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Abstract—This paper presents a processing chain for
change detection of Arctic glaciers from multitemporal mul-
tipolarization synthetic aperture radar images. We produce
terrain corrected multilook complex (MLC) covariance data
by including the effects of topography on both geolocation
and SAR radiometry as well as azimuth slope variations on
polarization signature. An unsupervised contextual non-
Gaussian clustering algorithm is employed for segmentation
of each terrain corrected polarimetric SAR image and sub-
sequently labeled with the aid of ground truth data into
glacier facies. We demonstrate the consistency of the seg-
mentation algorithm by characterizing the expected ran-
dom error level for different SAR acquisition conditions.
This allows us to determine whether an observed varia-
tion is statistically significant and therefore can be used for
post-classification change detection of Arctic glaciers. Sub-
sequently, the average classified images of succeeding years
are compared, and changes are identified as the detected
differences in the location of boundaries between glacier fa-
cies. In the current analysis, a series of dual polarization C-
band ENVISAT ASAR images over the Kongsvegen glacier,
Svalbard, is used for demonstration.

Index Terms—Polarimetric synthetic aperture radar (Pol-
SAR); radiometric terrain correction; matrix log-cumulant
diagram; multilook product model; unsupervised contex-
tual non-Gaussian segmentation; post-classification change
detection.

I. Introduction

CHANGES in the Arctic glaciers and ice caps provide
a visible manifestation of climate change. Being rec-

ognized as potentially the largest short term contributors
to sea level rise and having been observed to be one of
the fastest warming areas on the planet [1], the present
state of the Arctic ice masses, and changes over time, are
of scientific and social importance.

As the climate changes, so too do the variables affecting
glaciers. Identifying and monitoring fluctuations in glacier
facies provide a means to track climate change. The only
feasible method to obtain good spatial and temporal cov-
erage of the Arctic glaciers is through the use of satellites.
Spaceborne synthetic aperture radar (SAR) instruments,
operating independently of weather and daylight, are a
particularly valuable tool in Arctic areas. SAR has an
added advantage over higher frequency instruments (visi-
ble and laser) because the signal penetrates some distance
into the glacier such that the return signal is influenced
not only by the surface, but also by the shallow subsur-
face. Another advantage of SAR in glacier monitoring is
its sensitivity to moisture content and surface roughness,
which enables it to detect different glacial zones. The mul-
tipolarization SAR may provide the additional informa-

The authors are with the Department of Physics and
Technology, University of Tromsø, 9037 Tromsø, Nor-
way (e-mail:vahid.akbari@uit.no; anthony.p.doulgeris@uit.no;
torbjorn.eltoft@uit.no)

tion, and thus is a better tool for glacier monitoring than
single polarization SAR sensors.

It is appreciated that a difference in radar backscat-
tering between multitemporal multipolarization SAR data
may be caused by several factors such as actual land cover
change, differerences in viewing geometry, surface topog-
raphy, differerences in polarization configuration, and dif-
fererences in meteorological conditions. These considera-
tions motivate us to develope a processing chain for glacier
change detection which consists of five major steps: 1) mul-
tilooking, 2) terrain correction, 3) probability density func-
tion (PDF) selection, 4) unsupervised segmentation, and
5) post-classification change detection. Models accounting
for temporal variation in multitemporal multipolarization
SAR images should separate useful temporal variation, i.e.,
land cover or seasonal changes from variation arising due
to other factors mentioned above.

Spaceborne SAR instruments have proven to be a very
useful tool for multitemporal image analysis. However, ter-
rain topography has significant impact on the geometric
and radiometric quality of SAR images. For the geometric
correction of topographic effect, precise terrain geocoding
of SAR data is required. This can be accomplished by us-
ing a digital elevation model (DEM) and precise satellite
state vector. In addition to geometric distortions, surface
slopes modulates SAR backscatter which can be split into
two main effects. The first effect is changes in radar cross
sections (RCS) per unit image area [2], [3] and the second
effect is that polarization states are also affected since the
terrain slopes specially azimuthal slopes induce polariza-
tion orientation changes [4], [5]. Hence, before analyzing
the data, terrain correction is a prerequisite for intercom-
parisions of multitemporal SAR images. This paper there-
fore addresses the precise geocoding and geometric terrain
correction (GTC) of SAR data and then radiometric ter-
rain correction (RTC) of multipolarization SAR data that
utilizes the pixel size normalization on each element of the
sample covariance matrix [6]. Moreover, orientation an-
gle compensation (OAC) is included immediately follow-
ing after the RTC [7]. Accurate backscatter estimates en-
able more robust use of the retrieved values for our task of
change detection, as well as other applications such as land
cover classification, monitoring of changes, edge detection
and retrieval of geophysical parameters.

The scaled Wishart distribution, denoted sWC
d , is the

simplest PDF to model multilooked polarimetric SAR data
in homogeneous areas. Non-Gaussian probability distribu-
tions provide better representation of the data for areas
with pronounced heterogeneity, or high texture. Such dis-
tributions can be obtained using a matrix version of the
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product model. The product model describes the covari-
ance matrix as the product of a positive scalar texture
component and a Wishart matrix speckle component [8],
[9]. Several statistical models have been proposed in the
literature to describe the texture term. For textured areas,
the Kd model is commonly used (e.g., [10]). However, the
analysis shows that this model does not always represent
the data well. The G0d-distribution is another multivariate
distribution [11] to model extremely heterogeneous data.
The two parameter Kummer-U distribution has been in-
troduced by Bombrun et al. to model the polarimetric
vector data[12]. We use its multilook extension, named
the multivariate Ud-distribution, for multilook covariance
matrix data. The flexibility of this model with respect to
Kd and G0d with an extra texture parameter encourages the
authors to use this model for multitemporal multipolariza-
tion SAR data. It is expected to yield improved results
because of its flexibility to model more varied textures.
Using the matrix log-cumulant diagram [13], we demon-
strate the capability of the multivariate Ud-distribution to
model multipolarization SAR data.

In this study, we use an unsupervised contextual non-
Gaussian clustering algorithm, named U-MRF in [14], to
segment each terrain corrected SAR scene. This contextual
non-Gaussian clustering algorithm uses a Markov random
field (MRF) model that integrates the Ud-distribution for
the multipolarization SAR data statistics conditioned to
each image cluster, and a Potts model for the spatial con-
text. The parameters of the U-MRF model are estimated
by the iterative expectation-maximization (EM) algorithm
[15] and Besag’s algorithm [16] in the segmentation pro-
cess. Contextual information can improve the accuracy
and robustness of the image segmentation and hence leads
to improved change detection results. The theoretical ap-
proach proposed in this paper is general for multipolar-
ization SAR data and applicable to dual polarization and
single polarization SAR data, although with some restric-
tions.

The analysis utilizes several ENVISAT ASAR, dual po-
larization scenes over Kongsvegen glacier, Svalbard from
spring 2004, 2005 and 2006, together with some ground
based field observations. Ground truth data are used to
label segmented images and to investigate the accuracy of
classifications. We demonstrate consistency by comparing
classified scenes taken on the same day and from different
acquisition parameters (e.g., look angle). The surface of a
glacier can be roughly divided into accumulation and abla-
tion areas, separated by the equilibrium line (the dividing
line between the accumulation and ablation areas) [17].
Monitoring the firn line position over time is of interest,
because there are indications that this line is correlated
with the equilibrium line. Hence, we demonstrate the con-
sistency of the classification results as firn area total varia-
tion between chosen no change pairs to obtain the expected
variation of firn area boundary with superimposed ice (SI)
zone. Subsequent yearly classifications are discussed in
terms of post-classification change detection and changes
are identified as the detected difference in the locations of

boundaries between glacier facies.
This paper is organized as follows: In Section II, we

define the backscatter quantities measured by a PolSAR,
namely the scattering matrix, radar backscatter, and the
area normalized scattering vector. Section III describes
the processing chain of time series analysis including mul-
tilook processing, terrain correction, PDF selection, unsu-
pervised segmentation and post-classification change de-
tection. Section IV introduces the study area and describes
the example data. Section V demonstrates the results.
Finally, conclusions from the presented research are given
in Section VI.

II. Measurements from SAR Sensors

A full-polarimetric imaging radar measures the ampli-
tude and phase of backscattered signals in the four com-
binations of the linear receive and transmit polarizations:
HH, HV, VH, and VV. These signals are used to form a
complex scattering matrix, denoted S = [Srt] ∈ C2×2, asso-
ciated with each resolution cell in the image, which relates
the incident and the scattered electromagnetic fields as fol-
lows [18][

Esh
Esv

]
=
e−jkR

R

[
Shh Shv
Svh Svv

] [
Eih
Eiv

]
. (1)

Here k denotes the wavenumber, R is the (radial) distance
between the radar antenna and target, and j =

√
−1 is the

imaginary unit.The superscript of the electromagnetic field
components indicates incident (i) or scattered (s) wave.

The term e−jkR

R takes into account the propagation effects
both in amplitude and phase. The scattering matrix S,
which holds the scattering coefficients in (1), can be vec-
torized and represented as the scattering vector S

S = [Shh, Shv, Svh, Svv]
T ∈ C4, (2)

where the superscript T denotes the transpose of a vector
or a matrix. Assuming that the target reciprocity condi-
tion is satisfied (i.e., Shv = Svh), the lexicographic scatter-
ing vector, Ω, with dimension d= 3 can be extracted from
the scattering matrix as

Ω = [Shh,
√

2Shv, Svv]
T ∈ C3, (3)

where the elements represent the complex backscattering
coefficients in the three polarimetric channels, and

√
2

arises from the requirement to conserve the total scat-
tered power. The vectors S and Ω are single-look complex
(SLC) format representations of polarimetric SAR data.
Single and dual-channel polarimetric data can be treated
in a similar way as subsets of lesser dimension, and, most
likely, proportionally less information.

The radar backscatter (β) of a given target measured in
the range-azimuth coordinates for linear polarizations r, t ∈
{H,V } can be obtained from the elements of scattering
matrix in (1) as follows [19]:

βrt = 4π|Srt|2. (4)
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Fig. 1. Processing chain of time series analysis for post-classification
change detection.

Both Srt and βrt are functions of spatial position, wave fre-
quency, viewing geometry, wave polarization, geometrical
structure and dielectric properties of the object [18]. Ex-
pressions (1)–(4) above represent the quantities which are
directly measurable by a SAR sensor. The area normalized
scattering vector in the slant range plane (subscript β) is
defined as:

Ωβ0 =
Ωβ√
Aβ

, (5)

where Aβ represents the reference area of the β0 backscat-
ter coefficient that contributes to the recorded signal.

Fully-polarimetric data is not always available because
the wider coverage of dual polarization or single polar-
ization modes are often preferred for monitoring purposes
such as change detection. The different possible configura-
tions of the dual polarization mode systems are: HH/HV,
VV/VH, or HH/VV. Therefore, only a reduced version of
Ω is available. Single channels are also possible, generally
in HH or VV.

III. Processing Chain for Post-Classification
Change Detection

The time series analysis of multitemporal multipolariza-
tion SAR data for post-classification change detection in
this study consists of a processing chain with five stages,
as depicted in Fig. 1, which can be used for both single-
and multi-channe SAR data. These stages are explained
in detail bellow. The inputs are multitemporal multipolar-
ization SAR images with different configurations.

A. Stage 1: Multilooking

To utilize the multitemporal polarimetric acquisitions,
the scattering vectors for all acquisitions have to be co-

registered. These scattering vectors are transformed into
the form of multilooked sample covariance matrices in or-
der to reduce speckle noise at the expense of spatial reso-
lution, i.e., [18]

C =
1

L

L∑
`=1

Ω`Ω
H
` , (6)

where L is the nominal number of looks used for aver-
aging, (·)H means the Hermitian transposition operator.
Hence, after multilooking, each pixel in the image is a re-
alization of the d× d stochastic matrix variable denoted
C, and the image is referred to as the multilook complex
(MLC) covariance image. Note that the multilooking is
performed as a type of speckle filtering, a simple boxcar
filter. Some of the more advanced speckle filters cannot be
applied because they invalidate the statistical modelling
that is performed in the next stages.

B. Stage 2: Terrain Correction

Terrain topography influences both the placement of
each observed point on the Earth’s surface and the bright-
ness of the radar return in radar geometry [20], [21]. In
this stage, we implement a three-step method to generate
terrain corrected polarimetric SAR images for time series
analysis. The procedure consists of the following steps:
• Geometric terrain correction (GTC)
• Radiometric terrain correction (RTC)
• Orientation angle Compensation (OAC)

B.1 Geometric Terrain Correction (GTC)

The objective of SAR geocoding is to find the cor-
responding position on the Earth for each image pixel,
thereby transforming from the SAR coordinate image into
an Earth-based coordinate image. Since the satellite state
vector is known from the orbit information, the position
of each SAR pixel is estimated for a given earth model by
solving the so-called range-Doppler equations [22]. Due
to geometrical distortions caused by the side-looking ge-
ometry and rugged terrain, a one-to-one relation does not
always exist between the radar and the geographic map
coordinates [3]. Those pixels that are located in layover
and radar shadow regions have to be masked out in this
step. The importance of accurate geocoding of multitem-
poral imagery is obvious because largely spurious results of
change detection will be produced if there is misregistra-
tion. In cases of misregistration, a number of false alarms,
especially in the region of rapid intensity change such as
edges, occur. This necessitates the use of precise terrain
geocoding of SAR data that not only registers the images
to a standard map projection by using a high resolution
DEM and precise orbital information, but also performs
the GTC.

B.2 Radiometric Terrain Correction (RTC)

The normalization of SAR imagery for systematic ter-
rain variations is required for meaningful single sen-
sor multi-track intercomparisions and post-classification
change detection. Although the position of the backscatter
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estimate has been corrected by the GTC, the radiometry
of the goecoded image remains in the slant range plane.
Therefore, RTC is applied to correct distortions due to the
side-looking geometry of SAR systems and hill-slope mod-
ulations. In this study, we first normalize the scattering co-
efficients with respect to the β0 reference area (Aβ) accord-
ing to (5), and then apply the radiometric slope correction
factor, cos(Ψ), proposed in [2], on the covariance matrices.
Provided that the data are already calibrated with respect
to the elevation antenna pattern, range spreading loss, and
channel to channel calibration, all elements of covariance
matrix in (6) can be simultaneously radiometrically cor-
rected to the ground range area by

CRTC =
cos(Ψ)

L

L∑
`=1

(Ωβ0)`(Ωβ0)H` = cos(Ψ) ·Cβ0 , (7)

where the Ψ is the projection angle between the surface
normal and the image plane normal, which is assumed to
vary between 0◦ and 90◦ and exclude layover areas [2].

All covariance matrix values now correspond to the
σ0 backscatter coefficient, which is equivalent to σ0 =
β0 · cos(Ψ). The conventional radiometric normalization
method, which relies on the local incidence angle only, is
adequate for flatlands or for pixels with zero slope. The
expected results are radiometrically “flattened” SAR im-
ages. The required parameters for performing the RTC are
estimated in the geocoding step using an available DEM
and satellite state vector. In cases of unavailable DEM,
ellipsoidal-based radiometric correction is achieved over an
earth model such as WGS-84.

B.3 Orientation Angle Compensation (OAC)

Since different scattering mechanisms (double bounce,
surface scattering, and volume scattering) have different
sensitivity to terrain topography, RTC is not sufficient
for polarimetric applications to produce reliable results for
scattering characteristics [6]. The last step of terrain cor-
rection is to compensate the polarization signature which is
due to topography effects, specifically azimuth slope vari-
ations. Polarization orientation angle (POA) shifts are
introduced by terrain topography slopes in the azimuth
direction. These shifts make the covariance matrix reflec-
tion asymmetric and can be compensated based on the de-
rived POA by DEM in [5]. When a DEM is not available,
target decomposition-based methods are an alternative to
estimate the azimuth slope induced POAs directly from
polarimetric SAR data [23]. After deriving the POA, the
compensation can be done on all elements of the covariance
matrices by

COAC = R(ϑ)CRTCR
T (ϑ) (8)

where ϑ is the shift in the POA required to achieve the
maximum co-polarization response, R(ϑ) denotes the ro-
tation matrix [7], and CRTC and COAC are the covariance
matrix before (after the RTC) and after rotation, respec-
tively.

For most natural backscatter media reflection symmetry
holds, meaning that the co- and cross-polarized channels
are uncorrelated. However, azimuth slope variations may
induce correlation between these channels. Subsequently,
the OAC over images leads to reflection symmetric covari-
ance matrix data. The data are now ready for quantitative
image analysis, such as surface cover change detection.

C. Stage 3: PDF Selection

C.1 The Multilook Product Model

The multilook polarimetric product model describes the
terrain corrected covariance matrix C as the product of
two independent stochastic variables [8], [11] as

C = ZW, (9)

where the strictly positive, unit mean scalar random vari-
able Z models texture, and represents the backscatter vari-
ability due to heterogeneity of the radar cross section. The
texture term is scalar because of the assumption of equal
textural variations for all polarimetric channels. The sec-
ond contribution, the speckle term W, follows a scaled
complex Wishart distribution [13], denoted sWC

d (L,Σ),
with parameters L, the number of looks, and the scale
matrix with Σ = E{W}. The marginal distribution for C
may be derived by integrating the conditional PDF over
the prior distribution of Z, that is

pC(C)=

∫ ∞
0

pC|Z(C|z)pZ(z)dz, C|z ∼ sWd
C(L, zΣ).

(10)
The PDF of C depends on the specific model for the scalar
texture variable Z [8], [9]. The simplest multilooked Pol-
SAR model for the PDF of C is achieved with a constant
texture parameter (i.e., PDF of Z is Dirac delta function,
δ(z − 1)) which is justified only for homogeneous regions
of the image, and leads to the scaled complex Wishart dis-
tribution [13]. For areas with pronounced texture, non-
Gaussian probability distributions provide better repre-
sentation of the data. If the texture random variable is
gamma distributed, the covariance matrix C follows the
well-known Kd-distribution [24], [8]. The G0d-distribution is
another multivariate distribution [11], [25], which implies
an inverse gamma distributed texture. The two parameter
multivariate Kummer-U distribution has been introduced
in [12] to generalize the above mentioned PDFs to model
PolSAR vector data which implies a unit mean Fisher-
Snedecor (FS) distributed texture with PDF given by [26]

pZ(z; ξ, ζ) =
Γ(ξ + ζ)

Γ(ξ)Γ(ζ)

ξ

ζ − 1

(
ξ
ζ−1z

)ξ−1
(

ξ
ζ−1z + 1

)ξ+ζ . (11)

ξ > 0 and ζ > 0 are called the shape parameters. The
flexibility of the FS distribution is controlled with these
shape parameters to steer between the heavy head and
heavy tail distributions. Lower values of ξ and ζ represent
significant texture and higher values represent low texture.
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Where the resulting Ud-distribution for C is parameterized
Ud(L,Σ, ξ,ζ) and is given in closed form as [27]

pC(C) =
LLd

Γd(L)

|C|L−d

ΣL

Γ(ξ+ ζ)Γ(Ld+ ζ)

Γ(ξ)Γ(ζ)

(
ξ

ζ − 1

)Ld
×U

(
Ld+ ζ,Ld− ξ+ 1,Ltr(Σ−1C)

ξ

(ζ − 1)

)
,

(12)

where tr(·) and |·| denote the trace and determinant opera-
tors, respectively, d is the number of polarimetric channels,
and Γd(L) is a normalization constant

Γd(L) = π
d(d−1)

2

d∏
i=1

Γ(L− i+ 1). (13)

Γd(·) is named the multivariate gamma function of the
complex kind in [13], while Γ(·) is the standard Euler
gamma fuction. U(·, ·, ·) denotes the confluent hyperge-
ometric function of the second kind (KummerU). L ≥ d
ensures that C is nonsingular.

C.2 Parameter Estimation of the Ud-Distribution

Based upon Mellin transform theory, in [13] the method
of matrix log-cumulants (MoMLC) has been proposed to
estimate the shape parameters of the Fisher PDF. It has
proved to be an effective estimation approach associated
with the multilook product model. More details on the
MoMLC for parameter estimation of the Ud model can be
found in [13]. It is essentially a minimum distance search
in the log-cumulant domain.

C.3 Evidence for Ud-Distribution

The matrix log-cumulant diagram, which was proposed
by Anfinsen and Eltoft in [13] as a visualization tool for
textured multilook multipolarization SAR data, is used to
compare data with the potential distribution models. It
is expected that Ud can be a suitable PDF for polarimet-
ric SAR scenes because of its flexibility to capture highly
varied textures and to model both heterogeneous and ho-
mogeneous clutter. In addition, it includes the sWd, Kd,
G0d as asymptotic cases as follows:

lim
ζ→∞

Ud(L,Σ, ξ, ζ) = Kd(L,Σ, α),

lim
ξ→∞

Ud(L,Σ, ξ, ζ) = G0d(L,Σ, η),

lim
ξ→∞,ζ→∞

Ud(L,Σ, ξ, ζ) = sWC
d (L,Σ), (14)

where α and η denote the texture parameters of the Kd
and G0d distributions, respectively.

D. Stage 4: Unsupervised Segmentation

An unsupervised, non-Gaussian, contextual segmenta-
tion method is used that combines an advanced statis-
tical distribution with spatial contextual information for
MLC data. It is based on a Markov random field (MRF)

model that integrates a Ud-distribution for the polarimet-
ric SAR data statistics conditioned to each image clus-
ter and a Potts model for the spatial context [14], [28].
Specifically, the proposed algorithm is constructed based
upon the expectation maximization (EM) and Besag’s al-
gorithms. The resulting algorithm works in an iterative
manner to jointly address parameter estimation of the Ud-
distribution and the spatial context model, and also min-
imization of the energy function [29]. Specifically, this
method incorporates the information about spatial con-
text for the purpose of reducing the effect of speckle noise.
More details about the clustering algorithm can be found
in [14]. We obtain unlabeled segmentation results which
then need additional knowledge to align classes for com-
parison. Therefore, ground truth data are used to label
segmented images and also to obtain overall classification
accuracies.

E. Stage 5: Post-Classification Change Detection

Post-classification change detection can be viewed as a
particular case of the multitemporal image classification
problem. This approach for change detection requires very
high accuracy of the classification results from the previous
stage. We believe that by using the unsupervised contex-
tual non-Gaussian segmentation method on terrain cor-
rected SAR scenes results in a robust segmentation which
improves also the reliability of change detection. Since the
class labels match on all images, we investigate changes
for consistency and post-classification comparison change
detection. The consistency of the segmentation method is
characterized by comparing segmentation results of scenes
taken on the same day (assumed ‘no change’) with differ-
ent acquisition parameters. This allows us to determine
whether an observed variation is statistically significant
and therefore can be used for post-classification change
detection of Arctic glaciers. Subsequently, the classified
images of succeeding years are compared, and changes
are identified as the detected differences in the location
of boundaries between glacier facies. The differences be-
tween classified pairs can only be considered significant
change when compared to that of the classification total
variation.

IV. Study Area and Data set Description

The glacier Kongsvegen situated at approximately 78◦

50
′

N and 13◦ E in the northwest of Spitsbergen, Svalbard,
close to the meteorological station Ny-Ålesund is selected
for the workflow presented in Section III. Kongsvegen is
a surge-type glacier about 25 km long, covers an area of
approximately 100 km2, and is oriented in a northwest–
southeast direction extending from an elevation of 800 m
a.s.l to sea level. The glacier has a flow velocity of < 4
m a−1 and is thus a very slow moving glacier.

The satellite data set consists of a time series of correctly
calibrated acquired SAR images for the period 2004-2006
over glacier. The images are generally collected under dif-
ferent acquisition configurations. The series consists of
dual polarization C-band ENVISAT-advanced-synthetic-
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Fig. 2. SAR intensity image of field site Kongsvegen (shown on a
UTM grid projection) located on the northwest of Svalbard (inset).
The three zones of interest, glacier ice, superimposed ice, and firn,
can be visibly identified by their dark, medium, and bright intensi-
ties, respectively. The green frame shows the area of interest to be
analyzed further. The glacier center line extends from the firn area
(lower right) into the glacier ice zone (upper left).

aperture-radar (ASAR) images in alternating polarization
(AP) mode from both ascending and descending orbits and
in both HH/HV and VV/VH polarizations, over a large
range of look angles from 14 to 43 degrees (swath angles
IS1 to IS7). As seen in Fig. 2, the satellite flight path
is across glacier with the SAR looking down glacier for a
descending orbit. In ascending orbits, the satellite track
is approximately parallel to glacier center line; thus, the
SAR look direction is across glacier. The initial resolution
of the raw SAR SLC images is 7.8 m in the slant range
and 3.2 m in the azimuth direction. The SAR intensity
image in Fig. 2 shows the spatial variability of the three
different distinct zones across the glacier. Each zone has
specific backscatter characteristics. In the upper parts of
the glacier where firn accumulation occurs, layers domi-
nated by large firn grains and ice layers cause considerable
volume scattering on the ENVISAT SAR wavelength lead-
ing to high backscatter [30]. The SAR signature in the
ablation area is dominated by backscatter from the pre-
vious summer surface. In the SI area, varying fractional
volumes of bubbles cause coherent and incoherent scatter-
ing likely causing of medium backscatter values. Although
the previous summer surface still contributes, the increase
in total backscatter, which determines glacier ice (GI) from
SI, is caused by the air bubbles [17]. The GI does not re-
flect much of the incoming SAR signal back to the sensor,
resulting in low backscatter values.

A DEM of 20 m pixel resolution covering all of Svalbard
was also available, which was produced by the Mapping

Section of the Norwegian Polar Institute (NPI). Ground
truth data are derived from a network of C-band ground
penetrating radar (GPR) profiles oriented parallel to the
glacier center line collected by the NPI in 2005 under the
same spring conditions as the ASAR images. GPR is
commonly used in glaciology for mapping layers within
the glacier such as internal accumulation layers and the
previous summer surface, as well as bedrock topography
[31]. The differential GPS (DGPS) was used to determine
the position of the GPR profiles with a horizontal accu-
racy within 10 cm. The C-band GPR is a step-frequency
continuous-wave (SFCW) radar operating at 4.8-5.8 GHz.
The center frequency of 5.3 GHz is the same as the ASAR
instrument onboard ENVISAT [32]. Details of the GPR
data are given in [32], [33]. The along glacier profiles have
been manually classified into three zones of interest, i.e.,
GI, SI, and firn.

TABLE I

Suitable ENVISAT C-band SAR scenes with different

acquisition configurations for time series analysis.

Image no Date Look angle Path Polarizarion
I1 04 May 2004 IS3 des VV/VH
I2 05 May 2004 IS5 des HH/HV
I3 05 May 2004 IS7 asc VV/VH
I4 09 May 2004 IS5 asc VV/VH
I5 10 May 2004 IS3 asc VV/VH
I6 28 Dec 2004 IS2 des VV/VH
I7 02 Feb 2005 IS2 asc VV/VH
I8 09 Mar 2005 IS2 asc VV/VH
I9 11 Apr 2005 IS7 des VV/VH
I10 13 Apr 2005 IS2 asc VV/VH
I11 14 Apr 2005 IS6 asc VV/VH
I12 15 Apr 2005 IS4 asc VV/VH
I13 17 Apr 2005 IS6 des VV/VH
I14 17 Apr 2005 IS7 asc VV/VH
I15 18 Apr 2005 IS4 asc HH/HV
I16 19 Apr 2005 IS3 des HH/HV
I17 21 Apr 2005 IS1 des HH/HV
I18 27 Apr 2005 IS7 des VV/VH
I19 28 Apr 2005 IS2 des VV/VH
I20 28 Apr 2005 IS3 asc VV/VH
I21 29 Apr 2005 IS1 asc VV/VH
I22 29 Apr 2005 IS4 des VV/VH
I23 30 Apr 2005 IS6 asc HH/HV
I24 01 May 2005 IS2 des VV/VH
I25 01 May 2005 IS4 asc VV/VH
I26 02 May 2005 IS2 asc VV/VH
I27 03 May 2005 IS6 des HH/HV
I28 05 May 2005 IS3 des VV/VH
I29 17 May 2005 IS2 des VV/VH
I30 21 Feb 2006 IS2 des VV/VH
I31 15 Apr 2006 IS6 asc HH/HV
I32 16 Apr 2006 IS2 des VV/VH
I33 17 Apr 2006 IS2 asc VV/VH
I34 19 Apr 2006 IS4 asc VV/VH
I35 20 Apr 2006 IS2 asc VV/VH
I36 20 Apr 2006 IS3 des VV/VH

Meteorological conditions also affect the backscatter in
addition to the SAR imaging geometry and surface topog-
raphy effects as discussed in Section III-B. Therefore, from
temperature and precipitation observations of Ny-Ålesund
station, located at sea level about 15 km west of the termi-
nus of Kongsvegen, we select only SAR images collected in
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Fig. 3. Daily air temperature and precipitation observed in Ny-Ålesund between 2004-2006. Data are from the Norwegian Meteorological
Institute. The black/red bars between the temperature and precipitation represents times of SAR acquisition. The black bars indicate the
chosen SAR images based on the temperature and precipitation constraints, listed in Table I, for time series analysis.

spring under cold and dry conditions on the glacier surface,
see Fig 3. In cases of wet conditions, scattering occurs only
at the wet-snow surface and the underlying GI has no of
influence on the measurements. When just a small amount
of liquid water is present in the upper layer of snow and
firn, the radar backscatter properties change significantly
[30]. However, in early spring the snow pack on the glacier
surface is mostly dry and the previous summer surface at
the base of the winter snow pack gives the strongest re-
turn. Thus this is the time of the year that the SAR signal
incorporates the longer time scale signal is recommended
to collect the SAR data for monitoring temporal changes
of the glacier [33]. We refer readers to [34] to show the
influence of wet conditions on radar response. The au-
thors demonstrated a good example image coinciding with
the onset of rain in the meteorological records and an im-
age taken after the onset of rain clearly showed significant
change compared to the day before. The suitable SAR
images are chosen based on the temperature and precipi-
tation constrains. The remaining images for the time series
analysis are listed in Table I.

V. Experimental Results

We now use the proposed workflow in Section III to ana-
lyze multitemporal dual polarization SAR data for glacier
change detection.

The raw SLC data are geocoded and multilooked simul-
taneously to a final geocoded resolution of approximately
30 x 30 m. The SLC image pixels were multilook averaged
with 2 looks in the range direction and 12 looks in the
azimuth, 24-looks in total. We have chosen 24-looks for
the multilooking because it is a moderately large degree of
multilooking and would achieve a high degree of speckle
reduction. The 30 m ground resolution is good enough for
the monitoring purpose in glacier areas.

The reconstruction of radar geometry with the help of
DEM, the known orbit data vector, and image-line tim-
ing is done for each ASAR image. This stage not only
derives the geocoding look-up tables, but also derives var-
ious geometrical parameters for each ground point that
are required for terrain corrections, such as local incidence
angle, and also generates the layover-shadows mask. The
pixels affected by the geometrical distortions are mainly lo-
cated at slopes larger than 40 degrees. Kongsvegen glacier
has a gentle surface slope of 0.5-5 degrees and, therefore,
such geometric corrections will be minimal over the glacier
region.

The radiometric normalization of the covariance matrix
data was then applied for each scene. Although the glacier
slopes are generally small, if left uncorrected they may
manifest as misclassification of the glacier class boundaries.
The projection factor is shown in Fig. 4(c) as an example.
The backscatter coefficient is reduced when using the pro-
jection factor to radiometrically correct the covariance ma-
trix data. The negative projection factors (the projection
angles larger than 90 degree), correspond to the dark blue
areas in Fig. 4(c) and red areas in the slope map. These
areas are mostly affected by layover and in the geocoding
step have to be masked out, as seen in Fig. 4(b). The
DEM-derived POAs are used to correct for the azimuth
slope effect on the polarization signature. By estimating
the POA for the data, see Fig. 4(d), we observe that for
the rugged-terrain areas surrounding the glacier, the po-
larization shifts are more significant. Subsequently, the
OAC over images leads to reflection symmetric covariance
matrix data sets.

To demonstrate the effect of both RTC and OAC on
the covariance matrix data, the profile along the glacier
center line was plotted for the four images with different
geometries. It should be mentioned that the middle of the
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Fig. 4. Terrain correction parameters of the covered area in the map geometry. (a) slope angle map in degrees (b) shadow/layover mask
produced from the geocoding step (c) projection factor (d) the DEM-derived POA in degrees.

Fig. 5. The effect of terrain correction on dual polarization ASAR data for the four candidate images with different geometries: before
radiometric normalization (A); after radiometric normalization (B); and after the OAC with DEM (C) along the glacier center line extending
from the the firn area into GI zone.
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GI

SI

Firn

Fig. 6. (Top) An example of Quasi-Pauli RGB images of Kongsvegen glacier from 2005 with GPR derived ground truth overlaid. Legend
on the right shows homogeneous samples of different glacier zones along with class label colors: red =GI, blue = SI, and yellow = firn.
(Bottom) matrix log-cumulant diagrams: κ3/κ2 estimation for the candidate terrain corrected images are estimated from the image samples.
The cluster centers seem to fall within the Ud-distribution region in the diagrams. The variables of the diagrams are defined in the text.
The elliptical scatter clouds indicates the natural variation in the measure due to finite sample size estimation.
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Fig. 7. (Top) unsupervised segmentation of the candidate images for each year (2004, 2005, and 2006), (bottom) comparison between fitted
models and class histograms of trace(Σ−1C) for all classes, the figures show the good visual fit of the U-MRF model to all class histograms.

three GPR ground truth lines in Fig. 6 follows the glacier
center line extending from the firn area into the GI zone.
The original backscatter coefficient, RTC and OAC values
are shown with red, green and blue lines respectively. The
reduction of backscatter coefficient is geometry-dependent
which shows the suppression of the SAR geometry effects
on the data such that the images are comparable for the
monitoring purpose. For example, the offset between orig-
inal backscatter and RTC backscatter for the look angle
IS1 is larger than look angle IS7, see Fig. 5. The total
backscatter power (Span=C11 + C22) in Fig. 5 does not
change significantly after OAC except some small changes
for the pixels located at the higher azimuth slopes. For
those pixels, the total power increased after the OAC.

To evaluate the capability of the Ud PDF to model the
variable texture of the polarimetric SAR data set, the sec-
ond and third sample log-cumulants (κ3, κ2) are computed
on a sliding window of size 5×5 [26]. Matrix log-cumulant
diagrams are plotted for each scene of the multitemporal
data, see Fig. 6. In the diagrams, the Kd and G0d are repre-
sented by the red and blue curves, respectively. The junc-
tion of two curves is the point which represents the non-
textured sWd PDF. The Ud-distribution covers the light
yellow space between the red and blue curves. The Whit-
taker W and M PDFs are not considered in this study.
The clusters of sample matrix log-cumulants plotted in Fig.
6 represent targets that have been selected from four exam-

ple scenes with different configurations. In the diagrams,
the collection of sample matrix log-cumulants for the firn,
SI, and GI samples are shown as yellow, blue, and red
dots, respectively. The variation in the clusters for each
zone in the different scenes reveals that the statistical tex-
ture properties are dependent on external factors like the
acquisition geometry. The cluster centers, and hence the
data model, seem to fall within the Ud-distribution region,
even though some of the elliptical scatter clouds fall out-
side the region. This indicates that Ud PDFs can suitably
model the entire multitemporal multipolarization data set
and are good fits to the data classes resulting in improved
segmentation results. The observed elliptical scatter for
each class is caused by natural variation and estimator in-
accuracy for the finite/small sample sizes being measured.

A mask is applied to mask out mountains and isolate
the glacier pixels for classification. The segmentation al-
gorithm was working with 2 × 2 covariance matrix data.
Unsupervised contextual non-Gaussian segmentation was
then performed using the U-MRF classifier on the terrain
corrected dual polarization data set. We fix the number of
clusters to 3 for the segmentation. Fig. 7 shows the seg-
mentation results for three SAR images as candidates from
each year of the study period. In Fig. 7, bottom figures de-
pict class histograms and fitted model PDFs of the entity
trace(Σ−1C) for all classes produced by the U-MRF clas-
sifier and give a visualization of the goodness-of-fit of the
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models. In all cases, the model fit of the class histograms is
good. Since the three surface types (GI, SI, and firn) have
a distinct backscatter characteristics, they can be reliably
discriminated in the segmented images. The firn line, i.e.,
the boundary between SI and firn is detected in all segmen-
tations. The boundary between SI and GI is also detected.
The segmentation results are now validated using in-situ
observations. The three GPR ground truth lines acquired
in 2005, shown in Fig. 6, are used to label the segmented
images into glacier facies and to validate the classification
results. The validation is only performed on scenes ac-
quired in spring 2005 that are within a few weeks of the
GPR data. Table I reports the overall classification accu-
racies and omission errors of the glacier zones for the 2005
images. The classification accuracies for the scenes indi-
cate overall accuracies higher than 80% for all cases. We
did not find any obvious preference among different con-
figurations because the geometric and radiometric terrain
corrections should suppress the effects of both SAR geom-
etry and surface topography on the covariance matrix data
sets.

TABLE II

Classification accuracies for the classification results for

the 2005 images, including overall accuracy (OA) and

omission error (OE) for the three glacier zones.

Image OA % OE%
GI SI Firn

20050202IS2ascVV/VH 88.3 18.4 1.5 8.0
20050309IS2ascVV/VH 87.1 19.3 1.8 11.0
20050411IS7desVV/VH 81.1 18.9 4.3 37.7
20050413IS2ascVV/VH 88.3 17.5 1.3 10.3
20050414IS6ascVV/VH 94.7 1.3 4.8 16.0
20050415IS4ascVV/VH 95.3 1.6 5.9 11.3
20050417IS6desVV/VH 88.0 19.6 0.8 7.3
20050417IS7ascVV/VH 87.4 20.8 1.0 6.7
20050418IS4ascHH/HV 87.9 18.5 0.8 10.30
20050419IS3desHH/HV 86.4 23.5 0.0 6.0
20050421IS1desHH/HV 85.9 24.0 0.0 7.3
20050427IS7desVV/VH 85.7 24.3 0.0 7.7
20050428IS2desVV/VH 86.7 21.3 0.5 9.7
20050428IS3ascVV/VH 87.8 17.8 4.1 8.7
20050429IS1ascVV/VH 87.2 18.1 1.0 14.7
20050429IS4desVV/VH 84.8 26.1 0.0 7.3
20050430IS6ascHH/HV 86.3 23.5 0.0 6.7
20050501IS2desVV/VH 86.4 22.5 0.0 8.7
20050501IS4ascVV/VH 96.2 1.3 4.1 9.7
20050502IS2ascVV/VH 81.9 1.4 6.7 11.0
20050503IS6desHH/HV 95.5 4.2 3.3 6.7
20050505IS3desVV/VH 84.6 25.8 0.0 9.0
20050517IS2desVV/VH 86.5 21.7 0.0 10.3

Next, the images that have been taken on the same day
with different geometries are chosen as pairs for the consis-
tency investigation of the classification results. Table III is
a list of the total variation of firn line for given pairs and is
an indicator of variability of this boundary in terms of per-
centage of the glacier mask (PGM), the total change area
error (TCAE), and equivalent linear displacement (ELD)

TABLE III

Consistency characterization: the variation of firn/SI

boundary in terms of percentage of the glacier mask

(PGM), total change area error (TCAE), and ELD error

for some pairs. Image identities are given in Table I.

Image 1 Image 2 PGM TCAE (m2) ELD (m)
I2 I3 1.36% 763200 120.74
I13 I14 0.63% 354600 57.70
I21 I22 1.81% 1017000 179.52
I24 I25 1.55% 869400 153.20

along the glacier. Among these three indicators, the ELD
may be a very robust indicator, because the other two de-
pend on the size of the glacier and the accuracy of its
mask. An average ELD error of 128 m is obtained be-
tween the pairs which is for worst case variation between
different configurations. This variation may include the
effect of different collection geometries, the segmentation
algorithm, and other processing errors. Similar geometries
and the segmentation itself should have much reduced vari-
ability. Basically, if we have a collection of a time series
using data acquired from similar geometries (i.e., an inter-
ferometric pairs), then we could anticipate reduced varia-
tion and better change detection ability. In such cases, we
may not need to perform radiometric terrain correction for
change detection.

After consistency characterization, the classified images
are compared and analyzed on a pixel-by-pixel based anal-
ysis to form a change matrix which describes the mapping
of classes between the images. From this matrix we can
extract a simple map of change versus no change, but also
more detailed information on the nature of the change.
We take the average of several yearly classified images
of the study period for change detection analysis. Fig.
8 shows the change images of glacier within the periods of
study (2004-2005, 2005-2006, and 2004-2006). It illustrates
changes in the locations of boundaries between glacier fa-
cies. The firn line monitoring is important for glaciolo-
gists, thus we concentrate only on the variation of firn area
boundary with SI zone in the quantitative analysis. Total
variation of the firn line in terms of both PGM and TCAE
(firn to SI) and ELD for change detection pairs are esti-
mated to verify whether significant changes occur for the
periods. Table IV indicates measure of variations of firn/SI
boundary for those periods. The differences between av-
erages of yearly classified images can only be considered
significant when compared to that of the classification to-
tal variation. By taking the average classification result
over each year, the expected variation of 128 m (between
scene pairs with differing configurations) will decrease by√
N for the mean, where N is the number of scenes used

in the averaging. Therefore, we obtain the reduced varia-
tion in the mean of 52.24 m, 26.72 m, and 47.58 m for the
years 2004, 2005, and 2006, respectively, to be used when
testing significance. The total variation of this boundary
found between 2004 and 2005 exceeds the expected clas-
sification variation, which indicates significant change for
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Fig. 8. Change images of Kongsvegen glacier within the periods of 2004-2005 (left), 2005-2006 (middle), and 2004-2006 (right). The changes
of firn line for these periods are shown by blue color (movement toward top of the glacier which is bottom right).

this period. The same is found for the periods 2005-2006,
2004-2006. The total movement of the approximately 200
m toward top of the glacier is obtained for the whole pe-
riod.

TABLE IV

Change detection analysis: total error of firn line in terms

of PGM, TCAE, and ELD error for three periods.

Period PGM TCAE (m2) ELD (m)
2004-2005 1.36% 764100 127.06
2005-2006 0.69% 358200 107.16
2004-2006 1.78% 980900 203.32

VI. Conclusions and Discussions

This paper addressed glacier change detection from mul-
titemporal multipolarization SAR images. A robust algo-
rithm for firn line monitoring was developed. This sug-
gests that we have a tool for glacier change detection and
monitoring that is applicable over the Arctic region on a
timescale of a few years. The recent findings may form
the basis for more operational monitoring of Arctic ar-
eas, which may be even more successful with more capable
satellite sensors.

It is noted that when a difference in radar backscattering
between multitemporal data is taken as a change indicator,
the difference may be due to several factors such as actual
land cover change, viewing geometry, surface topography
and other external factors (such as meteorological condi-
tions, that are minimized by using radar frequencies and
choosing the scenes wisely). These considerations were the
main reason for developing a complete workflow for post-
classification change detection from time series of polari-
metric SAR images, and where we also choose our SAR
images to avoid the wet weather conditions.

The algorithm has been tested on dual polarization EN-
VISAT ASAR images for the period 2004-2006 over the
Arctic glacier, Konsvegen, Svalbard. The images are first
corrected for terrain effects by thoroughly reducing topo-
graphic effects on both geolocation, radiometry and po-
larization signature, and subsequently stacked into proper
time series for further analysis. This is an important step
for a meaningful time series analysis.

We showed in [28] that the Kd distribution can be used
to model SAR image texture. However, the analysis shows
that this model does not always represent the data well.
We then use more flexible model, the multivariate Ud-
distribution, for multilook covariance matrix data. The
flexibility of this model with respect to Kd and G0d with
an extra texture parameter is evident that covers more of
the space of matrix log-cumulant observed in multitempo-
ral dual polarization SAR images. It is expected to yield
improved results because of its flexibility to model more
varied textures. The matrix log-cumulant diagram was
demonstrated for each scene to visualize the capability of
the Ud-distribution to model texture observed in multitem-
poral dual polarization SAR data over this glacier.

We then applied an unsupervised contextual non-
Gaussian clustering method, named U-MRF, over terrain
corrected SAR scenes. The unsupervised segmentation al-
gorithm together with the DEM-based terrain correction
are reliable and robust enough to give consistent change
detection results. It should be mentioned that the exam-
ple glacier was only a very slow moving glacier and the
annual change is small. A faster glacier, or other more
drastic change examples like deforestation, would likely
work much better. Ground truth data are used to label
segmented images into the three major classes of glacier
facies, i.e., firn, glacier ice (GI), and superimposed ice (SI)
and to investigate the classification accuracies.

We then characterized the consistency of the classifica-
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tion as the total variation of firn/SI boundary between two
no change images to obtain the expected variation just due
to processing errors in the processing chain. Finally, we did
post-classification change detection analysis based on the
classified images on a pixel-by-pixel based analysis. The
variations of the boundaries between glacier facies were
clearly detected within the period of study. The variation
for the two-year period, 2004-2006, exceeds the measured
classification variation and thus shows significant change
for this period although one year differences were not sig-
nificant. The fact that we only detect a significant change
over two years (with respect to the ELD) is clearly glacier
specific. Glaciers in other areas that undergo significant
changes may lead to results over a single year.
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