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ABSTRACT

A dual problem associated with a primal nonlinear programming
problem is presented that involves second derivatives of the functions
constituting the primal problem. Duality results are derived for this pair
of problems. More general dual problems are also presented, and

duality results for these problems are also given.






1. INTRODUCTION

1f we consider the nonlinear programming problem

1.1 minimize {f(x)| g(x) = 0}
X

where f and g are differentiable functions from R” into R and r™
respectively, and linearize both f and g around some arbitrary but fixed
point x in R" , we have the following linear program
1.2 minimize {f(x) + VE®)p|g(X) + Vg(x)p = 0}
n

p € R
where Vi(X) denotes the 1 x n gradient of f at x and vg(x) denotes
the m X n Jacobian of g at x . If we now take the dual of this

linear program we obtain the dual linear program.

1.3 maximize {f(x) + ug(x) | - uvg(x) = Vi(x), uz 0}
u e R™

Finally if we let % be variable in this dual program we obtain

1.4 maximize {f(x) + ug(x) |Vf(x:) + uvg(x) = 0, uz 0}
xeRn,ueRm

which is precisely the classical dual of nonlinear programming introduced,
in a different way, by Wolfe [9] and investigated extensively [4] in the
nonlinear programming literature.

Suppose now werepeat this process but with the following changes:

Take quadratic instead of linear approximations of f and g around



some fixed x (assuming that f and g are twice continuously
differentiable) and take the dual of the resulting quadratic program.
Thus we first take the following quadratic approximation to the original

problem

- - 2 - - -
1.5 minimize {f(X) + Vi(x)p +Elpv f(x)p Igj(x) + ng (x)p +
peR™!

2 - ,
%pv gj(x)p = 0,j=1,...,m}

2. - -
where V f(x) is the nxn symmetric Hessian at x and similarly

2 -
for Vv gj (x). If we now take the dual of this program we obtain

1.6 maximize (£(x) + VEx)D +-zlpv2f(§{)p + ug(x) + uvg(x)p +
peR™, ueR

2 - - 2 - - 2 -
lz—pv ug(x)p |VE(x) + pv £(x) + uvg(x) + pv ug(x) = 0,

u gz 0}
5 m 5
where vV ug(x) = 2 ujv gj(x). If we simplify the objective function by
j=1

postmultiplying the first constraint by p and substituting in the objective

function and if we let % be variable then we obtain

2 2
1.7 maximize (f(x) + ug(x) - %p(v f(x) + vV ug(x)p|
xeR™, peR™, ueR™

n

Vi(x) + uvg(x) + p(VZf(x) + Vzug(x)) =0, u 0}

This is what we call the second order dual of the original nonlinear

program 1.1.




1f we define the Lagrangian function

L(x,u) = £{(x) + ug(x)

then the second order dual can be written more simply as

2 2
1.7 maximize {L(x,u) - lz—pv L(x,u)prL(x,u) + pV L(x,u) =0
xeR?, peR1, uerR™

v

u 0}

where we have used the notation which will be followed throughout the
paper that VL(x,u) is the | xn gradient with respect to the first
argument x of L and similarly VZL(x,u) is the n xn Hessian
matrix of I with respect to its first argument x . All gradient
operators V without a subscript will be gradients with respect to x or
y . Gradients with respect to the second argument will be explicitly
subscripted thus VUL(x,u) .

Many of the results of nonlinear programming duality [9,4] g0
through for the second order dual under appropriate conditions. The
main condition, besides obvious ones on the second order terms, is an
inclusion condition 2.8 or 2.9 that is needed only in the weak and

forward duality theorems 2.1 and 2.14 but not in the converse duality

theorem 2.20. The inclusion condition can be interpreted as a smallness
L
2

requirement on either of the quantities HpZH = (p,p,)" or Hxl - XZH



where Xy is primal feasible for problem 1.1 and (xz,pz,uz) is
dual feasible for problem 1.7. At the optimum, it turns out that
both of these quantities are zero.

We observe here that if we set p = 0, then 1.7 becomes the
classical nonlinear programming dual [9], that is the first order dual
1.4. Hence it seems reasonable to say that p is a measure of the
second order effects. In fact if we assume that VZL(x,u) is

nonsingular problem 1.7 can be simplified as follows

1.8 maximize (L(x,u) - %‘VL(X,U.)VZL(X,U)—IVL(X,U) luz 0}
x€R™, ueR™

where p has been eliminated through the constraint equality

1.9 p= - YLix,u)V Lixu)

Problem 1.8 is related to the subproblem of the dual feasible direction

algorithm [5] for which fast numerical experience has been observed and

for which quadratic convergence has been established for some special

cases [3]. Problem 1.8 is also related to the dual of the subproblem

of Wilson's algorithm [8] which Robinson has shown to converge

quadratically [7]. In fact, it was consideration of the subproblems of

these two algorithms that led to the formulation of the second order dual.
It is also possible to extend the concept of the second order dual

by considering approximations other than quadratic around x and taking




the first order dual of that problem. This is done in Section 3 of the
paper which contains a duality theorem 3.3 and a converse duality

theorem 3.6. The results for the second order duality are in Section
2 and consist of a weak duality theorem 2.1, a duality theorem 2.14

and a converse duality theorem 2.20. All the proofs are in Section 4.
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2. SECOND ORDER DUALITY

We begin by establishing a weak duality relation between feasible
points of the primal and of the second order dual. We emphasize here
a distinguishing feature from the first order weak duality theorem [9,4]
which is the inclusion condition 2.8 or 2.9. Without this inclusion
condition the weak duality theorem 2.1 below does not hold but rather
a part of the duality theorem 2.14 holds in which only a Kuhn-Tucker
point of the second order dual 1.7 is guaranteed but not a maximum.

2.1 Weak Duality Theorem Let x be a primal feasible point and

let (y,p,u) be a dual feasible point, that is

2.2 gx) = 0 (primal feasibility)
2.3 VLy,u) + pv°Lly,u) = 0

(dual feasibility)
2.4 u g0

Let f and g be twice continuously differentiable on an open set con-
taining the line segment [x,v] = [s]s = (1-\)y + xx, 0= X £ 1} and let

2
2.5 2V L(s,u) z  k(s) Hz}|2, vz € R, Vs € [x,y] and some k(s) > 0

2
2.6 ||V L(y,uw) || £ K(y) for some K(y) & k(y) > 0
Then the following inequality holds between the primal and dual objective
functions

1 2

2.7 f(x) 2 L(y,u) - 5pV Liv,u)p

provided that the following inclusion condition holds




1
\2
2.8 BENTRTIPRN SR (i -y
k©) | xp)? k(y)
or (inclusion
1 condition)
2
2. =z - -
where
2.10 k = inf k(s) > O B
se[x, vyl

For the sake of easier readability we collect all proofs in Section 4.
We observe first that conditions 2.5 and 2.6 can be replaced by the

slightly stronger but possibly simpler to verify conditions

zvzf(s)z 2 kg(s) ||z||2, vzeR", Vse[x,y] and some ko (s)

zvzgj(s)z z k].(s) llzl]z, vzeR", Vse[x,y] and some k (s), 3=1,...,m
2.1 m
k(s)=k0(s)+ S ukJ(s) > O
o 1

ZVZL(Y,U)Z§ K(y) Ilznz, vzeR" and some K(y) 2 k(y)> 0

We also observe that none of the conditions 2.5 or 2.1l impose
convexity requirements on all the functions f and gj . Condition 2.5 is

an n-dimensional uniform strict convexity requirement on L(s,u) for all s



in the segment [x,y]. The first three conditions of 2.11 impose an

n-dimensional uniform strict convexity requirement on some of the functions
f(s) and g).(s) for all s in the line segment [x,v].

We remark also that the inclusion condition 2.8 holds automatically if
p = 0, and similarly 2.9 holds automatically if x-y = 0. These two cases
correspond respectively to reduction to the first order duality case,and to the
case where the dual variably y is held fixed which is in effect problem 1.6.
We formalize this as the following corollary.
2.12 Corollary The weak duality theorem 2.1 holds with the closeness

conditions 2.8 and 2.9 replaced by

2.13 lx=yll llell =0

We proceed now to the duality theorem which relates a Kuhn-Tucker
point or local maximum solution of the second order dual problem 1.7 with
each local or global solution of the primal problem 1.1

2.14 Duality Theorem Let f and g be twice continuously differentiable on

R® and let X be a solution of 1.1 at which a constraint qualification is
satisfied [4,p. 105]. Then X, 5 = 0 and some u satisfy the Kuhn-Tucker
conditions for the second order dual problem 1.7 and the two objective functions
are equal. In addition, (}E,E):O,G) solve 1.7 under the following additional

inclusion conditions




L
2 2
< K(x) _ K(x) _k =
S - N i x5
or
1
2 2
K -
s el oz | e | B %]
k (x)

where XK(x), k(x), and k satisfy,for all x in some set X in R" containing

pa— . . m . , —
x and for all u in some set U in R containing u:

2.17 ZVZL(s,u)z 2 k(s) HZHZ vzeR", VseX and some k(s) > O.
2.18 llsz(x,u) | = K(x) for some K(x) z k(x) > O.
2.19 k=inf k(s) > O i

seX

We observe here again that the inclusion condition 2.15 is automatically
satisfied if p = 0, and 2.16 is automatically satisfied if x = X .

The final result for the second order dual problem is a converse duality
theorem which does not require aninclusion condition of the type 2.15 or
2.16.

2.20 Converse Duality Theorem Let f and g be three times differentiable on

Rn and let (}E,B,G) be a local or global solution of the second order dual
1.7 or let (.:Z,E,ﬁ) satisfy the Pritz John or Kuhn-Tucker necessary optimality

conditions for 1.7 [6,4 p. 170]. 1If VZIJ(;{,l—l) is nonsingular and if any of the

o) 2. - = , ,
n, n X n matrices: 5— V L{x,u), k=1,...,n, is positive or negative

k
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definite, then (>_c,G) satisfy the Kuhn-Tucker conditions for the primal
problems 1.1, thatis

VL(x,u) = 0, ug(X) =0, g(x) £ 0, uz 0
and the two objective functions are equal. If in addition f and g are
convex at x,or if f is pseudoconvex at x and g is quasiconvex at X ,
then x is a global solution of 1.1. E

The proof of this theorem, given in Section 4, employs the Fritz-John
necessary optimality conditions in the presence of equalities which were
developed by Fromovitz and the author [6,4, p. 170]. Craven and Mond
[1] have given an elegant proof of the first order converse duality theorem
using the same Fritz~-John conditions.

We note here that the assumption 2.17 of the duality theorem 2.14
implies that VZL(;E,G) is positive definite and hence the second order
sufficiency conditions of nonlinear programming are satisfied [2, p. 30].
Similarly the assumptions of the converse duality theorem 2.20 that
VZL(}—{,-I_.I) is nonsingular and the convexity of f and g imply that VZL().E,E)
is positive definite and hence again the second order sufficency conditions are

satisfied.
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3. HIGHER ORDER DUALITY

The results of the previous section can be extended by taking
approximations of f and g around x more general than quadratic and
then taking the nonlinear dual of the resulting problems. We thus obtain

what we have termed here as a higher order dual. In particular consider

problem 1.1 again and take nonlinear approximations of f and g

around some arbitrary but fixed point x . The approximations of f and

g are given by f(}z) + h(;c,p) and g(;c) + k(}?,p) respectively where h
maps R" x R" into R , k maps R % R" into R™ and both of which
are differentiable and satisfy certain assumptions to be stated below.

(For the first order dual h(x,p) = Vi(x)p and k(x,p) = Vg(x)p . For the
gsecond order dual h(x,p) = Vi(x)p + ;Z—pvzf(x)p and kj (x,p) =

ng (x)p + _lz_vagj (x)p, j=1,...,m.) With the approximations f(§) + h(;c,p) to
f(x) and g(i) + k(}?,p) to g(x) problem 1.l is replaced by the following

nonlinear program

3.1 minimize {f(x) + h(x,p) | g(x) + k(x,p) = 0)
n
peR

Now taking the nonlinear dual of 3.1 we have

1]
[«

maximize {f(x) + h(x,p) + ug(x) + uk(x,p)| vph(i,p) + vpuk,(i,p)

peRn,UERm
u z 0}

where Vph(.}_c,p) denotes the 1 X n gradient of h(;c,p) with respect to

p and Vpuk(fé,p) denotes the 1 x n gradient of uk(x,p) with respect
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to p . If we now remove the restriction on % and let it be a free variable

we obtain the higher order dual problem

3.2 maximize {(f(x) + h(x,p) + ug(x) + uk(x,p) vah(x,p) + Vpuk(x,p) =0

x€Rn, peRn,ueRn

=
#w

0}
For this general higher order dual, it is not very simple to state conditions

for the weak duality and duality theorems to hold. Instead we shall give

a limited version of the duality theorem and a full version of the converse
duality theorem. The limitation of the duality theorem consists in that a
Kuhn-Tucker point of 3.2 is guaranteed rather than a maximum.

3.3 Duality Theorem Let f and g be differentiable on Rn, and let h

and k Dbe differentiable on R” x R". Let x be a local or global solution

of 1.1 such that a constraint qualification is satisfied at x and let

3.4 Vh(x,0) = 0, Vk(x,0) =0
3.5 h(x,0)=0, k(x,0) =0, vph(i,O) = Vi(x), vpk(;c,O) = Vg(x)
Then x, 5 = 0 and some u satisfy the Kuhn-Tucker conditions for the

higher order dual problem 3.2 and the two objective functions are equal at

these points.
We observe here that the Kuhn-Tucker conditions for the higher order

dual are given by conditions 4.15to 4.21 with '\—70 =1 . We also note that

conditions 3.4 and 3.5 are satisfied by both the linear and quadratic

approximations from which the first and gsecond order dual problems are obtained.
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3.6 Converse Duality Theorem ILet f and g be differentiable on Rrl

and let h and k be twice continuously differentiable on Rn X Rn . Let
(}2,5,11) be a local or global solution of the higher order dual problem 3.2
or let (;:,;_),E) satisfy the Fritz John or Kuhn-Tucker conditions for 3.2. Let
h and k satisfy 3.5 and the following conditions
3.7 VZ (h(;c,;;) + ﬁk(;:,ﬁ)) is nonsingular
3.8 Vf(x) + Vug(x) + Vh(x,p) + Vuk(x,p) = 0 >

=>p=0

Vh(x p)+V ukx p)=0

Then, (};,ﬁ) satisfy the Kuhn-Tucker conditions for the primal problem 1.1
and the two objective functions are equal. If in addition f and g are

convex at x, or if f is pseudoconvex at x and g is quasiconvex at x ,

then x is a global solution of 1.1
We remark here that the quadratic approximations satisfy the conditions
3.4,3.5,3.7 and 3.8 under the assumptions of the second order converse

duality theorem 2.20.
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4, PROQFS
Before proving the main results we need the following simple lemma.
4,1 Lemma Let h be a function mapping Rn into R, let x and vy

be points in R" and let h be twice continuously differentiable on an

open set containing the line segment [%,v] and let

(y—x)VZh(s)(y—x) z k(s)|y-x HZ, Vse[x,y] and some k(s) > 0

Then
k 2
h(x) - h(y) -~ Vh(n)(x-y) z 5 [[x-v|
where
k = inf k(s)
se[x,y]

Proof: Define the twice continuously differentiable function 6 on [0,1]

by 6(\) = h(y+A(x-y)) . Then

h(x) - h(y) = 6(l) - 6(0)

1
6'(0) + SO (1-2)e"(\)dx (by integration by parts)

1

i

TR x=y) + J b A1) ()7 (A Gemy)) (e-y)dn

v

1
Thiy)Gey) + J A0k =y [ “an

2
Vh(y) (x-v) + 5 x| Q.E.D.
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Proof of Theorem 2.1

£) - (Lly,w) -~3P9°L(y,u)p)

= L(x,u) - ug(x) - L{y,u) +-§-p\72L(y,u)p

v

k 2 k() g2
VL(y, u)x=y) + 5 ==y [+ == |lpll

(by 2.4,2.2,2.5, and 4.1)

- YLy, wix-y) + 5 oy |2+ K o )° (by 2.3)
2 k) ol leyll +5 fxy 1+ 552 |lo]® (by 2.6)
L

s

LK ) = ey B2 [ KE K
== ol = ==yl k(y) ' k‘(y)z k(y)

1
Kiy)  [k5° i
Hp” - HX—Y“ k(y) - k(y)z.—k(y)
2 0 (by 2.8 or2.9) Q.E.D.

Proof of Theorem 2.14 Since a constraint qualification is satisfied at X,

it follows [4, p. 105] that % and some uin R satisfy the Kuhn-Tucker
conditions
VL(x,u) = 0, ug(x) = 0, g(x) S 0 ug 0.
Hence (;:,5=0,ﬁ) satisfy the Kuhn-Tucker condition for problem 1.7 (which
are conditions 4.2 to 4.8 below with \_10 =1, v=0 and w = —g(}—c)).
The two objective functions are equal because ug(x) =0 and p=0 .
We also have that (.;c,5=0,ﬁ) satisfy the constraints of 1.7 and the inclusion

conditions 2.15 and 2.16. Let (x,p,u) satisfy the constraints of 1.7 and 2.15

or 2.16. Then
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L(x,u)

1- 2 = =~
5PV L(x,u)p

f(x) (since ug(x) =0 and p = 0)

v

L(x,u) - lEI:»VZL(X,u)p (by theorem 2.1)
The inequality between the first and third terms above establish the
theorem. Q.E.D.

Proof of Theorem 2,20 Since (x,p,u) constitute a local solution of 1.7,

there exist (v.,v,w) in R X R™ x R™ not identically zero [6,4, p. 170]

0

such that the following Fritz John conditions are satisfied
- - - l- 2 - = - -2 - - -2 - ==
4,2 VOV(L(X,U)—'E‘DV L(x,u)p) + W L(x,u) + V(pV L(x,u)v) =0

- 2 e e - -
4.3 -—VOV L{x,u)p + VZL(x,u)v =0

-1 2 - e -2 -
4.4 Vo(gj(x)-zpv gj(x)p) + ng(x)v+ png(x)v + w, = 0

j=l,...,m

4.5 wu=0
- - - 2 -
4.6 VL(x,u) + pV L(x,u)=20

4.7 u 0

Ty

4.8 (\‘zo,x?v) z 0
Since VZL(}_c,G) is nonsingular, 4.3 gives

4,9 wv= vop

If \70 = 0, then v=0 by 4.9 and w =0 by 4.4, but this contradicts the

fact that (v.,v,w) # 0. Hence

0
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Substitution of 4.9 in 4.2 gives
- - - 1= 2 - = - - -2 - - - -2 = -
v V(L(x, ) —-é-pv L(x,u)p) + vOpV L{x,u) + vov(pv L(x,u)p) = 0
which in view of 4.10 and 4.6 gives
] = 2 = ==
SV(PV Lx,u)p) =0

This is equivalent to

where the ij subscripts denote component ij of the subscripted matrix
2 - -
v L(x,u). But by assumption at least one of the n , nXn matrices,

3

-
8‘;‘ v L(x,u), k=1,...,n , is either positive or negative definite. Hence
k

4.11 p=0 and v=v,p=0.

0
Substitution of 4.1l and 4.4 in 4.5 and taking 4.10 into account gives

4.12 ug(x) = 0

Substitution of 4.11 in 4.4 and taking 4.8 and 4.10 into account gives

4.13 gx) = 0

Setting p = 0 in 4.6 gives

4,14 VL(x,u) = 0

Conditions 4.14, 4.12, 4.13 and 4.7 are the Kuhn-Tucker condition for the

primal problem 1.1 . The two objective functions are equal because ug(x) = 0

and p=0. Ifinaddition f and g are convex at x , or if f is
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pseudoconvex at x and g is quasiconvex at x , then x is a global
solution of 1.1 [4,p.153]. Q.E.D.

Proof of Theorem 3.3 Since x solves problem 1.1 then [4, p. 105] X

and some ueR™ satisfy the Kuhn-Tucker conditions

VL(x,u) = 0, ug(x) = 0, g(x) £ 0, ug 0

These conditions together with 3.4 and 3.5 imply that x , f) =0, G; v=0,
w = —-g(;{), satisfy conditions 4.15 to 4.21 below with \70 = 1 which are the
Kuhn-Tucker conditions for problem 3.2 . The two objective function are
equal because ug(x) = 0, h(x,0) = 0 and k(x,0) = 0. Q.E.D.

Proof of Theorem 3.6 Since (%,P,T) is a solution of problem 3.2, then there

exist nonzero (v,.,v,w) in R X R" x R™ [ 4, p. 170] such that the following Fritz

0
John conditions hold

4,15 \_fov(f(>—c)+h(§,;—))+ﬁg(§)+ak(>_c,5))+V(Vph(>_c,5)\7+Vpﬁk(;:,5)\7) =0
- e e e 2 = 2= =

4.16 vovp(h(x,p)+uk(x,p))+v(vph(x,p)+Vpuk(X,p)) =0

4.17 Fxog(;c)+x70k(52,5)+vpk(§,5)x7+{7v =0

4,18 wu=0

4.19 Vph(§,5)+vpﬁk(§,5) = 0

4,20 uz 0

4,21 (v

Now substitution of 4.19 into 4.16 and taking 3.7 into account gives

4.22 v=0

If v

H
o
o))
=]
Q.
=

H
o

o = 0, then by 4.17 and 4.22, w = 0 and hence 'Tfo =0, v
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which is a contradiction. Hence \—/O Z 0 and by 4.21 we get that

4.23 vy >0
By 4.22, 4.23 and 4.15 we have
V(£(x) + h(x,p) + ug(x) + uk(x,p)) = 0
which together with 4.19 and 3.8 imply that
4.24 p=0
Substitution of 4.24 in 4.19 and noting 3.5 gives
4.25 Vi(x) + Vug(x) = 0
From 4.17, 4.21, 4.22, 4.23 and 3.5 we have that

4.26 02 -= = g(x) + k(x,0) = g(x)

O<:llgl

From 4.18, 4.23 and 4.26 we get that

Conditions 4.25, 4.26, 4.27 and 4.20 are the Kuhn-Tucker conditions for
problem 1.1. The two objective functions are equal because ﬁg(;:) =0,
h(>_<,0) = 0 and k(}?,O) = 0 . Ifin addition f and g are convex at X or
if f is pseudoconvex at x and g is quasiconvex at x , then X is a

global solution of 1.1[4, p. 153]. Q.E.D.
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