters, memory load is not a vital is-

sue in automatic speech interpretation by machine. A machine, however, cannot

understand the speech well like human does, unless the model is trained using a

large amount and variety of data.

1.3. Automatic Speech Recognition for Simulta-

neous Speech-to-speech Translation

One challenge to achieving simultaneous S2ST technology is the construction of

low-delay ASR or incremental ASR (ISR). ASR serves as the foremost component

in the S2ST system, therefore, the S2ST system’s delay and accuracy are highly

affected by the ASR system. The S2ST system will not able to do simultaneous

speech translation if it has to wait for a completed speech to begin the ASR’s

process. Therefore, a low-delay ASR or ISR system that is able to recognize

speech immediately as the speech start is necessary for a full-fledged simultaneous

S2ST system.
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1.3.1 Existing Approach

Researchers have been working on speech recognition technology for decades.

The current state-of-the-art ASR systems are end-to-end neural ASR systems

that consist of neural network framework architecture with encoder and decoder

with an attention module [1, 23, 24, 25]. Many works reported the excellency of

attention-based ASR. Despite it, standard attention-based ASR may result in a

long recognition delay. The standard attention mechanisms are based on a global

attention property that requires the computation of a weighted summarization of

the entire input sequence that is generated by the encoder states. This means the

system can only generate the speech transcription after receiving the complete

speech sequence as its input. Therefore, standard attention-based ASR is not

suitable for simultaneous S2ST task.

Among the existing ASR works, several approaches are capable to recognize

a speech utterance within a low delay without waiting for the end of the speech.

The descriptions of the existing low-delay ASR frameworks are the following.

• Conventional Hidden Markov Model ASR

Hidden Markov model-based (HMM) is a classic framework for large vocab-

ulary continuous speech recognition system [26, 27, 28]. HMM-based ASR

consists of three separate components: acoustic model, lexicon, and lan-

guage model. The acoustic model predicts the phoneme sequence from the

input speech by modeling the speech features distribution using a Gaussian

Mixture Model (GMM) and finding the optimal phoneme sequence using

HMM. The second component, lexicon, consists of word-to-phonemes dic-

tionary. This component proposes words that contains the phonemes that

are recognized by the acoustic model. From a phoneme sequence, multi-

ple words can be proposed because some words may consist of the same

phoneme sequence. From the words candidates, the final word sequence

is decided by the language model by maximizing the word sequence prob-

ability score. Basic HMM-based ASR works in a left-to-right transition

structure, where the recognition is done from the earliest speech features

and can be done without waiting for the end of speech. Therefore, HMM-

based ASR is able to produce output within a low delay to the speech

utterance.
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• Recurrent Neural Network ASR with Connectionist Temporal

Classification Training

Recurrent neural network (RNN) ASR based on connectionist temporal

classification (CTC) training objective is one of the end-to-end ASR that

models the mapping of speech features into text token directly. [29]. The

modeled text token is generally character-level tokens. The recognition with

an RNN network is done by predicting a corresponding token for each speech

feature frame. However, the length of speech frame sequence is usually sig-

nificantly longer than its transcription. Because of it, outputting one token

for each recurrent step may result in a bad transcription. In this framework,

this problem is solved by using a CTC objective during the model training.

Here CTC [30] enables the RNN to decide whether to output a token or

not, so the ASR will not output a long and incorrect transcription. An

ISR system using this approach can be made by using unidirectional RNN

across the model layers. ISR with unidirectional RNN-CTC process the

speech frames starting from the first frame unidirectionally and does not

depend on the future frames, so it only requires a short time to recognize

the speech incrementally [3]. The details of unidirectional RNN-CTC for

ISR task can be seen in Appendix B.1.

• Neural Transducer ASR

Neural transducer (NT) ASR [4, 31] is a low-delay end-to-end ASR frame-

work based on neural network that incorporates attention mechanism. The

structure of NT consists of an encoder with unidirectional RNN-type of

network and a transducer that predicts the output. NT ASR recognizes the

speech segment-by-segment with a fix-sized window. The segment-based

recognition is learned by looking at segment-level alignment during the

model training process. There are two existing methods for alignment gen-

eration. In the first method, segment-level alignment is generated by per-

forming forced-alignment using HMM-GMM ASR. In the second method,

the alignment computation is done during the model training by applying

a dynamic programming type of method based on the model state and out-

put probability. The computation and alignment update are done multiple

times to get the approximately best alignment according to the model qual-
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ity at that time. The details of the NT framework can be seen in Appendix

B.2.

1.3.2 Challenges to Overcome

As we discussed before, simultaneous S2ST system firstly depends on the ISR

system. The challenge of ISR mainly lies in the mechanism to do the incremental

step. In an incremental step, given an unfinished speech utterance, ISR must

decide the input boundary and output boundary on the fly to produce a tran-

scription. Figure 1.2 shows the illustration of these boudaries. Input boundary

and output boundary represent a pair of speech part and transcription part that

aligns with. ISR can begin the recognition and generate some outputs if they

find an input boundary. If the ISR finds an output boundary during output

generation based on a certain speech part, the ISR can stop the generation and

move to the next speech part. These boundaries enable ISR to do a partial input

processing so it can produce an output immediately after the speech starts.

Give 
output?

Give 
output?

Speech

Input boundary decision

A B C D …

When to 
stop?

Speech

K L M N …

When to 
stop?

Output boundary decision

Figure 1.2. Input boudary decision and output boudary decision in incremental
speech recognition.

Because of the nature of the ISR task, most available ISR systems use different

frameworks and learning algorithms that are more complicated than the standard

state-of-the-art ASR model. HMM-GMM ASR recognizes a speech utterance
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incrementally, but it is not an end-to-end framework. A non-end-to-end ASR

system is known for the difficulty to optimize because each system component

has an individual objective function and they are not optimized jointly [32]. The

RNN-CTC ASR typically has a lower performance than attention-based ASR

[33]. Among the ISR approaches that we mentioned above, NT ASR has the

closest inference mechanism to the standard neural ASR, however, it has a more

complicated mechanism to train than the standard model. NT ASR learns the

incremental step by learning the transcription that is aligned with the current

short speech segment. The complicated training mechanism is mainly caused

by the alignment preparation process. The existing approaches for alignment

generation are alignment generation using an HMM-GMM system and online

alignment computation during NT ASR training. The first approach requires us

to create an HMM-GMM ASR that can be difficult to be optimized, while the

second approach requires a high time and computation complexity to create the

ISR system. To simplify the simultaneous S2ST system development, an ISR with

a similar approach to the standard ASR and with a less complicated construction

mechanism than the existing frameworks is required.

To create a simultaneous S2ST system, not only the ISR performance as an

individual system but we also must consider the usability of it in the translation

task. In simultaneous S2ST system, ISR acts as an initiator and it will determine

how MT works. Here we consider the MT as a neural MT that does the recogni-

tion in a sequence-to-sequence manner by taking a sequence of tokens. To enable

the utilization of ISR for speech translation tasks, firstly, MT must be able to

recognize the tokens that are produce by ISR. Generally in an utterance-based

end-to-end S2ST system, such a factor receives less attention since all of the pro-

cesses are done by a single model. An end-to-end simultaneous S2ST system,

however, remains as a challenge especially for translations between languages

whose syntaxis word orders are different. As a step to achieve a simultaneous

S2ST system, we must enable the ISR to be utilized in speech translation task

and investigate the impact of ISR on MT to achieve a good speech translation

performance.
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1.4. Thesis Objective and Contribution

In this thesis, we focus on neural ISR construction that is intended as a component

of simultaneous S2ST system. The ISR is aimed to meet the following conditions:

• Reduce the recognition delay of the standard neural ASR.

• Use a similar mechanism to the standard neural ASR to keep the system

complexity.

• Maintain a close performance to the standard neural ASR.

After the neural ISR construction, we utilize the ISR in speech translation tasks.

The ISR optimization is also done to optimize the quality of the translation result

from the ISR text.

To do an incremental recognition, ISR needs to learn the incremental step.

We propose to teach the ISR to do the incremental step by using the attention-

based knowledge from a standard neural ASR system. We keep the ISR system

complexity by retaining the structure of a standard neural ASR system. For

these factors, we consider the proposed ISR construction approach as a teacher-

student learning task. The ISR acts as a student model, while the teacher is

a standard neural ASR. The attention-based information, where the ISR learns

from, is generated by the teacher once before training the ISR model. As those

models have an identical structure, the ISR can use the teacher’s hyperparameter

as it is. Accordingly, the construction of ISR only requires an attention-based

ASR and does not rely on an external system or excessive alignment computation.

Taking a look at our discussion in Section 1.3.2, we are not only considering

the ISR performance as an independent component but also as a system that is

connected to an MT system. To achieve that, we explore several approaches to

adapt the ISR output so MT can recognize the tokens that are produced by ISR

to do speech translation.

To summarize the objectives, this thesis has three main contributions.

1. ISR

• Developing neural ISR by employing sources from standard neural

ASR.
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• Investigating the impact of delay to speech recognition performance.

2. ISR in speech translation task

• Utilizing neural ISR in speech translation task by designing ISR-MT

integration framework to improve speech translation performance.

• Investigating the impact of low delay speech recognition to the trans-

lation task.

As we only focus on neural ISR, this work does not include the study for incre-

mental MT and TTS components for simultaneous S2ST. The speech translation

experiments were done using a non-incremental neural MT system.

1.5. Thesis Overview

This thesis is organized as described below.

In Chapter 2, we discuss the standard end-to-end neural ASR that consists of

encoder and decoder with an attention module. The discussed framework here is

our basis to create the proposed neural ISR. Here we describe the architecture of

the standard ASR and the mechanisms to train and use the model.

In Chapter 3, we introduce the proposed neural ISR system. The description

includes the system construction method and usage method. After that, we

describe the speech recognition experiment that we conduct using our neural

ISR.

In Chapter 4, we start with the description of the important factors that we

have to consider to utilize the non-incremental ASR or ISR in speech translation

task. Our discussion is followed by the introduction of proposed methods to con-

nect the ISR and MT in a pipeline system. Finally, we describe the experiments

that we conduct by applying ISR on speech translation tasks of English-French

and English-Japanese.
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Chapter 2

Neural Automatic Speech

Recognition

End-to-end neural ASR framework that we used in this work has a sequence-

to-sequence neural network structure, which consists of an encoder and decoder

components with an attention mechanism [1, 34]. Given a sequence of framed

speech features X = [x1, x2, x3, ...xS] with a length of S, a neural ASR model

is trained to predict the speech’s transcription text Y = [y1, y2, y3, ...yT ] with a

length of T by directly modeling the conditional probability in Equation 2.1. In

the basic framework, Y is a sequence of character units.

P (Y|X) =
T�

t=1

P (yt|X, y<t) (2.1)

2.1. Components

Figure 2.1 shows an overview of the standard neural ASR system with a sequence-

to-sequence structure. A neural sequence-to-sequence ASR consists of encoder

and decoder components with an attention mechanism. Each component con-

sists of a neural network structure, where all components are trained jointly. The

components’ joint training in the sequence-to-sequence model diminishes the op-

timization problem that is faced by a non-end-to-end ASR system. The details

of each component are described as follows.
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Figure 2.1. Neural ASR with encoder and decoder components with an attention
module [1, 2].
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2.1.1 Encoder

Encoder transforms the speech features sequence X with a length S into hidden

representation he. We can consider this component as a ‘listener’ to the speech.

Encoder consists of stacked RNN layers. The RNN type that commonly used is

bidirectional long-short term memory (BiLSTM) RNN [35, 36].

In typical deep BiLSTM structures, the output of j-th BiLSTM layer at the

i-th timestep is computed by using Equation 2.2.

hj
i = BiLSTM(hj

i−1, h
j−1
i ) (2.2)

After the encoding process finishes, the encoder hidden representation he is

decoded by the decoder to predict the output. Suppose that the encoder consists

of J layers in total, the he that will be decoded is the hj where the index j = J .

Since the length of a framed speech features sequence can be very long, it

can cause the encoder to converge very slow and unable to achieve the optimum

performance. This is because the relevant information extraction from a long

sequence is difficult. This problem commonly confronted by applying hierarchical

sub-sampling [1, 37, 38] to the BiLSTM layers in the encoder. The sub-sampling

reduces the sequence’s time resolution by a factor as it proceeds to the higher

layer in the stack. It is done by concatenating some consecutive outputs in the

previous layer to calculate the output of the target layer. An example of encoder

that applies hierarchical sub-sampling with a factor of two for each layer can be

seen in Figure 2.2. In this figure, the length of hidden representation sequence

hj in the encoder layer j = 3 is two states, which are reduced from eight input

unit. When hierarchical sub-sampling is applied, for example, sub-sampling by a

factor of two for each layer, the i-th output computation in j-th BiLSTM layer

may follow Equation 2.3.

hj
i = BiLSTM(hj

i−1, [h
j−1
2i−1, h

j−1
2i ]) (2.3)
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Figure 2.2. Example of encoder structure with hierarchical sub-sampling.

2.1.2 Decoder

Decoder predicts the transcription of speech as a sequence of text tokens. This

component can be considered as a ‘speller’. Decoder in ASR model consists of

an embedding layer and unidirectional long-short term memory (LSTM) RNN

layer. To predict the token sequence Y that has a length T , for each timestep t,

decoder produces a probability distribution over the next token conditioned on

previous outputs Y<t based on the current context information ct and current

decoder hidden state hd
t . The context information at time t (ct) is computed by

attention module [39], while decoder hidden states at time t (hd
t ) are computed

by processing the previous output token using the embedding layer and LSTM

layer. The probability distribution computation for the t-th output token fol-

lows Equation 2.4, where it results on a vector with the same size as the token

vocabulary size.

P (yt|X, y<t) = Token Distribution(ct, h
d
t ) (2.4)

2.1.3 Attention

Attention module computes the contextual information from the input speech

during the decoding process. The context information tells the decoder which
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part of the input sequence that it has to attend to generate an output token.

Context information ct at time t is computed with the following Equation 2.5

and Equation 2.6 by referring to Figure 2.1.

ct =
S�

s=1

at(s) ∗ he
s (2.5)

at(s) =
exp(Score(he

s, h
d
t ))

S�
s=1

exp(Score(he
s, h

d
t ))

(2.6)

The scoring for a context is commonly done using one of the functions in

Equation 2.7 [40].

Score(he
s, h

d
t ) =





�he
s, h

d
t �, dot product

he�
s Wsh

d
t , bilinear

V �
s tanh(Ws[h

e
s, h

d
t ]) MLP,

(2.7)

Score is a (RM × RN) → R function, where M is the number of encoder hidden

units and N is the number of decoder hidden units.

2.2. Training Method

Sequence-to-sequence neural network model training is commonly done using

a teacher-forcing training strategy [41]. This strategy trains the sequence-to-

sequence model to predict an output by feeding the correct output from the

previous timestep into the decoder. Figure 2.3 illustrates the decoding mech-

anism with teacher-forcing. It does not use the predicted output token as the

decoder input in the next timestep. Teacher forcing allows the model to converge

fast and keeps the model stability during training.

The training loss is computed based on the tokens probability distribution

computed by the model and the correct tokens. Training loss computation for

each speech utterance recognition follows Equation 2.8, where C is the number

of output class or the number of tokens in the vocabulary.
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Figure 2.3. Decoding with teacher-forcing strategy for model training.

LossASR(Y, P (Y|X)) = − 1

T

T�

t=1

C�

c=1

�(yt = c) ∗ logP (yt|X, y<t)[c], (2.8)

2.3. Inference Method

ASR inference aims to predict the most-likely token sequence that corresponds

to the input speech as formulated in Equation 2.9.

Ŷ = argmax
Y

logP (Y|X) (2.9)

Neural ASR inference starts by feeding the ASR model with the framed speech

features sequence. Inside, the encoder encodes the speech features into a hidden

representation, and the decoder predicts the output token by taking the previ-

ous output token and the speech context information. The decoding method for

inference is not the same as the teacher-forcing decoding strategy that does the

decoding based on ground truth input. Instead, the decoder takes the output to-

ken that is predicted in the prior timestep. An illustration of decoding mechanism

in ASR inference is shown in Figure 2.4.
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There are two kinds of searching algorithm that are commonly implemented

in neural ASR system to find the optimum output sequence during the decoding

process. Those searching algorithms are greedy search and beam search.

2.3.1 Greedy Search

Decoding with a greedy sequence searching determines the output token yt at time

t by choosing the token with the highest probability based on the predicted prob-

ability distribution. Equation 2.10 formulates the output search with a greedy

approach for each decoding timestep t .

yt = argmax
1≤c≤C

P (yt|X, y<t)[c] (2.10)

The greedy decoder has the advantages in speed and output stability because

the actual output token in a decoding timestep is determined at the corresponding

timestep. The disadvantage of this approach is that the quality of the final output

sequence may not be the optimal sequence.
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2.3.2 Beam Search

Decoding with beam search [42] is a heuristic approach to generate the most-likely

output sequence. Unlike the greedy decoder that determines the final output to-

ken at every step, a beam search decoder keeps tracks of k token sequences for

each timestep and uses those to generate several token sequence hypotheses. It

works, first, by keeping k best tokens based on the predicted tokens probabil-

ity distribution at timestep t=1. For each subsequent decoding step t+1, the

algorithm generates all possible token sequences based on the predicted tokens

probability distribution at t+1 and k token tracks that it kept before. From that,

it keeps top k sequences based on the sequence score and repeats the process in

the next timestep. Token sequence score is calculated as the sum of the log prob-

ability of the related sequence that it kept so far, as formulated in Equation 2.11.

At the end of the decoding process, the final token sequence is chosen based on

the sequence with the highest score.

Token Sequence Score(y1, ..., yt) =
t�

i=1

logP (yi|X, y<i) (2.11)

Beam search decoder may predict the optimum final token sequence better

than the greedy decoder. This is because the beam search decoder keeps several

token sequences with a high sequence probability. The consequence of this ap-

proach is a long computation time and the instability of the output before reaching

the last decoding timestep. This is because the best sequence may change during

each timestep.
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Chapter 3

Neural Incremental Automatic

Speech Recognition

3.1. Related Work

In this work, we are interested to develop neural ISR that has a similar mechanism

and performance to the standard neural ASR, but with a shorter delay. One of the

approaches that we can apply to develop such ISR is by employing the standard

neural ASR architecture to do an incremental recognition. Since the neural ASR

performs many-to-may prediction task, we can distill its knowledge to construct

an ISR system.

Knowledge distillation is an approach that can train a student model, which is

a simplification of a more complex model that acts as a teacher [43, 44]. A student

network is commonly constructed as a compression version that is shallower or

thinner that then trains the network to mimic the original teacher network by

minimizing the loss (typically L2-norm or cross-entropy) between the student

and teacher output. Another approach is attention transfer, which was recently

proposed by Zagoruyko and Komodakis [45] for image processing. Its basic idea

is to ensure the spatial distribution of the student and teacher activations that

are similar at selected layers in the network. Each layer in the student network

is trained to focus on the same things as in the teacher network. Various tasks

have also used attention transfer, such as video recognition [46] and emotion

classification [47], but not yet for ISR task.
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3.2. Proposed Approach: Neural ISR via Atten-

tion Transfer
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Figure 3.1. Overview of attention-transfer ISR (AT-ISR) training.

As our proposed approach, we apply attention transfer for incremental speech

recognition task by treating the standard non-incremental neural ASR as the

teacher model and the ISR as the student model. Instead of using a thinner

or shallower model, we design an alternative student network that retains the

original architecture of the teacher model but with shorter sequences (only a few

encoder and decoder states). In this way, no redesign is needed for the ISR,

and some hyperparameters can be used without changing them. With attention

transfer, the student network learns to mimic the same alignment between the
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current input short speech segments and the transcription.

In this thesis, we define the proposed ISR with attention-transfer training as

attention-transfer ISR (AT-ISR). The overview of AT-ISR construction method is

shown in Figure 3.1. In the next sections, we discuss the AT-ISR in more detail.

3.2.1 Incremental Recognition Method

The proposed AT-ISR in this work performs speech recognition by recognizing

the speech segment-by-segment or block-by-block within a fixed window. Fixed

window recognition is beneficial for attention-based ISR, in terms of determining

the input boundary that decides when the recognition can be started. Here

the input boundary is always the last speech frame inside the speech window,

so a complex search for it is unnecessary. It does not require a complicated

approach, such as voice activity detection and word boundary detection, to start

the incremental process. The output boundary is predicted along with the output

production.

ISR predicts a sentence text Y with a length of T tokens from a full speech

utterance X with a length of S frames in N recognition steps by processing a

speech segment in each step. Each speech segment has an identical size, which

we define it as window size W .

Figure 3.2 illustrates an incremental recognition with neural ISR. The recog-

nition procedure for each recognition step n = [1, ..., N ], where N = S
W
, is below.

1. Encode Xn = [x(n−1)w+1, ..., x(n−1)w+w], a segment of W speech frames from

X, where W<S.

2. Decode and predict Yn = [yn,1, ..., yn,kn ], a segment of Kn text tokens from

Y, where 0 ≤ Kn < T , until an end-of-segment (defined as </m> symbol)

token is predicted by attending the encoder states from Xn. Token yn,1 is

a token next to the last output token in the previous step before </m> is

predicted.

3. Shift the input window W frames and keep the model states.

In real-time inference, speech recognition with neural ISR can be started after

the speech reaches W frames long. Therefore if the actual speech length is long,
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the waiting time to get the output will be not as long as the standard neural ASR.

The incremental recognition will be stopped when there is no speech segment left

to be recognized. In this work, to avoid an additional delay and to keep the

output stability, the proposed neural ISR performs decoding based on a greedy

search.

The basic neural ISR does the recognition by predicting the text tokens that

align with the whole speech frames inside the window. An alteration in the

window can be applied to enrich the information in the input. It is done by

enclosing the main speech segment with contextual speech frames [31]. There are

two types of contextual speech frames:

• Look-back frames: Speech frames before the main speech segment.

• Look-ahead frames: Speech frames after the main speech segment.
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Figure 3.3. Examples of incremental speech recognition with and without con-
textual input segments.

A visual comparison between the incremental recognition with and without

contextual inputs can be seen in Figure 3.3. Similar to the main speech segment,
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the size of the contextual input segment in each incremental recognition step is

consistent. When contextual speech frames are included, for each recognition step

n, ISR encodes the main frames and the contextual frames together. Instead of

predicting all output tokens that align with the entire segment, ISR only predicts

the tokens that align with the main speech frames. The recognition delay is only

affected by the window size of the main input and the number of the look-ahead

frames. Look-back frames do not introduce new delays because they are the input

from the previous recognition step.

3.2.2 Attention Transfer

Attention transfer is a procedure that allows a student model to learn attention-

based information from a teacher model. In this work, the proposed neural ISR

is trained by performing attention transfer from a standard non-incremental neu-

ral ASR. Specifically, the AT-ISR learns the attention-based alignment between

speech segment and text sequence segment that is computed by the standard

ASR’s attention component. Attention components produce a matrix of align-

ment scores between encoder hidden states and decoder hidden states. This

matrix is also known as the attention matrix. The alignments for AT-ISR train-

ing is extracted from attention matrix. An example of attention matrix can be

seen in Figure 3.4. The attention transfer here aims to create ISR that mimics

the alignments from standard ASR to do an incremental recognition.

3.2.3 Training Method

AT-ISR training consists of two phases as the following.

1. Attention-based alignment generation.

The Xn and Yn pairs are decided based on the alignment by the attention

component of the non-incremental ASR with a teacher-forcing text gen-

eration. The alignment inference does not involve another system, and a

one-time alignment generation is sufficient. The alignments that generated

here are hard alignments, in which a text token is only aligned to a speech

frame. In attention alignment, a text token may have a high alignment
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score to several speech frames. From that, we only align the text token to a

speech frame with the highest attention score. To be precise, a target token

yt at time t is aligned to s-th input speech frame xs, which corresponds to

encoder state he
s. Speech frame index s where yt aligns to (lt), follows the

condition in Equation 3.1. In the final alignment, a speech frame without

a text token that aligns with is possible.

lt = argmax
lt−1≤s≤lt+1

Score(he
s, h

d
t ) (3.1)

If the ASR encoder applies hierarchical sub-sampling, an encoder state will

be representing the information from several speech frames. In this case, a

text token will be aligned to a speech segment with a size that equals to

the sub-sampling rate in ASR encoder. An example of attention alignment

generation from ASR, which applies hierarchical sub-sampling with a rate

of W , is shown in Figure 3.5. In Figure 3.5, a text token is only aligned to

one of the speech segments that consists of W speech frames.

2. AT-ISR model training with attention-based alignment. The AT-

ISR model training is illustrated in Figure 3.1. To enable short-segment-

based prediction, AT-ISR is trained using Yn that is followed by an </m>

token as the target of Xn. The Xn-Yn pair is obtained from the attention-
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based alignment generation phase. If the contextual input is applied, the

model training is done by using Yn and </m> symbol as the target of Xn

that is concatenated with the contextual input.

3.2.4 Delay Management

In inference, for optimum performance, AT-ISR does the incremental recognition

of speech segments with the same input window size configuration that is used

during the model training. AT-ISR delay can be controlled by concatenating con-

secutive speech segments in alignment and adjusting the text sequence segment

according to it, and then learn the concatenated alignment during model train-

ing. The shortest or basic delay is equal to the number of speech frames that an

encoder state represents in the attention matrix. This is because the attention

component does the scoring to encoder hidden state that represents the speech

frame, not directly to the actual speech frame. An encoder hidden state may

represent several speech frames, depending on the sub-sampling rate.
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3.3. Experimental Setup

3.3.1 Dataset

We used LJ Speech [5] to find the best AT-ISR mechanism and Wall Street Jour-

nal (WSJ ) corpus [6] for the well-performed configurations. LJ Speech dataset

consists of 13.100 English speech utterances from a single speaker (24 hours). We

divided the LJ Speech data into 12.314, 393, and 393 utterances as the train,

development, and test sets consecutively. The details of LJ Speech are described

in Appendix A.1. WSJ corpus consists of speech utterances that were spoken

by multiple speakers. We followed the original dataset configuration to divide

this data into the train (SI-284 ), development (dev93 ), and test (eval92 ) sets.

Further details of the WSJ dataset can be seen in Appendix A.2.

All utterances in both datasets have a 16-kHz sampling rate. From each

speech utterance, we extracted 80-dimension log Mel spectrogram feature, where

the window length of each feature frame was 50 msec and the window shift was

12.5 msec.

3.3.2 Model Configuration

The configuration of the proposed, topline, and baseline models in the exper-

iments are described below. All models in this experiment did not utilize an

external language model to produce the output sequence.

• Proposed Model

The proposed AT-ISR model consisted of encoder and decoder components

with an attention mechanism. In the experiments, we represented the model

output as character units, which is the basic and common output unit in

end-to-end ASR systems. The encoder part consisted of a layer of feed-

forward neural network and three layers of BiLSTM with a sub-sampling

rate of two in each BiLSTM layer, resulted in total sub-sampling rate of

eight. The first layer in encoder took a sequence of framed speech with

80 features and output 512 features, while each BiLSTM layer output 256

features. The decoder side consisted of an embedding layer, an LSTM

layer with an attention mechanism, and a softmax layer. In this work,
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we used an attention mechanism with MLP scoring function that utilized

previously-proposed multi-scale alignment and contextual history informa-

tion for scoring [48].

• Topline Model

The topline was standard non-incremental speech recognition using a stan-

dard neural ASR model, which was the teacher of the AT-ISR model. The

teacher ASR and AT-ISR in this experiment had an identical structure.

• Baseline Model

The first baseline was short-segment-based recognition using the teacher

ASR model. The standard neural ASR, which was the teacher of AT-ISR,

was trained to recognize a completed speech utterance non-incrementally.

In the baseline experiment, this model performed incremental recognition

during the inference by feeding it a short speech segment. We experimented

on two approaches to segmenting the speech. The first approach was word-

level segmentation based on forced-alignment technique using HMM-based

ASR [49], and another approach was fix-sized segment recognition. The

baseline ISR with the first approach could be considered as isolated-word

recognition. Another baseline was neural ISR that had an identical struc-

ture and the same recognition mechanism as AT-ISR, but was trained using

alignments from HMM-GMM ASR (no attention transfer).

We also compared AT-ISR to the existing neural ISR frameworks: NT and

unidirectional RNN-CTC ISR. The NT model was trained using alignments

extracted using HMM-GMMASR. It consisted of the unidirectional encoder

with the same size as the proposed model’s encoder and the transducer with

the same size as the proposed model’s decoder. The RNN-CTC ISR was the

one that reported in a study by Hwang and Sung (2016) [3], which applied

a model of two unidirectional LSTM layers. It was designed to predict the

speech transcription as a character sequence by performing beam searching

with a beam width of 512.
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3.3.3 Incremental Unit

Incremental unit is the speech segment unit which is recognized by ISR in an

incremental step. The ASR encoder in our configuration applied three BiLSTM

layers with a sub-sampling rate of two for each layer. As a result, the total

sub-sampling rate was eight, so one encoder state represented the information

from eight consecutive speech frames. Thus, our basic incremental unit was eight

speech frames that approximately equal to 0.14 sec speech. For the rest of the

part of this section, we refer the eight speech frames as one speech block.

3.3.4 Evaluation Metric

The speech recognition system’s performance was evaluated based on the output

quality and delay.

• Speech Recognition Output Quality

The quality of speech recognition output was measured using character

error rate (CER) of the predicted token sequence. CER is the number of

minimum edits in the hypothesis that is required to make the hypothesis

exactly matches the reference. CER equals to character-level edit distance

that follows Equation 3.2.

Edit Distance =
S +D + I

Nref

× 100% (3.2)

In CER calculation, S, D, and I denote the numbers of character substi-

tutions, deletions, and insertions respectively that are required to correct

the hypothesis, and Nref denotes the number of characters in the reference

text. The CER of the incremental model was measured by comparing the

model’s complete output sequence against the full reference transcription.

• Speech Recognition Delay

In this thesis, speech recognition delay refers to the time that a speech

recognition system needs to output the first and stable speech transcription

token. An output sequence is considered as stable if the outputs from the
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beginning until the current decoding step do not change, even after the

prediction in the new steps.

The speech recognition delay was measured based on two factors: input-

wise delay and computational delay. Input-wise delay is the delay that is

caused by the waiting time for input speech. It equals to the duration of

speech input that is fed into the encoder. Computational delay is the delay

by running the model to do inference. It is a sum of duration of the feature

extraction and encoding-decoding processes. For ISR system, its delay is

the total of input-wise and computation delays for an incremental step. An

illustration of ISR delay is shown in Figure 3.6.

ISR “h e”

...

Input-wise 
delay

Computational 
delay

(time)

(speech
feature)

(speech signal)

(output 
text)

Figure 3.6. Incremental speech recognition delay.

Computational delay is highly affected by the computing resource. In this

thesis, the computational delay was measured by running the speech recog-

nition system in the following environment:

– Processor : Intel R�CoreTM i7-9700K CPU @ 3.60GHz

– GPU : NVIDIA GeForce RTX 2080Ti
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3.4. Results

3.4.1 Speech Recognition Performance

Table 3.1. CER (%) of topline ASR, baseline ISR, and proposed AT-ISR based
on LJ Speech corpus. All ISRs performed incremental recognition with the basic
incremental unit (1 speech block) without contextual inputs.

System
Delay (sec.) CER

Input Computation Dev. Eval.

Topline ASR
Teacher ASR (non-incremental) 6.57 (avg.) 0.30 2.00 1.94

Baseline ISR
Teacher ASR + isolated word recog. 0.36 (avg.) 0.02 27.07 26.91
Teacher ASR + fix-sized segment recog. 0.14 < 0.01 79.63 80.34

Proposed: AT-ISR Delay (sec.) CER
Model state/step Dec. Initial Input Input Computation Dev. Eval.

Reset <m> 0.14 < 0.01 30.68 31.16
Reset prev. actual output 0.14 < 0.01 25.17 25.58
Keep <m> 0.14 < 0.01 23.07 23.34
Keep prev. actual output 0.14 < 0.01 21.73 21.70

Other existing ISR
NT 0.14 < 0.01 24.73 24.00

First, we compared the performances of the topline ASR, baseline ISR, and

proposed AT-ISR with the basic incremental unit. The models performances

based on LJ Speech dataset is shown in Table 3.1. The ISR models here did

not use contextual input as their input. In this experiment, we investigated the

performance of AT-ISR that kept and did not keep the model’s recurrent states

during incremental recognition. We also explored the two types of initial input

token for ISR decoder. In the first type, ISR took a beginning-of-segment symbol

<m> as the first decoder input token for each incremental step. The second

type was the decoding by taking the last character output from the previous step

(before </m> predicted) as the initial input token.

The result in Table 3.1 shows that the best AT-ISR outperformed the base-

lines. Incremental recognition using a standard non-incremental ASR model did

not perform well, thus, ASR model should be adapted to do a short-speech recog-

nition in order to perform incremental recognition. Among the proposed mod-
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Table 3.2. AT-ISR CER (%) on LJ Speech dataset based on contextual input
segments size (1 block = 8 frames ≈ 0.14 sec).

Input Segment Size (blocks) Delay (sec) CER (%)
Look-back Main Look-ahead Input Computation Dev. Eval.

Topline ASR 6.57 (avg) 0.30 2.00 1.94

Baseline: Neural ISR (teacher architecture) trained with HMM-GMM alignment
0 1 0 0.14 < 0.01 21.81 21.80
0 1 1 0.24 0.02 12.16 11.92
1 1 1 0.24 0.02 7.54 7.00

Proposed: AT-ISR
0 1 0 0.14 < 0.01 21.73 21.70
0 1 1 0.24 0.02 7.27 7.99
0 1 2 0.34 0.03 4.52 4.21
0 1 4 0.54 0.05 3.13 3.24
1 1 1 0.24 0.02 5.98 5.75
2 1 1 0.24 0.02 5.83 5.55
4 1 1 0.24 0.02 5.14 4.90

Other existing ISR: NT
0 1 0 0.14 < 0.01 24.73 24.00
0 1 1 0.24 0.02 13.95 12.65
1 1 1 0.24 0.02 10.91 10.32

els, keeping the model states and transferring the attention knowledge greatly

improved the performance. The lowest CER was achieved by feeding the last

character from the previous step for the first decoder input. If we compare it to

the topline ASR, ISR resulted a lower performance. This was caused by the na-

ture of short speech segment recognition, in which a short speech segment might

not provide the sufficient information for the correct transcription. Based on this

phenomenon, we investigated the effect of contextual input to the incremental

recognition performance.

Table 3.2 shows our exploration result on AT-ISR that recognized the speech

incrementally by including contextual input in the input window. AT-ISR models

here kept the model states for each incremental recognition step and started the

decoding by taking the last actual output from the previous step. In this table, we

also compared the AT-ISR to the baseline neural ISR with the same architecture

and recognition mechanism but did not trained with attention transfer.
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The addition of contextual input in the input segment improved the ISR

performance. When the contextual input was not used (0 look-back and 0 look-

ahead block), all ISR frameworks in Table 3.2 have a similar performance. When

contextual input was included in the input window, AT-ISR performance was

significantly better than the other ISR approaches.

Given the same architecture and the same encoding-decoding mechanism,

the ISR model that learned from attention-based alignment resulted in a better

transcription than the baseline model that learned from HMM-GMM alignment.

Without the contextual frames, the performance of both models was similar.

However, when the input of an incremental step was a main block with a look-

ahead block, AT-ISR significantly outperformed the neural ISR with HMM-GMM

alignment learning. Our experiment results show that attention-based ISR is

more suited to be trained using alignment that is generated by attention-based

ASR. Attention-based alignment tells a summary of input frames location that

the model needs to pay the highest attention, among a range of frames with high

alignment score, to produce a token. It is depends on the model’s capability

and quality. The alignment from HMM-GMM ASR might not pair some tokens

with the speech frames that a neural ASR primarily needs attend to. It might

pair the tokens with speech frames that scored second or third highest attention

alignment score. For this reason, when the recognition only considered the main

input, the performance of both approaches did not differ significantly. But when

the neural ISR based on HMM-GMM alignment allowed to take contextual input,

the information in the contextual input might not as match as the AT-ISR, so

it cannot perform as well as AT-ISR. AT-ISR that recognized a 0.24 sec speech,

which consisted of 1 main and 1 look-ahead blocks, in each incremental step

achieved a test set CER of 7.99%, which was 4.66% lower than NT with the

similar input delay. AT-ISR approach might be more suitable for attention-based

ISR compared to the other approaches in this experiment.

The results in Table 3.2 reveal that looking ahead from the main input seg-

ment resulted in a better performance than looking back, perhaps because, in

each recognition step, the model already maintains information from the previ-

ous steps. Therefore, adding previous frames to the main segment is might not

critically necessary. On the other hand, the look-ahead segment provides new in-
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Table 3.3. Topline ASR and AT-ISR CER (%) on WSJ eval92 set. (1 block = 8
speech frames ≈ 0.14 sec)

Model
Delay (sec)

CER (%)
Input Computational

Non-incremental (Topline)

CTC [33] - - 8.97
Att Enc-Dec Content [33] - - 11.08
Att Enc-Dec Location [33] - - 8.17
Joint CTC+Att (MTL) [33] - - 7.36
Att Enc-Dec (ours, teacher) 7.88 (avg.) 0.32 6.26

Neural ISR

Input segment size (blocks) Delay (sec)
CER (%)

Look-back Look-ahead Input Computational

Baseline: Neural ISR (teacher architecture) trained with HMM-GMM alignment

0 1 0.24 0.02 20.15
0 4 0.54 0.05 11.95

Proposed: AT-ISR

0 1 0.24 0.02 18.37
0 4 0.54 0.05 7.52

Other existing ISR

RNN-CTC beam search ISR [3] - - 10.96

formation that supports a better understanding of the main segment, although it

introduces a new delay. By only looking four blocks ahead, AT-ISR achieved per-

formance with a small difference from the non-incremental ASR with significant

delay reduction.

From our experiments on LJ Speech data, we learned that the optimum per-

formance with reasonable latency was achieved by the following: (1) included a

few ahead blocks, (2) set the last actual character of the previous step as the

decoder initial input, (3) kept the recurrent states across the steps, and (4) uti-

lized the distilled knowledge of the attention matrix in the training. With this

configuration, we constructed ISR model using WSJ dataset.

Table 3.3 shows the experiment results based on WSJ data. The length of

a completed utterance in this experiment was 7.88 sec on average. To do non-

incremental speech recognition, our non-incremental model requires a time of
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7.88 sec to wait for the input and 0.32 sec for output computation to predict

the output, totaling in 8.20 sec of delay in average. On the other hand, AT-

ISR only took a time of 0.54 sec to wait for the input segment and 0.05 sec

for computation, and the recognition performance was close to the standard ASR

performance. Similar to the previous experiment, AT-ISR performed incremental

recognition better than the baseline neural ISR. We also compared our results

with several published models of non-incremental ASR such as CTC, Attention

Encoder-Decoder, and Joint CTC-Attention model. Our results demonstrate that

AT-ISR could achieve comparable performance with other published models.

3.4.2 Impact of Delay to Speech Recognition Performance

  

Computational delay :
Main input segment :

Input-wise delay : 278 ms
18 ms

1 block

0.24 sec 
18 msec
1 block

0.34 sec
27 msec
2 block

1.74 sec
97 msec
25% S

0.54 sec
48 msec
4 block

3.34 sec
220 msec

50% S

6.57 sec
305 msec

(non-incremental)

5.04 sec
305 msec

75% S

1 block = 8 frames ≈ 0.14 sec DelayDelay

C
E

R
 %

Figure 3.7. AT-ISR performance on LJ Speech dataset with various main input
segment size (S = average frame length in LJ Speech set (6.57 sec))

We investigated the impact of the main input segment size. Figure 3.7 illus-

trates the performances of the AT-ISR models with different main input segment

size. In this figure, each model were allowed to take a look-ahead speech block in

an incremental step. The result shows a trade-off between time and performance.

In real-time speech translation tasks, we prefer the speech recognition delay to

be as short as possible with a performance that is close to the non-incremental
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ASR. Therefore, we need to find a delay configuration that keeps the balance

between recognition output delivery speed and recognition performance. Here in

Figure 3.7, although significant improvement happened until the main input seg-

ment with a length of 25% of full utterance (1.74 sec), it did not occur again on

the subsequent sizes. With this amount of delay, AT-ISR achieved a comparable

performance to the one that needs to wait until the speech to end. This point

of delay can be considered as balance point between time-performance. It also

indicates that the AT-ISR model’s performance is able to approach that of the

teacher model.

3.4.3 ISR Error Analysis

A.  AT-ISR input delay: 1.64 sec main + 0.14 sec contextual input (CER: 1.5%)

REF: t  h  o  u  g  h  < s p c >  n  o  w  < s p c >  e  x  t  i  n  c  t  < s p c >  s  p  e  c  i  e  s  ,  < s p c >  s  p  e  a  k  S  
< s p c >  s  t  r  o  n  g  l  y  < s p c >  i  n  < s p c >  f  a  v  o  r < s p c >  o  f  < s p c >  e  v  o  l  u  t  i  o  n  .

HYP: t  h  o  u  g  h  < s p c >  n  o  w  < s p c >  e  x  t  i  n  c  t  < s p c >  s  p  e  c  i  e  s  ,  < s p c >  s  p  e  a  k  *  
< s p c >  s  t  r  o  n  g  l  y  < s p c >  i  n  < s p c >  f  a  v  o  r < s p c >  o  f  < s p c >  e  v  o  l  u  t  i  o  n  .

B.  AT-ISR input delay: 0.14 sec main + 0.34 contextual input (CER: 6.1%)

REF: t  h  o  u  G  H  < s p c >  n  o  w  < s p c >  e  x  t  i  n  c  t  < s p c >  s  p  e  c  i  e  s  ,  < s p c >  s  p  e  a  k  S  
< s p c >  s  t  r  o  n  g  l  y  < s p c >  i  n  < s p c >  f  a  v  o  r < s p c >  o  f  < s p c >  e  v  o  l  u  t  i  o  n  .

HYP: t  h  o  u  *  *  < s p c >  n  o  w  < s p c >  e  x  t  i  n  c  t  < s p c >  s  p  e  c  i  e  s  *  < s p c >  s  p  e  a  k  *  
< s p c >  s  t  r  o  n  g  l  y  < s p c >  i  n  < s p c >  f  a  v  o  r < s p c >  o  f  < s p c >  e  v  o  l  u  t  i  o  n  .

C.  AT-ISR input delay: 0.14 sec main (basic incremental unit, CER: 28.8%)

REF: t  h  o  u  g  h  < s p c >  n  o  w  < s p c >  e  x  t  i  n  *  C  T  < s p c >  S  P  E  C  i  e  s  , < s p c >  s  p  e  a  k  s  
< s p c >  S  t  r  *  O  N  G  L  Y  < s p c >  i  n  < s p c >  f  a  v  o  r  < s p c >  o  f  < s p c >  e  v  O  l  U  T  i  o  n  .

HYP: t  h  o  u  g  h  < s p c >  n  o  w  < s p c >  e  x  t  i  n  G  ,  S  < s p c >  B  E  A  T  i  e  s  *  < s p c >  s  p  e  a  k  s  
< s p c >  *  t  r  I  E  L  I  N  G  < s p c >  i  n  < s p c >  f  a  v  o  r  < s p c >  o  f  < s p c >  e  v  E  l  O  S  i  o  n  *

Errors:
- Capitalized letter : Substitution error
- *                   : Insertion/deletion error

Figure 3.8. AT-ISR output examples.

From the experiment results, we can see that ISR performance increase as

higher as the input delay gets. Short speech segment recognition is difficult than

full speech recognition due to the information limitation in the input. Figure 3.8

shows the examples of how the input information limitation affected the AT-ISR’s

transcription.

AT-ISR with the shortest delay (0.14 sec) that does not consider contextual

input had the highest transcription error. However, for some incorrect word, the
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prononciation was relatively close to the reference word (e.g. ”extinct” predicted

as ”exting”). The model did not predict a character sequence of a word with a

completely different pronunciation as the reference, so we can see that the model

could extract the appropriate phoneme-level information from the shortest input.

Despite it, it could not predict the correct character sequence. This is because,

in English language, multiple words or sequences of words can consist of the

same or similar phonemes. In conventional HMM-GMM ASR, the assignment of

phonemes into word depend on the neighboring phonemes of the target phonemes.

In case of AT-ISR, when the AT-ISR input was very short and it cannot see the

contextual speech frame, the phonemes information that it can obtain might not

sufficient to form the character sequence of the correct word. Extending the input

segment window allowed the AT-ISR to get longer phoneme sequence information,

so it had a higher chance to predict the correct characters.

For some incorrect word, the word might sounded different to the reference

word (e.g. ”species” predicted as ”beaties”). The difference in the sound of those

words could occur when the speech frames of a phoneme are split and assigned

into two different input segment. Therefore, the model might not extract the

correct phoneme-level information in one incremental step.

Based on the output analysis, we can conclude that ISR error can occur when:

1. The length of phoneme-level information is not long enough.

2. Speech frames of a phoneme are split and assigned into different input

segment, and those are not within the same incremental step.

By extending the length of the input window or by incorporating contextual

input frames, we can minimize the chances of getting the conditions above and

increase the ISR performance, as shown in Figure 3.8. However, although might

resulted in a good performance, ISR with a high delay might not preferable

for simultaneous S2ST tasks, so the choice of delay should be made carefully

according to the system’s goal.
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3.5. Summary

In this section, we described the proposed AT-ISR framework for incremental

speech recognition with attention-based sequence-to-sequence neural framework.

AT-ISR learns the attention-based information from the standard neural ASR,

which can be considered as a teacher model, to do incremental processing during

inference. The main difference between AT-ISR and the standard neural ASR

is that the AT-ISR recognizes shorter sequences than the standard architecture.

Since AT-ISR applies the same structure as the teacher, no new redesign is needed

for the ISR, and some hyperparameters can be used without any changes. Among

the ISR approaches that we explored, the optimum performance was achieved by

including the look-ahead segment in the input window, setting the last character

of the last step as the decoder’s first input, keeping the recurrent states across the

steps, and applying attention transfer. In our experiment result, by recognizing a

segment of speech with a length 0.54 sec incrementally, AT-ISR achieved a close

performance to non-incremental ASR that cost a delay of 6.57 sec.

38



Chapter 4

Neural Incremental Automatic

Speech Recognition in Speech

Translation Task

4.1. Related Work

Utilization of ASR in translation task through ASR-MT integration is a challeng-

ing problem due to the error propagation and the incompatibility of training ma-

terials between both modules. Several studies addressed this challenge in speech

translation tasks by adapting the ASR output to MT. One study [50, 51] modified

the ASR output to resemble MT training data and resulted in the improvement

in translation. The ASR output modifications included the handling of letter-

case and punctuation, disfluency removal, normalization, and compound word

recomposition. Another work [52] utilized a lattice-based ASR-MT interface to

improve translation quality. These works, however, are based on a conventional

S2ST framework that does not do the processing in a real-time manner. Wang

et al. [53] previously constructed a real-time system prototype by unifying an

HMM-based ASR system and an online MT system [54]. Unfortunately, study of

the integration of end-to-end neural ISR and neural MT for speech translation

remains limited.
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4.2. Parity of ASR and MT Tokenization in Speech

Translation

To do a proper speech translation, ASR must provide tokens that can be rec-

ognized by the MT system. In common practice, when a token in the source

language text is not in the MT input vocabulary, the token is assigned as an

‘unknown’ symbol before it is processed by the MT, however, it can damage the

translation performance [55]. To avoid this condition, beside the language uni-

formity, the ASR token unit should be in the same granularity as the MT input

unit. For example, the character-level output from ASR might confuse a word-

level MT system because the MT only learned to do translation from word-level

tokens. In such a case, the former text has to be converted into tokens with the

same granularity as MT input side. In a word, the uniformity of vocabulary and

token unit of the ASR output side and MT input side is important to do a proper

translation.

4.2.1 ASR Output Unit

The basic end-to-end ASR represents the output as character [1, 24, 56]. Re-

cent studies also create end-to-end ASR that outputs subword units [23, 57].

Word-level end-to-end model is rarely developed because it may not able to cope

with out-of-vocabulary words and result in spacious model. The descriptions of

character-level ASR and subword-level ASR are the following.

• Character

Figure 4.1(a) illustrates an end-to-end character-level ASR. In each de-

coding step, the ASR model outputs a character token. During training,

the target text consists of a sequence of characters, where the character

sequences of each two words are separated by a whitespace token. In

this work, we symbolize the whitespace as <spc> token. An example of

character-level tokenization of a sentence is the following:
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Figure 4.1. End-to-end character-level ASR (a) and subword-level ASR (b).

Word: hello nice to meet you

Character: h e l l o <spc> n i c e <spc> t o <spc> m e e t <spc>

y o u

Character-level representation has some advantages in enhancing the ASR

generality, so it can avoid model overfit and also out-of-vocabulary con-

dition [56]. The number of character vocabulary is not as many as word

vocabulary, so it also save the model space. However, character-level unit

may fail to keep the contextual information of the word. Because of it,

character-level errors in ASR output may result in words that does not

have any linguistical meaning.
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• Subwords

Figure 4.1(b) shows speech recognition process with end-to-end subword-

level ASR. The ASR predict a subword token for each decoding step. Sub-

word unit is a text token representation that has a finer granularity than

words but coarser granularity than characters. An example of subword-level

tokenization from a sentence is the following:

Word: hello nice to meet you

Subword: he ll o <spc> ni ce <spc> to <spc> me et <spc> you

Similar to the character unit, the subword unit enables the ASR to avoid

out-of-vocabulary condition. Subwords have a coarser granularity than

characters, so it can preserve the word context information better than

characters. The context information preservation is better when the sub-

word token consists of a longer character sequence, which may resemblant

to a word. However, a subword vocabulary can be large depending on the

amount of word context that we want to keep. Subword-level model may

require a larger space than the character-level model.

4.2.2 MT Input Unit

End-to-end MT systems generally adopt subwords as the input and output rep-

resentation unit [58, 59, 60, 50]. Subword representation is utilized to avoid the

out-of-vocabulary condition, which often happens in the word-level model, and

to preserve the word context information.

Subword vocabulary construction and tokenization for MT are generally done

by using bype-pair-encoding (BPE) segmentation algorithm [61]. In BPE mech-

anism, a word-to-subword segmentation model is trained using text sentences

that consist of word tokens. The algorithm begins the training by initializing the

subword vocabulary with character vocabulary and representing each word from

training data as character sequence. In the subsequent processes, the algorithm

iteratively replaces the most frequent token pair in the training data with a new

token, which is a merged form of the target pair, and then add the new token

to the subword vocabulary. The model construction here is done using only text
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sentences without depending on language and phonemes. In inference, given a

word, the segmentation model converts the word into subwords by representing

it as a character sequence first and then applying the merge operation that it has

learned.

4.3. Proposed approach: Subword-level ISR
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Figure 4.2. End-to-end character level ISR (a) and subword-level ISR (b).

In this thesis, we propose subword-level ISR system to enable the utilization

of it in speech translation with standard subword-level MT towards simultaneous

S2ST. A visual comparison of end-to-end character-level and subword-level ISR

can be seen in Figure 4.2. MT systems are commonly developed to take a subword

sequence as the input, therefore, MT should be able to do a proper translation

from subword-level ISR output. In this work, we constructed the subword vo-

cabulary for ISR and MT by using a word-to-subword segmentation model with

BPE algorithm that is implemented in the SentencePiece tokenizer [62].
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We propose three approaches of subword-level ISR. Two approaches perform

conversion of character-level ISR output into subwords and one approach performs

end-to-end subword-level ISR. The approaches that apply character-to-subword

conversion are beneficial when end-to-end subword-level ISR with a matching

vocabulary to the MT is unavailable. Instead of training an end-to-end ISR from

scratch to match the MT vocabulary, which can be expensive, the character-

to-subword model allows us to connect ISR to subword-level MT with a lesser

development cost.

4.3.1 Character-based ISR with Char-to-subword Mapping

using SentencePiece Tokenizer
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Figure 4.3. Character-based ISR with char-to-subword mapping using Sentence-
Piece tokenizer.

Figure 4.3 shows this approach’s scheme. This approach converts output

token sequence from a character-level ISR into a subword sequence. When a
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character sequence forms a word, this word is segmented into subwords using the

word-to-subword segmentation model that is trained using the SentencePiece to-

kenizer system. This approach only performs characters conversion into subwords

without changing the content of the sequence.

4.3.2 Character-based ISR with Char-to-subword Mapping

using Encoder-Decoder Framework
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Figure 4.4. Character-based ISR with char-to-subword mapping using encoder-
decoder framework.

Similar to the previous approach, we utilize an external module to convert

the character sequence from character-level ISR into a subword sequence. The

conversion is done using a sequence-to-sequence model that consists of an encoder-

decoder with an attention mechanism. The character-to-subword mapping with

encoder-decoder not only converts the characters into subwords but also per-

forms content correction. It is achieved by training the conversion model using

the ISR-generated character sequence as the input and the correct subword se-
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quence as the output target. The subword sequences in the training data are

segmented from training word sequences using a word-to-subword segmentation

model that is trained with the SentencePiece framework. In our experiment, we

applied an incremental version of this model to preserve the short latency by

using attention transfer training approach. Similar to the ISR, the incremental

characters-to-subword model converts a character sequence into a subword se-

quence in several steps, where each step takes a fixed number of characters. The

scheme of this model that takes four characters in each incremental step can be

seen in Figure 4.4.

4.3.3 End-to-end Subword-level ISR

Figure 4.2(b) illustrates the scheme of this approach. This ISR directly models

the speech features to subword sequences without any intermediate module. The

subword sequences in training data are generated by segmenting the training

word sequences using a SentencePiece-trained segmentation model.

4.4. Proposed approach: Integration of ISR and

MT

We applied the ISR proposed in Chapter 3 in speech translation task by uni-

forming the token unit and vocabulary of ISR output and MT input sides. In

this work, we limit our focus on how to use ISR for translation task, so we did

not explore incremental MT. Here the MT system is fixed to have subword-level

input and output to keep our focus on the ASR system. The MT system here is

the standard end-to-end MT that predicts a full translation sentence from a full

source language sentence. The non-incremental MT here is also used to show us

the optimal translation quality of the ISR-generated text.

The visualization of subword-level ISR and subword-level MT integration in

speech translation can be seen in Figure 4.5. The procedure starts with incremen-

tal speech recognition by ISR. The final ISR output is a sequence of subwords, in

which the ISR final output and MT input have a matching subword vocabulary.

After obtaining the subword-level output, ISR output is sent to the MT model,
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ISR

<s>  HE  LL  O </s>

<s>  HE  LL  O </s>

MT

<s>  BON  JOUR  </s>

Figure 4.5. Integration of subword-level ISR and MT with subword-level input
for English-French translation task.

and the MT model translates the ISR text into the target language.

In the experiment, we aim to see how ISR affects translation performance.

The translation tasks that we investigated were English to French, for our main

analysis, and English to Japanese. We firstly aim to investigate the ISR for less

complicated translation task. Specifically, it is the translation between languages

that have the same word syntax order. Translation between languages with differ-

ent syntaxis word order has been a challenging issue in speech translation fields.

In this work, as our main focus is on the ISR, we performed the exploration

mainly for the English-French speech translation task, in which both languages

have the same syntaxis word order. Based on our best ISR approach, we also

examined the translation quality for the English-Japanese task, whose languages

have different syntaxis word order.

4.5. Experimental Setup

4.5.1 Dataset

We used corpora related to TED talks to evaluate the ISR in speech recognition

and translation tasks. Simultaneous speech recognition or translation systems are

most useful for source speech that has a long duration, such as lecture talks. TED

talks data were taken from the recordings of lecture talks that were presented in
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TED talks. The lectures cover various domains and were spoken by speakers from

various speaking styles. TED talks data have been used for speech recognition

corpus and translation corpus construction, so we can use it to create and evaluate

speech translation system where a parallel dataset of speech, transcription, and

translation text is necessary. Since the speech originated from actual talks, the

transcription and translation texts were written in spoken language style, which

style is slightly different to the written language. From these reasons, we see

that the TED talks data are suitable to build our ISR and MT systems with a

less-restricted content domain and matching language style.

We trained the ISR model using the TED-LIUM release 1 corpus [7] that

consists of 118 hours of speech data recorded from TED talks. The details of this

corpus can be seen in Appendix A.3. The acoustic features for the ISR input

consist of 80 dimensions of Mel-spectrogram with a 50 msec window length and

12.5 msec shift.

The MT model was trained with the English-French translation dataset from

the IWSLT 2017 shared task [63], which consists of English transcriptions and

French translation texts from TED talks. We used the default in-domain training

set to train the model and used the dev2010 set as the development data. We

evaluated the translation quality from the original and ISR-generated texts using

the data in the tst2010 set. The MT model in our experiment applied subword

units as the input and output representation. Both input and output vocabularies

consisted of 16,000 subwords. All subword vocabularies were constructed using

the BPE algorithm in the SentencePiece tokenizer based on the training data of

the respective languages. The English subword tokenizer here was also utilized

to tokenize the text data for the reference during subword-level ISR training.

For the English-Japanese translation task, the MT model was trained using

the combined datasets of IWSLT 2017 dataset, ASPEC [64], and JESC [65]. The

MT input vocabulary was the same as the English-French MT model, and the

output unit was Japanese subword that was a sequence of Japanese characters

(mixed logographic and syllabic), in which the tokenization was done based on

MeCab tokenizer [66].

To minimize the dissimilarity between the ISR and MT training materials,

we removed the punctuation and normalized the numbers in the MT training
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corpus. The Unicode symbols in the English texts were also normalized into basic

Latin alphabet letters due to the conditions of the TED-LIUM release 1 corpus,

which did not contain punctuation, numbers, or Unicode letters. The TED-LIUM

release 1 transcriptions contain speech fillers, unlike the MT dataset. Therefore,

we removed the fillers in the ISR output before passing it into MT.

4.5.2 ISR Model Configuration

We conducted the explorations on character-level and subword-level neural ISR.

The character-level and subword-level neural ISR models, as well as non-incremental

ASR, were constructed using the same model configuration described in Section

3.3.2, where the decoder embedding layer was customized according to the output

unit.

The sequence-to-sequence characters-to-subword model consisted of an encoder-

decoder structure. The encoder side consisted of a feed-forward layer (256 units)

and a BiLSTM layer (256 units). The decoder consisted of an embedding layer, an

LSTM layer (256 units), and a softmax layer. The incremental model performed

the recognition on every eight characters from the ISR output as the main input,

with the addition of eight look-ahead characters. This configuration was based

on the average word length in the training data.

We evaluated the ISR by comparing it to the non-incremental ASR as the

topline and isolated-word recognition by the non-incremental ASR model as the

baseline. There are three alignment generation approaches that we explored to

train the neural ISR model. Those approaches were forced-alignment by HMM-

GMM ASR that used phoneme-level acoustic model, forced-alignment by HMM-

GMM ASR that used character-level acoustic model, and attention transfer from

a standard non-incremental ASR (AT-ISR). Forced-alignment is a method to

compute the token-level speech-to-text alignment position, in which it notes the

start time and end time of a token. For each HMM-GMM ASR system, forced-

alignment produces word-level alignment and token-level alignment of the same

unit as its acoustic model’s output. From the HMM-GMM ASR with a phoneme-

level acoustic model, we cannot infer a precise character- or subword- level align-

ment. Therefore, the character or subword sequence was aligned to the end timing

of the corresponding word [31]. From the HMM-GMM ASR with a character-level
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acoustic model, we constructed the character-level and subword-level alignment

based on the start time and end time of a character in speech. ISR that learned

from attention-transfer or AT-ISR is our proposed neural ISR in this thesis, which

was described in Chapter 3.

4.5.3 MT Model Configuration

The MT model in this work was constructed by applying an encoder-decoder

structure with an attention mechanism. The MT encoder consisted of an embed-

ding layer (256 units), a feed-forward layer (512 units), and two BiLSTM layers

(256 units). The decoder side consisted of an embedding layer (512 units), two

LSTM layers (512 units), and a softmax layer.

4.5.4 Incremental Unit

The basic incremental unit of the neural ISR in this experiment was the same

as the one described in Section 3.3.3, in which a speech block consists of eight

speech frames that approximately equal to 0.14 sec. The neural ISR main input

size ranged from a speech block to several blocks that equal to a full speech

length. We set the neural ISR to include the two or four look-ahead contextual

speech segment as part of its input to keep the performance. The input size here

was decided based on the experiment results described in Section 3.4.

4.5.5 Evaluation Metric

The evaluation metrics that we utilized to measure the speech recognition and

translation performances are the following:

• Speech Recognition

– CER: Character error rate. CER was calculated using Equation 3.2.

– WER: Word error rate. WER is the minimum word-level edits to

make the ASR hypothesis same as the reference text. WER calculation

was based on Equation 3.2 with the word-level tokens.
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– UCR: Uncovered-word rate. UCR is the rate of uncovered-words that

are produced by the speech recognition system. An uncovered-word

is a word that does not exist in the training data because of one or

several character-level mistakes in the word. It can be a word that does

not have any linguistical meaning. The calculation of UCR followed

Equation 4.1, where UCw is the number of the uncovered-word in the

hypothesis and Nhypw is the number of the word in the hypothesis

UCR =
UCw

Nhypw

× 100% (4.1)

• Translation

– BLEU: Bilingual evaluation understudy [67]. BLEU score measures

the position-independent n-gram word matches between the hypothe-

sis and the reference. BLEU score was calculated using Equation 4.2,

where Mwn is the number n-gram word matches between hypothesis

and reference, and Nhypwn is the number of n-gram words was hy-

pothesis. In the experiment, we evaluated translation output based on

1-gram BLEU and 4-gram BLEU.

BLEU =
Mwn

Nhypwn

× 100% (4.2)

– METEOR: Metric for evaluation of translation with explicit ordering

[68]. METEOR calculates the parameterized harmonic mean of preci-

sion and recall of unigram matches. The unigram matching includes

the exact, stem, synonym, and paraphrase matches between the words

in the hypothesis and reference. METEOR score calculation was done

by following Equation 4.3. Here Pen is a penalty to take the unigram

matches into longer matches account, Cw is the number of word adja-

cent chunks between the hypothesis and reference. Pw is the precision

and Rw is the recall of unigram word matches. The αMETEOR and

β are free parameters that are tuned to achieve maximum correlation
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with human judgment.

METEOR = (1− Pen) · Fmean (4.3)

Pen = γ · ( Cw

Mw1

))β (4.4)

Fmean =
Pw ·Rw

αMETEOR · Pw + (1− αMETEOR) ·Rw

(4.5)

4.6. Results

The performance comparison between the end-to-end character-level and subword-

level standard ASR and ISR is shown in Table 4.1. The models were evaluated

based on TED-LIUM release 1 set. Here UCR was measured by comparing the

hypothesis to the ISR training data word vocabulary. The UCR of the correct

transcription in the evaluation set was 1.55%. In this and the further experi-

ments, the ISR delay was evaluated only based on input-wise delay because the

computational delay was very short.

Our results show that AT-ISR had the best performance among other ISR

approaches. The neural ISR that was trained using forced-alignment with HMM-

GMM ASR with a phoneme-level acoustic model cannot perform as well as the

other neural ISR approaches. This is because it could not infer the precise align-

ment of character or subword units, so all units within a word were aligned into

a speech segment where that word ends. It implies that some token alignments

might be delayed by several speech segments. As a result, if the speech segment

window cannot include all necessary segments, the neural ISR was difficult to

learn to predict the correct tokens. On the other hand, the AT-ISR and neural

ISR, which was trained with alignments from HMM-GMM ASR with a character-

level acoustic, learned from more precise alignment. These models could immedi-

ately recognize the tokens from a speech segment without delaying it to the next

speech segment. Nevertheless, AT-ISR resulted in better performance.
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Table 4.1. End-to-end ISR performance on TED-LIUM release 1 eval. set. (e2e:
End-to-end; 1 block = 8 frames ≈ 0.14 sec)

Output Unit (e2e) CER (%) WER (%) UCR (%)

Topline: Teacher Non-incr. ASR
delay = 7.58 sec (avg.)
Characters 15.21 27.37 2.65
Subwords 13.35 24.00 0.54

Baseline: Isolated word recognition
delay = 0.25 sec (avg.)
Characters 68.89 80.50 5.60
Subwords 68.38 72.39 0.03

Neural ISR + HMM-GMM alignment (phoneme acoustic model)
delay = 0.84 sec ([4 main + 4 ahead] blocks)
Characters 27.89 43.10 1.75
Subwords 28.43 39.77 0.37

Neural ISR + HMM-GMM alignment (character acoustic model)
delay = 0.84 sec ([4 main + 4 ahead] blocks)
Characters 18.08 34.31 5.99
Subwords 22.13 34.33 0.35

Proposed: AT-ISR
delay = 0.54 sec ([1 main + 4 ahead] blocks)
Characters 21.04 41.12 10.22
Subwords 21.28 36.80 0.54
delay = 0.84 sec ([4 main + 4 ahead] blocks)
Characters 16.62 31.06 4.59
Subwords 15.19 28.26 0.81

4.6.1 Impact of ISR Output Unit to Speech Recognition

Performance

Table 4.1 shows that subword-level model outperformed the character-level model.

Although the CERs of character- and subword-level models were close, there were

differences in the WER and UCR. In Table 4.1, for example, the CER, WER,

and UCR differences between character-level and subword-level non-incremental

ASRs were 1.86%, 3.39%, and 2.48% respectively, where the subword-level ASR

performance was superior. The subword-level model remarkably resulted in bet-

ter UCR than the character-level model. Subword sequence is more reliable for
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Table 4.2. One-tailed T-test on ISR system. AT-ISR and ISR + HMM-GMM
alignment-based models have a delay of 0.84 sec. (α = 5%; ch = character-level
model; sw = subword-level model).

Test Pair p-value
Model 1 Model 2 CER WER UCR

Topline ASR (sw) Topline ASR (ch) 0.008 0.001 1.6e-20
AT-ISR (sw) AT-ISR (ch) 0.410 0.010 1.2e-25
AT-ISR (sw) Baseline (sw) 5.5e-144 4.5e-161 4.1e-10
AT-ISR (sw) ISR + HMM-GMM alignment-phoneme (sw) 0.003 2.6e-33 0.260
AT-ISR (sw) ISR + HMM-GMM alignment-character (sw) 1.9e-5 1.2e-11 0.080

forming correct words because it retains a longer context than a character to

represent a part of a word. On the other hand, character-level ASR may result

in more low-level errors than subwords. As a result, when the characters are con-

catenated into a word, the chance of forming an uncovered-word is higher than

the concatenation from subwords.

The performance difference between character-level and subword-level AT-

ISR, our best neural ISR approach, also evaluated through a one-tailed T-test

with a significance level (α) of 5%. Table 4.2 shows the test results. It shows

that the CER of character-level and subword-level AT-ISR was statistically not

different, but the WER and UCR were. AT-ISR also showed statistically signif-

icant improvement from other neural ISRs that we explored. In the rest part of

this work, we only focus on AT-ISR as our neural ISR.

From our discussion in Chapter 3, we saw that a trade-off between delay and

performance in speech recognition does occur. The effect of AT-ISR delay and

output unit on the recognition WER can be seen in Figure 4.6. All AT-ISR models

in this figure included two look-ahead blocks in addition to the main blocks. Here

we made the size of look-ahead blocks shorter than those in Table 4.1 to limit

the delay.

In our investigation, we found that character-level AT-ISR performance im-

provement did not happen significantly between the following delays: 25%, 50%,

and 100% utterance lengths. Here when the recognition delay equals 2.04 sec

or 25% of utterance length, it also starts to result in comparable WER to the

non-incremental ASR’s. This result shows that this model is able to retain the

balance between recognition delay and performance when the delay is 2.04 sec or
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Figure 4.6. WER comparison of end-to-end character- and subword-level AT-ISR
based on delay. (1 block = 8 frames ≈ 0.14 sec; S = average speech utterance
length in TED-LIUM release 1 set (7.58 sec))

25% of utterance length.

Interestingly, the subword-level models outperformed the character-level mod-

els in general, but the character-level AT-ISR achieved a closer performance to

the teacher model with a short delay than the subword-level model. From Fig-

ure 4.6, when the AT-ISR delay was 25% of the average full-utterance length, the

WER difference between character-level student and teacher models was 1.38%.

With an identical delay, subword-level AT-ISR WER was 3.7% higher than the

teacher. In the subsequent delays that we explored, the subword-level also did

not show a clear balance point between the speed and performance, unlike the

character-level AT-ISR.

Character-level AT-ISR is better at mimicking the teacher because the nec-

essary information to predict a character token can be satisfied by a shorter

speech segment than for predicting a subword token. Figure 4.7 shows the ex-

amples of attention alignment matrix that were generated using character-level

and subword-level non-incremental ASR models. In this figure, a subword token
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Figure 4.7. Examples of attention matrix by non-incremental ASR from evalua-
tion set. From attention alignment, a text token is aligned to a speech segment,
which corresponds to encoder state, with monotonically highest alignment scores.

in subword-level alignment scored a high score to several encoder states, which

correspond to a speech segment longer than a character. This is because a sub-

word token consists of several characters. Therefore, the subword-level ISR’s

performance cannot approach the teacher’s level when the input window does

not include or fails to reach other speech segments with a high attention score.

Since a subword consists of several characters, the subword-level ISR requires

a longer speech context than the character-level ISR. Theoretically, when the

input segment is very short, the character-level ISR should be able to result in

a better performance than the subword-level ISR. In our experiment, however,

the subword-level ISR outperformed the character-level ISR in every delay that

we tried. This is because the incremental recognition here included look-ahead

blocks in the input segment. In our data, a subword token consisted of seven

characters on average, and one speech block was aligned to two characters on

average. Our shortest delay used one main block with two look-ahead blocks,

which contain the information of six characters on average. For the subword-level

model, it might result in a similar amount of information as the character-level

recognition. When the recognition delay was below 50% of the average utterance

length, the performance difference of the character- and subword-level ISRs was

around 1%. So within that delay, the quality of both models is similar, although
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the subword-level ISR was slightly better.

4.6.2 Speech Translation Performance

We utilized the AT-ISR in speech translation task. Table 4.3 shows the the speech

recognition performance and its translation quality on tst2010 set for English-

French translation task. In this table, ‘ch-sw ’ denotes character-level AT-ISR

that applied character-to-subword conversion before passing its output to the

MT.

Table 4.3. Speech recognition and English-French translation performance on
tst2010 set. (1 blocks ≈ 0.14 sec; ch = characters; sw = subwords; spm =
SentencePiece; seq2seq = sequence-to-sequence; d = delay)

ASR Output
Speech Recognition Translation
CER WER UCR BLEU1 BLEU4 METEOR

Correct transcription 0.0 0.0 1.36 59.4 31.6 52.0

Topline: Non-incremental ASR (d= 7.58 sec (avg.))
ch-sw (spm) 15.11 26.75 2.67 47.1 21.1 39.4
ch-sw (seq2seq) 15.42 27.06 1.46 46.9 21.0 39.4
sw 12.39 22.43 0.50 50.0 23.1 42.2

Proposed: AT-ISR
d= 0.54 sec (1 main + 4 ahead blocks)
ch-sw (spm) 21.56 41.39 10.07 38.0 13.5 29.8
ch-sw (seq2seq) 23.15 44.3 1.12 40.4 15.5 31.7
sw 21.52 36.56 0.60 42.6 16.3 33.4
d= 0.84 sec (4 main + 4 ahead blocks)
ch-sw (spm) 19.18 33.09 4.45 44.0 17.9 34.8
ch-sw (seq2seq) 20.25 33.56 1.44 44.3 18.2 35.0
sw 15.71 28.17 0.86 47.2 20.6 39.1

Since the speech recognition output contained errors, the translation quality

was lower than the translation from the correct transcription. A low translation

quality from the ISR output was caused by the nature of incremental recognition,

in which the model was forced to produce outputs based on a short input segment,

so the recognition result might be not correct.

Among the three AT-ISR subword-level approaches that we proposed, end-to-

end subword-level AT-ISR resulted in the best speech recognition and translation
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performance. If the original AT-ISR output unit was character, characters map-

ping into subwords using sequence-to-sequence model resulted in higher CER and

WER than the mapping with SentencePiece tokenizer. Nevertheless, character-

to-subword mapping with a sequence-to-sequence framework had a better perfor-

mance in terms of UCR and translation quality than the other characters conver-

sion method. The translation quality improvement by the sequence-to-sequence

characters-to-subwords model might be resulted from its low UCR, since this

model could correct the content of the character sequence. Therefore, when the

end-to-end subword-level ISR is unavailable, output conversion with a sequence-

to-sequence model is suitable for speech translation task.

The effect of AT-ISR delay and output conversion approach in the translation

task can be seen in Figure 4.8. The AT-ISR delay affected the speech recogni-

tion and translation performances, in which a higher delay resulted in a better

performance. Here a lower WER resulted in higher BLEU and METEOR scores.

The end-to-end subword-level AT-ISR resulted in a better translation result than

other approaches. Interestingly, when the AT-ISR delay was 50% of total utter-

ance length, the WER of all models were close, but not the BLEU and METEOR

scores. At the identical delays, AT-ISRs that performed character output conver-

sion into subword had higher UCR than the end-to-end subword-level AT-ISR.

Therefore, it shows that the translation quality not only depends on the WER

but also on the number of uncovered-word. Similar WERs with different UCRs

do occur, for example, when the location or the number of errors is similar, but

the content of the mistaken words are different. Lower UCR might result in bet-

ter performance because language translation is basically based on information of

words that have meaning. Therefore, when the MT receives a subword sequence

that did not have linguistical meaning, it caused a translation error.

In the English-Frech translation task, we can see that end-to-end subword-

level AT-ISR has better speech recognition and translation performances than

the other approaches. We also investigated how the end-to-end subword-level

AT-ISR affects the translation quality for the English-Japanese task. Table 4.4

shows English-Japanese translation quality based on AT-ISR output text. In this

table, we limited the ISR input unit to one and four main input segments with four

look-ahead segments to keep the latency and performance. The translation result
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Figure 4.8. AT-ISR speech recognition performance with English-French transla-
tion 4-gram BLEU (a) and METEOR (b) scores on tst2010 set. (1 block ≈ 0.14
sec; S = average speech utterance length in TED-LIUM release 1 set (7.58 sec))
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Table 4.4. End-to-end subword-level speech recognition and English-Japanese
translation performance on tst2010 set. (1 blocks ≈ 0.14 sec; d = delay; m:
main input block; la: look-ahead input block)

ASR Output
Speech Recognition Translation
WER UCR BLEU1 BLEU4 METEOR

Correct transcription 0.0 1.36 38.0 12.2 15.1

Non-incremental ASR (d: 7.58 sec) 22.43 0.50 36.6 10.7 14.3
AT-ISR
d: 0.54 sec (1 m + 4 la) 36.56 0.60 35.5 9.4 13.3
d: 0.84 sec (4 m + 4 la) 28.17 0.86 36.8 10.3 13.9

was evaluated based on tokenized Japanese logographic and syllabic characters.

English-Japanese translation is a complex task because of the difference in their

word syntax order, so our translation model could not perform as well as the

English-French translation. Nevertheless, the English-Japanese translation from

AT-ISR text resulted in a translation quality that was close to the translation

from non-incremental ASR.

4.7. Summary

In this section, we described approaches to enable the utilization of neural ISR in

speech translation task. We proposed neural ISR with matching output vocab-

ulary as MT input vocabulary, specifically, subword-level ISR that has identical

vocabulary as subword-level MT, the common MT approach. Based on our ex-

periment of speech recognition task, ISR quality and performance closeness to

the teacher depends on the granularity of the output unit. When the output unit

has a coarse granularity, such as subword, it might result in higher recognition

performance than a model with finer output unit granularity, such as character.

On the other side, ISR with a fine-granulated output unit is able to achieve a

teacher-like performance within a shorter delay than ISR with a coarse-granulated

output unit.

Our experiment shows that translation quality based on ISR output not only

depends on WER but is also affected by the number of words in ISR text that are

not covered in the training data. Character-level ISR output does not match with

MT vocabulary, so it cannot be connected directly to MT. Character sequence
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conversion into subwords that can be recognized by MT can be done by the

SentencePiece tokenizer or sequence-to-sequence model. Sequence-to-sequence

character-to-subword conversion is able to reduce uncovered-words in the original

character sequence, so the translation quality might be better than character

conversion with SentencePiece tokenizer. Based on our experiment, the end-to-

end subword-level ISR achieves the best translation quality with the lowest WER

and UCR compared to other investigated approaches.
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Chapter 5

Conclusions and Future

Directions

5.1. Conclusions

In this thesis, we constructed neural ISR that is able to do a low delay speech

recognition. The construction of it was done by employing sources from the

standard neural ASR system to achieve a similar mechanism and performance as

the standard system, but with the shorter delay. We proposed attention-transfer

ISR (AT-ISR) that applies an identical structure to the standard non-incremental

neural ASR and learns its attention-based knowledge to perform a short speech-

segment-based recognition. Our proposed framework successfully reduced the

recognition delay of the standard recognition approach, and it was achieved by

less complicated training procedures than the previous neural ISR framework.

By adapting the AT-ISR output, we successfully performed speech translation

with AT-ISR. We analyzed the effect of low-delay recognition performance on the

translation performance.

We began our study with the investigation for the encoding and decoding

mechanisms and the model states handling in AT-ISR model. Among the ap-

proaches that we explored, the optimum performance was achieved by, for each

incremental recognition step, (1) providing the encoder with a look-ahead con-

textual input segment, (2) using the last actual output token from the prior

incremental step as the first input token for decoder, and (3) keeping the model
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states across the recognition steps. Based on the experiments on single-speaker

speech from LJ Speech corpus, our AT-ISR with a delay of 0.54 sec achieved CER

3.13%, which was the closest score to the standard ASR with a CER 1.94% but

with an average delay of 6.57 sec. Our experiments with multi-speaker speech

from WSJ dataset also resulted in a similar result. Using WSJ data, an AT-

ISR model with a delay of 0.54 sec achieved CER 7.52%, which was close to the

standard ASR that had CER 6.26% but with a recognition delay of 7.88 sec.

We investigated the impact of AT-ISR recognition delay to the speech recog-

nition quality. In our experiments, we saw a trade-off between delay and recog-

nition performance, in which a longer delay resulted in a better performance. A

long delay, however, is not preferable for real-time recognition or simultaneous

S2ST tasks, so we must keep a balance between time and performance. Based

on our investigation using LJ Speech and TED-LIUM release 1 datasets, a bal-

ance point between delay and performance can be found. At the balance point,

the incremental recognition performance is comparable to the non-incremental

recognition, and a significant performance improvement does not occur in the

subsequent delays. For both datasets, the character-level AT-ISR balance point

was when the delay was 25% of a full speech utterance, where the average length

of a full speech utterance was around 7 sec. The performance similarity between

the AT-ISR and the teacher model also depends on the granularity of the AT-ISR

output unit.

We enabled the utilization of ISR in speech translation by investigating several

approaches to adapt the ISR output and examining the effect of ISR on the trans-

lation performance. Among the explored approach, end-to-end subword-level ISR

with a matching vocabulary as the MT subword input vocabulary resulted in the

best performance. Based on our experiment results, ISR output with a lower

WER and CER resulted in a better translation performance. Our investigation

showed that translation quality also depends on the number of uncovered-words

that the ISR hypothesis contains. Hypotheses with the similar WER and CER

but the different UCR resulted in a dissimilar translation performance, where the

hypothesis with a lower UCR resulted in better translation quality.
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5.2. Future Directions

There is a lot of room for improving neural ISR. The currently proposed ISR

approach performs fix-sized segment-based recognition, and the system delay de-

pends on the incremental unit that the model learns from. We cannot change

the incremental unit during inference, for example into a lower size, without sac-

rificing the model’s performance. If we don’t have prior information about the

acceptable delay, we might need to train several models to find the best model

with the lowest delay. However, training different models for different incremental

unit configurations can be expensive. Therefore, we will further investigate the

mechanisms for flexible incremental unit processing in neural ISR.

This thesis provides attempts in neural ISR construction and the integration

of it into MT to achieve simultaneous S2ST in the future. The current MT,

which we performed analysis with, was a non-incremental MT that could not be

used in the simultaneous S2ST system. Therefore, as our next task, we would

like to do the exploration of ISR and incremental MT (IMT). It will be also an

interesting task to train ISR and IMT jointly so we can improve the ISR based

on the feedback from translation result, and vice versa.
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Sebastian, Sudoh Katsuitho, Yoshino Koichiro, and Federmann Christian.

Overview of the IWSLT 2017 evaluation campaign. In Proceeding of IWSLT,

pages 2–14, Tokyo, Japan, 2017.

[64] Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchimoto, Masao Utiyama,

Eiichiro Sumita, Sadao Kurohashi, and Hitoshi Isahara. ASPEC: Asian

scientific paper excerpt corpus. In Proceedings of LREC, pages 2204–2208,
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Appendix A

Data Details

A.1. LJ Speech Dataset

LJ Speech [5] dataset consists of audio clips of a single female speaker reading

passages from seven non-fiction books in English language. The audio clips only

contain clean “read” speech that does not contain environmental noise and speech

hesitation. The passages that were used for the speech recording were texts in the

public domain, which published between 1884 and 1964. The audio recording was

done in 2016 until 2017. The speech utterances were segmented automatically

based on silences. The texts were matched manually and were confirmed through

a quality assurance process. The statics of the LJ Speech dataset are described

in the following Table A.1.

Table A.1. LJ Speech data statistics [5].

Total duration 23h 55m 17s
Number of utterances 13,100
Number of speaker 1
Number of words 225,715

Number of distinct words 13,821
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A.2. Wall Street Journal Dataset

WSJ speech dataset [6] is a corpus of speech collected to facilitate the develop-

ment of continuous speech recognition system that recognizes a large vocabulary

English speech independently to the speaker. The recorded speech utterances are

clean and “read” speeches from newspaper text paragraphs that read by multiple

speakers. In the recorded speech, the punctuations from the original text pas-

sages were read verbally (e.g., “period”, “hyphen”) and were transcribed in the

speech transcription as it is. The statistics of WSJ sets that were used in this

thesis are described in Table A.2.

Table A.2. WSJ data statistics [6].

Characteristic SI-284 dev93 eval92
Total duration 81h 1.1h 0.7h

Number of utterances 37,318 503 333
Number of unique speaker 284 10 8

A.3. TED-LIUM Release 1 Dataset

TED-LIUM release 1 [7] dataset is a speech corpus that collected from English-

language TED talks from various domains of talk. The audio data were collected

from the recordings of TED talks and the transcriptions were made based on the

corresponding talk’s closed caption. As the speech data were recorded from talks,

the style of speech is not a read speech, so speech hesitations and speech fillers

sometimes occur. In the transcription, the speech hesitations and fillers were also

transcribed and mapped into specific filler words. Sounds from the audience of

the talk, such as applause and laughter sounds, are also recorded in the audio.

The statics of TED-LIUM release 1 are shown in Table A.3 for the textual

data and Table A.4 for the audio data.

78



Table A.3. TED-LIUM release 1 corpus textual data statistics [7].

Characteristic Train Eval
Number of talks 774 19
Number of segments 56.8 K 2 K
Number of words 2.56 M 47 K

Table A.4. TED-LIUM release 1 corpus audio data statistics [7].

Characteristic Train Eval
Total duration
- Male
- Female

118h 4m 48s
81h 53m 7s
36h 11m 41s

4h 12m 55s
3h 13m 57s
58m 58s

Mean talk duration 9m 9s 13m 18s
Number of unique speaker 666 19
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Appendix B

ISR Architecture in Related

Works

B.1. Unidirectional RNN with CTC
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Figure B.1. Unidirectional RNN ISR with CTC-based beam output search [3].

Figure B.1 show the architecture of an ISR that consists of stacked unidirec-

tional RNN layers and trained with CTC objective function [3]. The RNN layers
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process the speech sequence unidirectionally and sequentially from the speech

frame with earlier timestamp to the later timestamp. Each RNN step outputs

a vector of tokens probabilities. To generate the transcription, the model search

for the optimal token sequence using a beam search approach based on the CTC

state transition.

B.2. Neural Transducer
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Figure B.2. Neural transducer [4].

Figure B.2 shows the architecture of ISR with NT framework[4]. NT consists

of three components: unidirectional encoder, transducer, and attention module.

It encodes a speech segment based on a fix-sized window W . The transducer
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decodes the encoded speech by taking the previous output token as input. The

decoding of a speech segment stops when an end-of-block symbol is predicted.
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