THE SEMANTICS OF PROGRAM SLICING

by

Thomas Reps and Wuu Yang

Computer Sciences Technical Report #777

June 1988

The Semantics of Program Slicing

THOMAS REPS and WUU YANG
University of Wisconsin ~ Madison

A slice of a program with respect to a program point p and variable x consists of all statements of the program that
might affect the value of x at pointp. Slices can be extracted particularly easily from a program representation called a
dependence graph, originally introduced as an intermediate program representation for performing optimizing, vector-
izing, and parallelizing transformations. Such slices are of a slightly restricted form: rather than permitting a program
to be sliced with respect to program point p and an arbitrary variable, a slice must be taken with respect to a variable
that is defined at or used atp .

This paper concems the relationship between the execution behavior of a program and the execution behavior of its
slices. Our main results are those stated as the Slicing Theorem and the Termination Theorem. The proof of the Slic-
ing Theorem demonstrates that a slice captures a portion of a program’s behavior in the sense that, for any initial state
on which the program halts, the program and the slice compute the same sequence of values for each element of the
slice. The proof of the Termination Theorem demonstrates that if a program is decomposed into (two or more) slices,
the program halts on any state for which all the slices halt.

These results are used to provide semantic justification for a program-integration algorithm of Horwitz, Prins, and
Reps.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Maintenance — enhancement, res-
tructuring, version control; D.2.9 [Software Engineering]: Management - programming teams, software
configuration management; D.3.4 [Programming Languages]: Processors — compilers, interpreters, optimization; E.1
[Data Structures] graphs

General Terms: Theory

Additional Key Words and Phrases: control dependence, data dependence, data-flow analysis, dependence graph, pro-
gram slice, program integration, semantics, termination

1. INTRODUCTION

The slice of a program with respect to program point p and variable x consists of all statements and predi-
cates of the program that might affect the value of x at point p. The value of x at program point p is
directly affected by assignments to x that reach p and by the loops and conditionals that enclose p. A slice
is determined from the closure of the directly-affects relation.

Program slicing, originally defined by Weiser as a data flow analysis problem [12], can be used to isolate
individual computation threads within a program, which can help a programmer understand complicated
code. Program slicing is also used by the algorithm for automatically integrating program variants
described in [S]; slices are used to compute a safe approximation to the computation threads that have
changed between a program P and a modified version of P, and to help determine whether two different

This work was supported in part by the National Science Foundation under grants DCR-8552602 as well as by grants from IBM, DEC,
and Xerox.

Authors' address: Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706.

modifications to P interfere.

Ottenstein and Ottenstein proposed the use of program dependence graphs (PDGs) to represent pro-
grams in software development environments and pointed out how well-suited PDGs are for program slic-
ing [10]. Program dependence graphs are an extension to the dependence graphs originally introduced by
Kuck as an intermediate program representation for performing optimizing, vectorizing, and parallelizing
transformations [7-9, 11]. The kind of slicing that can be performed using a program dependence graph is,
however, somewhat restricted: rather than permitting a program to be sliced with respect to program point
p and an arbitrary variable, a slice must be taken with respect to a variable that is defined at or used at p.
It is this restricted kind of slice that is studied here.

In this paper, we address the relationship between the execution behavior of a program and the execution
behavior of its slices. Our main results are those stated as the Slicing Theorem and the Termination
Theorem. The proof of the Slicing Theorem demonstrates that a slice captures a portion of a program’s
behavior in the sense that, for any initial state on which the program halts, the program and the slice com-
pute the same sequence of values for each element of the slice. The proof of the Termination Theorem
demonstrates that if a program is decomposed into (two or more) slices, the program halts on any state for
which all the slices halt.

In [5] an algorithm is presented for integrating several related, but different variants of a base program
(or determining whether the variants incorporate interfering changes). In the algorithm, slicing is used to
determine which elements from the base program and its variants should be incorporated in the integrated
program. The integrated program is created by (1) determining slices that represent the changed computa-
tion threads of the variant programs as well as the computation threads of the base program that are
preserved in both variants, (2) combining these slices to form the merged graph, and (3) testing for interfer-
ence by checking whether the slices that were combined to form the merged graph are preserved (as slices
of the merged graph). The Slicing and Termination Theorems are used to prove a theorem, the Program
Integration Theorem, that characterizes the execution behavior of the integrated program in terms of the
behaviors of the base program and the two variants; the Program Integration Theorem asserts that the
integrated program produced by a successful integration preserves the changed behaviors of both variants
as well as the behavior of the base program that is unchanged in both variants.

The rest of the paper is organized as follows: Section 2 defines program dependence graphs and the
operation of slicing a program dependence graph. Section 3 presents the proof of the Feasibility Lemma.
Section 4 presents the proof of the Slicing Theorem. Section 5 presents the proof of the Termination
Theorem. In Section 6, the Slicing Theorem and the Termination Theorem are used to prove the Program
Integration Theorem. Section 7 discusses the relation of the work described to previous work.

2. TERMINOLOGY AND NOTATION

We are concerned with a restricted programming language with the following characteristics: expressions
contain only scalar variables and constants; statements are either assignment statements, conditional state-
ments, while loops, or a restricted kind of “output statement” called an end statement, which can only
appear at the end of a program. An end statement names one or more of the variables used in the program.
Thus a program is of the form:
program id

stmt_list
end(id”)

Our discussion of the language's semantics is in terms of the following informal model of execution.
We assume a standard operational semantics for sequential execution of the corresponding flowchart (con-
trol flow graph): at any moment there is a single locus of control; the execution of each assignment state-
ment or predicate passes control to a single successor; the execution of each assignment statement changes
a global execution state. An execution of the program on some initial state also yields a (possibly infinite)
sequence of values for each predicate and assignment statement in the program; the i “ element in the
sequence for program element e consists of the value computed when e is executed for the i** time. The
variables named in the end statement are those whose final values are of interest to the programmer; when
execution terminates, the final state is defined on only those variables in the end statement.

The abstract syntax of the language is defined as the terms of the types id, exp, stmt, stmt_list, and pro-
gram constructed using the operators Assign, While , IfThenElse , StmtList, and Program. The five opera-
tors of the abstract syntax have the following definitions:

Assign : id X exp — stmt

While : exp X stmt_list —> stmt
IfThenElse : exp X stmt_list X stmt_list — simt
StmeList: stmt* — stmt_list

Program: id x stmt_list Xid" — program
In operator Program, the initial id represents the program name, and the id” component represents the
variables named in the end statement.

We also introduce an overloaded constant, Null, which is used to represent null trees of type id, exp,
stmt , and stmt_list:

Null : - id

Null : — exp
Null : —> stmt
Null : — stmt_list

Null is introduced solely for technical reasons, and is never an element of a program’s abstract syntax tree.
Henceforth, we use “program” and “abstract syntax tree” synonymously.

2.1. The Program Dependence Graph

Different definitions of program dependence representations have been given, depending on the intended
application; they are all variations on a theme introduced in (7], and share the common feature of having an
explicit representation of data dependences (see below). The “program dependence graphs” defined in [3]
introduced the additional feature of an explicit representation for control dependences (see below).
Although the definition of program dependence graph given below covers only the restricted language
described earlier, and hence is less general than the one given in [3], the structures we define share the
feature of representing both control and data dependences and we will refer to them as “program depen-
dence graphs”, borrowing the term from [3].

The program dependence graph (or PDG) for a program P, denoted by Gp, is a directed graph whose
vertices are connected by several kinds of edges.! The vertices of Gp represent the assignment statements

'We make use of the following graph terminology:

1) A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where E(G)C V(G)xV(G). Each edge
(b.c)e E(G)is directed from b to c; we say that b is the source and ¢ the farget of the edge.

2) A multi-graph is a graph with a bag of edges (i.e. duplicate edges may exist in the graph).
3) Given directed graphs A = (V4 , E,) and B = (V, Eg), that may or may not be disjoint, the union of A and B is defined as:

and control predicates that occur in program P. In addition, Gp includes three other categories of vertices:
1) There is a distinguished vertex called the entry vertex.

2) For each variable x for which there is a path in the standard control-flow graph for P on which x is
used before being defined (see [11), there is a vertex called the ‘nifial definition of x. This vertex
represents an assignment to x from the initial state. The vertex is labeled “x := InitialState (x).”

3) For each variable x named in P’s end statement, there is a vertex called the final use of x. This ver-
tex represents an access to the final value of x computed by P, and is labeled “FinalUse (x).”

The edges of Gp represent dependences between program components. An edge represents either a con-
trol dependence or a data dependence. Control dependence edges are labeled either true or false, and the
source of a control dependence edge is always the entry vertex or a predicate vertex. A control dependence
edge from vertex vy to vertex vy, denoted by v; —>, v,, means that during execution, whenever the predi-
cate represented by v is evaluated and its value matches the label on the edge to v, then the program com-
ponent represented by v, will be executed (although perhaps not immediately). A method for determining
control dependence edges for arbitrary programs is given in {3]; however, because we are assuming that
programs include only assignment, conditional, and while statements, the control dependence edges of Gp
can be determined in a much simpler fashion. For the language under consideration here, the control
dependence edges reflect a program’s nesting structure; a program dependence graph contains a control
dependence edge from vertex v, to vertex v, of Gp iff one of the following holds:

i) v, is the entry vertex, and v, represents a component of P that is not subordinate to any control
predicate; these edges are labeled true.

iiy v, represents a control predicate, and v, represents a component of P immediately subordinate to the
control construct whose predicate is represented by v,. If v, is the predicate of a while-loop, the
edge v, —>, v, is labeled true; if vy is the predicate of a conditional statement, the edge v, —>, v3 is
labeled true or false according to whether v, occurs in the then branch or the else branch, respec-
tively.?

A data dependence edge from vertex v, to vertex v, means that the program’s computation might be
changed if the relative order of the components represented by v, and v were reversed. In this paper, pro-
gram dependence graphs contain two kinds of data-dependence edges, representing flow dependences and
def-order dependences.

A program dependence graph contains a flow dependence edge from vertex v, to vertex v, iff all of the
following hold:

AuB=(V, vV, E, vEp)

4) Given a directed graph A = (V, E), a path from ventex a to vertex b is a sequence of vertices, [V{, V3, ..., %], such that: @ = v,
b=vy,and { (v, v,)li=1, .., k-1 }CE.

5) Given a directed graph A = (V, E') and a set of vertices V'V, the projection of A onto V"’ is the graph (V',E’), where E’ =
{(v,w) | v,weV’ and there exists a path [v =vy,vy, ..., vy =w] such that vy, .., Vg € V’}. (That is, the projection of A
onto V'’ has an edge from v € V' tow € V' when there exists 2 path from v tow in A that does not pass through any other ele-
ments of V'.)

2[5 other definitions that have been given for control dependence edges, there is an additional edge for each predicate of a while state-
ment — each predicate has an edge to itself labeled true. By including the additional edge, the predicate’s outgoing true edges consist
of every program element that is guaranteed to be executed (eventuaily) when the predicate evaluates to true. This kind of edge turns
out 1o be unnecessary for our purposes and hence is left out of our definition.

i) v, is a vertex that defines variable x.
i) v,isavertex that uses x.

iii) Control can reach v, after v, via an execution path along which there is no intervening definition of
x. That is, there is a path in the standard control-flow graph for the program [1] by which the
definition of x at v; reaches the use of x at v,. (Initial definitions of variables are considered to
occur at the beginning of the control-flow graph, and final uses of variables are considered to occur
atits end.)

A flow dependence that exists from vertex v, to vertex v, will be denoted by vy —>¢ v,

Flow dependences are further classified as loop independent or loop carried. A flow dependence
vy —>y v is carried by loop L, denoted by vy —>) V2, if in addition to i), ii), and iii) above, the follow-
ing also hold:

iv) There is an execution path that both satisfies the conditions of iii) above and includes a backedge to
the predicate of loop L ; and

v) Bothv, and v, are enclosed in loop L.
A flow dependence vy —>; v is loop independent, denoted by v; —>; v,, if in addition to i), ii), and iii)

above, there is an execution path that satisfies iii) above and includes no backedge to the predicate of a
loop that encloses both v, and v,. It is possible to have both v —> . ¢yvoand vy —>; v,

A program dependence graph contains a def-order dependence edge from vertex v, to vertex v iff all of
the following hold:

i) v and v, both define the same variable.

if) v, and v, are in the same branch of any conditional statement that encloses both of them.
iii) There exists a program component v3 such that vy —> vy and v, —>¢ vs.

iv) v, occurs to the left of v, in the program’s abstract syntax tree.

A def-order dependence from v, to v, is denoted by v —> 4,y V2.

Note that a program dependence graph is a multi-graph (i.e. it may have more than one edge of a given
kind between two vertices). When there is more than one loop-carried flow dependence edge between two
vertices, each is labeled by a different loop that carries the dependence. When there is more than one def-
order edge between two vertices, each is labeled by a vertex that is flow-dependent on both the definition
that occurs at the edge’s source and the definition that occurs at the edge’s target.

Example. Figure 1 shows an example program and its program dependence graph. The boldface arrows
represent control dependence edges; dashed arrows represent def-order dependence edges; solid arrows
represent loop-independent flow dependence edges; solid arrows with a hash mark represent loop-carried
flow dependence edges.

The data-dependence edges of a program dependence graph are computed using data-flow analysis. For
the restricted language considered in this paper, the necessary computations can be defined in a syntax-
directed manner (see [4]).

The relationship between a program’s PDG and the program’s execution behavior has been addressed in
[6]. In particular, it is shown in [6] that if the PDGs of two programs are isomorphic then the programs
have the same behavior. The concept of “programs with the same behavior” is formalized as the concept
of strong equivalence, defined as follows:

program Main
sum :=0;
x:=1;
while x <11 do
sum = sum+Xx;

x:=x+1
od
end(x, sum)

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph. The boldface arrows represent control dependence edges, dashed arrows represent def-
order dependence edges, solid arrows represent loop-independent flow dependence edges, and solid arrows with a hash
mark represent loop-carried flow dependence edges.

Definition. Two programs P and Q are strongly equivalent iff for any state @, either P and Q both
diverge when initiated on & or they both halt with the same final values for all variables. If P and Q are
not strongly equivalent, we say they are inequivalent.

The term “divergence” refers to both non-termination (for example, because of infinite loops) and abnor-
mal termination (for example, because of division by zero or the use of an out-of-bounds array index).

The main result of [6] is the following theorem: (the symbol = denotes isomorphism between program
dependence graphs).

THEOREM. (EQUIVALENCE THEOREM). If P and Q are programs for which Gp =Gg, then P and Q are
strongly equivalent.

Restated in the contrapositive the theorem reads: inequivalent programs have non-isomorphic program
dependence graphs. (We prove a stronger form of this theorem in Section 4.2.)

2.2. Program Slices

For a vertex s of a PDG G, the slice of G with respect to s, written as G /s, is a graph containing all ver-
tices on which s has a transitive flow or control dependence (i.e. all vertices that can reach s via flow or

control edges): V(G /s)={w Iwe V(G) A w =" s s). We extend the definition to a set of vertices
§=Us; as follows: V(G /S)=V(G /I (Us) =\ V(G /s;). It is useful to define V(G /v) = for any
i])

veG.

The edges in the graph G /S are essentially those in the subgraph of G induced by V(G /§), with the
exception that a def-order edge v —> 4, ¢,y W is only included if, in addition to v and w, V(G /S also con-
tains the vertex u that is directly flow dependent on the definitions at v and w. In terms of the three types
of edges in a PDG we define:

EGIS)= (0wl (v w)eEG)Av,we V(G I/S))
u{(v =, w)l (v =, w)e EG)Av,weV(G/S)])
U{(V —-)do(,‘)w)l (V -'}da(u)W)EE(G)/\ u,v,weV(G’/S)}

Example. Figure 2 shows the graph resulting from taking a slice of the program dependence graph from
Figure 1 with respect to the final-use vertex for x.

The following lemma demonstrates a useful property of program slicing.

LEMMA. (Decomposition Lemma). For any collection k;) s; of program points, we have
kiJ(G/s,-)=G/kiJs.-.

program Main
x=1;
whilex <11 do
x=x+1
od
end(x)

T

: ‘l while x <11

Figure 2. The graph that results from slicing the program dependence graph from Figure 1 with respect to the final-use
vertex for x.

PROOF. The graph U G /s; consists of vertices U V(G /s;) and edges U E(G /s;).
13] H
1) By the definition of the vertex set of a slice, U V(G 15)=V(G/\Us;).
] &

2) (a)For each edge u >we UE(G/s;) we have u—>weE(G/s;) for some i. Because
4
(sl Usi,u—>weEG/Us),s0 VEG/s)SEGIUsi).
) 1 13 13

(b) For each control or flow edge u—>.weEGIUs) we have

weV(G/Us)=UV(G/s;) Hencew e V(G /s;) for some i. Since u —>, ; w we must have
) H

ueV(Gis)aswell,sou —>. ,weEG/s)c VEG 158;).

By the definition of the edge set of a slice, for each def-order edge u —> g W € EG/Us) we

have te V(G / Us;)=UV(G/s;). Hence t € V(G /s;) for some i. Since u —>; ¢t and w —>¢ ¢
] 3

we have t.u,we V(G /s;),sou —>5nweEG /s)c VEG /5;).

Since G contains only flow, control and def-order edges, we have E(G / U s;)c UV E(G/ ;).
3 3
Combining (a) and (b) we have U E(G /5;) =E(G / U s;).

Combining (1) and (2) we have U (G /5,)=G / Us;. O

3. THE FEASIBILITY LEMMA

Our first result concerns a syntactic property of slices: we say that a graph G is a feasible program depen-
dence graph iff G is (isomorphic to) the program dependence graph of some program P (i.e. G =Gp).
We now show that for any program P and vertex set S, the slice Gp /S is also a feasible PDG; the proof
proceeds by showing that Gp /S corresponds to the program obtained by restricting the syntax tree of P to
just the statements and predicates in V(Gp /S).

LEMMA. (FEASIBILITY LEMMA). For any program P, if Gg is a slice of Gp (with respect to some set of
vertices), then Gg is a feasible PDG .

PROOF. We construct a new program Q from P and G, as follows: the elements (statements and predi-
cates) of Q’ correspond to the vertices of Gg; each element of Q’ is subordinate to the same element that it
is subordinate to in P; the elements of Q* occur in the same relative order as they do in P. The variables
that appear in the end statement of Q ’ are those variables whose final-use vertices are in G. We use Gy-
to denote the program dependence graph of Q.

Because each element of Q’ is subordinate to the same element that it is subordinate to in P, and
becausc elements of @ occur in the same order as they occur in P, the control flow graph for program Q’
is the projection of the control flow graph for program P onto the elements of Q’. Thatis, if a and b are
elements of Q’, the projection of any path from a to b in the control flow graph of P onto the set of ele-
ments of O’ is a path in the control flow graph of Q. Furthermore, every path from a to b in the control
flow graph of Q is the projection of some path from a to b (and possibly several such paths) in the control
flow graph of P.

3For brevity, when two graphs are related by some mapping (for example, an isomorphism or an embedding) we frequently blur the
distinction between corresponding elements of the two graphs; strictly speaking, we should refer to “clements that correspond under
the mapping.”

From the construction of Q’, the only possible differences between the vertex sets of Gy and G- is in
their initial-definition vertices. By the definition of the vertex set of a slice, if there is an initial-definition
vertex a for variable x in V(Gp), there must be a flow edge a —>; b in E(Gg), where b is not an initial-
def vertex. Since a —>; b € E(Gg), it must be thata —>, b € E{(Gp). This means that there is a path
from the beginning of the control flow graph of P to b that is free of any definition to x. The projection of
this path onto the elements of Q is a path in Q" from the beginning of the control flow graph of Q" to b
and contains no definition to x. Consequently, V(Gp-) must contain an initial-definition vertex for x,
which corresponds to vertex a in V(Gg).

Arguing in the other direction, suppose there is an initial-definition vertex a for variable x in V(Ggp-) and
a flow edge a —>; b that occurs in E(Ggp-) but not in E (Gg). Since b € V(Gg) buta —; b & E(Gg), by
the definition of the edge set of a slice, @ —> b cannot be in E (Gp). Therefore, along each path from the
entry vertex to b in P there must be a redefinition of x. Along each such path p, let ¢, be the last
redefinition site. Since ¢, —>¢ b is in E(Gp) and b is in V(Gg), ¢, —>¢ b is in E(Gg); the vertex c,
itself must be in V(G) and hence in Q ’. Because every path from the entry vertex to b in the control flow
graph of Q” is a projection of a path p from the entry vertex to b in the control flow graph of P, there must
be a redefinition of x on each path from the entry vertex to b in Q’. This means that a —>; b cannot be in
E(Q"), which is a contradiction, hence there does exist a flow edge a — b in E(Gp) where a is the
initial-definition vertex for x in P. Because b € V(Gg+) and b itself is not an initial-definition vertex, by
the construction of Q it must be that b € V(Gg). Consequently, by the definition of the vertex set of a
slice, a € V(Gg) and a —¢ b € E(Gg).

We have shown above that Go and G- have isomorphic vertex sets, what remains to be shown is that

G and G- have isomorphic edge sets.

Sub-proof 1. If the edge (a,b) € E (Gp), then (a,b) € E(Gg)).

1) By the definition of the edge set of a slice, if a —>, b is a control edge in E (Gg), thena —> b isa
control edge in E (Gp), which means that b is subordinate to a in program P . Because an element in
program Q’ is subordinate to the same element that it is subordinate to in P, a —>, b is in E(Gy),
as well.

2) By the definition of the edge set of a slice, if a —>, b is a flow edge in E(Gg), then a — b isin
E(Gp), which means that there is a path in the control flow graph of P from a to b without any
redefinition to the target variable of a. The projection of this path onto the elements of Q" is a path
in Q that contains no redefinition to the target variable of a; thus, a —>; b is in E (Gg).

3) By the definition of the edge set of a slice, if @ — 4, ()b is a def-order edge in E(Ggp), then there are
flow edges @ —>¢ ¢ and b —>; ¢ in E(Gg). From the argument in (2), the edges a —>¢ ¢ and

b —¢ ¢ also occur in E(Gg-). Because a occurs to the left of b in P’s abstract syntax tree, a
occurs to the left of b in the abstract syntax tree of Q’. Therefore, @ —> 4,yb isin E (Gg-).

Sub-proof 2. If edge (a,b)e E(Gg), then (a,b) e E (Gp).

1) Ifa—>, b is acontrol edge in E (Gy), then b is subordinate to a in @, hence b is subordinate to a
in P. Therefore, a —>, b is a control edge in E (Gp) and, by the definition of the edge set of a slice,
the control edge a —>. b is a member of E(Ggp).

2) Suppose a —>; b is a flow edge that occurs in E(Gg) but not in E(Ggp). Since a,b € V(Ggp) but
a =5 b & E(Gg), by the definition of the edge set of a slice, a —>¢ b cannot be in E (Gp). There-
fore, along each path from a to b in P there must be a redefinition of the target variable of a.

-10-

Along each such path p, let ¢, be the last redefinition site. Since ¢, —>; b isin E(Gp) and b is in
V(Gg), ¢, =2 b is in E(Gp); the vertex ¢, itself must be in V(Gg) and hence in Q’. Because
every path from a to b in the control flow graph of Q is a projection of a path p from a to b in the
control flow graph of P, there must be a redefinition of the target variable of a on each path from a
to b in Q’. This means that a —>; b cannot be in E(Q 7, which is a contradiction; therefore,
a —> b isaflow edge in E(Gg).

3) If a = gyb is a def-order edge in E (Gg/), then a —>¢ ¢ and b —>f ¢ are in E(Gg-). From the
argument in (2), the edges a —>r ¢ and b —>; ¢ are in E(Gp) and E(Gg), as well. Because
a —> ab is in E(Gg-) a occurs to the left of b in Q’, hence a occurs to the left of b in P and
therefore @ = 4 ()b is in E(Gp). Now a, b, and ¢ are all in V(Gg); thus, by the definition of the
edge set of a slice, a —> 4)b isin E(Gg).

We have shown that G is isomorphic to Gg- and hence corresponds to program Q’. Therefore, the
slice of a feasible PDG is always a feasible PDG. [J

Note that there may be programs other than @ * whose program dependence graph is isomorphic to Gy. By
the Equivalence Theorem, all such programs are strongly equivalent to Q" [6].

Since a slice of a feasible program dependence graph is feasible, and programs with isomorphic program
dependence graphs are strongly equivalent, we can speak of “a slice of a program” as well as “a slice of a

program dependence graph.” We say program Q is a slice of program P with respect to a set of program
points, S, when Gg =(Gp /§), and write thisas P /S.

4. SEMANTICS OF PROGRAM SLICING

We now tumn to the relationship between the execution behaviors of a program and a slice of the program.
Because of the way a program slice is derived from a program, it is not unreasonable to expect that the pro-
gram and the slice exhibit similar execution behavior. However, because a diverging computation may be
“sliced out,” a program and a slice of the program do not necessarily exhibit identical execution behaviors;
in particular, a slice may produce a result on some initial states for which the original program diverges.
For example, the program shown below on the left always diverges, whereas the program on the right,
obtained by slicing the left-hand-side program with respect to variable x at the program’s end statement,
always converges:

program Main program Main
x =1 x =0
while true do end(x)
x:=x+1
od;
x:=0
end(x)

The main result of this section is the following theorem, which asserts that a slice captures a portion of
the program’s behavior in the sense that, for any initial state on which the program halts, the program and
the slice compute the same sequence of values for each element of the slice. (In our case a program point
may be (1) an assignment statement, (2) a control predicate, or (3) a final use of a variable in an end state-
ment. By “computing the same sequence of values” at each corresponding point we mean: (1) for any
assignment statement the same sequence of values are assigned to the target variable; (2) for a predicate the
same sequence of boolean values are produced; and (3) for each final use the same value for the variable is
produced.)

~11~

THEOREM. (SLICING THEOREM). Let Q be a slice of program P with respect to a set of vertices. If G is
a state on which P halts, then for any state & that agrees with & on all variables for which there are
initial-definition vertices in Gg: (1) Q halts on &, (2) P and Q compute the same sequence of values at
each program point of Q, and (3) the final states agree on all variables for which there are final-use ver-
tices in Gg.

(The third clause of the theorem’s conclusion is implied by the second clause; it is stated explicitly to
emphasize what the theorem says about programs viewed as state-transformers.)

The proof of the Slicing Theorem relies on a lemma, the Subtree Slicing Lemma, which is stated and
proven in Section 4.3.

4.1. Additional Terminology and Resuits

The subgraph induced by the control dependences of program dependence graph Gp forms a tree that is
closely related to the abstract syntax tree for program P. The control dependence subtree is rooted at the
entry vertex of Gp, which corresponds to the Program node at the root of P’s abstract syntax tree. Each
predicate vertex v of Gp corresponds to an interior node of the abstract syntax tree; the node is a While
node or an IfThenElse node depending on whether v is labeled with while or if, respectively. Each assign-
ment vertex of Gp corresponds to an Assign node of the abstract syntax tree.

The control dependence subtree rooted at a vertex v of Gp corresponds to the subtree of the abstract
syntax tree that is rooted at the control construct that corresponds to v. Because of this correspondence, for
brevity we use phrases, such as “the flow edges whose source is in subtree T',” which are, strictly speaking,
not correct when T is a subtree of the abstract syntax tree. What “T” refers to is the subgraph induced by
T in Gp’s control dependence subgraph.

Imported and exported variables

Our goal is to show that a slice of a program exhibits a portion of the program’s behavior in the sense that
they are equivalent state transformers with respect to certain variables. In making this argument, it is
necessary to discuss the state-transforming properties of subtrees. The state-transforming properties of a
subtree are characterized in terms of the subtree’s imported and exported variables.

Definition. The outgoing flow edges of a subtree T consist of all the loop-independent flow edges whose
source is in T but whose target is not in T, together with all the loop-carried flow edges for which the
source is in T and the edge is carried by a loop that encloses T'. Note that the target of an outgoing loop-
carried flow edge may or may not be in 7. The variables exported from a subtree T are the variables
defined at the source of an outgoing flow edge.

Definition. The incoming flow edges of a subtree T consist of all the loop-independent flow edges whose
target is in T but whose source is not in T, together with all the loop-carried flow edges for which the tar-
get is in T and the edge is carried by a loop that encloses T'. Note that the source of an incoming loop-
carried flow edge may or may not be in T. The incoming def-order edges of a subtree T consist of all the
def-order edges whose target is in T but whose source is not in T'. The variables imported by a subtree T
are the variables defined at the source of an incoming flow edge or at the source of an incoming def-order
edge.

Note that there are loop-independent flow edges to all final-use vertices of a program dependence graph;
thus, the exported variables of a program P consist of all the variables that occur in P’s end statement.
Similarly, there are loop-independent flow edges from all of the initial-definition vertices; thus, the
imported variables of a program P consist of those variables that may get their values from the initial state.

-12-

The Self-Equivalence Lemma

The Self-Equivalence Lemma, proved in [6], shows that the definitions of imported and exported variables
are consistent with each other and can be used to characterize the state-transforming properties of a sub-
tree.

LEMMA. (SELF-EQUIVALENCE LEMMA). Let T be a subtree of program P. Then T is strongly
equivalent to T relative to T’ s imported and exported variables (as defined in the context given by P).

Corresponding subtrees

Let Q be a slice of P with respect to a set of program points. There is natural correspondence between
subtrees in P and subtrees in @, defined as follows:

Definition. Let Q be a slice of P with respect to some set of program points. For each subtree U of Q
with root u, U corresponds to the subtree of P whose root is #. For each subtree T of P,if theroott of T
occurs in @, T corresponds to the subtree of Q rooted at ¢; if ¢ does not occur in 0O, T corresponds to the
tree Null.

Thus, for each subtree of Q , there is always a corresponding subtree of P, and vice versa, although for a
subtree of P the corresponding subtree of Q may be the tree Null.

Note that the “corresponds to” relation respects the hierarchical structure of programs: children of roots
of corresponding subtrees are the roots of corresponding subtrees.

4.2. A Strong Form of the Equivalence Theorem

The Equivalence Theorem, which states that programs with isomorphic program dependence graphs are
strongly equivalent with respect to the imported and exported variables, was proven in [6). To prove the
Slicing Theorem, we need a stronger form of the Equivalence Theorem, which states that, when initiated
on the same state, programs with isomorphic program dependence graphs are not only strongly equivalent
but actually compute the same sequence of values at each corresponding program point.

In [6] the Equivalence Theorem follows as a corollary of the following lemma:

LEMMA. (EQUIVALENCE LEMMA). Suppose that P and Q are programs for which Gp = Gg. Then for
any subtrees T in P and U in Q that correspond, T and U are strongly equivalent relative to their
imported and exported variables.

In this section, we first prove the Subtree Equivalence Lemma, which is a strong form of the
Equivalence Lemma; it states that for two programs with isomorphic program dependence graphs their
corresponding subtrees compute the same sequence of values at each corresponding program point when
they both terminate on a state. The strong form of the Equivalence Theorem then follows as a corollary of
the Subtree Equivalence Lemma.

42.1. The Subtree Equivalence Lemma

LEMMA. (SUBTREE EQUIVALENCE LEMMA). Suppose that P and Q are programs for which Gp =Gg.
Let T be a subtree of P and U be the corresponding subtree of Q. If G is a state on which T halts, then for
any state & that agrees with & on their imported variables, (1) U halts on &', (2) T and U compute the
same sequence of values at each corresponding program point, and (3) the final states agree on their
exported variables.

Note that corresponding subtrees of P and Q have isomorphic program dependence graphs and the same
imported and exported variables because P and Q have isomorphic program dependence graphs.

13~

PROOF. By the Equivalence Lemma, T and U are strongly equivalent relative to their imported and
exported variables, i. e., when the executions of T and U are initiated on o and ¢, respectively, which
agree on the imported variables, either they both diverge or they both halts with the same final values for
all exported variables. Thus, (1) and (3) are simply a restatement of the Equivalence Lemma. We need to
prove (2).

The proof is by structural induction on the abstract syntax of the programming language. The proof
splits into five cases based on the abstract-syntax operator that appears at the rootof T'.

Throughout the proof, we use Imp and Exp to denote the imported and exported variables of T', respec-
tively (T and U have the same imported and exported variables); we use o; and 6, to denote states that
agree on the imported variables, Imp. We use 0; to denote a sequence of states in the execution of T ini-
tiated on o;, and we use o;” to denote the corresponding sequence of states in the execution of U initiated
on 0'1’.

Case 1. The operator at the root of T is the Assign operator. Note that T = U in this case and that T
assigns to variable x as a function of variables {y;}; Imp is either (y;} or {y;} v {x} Ump is {y;} v {x]
when T is the target of a def-order edge). Since the value of the exp is a function of {y;}; and {y;} c/mp,
evaluating exp in both ¢, and o, yields the same value because they agree on Imp. Thus, T and U com-
pute the same (sequence of) values.

Case 2. The operator at the root of T is the While operator. Since T halts, we may assume the execu-
tion of T halts after the j* iteration, for some j. It is sufficient to show that (1) U also halts after the j*
iteration, and (2) in each iteration, T and U compute the same sequence of values at each corresponding
program point. A

We use Imp ,, and Exp,s, to denote the imported and exported variables of the exp component, respec-
tively; we use Impgm; s aNd EXPyme 1w to denote the imported and exported variables of the stmt_list
component, respectiveiy. We use o; and o;’ to denote the execution states before executing the i** itera-
tions of the loops of T and U starting from two states that agree on Imp, G, and oy, respectively.

Because for a loop Exp cImp ,* it suffices to show that if o; and o;’ agree on Imp then either T and U
both halt in the states o; and o;’, respectively, or else the i iterations compute the same sequence of
values at each corresponding program point and result in the states o;,; and g;,;” that agree on Imp .

First, we show that Imp =Imp .0 IMPyims 1isr - 1t is clear that we could have written this with ¢, noting
that Impgm, us can include a variable x that is used at the target ¢ of a loop-carried flow dependence edge
where the —dependence is carried by the loop. However, there then has to exist an incoming loop-
independent flow edge to ¢, which implies thatv € Imp .

Let o; and o;’ be states that agree on /mp. Therefore they agree on Imp,,. Evaluating the condition
(the exp component) in o; and o;’ yields the same value. Hence, T and U compute the same (sequence of)
values at the control predicate of the loop in the i jteration. If the condition evaluates to false, then both
executions terminate in the states o; and o;’, respectively.

Now suppose the condition evaluates to true. Let g; and o;” be states that agree on Imp ; therefore they
agree on Impms jist- NOW Ty i NA Uy tisr are corresponding subtrees. By the induction hypothesis of
the structural induction, Ty e and U i cOMpute the same sequence of values at each corresponding
program point of the stmt_list in the i jteration and the final states, ¢;,, and o;,,’, agree on EXDstms tist -

“If x € Expy, then U contains an assignment a to x with an outgoing flow edge a —>; b. Because the loop may execute zero times,
the assignment to x must be the target of a def-orderedge . . . —> 4,(5)a, hence x € Impy.

—14-

We need to show that o;,, and G;,,” agree on Imp. If 0;,; and G;,,” do not also agree on Imp, then let
x € Imp be a variable on which they disagree (s0 x € ExPam tin). NOW, by assumption, o; and o;" agree
on Imp; therefore, at least one of the two executions Of Tms s ANA Usoms_tist respectively, executed an
assignment statement a that assigned a value to x and reached the end of the stmt_list. There are two
cases to consider:

(1) One possibility is that x € Imp because x is used in a condition or statement b that is the target of an
incoming flow edge ...—>; b. If this were the case, then there must be an outgoing loop-carried
flow edge a —> .y b or @ —> vy b, depending on whether Tyim i OF Ustms_tise €xecuted a. How-
ever, in either case, x € EXPyume iist » Which contradicts our previous assumption.

(2) The other possibility is that x € Imp because there is an incoming def-order edge o= g d in
the stmt_list. However, this implies that there is an outgoing flow edge a —>f ¢ from Tepn s OT
Ustme_tist » depending on whether Tyom ust OF Usom tin executed a. In either case, however,
x € EXpam tist » Which contradicts our previous assumption.

We conclude that 6;,; and 0;,,” agree on Imp . Therefore, U halts after exactly the j jteration and dur-
ing each iteration T and U compute the same sequence of values at each corresponding program point.

Case 3. The operator at the root of T is the IfThenElse operator. Note that T and U have the same exp
component. Because o; and G, agree on Imp and Imp «p S Imp , evaluating the condition (the exp com-
ponent) in o; and oy’ yields the same value; thus, T and U compute the same (sequence of) values at the
control predicate of the IfThenElse statement. Without loss of generality, assume that the condition evalu-
ates to true.

We use Toue s Thatse» Uirue a0 Usaise t0 denote the respective branches of T and U. Note that T, and
U, are corresponding subtrees and Ty, and Uy, are corresponding subtrees. We use Imp,,.. and
Exp,,, to denote the imported and exported variables of T, , respectively; we use Impais. and Expyy, 0
denote the imported and exported variables of Ty, , respectively.

When execution is initiated in state ¢;, T terminates in Oy consequently Ty, also terminates in G,.
Since o, and o,” agree on Imp and Impy,.. <Imp, Gy and 6,” agree on Impy, . Because T, and Uy, are
corresponding subtrees, the induction hypothesis tell us that, when execution is initiated in state &,’, (1)
U,.. terminates in state o, (hence U terminates in state 6,), and (2) Tyn,, and Uy, compute the same
sequence of values at each corresponding program point of the true branch (hence T and U compute the
same sequence of values at each corresponding program point.)

Case 4. The operator at the root of T is the StmtList operator. Let T,,T,, -+, T, denote the immediate
subtrees of T. Note that all loop-independent flow edges and def-order edges from one subtree to another
go from left to right; that is, if there is a loop-independent flow edge or a def-order edge from a vertex in a
subtree T; to a vertex in a different subtree T; then i < j. Let U, U, -+ ,U, denote the immediate sub-
trees of U in the order as they occur in program Q. Each T; corresponds to some subtree Uy that is an
immediate subtree of U, and vice versa, where the mapping = is is a permutation over the interval 1..n.
Let &t denote the inverse permutation of 7.

We use o; and Opgy to denote the execution states before executing T; and U), respectively; we use
Imp; and Exp; o denote the imported and exported variables, respectively, of T; (hence of Unrg)). By the
Equivalence Lemma, T; is strongly equivalent to U gy Telative to Imp; and Exp;.

The proof of this case is by induction over i. We want to show that for all i, 1<i <n, if o, and oy
agree on Imp and T halts on o, then G; and Op;) agree on /mp; and T; and Uy compute the same
sequence of values at each corresponding program point. Note that, by the induction hypothesis of the
structural induction, if ©; and Oy, agree on Imp; then T; and U ;) either both diverge or both halt and

-15 -

compute the same sequence of values at each corresponding program point. Thus, we will concentrate on
proving that o; and Oy’ agree onImp;, foralli,1<i <n,

Base case. i =1. First we show that o,” and Ory’ agree on Imp,. (Note that Imp, is the set of the
imported variables of T, and hence of U r;y.) If 6" and Grg’ do not agree on Imp, let x € Imp be a vari-
able on which they disagree. The execution of the initial subsequence Uy,U, - -+, Ugqy-) executed an
assignment statement to x and reached the beginning of U). Let the assignment statement a be in Uy.
Since x is an imported variable of U z(), U x1) has an incoming loop-independent flow edge or an incoming
def-order edge a — . .., whose source is in U,. Since T and U have isomorphic program dependence
graphs, there is a corresponding loop-independent flow edge or a corresponding def-order edge from a ver-
tex in Ty to a vertex in Ty. Therefore, 7~(k) < 1, which is a contradiction because T, is the first
immediate subtree of T. We conclude that 6;” and Oy, agree on Imp .

Because o, and 6, agree on Imp and Imp, <Imp, 6, and ©," agree on Imp,. Because o, and o,” agree
on Imp, and 6,” and Gy’ agree on Imp,, Gy and Oy’ agree on Imp,. By the induction hypothesis of the
structural induction, T and Uy compute the same sequence of values at each corresponding program
point on 0, and Gyy)’, Tespectively.

Induction step. The induction hypothesis is: if 6, and 6, agree on Imp and T halts on &, then 0; and
Onjy agree onImp; and T; and U xj) Compute the same sequence of values at each correspondmg program
point, for 1 s Jj<i. Thus, 1fcr, and o, are arbitrary states that agree on /mp and T halts on 0'1, we need to
show that c,+1 and °1v.(z+l) agree on Imp;,; and T;,; and U g4y compute the same sequence of values at
each corresponding program point.

First we show that G;,, and &w(iﬂ)' agree on Imp;,;. (Note that Imp;,, is the set of the imported vari-
ables of T;,; and hence of Uggyyy.) If G;. and o“,‘(,-ﬂ)' do not agree on Imp; ., let x € Imp;; be a variable
on which they disagree. There are now two cases to consider:

(1) If there is no assignment statement to x in the initial subsequence T, Ty, < - -, T;, then Gy and Gy
agree on x. Note that x € Imp because x € Imp,+1 and there is no assxgnment statement to x in the
mmal subsequencc T,,T, - T Smce oy and 6 agree on Imp 0', and G,” agree on x. Thus,
c,ﬂ and 0'1 agree on x. Since 0',,,1 and cﬂm) do not agree onx, o’l "and crmm do not agree on x.
Thus the execution of the initial subsequence U,,Us, < -+, U411 €xecuted an assignment state-
ment to x and reached the beginning of U 41y Let the assignment statement a@ be in Uy Since x is
an imported variable of U g1y, Ungi+1y has an incoming loop-independent flow edge or an incoming
def-order edge @ — . . ., whose source is in U,. Since T and U have isomorphic program depen-
dence graphs, there is a corresponding loop-independent flow edge or a corresponding def-order
edge from a vertex in T to a vertex in T;,;. Therefore, (k) < i+1. Because U, has an assign-
ment statement, a, to x, T, has a corresponding assignment statement to x, which contradicts a
previous assumption that there is no assignment statement to x in the initial subsequence

TI’TZ’ e ,T,
(2) Suppose there are assignment statements that assign to x in the initial subsequence T.,Ty, -+, T;.
Let m be the largest number in 1,2, ---,i such that T,, contains an assignment statement to x.

Because x is an imported variable of T}, T;; has an incoming loop-independent flow edge or an
incoming def-order edge whose source is in T,,. Since T and U have isomorphic program depen-
dence graphs, there is a corresponding loop-independent flow edge or a correspondmg def-order
edge from a vertex in U gy, to a vertex in U g4y and hence nt(m) < n(i+1). Note that G,,,, and O
agree on x because there is no assignment statement 1o x in the subsequence Ty, Tmaz, "2 1
Note also that x € Exp,, because T,, has an outgoing loop-independent flow edge whose source is an

-16-

assignment statement to x.

Since m <i, by the induction hypothesis, G, and 6',,,(,,,)’ agree on Imp, . Because G, and &,U(m)’
agree on Imp,, and T,, and U y,) are corresponding subtrees, by the Equivalence Lemma, the execu-
tion states after executing T, and U (), Oy and &m(mm" agree on Exp,, , and hence they agree on
x. Thus, 6','.,.1 and &ﬂ:(m)-l-l, agreeonx.

Because Gi41 and Grg41y’ dO NOL agree On X , Grgmy+t” and Gng41y’ do not agree on x. Thus the execu-
tion of the subsequence U rimys1» Ummypszs * * * »Ungis1)-1 €Xecuted an assignment statement to x and
reached the beginning of Upggyyy. Let the assignment statement a be in U, where
n(m) <k <m(i+1). Since x is an imported variable Of U1y, Unery has an incoming loop-
independent flow edge or an incoming def-order edge a —>. . ., whose source is in U.

Since T and U have isomorphic program dependence graphs, there is a corresponding loop-
independent flow edge or a corresponding def-order edge from a vertex in Tpy to a vertex in Tjyy.
Therefore, ~(k) < i+1. Note that t(m) < k < =(i+1) and both assignment statements to x in U gim)
and U, can reach Upyy). Hence U, has an incoming def-order edge whose source iS in Ux(m).
Since T and U have isomorphic program dependence graphs, T, has a corresponding def-order
edge whose source is in T,,. Therefore, m < (k). Thus, m < '(k) <i+1. Because there is an
assignment statement to x in U, and U and Ty, are corresponding subtrees, there is an assign-
ment statement to x in T, which contradicts a previous assumption that m is the largest number
in 1,2, - - - ,i such that T,, contains an assignment statement to x.

We conclude that &m and 6‘1«:“)' agree on Imp;,;. By the induction hypothesis of the structural induc-
tion, T}, and U r;;+1) compute the same sequence of values at each corresponding program point.

This completes the induction, so we conclude that T and U compute the same sequence of values at
each corresponding program point.

Case 5. The operator at the root of T is the Program operator. Because Imp = ImPeoms iist» the proposi-
tion that T and U compute the same sequence of values at each corresponding program point follows
directly from the induction hypothesis. [J

4.2.2. A Strong Form of the Equivalence Theorem

The Strong Form of the Equivalence Theorem follows as a corollary of the Subtree Equivalence Lemma; it
is simply the Subtree Equivalence Lemma specialized to the case when subtree T is the entire program P

THEOREM. (STRONG FORM OF THE EQUIVALENCE THEOREM). Suppose that P and Q are programs for
which Gp =Gg. If G is a state on which P halls, then for any state &’ that agrees with & on all variables
for which there are initial-definition vertices in Gp: (1) Q halts on o', (2) P and Q compute the same
sequence of values at each corresponding program points, and (3) the final states agree on all variables for
which there are final-use vertices in Gp .

PrROOF. Immediate from the Subtree Equivalence Lemma. [

Note that the differences among programs with isomorphic program dependence graphs are the order in
which the statements occur in the program. The strong form of the Equivalence Theorem tells us that we
may choose any one among those programs with isomorphic program dependence graphs as the “represen-
tative” of them. Therefore, in proving other theorems, such as the Slicing Theorem, we may assume the
statements of the program appear in some particular order as needed to make the proof more tractable.

-17-

4.3. The Subtree Slicing Lemma

The Subtree Slicing Lemma characterizes the relationship between a subtree and a slice of the subtree in
terms of the slice’s imported and exported variables. The Lemma asserts that, for certain initial states,
corresponding subtrees of a program and a slice of the program compute the same sequence of values at
common program points.

LEMMA. (SUBTREE SLICING LEMMA). Let Q be a slice of program P with respect to a set of vertices.
Let T be a subtree of program P and U be the corresponding subtree of Q. If ¢ is a state on which T
halts, then (1) U halts on &’ where & and & agree on U’s imported variables (as defined in the context
given by Q), (2) T and U compute the same sequence of values at each program point of U, and (3) the
Sfinal states agree on U’ s exported variables (as defined in the context given by Q).

PROOF. By the Strong Form of the Equivalence Theorem, all programs with isomorphic PDGs compute
the same sequence of values at each corresponding program point. We choose O to be the version of the
slice whose statements are in the same order asin P.

The proof is by structural induction on the abstract syntax of the programming language. The proof
splits into five cases based on the abstract-syntax operator that appears at the root of T'.

Throughout the proof, we use 6; and 6;” to denote states that agree on U’s imported variables, Impy .
We use 6; to denote a sequence of states in the execution of T initiated on o}, and we use o;” to denote the
corresponding sequence of states in the execution of U initiated on ¢,’.

Case 1. The operator at the root of T is the Assign operator. Because T is a single assignment state-
ment, either U is the tree Null or U =T . If U is Null, then Impy; = Exp;y =@. Hence U always halts and
the final states agree on Expy (since Expy is empty).

Now suppose U =T and that U assigns to variable x as a function of variables {y;}. The set Impy is
either {y;} or (y;}v {x}. Umpy is {y;} v {x) when U is the target of a def-order edge.) Since the value
of the exp is a function of {y;}; and {y;} c/mpy, evaluating exp in both &, and o,” yields the same value
because they agree on Impy. Expy is either @ or {x}. For any combination of these possibilities, g, and
G, agree on x, and hence they agree on Expy.

Case 2. The operator at the root of T is the While operator. If the vertex corresponding to T'’s exp com-
ponent is not in U, then U is the tree Null. If U is Null, then Impy = Expy = @. Hence U always halts
and the final states agree on Expy.

We use Imp,,, and Exp,,, to denote the imported and exported variables of U’s exp component, respec-
tively; Impy,_,,. and Expy,_,, denote the imported and exported variables of U’s somt_list component,
respectively. We use o; and ;’ to denote the execution states before executing the i** iterations of the
loops of T and U starting from two states that agree on Impy,, 6; and 6,’, respectively.

Suppose the vertex corresponding to T’s exp component is in U. Since T halts we may assume the exe-
cution of T halts after the j* iteration, for some j. It is sufficient to show that (1) U also halts after the j*
iteration, (2) in each iteration, T and U compute the same sequence of values at each program point of U,
and (3) the final states, 0;,; and o;,," agree on Expy. Because for a loop Expy <Impy ;S it suffices to
show that if 6; and o;” agree on Imp; then either T and U halt in the states o; and G;”, respectively, or the
i** jterations compute the same sequence of values at each program point of U and result in the states G;;

*If x € Expy, then U contains an assignment a to x with an outgoing flow edge @ —>, b. Because the loop may execute zero times,
the assignment to x must be the target of a def-orderedge . .. —> 4,34, hence x € Impy.

-18 -

and o;,,” that agree on Impy, .

First, we show that Impy; = Imp ., Impy,_ ... It is clear that we could have written this with <, noting
that Impy,_,,, can include a variable x that is used at the target ¢ of a loop-carried flow dependence edge
where the dependence is carried by U. However, there then has to exist an incoming loop-independent
flow edge to ¢, which implies that v € Impy .

Let ; and o;’ be states that agree on Impy. Therefore they agree on /mp . Evaluating the condition
(the exp component of U) in o; and o;” yields the same value. Hence, T and U compute the same
(sequence of) values at the control predicate of the loop in the i** iteration. If the condition evaluates to
false, then both executions terminate in the states o; and o;’, which agree on Expy.

Now suppose the condition evaluates to true. Let ; and o;’ be states that agree on Impy; therefore they
agree on Impy,, ... NOW Tpe tior and Ugomy 1ise a1 corresponding subtrees. Since T halts on O;, Tyome tise
also halts on 6;. By the induction hypothesis, (1) U i halts on o;’, (2) during the i* iteration Ty, i
and U,om 1iw compute the same sequence of values at each program point of Usm i, and (3) the final
states, 6;,; and G;4", agree on Expy,_ ... If ;4 and G;41’ do not also agree on Impy , then let x € Impy be
a variable on which they disagree (so x ¢ Expy_). Now, by assumption, o; and a;’ agree on Impy;
therefore, at least one of the two executions of Tyme jisr aNd Useme tist » respectively, executed an assignment
statement a that assigned a value to x and reached the end of the stmt_list. There are two cases to con-
sider:

(1) One possibility is that x € Impy because x is used in a condition or statement b that is the target of
an incoming flow edge . . .—>; b in U. If this were the case, then there must be a loop-carried flow
edge @ = 1.ryb or a —> ., b, depending on whether Ty s OF Usome 1 €xecuted a. However,
in either case, a is in U because b is in U ; therefore, @ is in Usems jix and x € Expy,_, ., which con-
tradicts our previous assumption.

(2) The other possibility is that x € Impy because the Ugpme us has an incoming def-order edge
.. .= 4 (cyd. However, this implies that there is an outgoing flow edge a —>¢ ¢ from Ty yise OF
Usims st » depending on whether Topme s OF Usems_tise €xecuted a. In either case, however, ¢ must be
in U because ¢ is in U; therefore, @ is in Uy i and x € Expy,,, ., which contradicts our previous
assumption.

We conclude that o;,, and o;,," agree on Impy. Therefore U halts after the j * jteration, during each
iteration T and U compute the same sequence of values at each program point of U, and o;,; and Gt
agree on Expy.

Case 3. The operator at the root of T is the IfThenElse operator. If the vertex corresponding to T'’s exp
component is not in U, then U is the tree Null. If U is Null, Impy = Expy = . Therefore, U always
halts and the final states agree on Expy.

Suppose the vertex corresponding to T’s exp component is in U. Evaluating the condition (the exp com-
ponent of U) in 6; and o,” yields the same value. Therefore, T and U compute the same (sequence of)
values at the control predicate of the IfThenElse statement.

Without loss of generality, assume that the condition evaluates to true. We use Ty, T fatse s Utrue » and
U aise to denote the respective branches of Tand U.

When execution is initiated in state o;, T terminates in o consequently Ty, also terminates in G.
Since o, and o,” agree on Impy and Impy_ <Impy, 6, and oy” agree on Impy,_. Because Toue and Uy,
are corresponding subtrees, the induction hypothesis tells us that, when execution is initiated in state o;’,
(1) Uy terminates in state 6" (hence U terminates in 65", (2) T and U, compute the same sequence

~19 ~

of values at each program point of U,,, (hence T and U compute the same sequence of values at each pro-
gram point of U), and (3) 6, and 6, agree on Expy,. .

Note that Expy = Expy,_ v Expy,,. so what remains to be shown is that o, and oy’ agree on Expy,, . If
o, and o7’ do not also agree on Expy,,., then let x € Expy,,, be a variable on which they disagree (so
x ¢ Expy,_). Because x € Expy,,,, there is an assignment statement a in the false branch of U that assigns
to x and is the source of an outgoing flow edge from that branch (say a — b).

We must consider whether it is possible that x € Impy. By assumption, x ¢ Expy_. Consider an execu-
tion path p, from the beginning of the program to the beginning of statement U, that does not include the
back-edges of any loops. Let ¢ be the last assignment statement that assigns to x along p, or, if no such
statement exists, let ¢ be the initial-definition vertex for x. Because we can extend path p to first follow
the true branch of U and then continue from the join point of U via the path by which a reaches b, we
deduce that there is a dependence ¢ —>; b. By construction, vertex ¢ occurs to the left of a, hence
¢ —> & pya. We conclude that x € Impy .

Since x € Impy, 6, and 6, agree on x. Because 6, and o, disagree on x, at least one of the two execu-
tions of the true branches of T and U, respectively, executed an assignment statement d that assigned a
value to x and reached the end of the true branch. But this implies the existence of a flow edge d —¢ b in
either T or U, depending on whether T,,,, or Uy, executed the assignment to x. In either case, the flow
edged —>¢ b isin Q since b isin Q, and hence d is in U,,,. Therefore, x € Expy,_, which contradicts a
previous assumption. We conclude that o, and o;” agree on Expy,,,. This, together with the fact that o,
and o’ agree on Expy,_, means that they agree on Expy .

Case 4. The operator at the root of T is the StmtList operator. Let T1,T5, - -+, T, denote the immediate
subtrees of T and U, U, * - + , U, denote the corresponding subtrees of U. (Note that some of the U; may
be the tree Null.) We use o; and o;’ to denote the execution states before executing T; and U;, respec-
tively; we use Impy, and Expy, to denote the imported and exported variables, respectively, of U;; and we
use Impy, , and Expy, , to denote the imported and exported variables, respectively, of the initial subse-
quence U, Uy, - -+, U;. (Although the imported and exported variables for subsequences were not part of
the definition in Section 4.1, we intend the obvious extension: the imported variables of a subsequence are
defined in terms of incoming edges whose targets are inside the subsequence; the exported variables of a
subsequence are defined in terms of outgoing edges whose sources are inside the subsequence).

The proof of this case is by induction over the initial subsequences of U. We want to show that for all i,
1<i <n, if oy is a state on which T halts and o, and o,” agree on Impy, ,, then Ty ; and U, _; terminate
in 6;,, and o;,,’, respectively, and T, ; and U, ; compute the same sequence of values at each program
point of U, ; and o;,; and o;,,” agree on Expy, ,.

Base case. n = 1. The proposition follows immediately from the induction hypothesis of the structural
induction.

Induction step. The induction hypothesis is: if o, and o, agree on Impy, , and T halts on oy, then
()T, ; and U, ; terminate in O;,; and o, , respectively, (2)T, ; and U, ; compute the same
sequence of values at each program point of U, _;, and (3) 0;,; and o, agree on Expy, ,. Thus, if &1 and
5‘1' are arbitrary states that agree on /mpy, ,, and T halts on &1, we need to show that Ty ;. and Uy ;4
terminate in 6',-+2 and G;,,’, respectively, and T, _;,, and U, _;,; compute the same sequence of values at
each program pointof U, _;4; and ;.2 and G,.2’ agree on Expy, ..

Note that Impy, , cImpy, .., which means that 6, and G, agree on Impy, ,, and thus, by the induction
hypothesis, (1) T;.; and U, ; terminate in G;,; and G;,,’, respectively, (2) T, ; and U;_; compute the

-20-

same sequence of values at each program point of U ;, and (3) G;,; and &m' agree on Expy, .

First, we must show that J;,; and ;.. agree on Impy,,. Any variable x € Impy,, on which G4y and
G, disagree must be in Impy, . (if not, x would be in Expy, , on which &;,; and G;,," agree). By
assumption, &1 and 6’1’ agree on Impy, ,.; consequently, at least one of the two executions of T ; and
U, ; performed an assignment statement, @, that assigned to x and reached the end of T; or U;, depending
on whether T ; or U, _; performed the assignment. There are now two cases to consider:

(1) One possibility is that x € Impy,, because x is used in a condition or statement b that is the target of
one of U,,;’s incoming flow edges. In this case, there is a flow edge: a —, b in T or U, depending
on whether T or U performed the assignment. In either case, a is in U because b is in U. There-
fore, this edge must be in U . This implies that x € Expy, ,, 50 ;4 and G;,;’ must agree on x, which
contradicts our assumption that they disagree on x.

(2) The other possibility is that x € Impy,, because there is an incoming def-order edge, . . . —> 4w @) ¢
to U;,;. However, this implies that there is an outgoing flow edge of : a —¢ d in T or U depending
whether T or U performed the assignment, a. In either case, a isin U because d is in Q. There-
fore, this flow edge a —> d is in Q. As in the previous case, this implies that x € Expy, ,, S0 &m
and G;,;’ must agree on x , which contradicts our assumption that they disagree on x.

We conclude that G, and G;,,” agree on Impy,..

Because T terminates on G;, T;4; must terminate on G;,;. Because G;,; and ;.1 agree on Impy,,,, the
induction hypothesis of the structural induction tells us (1) the execution of Uy, on G; 4, halts, (2) T;,, and
U,;,; compute the same sequence of values at each program point of U;,; and 0;,, and (3) G;. agree on
Exp Uine

The final step is to show that G;,, and G;,,’ agree on Expy, .. Note that Expy, ,,<Expy, , v Expy,,,.
Now suppose there is a variable x € Expy, ,,, on which 6’,-+2 and &m’ disagree (in particular, x € Expy,).
Therefore, x € Expy, ,. By the induction hypothesis, G;,; and G;,; agree on Expy, ,, so at least one of the
two executions of T;,; and U;,, performed an assignment statement, a, that assigned to x and reached the
end of T;4; or U;,,, depending on whether T;,, or U;,, performed the assignment. If T;; performed the
assignment, since x € Expy, ,, < Expr, .., there must also be an outgoing flow edge @ —>; . . . from T;,;.
Since U,y ;. is a slice of Ty ;4 and x € Expy, ,.,, therefore the flow edge a —>¢ .. .isin U, ;4. This
implies that x € Expy,,, SO O;.2 and ;.2 must agree on x, which contradicts our assumption that they
disagree on x. If U;,, performed the assignment, since x € Expy, ,,, there must also be an outgoing flow
edge a —; .. . from U;,;. This implies that x € Expy,,,, SO G;42 and G;,,’ must agree on x , which contrad-
icts our assumption that they disagree on x. A

This completes the induction, so we conclude that U terminates on o,, T and U compute the same
sequence of values at each program point of U, and 0,4, and G, agree on Expy.

Case 5. The operator at the root of T is the Program operator. Because /mpy =Impy_,, and
Expy =Expy,,,,, we conclude from the induction hypothesis that U terminates on ¢’, T and U compute
the same sequence of values at each program point of U, and &, and &’ agree on Expy. O

4.4. The Slicing Theorem

The Slicing Theorem follows as a corollary of the Subtree Slicing Lemma; it is simply the Subtree Slicing
Lemma specialized to the case when subtree T is the entire program P .

THEOREM. (SLICING THEOREM). Let Q be a slice of program P with respect to a set of vertices. Ifois
a state on which P halts, then for any state & that agrees with G on all variables for which there are

-2~

initial-definition vertices in Gy : (1) Q halts on &, (2) P and Q compute the same sequence of values at
each program point of Q , and (3) the final states agree on all variables for which there are final-use ver-
tices in Gg.

PROOF. Immediate from the Subtree Slicing Lemma. [

5. THE TERMINATION THEOREM

The Slicing Theorem tells us that if a program terminates on some initial state then (on sufficiently similar
initial states) the program’s slices also terminate. The Termination Theorem looks at this relationship from
the opposite point of view; it tells us that if a program is decomposed into two slices, the termination of the
slices on some states implies the termination of the program on a similar state. (It is straightforward to
generalize the theorem to the case where the program is decomposed into more than two slices.)

5.1. The Subtree Termination Lemma

As in the Slicing Theorem, the proof of the Termination Theorem relies on a lemma about subtrees. The
Subtree Termination Lemma states that if a program is decomposed into two slices, a subtree of the pro-
gram will terminate on a state when the corresponding subtrees of the two slices terminate on some similar
states.

LEMMA. (SUBTREE TERMINATION LEMMA). Let P be a program. Suppose X andY are sets of vertices
such that Gp = Gp /X UGp /Y. Let T be a subtree of program P and U and V be the corresponding sub-
trees of P IX and P |Y, respectively. Suppose Gy is a state on which U halls, and Gy is a state on which
V halts. Then for any state 6, where & and &y agree on U's imported variables and © and Oy agree on
V's imported variables, T halts on G.

PROOF. By the Equivalence Theorem, all programs with isomorphic program dependence graphs are
strongly equivalent. We choose P /X and P /Y to be the versions of the slices whose statements are in the
same order as in P,

The proof is by structural induction on the abstract syntax of the programming language. The proof
splits into five cases based on the abstract-syntax operator that appears at the root of T'.

Case 1. The operator at the root of T is the Assign operator. Since Gp =Gp /X uGp /Y, T=U or
T =V. Without loss of generality, suppose T =U. Because ¢ and oy, agree on U’s imported variables
and U halts on oy, by the Self-Equivalence Lemma T halts on .

Case 2. The operator at the root of T is the While operator. Since Gp =Gp /X vGp /Y, if U isa Null
tree, then T = V. Similarly, if V is a Null tree, then T =U. Without loss of generality, suppose T = U.
Because o and oy agree on U’s imported variables and U halts on 6y, by the Self-Equivalence Lemma T
halts on G.

Now suppose both U and V' are not Null trees. Since U halts on 6y, we may assume that the execution
of U halts after the j* iteration, for some j. We prove that T and V halt on ¢ and oy, respectively, after
exactly j iterations. Because for a loop Expy cImpy, it suffices to show that if o and oy agree on U’s
imported variables and o and oy agree on V’s imported variables, then either T, U, and V halt in the states
o, Oy, and Gy, respectively, or T, U, and V successfully finish one iteration and the execution states that
result after one iteration of the loops (¢, oy ’, and oy’, respectively) are ones such that o’ and oy, agree on
U’s imported variables and ¢’ and oy’ agree on V’s imported variables.

We use Ty sist » Usoms_tise » and Vi i to denote the stmt_list components of T, U, and V, respectively.
Note that Tme tist » Usme tist » and Vistme lis T corresponding subtrees of P, P /X, and P /Y, respectively.

22 -

Because o and oy agree on U ’s imported variables, evaluating the control predicates in ¢ and oy yields
the same value. Because o and Oy agree on Vs imported variables, evaluating the control predicates in 6
and oy yields the same value. If the control predicate evaluates to false, then T, U, and V halt in the states
o, Oy, and Oy, respectively.

Now suppose the control predicate evaluates to true. Because G and oy agree on U’s imported variables
and the imported variables of U s are a subset of U’s imported variables, ¢ and 6y agree on the
imported variables of U i Similarly, o and oy agree on the imported variables of Vg, . Note that
Tt tist s Usems_tist» and Vi i are corresponding subtrees of P, P /X, and P /Y, respecti;/ely. Because
Usme tise ANA Vioms tist halt on oy and Oy, respectively, by the induction hypothesis, Tem iist halts on ©.
Therefore, T, U, and V successfully finish one iteration. Let ¢’, oy’, and oy’ denote the execution states
of T, U, and V after one iteration of the loop, respectively. By the Subtree Slicing Lemma, ¢’ and 6’
agree on U ’s exported variables and o and oy’ agree on Vs exported variables. By the same argument as
in the proof of the Subtree Slicing Lemma, Case 2, o and oy’ agree on U s imported variables. Similarly,
o and oy’ agree on Vs imported variables. We conclude that T, U, and V halt on g, Gy, and Oy, Tespec-
tively, after the j* iteration.

Case 3. The operator at the root of T is the IfThenElse operator. Since Gp =Gp /X WGp/Y,if U isa
Null tree, then T =V. Similarly, if V is a Null tree, then T = U. Without loss of generality, suppose
T = U. Because ¢ and o agree on U's imported variables and U halts on 6/, by the Self-Equivalence
Lemma T halts on ©. '

Now suppose both U and V' are not Null trees. Because ¢ and oy agree on U’s imported variables,
evaluating the control predicates in ¢ and oy yields the same value. Because ¢ and oy agree on V'’s
imported variables, evaluating the control predicates in ¢ and oy yields the same value. Without loss of
generality, we may assume the control predicate evaluates to true.

We S€ Toe» Tratses Utrue s Ufatses Virue » and Vi, to denote the respective branches of T, U, and V,
respectively. Note that Ty, U, and Vin, are corresponding subtrees of P, P /X, and P /Y, as are
T tatge » Upatse » and Viggee -

When execution is initiated in state oy, U terminates; consequently, Uy, also terminates. Similarly,
when execution is initiated in state oy, V terminates; consequently, Vy,, also terminates. Because ¢ and
oy agree on U s imported variables and the imported variables of U, are a subset of U’s imported vari-
ables, o and oy agree on the imported variables of Uy, . Similarly, o and oy agree on the imported vari-
ables of Vipye. Because T, Ui - and Vi, are corresponding subtrees of P, P /X, and P /Y, respec-
tively, the induction hypothesis tells us that the Ty, halts on ©. Hence, T halts on ©.

Case 4. The operator at the root of T is the StmtList operator. Let T}, T,, -+ ,T, denote the immediate
subtrees of T, Uy,U>, + -+ ,U, denote the corresponding subtrees of U, and V,,V,, -+ ,V, denote the
corresponding subtrees of V. Let Ty ;, Uy ;, and V;_; denote the initial subsequences T+1,T5, - -+, T,
UypUy -+, U, and V,Vy, - -V, respectively.

The proof of this case is by induction over the initial subsequences of T. We want to show that for all i,

1<i<n,ifU; ; and V;_; halt on oy and Oy, respectively, then T, ; halts on ¢ where ¢ and oy agree
on the imported variables of U, ;, and ¢ and 6y agree on the imported variables of V; ;.

Base case. n = 1. The proposition follows immediately from the induction hypothesis of the structural
induction.

Induction step. The induction hypothesis is: if U, ; and Vy_; halt on oy and oy, respectively, then
T, ; halts on ¢ where o and oy agree on the imported variables of U _;, and ¢ and oy agree on the
imported variables of V_;. Thus, if oy and &v are arbitrary states on which Uy ;. and Vi _in halt,

respectively, we need to show that Ty ;4 halts on ¢ where & and Gy agree on the imported variables of
U, ;+,and o and Oy agree on the imported variables of Vy ;1.

Note that the imported variables of U, _; are a subset of the imported variables of U, . i+, which means
that & and Oy agree on the imported variables of U; ;. Smularly, o and cv agree on the imported vari-
ables of V, ;. Thus, by the induction hypothesis, T, ; halts on 6. Let &, 6y’, and Gy’ be the execution
states after execuung the initial subsequences Ty ;, U, ;, and V_;,respectively. By the Subtree Slicing
Lemma, ¢ and Gy agree on the exponed variables of U,_;. By the same argument as in the proof of the
Subtree Slicing Lemma, Case 4, o’ and Gy’ agree on the imported variables of U;,;. Similarly, & and 6y’
agree on the imported variables of V;,,. Note that T;,,, U4, and V,+1 are corresponding subtrees of P,
P /X,and P /Y, respectively. Because U;,, and V,“ halt on O‘U and cv , respectively, by the induction
hypothesns of the structural induction, T}, halts on g. Now we have proved that T, ; halts on G, resulting
in &, and T}, halts on &’. Therefore, T1_ ;4 haltson G.

This completes the induction, so we conclude that T halts on .

Case 5. The operator at the root of T is the Program operator. Because the imported variables of U are
the same as the imported variables of Uy, 1 and the imported variables of V' are the same as the imported
variables oOf Vo, i » by the induction hypothesis of the structural induction, T halts on 5. [

5.2. The Termination Theorem

The Termination Theorem follows as a corollary of the Subtree Termination Lemma; it is simply the Sub-
tree Termination Lemma specialized to the case when subtree T is the entire program P.

THEOREM. (TERMINATION THEOREM). Let P be a program. Suppose X and Y are sets of vertices such
that Gp =Gp /X WGp /Y. IfP /X and P |Y halt on a state o, then P halts on & as well.

PROOF. Immediate from the Subtree Termination Lemma. [

Note that the Termination Theorem and clause (1) of Slicing Theorem are complementary: clause (1) of
the Slicing Theorem asserts that if a program terminates then each slice also terminates; the Termination
Theorem asserts that when a program can be decomposed into two slices, if each slice terminates then the
program terminates. We can then apply clause (2) of the Slicing Theorem to conclude that the two slices
(collectively) compute the same sequence of values as the entire program.

The following Corollary generalizes the Termination Theorem to the case when the program is decom-
posed into three slices. It is used in the proof of the Integration Theorem that is given in the next section;
the integrated program that is the subject of the proof is formed by taking the union of three slices.

COROLLARY. Let P be a program. Suppose X, Y, and Z are sets of vertices such that
Gp=Gp/XvGp!YVUGp/Z. IfP(X,PIY,and P |Z haltonastate G, then P halts on © as well.

PROOF. From the Decomposition Lemma, we have Gp /X WGp /Y =Gp /(X vY). Let P /(X VY)
denote a program whose program dependence graph is (isomorphic t0) Gp /(X vY). Since P /X and
P/Y halt on o, by the Subtree Termination Lemma, P /(X vY) halts on o. Similarly,
Gp=Gp/XvGplYUGplZ =Gp /(XY)uGp/Z. Since P /(XY)and P/Z halt on o, P halts
onoc. O

6. SEMANTICS OF PROGRAM INTEGRATION

An algorithm for integrating several related, but different variants of a base program (or determining
whether the variants incorporate interfering changes) has been presented in [5]. The algorithm presented
there, called Integrate, takes as input three programs A, B, and Base , where A and B are two variants of

Base. As we show below, whenever the changes made to Base to create A and B do not “interfere” (in
the sense defined below), Integrate produces a program M that exhibits the changed execution behavior of
A and B with respect to Base as well as the execution behavior preserved in all three versions.

We now describe the steps of the integration algorithm. The first step determines slices that represent a
safe approximation to the changed computation threads of A and B and the computation threads of Base
preserved in both A and B ; the second step combines these slices to form the merged graph Gy, ; the third
step tests Gy, for interference.

Step 1: Determining changed and preserved computation threads

If the slice of variant G, at vertex v differs from the slice of Gpa. at v, then G, and Gpa, may compute
different values at v. In other words, vertex v is a site that potentially exhibits changed behavior in the two
programs. Thus, we define the affected points of G, with respect to Gpg., denoted by AP, pa. , to be the
subset of vertices of Ga whose slices in GRase and Ga differ
AP, Base = (v 1 VEV(Ga) A (Gpase IV %G /v)). We define APy ., similarly. It follows that the
slices G /AP 4 pase and Gp /APg g, capture the respective computation threads of A and B that differ
from Base .

The preserved computation threads of Base in A correspond to the slice Gpgy, /A—I"-A' Bass » Where
AP, gase is the complement of APy gase: APy pass =V (GA) ~ APa pase. We define APy g, similarly.
Thus, the u unchanged ¢ computation threads common to both A and B is captured by the following slice:
Gpase | (AP4 ,Base "APB Base)-

Step 2: Forming the merged graph

The merged program dependence graph, Gy, is formed by unioning the three slices that represent the
changed and preserved computation threads of the two variants:

Gar = (Ga /AP gase) (Gs [APg pase) I (Giase | (AP Base VAP pass))-

Step 3: Testing for interference

There are two possible ways by which the graph G, may fail to represent a satisfactory integrated pro-
gram; both types of failure are referred to as “interference.” The first interference criterion is based on a
comparison of slices of G4, G, and Gy. The slices G4 /AP, pase and Gp /APg pase TEpIESent the
changed computation threads of programs A and B with respect to Base. A and B interfere if Gy does
not preserve these slices; that is, there is no interference of this kind if Gy /AP4 Base = Ga / AP pase and
Gy ! APg pase =Gp /APp Base-

The final step of the integration method involves reconstituting a program from the merged program
dependence graph. However, it is possible that there is no such program; that is, the merged graph may be
an infeasible program dependence graph. This is the second kind of interference that may occur. (The
reader is referred to [5] for a discussion of reconstructing a program from the merged program dependence
graph and the inherent difficulties of this problem.)

If neither kind of interference occurs, one of the programs that corresponds to the graph Gy will be
returned as the result of the integration operation.

6.1. The Integration Theorem

Using the Slicing Theorem and the definition of the merged graph Gy, we now show the following
theorem, which characterizes the execution behavior of the integrated program in terms of the behaviors of

the base program and the two variants:

THEOREM. (INTEGRATION THEOREM). If A and B are two variants of Base for which integration
succeeds (and produces program M), then for any initial state G on which A, B, and Base all halt, (1) M
halts on o, (2) if x is a variable on which the final states of A and Base disagree, then the final state of M
agrees with the final state of A on x, (3) if y is a variable on which the final states of B and Base disagree,
then the final state of M agrees with the final state of B on 'y, and (4) if z is a variable on which the final
states of A, B, and Base agree, then the final state of M agrees with the final state of Base on z.

Restated less formally, M preserves the changed behaviors of both A and B (with respect to Base) as
well as the unchanged behavior of all three.

The merged program dependence graph Gy, is formed by unioning the three slices G, /AP, pue»
Gp /APg pase» and Gpgy, /(APA Base nAPB Base)» Because the premise of the theorem is that integration
succeeds, we know that Gy /APy pase = Ga /AP 4 pase aNd Gy /| APg pase = Gp | APp pae.. One detail that
must be shown is that, in testing G, for interference, it is unnecessary to test whether

GBase | (AP4 Base NAPg pase) = Gy | (AP4 Base " APB Base)-

This matter is addressed by the Preserved Behavior Lemma, which shows that, regardless of whether or
not the integration algorithm detects interference, the slice Gpuy /(AP pase "APg pase) is always
preserved in Gy .

LEMMA. If W € APy pase, then w & Gpay |APA pose.-

PROOF. From the definition, APy pase = (VEV(A) 1 (Gpase /v #G4a IV) }, SO
AP4 Base = (Vv € V(A) | (Gpase /v =G4 /v) }. Using the Decomposition Lemma, we have:

GBase /A_‘FA.Ba.n =GB¢,,/{VE V(A) | (Gpase IV =G4 /v)}

= U Gaase !V
v e VA G iy =Galv) B2

But if for some v, weV(GBaL,__lv), then Gpap /W CGpase /V; because Gpgee /W # Gy /W,
Grase [V #G4lv. HCHCCWQGBG,-,/APA_BG,,. (]

LEMMA (PRESERVED BEHAVIOR LEMMA). Let
GM (GA /APA Ba.u)U(GB /APB Ba.n)u(GBa.u /(APA Base hAPB Basc)) Then
Gase ! (AP Base "APB pase) =Gy I(AP pase "APg pase)-

PROOF. Let PRE = Gpaye /(APA pase "APg pase) and PRE’ =Gy /(AP4 pace "APp pase). Suppose
PRE #PRE’, Because Gy is created by unioning PRE with G, /AP4 pas. and Gy /AI:B' Base » and the

slices that generate PRE and PRE’ are both taken with respect to the same set, AP g, NAPg ggq. , it must
be that PRE < PRE".

Thus, there are three cases to consider: either PRE’ contains an additional vertex, an additional control
or flow edge (in the latter case either loop independent or loop carried), or an additional def-order edge.

Case 1. PRE’ contains an additional vertex. Because the slices that generate PRE and PRE’ are both
taken with respect to the set, AP, Base nA—FB' Base» PRE’ can only contain an additional vertex v if there is
an additional control or flow edge v —>. (w whose target w is an element of both PRE and PRE’. Thus,
this case reduces to the one that follows, in which PRE’ contains an additional flow edge.

Case 2. PRE’ contains an additional control or flow edge. The slice operation is a backward closure;
because the slices that generate PRE and PRE’ are both taken with respect to the same set, namely
APA Base nAP,, Base » if PRE’ were to contain control or flow edges not in PRE, then there is at least one
such edge whose target vertex occurs in both PRE and PRE’. That is, there is at least one edge e: v —w,

—26—

where ¢ € E(PRE"),v,w € V(PRE"),w € V(PRE),and v ¢ V(PRE).

Because Gy is created by a graph union, e must occur in E (G, /APy, pase), E (G /APg pas), OT both.
Without loss of generality, assume that e € E (G /APy pase), SO thate € E (Gy).

The slice operation is a backward closure, so ¢ ¢ E(PRE) and w € V(PRE) imply ¢ € E (Gpgaee). Tak-
ing this together with the previous observation that e € E(G,), we conclude, from the definition of
APA.Ba.\'u thatw € V(APA.Ba.i'a)-

This yields a contradiction as follows. By the p@ous lemma, w e V(AP, pa.) implies that
wé V(GBa.u /APA,Ban)- However, Gpase /(APA,Ban nAPB,Bau)CGBan /APA.Emc, which means that
w & V(PRE).

Case 3. PRE’ contains an additional def-order edge. Suppose E(PRE’) contains a def-order edge
e:v —> 4w that does not occur in E (PRE). By the definition of the edge set of a slice, there must exist
flow edges v —>; u and w —>5 u in E (PRE"); by case (2), these edges must occur in both E (PRE) and
E(PRE") (implying that u,v,w € V(PRE),V (PRE .

Because Gy, was created by a graph union, e must occur in E (G4 / AP4 gase), E (Gg /APy ase), or both.
Without loss of generality, assume that e € E (G4 /APy pax), S0 that e € E(Gy).

The slice operation is a backward closure, so e € E(PRE) and u € V(PRE) imply e € E (Gpas); by the
definition of AP, pas. . we conclude that u € V(AP4 pase).

This yields a contradiction a analogous to the one that arose in case (2): by the lemma, u € V(AP Base)

implies that u € V(Gpase /AP4,pase). However, Gpase /(AP pase "APp Base) S GBase | APA Base, Which
means that u € V(PRE).

We conclude that PRE and PRE’ cannot differ; that is, even if variants A and B interfere with respect to
base program Base , the slice Gpase / (AP, Base NAPg pa.) is preserved in Gy O

The base program, the two variants, and the merged program share common slices; thus, the next matter
to address is the relationship between the execution behaviors of two programs when they share a common
slice. An immediate consequence of the Slicing Theorem is that two programs that share a slice agree on
all variables for which there are final-use vertices in the slice.

SLICING COROLLARY. Let P and Q be two programs that share a slice with respect to a set of program
points S (i.e. (P 18)=(Q/S8)). Then, for any initial state & on which both P and Q halt, the final states
produced by P and Q agree on all variables for which there are final-use vertices in V(P [S§).

PROOF. Immediate from the Slicing Theorem. [

Using the Slicing Corollary, the definition of the merged graph Gy, and Preserved Behavior Lemma, we
can now characterize the execution behavior of the integrated program in terms of the behaviors of the base
program and the two variants. In particular, the Integration Theorem asserts that the program M that
results from successfully integrating variants A and B with base program Base exhibits the changed
behaviors of both A and B (with respect to Base) as well as the unchanged behavior of all three.

THEOREM. (INTEGRATION THEOREM). If A and B are two variants of Base for which integration
succeeds (and produces program M), then for any initial state G on which A, B, and Base all halt, (1) M
halts on ©, (2) if x is a variable on which the final states of A and Base disagree, then the final state of M
agrees with the final state of A onx, (3)ify isa variable on which the final states of B and Base disagree,
then the final state of M agrees with the final state of B on y, and (4) if z is a variable on which the final
states of A, B, and Base agree, then the final state of M agrees with the final state of Base on z.

-7

Note that there may be some variables which do not fall into the categories of (2), (3), and (4) above.

PROOF. We use A /AP, paee, B /APp pase , and Base /(A—FA Base nA_FB Bm) to denote ¢ programs whose
program dependence graphs are G /AP pases Gp /AP ase, aNd Gpase /(AP 4 pase VAP pase), I’CSPCC
tively.

Since the integration succeeds, G4 /APA Base = GM /APy pae and Gy /APB Base = Gum /APp pue. By
the Preserved Behavior Lemma, Ggae, /(APA Base © nAPB Bm) = Gy /(APA Base nAPB Base)- Therefore,
Gy = Gp/AP4 pase Y Gp /APp pase ¥ Gpase I{APA Base VAPp pase) = Gyt /AP Base > Gyg | AP pase
Gu [(AP4 pase NAPB pase)-

Since A halts on o, by the Slicing Theorem A /AP, p,, also halts on ¢. Similarly, B /APg p,, and
Base /(APA Base nAPB Base) halt on o, as well. Note that A /AP, p,, B /APg p,., and
Base /(APA Base nAPB Base) _are programs whose program dependence graphs are Gy /AP, pase,
Gy /APB Base» and Gy / (APA Base nAPB Base)> Tespectively. Since A /AP, pae B /APp paee, and
Base / (APA Base NAPg _Base) halt on o, by the Corollary of the Termination Theorem, M halts on 6. (This
demonstrates clause (1) of the Integration Theorem.)

Let x be a variable on which the final states of A and Base disagree. Let v be the final-use vertex of x.
By the Slicing Theorem, Ggg,, /v#G, / v. Therefore, v € APy goy, . Since v € APy po, and G4 /AP, pae
= Gy /AP pase, by the Slicing Corollary, the final state of M agrees with the final state of A onx. (This
demonstrates clause (2) of the Integration Theorem.) Similarly, if y is a variable on which the final states
of B and Base disagree, then the final state of M agrees with the final state of B on y. (This demonstrates
clause (3) of the Integration Theorem.)

Let z be a variable on which the final states of A, B, and Base agree, then the final state of M agrees
with the final state of Base on z. Let v be the final-use vertex of z. If v € AP, gay, Since G4 /AP, paye
= Gy ! AP4 pase by the Slicing Corollary, the final state of M agrees with the final state of A on z, which
means the final state of M agrees with the final state of Base on z. Similarly, if v € APg g, , since
Gg | APg po, = Gy /APp pa., by the Slicing Corollary, the final state of M agrees with the final state of
B on x, which means the final state of M agrees v with the final state of Base on x. Fmally, ifv € AP4 page
and vé APB.Ba.nv then ve APA,Bau hAPB.Ba.n Because GBa.rc /(APA Base hAPB Bau) =
Gy /! (A-}_’A_ Base nA?,,, Base), by the Slicing Corollary the final state of M agrees with the final state of Base
onx. (This demonstrates clause (4) of the Integration Theorem.) [J

7. RELATION TO PREVIOUS WORK

This paper continues the study of program dependence graphs and program semantics begun in [6]. The
Equivalence Theorem proven in [6] addresses the relationship between isomorphic PDGs; the Equivalence
Theorem shows that if the program dependence graphs of two programs are isomorphic then the programs
are strongly equivalent. By contrast, the Slicing Theorem proven in this paper concemns the relationship
between two non-isomorphic PDGs. The Slicing Theorem relates the execution behavior of a program to
the execution behavior of one of its slices; it demonstrates that a slice captures a portion of a program’s
behavior (in the sense that, for any initial state on which the program halts, the program and the slice com-
pute the same sequence of values for each element of the slice).

Program slicing was first defined by Weiser as a data flow analysis problem [12]. The idea to extract
program slices by taking the backward closure of a dependence graph with respect to a set of vertices is

~28 -

due to Ottenstein and Ottenstein [10] § although they gave no justification for the operation. The Feasibil-
ity Lemma proven in this paper, (which demonstrates that any slice of a feasible program dependence
graph is itself a feasible graph), together with the Slicing Theorem provide the necessary syntactic and
semantic justifications, respectively, for extracting slices via a backward closure over dependence edges.

In both [12] and [10], a condition is imposed that requires the program produced as the result of slicing
to have its statements ordered in the same relative order as they occur in the original program. The notion
of a slice presented in this paper is a more liberal one: the slice of a program P with respect to a set of pro-
gram points S is any program Q whose PDG is isomorphic to Gp /S. In particular, the relative order of
Qs statements is not necessarily the same as in P. This generalization is justified by the Equivalence
Theorem from [6] together with the Feasibility Lemma from this paper.

When def-order dependences are used in program dependence graphs, larger classes of strongly
equivalent programs have isomorphic program dependence graphs than when output dependences are used
[6]. Thus, our use of def-order dependences in place of the more usual output dependences increases the
number of programs that are an acceptable outcome for a given slicing operation. (For instance, the fol-
lowing programs are examples of two strongly equivalent programs whose PDGs are isomorphic if def-
order dependences are used, but are not isomorphic if output dependences are used:

program Main program Main
x =0; x =1
a:=x; b =x;
x =1 x =0
b =x; a=x;
x =2 x=2
end(a,b,x) end(a,b,x)

The program dependence graphs for these programs have the same (empty) set of def-order dependences,
but have different sets of output dependences.)

This paper also provides semantic justification for the program-integration algorithm presented in [5];
the integration algorithm either merges two variant programs with a base program or determines that the
variants incorporate interfering changes. In Section 6, the Slicing Theorem is used to show that the
integrated program that results from a successful integration operation preserves the changed behaviors of
the two variants and the unchanged behavior of the base program.

Both this paper and [6] make use of the programming language’s operational semantics to relate pro-
gram dependence graphs to program semantics. Both papers start with the definition of program depen-
dence graph as a given; the theorems that are proven, the Equivalence Theorem and the Slicing Theorem,
relate certain program dependence graphs via the standard (operational) semantics of the programs that
correspond to these graphs.

A different approach, using the language’s denotational semantics, has been developed by Felleisen and
Cartwright in [2]. Through a sequence of steps that restructure the language’s semantic equations, Fel-
leisen and Cartwright decompose the meaning function into two subsidiary functions: one that constructs (a
structure similar to) a program dependence graph, and one that interprets these graphs. Their proof of the
transformations’ correctness leads directly to an analogue of the Equivalence Theorem.

5As pointed out earlier, the kind of slicing that can be performed using a program dependence graph is more restricted than the kind
that can be performed with Weiser’s algorithm {12]: rather than permitting a program to be sliced with respect to program point p and
an arbitrary variable, a slice must be taken with respectto a variable that is defined at orused at p..

-29 —

It should be pointed out that there is a difference in philosophy between this paper and [2] concerning
program termination. The semantics developed by Felleisen and Cartwright (as well as the corresponding
dependence graph that they derive) incorporates the notion that an “. , . assignment makes no sense if a
previous assignment to the variable aborts” [2]. This is in contrast with the semantics of slices obtained
with our definitions of program dependence graphs and program slicing; because a diverging computation
may be “sliced out” of a program, a program slice may converge on some initial states for which the origi-
nal program diverges. This is illustrated by the following example (repeated from the beginning of Section
4):

program Main program Main
x =1 x:=0
while true do end(x)
x=x+1
od;
x:=0
end(x)

The program shown above on the left always diverges, whereas the program on the right, obtained by slic-
ing the left-hand-side program with respect to variable x at the program’s end statement, always con-
verges. For this phenomenon to be captured with techniques like the ones used by Felleisen and Cart-
wright, a different “demand semantics” than the one presented in [2] is required.

REFERENCES

1. Aho, A.V,, Sethi, R., and Ullman, J.D., Compilers: Principles, Techniques, and Tools, Addison-Wesley, Reading, MA (1986).

2. Felleisen, M. and Cartwright, R., “A semantic basis for program dependence graphs,” Extended abstract, Dept. of Computer Sci-
ence, Rice Univ., Houston, TX (December 1987).

3. Ferrante, J., Otenstein, K., and Warren, J., “The program dependence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems 9(3) pp. 319-349 (July 1987).

4. Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” TR-690, Computer Sciences Department,
University of Wisconsin, Madison, WI (March 1987).

5. Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” pp. 133-145 in Conference Record of the
Fifteenth ACM Symposium on Principles of Programming Languages, (San Diego, CA, January 13-15, 1988), ACM, New York
(1988).

6. Horwitz, S., Prins, J., and Reps, T., “On the adequacy of program dependence graphs for representing programs,” pp. 146-157 in
Conference Record of the Fifieenth ACM Symposiwm on Principles of Programming Languages, (San Diego, CA, January 13-15,
1988), ACM, New York (1988).

7. Kuck, DJ., Muraoka, Y., and Chen, S.C., “On the number of operations simultaneously executable in FORTRAN-like programs
and their resulting speed-up,” IEEE Trans. on Computers C-21(12) pp. 1293-1310 (December 1972).
Kuck, D.J., The Structure of Computers and Computations, Vol. 1, John Wiley and Sons, New York, NY (1978).

9. Kuck, DJ., Kuhn, R H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs and compiler optimizations,” pp. 207-218

in Conference Record of the Eighth ACM Symposium on Principles of Programming Languages, (Williamsburg, VA, January
26-28, 1981), ACM, New York (1981).

10. Otenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development environment,” Proceedings of
the ACM SIGSOFTISIGPLAN Sofiware Engineering Symposium on Practical Software Development Environments, (Pinsburgh,
PA, Apr. 23-25, 1984), ACM SIGPLAN Notices 19(5) pp. 177-184 (May 1984).

11. Towle, R., “Control and data dependence for program transformations,” Ph.D. dissertation and Tech. Rep. R-76-788, Dept. of
Computer Science, Univ. of Illinois, Urbana, IL (March 1976).

12. Weiser, M., “Program slicing,” IEEE Transactions on Software Engineering SE-10(4) pp. 352-357 (July 1984).

