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Abstract— In this paper, we introduce a new 3D hand gesture
recognition approach based on a deep learning model.

We introduce a new Convolutional Neural Network (CNN)
where sequences of hand-skeletal joints’ positions are processed
by parallel convolutions; we then investigate the performance
of this model on hand gesture sequence classification tasks. Our
model only uses hand-skeletal data and no depth image.

Experimental results show that our approach achieves a
state-of-the-art performance on a challenging dataset (DHG
dataset from the SHREC 2017 3D Shape Retrieval Contest),
when compared to other published approaches. Our model
achieves a 91.28% classification accuracy for the 14 gesture
classes case and an 84.35% classification accuracy for the 28
gesture classes case.

I. INTRODUCTION

Touch and gesture are two natural ways for a user to
interact with one’s environment. While touch necessarily
involves a physical contact (e.g. to write a message on
a phone, to grab a physical object, or to swipe touch-
sensitive textiles), gestures allow remote interactions (e.g.
to interact with a smart screen, or with virtual-reality and
augmented-reality objects). As such, gesture-based human-
computer interfaces can ease the use of digital computing
[27] in situations where it would previously have been diffi-
cult or even impossible because of practical constraints like
interacting with everyday life physical objects (e.g. lights,
mirrors, doorknobs, notebooks, ...) or like using computers
in settings where the person has to focus entirely on a task
(e.g. while driving a car, cooking or doing surgery).

Gesture can convey semantic meaning, as well as con-
textual information such as personality, emotion or attitude.
For instance, research shows that speech and gesture share
the same communication system [2] and that one’s gestures
are directly linked to one’s memory [18]. Among gestures,
hand gestures distinguish themselves from two other types of
gestures [25]: body gestures and head gestures. We chose to
work on hand gestures since they can carry more information
more easily than the two other types of gestures. One
preferred way to infer the intent of a gesture is to use a
taxonomy of gestures and to classify the unknown gesture
into one of the existing categories based of the gesture data,
in a similar way to what is done in computer vision for
instance. The classification can either be obtained in realtime
at each time step or at the end of the gesture, depending on
the the processing power and the application needs.

In this paper we propose a convolutional neural network
architecture relying on intra- and inter- parallel processing
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Fig. 1. Hand skeleton returned by the Intel RealSense camera. Each dot
represents one of the n = 22 joints of the skeleton.

of sequences of positions (of hand-skeletal joints) to classify
complete hand gestures. Where most existing deep learn-
ing approaches to gesture recognition use RGB-D image
sequences to classify gestures [49], our neural network only
uses hand (3D) skeletal data sequences which are quicker to
process than image sequences.

The rest of this paper is structured as follows. We first
review common recognition methods in Section II. We then
present the DHG dataset we used to evaluate our network in
Section III. We detail our approach in Section IV in terms
of motivations, architecture and results. Finally, we conclude
in Section VI and discuss how our model can be improved
and integrated into a realtime interactive system.

II. DEFINITION & RELATED WORK

We define a 3D skeletal data sequence s as a vector

s = (p1 · · · pn)
T

whose components pi are multivariate time sequences.
Each component pi = (pi(t))t∈R represents a multivariate
sequence with three (univariate sequences) components

pi = (x(i),y(i),z(i))

that alltogether represent a time sequence of the positions
pi(t) of the i-th skeletal joint ji. Every skeletal joint ji
represents a distinct and precise articulation or part of one’s
hand in the physical world. An illustration of a 3D hand
skeleton is proposed in figure 1.

In the following subsections, we present a short review of
some approaches to gesture recognition. Typical approaches
to hand gesture recognition begin with the extraction of
spatial and temporal features from raw data. The features
are later classified by a Machine Learning algorithm. The978-1-5386-2335-0/18/$31.00 c©2018 IEEE
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feature extraction step can either be explicit, using hand-
crafted features known to be useful for classification, or
implicit, using (machine) learned features that describe the
data without requiring human labor or expert knowledge.
Deep Learning algorithms leverage such learned features
to obtain hierarchical representations (features) that often
describe the data better than hand-crafted features. As we
work on skeletal data only, with a deep-learning perspective,
this review pays limited attention to non deep-learning based
approaches and to depth-based approaches; a survey on the
former approaches can be found in [25] while several recent
surveys on the latter approaches are listed in NEVEROVA’s
thesis [28].

A. Non-deep-learning methods using hand-crafted features

Various hand-crafted representations of skeletal data can
be used for classification. These representations often de-
scribe physical attributes and constraints, or easily inter-
pretable properties and correlations of the data, with an
emphasis on geometric features and statistical features. Some
commonly used features are the position of the skeletal
joints, the orientation of the joints, the distance between
joints, the angles between joints, the curvature of the joints’
trajectories, the presence of symmetries in the skeletal, and
more generally other features that involve a human inter-
pretable metric calculated from the skeletal data [21], [22],
[41]. For instance, in [45], VEMULAPALLI et al. propose
a human skeletal representation that lies in the Lie group
SE(3)× . . .×SE(3), based on the idea that rigid body rota-
tions and translations in 3D space are members of the Special
Euclidean group SE(3). Human actions are then viewed as
curves in this curved manifold. Recognition (classification)
is finally performed in the corresponding Lie algebra. In
[11], DEVANNE et al. represent skeletal joints’ sequences
as trajectories in a n-dimensional space; the trajectories of
the joints are then interpreted in a Riemannian manifold.
Similarities between the shape of trajectories in this shape
space are then calculated with k-Nearest Neighbor (k-NN) to
achieve the sequence classification. In [9], two approaches
for gesture recognition -on the DHG dataset presented in
the next section- are presented. The first one, proposed by
GUERRY et al., is a deep-learning method presented in the
next subsection. The second one, proposed by DE SMEDT et
al., uses three hand-crafted descriptors: Shape of Connected
Joints (SoCJ), Histogram of Hand Directions (HoHD) and
Histogram of Wrist Rotations (HoWR), as well as Fisher
Vectors (FV) for the final representation.

Regardless of the features used, hand-crafted features are
always fed to a classifier to perform the gesture recognition.
In [7], CIPPITELLI et al. use a multi-class Support Vec-
tor Machine (SVM) for the final classification of activity
features based on posture features. Other very frequently
used classifiers [48] are the Dynamic Time Warping (DTW)
algorithm, discrete distance-based methods, Naive Bayes,
Hidden Markov models (HMM), Conditional Random Fields
(CRF) and even simple k-Nearest Neighbors (k-NN).

B. Deep-Learning based methods

Deep Learning, also known as Hierarchical Learning, is
a subclass of Machine Learning where algorithms f use
a cascade of non-linear computational units fi (layers) for
feature extraction and transformation: f = f1 ◦ f2 ◦ . . . ◦ fn
[10]. The composition of (learned) functions in deep learning
algorithms allows them to build a hierarchical representation
of the data; that representation can become more and more
abstract as the number of layers in the composition goes
up. Since deep learning classification models both learn the
features to use for the classification and also the mapping
from the feature space to the output classes, they reveal
themselves to be a very convenient class of models for
classification. Moreover, in the recent years deep learning
approaches have led to state-of-the-art results for numerous
tasks across various domains such as Speech Recognition,
Image Recognition or Natural Language Processing [13].

A traditional CNN model almost always involves a se-
quence of convolution and pooling layers, that are followed
by hidden dense layers. Convolution and pooling layers serve
as feature extractors, whereas the hidden layers, also called
Multi Layer Perceptron (MLP), can be seen as a classifier.

A strategy to mix deep-learning algorithms and (hand)
gesture recognition consists in training Convolutional Neural
Networks (CNNs, ConvNets) [24] on RGB-D images.

A common trick to quickly train CNNs on gesture datasets
consists in doing Transfer Learning [34]. Transfer Learning
can be described as the extraction of knowledge from a learn-
ing task, knowledge that is later leveraged to help improve
the learning of a different, but related, task. In the case
of CNNs, transfer learning typically consists in using well
performing CNNs already trained for image classification
tasks on datasets such as ImageNet [35] and retraining the
last layers of these CNNs on a gesture dataset, with all the
other layers’ weights frozen. To be fine-tuned, the CNN is
then retrained one more time on the gesture dataset, with
no weight frozen this time. Transfer Learning can also be
used for other gesture recognition goals, such as extending
gesture vocabularies [16], [14].

A direct example of hand gesture recognition via image
CNNs can be found in the works of STREZOSKI et al. [40]
where CNNs are simply applied on the RGB images of
sequences to classify. GUERRY et al. [9] propose a deep-
learning approach for hand gesture recognition on the DHG
dataset, which is described at a later stage of this paper.
The GUERRY et al. approach consists in concatenating the
Red, Green, Blue and Depth channels of each RGB-D image.
An already pretrained VGG [37] image classification model
is then applied on sequences of 5 concatenated images
consecutive in time.

In [26], MOLCHANOV et al. introduce a CNN architecture
for RGB-D images where the classifier is made of two CNN
networks (a high-resolution network and a low-resolution
network) whose class-membership outputs are fused with an
element-wise multiplication.

NEVEROVA et al. carry out a gesture classification task
on multi-modal data (RGB-D images, audio streams and



skeletal data) in [29], [30]. Each modality is processed
independently with convolution layers at first, and then
merged. To avoid meaningless co-adaptation of modalities
a multi-modal dropout (ModDrop) is introduced.

Nevertheless, these approaches use depth information
where we only want to use skeletal data.

In [46], WANG et al. color-code the joints of a 3D skeleton
across time. The colored (3D) trajectories are projected on
2D planes in order to obtain images that serve as inputs
of CNNs. Each CNN emits a gesture class-membership
probability. Finally, a class score (probability) is obtained
by the fusion of the CNNs scores.

Recurrent Neural Networks (RNN), e.g. networks that use
Long Short-Term Memory (LSTM) [19] or Gated Recurrent
Units (GRU) [6], have long been considered as the best
way to achieve state-of-the-art results when working with
neural networks on sequences like time series. Recently, the
emergence of new neural networks architectures that use
convolutions or attention mechanisms [43], [44] rather than
recurrent cells has challenged this assumption, given that
RNNs present some significant issues such as being sensitive
to the first examples seen, having complex dynamics that
can lead to chaotic behavior [23] or being models that are
intrinsically sequential, which means that their internal state
computations are difficult to parallelize, to name only a few
of their issues.

In [38], SONG et al. elegantly combine the use of an
LSTM-based neural network for human action recognition
from skeleton data with a spatio-temporal attention mech-
anism. While this approach seems promising, the current
paper rather seeks to find a convolution-only architecture
rather than a recurrent one.

ZHENG et al. propose a convolution-based architecture
that does not involve recurrent cells in [50], although this
architecture can easily be extended with recurrent cells: [32].
ZHENG et al. introduce a general framework (Multi-Channels
Deep Convolution Neural Networks, or MC-DCNN) for
multivariate sequences classification. In MC-DCNN, mul-
tivariate time series are seen as multiple univariate time
series; as such, the neural network input consist of several 1D
time series sequences. The feature learning step is executed
on every univariate sequence individually. The respective
learned features are later concatenated and merged using a
classic MLP placed at the end of the feature extraction layers
to perform classification. The major difference between MC-
DCNN and other deep (skeletal) gesture recognition models
lies in the fact that MC-DCNN networks are skeleton-
structure agnostic. A naive direct use of the model pro-
posed by that paper does nevertheless not yield to results
significantly competitive against other approaches results, but
still gives a first glimpse of neural architectures for multi-
variate sequences such as hand gesture skeleton data. The
current paper introduces a new neural network built upon
this framework.

III. DATASET

To evaluate several variations of the presented neural
network model architecture and their performances we con-

ducted experiments on the Dynamic Hand Gesture-14/28
(DHG) dataset [9] created and introduced by DE SMEDT
et al. in the SHREC2017 - 3D Shape Retrieval Contest.

The DHG dataset consists in a total of 2800 labeled
hand gesture sequences performed by 28 participants.
The sequences are recorded by an Intel RealSense depth
camera and have variable lengths. Each labeled sequence
consists of the raw data sequence returned by the camera,
associated with two labels representing the category of
the recorded gesture. For all sequences a depth image of
the scene is provided at each timestep, alongside with
both a 2D and a 3D skeletal representation of the hand.
The hand skeleton returned by the Intel RealSense depth
camera is presented in a paragraph below. Each gesture
falls into one of 14 categories : Grab (G), Tap (T),
Expand (E), Pinch (P), Rotation clockwise
(RC), Rotation counter-clockwise (RCC),
Swipe right (SR), Swipe left (SL), Swipe up
(SU), Swipe down (SD), Swipe x (SX), Swipe +
(S+), Swipe v (SV), Shake (Sh). Moreover, each
gesture can be performed with either only one finger or
with the whole hand. That means that gestures are classified
with either 14 labels or 28 labels, depending on the number
of fingers used.

The gesture recognition method we introduce in the next
section only uses the 3D hand skeletal representation re-
turned by the Intel RealSense depth camera. At each time
step the 3D hand skeleton consists in an ordered list of 22
joints with their positions pi = (xi,yi,zi) ∈ R3, ∀i ∈ J1;22K
in the 3D space. The structure of the skeletal returned by the
camera is presented in figure 1.

The dataset is split into 1960 train sequences (70% of the
dataset) and 840 test sequences (30% test sequences).

IV. PARALLEL CONVOLUTIONS MODEL

A. Motivation

The goals of the original contest where the DHG dataset
was introduced were to (1) study the dynamic hand gesture
recognition using depth and full hand skeleton, and to (2)
evaluate the effectiveness of recognition process in terms
of coverage of the hand shape that depend on the number
of fingers used. Nevertheless, the goals of this paper are
different. Its first goal is to demonstrate that carrying out
hand gesture recognition with a sparse representation of the
hand (i.e. the 3D hand skeleton) only is competitive with
other existing approaches that often focus on RGB-D images.
The second goal of this paper is to propose a generic neural
network that does not require recurrent cells to achieve this
recognition.

B. Model Architecture

We introduce a multi-channel convolutional neural net-
work with two feature extraction modules and a residual
branch per channel. The whole model architecture is de-
picted in figure 2. The architecture is inspired by the high-
resolution and low-resolution networks from [26]. The use
of residual branches in our architecture is inspired from the
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Fig. 2. Illustration of the proposed parallel convolutional neural network. Every channel is processed separately before the Multi Layer Perceptron. The
parallel feature extraction module presented on the right is not shared between the 66 channels.

original Residual Networks paper [17]. Residual branches
make networks easier to optimize because of a better gradi-
ent backpropagation in the training phase; they empirically
improve the accuracy of deep networks.

Our network inputs consist of multiple, fixed-length, 1D
sequences (s1,s2, . . . ,sc) where c ∈ N∗ is the number of
sequences (channels). Each of these sequences si is directly
fed to three parallel branches. The first branch1, improperly
called residual branch in this paper, is almost an identity
function. Instead of outputting exactly its input we perform
a pooling on the input in order to reduce the risk of overfit-
ting. The second and third branches both present a similar
architecture, detailed below, designed for feature extraction.

In these two branches, the input is processed as follows.
The input is passed to a convolution layer, whose output is
subsampled using a pooling layer. This process is repeated
two more times. For a single branch, the difference between
all the three convolutions resides in the number of feature
maps used; the difference between the two branches resides
in the size of the convolutions kernels. Having two kernel
sizes for the time convolution layers allows the network to
directly work at different time resolutions.

Formally, let h(l,β ) represent the input of the l-th con-
volution layer of the β branch, K(l,β ) be the number of
feature maps, W (l,β )

k the k-th convolution filter of the l-th
convolution in the β branch, and b(l,β )k the bias shared for
the k-th filter map. The output h(l+1,β ) of the l-th convolution
layer is calculated as

h(l+1,β ) = σ

(
h(l,β ) ∗W (l,β )

k +b(l,β )k

)
where σ is the activation function. This output h(l+1,β )

serves as the input of the pooling layer that directly follows

1middle branch in figure 2

the convolution layer.
For a single channel, the outputs of the three branches

are concatenated into a single vector. Finally, a multi layer
perceptron “merges” the -concatenated- vectors of all the
channels together and acts as a classifier. There are as many
MLP outputs as the number of gesture classes.

In our experiments, we have two branches (high resolution
and low resolution branches): β ∈ J1;2K, 3 convolution and
pooling layers: l ∈ J1;3K, and K(l,β ) = 8 feature maps for
l = 1 or l = 2 and K(l,β ) = 4 feature maps for l = 3. The
multi layer perceptron has 1 hidden layer with 1996 hidden
units. All of the neurons in our network use the ReLU
activation function: σ(x) = ReLU(x) = max(0,x), with the
exception of the output neurons which use the softmax
activation function. All of the 3 [×2×c] subsampling layers
use an average pooling with a temporal pool size of 2.
Average pooling computes the average value of features
in a neighborhood (of 2 time steps in our case), while
max pooling extracts the maximum value of the features in
the neighborhood. Empirically, it has been shown that max
pooling outperforms average pooling in image recognition
problems [3]. Nevertheless, experiments we conducted on the
choice of the pooling method for this model did not conclude
that our model exhibits better results with max pooling (we
see a 0.88% decrease in validation accuracy for the model
with maximum pooling rather than the average one for the
model configuration presented in this paper).

C. Training

In this section we detail the hyperparameters we used as
well as some other information related to the training.

1) Data preprocessing: Multidimensional full sequences
of joints’ trajectories were split into unidimensional se-
quences that were later re-sampled in order to serve as inputs
of our model. The resize was performed by a simple linear



G(1) G(2) T(1) T(2) E(1) E(2) P(1) P(2) RC(1) RC(2) RCC(1) RCC(2) SR(1) SR(2) SL(1) SL(2) SU(1) SU(2) SD(1) SD(2) SX(1) SX(2) S+(1) S+(2) SV(1) SV(2) Sh(1) Sh(2)
G(1) 71.4 17.9 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G(2) 0.0 96.7 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
T(1) 15.2 0.0 54.5 15.2 0.0 0.0 6.1 0.0 3.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0
T(2) 0.0 10.7 0.0 57.1 0.0 3.6 0.0 0.0 0.0 10.7 0.0 7.1 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 3.6 3.6 0.0 0.0 0.0
E(1) 0.0 0.0 0.0 0.0 85.2 3.7 3.7 0.0 0.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E(2) 0.0 0.0 0.0 3.6 10.7 71.4 0.0 3.6 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6
P(1) 7.4 0.0 0.0 0.0 0.0 0.0 85.2 3.7 0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P(2) 0.0 8.3 0.0 0.0 0.0 0.0 8.3 75.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RC(1) 0.0 0.0 3.4 0.0 0.0 0.0 0.0 0.0 69.0 24.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0
RC(2) 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 15.4 80.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RCC(1) 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.3 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RCC(2) 0.0 15.4 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 69.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0
SR(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 87.9 9.1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SR(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.2 79.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0
SL(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 84.6 7.7 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SL(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 7.1 85.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SU(1) 0.0 0.0 0.0 3.1 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.1 3.1 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0
SU(2) 0.0 0.0 0.0 0.0 0.0 13.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.9 69.4 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SD(1) 0.0 0.0 0.0 3.2 0.0 0.0 6.5 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80.6 3.2 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0
SD(2) 0.0 13.3 0.0 3.3 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 73.3 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0
SX(1) 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.9 0.0 0.0 0.0 3.0 0.0 0.0 0.0
SX(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.2 0.0 2.8 0.0 0.0 0.0 0.0
S+(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
S+(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
SV(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 89.3 7.1 0.0 0.0
SV(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.7 0.0 0.0
Sh(1) 0.0 0.0 2.9 0.0 0.0 0.0 8.6 0.0 11.4 5.7 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 8.6
Sh(2) 0.0 0.0 0.0 0.0 0.0 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 91.4

In this confusion matrix each row represents the real class of performed gestures while each column represents the predicted class of the gestures.

TABLE I
CONFUSION MATRIX FOR DHG-28 USING OUR PROPOSED APPROACH

interpolation of the time series. The few data points outside
the boundaries of the input were filled with a reflection. After
interpolation, every sequence has a fixed length of 100 time
steps.

2) Weights Initialization & Batching: Each training batch
contained a set of 32 skeletal gesture sequences of length
100, where a skeletal gesture sequence is a list of 22×3= 66
unidimensional sequences.

For the training, we used the Xavier initialization (also
known as GLOROT uniform initialization) [12] to set the
initial random weights for all the weights of our model.

3) Implementation: Our model was implemented twice
using either PyTorch or Keras as an high level library
above Tensorflow. CUDA/CuDNN were used for GPU
parallelization of the computations.

4) Hardware: We trained our model on one machine
with a GPU (NVIDIA GeForce GTX 1080 Ti). Using the
hyperparameters presented in the paper, each training step
took about 12 seconds. We trained the model for 1000
steps. As a comparison, other experiments -not presented in
this paper- that involved GRU recurrent cells were trained
for over 10000 steps of approximately 45s each while not
exhibiting better performance on the testing data.

5) Loss & Optimizer: We selected negative log-likelihood
as the cost function. To train our model, we used the
popular Adam optimization algorithm [20] which calculates
an exponential moving average of the gradient and the
squared gradient. For the decay rates of the moving averages
we used the parameters β1 = 0.9, β2 = 0.98. The values of
other parameters were α = 10−3 for the learning rate, and
ε = 10−8.

6) Regularization: Dropout [39] served as a regularizer,
with a drop rate of p = 0.2 for the model presented in this
paper. Numerous experiments on variations of both the model
architecture and the dropout rate empirically showed that

higher dropout rates like p = 0.4 often reduced the training
accuracy but did not increase the testing accuracy.

D. Results on the DHG dataset

We work on the DHG dataset presented on section III.
All sequences are preprocessed as described in the previous
section. Each resampled skeletal sequence is split into 22
joints’ sequences, and then into 3 × 1D sequences of the
(x,y,z) positions of the joints. This leads to 66 = 22× 3
input sequences that are fed to model we introduced. The
outputs of the last layer of the MLP represent the labels we
will attribute to the gesture corresponding to the 66-channel
input. Since there are two classification tasks, depending on
the number of classes, we use two different neural networks
with the same architecture, except that one has 14 outputs
and the other has 28 outputs.

On the DHG dataset, our model achieves a 91.28% clas-
sification accuracy for the 14 gesture classes case and an
84.35% classification accuracy for the 28 gesture classes
case. These are the best recognition accuracy scores known
for this challenging dataset at this day.

In [33], [11], [9], [31], [8] more or less complex but
handcrafted features are used in the classification pipelines.
The main advantage of deep-learning approaches is to auto-
matically discover such (sometimes complex) features. [5]
is based on deep-learning architecture. It directly applies
LSTMs -but without applying CNNs beforehand- to the
skeletal data (and to the handcrafted features). Introducing a
convolution step before the LSTMs could possibly improve
the model in [5]. Our model likely uses more efficient
representations due to the use of the parallel branches. A
comparison of the different approaches is presented in table
II.

In classification, precision is defined as the ratio
precision = T P

T P+FP where T P is the number of true positives



Approaches Accuracy 14 gestures Accuracy 28 gestures

OREIFEJ & LIU [33] 78.53 74.03

DEVANNE et al. [11] 79.61 62.00

GUERRY et al. [9] 82.90 71.90

OHN-BAR & TRIVEDI [31] 83.85 76.53

CHEN et al. [5] 84.68 80.32

DE SMEDT et al. [8] 88.24 81.90

Ours 91.28 84.35

TABLE II
ACCURACY RESULTS ON THE DHG DATASET

G T E P RC RCC SR SL SU SD SX S+ SV Sh

G 94.8 1.7 0.0 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T 11.5 77.0 0.0 3.3 4.9 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0

E 0.0 5.5 90.9 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 1.8

P 15.7 0.0 0.0 78.4 3.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RC 0.0 1.8 0.0 0.0 98.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RCC 3.4 6.9 0.0 1.7 5.2 77.6 0.0 1.7 0.0 1.7 0.0 0.0 0.0 1.7

SR 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SL 0.0 0.0 0.0 0.0 7.4 0.0 3.7 88.9 0.0 0.0 0.0 0.0 0.0 0.0

SU 2.9 2.9 10.3 0.0 0.0 0.0 1.5 0.0 79.4 1.5 0.0 0.0 1.5 0.0

SD 3.3 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 91.8 0.0 0.0 1.6 0.0

SX 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 89.9 1.4 5.8 0.0

S+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

SV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

Sh 0.0 8.6 2.9 0.0 12.9 0.0 2.9 0.0 1.4 0.0 0.0 0.0 0.0 71.4

In this confusion matrix each row represents the real class of performed
gestures while each column represents the predicted class of the gestures.

TABLE III
CONFUSION MATRIX FOR DHG-14 USING OUR PROPOSED APPROACH

and FP the number of false positives, while recall is defined
as the ratio recall = T P

T P+FN where T P still is the number of
true positives and FN is the number of false negatives. The
F1 score (given by F1 =

2×precision×recall
precision+recall ) can be interpreted

as a weighted average of the precision and recall; an F1 score
reaches its best value at 1 and worst score at 0. A comparison
of F1 scores between our approach and the best performing
method that exists at this day shows that our approach offers
better F1 scores for all the 14 gesture classes, except 3. It
shows that our model is more balanced than other approaches
for DHG hand gesture recognition for most of the gestures.
For more detailed results, we present the confusion matrices
we obtained with our model on the DHG in table III for
DHG14, and in table I for DHG28.

E. Discussion

1) Privacy: In personal and human-related applications,
personal information may leak into the model, e.g. due to
overfitting issues. Differential privacy techniques such as
Differential Stochastic Gradient Descent [1] or Adversarial
Training can be used to prevent such leaks. Nevertheless, for
applications such as gesture recognition for smart-screens -
trained on datasets such as the DHG dataset- slightly over-
fitting is not an issue from a practical perspective.

2) Dataset Size: A common barrier to using deep-learning
is small datasets. The DHG dataset has roughly 3000

Ours DE SMEDT et al. Difference
Gesture Precision Recall F1-score Precision Recall F1-score F1-score

G 72.4% 94.8% 82.1% 67.5% 57.0% 61.8% 20.3%
T 71.2% 77.0% 74.0% 85.2% 87.0% 86.1% -12.1%
E 84.7% 90.9% 87.7% 84.8% 87.0% 85.9% 1.8%
P 90.9% 78.4% 84.2% 52.1% 61.0% 56.2% 28.0%

RC 69.2% 98.2% 81.2% 80.0% 77.5% 78.8% 2.5%
RCC 97.8% 77.6% 86.5% 90.9% 85.5% 88.1% -1.6%
SR 91.2% 100.0% 95.4% 85.1% 92.5% 88.6% 6.7%
SL 98.0% 88.9% 93.2% 78.4% 85.5% 81.8% 11.4%
SU 98.2% 79.4% 87.8% 89.3% 85.5% 87.4% 0.4%
SD 93.3% 91.8% 92.6% 80.8% 88.0% 84.3% 8.3%
SX 100.0% 89.9% 94.7% 95.8% 85.0% 90.1% 4.6%
S+ 98.3% 100.0% 99.1% 90.2% 98.5% 94.1% 5.0%
SV 90.6% 100.0% 95.1% 93.2% 92.0% 92.6% 2.5%
Sh 96.2% 71.4% 82.0% 88.6% 81.0% 84.7% -2.7%

TABLE IV
COMPARISON OF F1 SCORE IN THE 14 GESTURE CLASSES CASE

F1 scores by gesture, for a version of the model without the “residual”
branch; very similar results are obtained for the model with the

“residual” branch.

balanced sequence instances (1960 train sequences + 837
test sequences) of 100 timesteps with 66 1D-channels. The
proposed model has 13829454 free parameters in total, or
13829454/66 ≈ 209537 free parameters by channel. Given
that each sequence has 100 timesteps, and because of the
regularization applied, the model likeky does not overfit.
Qualitatively speaking, no overfitting was observed exper-
imentally. The lower bound of the size of datasets needed
for deep learning is hard to determine, as it depends on
factors difficult to evaluate such as the task complexity, and
the model complexity. As a general rule of thumb, without
any regularization, one may arguably say that the size of a
dataset should be at-least 1 or 2 orders of magnitude than its
dimensions.

Zero-, One-, or Few-shot learning [47], as well as data
augmentation, transfer learning, model compression and dis-
tillation techniques can help to reduce the minimum size of
the dataset required for training and validating deep learning
models.

3) Preprocessing, Average Pooling & Data Regularity:
The input to the network assumes a sequence of poses, which
are provided by the Intel RealSense camera. The poses can
also be retrieved by using body-worn sensors or estimated
by segmenting videos [36].

We re-sampled signals to a vector of size 100 due to
the nature of the motions that were all both relatively short
as well as all being about the same duration in order of
magnitude. This may not hold for motion capture data with
very variable time spans for which one may prefer encode
with a convolution and memorize with an reccurrent cell
like an LSTM or a GRU. Average pooling seems to function
better than max pooling on the input data for our model. 1D
physical sensors data and 1D motion capture data present
more regularity than other 1D data such as text, which means
that the data is more compressible (in the time domain). With
1D gesture data it is easier to filter outliers (e.g. because
of of physical constraints on the gesture), and outliers have
less meaning than outliers in the text domain. For specific



gesture recognition applications involving a lot of semantics
like sign languages, such assumptions may probably not
hold. We suppose that averaging values from a 1D channel
sequence helps to reduce outliers weight with the smoothing.
Average pooling may act as a regularizer. As gestures are
smooth, averaging the signal probably leads to more signal
removal than noise removal. Since we stick to the MC-
DCNN framework with an application- and camera-agnostic
architecture with no a priori knowledge, our model is directly
extensible to other input formats with different 2D or 3D
joints. It does not rely much on specific channels, which
may occasionally be corrupted in real-world scenarii if the
camera does not work perfectly.

4) Recurrence; Speed: One of the goals of this paper was
to study if a convolution-only network could lead to state-of-
the-art results for gesture classification. While this result is
established for short gestures with limited semantic meaning,
the question remains open for gestures with very variable
time span. For those cases, re-sampling the input might not
always work and it might probably more efficient to insert
recurrent cells in the model, e.g. after the convolutions,
in order to benefit from the (long time range) context by
keeping track of the processed input in a memory. In that
case, one should carefully check if the model does not overfit,
as memory cells are often harder to regularize [42]. Recurrent
cells also tends to significantly increase the training time
although there is ongoing work, e.g. [4], to alleviate this
issue. LSTMs and GRUs can warp time through their gating
mechanism, but since CNNs can have gating mechanisms
too, it would be interesting to see if gestures with very
variable time span and limited semantic meaning could be
efficiently classified without involving any recurrent or auto-
regressive mechanism. One of the main advanges of using
sparse (skeletal) input data instead of dense (image) input
data lies in inference speed. On a (good) Intel Xeon CPU
E5-1630 v4 @ 3.70GHz processor, without any GPU, the
inference time is as low as ∼ 10−5s for a batch of 32 gestures,
which is several orders of magnitude sufficient for real-time
applications, even on less efficient processors for embedded
systems.

5) Architecture variations; Branch ablation: Very nu-
merous variations on the model architecture are possible,
including weights sharing or progressive channels fusion.
Regarding the existing model for instance, a partial grid
search was the reason behind the choice to use convolution
kernels sizes of 3 and 7.

Removing the residual (res. high, low) branch from the
model with 14 gestures leads to small a degradition of the
accuracy by −1.05% (resp. −0.53%, −1.31%). Though, we
can highlight the importance of the three parallel branches:
with 28 classes, the model accuracy decreases way more:
−5.24% (resp. −6.38%, −4.96%).

V. CONCLUSION & FUTURE WORKS

A. Conclusion

We introduced a new convolutional neural network to
classify (recognize) hand gestures using skeletal data only.

This neural network extends the MC-DCNN framework in
several ways. First, it introduces parallel processing branches
for each signal. The advantage of two convolutional branches
over a single one seems to be that it allows the architecture to
access different time resolutions of each signal. Second, the
use of residual connection for each signal allows the gradient
to better backpropagate in the neural network. Experimen-
tally, it seems to be useful not only regarding the (time of
the) training of the network, but also in terms of accuracy
results. Finally, dropout is also used as a regularization
technique. From a neural network perspective, we observe
that (intra- and inter-) parallel processing of sequences us-
ing convolutional neural networks can be competitive with
neural architectures that use cells specifically designed for
sequences such as GRU and LSTM cells. We applied our
model to perform hand gesture classification on a challenging
hand gesture dataset (DHG dataset). Our method outperforms
all existing published methods on this dataset. Our model
achieves a 91.28% classification accuracy (+3,04% relative
improvement) for the 14 gesture classes case and an 84.35%
classification accuracy (+2,45% relative improvement) for
the 28 gesture classes case.

B. Future Works

The biggest drawback of our gesture recognition system
is that it only works on complete sequences. One way
to overcome this issue to get a realtime, step by step,
classification could consist in the usage of non-overlapping
short time windows. The recognition model would emit a
classification of the gesture data inside each window. Finally,
the use of an objective function such as the Connectionist
Temporal Classification Loss (CTC) [15] could allow an
alignment of the classes obtained from the time windows
with the desired (actual) ones.

Sharing all the convolutions’ weights between all the
channels decreases the overall performance of the model, but
also greatly decreases the total parameters count. We plan to
study the relation between the model accuracy and its total
parameters count to find a possibly better trade-off.

Low-level features present more similarities between chan-
nels than more abstract, higher-level, features. Sharing the
weights of the first convolutions between all channels -for the
high-resolution and the low-resolution branches respectively-
could probably help to reduce the model parameters’ count
while keeping an accuracy comparable to the accuracy ob-
tained with the current model.

Another possible follow-up work may involve the in-
troduction of a spatio-temporal attention module over the
parallel features extraction module.
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