# { TC "CHAPTER FIVE: MODEL CONSTRUCTION AND VERIFICATION':" \l 1 \n }CHAPTER FIVE: MODEL CONSTRUCTION AND VERIFICATION':" \l 1 \n }CHAPTER FIVE: FIVE

### MODEL CONSTRUCTION AND VERIFICATION

#### 5.1 Introduction{ TC "5.1 Introduction" \l 2 }

In the last chapter, the necessary component models to be used with the TRNSYS program for simulating photovoltaic-powered solar domestic hot water (PV-SDHW) systems were introduced and described. These components were assembled to form a TRNSYS model of a two-tank PV-SDHW system. For purposes of verifying the accuracy of this model, experimental data were obtained from two prototype installations. The first, located at the National Institute of Standards and Technology (NIST) in Gaithersburg, MD became operational in July, 1995. The period of July 1, 1995 through June 30, 1996 was simulated using the TRNSYS model. The second prototype, located at the Florida Solar Energy Center (FSEC), became operational in December, 1995. This system was simulated for the period of December 23, 1995 through September 26, 1996.

#### 5.2 The Prototype Systems{ TC ''5.2 The Prototype Systems'' \l 2 }

#### 5.2.1 System Descriptions { TC "5.2.1 System Descriptions" \l 3 }

Table 5.2.1-1 presents the specifications for the two prototype systems. Both systems used PV modules manufactured by Siemens (model M55) and water tanks by A.O. Smith (models PEC-80 and PEH-52 for the preheat and auxiliary tanks, respectively).

|                                                                                         | NIST Prototype<br>System II                                                                    | FSEC System                                                                                             |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Location                                                                                | Gaithersburg, MD                                                                               | Cocoa, FL                                                                                               |
| Latitude                                                                                | 39.2 N                                                                                         | 28.4 N                                                                                                  |
| Photovoltaic Array Size (m <sup>2</sup> )                                               | 12.80                                                                                          | 11.52                                                                                                   |
| Array Slope                                                                             | 40                                                                                             | 24                                                                                                      |
| Number of Modules<br>in Series                                                          | 10                                                                                             | 9                                                                                                       |
| Number of Module<br>Strings in Parallel                                                 | 3                                                                                              | 3                                                                                                       |
| Nominal/Actual Preheat<br>Tank Volume (L)                                               | 303 / 272.4                                                                                    | 303 / 272.4                                                                                             |
| Nominal/Actual Auxiliary<br>Tank Volume (L)                                             | 190 / 170.4                                                                                    | 190 / 170.4                                                                                             |
| Auxiliary Tank Thermostat<br>Setpoint (C)                                               | 57.0                                                                                           | 51.7                                                                                                    |
| Preheat Tank Heat Loss<br>Coefficient (W/ C)                                            | 1.92                                                                                           | 2.17                                                                                                    |
| Auxiliary Tank Heat Loss<br>Coefficient (W/ C)                                          | 1.21                                                                                           | 1.43                                                                                                    |
| Preheat Tank Upper Heating<br>Elements (Nominal Resistance () -<br>Operating Sequence)  | 180 - 1<br>120 - 5<br>75 - 6                                                                   | 120 - 1<br>120 - 5<br>120 - 6                                                                           |
| Preheat Tank Lower Heating<br>Elements (Nominal Resistance ( ) -<br>Operating Sequence) | 180 - 2<br>110 - 3<br>75 - 4                                                                   | 90 - 2<br>90 - 3<br>110 - 4                                                                             |
| Solar Irradiance Range, $G_T (W/m^2)$ , for<br>Each Nominal Resistive Load ( )          | $180: 5 < G_{T}$ $138$ $90: 138 < G_{T}$ $273$ $50: 273 < G_{T}$ $483$ $30: 483 < G_{T}$ $687$ | 120:       18 $G_T < 200$ 51:       200 $G_T < 385$ 33:       385 $G_T < 540$ 26:       540 $G_T < 675$ |
|                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    |

Table 5.2.1-1System specifications for the two prototypes modeled in this analysis.{TC"Table5.2.1-1System specifications for the two prototypes modeled in this analysis." \l 6 }

The resistor switching controller in the NIST and FSEC installations used a reference PV cell to provide the irradiance measurement for control. In this device, the cell's short circuit current is measured and correlated with radiation intensity. Irradiation was also independently recorded using a calibrated pyranometer. The control logic in the NIST prototype was designed to make a resistor switching decision every 20 seconds based on an instantaneous irradiance reading. The

FSEC system, on the other hand, allowed switching every 60 seconds based on the average of three irradiance readings (taken every 20 seconds).

#### 5.2.2 Available Data{ TC "5.2.2 Available Data" \l 3 }

Both of the prototype installations were instrumented to record all pertinent measurements in order to assess the performance of these systems and to provide data for model validation. Shown in Table 5.2.2-1 is a list of the data which were available from these two sites in hourly intervals.

 Table 5.2.2-1
 Data available from NIST and FSEC prototype operation on an hourly basis.{ TC

 "Table 5.2.2-1
 Data available from NIST and FSEC prototype operation on an hourly basis." \l

 6 }

| energy removed from preheat tank as a result of draws (kJ)                        |
|-----------------------------------------------------------------------------------|
| energy removed from auxiliary tank as a result of draws (kJ)                      |
| energy removed from total system as a result of draws (kJ)                        |
| average inlet temperature of preheat tank ( C)                                    |
| average outlet temperature of preheat tank ( C)                                   |
| average inlet temperature of auxiliary tank ( C)                                  |
| average outlet temperature of auxiliary tank ( C)                                 |
| electrical energy supplied by PV panels (kJ)                                      |
| electrical energy supplied to auxiliary tank (kJ)                                 |
| total heat loss from preheat tank (kJ)                                            |
| total heat loss from auxiliary tank (kJ)                                          |
| mass of water removed from system (kg)                                            |
| solar energy received by PV array as measured by pyranometer (kJ/m <sup>2</sup> ) |
| solar energy received by PV array as measured by reference PV cell $(kJ/m^2)^*$   |
| average outdoor temperature ( C)                                                  |
| average PV panel temperature ( C)                                                 |
| average indoor temperature ( C)                                                   |
| average water temperature in preheat tank ( C)                                    |
| average water temperature in auxiliary tank ( C)                                  |

\* these hourly data only provided for FSEC system

In addition to the above hourly data, data were available on a minutely basis from the NIST prototype only. These minutely data included the six internal temperature measurements made in each tank to estimate the average tank temperature. The locations of these measurements were at the center of six equal volume segments along the height of the tank.

The use of the supplied hourly data was complicated by the fact that it contained some gaps lasting from a few hours to several days. These gaps resulted from temporary shutdowns of all or part of the system due to malfunction, for repair, or because of snow cover on the array and/or irradiation sensor. The FSEC system, for example, was shut down during April 12-18, 1996 as a result of a leaking auxiliary tank. The problem was solved by replacing the tank. A measured data set for use in model validation for each prototype was constructed according to the following rules: only hourly data from days containing no anomalies of any kind were included and "good" operational periods less than two days in length were excluded (Dougherty, 1996). As a result, the simulation of the NIST prototype was run in 21 separate time segments and the FSEC simulation in four segments. The discontinuous nature of the resulting simulations necessitated the use of initial tank temperature distributions for each data time period. In the case of the NIST model, this information was provided to TRNSYS using the NIST-measured tank temperature distributions for the first minute of each period. Thus TRNSYS began each simulation period with exactly the measured temperatures for each of the six temperature nodes in the tanks. In modeling the FSEC system, in the absence of minutely data, the initial tank temperatures for each period were taken as the average tank temperatures for the first hour of the period. Initial tank temperature distributions were unavailable and uniform average temperatures had to suffice as initial conditions for the TRNSYS tank models. The effect on the average tank temperature of using average tank temperature initial conditions rather than tank temperature distribution initial conditions was

determined by simulation to disappear after the first 24-36 hours of a simulation period. The use of average tank temperature as the initial condition in the FSEC simulation was assumed to have a negligible effect on long term results.

#### 5.3 Modeling the Tanks{ TC "5.3 Modeling the Tanks" \l 2 }

The preheat and auxiliary water storage tanks were simulated using the TRNSYS tank model discussed in the last chapter. The tank volumes were set as the actual volumes measured on the prototype tanks. The tank heights were set as recommended by Dougherty (1995) and were slightly lower than the actual outside tank dimensions given by the manufacturer. The tanks were divided into 18 volume segments by the tank model. Inlet water to each tank was assumed to enter the node closest to it in temperature (virtually always the bottom segment). Outlet streams from the tanks were taken from the very top of the tanks as occurs in practice. Water was assumed to have a constant specific heat of 4.18 kJ/kg K, a constant thermal conductivity of 0.64 W/m K, and a constant density of 1000 kg/m<sup>3</sup> for the temperatures encountered in this application.

The overall heat loss coefficients, U, for the preheat and auxiliary tanks were determined for purposes of modeling the NIST and FSEC systems by simulating the cooldown tests of the tanks which established their UA values in practice. In these simulations, the tanks had surface areas consistent with the actual estimated tank dimensions from Dougherty (1996). Each tank was initially at a uniform elevated temperature of 75 C with a constant ambient air temperature of 25 C. The value of UA, virtually constant with time, was plotted as the simulation progressed to observe its value. The value of U for each tank was adjusted such that during the cooldown simulation the simulated UA was nearly equal to the UA measured from the prototype systems. UA was defined as

$$UA = \frac{q_{loss}}{(T_{tank,avg} - T_a)}$$
(5.3.1)

where  $q_{loss}$  is the rate of heat loss from the tank,  $T_{tank,avg}$  is the average temperature of the water in the tank, and  $T_a$  is the ambient air temperature. The indoor ambient air temperature for the later prototype simulations was taken to be equal to that measured at the prototype installations.

The PV-connected heating elements in the preheat tank were allowed to heat the water whenever power was available. The heating elements in the auxiliary tank were controlled in a master/slave relationship in which the bottom element could be energized only when the top element was satisfied. The elements could not operate simultaneously. The positions of the heating elements and thermostats (in the auxiliary tank) were set according to the advice of Dougherty (1996). The thermostat setpoints and temperature deadbands were adjusted by trial and error such that the outlet water temperature and average tank water temperature temporal profiles for the auxiliary tank were nearly the same as those measured from the prototypes. The upper and lower thermostat set points and deadbands were assumed equal and the heating rates of the auxiliary elements were set to 4.5 kW like the prototype systems.

Possible heat losses from the pipe joining the preheat and auxiliary tanks were accounted for by use of a TRNSYS component model of a pipe. This model simulates the thermal behavior of fluid flow in a pipe using variable size segments of fluid in "plug-flow." It does not consider mixing or conduction between adjacent fluid elements. The overall heat loss coefficient for the pipe was estimated by analytical means based on the known pipe and insulation materials and dimensions.

## 5.4 Modeling the Photovoltaic Array, Resistors, and Controller{ TC"5.4 Modeling the Photovoltaic Array, Resistors, and Controller" \l 2 }

The PV array was simulated using the model discussed in the last chapter. The parameters describing the array were set according to values measured independently by Fanney and Dougherty at NIST (Dougherty, 1996). Data regarding the array dimensions was taken from the Siemens literature. Table 5.4-1 presents the PV parameters supplied by NIST and those given in

6

the Siemens literature.

Table 5.4-1 Siemens M55 PV module reference performance parameters as presented by manufacturer and from independent measurements by NIST.{ TC ''Table 5.4-1 Siemens M55 PV module reference performance parameters as presented by manufacturer and from independent measurements by NIST.'' \l 6 }

| Module     Siemens     NIST       Characteristic            |  |
|-------------------------------------------------------------|--|
| a                                                           |  |
| $G_{T,ref}$ 1000 W/m <sup>2</sup> 904.8 W/m <sup>2</sup>    |  |
| T <sub>c,ref</sub> 25 C 45.3 C                              |  |
| I <sub>sc,ref</sub> 3.4 A 3.056 A                           |  |
| V <sub>oc,ref</sub> 21.7 V 19.951 V                         |  |
| I <sub>mp,ref</sub> 3.05 A 2.781 A                          |  |
| V <sub>mp,ref</sub> 17.4 V 15.248 V                         |  |
| $\mu_{I,sc}$ $0.00~\text{A/}$ C $0.001818~\text{A/}$ C      |  |
| $\mu_{V,oc}$ $-0.12 \mbox{ V/ } C$ $-0.07561 \mbox{ V/ } C$ |  |

Using the NIST-measured parameters in the TRNSYS array model and simulating the standard reference conditions used by Siemens in establishing the values indicated that the NIST parameters produce a maximum power about 3% less than that suggested by Siemens. A constant heat loss coefficient  $U_L$  for the PV array was estimated using the nominal operating cell temperature (NOCT) reported in the Siemens literature. The NOCT is defined as the module temperature reached when the solar radiation on the cells is 800 W/m<sup>2</sup>, the wind speed is 1 m/s, and the ambient temperature is 20 C. Siemens reported the NOCT for the M55 to be 42 C ± 2 C. Using this information in Equation 4.4.12 with  $\tau\alpha$  assumed 0.9 and  $\eta_c/\tau\alpha$  small relative to unity yields a  $U_L$  of 32.7 W/m<sup>2</sup> C. Outdoor ambient temperatures used in the simulations were taken as those measured at the prototype installations.

Irradiation data from the pyranometer was input to the TRNSYS PV array component. In hourly simulations of the FSEC system and minutely simulations of the NIST system, irradiation data

from the PV reference cell was input to the switching controller model. In the NIST hourly simulations, however, the pyranometer irradiation was input to the controller as the reference cell data was not available on an hourly basis. In the long-term hourly simulations, the TRNSYS model considered switching between resistive loads only once each hour as new irradiance values were available. The constant irradiation level for each hour (in kJ/hr-m<sup>2</sup>) was taken to be equal in magnitude to the reported total irradiation for the hour (in kJ/m<sup>2</sup>). Using hourly and minutely data for an identical time period, an assessment was made of the difference in model performance resulting from the use of a constant, average hourly irradiation rate with a constant resistive load and the use of minute-by-minute irradiation rates and resistive load changes. Hourly and minutely data from nine days between May 15, 1996 and May 23, 1996 for the NIST prototype were used in two simulations. The resulting total PV array energy outputs for the nine day period using hourly and minutely simulations differed by approximately 0.5 %.

The multiple resistive elements and the switching controller were modeled using the TRNSYS component discussed in the last chapter. The values of the resistors were taken as the nominal values reported by Fanney and Dougherty (1996) for the NIST and FSEC prototypes. The order of resistor connection and the irradiance levels at which switches were initiated were also taken directly as those used in the prototypes .

### 5.5 Modeling the Hot Water Draws{ TC "5.5 Modeling the Hot Water Draws" \1 2 }

Proper draws of hot water from the auxiliary tank were simulated directly from the measured draw masses. In the prototypes, the water draw flow rate was approximately 3 gpm and the draws were initiated at the beginning of the hour in which they took place. The hot water draw profile imposed on the prototypes consisted of draws of 20.5 L, 61.0 L, and 40.5 L occurring at 6 AM, 7 AM, and 8 AM, respectively, and repeating at 6 PM, 7 PM, and 8 PM. In the hourly simulations, since only hourly water draw masses were known, the draws were assumed to occur

during the first four minutes of all draw hours. The actual hourly draws of approximately 20.5 L, 61.0 L, and 40.5 L required approximately 1.8 minutes, 5.4 min, and 3.6 min, respectively. In minutely simulations of the NIST prototype, no water draw data were available on a minutely basis and the draws were assumed to be exactly 20.5 L, 61.0 L, and 40.5 L and to occur in 2 minutes, 5 minutes, and 4 minutes, respectively. The simulated cold inlet water temperature to the preheat tank was equal to that measured in the prototype operation.

### 5.6 Modeling the NIST Prototype{ TC ''5.6 Modeling the NIST Prototype'' \1 2 }

The model described above was used first to simulate the performance of the prototype at NIST. This was the first prototype to begin operation and more detailed data was available for it (minutely) than for the FSEC system.

### 5.6.1 Experimental Measurements{ TC "5.6.1 Experimental Measurements" \1 3 }

Table 5.6.1-1 shows measured monthly and overall results for the NIST system for the twelve months of data used for verification purposes. Individual tank and overall system loads were defined as

$$load = \int_{time}^{t} c_p (T_{out} - T_{in}) dtime$$
 (5.6.1.1)

where m is the water mass flow rate,  $c_p$  is the water specific heat,  $T_{out}$  is the water temperature exiting the tank or system, and  $T_{in}$  is the water temperature entering the tank or system. Tank heat losses were defined as

$$loss = \int_{time} UA(T_{tan k} - T_{amb}) dtime$$
 (5.6.1.2)

where UA is the overall heat loss coefficient for the tank, T<sub>tank</sub> is the average water temperature in

the tank, and T<sub>anb</sub> is the ambient air temperature. The solar fraction figures refer to the preheat tank load divided by the total system load. The tank "Delta Energy" values refer to the change in tank internal energy as measured by the average tank temperatures for the first and last hours of the given period. The tank "Data Gap Energy" quantifies the internal energy added to the tank during periods of missing data as calculated from the average tank temperatures for the hours immediately before and after the gaps. The tank "Energy Unbalance" figures represent the sum of the tank load, heat loss, and change in internal energy subtracted from the sum of the tank electrical input and data gap energy addition. The Overall "Energy Unbalance" figures are the sum of the two tank unbalances. The experimental results in Table 5.6.1-1 will be discussed and compared with the results of the TRNSYS simulation of the NIST system in the following sections.

Table 5.6.1-1NIST performance results for the period July 1, 1995 through June 30, 1996.{ TC"Table 5.6.1-1NIST performance results for the period July 1, 1995 through June 30, 1996." \l6}

| Month                   | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     | Jan    | Feb     | Mar     | Apr     | May     | Jun     | Total    |
|-------------------------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|----------|
| Preheat Tank Load (kJ)  | 721417  | 802220  | 618818  | 797201  | 476559  | 518014  | 254141 | 443068  | 548316  | 618223  | 661857  | 790752  | 7250586  |
| Auxiliary Tank Load     |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                    | 508087  | 523614  | 568363  | 618039  | 825979  | 717702  | 571464 | 605080  | 482934  | 532474  | 759580  | 567432  | 7280748  |
| Total Load (kJ)         | 1216390 | 1309738 | 1171316 | 1395462 | 1286759 | 1236376 | 828864 | 1052836 | 1035399 | 1151170 | 1407585 | 1344692 | 14436587 |
| Preheat Tank Heat Loss  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                    | 27648   | 29635   | 16051   | 25018   | -5510   | 3550    | -8320  | 1674    | 10844   | 12582   | 4667    | 22627   | 140466   |
| Auxiliary Tank Heat     |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Loss (kJ)               | 93405   | 99735   | 88963   | 106264  | 95895   | 90193   | 61754  | 79093   | 79159   | 88952   | 105768  | 102509  | 1091688  |
| Water Draw (kg)         | 6492    | 6971    | 6253    | 7462    | 6741    | 6400    | 4330   | 5537    | 5541    | 6265    | 7469    | 7229    | 76691    |
| Preheat Tank Electrical |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Input (kJ)              | 736341  | 817319  | 638694  | 793635  | 469730  | 524595  | 253948 | 482448  | 633201  | 653980  | 675121  | 801966  | 7480977  |
| Auxiliary Tank          |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Electrical Input (kJ)   | 604446  | 623398  | 660984  | 731053  | 932237  | 811396  | 639554 | 688568  | 565699  | 626937  | 869043  | 668160  | 8421476  |
| Preheat Tank Average    |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Temp. (C)               | 30.0    | 30.0    | 27.6    | 28.8    | 22.7    | 24.3    | 20.9   | 24.3    | 26.7    | 26.8    | 24.9    | 28.4    | 26.5     |
| Auxiliary Tank Average  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Temp. (C)               | 56.9    | 56.8    | 56.6    | 56.7    | 56.6    | 56.7    | 56.5   | 56.7    | 56.7    | 56.6    | 56.6    | 56.6    | 56.7     |
| Total Electrical Input  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                    | 1340788 | 1440716 | 1299679 | 1524688 | 1401967 | 1335991 | 893502 | 1171015 | 1198900 | 1280917 | 1544164 | 1470126 | 15902453 |
| Solar Fraction          | 59.31%  | 61.25%  | 52.83%  | 57.13%  | 37.04%  | 41.90%  | 30.66% | 42.08%  | 52.96%  | 53.70%  | 47.02%  | 58.81%  | 50.22%   |
| Preheat Tank Delta      |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)             | 4987    | -1150   | 3769    | -16191  | 12195   | -7697   | -1230  | 12798   | -2847   | -15599  | 17888   | -3860   | 1810     |
| Auxiliary Tank Delta    |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)             | 670     | 36      | 620     | -242    | -897    | -192    | 655    | -107    | 157     | -178    | 506     | -470    | -171     |
| Preheat Tank Data Gap   |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)             | 6707    | 626     | -15725  | 0       | -4862   | -9804   | -1366  | -10760  | -45170  | -4395   | 0       | 0       | -84748   |
| Auxiliary Tank Data Gap |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)             | -463    | 7       | 727     | 0       | 1474    | 3234    | -306   | 2571    | -826    | 328     | 0       | 0       | 6745     |
| Preheat Tank Energy     | 1       |         |         |         |         |         | 1      |         |         |         |         |         |          |
| Unbalance (kJ)          | -11004  | -12760  | -15668  | -12393  | -18375  | 925     | 7990   | 14147   | 31718   | 34379   | -9291   | -7553   | 3366     |
| Auxiliary Tank Energy   |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Unbalance (kJ)          | 1822    | 20      | 3766    | 6993    | 12735   | 6927    | 5375   | 7073    | 2623    | 6017    | 3189    | -1311   | 55956    |
| Overall Energy          | 0102    | 107.00  | 11002   | 5400    | 5640    | 7052    | 10065  | 21220   | 24241   | 10205   | (101    | 00.64   | 50222    |
| Unbalance (kJ)          | -9183   | -12740  | -11903  | -5400   | -5640   | 7852    | 13365  | 21220   | 34341   | 40396   | -6101   | -8864   | 59322    |

# 5.6.2 Experimental Measurement Uncertainty{ TC ''5.6.2 Experimental Measurement Uncertainty'' \l 3 }

The uncertainties associated with the experimental measurements as they appear in the monthly format of Table 5.6.1-1 were assessed. Estimates of the single sample uncertainties in the individual temperature, electrical power, and water draw measurements appear in Table 5.6.2-1. These uncertainties were propagated by standard techniques (Taylor, 1982) to arrive at probable uncertainties in tank electrical energy input, tank water heating load, tank heat loss, and average tank water temperature. Table 5.6.2-1 shows the resulting uncertainties in these results. A detailed formulation of the uncertainty propagation can be found in Appendix C.

 Table 5.6.2-1
 Estimated individual measurement uncertainties and resulting uncertainties in

 important system performance quantities.{
 TC
 "Table 5.6.2-1
 Estimated individual measurement

 uncertainties and resulting uncertainties in important system performance quantities." \l 6 }
 Image: Comparison of the system performance quantities of the system performance quantities." \l 6 }

| Quantity                                | Measurement Uncertainty                    | Uncertainty in Total/Average |
|-----------------------------------------|--------------------------------------------|------------------------------|
| average tank temperature                | $\pm 1$ C in individual Type T             | ±1 C                         |
|                                         | thermocouple measurement                   |                              |
| tank heat loss                          | $\pm 1$ C in individual Type T             | $\pm 6.4\%$                  |
|                                         | thermocouple measurement, $\pm 5\%$        |                              |
|                                         | in individual overall tank heat            |                              |
|                                         | loss coefficient                           |                              |
| tank load                               | $\pm 0.3$ C in individual Type T           | $\pm 2.3\%$                  |
|                                         | thermocouple measurement, $\pm 1\%$        |                              |
|                                         | in hourly water draw mass                  |                              |
| electrical energy input to preheat tank | $\pm 1\%$ in voltage, $\pm 1\%$ in current | $\pm 1.4\%$                  |
| electrical energy input to auxiliary    | $\pm 1\%$ in power                         | $\pm 1.0\%$                  |
| tank                                    | _                                          |                              |

### 5.6.3 TRNSYS Predicted Performance{ TC "5.6.3 TRNSYS Predicted Performance" \1 3 }

Table 5.6.3-1 shows the results of the TRNSYS simulation of the NIST prototype. The row labels in this table denote the same information as in Table 5.6.1-1 for the experimental data.

Table 5.6.3-2 presents the absolute discrepancy between the simulated and measured result tables. Finally, Table 5.6.3-3 shows the percentage discrepancy between the TRNSYS predictions and measurements for selected quantities in the previous tables. The tank energy unbalances noted in the TRNSYS simulation results in Table 5.6.3-1 resulted from a necessarily imperfect estimate of the true average temperature of each tank volume segment during a timestep. The model takes the arithmetic average of the initial and final segment temperatures in computing time-averaged energy flows. The resulting energy balance errors cannot be avoided but the effect on simulation accuracy is small (Newton, 1995).

Table 5.6.3-1TRNSYS predicted performance results for the NIST system for July 1, 1995through June 30, 1996.{TC"Table 5.6.3-1TRNSYS predicted performance results for the<br/>NIST system for July 1, 1995 through June 30, 1996." \l 6 }

| Month                                   | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     | Jan    | Feb     | Mar     | Apr     | May     | Jun     | Total    |
|-----------------------------------------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|----------|
| Preheat Tank Load (kJ)                  | 720888  | 786294  | 600203  | 763196  | 460183  | 512740  | 256525 | 453745  | 571351  | 639054  | 653745  | 796752  | 7214675  |
| Auxiliary Tank Load                     |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                                    | 503380  | 536635  | 585283  | 649479  | 833500  | 719974  | 578972 | 604927  | 473797  | 528788  | 770851  | 570967  | 7356552  |
| Total Load (kJ)                         | 1222156 | 1320656 | 1183950 | 1410610 | 1293016 | 1231712 | 835265 | 1057737 | 1043569 | 1166031 | 1423123 | 1365435 | 14553258 |
| Preheat Tank Heat Loss                  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                                    | 18628   | 18152   | 7645    | 12887   | -11796  | -4172   | -12390 | -3088   | 10429   | 12495   | 767     | 18381   | 67940    |
| Auxiliary Tank Heat                     |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Loss (kJ)                               | 86994   | 93051   | 82008   | 98274   | 85722   | 81698   | 54998  | 71234   | 72632   | 82367   | 96330   | 96187   | 1001495  |
| Water Draw (kg)                         | 6492    | 6971    | 6253    | 7462    | 6741    | 6400    | 4330   | 5537    | 5541    | 6265    | 7469    | 7229    | 76691    |
| Preheat Tank Electrical                 |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Input (kJ)                              | 733927  | 800091  | 621991  | 760549  | 461029  | 509509  | 245012 | 474227  | 624222  | 642742  | 673559  | 807671  | 7354530  |
| Auxiliary Tank                          |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Electrical Input (kJ)                   | 589743  | 628292  | 664380  | 746300  | 918150  | 796114  | 633453 | 674207  | 542071  | 609453  | 869924  | 664977  | 8337064  |
| Preheat Tank Average                    |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Temp. (C)                               | 28.3    | 27.9    | 25.9    | 26.6    | 21.5    | 22.7    | 19.6   | 23.2    | 26.7    | 26.9    | 24.3    | 27.8    | 25.3     |
| Auxiliary Tank Average                  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Temp. (C)                               | 55.5    | 55.5    | 55.1    | 55.3    | 54.5    | 54.8    | 54.3   | 54.7    | 55.1    | 55.2    | 54.9    | 55.5    | 55.1     |
| Total Electrical Input                  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                                    | 1323670 | 1428383 | 1286371 | 1506849 | 1379179 | 1305623 | 878466 | 1148434 | 1166293 | 1252195 | 1543484 | 1472648 | 15691594 |
| Solar Fraction                          | 58.98%  | 59.54%  | 50.69%  | 54.10%  | 35.59%  | 41.63%  | 30.71% | 42.90%  | 54.75%  | 54.81%  | 45.94%  | 58.35%  | 49.57%   |
| Preheat Tank Delta                      |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)                             | 2997    | -873    | 2315    | -15273  | 11361   | -6119   | -2125  | 13103   | -2192   | -15420  | 17733   | -5548   | 213      |
| Auxiliary Tank Delta                    |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)                             | -49     | 147     | 124     | -1296   | 862     | -163    | -397   | 697     | 466     | -916    | 1380    | -195    | -402     |
| Preheat Tank Data Gap                   |         | 1       | 1       |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)                             | 8578    | 2852    | -13030  | 0       | -1314   | -6597   | -1144  | -9460   | -43476  | -5433   | 0       | 0       | -69024   |
| Auxiliary Tank Data Gap                 |         |         |         |         | 1.100   |         |        |         |         |         |         |         |          |
| Energy (kJ)                             | 204     | 821     | 2447    | 0       | 1409    | 5524    | 1134   | 3272    | 5036    | 1245    | 0       | 0       | 21092    |
| Preheat Tank Energy                     |         | 100     | 1000    |         |         |         | 10.00  | 1005    |         |         |         |         |          |
| Unbalance (kJ)<br>Auxiliary Tank Energy | -7      | -630    | -1202   | -261    | -33     | 463     | 1858   | 1007    | 1158    | 1181    | 1313    | -1914   | 2679     |
| Auxiliary Tank Energy<br>Unbalance (kJ) | 270     | 720     | 500     | 157     | 505     | 100     | 1014   | (22)    | 212     | 450     | 1262    | 1092    | 509      |
| Overall Energy                          | -378    | -720    | -588    | -157    | -525    | 128     | 1014   | 622     | 212     | 459     | 1363    | -1982   | 509      |
| Unbalance (kJ)                          | -385    | -1350   | -1790   | -418    | -558    | 591     | 2873   | 1629    | 1370    | 1640    | 2676    | -3896   | 3188     |

Table 5.6.3-2 Absolute discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996.{ TC "Table 5.6.3-2 Absolute discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996." \l 6 }

| Month                                   | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Total   |
|-----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| Preheat Tank Load (kJ)                  | -529   | -15926 | -18615 | -34005 | -16376 | -5274  | 2384   | 10677  | 23035  | 20831  | -8112  | 6000   | -35911  |
| Auxiliary Tank Load<br>(kJ)             | -4707  | 13021  | 16920  | 31440  | 7521   | 2272   | 7508   | -153   | -9137  | -3686  | 11271  | 3535   | 75804   |
| Total Load (kJ)                         | 5766   | 10918  | 12634  | 15148  | 6257   | -4664  | 6401   | 4901   | 8170   | 14861  | 15538  | 20743  | 116671  |
| Preheat Tank Heat Loss<br>(kJ)          | -9020  | -11483 | -8406  | -12130 | -6285  | -7722  | -4070  | -4762  | -415   | -87    | -3900  | -4246  | -72526  |
| Auxiliary Tank Heat<br>Loss (kJ)        | -6411  | -6684  | -6955  | -7990  | -10172 | -8495  | -6756  | -7859  | -6527  | -6585  | -9438  | -6323  | -90193  |
| Water Draw (kg)                         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| Preheat Tank Electrical<br>Input (kJ)   | -2414  | -17228 | -16704 | -33086 | -8701  | -15086 | -8936  | -8221  | -8978  | -11238 | -1562  | 5705   | -126446 |
| Auxiliary Tank<br>Electrical Input (kJ) | -14704 | 4894   | 3395   | 15247  | -14087 | -15283 | -6101  | -14360 | -23628 | -17484 | 882    | -3183  | -84412  |
| Preheat Tank Average<br>Temp. (C)       | -1.8   | -2.2   | -1.7   | -2.2   | -1.2   | -1.6   | -1.3   | -1.1   | 0.1    | 0.1    | -0.6   | -0.6   | -1.2    |
| Auxiliary Tank Average<br>Temp. (C)     | -1.4   | -1.3   | -1.5   | -1.4   | -2.1   | -1.9   | -2.2   | -2.0   | -1.6   | -1.4   | -1.7   | -1.1   | -1.6    |
| Total Electrical Input<br>(kJ)          | -17118 | -12333 | -13308 | -17839 | -22788 | -30368 | -15037 | -22581 | -32606 | -28722 | -681   | 2522   | -210859 |
| Solar Fraction                          | -0.32% | -1.71% | -2.14% | -3.02% | -1.45% | -0.27% | 0.05%  | 0.81%  | 1.79%  | 1.10%  | -1.08% | -0.45% | -0.65%  |
| Preheat Tank Delta<br>Energy (kJ)       | -1990  | 277    | -1454  | 918    | -834   | 1579   | -896   | 305    | 655    | 179    | -155   | -1688  | -1597   |
| Auxiliary Tank Delta<br>Energy (kJ)     | -719   | 111    | -496   | -1054  | 1759   | 29     | -1053  | 804    | 309    | -738   | 875    | 276    | -231    |
| Preheat Tank Data Gap<br>Energy (kJ)    | 1872   | 2226   | 2694   | 0      | 3548   | 3207   | 222    | 1300   | 1694   | -1037  | 0      | 0      | 15725   |
| Auxiliary Tank Data Gap<br>Energy (kJ)  | 667    | 814    | 1720   | 0      | -65    | 2290   | 1440   | 700    | 5862   | 917    | 0      | 0      | 14346   |
| Preheat Tank Energy<br>Unbalance (kJ)   | 10997  | 12131  | 14466  | 12132  | 18342  | -462   | -6132  | -13140 | -30560 | -33198 | 10604  | 5639   | -688    |
| Auxiliary Tank Energy<br>Unbalance (kJ) | -2200  | -740   | -4353  | -7150  | -13260 | -6799  | -4360  | -6452  | -2411  | -5558  | -1827  | -671   | -55447  |
| Overall Energy<br>Unbalance (kJ)        | 8797   | 11391  | 10113  | 4982   | 5082   | -7261  | -10492 | -19591 | -32971 | -38756 | 8777   | 4968   | -56134  |

Table 5.6.3-3 Percentage discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996.{ TC "Table 5.6.3-3 Percentage discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996." \l 6 }

| Month                              | Jul    | Aug    | Sep    | Oct    | Nov     | Dec     | Jan    | Feb     | Mar   | Apr   | May    | Jun    | Total  |
|------------------------------------|--------|--------|--------|--------|---------|---------|--------|---------|-------|-------|--------|--------|--------|
| Preheat Tank Load                  | -0.1%  | -2.0%  | -3.0%  | -4.3%  | -3.4%   | -1.0%   | 0.9%   | 2.4%    | 4.2%  | 3.4%  | -1.2%  | 0.8%   | -0.5%  |
| Auxiliary Tank Load                | -0.9%  | 2.5%   | 3.0%   | 5.1%   | 0.9%    | 0.3%    | 1.3%   | 0.0%    | -1.9% | -0.7% | 1.5%   | 0.6%   | 1.0%   |
| Total Load                         | 0.5%   | 0.8%   | 1.1%   | 1.1%   | 0.5%    | -0.4%   | 0.8%   | 0.5%    | 0.8%  | 1.3%  | 1.1%   | 1.5%   | 0.8%   |
| Preheat Tank Heat Loss             | -32.6% | -38.7% | -52.4% | -48.5% | -114.1% | -217.5% | -48.9% | -284.5% | -3.8% | -0.7% | -83.6% | -18.8% | -51.6% |
| Auxiliary Tank Heat<br>Loss        | -6.9%  | -6.7%  | -7.8%  | -7.5%  | -10.6%  | -9.4%   | -10.9% | -9.9%   | -8.2% | -7.4% | -8.9%  | -6.2%  | -8.3%  |
| Water Draw                         | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%    | 0.0%    | 0.0%   | 0.0%    | 0.0%  | 0.0%  | 0.0%   | 0.0%   | 0.0%   |
| Preheat Tank Electrical<br>Input   | -0.3%  | -2.1%  | -2.6%  | -4.2%  | -1.9%   | -2.9%   | -3.5%  | -1.7%   | -1.4% | -1.7% | -0.2%  | 0.7%   | -1.7%  |
| Auxiliary Tank<br>Electrical Input | -2.4%  | 0.8%   | 0.5%   | 2.1%   | -1.5%   | -1.9%   | -1.0%  | -2.1%   | -4.2% | -2.8% | 0.1%   | -0.5%  | -1.0%  |
| Total Electrical Input             | -1.3%  | -0.9%  | -1.0%  | -1.2%  | -1.6%   | -2.3%   | -1.7%  | -1.9%   | -2.7% | -2.2% | 0.0%   | 0.2%   | -1.3%  |

#### 14 Comparison of Prediction and Experimental Data'' \l 3 }

#### 5.6.4.1 The Overall System{ TC "5.6.4.1 The Overall System" \1 4 }

A comparison of the TRNSYS model performance in relation to the measured data is best accomplished by examining the results of the individual system components: the PV array and resistance controller, the preheat tank, and the auxiliary tank. Such analyses are presented in the following sections.

The TRNSYS simulation of the NIST system predicted the preheat tank, auxiliary tank, and overall system loads to within 0.5%, 1.0% and 0.8% of their measured values for the twelve month simulation, respectively. The simulation predicted the total preheat tank, auxiliary tank, and system electrical energy inputs to within 1.7%, 1.0%, and 1.3% of measured values, respectively. With the exception of the preheat tank electrical input, each of these discrepancies in the simulated results is less than the corresponding uncertainty in the simulated results. The twelve-month solar fraction measured by NIST was 50.2% while the simulation resulted in a solar fraction of 49.6%.

### 5.6.4.2 The PV Array Energy Output{ TC "5.6.4.2 The PV Array Energy Output" \1 4 }

The results in Table 5.6.3-3 show that the TRNSYS model of the NIST PV array predicted its electrical energy output to be 1.7% lower than was measured for twelve months of operation and to within 5.0% for each month of the period. The uncertainty in the measured result was  $\pm 1.4\%$ . Close examination of the hourly simulation results indicated that the discrepancy followed a regular diurnal pattern. Figure 5.6.4.2-1 shows the average PV array energy output and the average *discrepancy* in PV energy output between prediction and measurement as a function of the hour of the day. The average hourly discrepancy is plotted both for a simulation in which the TRNSYS model calculated the PV array temperature independently and for one in which the array was assumed to be at exactly the measured temperature at all times. This figure indicates that the

model typically overpredicted energy output during early morning and late evening hours and tended to underpredict energy output during midday hours. This underprediction during midday hours was the dominant feature and led to an overall predicted result lower than measured.

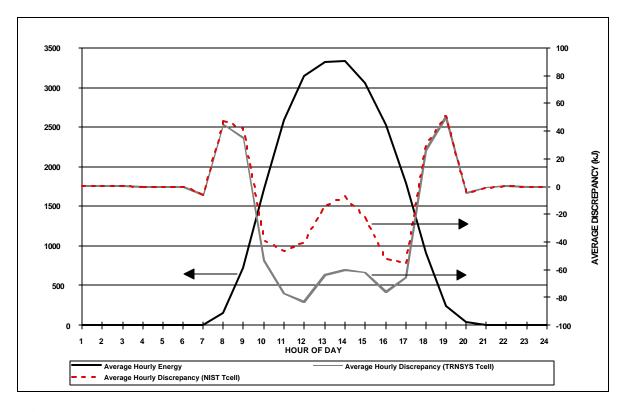



Figure 5.6.4.2-1 Average hourly PV array energy output and discrepancy between measurement and simulation as a function of the hour of day. Simulation results for the use of a TRNSYS-calculated array temperature and the NIST-measured temperature are shown. { TC ''Figure 5.6.4.2-1 Average hourly PV array energy output and discrepancy between measurement and simulation as a function of the hour of day. Simulation results for the use of a TRNSYS-calculated array temperature and the NIST-measured temperature are shown. { 'IFigure 5.6.4.2-1 Average hourly PV array energy output and discrepancy between measurement and simulation as a function of the hour of day. Simulation results for the use of a TRNSYS-calculated array temperature and the NIST-measured temperature are shown.'' \I 5 }

A complete explanation for the pattern of discrepancy noted between the TRNSYS PV array model and the measured performance of the array at NIST proved elusive. The effect of irradiation incidence angle was considered as was the influence of the array temperature on power output. The array model made use of a very simple means of calculating array temperature which may not have been satisfactory. Finally, other possibilities were identified but not studied in depth.

A pyranometer measures the total radiation on a surface, regardless of the incidence angle. As the incidence angle of radiation on the glass cover of a PV array is increased, it might be expected that a greater fraction of that radiation would be reflected or absorbed and not transmitted to the silicon PV cells. The TRNSYS model, which relied on pyranometer-measured irradiation to calculate the power output at any time, might then have overpredicted the power during morning and evening hours when the incidence angle of beam radiation was highest. Indeed, such a phenomenon appeared in the model results depicted in Figure 5.6.4.2-1. The data compiled by NIST in evaluating the reference module parameters lent additional credence to an incidence angle explanation for the morning and evening discrepancies. These data included array temperature, open circuit voltage, short circuit current, and voltage and current pairs at five or six different load resistances for over 200 combinations of ambient temperature, irradiance, and angle of incidence (Dougherty, 1996). The array used in these tests consisted of four parallel strings of ten serieswired Siemens M55 modules. Figures 5.6.4.2-2 and 5.6.4.2-3 present the percentage difference between the measured and predicted power as a function of irradiance and angle of incidence, respectively. Based on these figures, the discrepancy remained around zero except at irradiance levels lower than about 400 W/m<sup>2</sup> and angles of incidence greater than about 65 . Beyond these limits the model overpredicted array power quite dramatically. Irradiation angle of incidence, then, provides a reasonable explanation for the morning and evening discrepancies noted in Figure 5.6.4.2-1.

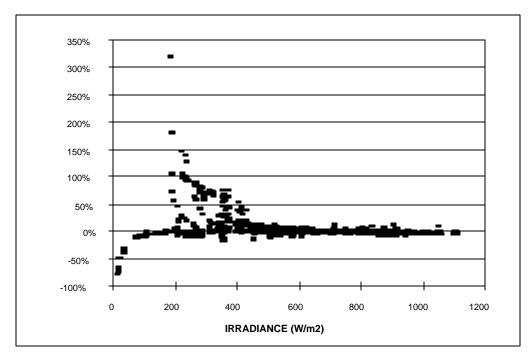
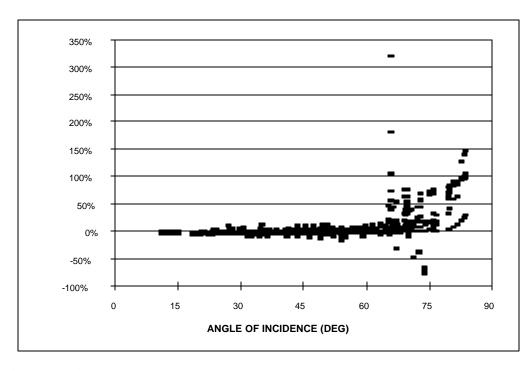




Figure 5.6.4.2-2 Percentage discrepancy in array power between TRNSYS model and measurements as a function of instantaneous irradiance level. Data from NIST module parameter determination. { TC ''Figure 5.6.4.2-2 Percentage discrepancy in array power between TRNSYS model and measurements as a function of instantaneous irradiance level. Data from NIST module parameter determination. '' \l 5 }



**Figure 5.6.4.2-3** Percentage discrepancy in array power between TRNSYS model and measurements as a function of angle of incidence of irradiation. Data from NIST module parameter determination.{ TC **''Figure 5.6.4.2-3** Percentage discrepancy in array power between TRNSYS model and measurements as a function of angle of incidence of irradiation. Data from NIST module parameter determination. Use the parameter determination of angle of incidence of irradiation. Data from NIST module parameter determination. The parameter determination of angle of incidence of irradiation. Data from NIST module parameter determination. Use the parameter determination of angle of incidence of irradiation. Data from NIST module parameter determination.'' **\l 5 \** 

The effect of the TRNSYS calculation of array temperature was also investigated. For the twelve month simulation, the TRNSYS array model resulted in an overall average array temperature of 19.3 C while the corresponding measured quantity was 18.1 C. When the model was run using the measured array temperature at each hour rather than an independently calculated one, the predicted total PV energy output rose by 1.2% and the overall discrepancy in this quantity fell to - 0.5%. Figure 5.6.4.2-1 shows the impact of array temperature on the diurnal discrepancy pattern. It appears that the discrepancy was reduced to nearly zero around the noon hour as a result of correcting the array temperature. The error introduced to the model by the use of a simple array temperature calculation, then, provides a reasonable explanation for the discrepancy noted in Figure 5.6.4.2-1 around the noon hour.

As for the discrepancies not accounted for by incidence angle or array temperature effects,

these were likely the result of several factors. First, the PV array model itself was not a perfect representation of reality. The model used module performance results extracted from a single environmental condition and extrapolated these results to all other conditions based on some assumptions about the physics of a photovoltaic cell. The work of Townsend (1989) concluded that the model used by TRNSYS was accurate to about 5% around the maximum power point based on comparison with measured results from several module manufacturers. This 5% uncertainty was confirmed here in modeling the NIST prototype. Second, variations in the spectral composition of the radiation impinging on the array during a day or year may have impacted the resulting performance positively or negatively. The TRNSYS array model made no account for such effects and indeed, from a practical standpoint, experimental data on the spectral composition of solar radiation were not available. The PV module performance data chosen to form the reference parameters might have resulted from an environmental condition slightly out of the ordinary in atmospheric clarity, radiation spectral composition, or some other factor. This would have resulted in actual performance different from that suggested by this single test. The use of the measured total hourly irradiation (rather than minutely data) by the resistor-switching controller, resulting in resistive load changes only once each hour, may have affected the long-term prediction of PV energy output by about 0.5% as noted in Section 5.4. Finally, the use of pyranometermeasured irradiance data by the simulated controller instead of that of the reference PV cell (unavailable for the NIST system) may have affected the results from the TRNSYS PV array model.

### 5.6.4.3 The Preheat Tank Load and Heat Loss{ TC "5.6.4.3 The Preheat Tank Load and Heat Loss" \14 }

In order to examine the performance of the preheat tank model independent of any discrepancy in electrical input, the TRNSYS simulation of the NIST system was executed using the measured PV electrical energy output as the electrical input to the tank at each hour. It was

19

necessary to assume that this electrical energy was evenly distributed between the upper and lower resistive element clusters as the measured data indicated only the total electrical energy quantity. The results of this simulation are presented in Tables 5.6.4.3-1 through 5.6.4.3-3. The formats of these tables match those of Tables 5.6.3-1 through 5.6.3-3 presented above.

Table 5.6.4.3-1 TRNSYS predicted performance results for the NIST system for July 1, 1995 through June 30, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by NIST).{ TC ''Table 5.6.4.3-1 TRNSYS predicted performance results for the NIST system for July 1, 1995 through June 30, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by NIST).'' \l 6 }

| Month                                 | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     | Jan    | Feb     | Mar     | Apr     | May     | Jun     | Total    |
|---------------------------------------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|----------|
| Preheat Tank Load (kJ)                | 731896  | 807049  | 621595  | 794840  | 473417  | 528478  | 266587 | 466092  | 585617  | 653614  | 662199  | 794028  | 7385412  |
| Auxiliary Tank Load                   |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                                  | 514559  | 535253  | 581211  | 633573  | 832846  | 720802  | 578283 | 610695  | 496184  | 549109  | 775811  | 589084  | 7417410  |
| Total Load (kJ)                       | 1222353 | 1320800 | 1183600 | 1410223 | 1293099 | 1231927 | 835327 | 1057769 | 1048139 | 1167161 | 1422976 | 1365551 | 14558926 |
| Preheat Tank Heat Loss                |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                                  | 14653   | 15302   | 6430    | 11353   | -12470  | -5023   | -12241 | -3991   | 8990    | 10924   | -1400   | 13148   | 45674    |
| Auxiliary Tank Heat                   |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Loss (kJ)                             | 86794   | 92892   | 81822   | 98090   | 85524   | 81651   | 54945  | 71039   | 72442   | 82012   | 96126   | 95860   | 999195   |
| Water Draw (kg)                       | 6492    | 6971    | 6253    | 7462    | 6741    | 6400    | 4330   | 5537    | 5541    | 6265    | 7469    | 7229    | 76691    |
| Preheat Tank Electrical               |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Input (kJ)                            | 736341  | 817319  | 638694  | 793635  | 469730  | 524595  | 253948 | 482448  | 633201  | 653980  | 675121  | 801966  | 7480977  |
| Auxiliary Tank                        |         | 1       |         |         |         |         |        |         |         |         |         |         |          |
| Electrical Input (kJ)                 | 600826  | 626547  | 659939  | 730113  | 917304  | 796758  | 632614 | 679757  | 564793  | 628868  | 875034  | 682610  | 8395162  |
| Preheat Tank Average                  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Temp. (C)                             | 27.2    | 27.1    | 25.5    | 26.2    | 21.3    | 22.4    | 19.6   | 22.9    | 26.3    | 26.5    | 23.8    | 26.6    | 24.8     |
| Auxiliary Tank Average                |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Temp. (C)                             | 55.5    | 55.4    | 55.1    | 55.2    | 54.5    | 54.8    | 54.3   | 54.7    | 55.0    | 55.1    | 54.8    | 55.4    | 55.0     |
| Total Electrical Input                |         |         |         |         |         |         |        |         |         |         |         |         |          |
| (kJ)                                  | 1337167 | 1443865 | 1298633 | 1523748 | 1387034 | 1321353 | 886562 | 1162204 | 1197994 | 1282848 | 1550155 | 1484575 | 15876139 |
| Solar Fraction                        | 59.88%  | 61.10%  | 52.52%  | 56.36%  | 36.61%  | 42.90%  | 31.91% | 44.06%  | 55.87%  | 56.00%  | 46.54%  | 58.15%  | 50.73%   |
| Preheat Tank Delta                    |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)                           | 629     | -94     | 206     | -12301  | 9202    | -6117   | -2961  | 11977   | -1473   | -12680  | 12998   | -3314   | -758     |
| Auxiliary Tank Delta                  |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Energy (kJ)                           | -9      | -5      | 47      | -1397   | 975     | -217    | -396   | 965     | -4      | -1009   | 1730    | -340    | -488     |
| Preheat Tank Data Gap                 | 100000  | 1005    | 10101   |         |         |         |        | =       | 200 KT  |         |         |         | 150.40   |
| Energy (kJ)                           | 10838   | 4305    | -10104  | 0       | 371     | -6774   | 596    | -7331   | -38867  | -904    | 0       | 0       | -47869   |
| Auxiliary Tank Data Gap               | 121     | 877     | 2662    | 0       | 1521    | 5591    | 1374   | 3575    | 4084    | 1769    | 0       | 0       | 21572    |
| Energy (kJ)                           | 121     | 0//     | 2002    | 0       | 1321    | 5591    | 13/4   | 3373    | 4084    | 1/09    | U       | U       | 21372    |
| Preheat Tank Energy<br>Unbalance (kJ) | 1       | -633    | 358     | -256    | -47     | 482     | 3159   | 1039    | 1200    | 1218    | 1325    | -1896   | 2779     |
| Auxiliary Tank Energy                 | 1       | -033    | 338     | -230    | -4/     | 402     | 5159   | 1039    | 1200    | 1216    | 1525    | -1090   | 2119     |
| Unbalance (kJ)                        | -397    | -716    | -479    | -152    | -520    | 114     | 1156   | 632     | 255     | 525     | 1367    | -1994   | 618      |
| Overall Energy                        |         |         |         |         |         |         |        |         |         |         |         |         |          |
| Unbalance (kJ)                        | -396    | -1349   | -120    | -409    | -567    | 595     | 4314   | 1671    | 1455    | 1743    | 2692    | -3891   | 3397     |

20

Table 5.6.4.3-2 Absolute discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by NIST).{ TC "Table 5.6.4.3-2 Absolute discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by NIST). NIST)." \L 6 \Lambda Comparent Com

| Month                                   | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    | Jan   | Feb    | Mar    | Apr    | May    | Jun    | Total  |
|-----------------------------------------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|
| Preheat Tank Load (kJ)                  | 10479  | 4829   | 2777   | -2361  | -3142  | 10464  | 12446 | 23024  | 37301  | 35391  | 342    | 3276   | 134826 |
| Auxiliary Tank Load                     |        |        |        |        |        |        |       |        |        |        |        |        |        |
| (kJ)                                    | 6472   | 11639  | 12848  | 15534  | 6867   | 3100   | 6819  | 5615   | 13250  | 16635  | 16231  | 21652  | 136662 |
| Total Load (kJ)                         | 5963   | 11062  | 12284  | 14761  | 6340   | -4449  | 6463  | 4933   | 12740  | 15991  | 15391  | 20859  | 122339 |
| Preheat Tank Heat Loss                  |        |        |        |        |        |        |       |        |        |        |        |        |        |
| (kJ)                                    | -12995 | -14334 | -9622  | -13665 | -6960  | -8573  | -3922 | -5665  | -1854  | -1658  | -6067  | -9479  | -94791 |
| Auxiliary Tank Heat                     |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Loss (kJ)                               | -6611  | -6844  | -7141  | -8174  | -10371 | -8542  | -6809 | -8054  | -6717  | -6940  | -9642  | -6649  | -92494 |
| Water Draw (kg)                         | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
| Preheat Tank Electrical                 |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Input (kJ)                              | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      |
| Auxiliary Tank                          |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Electrical Input (kJ)                   | -3620  | 3149   | -1045  | -940   | -14933 | -14638 | -6940 | -8811  | -906   | 1931   | 5991   | 14450  | -26314 |
| Preheat Tank Average                    |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Temp. (C)                               | -2.8   | -2.9   | -2.1   | -2.6   | -1.4   | -1.9   | -1.3  | -1.4   | -0.4   | -0.3   | -1.1   | -1.8   | -1.7   |
| Auxiliary Tank Average                  |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Temp. (C)                               | -1.4   | -1.3   | -1.5   | -1.5   | -2.2   | -1.9   | -2.2  | -2.1   | -1.7   | -1.5   | -1.8   | -1.2   | -1.7   |
| Total Electrical Input                  |        |        |        |        |        |        |       |        |        |        |        |        |        |
| (kJ)                                    | -3620  | 3149   | -1045  | -940   | -14933 | -14638 | -6940 | -8811  | -906   | 1931   | 5991   | 14450  | -26314 |
| Solar Fraction                          | 0.57%  | -0.15% | -0.31% | -0.77% | -0.42% | 1.00%  | 1.25% | 1.98%  | 2.92%  | 2.30%  | -0.48% | -0.66% | 0.50%  |
| Preheat Tank Delta                      |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Energy (kJ)                             | -4358  | 1056   | -3562  | 3890   | -2993  | 1581   | -1731 | -821   | 1374   | 2920   | -4890  | 546    | -2568  |
| Auxiliary Tank Delta                    |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Energy (kJ)                             | -679   | -41    | -573   | -1155  | 1873   | -25    | -1051 | 1072   | -161   | -831   | 1225   | 130    | -317   |
| Preheat Tank Data Gap                   |        |        |        |        |        |        |       |        |        |        |        |        |        |
| Energy (kJ)                             | 4132   | 3679   | 5620   | 0      | 5233   | 3030   | 1962  | 3429   | 6302   | 3492   | 0      | 0      | 36879  |
| Auxiliary Tank Data Gap                 |        |        | 1005   |        |        |        | 1.100 | 1000   | 1010   |        |        |        |        |
| Energy (kJ)                             | 584    | 870    | 1935   | 0      | 47     | 2357   | 1680  | 1003   | 4910   | 1441   | 0      | 0      | 14827  |
| Preheat Tank Energy                     | 11005  | 10107  | 1 (007 | 10106  | 10220  |        | 40.21 | 12100  | 20510  | 221.61 | 10/1/  | 5457   | 507    |
| Unbalance (kJ)                          | 11005  | 12127  | 16027  | 12136  | 18328  | -443   | -4831 | -13108 | -30518 | -33161 | 10616  | 5657   | -587   |
| Auxiliary Tank Energy<br>Unbalance (kJ) | -2219  | -736   | -4244  | -7145  | -13255 | -6813  | -4219 | -6441  | -2368  | -5492  | -1823  | -683   | -55338 |
|                                         | -2219  | -750   | -4244  | -/143  | -13233 | -0813  | -4219 | -0441  | -2308  | -3492  | -1623  | -065   | -33336 |
| Overall Energy<br>Unbalance (kJ)        | 8787   | 11391  | 11782  | 4991   | 5073   | -7256  | -9050 | -19549 | -32886 | -38653 | 8793   | 4974   | -55925 |
| Unbalance (KJ)                          | 0/0/   | 11591  | 11/82  | 4771   | 5075   | -1230  | -2030 | -17549 | -52880 | -20022 | 0193   | 47/4   | -33723 |

Table 5.6.4.3-3 Percentage discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by NIST).{ TC ''Table 5.6.4.3-3 Percentage discrepancy between TRNSYS prediction and NIST measurement for July 1, 1995 through June 30, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by NIST).'' \\ I 6 \}

| Month                              | Jul    | Aug    | Sep    | Oct    | Nov     | Dec     | Jan    | Feb     | Mar    | Apr    | May     | Jun    | Total  |
|------------------------------------|--------|--------|--------|--------|---------|---------|--------|---------|--------|--------|---------|--------|--------|
| Preheat Tank Load                  | 1.5%   | 0.6%   | 0.4%   | -0.3%  | -0.7%   | 2.0%    | 4.9%   | 5.2%    | 6.8%   | 5.7%   | 0.1%    | 0.4%   | 1.9%   |
| Auxiliary Tank Load                | 1.3%   | 2.2%   | 2.3%   | 2.5%   | 0.8%    | 0.4%    | 1.2%   | 0.9%    | 2.7%   | 3.1%   | 2.1%    | 3.8%   | 1.9%   |
| Total Load                         | 0.5%   | 0.8%   | 1.0%   | 1.1%   | 0.5%    | -0.4%   | 0.8%   | 0.5%    | 1.2%   | 1.4%   | 1.1%    | 1.6%   | 0.8%   |
| Preheat Tank Heat Loss             | -47.0% | -48.4% | -59.9% | -54.6% | -126.3% | -241.5% | -47.1% | -338.4% | -17.1% | -13.2% | -130.0% | -41.9% | -67.5% |
| Auxiliary Tank Heat                |        |        |        |        |         |         |        |         |        |        |         |        |        |
| Loss                               | -7.1%  | -6.9%  | -8.0%  | -7.7%  | -10.8%  | -9.5%   | -11.0% | -10.2%  | -8.5%  | -7.8%  | -9.1%   | -6.5%  | -8.5%  |
| Water Draw                         | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%    | 0.0%    | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%    | 0.0%   | 0.0%   |
| Preheat Tank Electrical<br>Input   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%    | 0.0%    | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%    | 0.0%   | 0.0%   |
| Auxiliary Tank<br>Electrical Input | -0.6%  | 0.5%   | -0.2%  | -0.1%  | -1.6%   | -1.8%   | -1.1%  | -1.3%   | -0.2%  | 0.3%   | 0.7%    | 2.2%   | -0.3%  |
| Total Electrical Input             | -0.3%  | 0.2%   | -0.1%  | -0.1%  | -1.1%   | -1.1%   | -0.8%  | -0.8%   | -0.1%  | 0.2%   | 0.4%    | 1.0%   | -0.2%  |

Shown in Figure 5.6.4.3-1 are the measured and predicted monthly preheat tank loads. Error bars on the measured data represent the estimated uncertainties in these values based on the discussion above. Two sets of predicted results are shown in Figure 5.6.4.3-1: one in which the model analyzed the PV-SDHW system as a whole and one in which the preheat tank was modeled with errors introduced by the PV array suppressed (PV array electrical output fixed by measurement).

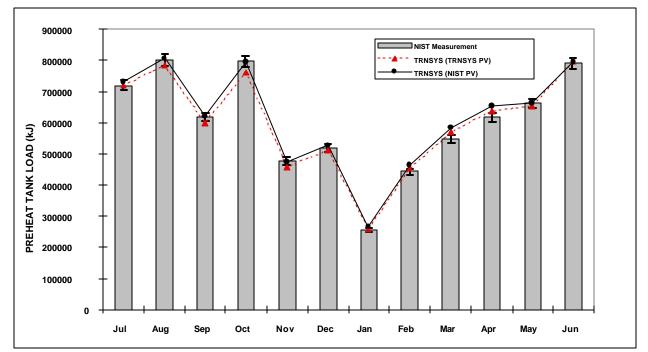
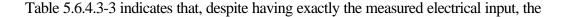




Figure 5.6.4.3-1 Measured and predicted monthly preheat tank water heating load. Predicted results with the electrical energy input determined by TRNSYS and measured by NIST are shown. Error bars on experimental data are 2.3%. { TC "Figure 5.6.4.3-1 Measured and predicted monthly preheat tank water heating load. Predicted results with the electrical energy input determined by NIST are shown. Error bars on experimental data are 2.3%. { TC "Figure 5.6.4.3-1 Measured and predicted monthly preheat tank water heating load. Predicted results with the electrical energy input determined by NIST are shown. Error bars on experimental data are 2.3%. [ U ] 5 }



simulated preheat tank load for the NIST system was about 1.9% higher than measured for the twelve month analysis. This load prediction falls within the estimated  $\pm 2.3\%$  uncertainty in the measured data.

The simulated preheat tank average temperature was 1.7 C lower than measured and the heat loss was 67.5% low (although this percentage is large, the tank heat loss was a small quantity less than 2.0% of the energy added to the tank - so the absolute error is small). The corresponding measurement uncertainties were  $\pm 1.0$  C and  $\pm 6.4\%$ , respectively. In order to find the origin of the tank temperature discrepancy, minutely tank temperature distributions for May 15-23, 1996 were studied. These data indicated that the most significant discrepancy in tank node temperature occurred in the bottom node. During these nine days, the predicted average temperature for the top five nodes averaged 0.5 C lower than measured while that of the sixth node averaged 5.6 C lower. Noting that the monthly preheat tank energy unbalances in the simulated results were substantially smaller than those measured (0.2% versus 2.4% of the total energy added to the tank), the possibility must be considered that the measured bottom-node tank temperature did not accurately represent the average temperature of the bottom sixth of the tank. The placement of the thermocouple for this measurement too close to the lower resistor cluster, for example, might have resulted in an inaccurate representation of the *average* temperature in the region. Indeed, very sharp temperature inclines are possible in the bottom node, complicating the placement of a thermocouple to measure the average temperature. An overstatement of this temperature in the measured data would lead to an overstatement of the average tank temperature and subsequently to an overstatement of tank heat losses. The overstatement of measured temperature by 1.7 C throughout the simulation period approximately accounts for the noted discrepancy in preheat tank heat losses.

# 5.6.4.4 The Auxiliary Tank Load and Heat Loss{ TC "5.6.4.4 The Auxiliary Tank Load and Heat Loss" \1 4 }

In order to examine the performance of the auxiliary tank model independent of the effect of the inlet water temperature from the preheat tank, a simulation of the NIST PV-SDHW prototype was run with the inlet water temperature to this tank fixed by the measured temperature during draws. Tables 5.6.4.3-1 through 5.6.4.3-3 show the results of this simulation. Shown in Figure 5.6.4.4-1 are the measured and predicted monthly auxiliary tank loads. Error bars on the measured data represent the estimated uncertainties in these values based on the discussion above. Two sets of predicted results are shown in Figure 5.6.4.4-1: one in which the model analyzed the PV-SDHW system as a whole and one in which the auxiliary tank was modeled with errors introduced by the preheat tank suppressed (inlet water temperature fixed by measurement).

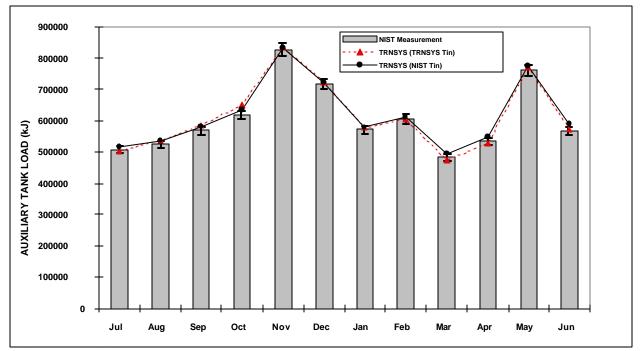



Figure 5.6.4.4-1 Measured and predicted monthly auxiliary tank water heating load. Predicted results with the inlet water temperature determined by TRNSYS and measured by NIST are shown. Error bars on experimental data are 2.3%.{ TC ''Figure 5.6.4.4-1 Measured and predicted monthly auxiliary tank water heating load. Predicted results with the inlet water temperature determined by TRNSYS and measured by NIST are shown. Error bars on experimental data are 2.3%.'\l 5 }

Table 5.6.4.3-3 indicates that with the simulation inlet water temperature set to the measured value for each draw hour, the auxiliary tank model underpredicted the electrical energy consumption by just 0.3% when the thermostat setpoint was 58.6 C. However, the simulation overpredicted the tank load by 1.9%. The uncertainties in the measured electrical energy input and tank load were  $\pm 1.0\%$  and  $\pm 2.3\%$ , respectively. The auxiliary tank average temperature and heat loss determined by the simulation were 1.7 C and 8.5% lower, respectively, than the measured quantities, similar to the result for the preheat tank simulation. The measurement uncertainties in average temperature and heat loss were  $\pm 1.0$  C and  $\pm 6.4\%$ , respectively. For the minutely simulation of May 15-23, 1996, the average temperature predicted by the model for the top five nodes was just 0.4 C higher than measured while that for the sixth node was 13.5 C lower than measured. This evidence gives further credence to the suggestion that the placement of the thermocouple for the bottom tank node temperature resulted in measurements which did not represent the average temperature of that region. The monthly auxiliary tank energy unbalances in the simulated data were small compared with those implicit in the measured data (0.1% versus 0.7% of the total energy added to the tank).

### 5.7 Modeling the FSEC Prototype{ TC "5.7 Modeling the FSEC Prototype" \1 2 }

In order to further examine the adequacy of the TRNSYS model of a PV-SDHW system, the performance of the prototype installed at FSEC was simulated and the model output compared with measured results.

## 5.7.1 Experimental Measurements{ TC "5.7.1 Experimental Measurements" \1 3 }

Table 5.7.1-1 presents the experimental results measured from the prototype installed at FSEC for the period of December 23, 1995 through September 26, 1996. The format of this table

matches its counterpart in Table 5.6.1-1 for the NIST system.

| Month                                  | Dec    | Jan     | Feb     | Mar     | Apr    | Mav    | Jun    | Jul    | Aug    | Sep    | Total   |
|----------------------------------------|--------|---------|---------|---------|--------|--------|--------|--------|--------|--------|---------|
| Preheat Tank Load (kJ)                 | 146949 | 552753  | 626603  | 680776  | 524391 | 670472 | 555283 | 555553 | 559099 | 468948 | 5340827 |
| Auxiliary Tank Load                    | 140747 | 552155  | 020003  | 000770  | 524571 | 070472 | 555265 | 555555 | 557077 | 400740 | 5540627 |
| (kJ)                                   | 164384 | 446806  | 276857  | 281551  | 119665 | 90405  | 157034 | 68248  | 99452  | 132578 | 1836981 |
| Total Load (kJ)                        | 309418 | 992167  | 895864  | 955211  | 639744 | 755481 | 707977 | 619581 | 653511 | 596996 | 7125949 |
| Preheat Tank Heat Loss                 |        |         |         |         |        |        |        |        |        |        |         |
| (kJ)                                   | 10834  | 51681   | 60326   | 68231   | 58668  | 87486  | 77083  | 79564  | 80616  | 66027  | 640517  |
| Auxiliary Tank Heat                    |        |         |         |         |        |        |        |        |        |        |         |
| Loss (kJ)                              | 33204  | 110904  | 101156  | 108172  | 76207  | 97458  | 93860  | 84090  | 89255  | 79298  | 873603  |
| Water Draw (kg)                        | 2163   | 7462    | 6992    | 7487    | 5542   | 7497   | 7229   | 6537   | 7080   | 6328   | 64316   |
| Preheat Tank Electrical                |        |         |         |         |        |        |        |        |        |        |         |
| Input (kJ)                             | 155397 | 607320  | 666870  | 741240  | 573369 | 757329 | 628248 | 637255 | 618882 | 528387 | 5914296 |
| Auxiliary Tank                         |        |         |         |         |        |        |        |        |        |        |         |
| Electrical Input (kJ)                  | 192971 | 544615  | 367054  | 379045  | 191505 | 177073 | 247242 | 140495 | 178757 | 208169 | 2626926 |
| Preheat Tank Average<br>Temp. (C)      | 27.0   | 30.3    | 33.4    | 34.1    | 37.2   | 39.3   | 37.8   | 40.2   | 39.2   | 38.0   | 36.2    |
| Auxiliary Tank Average                 | 27.0   | 30.5    | 55.4    | 34.1    | 51.2   | 39.5   | 37.8   | 40.2   | 39.2   | 36.0   | 30.2    |
| Temp. (C)                              | 50.4   | 50.4    | 50.5    | 50.6    | 50.4   | 49.7   | 49.4   | 49.7   | 49.3   | 49.1   | 49.9    |
| Total Electrical Input                 | 2011   | 50.1    | 0010    | 5010    | 00.1   | 12.0   | 1711   | 1211   | 1010   | 17.1   | 0.0     |
| (kJ)                                   | 348368 | 1151935 | 1033924 | 1120286 | 764874 | 934402 | 875490 | 777749 | 797638 | 736555 | 8541222 |
| Solar Fraction                         | 47.49% | 55.71%  | 69.94%  | 71.27%  | 81.97% | 88.75% | 78.43% | 89.67% | 85.55% | 78.55% | 74.95%  |
| Preheat Tank Delta                     |        |         |         |         |        |        |        |        |        |        |         |
| Energy (kJ)                            | 442    | 14901   | -9248   | 6776    | -4875  | 7622   | 4851   | 720    | -4375  | 1225   | 17462   |
| Auxiliary Tank Delta                   |        |         |         |         |        |        |        |        |        |        |         |
| Energy (kJ)                            | 433    | 87      | -630    | -535    | 11     | -2076  | 2320   | 1374   | -3339  | 1239   | -1411   |
| Preheat Tank Data Gap                  |        |         |         |         |        |        |        |        |        |        |         |
| Energy (kJ)                            | 0      | 0       | 0       | 0       | -1267  | 0      | 0      | -7418  | 9329   | 0      | 644     |
| Auxiliary Tank Data Gap<br>Energy (kJ) | 0      | 0       | 0       | 0       | -3571  | 0      | 0      | 9126   | 5836   | 0      | 11390   |
| Preheat Tank Energy                    | 0      | 0       | 0       | 0       | -5571  | 0      | U      | 7120   | 5650   | 0      | 11390   |
| Unbalance (kJ)                         | -2828  | -12015  | -10811  | -14543  | -6081  | -8252  | -8969  | -6001  | -7130  | -7813  | -83865  |
| Auxiliary Tank Energy                  | 2320   | 12010   |         | 1.010   |        | 0200   | 2,07   |        |        |        | 22002   |
| Unbalance (kJ)                         | -5050  | -13182  | -10328  | -10143  | -7950  | -8713  | -5972  | -4092  | -776   | -4946  | -70857  |
| Overall Energy                         |        |         |         |         |        |        |        |        |        |        |         |
| Unbalance (kJ)                         | -7878  | -25197  | -21138  | -24686  | -14031 | -16965 | -14941 | -10092 | -7905  | -12759 | -154721 |

Table 5.7.1-1FSEC performance results for the period December 23, 1995 through September26, 1996.{ TC''Table 5.7.1-1FSEC performance results for the period December 23, 1995<br/>through September 26, 1996.'' \l 6 }

# 5.7.2 Experimental Measurement Uncertainty{ TC "5.7.2 Experimental Measurement Uncertainty" \1 3 }

The FSEC prototype system was instrumented in identical fashion to that at NIST.

Therefore, experimental measurement uncertainties and uncertainties in calculated system

performance results were considered to be the same at FSEC as at NIST and appear in Table

5.6.2-1.

# 5.7.3 TRNSYS Predicted Performance{ TC "5.7.3 TRNSYS Predicted Performance" \1 3 }

Table 5.7.3-1 presents the results of the TRNSYS simulation of the FSEC system. Tables 5.7.3-2 and 5.7.3-3 show the absolute and percentage discrepancies, respectively, between the TRNSYS prediction and FSEC measurements. These tables are identical in structure to those presented in Tables 5.6.3-1 through 5.6.3-3 for the NIST prototype.

Table 5.7.3-1 TRNSYS predicted performance results for the FSEC system for December 23, 1995 through September 26, 1996.{ TC ''Table 5.7.3-1 TRNSYS predicted performance results for the FSEC system for December 23, 1995 through September 26, 1996.'' \l 6 }

|                                     |        | 1       | 1       | 1       | 1       | 1       | 1       | 1      | 1       | 1       | -       |
|-------------------------------------|--------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|
| Month                               | Dec    | Jan     | Feb     | Mar     | Apr     | May     | Jun     | Jul    | Aug     | Sep     | Total   |
| Preheat Tank Load (kJ)              | 151030 | 567331  | 648939  | 709402  | 557414  | 718086  | 594620  | 588309 | 598779  | 500447  | 5634358 |
| Auxiliary Tank Load                 |        |         |         |         |         |         |         |        |         |         |         |
| (kJ)                                | 154740 | 413264  | 242890  | 244710  | 100610  | 58358   | 114337  | 58972  | 68919   | 95179   | 1551976 |
| Total Load (kJ)                     | 305172 | 978085  | 888871  | 950837  | 655279  | 772627  | 705649  | 643966 | 664306  | 592833  | 7157625 |
| Preheat Tank Heat Loss              |        |         |         |         |         |         |         |        |         |         |         |
| (kJ)                                | 10051  | 47799   | 57146   | 64783   | 57918   | 86680   | 76934   | 77993  | 80791   | 65598   | 625693  |
| Auxiliary Tank Heat                 |        |         |         |         |         |         |         |        |         |         |         |
| Loss (kJ)                           | 31441  | 106007  | 97705   | 103789  | 71585   | 91516   | 88427   | 79267  | 84343   | 75243   | 829322  |
| Water Draw (kg)                     | 2163   | 7462    | 6992    | 7487    | 5542    | 7497    | 7229    | 6537   | 7080    | 6328    | 64316   |
| Preheat Tank Electrical             |        |         |         |         |         |         |         |        |         |         |         |
| Input (kJ)                          | 161693 | 629332  | 697080  | 781112  | 607818  | 813941  | 676298  | 675289 | 668058  | 568612  | 6279232 |
| Auxiliary Tank                      |        |         |         |         |         |         |         |        |         |         |         |
| Electrical Input (kJ)               | 184379 | 519393  | 340834  | 348494  | 173703  | 148596  | 203500  | 126331 | 147025  | 171004  | 2363258 |
| Preheat Tank Average                | 26.7   | 20.0    | 22.1    | 22.0    | 27.4    | 20.6    | 20.1    | 10.2   | 20.5    | 20.2    | 26.2    |
| Temp. (C)<br>Auxiliary Tank Average | 26.7   | 29.9    | 33.1    | 33.8    | 37.4    | 39.6    | 38.1    | 40.3   | 39.5    | 38.2    | 36.2    |
| . 0                                 | 48.3   | 48.6    | 40.0    | 48.7    | 48.0    | 47.4    | 47.1    | 47.4   | 47.1    | 47.1    | 47.8    |
| Temp. (C)<br>Total Electrical Input | 48.5   | 48.0    | 48.8    | 48.7    | 48.0    | 47.4    | 47.1    | 47.4   | 47.1    | 47.1    | 47.8    |
| (kJ)                                | 346072 | 1148725 | 1037913 | 1129606 | 781521  | 962537  | 879798  | 801620 | 815082  | 739616  | 8642490 |
| Solar Fraction                      | 49.49% | 58.00%  | 73.01%  | 74.61%  | 85.07%  | 92.94%  | 84.27%  | 91.36% | 90.14%  | 84.42%  | 78.72%  |
| Preheat Tank Delta                  | 49.49% | 38.00%  | 75.01%  | 74.0170 | 85.0770 | 92.9470 | 04.2770 | 91.30% | 90.1470 | 04.4270 | 10.1270 |
| Energy (kJ)                         | 652    | 14139   | -8523   | 7252    | -5819   | 9404    | 4139    | 273    | -3584   | 1689    | 18931   |
| Auxiliary Tank Delta                | 052    | 14157   | 0525    | 1252    | 5017    | 7404    | 4157    | 215    | 5504    | 1007    | 10751   |
| Energy (kJ)                         | -1641  | 412     | 440     | 209     | -758    | -1170   | 665     | 662    | -793    | 519     | -2590   |
| Preheat Tank Data Gap               |        |         |         |         |         |         |         |        |         |         |         |
| Energy (kJ)                         | 0      | 0       | 0       | 0       | 1341    | 0       | 0       | -7768  | 8842    | 0       | 2415    |
| Auxiliary Tank Data Gap             |        |         |         |         |         |         | 1       |        |         |         |         |
| Energy (kJ)                         | 0      | 0       | 0       | 0       | -2520   | 0       | 0       | 12377  | 5531    | 0       | 15388   |
| Preheat Tank Energy                 |        |         |         |         |         |         |         |        |         |         |         |
| Unbalance (kJ)                      | -40    | 62      | -482    | -325    | -353    | -229    | 605     | 946    | 913     | 878     | 2665    |
| Auxiliary Tank Energy               |        |         |         |         |         |         |         |        |         |         |         |
| Unbalance (kJ)                      | -161   | -290    | -200    | -214    | -253    | -108    | 72      | -193   | 86      | 63      | -62     |
| Overall Energy                      |        |         |         |         |         |         |         |        |         |         |         |
| Unbalance (kJ)                      | -202   | -228    | -683    | -539    | -606    | -337    | 677     | 753    | 999     | 940     | 2603    |

Table 5.7.3-2Absolute discrepancy between TRNSYS prediction and FSEC measurement for<br/>December 23, 1995 through September 26, 1996.{ TC ''Table 5.7.3-2Absolute discrepancy<br/>between TRNSYS prediction and FSEC measurement for December 23, 1995 through September<br/>26, 1996.'' \l 6 }

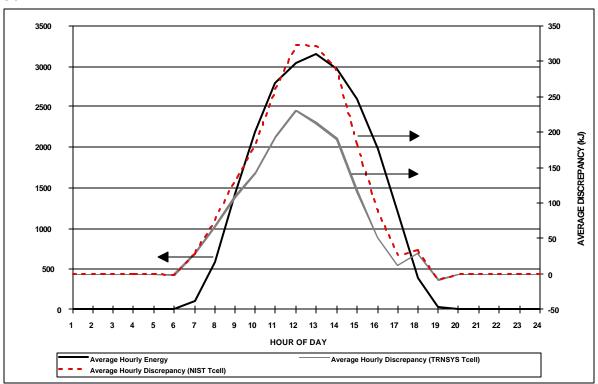
| Month                               | Dec   | Jan    | Feb    | Mar    | 4      | Maria  | Jun    | Jul    | 4      | G      | Total   |
|-------------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|                                     |       |        |        |        | Apr    | May    |        |        | Aug    | Sep    |         |
| Preheat Tank Load (kJ)              | 4081  | 14579  | 22336  | 28625  | 33023  | 47614  | 39337  | 32756  | 39681  | 31499  | 293531  |
| Auxiliary Tank Load                 |       |        |        |        |        |        |        |        |        |        |         |
| (kJ)                                | -9645 | -33542 | -33967 | -36842 | -19056 | -32047 | -42698 | -9276  | -30534 | -37399 | -285005 |
| Total Load (kJ)                     | -4246 | -14081 | -6993  | -4374  | 15534  | 17146  | -2328  | 24385  | 10796  | -4164  | 31675   |
| Preheat Tank Heat Loss              |       |        |        |        |        |        |        |        |        |        |         |
| (kJ)                                | -784  | -3882  | -3180  | -3448  | -750   | -806   | -149   | -1571  | 175    | -428   | -14823  |
| Auxiliary Tank Heat                 |       |        |        |        |        |        |        |        |        |        |         |
| Loss (kJ)                           | -1762 | -4897  | -3451  | -4384  | -4622  | -5942  | -5433  | -4824  | -4912  | -4055  | -44281  |
| Water Draw (kg)                     | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| Preheat Tank Electrical             |       |        |        |        |        |        |        |        |        |        |         |
| Input (kJ)                          | 6296  | 22011  | 30210  | 39872  | 34449  | 56612  | 48050  | 38034  | 49176  | 40225  | 364936  |
| Auxiliary Tank                      |       |        |        |        |        |        |        |        |        |        |         |
| Electrical Input (kJ)               | -8592 | -25222 | -26221 | -30552 | -17802 | -28478 | -43742 | -14164 | -31732 | -37165 | -263668 |
| Preheat Tank Average                |       |        |        |        |        |        |        |        |        |        |         |
| Temp. (C)<br>Auxiliary Tank Average | -0.3  | -0.4   | -0.3   | -0.3   | 0.1    | 0.2    | 0.3    | 0.0    | 0.3    | 0.2    | 0.0     |
|                                     |       | 4.0    |        |        |        |        |        |        |        |        |         |
| Temp. (C)<br>Total Electrical Input | -2.1  | -1.8   | -1.7   | -1.9   | -2.5   | -2.4   | -2.3   | -2.3   | -2.2   | -2.0   | -2.1    |
| (kJ)                                | -2296 | -3211  | 3989   | 9320   | 16647  | 28134  | 4308   | 23871  | 17444  | 3060   | 101268  |
| Solar Fraction                      | / 0   |        |        |        |        |        |        |        |        |        |         |
| Preheat Tank Delta                  | 2.00% | 2.29%  | 3.06%  | 3.34%  | 3.10%  | 4.19%  | 5.83%  | 1.69%  | 4.58%  | 5.86%  | 3.77%   |
|                                     |       | 7.0    | 726    | 17.6   | 0.12   | 1702   | 710    | 4.47   | 701    | 141    | 1.470   |
| Energy (kJ)<br>Auxiliary Tank Delta | 211   | -762   | 726    | 476    | -943   | 1782   | -712   | -447   | 791    | 464    | 1470    |
| Energy (kJ)                         | -2074 | 325    | 1070   | 745    | -769   | 906    | -1655  | -712   | 2546   | -719   | -1179   |
| Preheat Tank Data Gap               | -2074 | 323    | 1070   | 743    | -709   | 900    | -1055  | -/12   | 2340   | -/19   | -11/9   |
| Energy (kJ)                         | 0     | 0      | 0      | 0      | 2608   | 0      | 0      | -350   | -487   | 0      | 1771    |
| Auxiliary Tank Data Gap             | 0     | 0      | 0      | 0      | 2000   | 0      | 0      | -550   | -407   | 0      | 1//1    |
| Energy (kJ)                         | 0     | 0      | 0      | 0      | 1051   | 0      | 0      | 3251   | -305   | 0      | 3998    |
| Preheat Tank Energy                 | 0     | 0      |        | 0      | 1051   | 5      | 0      | 5451   | 505    | 5      | 5770    |
| Unbalance (kJ)                      | 2787  | 12077  | 10328  | 14218  | 5728   | 8023   | 9574   | 6947   | 8042   | 8691   | 86530   |
| Auxiliary Tank Energy               | 2.01  | 12011  | 10020  | 1.210  | 5720   | 5025   |        |        |        | 5071   | 50550   |
| Unbalance (kJ)                      | 4889  | 12892  | 10128  | 9929   | 7697   | 8605   | 6043   | 3899   | 862    | 5009   | 70795   |
| Overall Energy                      |       |        |        |        |        |        |        |        |        |        |         |
| Unbalance (kJ)                      | 7676  | 24969  | 20456  | 24147  | 13424  | 16628  | 15618  | 10846  | 8904   | 13700  | 157324  |

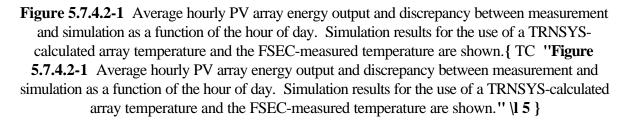
Table 5.7.3-3Percentage discrepancy between TRNSYS prediction and FSEC measurement forDecember 23, 1995 through September 26, 1996.{ TC "Table 5.7.3-3Percentage discrepancybetween TRNSYS prediction and FSEC measurement for December 23, 1995 through September26, 1996." \l 6 }

| Month                              | Dec   | Jan   | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Total  |
|------------------------------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Preheat Tank Load                  | 2.8%  | 2.6%  | 3.6%   | 4.2%   | 6.3%   | 7.1%   | 7.1%   | 5.9%   | 7.1%   | 6.7%   | 5.5%   |
| Auxiliary Tank Load                | -5.9% | -7.5% | -12.3% | -13.1% | -15.9% | -35.4% | -27.2% | -13.6% | -30.7% | -28.2% | -15.5% |
| Total Load                         | -1.4% | -1.4% | -0.8%  | -0.5%  | 2.4%   | 2.3%   | -0.3%  | 3.9%   | 1.7%   | -0.7%  | 0.4%   |
| Preheat Tank Heat Loss             | -7.2% | -7.5% | -5.3%  | -5.1%  | -1.3%  | -0.9%  | -0.2%  | -2.0%  | 0.2%   | -0.6%  | -2.3%  |
| Auxiliary Tank Heat<br>Loss        | -5.3% | -4.4% | -3.4%  | -4.1%  | -6.1%  | -6.1%  | -5.8%  | -5.7%  | -5.5%  | -5.1%  | -5.1%  |
| Water Draw                         | 0.0%  | 0.0%  | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |
| Preheat Tank Electrical<br>Input   | 4.1%  | 3.6%  | 4.5%   | 5.4%   | 6.0%   | 7.5%   | 7.6%   | 6.0%   | 7.9%   | 7.6%   | 6.2%   |
| Auxiliary Tank<br>Electrical Input | -4.5% | -4.6% | -7.1%  | -8.1%  | -9.3%  | -16.1% | -17.7% | -10.1% | -17.8% | -17.9% | -10.0% |
| Total Electrical Input             | -0.7% | -0.3% | 0.4%   | 0.8%   | 2.2%   | 3.0%   | 0.5%   | 3.1%   | 2.2%   | 0.4%   | 1.2%   |

#### 28

### 5.7.4 Comparison of Prediction and Experimental Data{ TC ''5.7.4 Comparison of Prediction and Experimental Data'' \l 3 }


#### 5.7.4.1 The Overall System{ TC "5.7.4.1 The Overall System" \1 4 }


A comparison of simulation and measurement for the FSEC system was conducted in the same manner as for the NIST system discussed above. The examinations of the individual components will be presented in the sections that follow.

The TRNSYS simulation of the FSEC system predicted the preheat tank, auxiliary tank, and overall system loads to within 5.5%, 15.5%, and 0.4%, respectively for the nine month simulation. Measurement uncertainties in these quantities were  $\pm 2.3\%$ . The preheat tank, auxiliary tank, and total electrical energy inputs were predicted to within 6.2%, 10.0%, and 1.2%, respectively. The corresponding measurement uncertainties were  $\pm 1.4\%$ ,  $\pm 1.0\%$ , and about  $\pm 1.2\%$ , respectively. The nine-month solar fraction measured by FSEC was 74.9% while the simulation resulted in a solar fraction of 78.7%. The differences between simulation and measurement were primarily the result of a large discrepancy in the performance of the PV array as discussed below.

### 5.7.4.2 The PV Array Energy Output{ TC "5.7.4.2 The PV Array Energy Output" \1 4 }

Table 5.7.3-3 shows that the TRNSYS model overpredicted the PV array energy output by 6.2% during the nine month simulation. This discrepancy exceeded the measurement uncertainty of  $\pm 1.4\%$ . Figure 5.7.4.2-1 indicates that the discrepancy occurred consistently throughout the average day.





The pattern of PV energy discrepancy noted in Figure 5.7.4.2-1 is remarkably different from that shown in Figure 5.6.4.2-1 for the NIST prototype. In this case, a consistent overprediction occurs both during morning and evening and during the middle of the day. While a consideration of incidence angle effects may help explain the discrepancies noted during morning and evening, the large discrepancy throughout the rest of the day suggests some systematic difference in the actual operating conditions and those assumed by the model. The factor of array temperature worked here in the opposite direction from correcting the discrepancy. TRNSYS predicted an overall average array temperature of 26.8 C using a simple balance of energy while

30

the average measured value was 24.5 C. As seen in Figure 5.7.4.2-1, using lower measured array temperature would in fact widen the discrepancy in array energy output. Thus the factors thought most important in the case of the NIST simulation discrepancy were little help in the case of the FSEC discrepancy.

The true cause of the large discrepancy in PV energy output for the FSEC system could not be determined. Possible contributors to this pattern, however, were identified. First, one or more of the PV modules used in the array at FSEC may have been defective, malfunctioning, or in some way not operating in line with the performance parameters measured for that type of module at NIST in the past. Since the PV modules used in the two installations were of the same make and model, it had to be assumed that the same model parameters must apply in both cases. Second, the model might have consistently overpredicted the power if the total irradiation contained a large fraction which was diffuse, as diffuse radiation is known to have a large effective angle of incidence about 60 (Duffie and Beckman, 1991). While the annual average clearness index in Cocoa, FL is slightly higher than in Gaithersburg, MD (Duffie and Beckman, 1991), the climate in Cocoa is known for creating a high fraction of diffuse radiation due to suspended moisture in the atmosphere. Thus it is conceivable that if such bright, hazy conditions existed consistently during the operation of the FSEC prototype, the energy output of the PV array there would be less than that suggested by the measured total solar irradiation and ambient temperature. Third, the wiring of the array, switching controller, and resistors may have been connected in a manner different from that at NIST leading somehow to inferior performance. Ultimately, only two known differences existed between the two PV system installations: the number and arrangement of the modules in the array and the frequency of controller switching decisions. The first of these was correctly accounted for in the TRNSYS array models and the second was considered to be of negligible importance in light of the fact that the model made switching decisions only once each hour anyway.

#### 5.7.4.3 The Preheat Tank Load and Heat Loss TC "5.7.4.3 The Preheat Tank

#### 32 Load and Heat Loss" \1 4 }

Tables 5.7.4.3-1, 5.7.4.3-2, and 5.7.4.3-3 show the results of an independent examination of the TRNSYS preheat tank model in simulating the FSEC system. Figure 5.7.4.3-1 shows the measured and predicted monthly preheat tank loads. This figure shows results from a simulation using the TRNSYS-calculated PV energy output and that measured by FSEC.

Table 5.7.4.3-1 TRNSYS predicted performance results for the FSEC system for December 23, 1995 through September 26, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by FSEC).{ TC ''Table 5.7.4.3-1 TRNSYS predicted performance results for the FSEC system for December 23, 1995 through September 26, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by FSEC).' \L 6 }

| Month                           | Dec    | Jan     | Feb     | Mar     | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Total   |
|---------------------------------|--------|---------|---------|---------|--------|--------|--------|--------|--------|--------|---------|
| Preheat Tank Load (kJ)          | 145532 | 553019  | 623653  | 677062  | 529662 | 673228 | 553911 | 558558 | 559412 | 467549 | 5341587 |
| Auxiliary Tank Load             |        |         |         |         |        |        |        |        |        |        |         |
| (kJ)                            | 160614 | 435792  | 276134  | 287394  | 115289 | 84644  | 146455 | 76900  | 97398  | 127619 | 1808239 |
| Total Load (kJ)                 | 305449 | 980077  | 893548  | 959082  | 634051 | 748296 | 696258 | 627243 | 650929 | 591830 | 7086762 |
| Preheat Tank Heat Loss          |        |         |         |         |        |        |        |        |        |        |         |
| (kJ)                            | 8775   | 42503   | 50944   | 58070   | 52046  | 78048  | 69696  | 71353  | 73262  | 59476  | 564173  |
| Auxiliary Tank Heat             |        |         |         |         |        |        |        |        |        |        |         |
| Loss (kJ)                       | 31362  | 105780  | 97559   | 103932  | 71683  | 91268  | 88908  | 79610  | 85357  | 75607  | 831065  |
| Water Draw (kg)                 | 2163   | 7462    | 6992    | 7487    | 5542   | 7497   | 7229   | 6537   | 7080   | 6328   | 64316   |
| Preheat Tank Electrical         |        |         |         |         |        |        |        |        |        |        |         |
| Input (kJ)                      | 155397 | 607320  | 666870  | 741240  | 573369 | 757329 | 628248 | 637255 | 618882 | 528387 | 5914297 |
| Auxiliary Tank                  |        |         |         |         |        |        |        |        |        |        |         |
| Electrical Input (kJ)           | 190017 | 542395  | 373228  | 391638  | 188110 | 174225 | 236585 | 144901 | 177716 | 203898 | 2622713 |
| Preheat Tank Average            |        |         |         |         |        |        |        |        |        |        |         |
| Temp. (C)                       | 25.8   | 28.9    | 31.8    | 32.5    | 35.8   | 37.9   | 36.6   | 38.8   | 38.0   | 36.8   | 34.8    |
| Auxiliary Tank Average          |        |         |         |         |        |        |        |        |        |        |         |
| Temp. (C)                       | 48.3   | 48.5    | 48.8    | 48.8    | 48.0   | 47.4   | 47.3   | 47.6   | 47.4   | 47.3   | 47.9    |
| Total Electrical Input          |        |         |         |         |        |        |        |        |        |        |         |
| (kJ)                            | 345414 | 1149715 | 1040097 | 1132879 | 761479 | 931554 | 864833 | 782156 | 796598 | 732285 | 8537010 |
| Solar Fraction                  | 47.65% | 56.43%  | 69.80%  | 70.59%  | 83.54% | 89.97% | 79.56% | 89.05% | 85.94% | 79.00% | 75.37%  |
| Preheat Tank Delta              |        |         |         |         |        |        |        |        |        |        |         |
| Energy (kJ)                     | 1128   | 11733   | -7272   | 6418    | -3959  | 6275   | 4067   | 1401   | -4166  | 532    | 15550   |
| Auxiliary Tank Delta            |        |         |         |         |        |        |        |        |        |        |         |
| Energy (kJ)                     | -1793  | 1087    | -243    | 492     | -1073  | -1575  | -1248  | 996    | -1612  | -438   | -3204   |
| Preheat Tank Data Gap           | -      |         |         | _       |        |        |        |        |        |        |         |
| Energy (kJ)                     | 0      | 0       | 0       | 0       | 4042   | 0      | 0      | -5035  | 10474  | 0      | 9481    |
| Auxiliary Tank Data Gap         | 0      | 0       | 0       |         | 2461   | 0      | 0      | 12460  | (55)   | 0      | 16551   |
| Energy (kJ) Preheat Tank Energy | 0      | 0       | 0       | 0       | -2461  | 0      | 0      | 12460  | 6552   | 0      | 16551   |
| Unbalance (kJ)                  | 20     |         | 455     | 210     | 229    | 222    | 574    | 000    | 040    | 820    | 2469    |
| Auxiliary Tank Energy           | -39    | 66      | -455    | -310    | -338   | -223   | 574    | 908    | 849    | 829    | 2468    |
| Unbalance (kJ)                  | -165   | -264    | -223    | -180    | -250   | -113   | 2470   | -145   | 3125   | 1110   | 3163    |
| Overall Energy                  | -105   | -204    | 223     | 100     | 230    | 115    | 2470   | 145    | 5125   | 1110   | 5105    |
| Unbalance (kJ)                  | -204   | -198    | -678    | -489    | -588   | -335   | 3044   | 763    | 3973   | 1939   | 5631    |

Table 5.7.4.3-2 Absolute discrepancy between TRNSYS prediction and FSEC measurement for December 23, 1995 through September 26, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by FSEC).{ TC "Table 5.7.4.3-2 Absolute discrepancy between TRNSYS prediction and FSEC measurement for December 23, 1995 through September 26, 1996 (used electrical input to preheat tank and inlet water temperature to

| Month                                   | Dec   | Jan    | Feb    | Mar    | Apr   | May   | Jun    | Jul    | Aug   | Sep   | Total  |
|-----------------------------------------|-------|--------|--------|--------|-------|-------|--------|--------|-------|-------|--------|
| Preheat Tank Load (kJ)                  | -1417 | 266    | -2949  | -3714  | 5272  | 2756  | -1372  | 3005   | 313   | -1399 | 760    |
| Auxiliary Tank Load                     |       |        |        |        |       |       |        |        |       |       |        |
| ( <b>kJ</b> )                           | -3770 | -11015 | -723   | 5843   | -4376 | -5761 | -10580 | 8652   | -2054 | -4959 | -28743 |
| Total Load (kJ)                         | -3969 | -12090 | -2316  | 3871   | -5694 | -7185 | -11719 | 7663   | -2582 | -5166 | -39187 |
| Preheat Tank Heat Loss                  |       |        |        |        |       |       |        |        |       |       |        |
| (kJ)                                    | -2059 | -9178  | -9382  | -10161 | -6622 | -9438 | -7387  | -8211  | -7354 | -6550 | -76343 |
| Auxiliary Tank Heat                     |       |        |        |        |       |       |        |        |       |       |        |
| Loss (kJ)                               | -1842 | -5124  | -3597  | -4240  | -4523 | -6190 | -4951  | -4480  | -3898 | -3691 | -42537 |
| Water Draw (kg)                         | 0     | 0      | 0      | 0      | 0     | 0     | 0      | 0      | 0     | 0     | 0      |
| Preheat Tank Electrical                 |       |        |        |        |       |       |        |        |       |       |        |
| Input (kJ)                              | 0     | 0      | 0      | 0      | 0     | 0     | 0      | 0      | 0     | 0     | 1      |
| Auxiliary Tank                          |       |        |        |        |       |       |        |        |       |       |        |
| Electrical Input (kJ)                   | -2954 | -2220  | 6173   | 12593  | -3395 | -2848 | -10657 | 4407   | -1041 | -4271 | -4213  |
| Preheat Tank Average                    |       |        |        |        |       |       |        |        |       |       |        |
| Temp. (C)                               | -1.1  | -1.5   | -1.6   | -1.6   | -1.4  | -1.4  | -1.2   | -1.4   | -1.2  | -1.2  | -1.4   |
| Auxiliary Tank Average                  |       |        |        |        |       |       |        |        |       |       |        |
| Temp. (C)                               | -2.1  | -1.9   | -1.7   | -1.8   | -2.4  | -2.4  | -2.1   | -2.2   | -1.9  | -1.9  | -2.0   |
| Total Electrical Input                  |       |        |        |        |       |       |        |        |       |       |        |
| ( <b>k</b> J)                           | -2954 | -2220  | 6174   | 12593  | -3395 | -2848 | -10657 | 4407   | -1041 | -4270 | -4212  |
| Solar Fraction                          | 0.15% | 0.71%  | -0.15% | -0.67% | 1.57% | 1.22% | 1.12%  | -0.62% | 0.39% | 0.45% | 0.43%  |
| Preheat Tank Delta                      |       |        |        |        |       |       |        |        |       |       |        |
| Energy (kJ)                             | 687   | -3168  | 1976   | -358   | 917   | -1347 | -784   | 681    | 208   | -693  | -1911  |
| Auxiliary Tank Delta                    |       |        |        |        |       |       |        |        |       |       |        |
| Energy (kJ)                             | -2226 | 1000   | 388    | 1028   | -1085 | 502   | -3568  | -378   | 1728  | -1677 | -1792  |
| Preheat Tank Data Gap                   |       |        |        |        |       |       | _      |        |       |       |        |
| Energy (kJ)                             | 0     | 0      | 0      | 0      | 5309  | 0     | 0      | 2383   | 1145  | 0     | 8837   |
| Auxiliary Tank Data Gap                 | 0     | 0      | 0      | 0      | 1110  | 0     | 0      | 2224   | 716   | 0     | 51.61  |
| Energy (kJ)                             | 0     | 0      | 0      | 0      | 1110  | 0     | 0      | 3334   | /16   | 0     | 5161   |
| Preheat Tank Energy<br>Unbalance (kJ)   | 2790  | 12090  | 10255  | 14022  | 57.42 | 8020  | 05.42  | (000   | 7070  | 9642  | 86222  |
|                                         | 2789  | 12080  | 10355  | 14233  | 5743  | 8029  | 9543   | 6908   | 7978  | 8642  | 86332  |
| Auxiliary Tank Energy<br>Unbalance (kJ) | 4885  | 12918  | 10105  | 9963   | 7700  | 8601  | 8442   | 3947   | 3900  | 6056  | 74020  |
|                                         | 4003  | 12918  | 10105  | 9905   | 7700  | 8001  | 0442   | 5947   | 3900  | 0000  | 74020  |
| Overall Energy<br>Unbalance (kJ)        | 7674  | 24999  | 20460  | 24196  | 13443 | 16630 | 17985  | 10855  | 11879 | 14698 | 160353 |
| Unbalance (KJ)                          | /0/4  | 24999  | 20400  | 24190  | 13443 | 10030 | 1/985  | 10000  | 116/9 | 14098 | 100355 |

auxiliary tank measured by FSEC)." \l 6 }

Table 5.7.4.3-3 Percentage discrepancy between TRNSYS prediction and FSEC measurement for December 23, 1995 through September 26, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by FSEC).{ TC ''Table 5.7.4.3-3 Percentage discrepancy between TRNSYS prediction and FSEC measurement for December 23, 1995 through September 26, 1996 (used electrical input to preheat tank and inlet water temperature to auxiliary tank measured by FSEC).'\ \1 6 }

| Month                              | Dec    | Jan    | Feb    | Mar    | Apr    | May    | Jun   | Jul    | Aug   | Sep   | Total  |
|------------------------------------|--------|--------|--------|--------|--------|--------|-------|--------|-------|-------|--------|
| Preheat Tank Load                  | -1.0%  | 0.0%   | -0.5%  | -0.5%  | 1.0%   | 0.4%   | -0.2% | 0.5%   | 0.1%  | -0.3% | 0.0%   |
| Auxiliary Tank Load                | -2.3%  | -2.5%  | -0.3%  | 2.1%   | -3.7%  | -6.4%  | -6.7% | 12.7%  | -2.1% | -3.7% | -1.6%  |
| Total Load                         | -1.3%  | -1.2%  | -0.3%  | 0.4%   | -0.9%  | -1.0%  | -1.7% | 1.2%   | -0.4% | -0.9% | -0.5%  |
| Preheat Tank Heat Loss             | -19.0% | -17.8% | -15.6% | -14.9% | -11.3% | -10.8% | -9.6% | -10.3% | -9.1% | -9.9% | -11.9% |
| Auxiliary Tank Heat<br>Loss        | -5.5%  | -4.6%  | -3.6%  | -3.9%  | -5.9%  | -6.4%  | -5.3% | -5.3%  | -4.4% | -4.7% | -4.9%  |
| Water Draw                         | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |
| Preheat Tank Electrical<br>Input   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |
| Auxiliary Tank<br>Electrical Input | -1.5%  | -0.4%  | 1.7%   | 3.3%   | -1.8%  | -1.6%  | -4.3% | 3.1%   | -0.6% | -2.1% | -0.2%  |
| Total Electrical Input             | -0.8%  | -0.2%  | 0.6%   | 1.1%   | -0.4%  | -0.3%  | -1.2% | 0.6%   | -0.1% | -0.6% | 0.0%   |

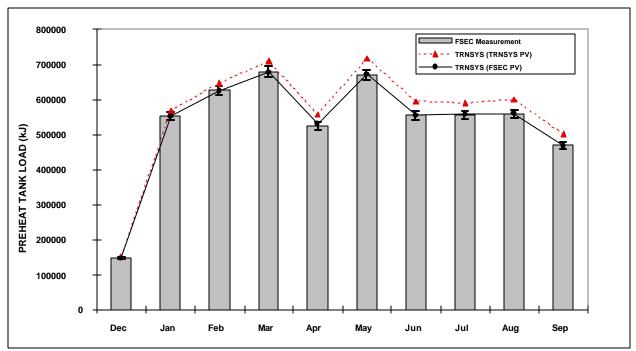
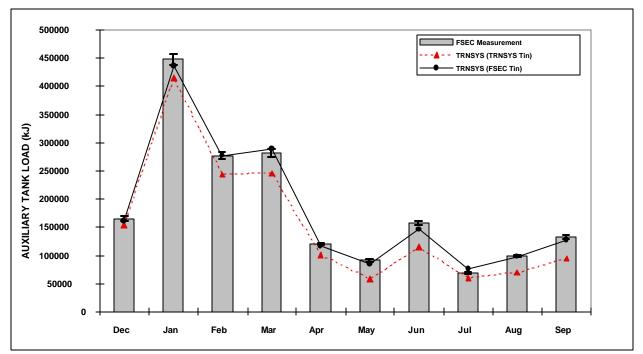



Figure 5.7.4.3-1 Measured and predicted monthly preheat tank water heating load. Predicted results with the electrical energy input determined by TRNSYS and measured by FSEC are shown. Error bars on experimental data are 2.3%. { TC ''Figure 5.7.4.3-1 Measured and predicted monthly preheat tank water heating load. Predicted results with the electrical energy input determined by TRNSYS and measured by FSEC are shown. Error bars on experimental data are 2.3%. { VI 5 }


With the electrical energy input set by the FSEC measurements, the simulated total preheat tank load deviated from that measured by less than 0.1% for the period of this analysis. This discrepancy in tank load fell well within the approximate experimental uncertainty of  $\pm 2.3\%$ . The average tank temperature determined by simulation was lower than measured by 1.4 C with the heat loss lower by 11.9%. The discrepancies in average tank temperature and heat loss were outside the approximate experimental uncertainty range of  $\pm 1.0$  C and  $\pm 6.4\%$ . The monthly preheat tank energy unbalances calculated from the measured data in Table 5.7.1-1 were about 1.4% of the total energy added to the tank and consistently less than zero. While this level of unbalance is less than the uncertainties in the components of the tank energy balance, it suggests that the unbalance was primarily the result of an overstatement of tank average temperature and heat

34

loss in the measurements. Monthly energy unbalances in the simulated results amounted to 0.07% of the total energy addition. No minutely tank temperature profile data were available for the FSEC system, but it is likely that the average tank temperature discrepancy noted here results from measurements of the bottom node temperature as was determined in the NIST simulation. The two prototypes were instrumented for measurements in an identical fashion.

## 5.7.4.4 The Auxiliary Tank Load and Heat Loss{ TC "5.7.4.4 The Auxiliary Tank Load and Heat Loss" \1 4 }

Tables 5.7.4.3-1 through 5.7.4.3-3 also show the results of simulating the FSEC auxiliary tank using the measured inlet water temperature during draws. Figure 5.7.4.4-1 shows the measured and predicted monthly auxiliary tank loads using the inlet water temperature determined by TRNSYS and that measured by FSEC.



**Figure 5.7.4.4-1** Measured and predicted monthly auxiliary tank water heating load. Predicted results with the inlet water temperature determined by TRNSYS and measured by NIST are shown. Error bars on experimental data are 2.3%.{ TC "**Figure 5.7.4.4-1** Measured and

predicted monthly auxiliary tank water heating load. Predicted results with the inlet water temperature determined by TRNSYS and measured by NIST are shown. Error bars on experimental data are 2.3%." \l 5 }

With thermostat setpoints of 51.3 C and 49.8 C used in modeling the original auxiliary tank and its replacement, respectively, the simulated electrical input to the tank was lower than that measured by 0.2% for the period of analysis. The model underpredicted the auxiliary tank load by 1.6% of the measured value for the nine month simulation period. The electrical energy input and load discrepancies fell within the approximate uncertainties in the measured results of  $\pm 1.0\%$  and  $\pm 2.3\%$ , respectively. The simulation predicted the average tank temperature and heat loss to be 2.0 C and 4.9% lower than measured (measurement uncertainties were  $\pm 1.0$  C and  $\pm 6.4\%$ , respectively). Much like in the case of the preheat tank, the monthly auxiliary tank energy unbalances from the measured data were consistently less than zero. The measured unbalances amounted to 2.7% of the total energy addition to the tank, greater than the uncertainties in the components of the energy balance. The tank analyses discussed previously would suggest that the measured unbalances based on the simulated results were significantly smaller in magnitude (0.3% of the total energy added to the tank).

#### 5.8 Conclusions{ TC "5.8 Conclusions" \l 2 }

With the exception of the significant overprediction of the PV array energy output in simulating the FSEC prototype, the TRNSYS model of a two-tank PV-SDHW system proved an excellent means of assessing the performance of such systems. For the purposes of this study, the results presented in this chapter were thought an adequate verification of the accuracy of the TRNSYS model.

The TRNSYS PV array model performed much better in comparison to experimental

36

results from NIST than those from FSEC. In the absence of additional PV array performance data from FSEC, beyond the energy output taken on an hourly basis during the operation of the PV-SDHW system, little can be learned about the discrepancy which occurred there with the model. If instantaneous current and voltage data for various loads and environmental conditions were available, perhaps the source of the difference in output could be discerned. The array model used in the TRNSYS simulations was determined by previous researchers (Townsend, 1989, Eckstein, 1990) to be a valid tool within reasonable bounds. When used in this study, the model compared favorably with an one experimental system and less favorably with another. The results of this study do not, however, suggest or warrant some important change in the model with the possible exception of the inclusion of some more sophisticated means of calculating array temperature.

The TRNSYS tank model agreed well with the measured results. During simulations in which the electrical input to the tanks was identical to the measured input (or nearly so in the case of the auxiliary tanks) and the inlet water temperature was exactly that measured, the TRNSYS tank model uniformly predicted average tank temperatures about 1.5 C below those measured. For various reasons, it was concluded that the measured tank temperatures and heat losses were overstated as discussed above. The tank model performed quite adequately for the purposes of this study.

With the TRNSYS PV-SDHW system model verified by comparison with experimental data, it was generalized in order to serve as a useful design and analysis tool. The following chapter describes this work.