Simulations of fiber flocculation: Effects of fiber
properties and interfiber friction

Christian F. Schmid, Leonard H. Switzer, and Daniel J. Iﬂingenberga)

Department of Chemical Engineering and Rheology Research Center,
University of Wisconsin, Madison, Wisconsin 53706

(Received 18 November 1999; final revision received 27 March 2000)
Synopsis

Non-Brownian fibers commonly flocculate in flowing suspensions at relatively low concentrations

( < 1% by weighj. We have developed a particle-level simulation technique modeling fibers as
chains of rods connected by hinges to probe fiber flocculation. The model incorporates fiber
flexibility, irregular fiber equilibrium shapes, and frictional fiber interactions. Model fibers
reproduce known orbits of isolated rigid and flexible fibers in shear flow. Simulation predictions of
first normal stress differences in homogeneously dispersed, dilute flexible fiber suspensions agree
with experimental data. Fiber features such as flexibility and irregular equilibrium shapes strongly
impact single fiber and suspension behavior. Fibers aggregate in simulations with interfiber friction,
in the absenceof attractive forces between fibers. Strong flocculation is observed in suspensions of
stiff fibers with irregular equilibrium shapes. Flocs contain many fibers with three or more contact
points, and derive cohesiveness from elastic energy held in fibers—consistent with the elastic
interlocking mechanism of flocculation. At higher concentraticmls3(~ 100, wheren is the fiber
number density and is the fiber length coherent fiber networks form in simulations. Average
numbers of contacts per fiber and contact force magnitudes in sheared and static networks are
compared with existing fiber network theory predictions. 28600 The Society of Rheology.
[S0148-60580)01404-9

I. INTRODUCTION

In applications such as papermaking and composites processing, fibrous particles are
suspended in flowing viscous media. Predicting and controlling fiber motion in these
processes is critical to achieving the desired spatial arrangements of fibers in products. A
complication is that fibers in these suspensions do not always move affinely with the
fluid, but rather aggregattMason (1950, Kerekeset al. (1985, Kerekes and Schell
(1992]. A major goal in the processing of fiber-filled fluids is to understand how fiber
mass distribution in flowing suspensions is affected by suspension conditions, and mi-
croscopic fiber features and interaction forces. Direct observation of fiber motions in
concentrated, flowing suspensions is difficult, as fibers are small, opaque, and moving
rapidly in most applications. In this work, a particle-level simulation technique is devel-
oped to systematically probe microstructure and flocculation in flowing fiber suspensions.

Much is known about the motion of isolated fibers in low Reynolds number flow.
Jeffery (1922 solved for the motion of an isolated prolate spheroid in simple shear flow,
vf = ¥y, showing that a spheroid rotates periodically, spending most of the time nearly
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aligned with the flow. The spheroid rotation periddncreases with increasing spheroid
aspect ratiorg = a/b (ratio of major to minor axis lengthsas T = 2@ (rg+ 1/rg)/y.
Jeffery’s analysis was shown to be valid for any axisymmetric body with fore—aft sym-
metry, provided that an equivalent aspect ratids used in place of the actual spheroid
aspect ratiors [Bretherton(1962]. For rigid cylinders of length-to-diameter ratig,

= L/D, equivalent aspect ratios have been experimentally meas@eldsmith and
Mason(1967)], yielding the correlationm = 1-24p/m [Cox (197D)].

Forgacs and Maso(1959a and Goldsmith and Masof1967 have theoretically and
experimentally investigated the flow induced deformation of single fibers in simple shear
flow. A cylindrical fiber in the flow/gradient plane is predicted to bend when the dimen-
sionless groupcalled the bending ratio BR here

Ev(In2r,—1.50
 (wy2rg

is less than one, whekEy is the fiber Young’s modulus andis the fluid viscosity. Fiber
shapes observed experimentally in shear flow have been classified and correlated with
values of BR[Forgacs and Masof1959h]. Salinas and Pittmafl981) have quantified

fiber bending by measuring the minimum radius of curvatRfg, attained by fibers
during their orbits, finding smalleR,i, with decreasing BR.

Studies have elucidated the forces responsible for holding fibers in flocs. Mason
(1950, 1954 was the first to recognize that flocs form under conditions where electro-
magnetic and chemical forces are negligible compared to hydrodynamic forces. He pro-
posed that, above a critical volume fractigp ci; = 3/(2r§), at which exactly one fiber
center of masgc.m) is present in the spherical volume swept out by a fiber of lehgth
extensive fiber collisions result in mechanical fiber entanglement. Meyer and Wahren
(1964 applied the concept of mechanical entanglement to highly concentrated fiber net-
works, suggesting that network strength derives from the interlocking of elastically
loaded fibers. Assuming randomly oriented fibers, they derived an expression for the
average number of contact points per fibeg) in a network as a function af, and ¢,, .

They also predicted that the network shear modulus increases with incregsing, ,
and fiber stiffness. This and similar models for fiber network yield stfBssinington
et al. (1990] and individual floc strengtfFarnoodet al. (1994 ] agree qualitatively with
experiments, supporting the mechanical interlocking hypothesis.

Less is known about the processes by which fibers flocculate. Ma960) postulated
that flocculation is a dynamic equilibrium process, with fibers continuously entering and
leaving flocs, both rates being equal at steady state. Kef@R8§ has identified dimen-
sionless groups that help predict flocculation in specific experiments. He defines the
crowding factor,N; = 2¢er2)/3, which is the average number of fiber c.m.s present in
the spherical volumerL3/6. A closely related quantity isL3 = 6N/, the number of
fiber c.m.s per unit volume times the cubic volumé 3. Though useful, the crowding
factor understandably cannot explain all phenomena, such as the dramatic dispersive
action of water-soluble polymer in pulp fiber suspensiitesuschelet al. (1999]. Thus,

a technique that explores the effects of microscopic fiber features and interaction forces
on suspension behavior is needed.

Direct particle level simulations have been employed to study non-Brownian fiber
suspension flow behavior. Rigid fiber simulations have incorporated long range hydro-
dynamic interactiongHI) [Mackaplow and Shaqfetl996, Harlenet al. (1999], short
range lubrication forcefYamaneet al. (1994], and combined long and short range Hl
[Claeys and Brady1993, Fanet al. (1998]. Other rigid fiber simulations incorporate

@
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FIG. 1. Mechanical model of a fiber.

purely repulsivd Sundararajakumar and Ko¢h997)], and repulsive plus frictiondlTho-
massetet al. (1997, Harlenet al. (1999] contact forces. Sundararajakumar and Koch
(1997 and Harlenet al. (1999 showed that hydrodynamic lubrication cannot prevent
physical contact between fibers, and thus nonhydrodynamic contact forces will become
important. Sundararajakumar and Ko¢t®97 show that for concentrated rigid fiber
suspensionsr(L3 > 40), simulations that neglect long range HI but include mechanical
contacts predict fiber suspension dynanigtsear viscosity and orientation distributions
more accurately than results that include HI but neglect contacts. In simulations of falling
ball rheometry, Harlert al. (1999 showed that nonhydrodynamic contact forces domi-
nate over hydrodynamic interactions as the concentration is increatsédz( 12). Thus,

in our study of fiber flocculation, we neglect hydrodynamic interactions and probe the
effects of repulsive and frictional fiber/fiber interaction forces. Simulations of flexible
fibers, composed of linked rigid sphelféé&@mamoto and Matsuokd 996, Skjetneet al.
(1997 ] and spheroidfRoss and Klingenber@997)] have successfully replicated single
fiber motions and predicted suspension viscosities. Following Ross and Klingenberg
(1997, we employ chains of elongated bodigfgid rods, enabling the simulation of
high aspect ratior(, = 50—280) fibers with relatively few bodies per chain.

In Sec. Il, details of our simulation technique are presented. The model is shown to
reproduce experimentally observed single fiber motion and homogeneous suspension
rheological properties in Sec. lll. Results of simulations probing fiber flocculation are
then presented in Sec. IV, demonstrating that flocculation can be induced by purely
mechanical mean@nterparticle friction, elastic fiber deformation, and irregular equilib-
rium shapes—without attractive forces. Simulated flocs derive cohesiveness from elastic
energy storage in fibers, consistent with the elastic interlocking mechanism of floccula-
tion. Fiber features and interactions are shown to dramatically impact flocculation.

II. SIMULATION METHOD
A. Mechanical model and equations of motion

A fiber is modeled as a chain ®f rigid rods andN—1 hinges, as shown in Fig. 1.
Rods have side length diameterD, and aspect ratiqur = |/D. The chain contour

length isL = NI, and fiber aspect ratio, = L/D. Rods rotate and twist about the
hinges, replicating fiber bending and twisting deformations. However, the chain contour
length remains fixed. Indeixrefers to a rod, as well as the hinge precedin¢hinge 1 is
fictitious). Each rod in a chain(except for rod\) has a hemispherical end cap at hinge
i, and is blunt at hingé+ 1. RodN has hemispherical caps on both ends. When a chain
is straight, the hemispherical end of each raverlaps the adjacent réd- 1. This model
retains a smooth fiber surface even when bent.

A fiber configuration is specified by Bi(+ 1) independent coordinates; the fiber c.m.
positionr. y, relative to space-fixed coordinates, ard Biternal coordinates relating the
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orientations ofN orthonormal sets of rod base vectogs,(¥;, p;) (illustrated in Fig. 1
to the space-fixed frame. Rod c.m. positions are obtained by
| N

r = fem™ _E

2Ni=2

i—1
p1+pi+2j22 pj),
i-1 2

| |
M(z1 =Tt 5P1+|j22 P+ 5P

All vectors are based in the space-fixed frame unless otherwise indicated by bracketed
subscripts, €.99 [frame]-

Equations of motion in Cartesian coordinates for chains of rigid rods connected by
hinges are derived from force and torque balances on each rod in a chain, with the
constraint that the fiber contour length remains constant. For certain fiber interactions,
additional constraints are imposed on the motion of contacting fibers. Balances contain
contributions from five different sources: hydrodynamic forces and torques, body forces,
elastic bending and twisting torques, constraint forces and their morttent®Ild rods
together in a chain and interparticle forcegepulsive and frictionaland their moments.
Particle and fluid acceleration are neglected.

The force balance on rodis

h b
FI'= X+ X4 1+F; +; fij = 0, ©)
WhereFih is the hydrodynamic forceX; and X; 1 are the constraint forces in hinges
andi+1, respectiverFib is the body force, andfj; is the net interparticle force from

all rods| interacting with rodi. The torque balance on radis

T+

I I
L X(_Xi)+Epixxi+l_Yi+Yi+l+; j =0, 4

whereTih is the hydrodynamic torque, the second and third terms are the moments about
the rodi c.m. exerted by the constraint forces acting in hingesdi+ 1, respectively,
Y, = YPedy yiStis the sum of the bending and twisting torques in hingandY; ; 1 is
the analogous quantity for hinge- 1. The term2;tj; = =;(S;jjp; + 0.5Gjjnj;) Xfj; is the
net moment about the radc.m. exerted by the interparticle forces acting onirodhere
Sjj is the point on the rod centerline at which the interaction with rgcbccurs, the unit
vectorn;; points from rodi to rodj at the interaction point and is perpendicular to both
rod surfaces, an@;; is the separation distance between rod centerlines at the interaction
point.

In this model, the suspending fluid is Newtonian and hydrodynamic interactions be-
tween rods in different fibers, as well as within the same fiber, are neglected. The hydro-
dynamic force on a rod is

F'= A (07— 1)), (5)

wherei; is the translational velocity of the rddc.m.,v;" is the ambient fluid velocity at
the rodi c.m., andA; = 3w ul[ YA+ (XA—YA)pipi] is the second order, hydrodynamic
resistance tensor. The resistance functiﬁﬁsrs) and YA(rS) for a prolate spheroid of
aspect ratia g [Kim and Karrila(1991)] are used, with an effective aspect ra:t'@ in
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place ofrg. The choice ofrer is explained in Sec. lll. In this work, lengths are scaled

with rod radiusR except where noted. For simulations of simple shear flﬁfﬁv,: v,
time is scaled with the inverse of the shear rate (strainy = %t), and all forces with
3muyIR, (superscripted asterisks denote dimensionless varjablée dimensionless
rod velocityii' = i;/RY, obtained from Eq(3), is

o= ol AT X X R D f,’]) (6)
i
where
1 1 1
-1
AT = v X v awr. pipi}-
The hydrodynamic torque on radis
™ =C-(Q°—w)+H:%, @)

wherew; is the angular velocity of rod, Q,w is the ambient fluid angular velocity at the
rodi c.m., andy = %(va+Vv°cT) is the rate of deformation tensor of the ambient
fluid. The resistance tensorsC; = wul3[YC6+ (X Y% pp], and H

= —7ul®YH (e p)p; [Kim and Karrila(1991)], wheree is the third order permutation
tensor, employ the resistance functic)(l%(rs), Yc(rs), andYH(rg) for a prolate spher-
oid, with an effective aspect I’ati[br used in place ofg. From Eq.(7), a torque-free

spheroid has the angular velocity given by Jeff€r922),
o= 0”-c 1Ay (8)

For simple shear rovwf = yy, the ambient fluid angular velocity i€2* = (0,0,
—-0.5y), and C 1. H:y = —0.5'yYH(poz,—pypz,pf,—pi)/YC. The dimensionless
rod angular velocity can thus be obtained from E.as

. 3 3
r r
wheret; = t; I(3muYIR?), Y{ = Y/(muy®), and
1 1 1
-1
G " = |yc 8t 3y /P

In this work, body forces are not applied. They are retained in the equations of motion for
completeness.

Bending and twisting torques attempt to hold a chain in a specified equilibrium shape.
Fiber equilibrium shape is defined by fixing a coordinate systemt;, p;) on each rod
i, and an equilibrium coordinate systesf{, 979, pi% for each rod on the preceding
rodi—1 [Fig. 2(@)]. At equilibrium, the coordinate system fixed on rb@nd its equi-
librium frame on rodi —1 are aligned. The relative orientation between the equilibrium
orientation for rod (%79, 979, p°% and the orientation of rot—1 (Xi—1, $i—1, Pi—1)
is prescribed. Vectoj{ ¥ is rotated by an angle® relative to§;_,, and vectop; % is
rotated by an angl@®?relative top;_1, as shown in Fig. @).
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FIG. 2. (a) Frame on rod, and equilibrium frame for rod fixed on rodi —1 used to define fiber equilibrium
shape.(b) Relation between rod—1 frame and rod equilibrium frame.

The angles#®? and ¢®9 are specified to mimic a variety of equilibrium fiber shapes.
For an intrinsically straight fiberg®d= 0 and ¢®% = 0. For a U-shaped fiber whose
centerline lies in a plane and has an intrinsic radius of curvatBrg 69
= 2tan }(I/2R,) and ¢%%= 0 (6%9~ I/R, for R, > |). For a helical fiber whose
centerline encircles a cylinder of radilR, and rises a distancél in one period,
costPd = cosaco(B/2)+sir?(B/2) and cosp®d = cosasin?(B/2)+co(B/2), where
a = 2tan (I/2Ry) and B2 = tan Y(H/4Ry,).

Bending and twisting torques are applied when a chain deforms from its equilibrium
shape. The bending torque in hingés

Y= — e, @p i€, (10

where kp is the bending constanty, j = cos_l(pi-p?q) is the bending angle, and

o — ( pixpieq)
o exp
is the bending torque direction. For small deformations, the chain bending stiffness is
related to the bending stiffness of an elastic cylinderl ky ~ Eyl whereEy is the

Young’'s modulus of the fiber material anid is the area moment of inertia,l (
= 7R*4 for a circular cylinder with radiuR). The twisting torque in hingée is

YWt = a6, (11)
: ot — epc Lol el ot
where k; is the twisting constaniy; ; = cos (yiL-yi ) is the twisting angle, and
~ o

L (6-ga)- g _ (6-¢6)- 9"
b (ece)-HlT T |(6-cic) -9
are the projections of vectogs andyieq perpendicular to unit vector connecting adjacent
rod c.m.s,c; = (rj—rj_1)/|ri—ri—1|. For small deformationd,x; ~ GJ, whereG is
the shear modulus of the fiber material ahis the appropriate area moment of inertia
(J = wR*2 for a circular cylinder with radiu®). In this work, kil kp = 0.67, which
for an elastic cylinder corresponds to a Poisson’s ratio of 0.5. For simple shear flow, the

sum of the dimensionless bending and twisting torques in hirige
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Yi Kp
YF = = — e +0.67a .c1, 12
i WM-)/IE gy [ab,le[),l Ay j |] (12
where
Ko N*( El
——3 =Ky = — |~z
TN AR

is the ratio of the elastic restoring torque scale to hydrodynamic torque scale. The dimen-
sionless fiber stiffness DS Eyl/(uyL?) is related to the bending ratio BR, defined in

Eq. (1), by DS= #BR/[32(In 2¢—1.5)] for cylindrical fibers. The elastic energy stored

in a fiber is

N
EyIN
Ee=—— 2, (ap;+0.67af)). (13)

In Egs.(10), (11), and (13), we have assumed that the fiber deformations are small
(i.e., tanay; =~ apj). Even for the most flexible fibers investigated here (BS.7
% 10" °), the resulting error in the average bending torque is only 5%.

The orientation of each rod can be represented by four Euler paramétitsnburg
(1977] g = (90,91.92,93); » Which are related to the unit vector; ( ¥, p;) by

Qo = —V1+Ry+RoptRaz Gy = = :
2 2 \[1+Ryy+ Rop+ Raz
(14
1 R31~Ri3 1 R12= R
=3 v U3 = 3 )
2 1+ R+ Ropt Ras 2 1+ Ry + Roppt Rag

where Ri1i) = Xi- €, Ri2i) = Xi- €y, Ro1) = Vi-&, etc. The orthogonal rotation
matrix

96+ai—95-05 2(di0,+dods)  2(G103—dodp)
2(010,—dols)  dg—05+05—03  2(d203+dgdy) (15)
2(0103+0olz)  2(d203—dodz) dg—0i—05+03

R
[
(whereR;r =R, 1), relates the vectaf; in the space frame to the body fixed vector

Yibodyi] = (0,1,0) by = R?-yi[bodm. Analogous expressions relagg and p; to

Rifbodyi] = (1,0,0) anddijpoayi] = (0,0,1). The vector§{d andpf”, needed in twisting

and bending torque expressions, respectively, are obtained by
ceq _ T T e
9= R Reg Hieg (16)

wherefjdg1 = (0,1,0), and an analogous expressiongft. The rotation matrixR q
is defined as

costFkosg® cosF%ing®® —sing®d
Req= —sin¢® cos¢™ 0 , (17)
sin®%os¢®®  sinF%ing®d  coséd
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whereReq = Rpend Ruwist IS the product of a bending and twisting rotation, as illus-
trated in Fig. 2b).

The fiber contour length is held constant by requiring that (1/2)p; = ri+q
— (1/12)p; 41 for each pair of adjacent rods in a chain. Taking the time derivative leads to
the constraint

|
fi=ficat S(@Xp+ o1 Xpieg) =0 (18

Substituting Eqs(6) and (9) for the translational and angular velocities yields

QF X+ ST X+ T Xy = VY 19
where
* —1x 3
Q = A ~ e (6—=pip)s
1x 3
S (A +A|+1) YC(25 Pip; — p|+1p|+1)
'I* —1x 3
i = A _m(ls—Piﬂpiﬂ),
V* = —r,(pX * Lo Afl* FeXt*—A Fext* L o%
i = e (PXG AR} ) A T CF iv1 Fir1Toi " —oit,
jeff
= CE - C(Yi*_Yi*Jrl)a

T oY
FP™ = X+ 2 £
J

The N—1 inextensibility constraintfEq. (19) for 1 < i < N—1] can be solved simul-
taneously for theN—1 unknown constraint force%i* in a chain (>(’1‘ = 0), provided all

interparticle forcesti’} are known. For a chain of five rods, the system of equations takes
the form

S 7T; O 071* X,* v 1*
QZ 82 7-2 0 X3 V2
. = . (20
0 Q3 S T X4 Vs
0 0 Q9 S, X5 Va

The (3N—3)X(3N—3) matrix is banded, thus computational effort for solving this
system of equations can be made to scale linearly With
Including fiber interactions requires determining the minimum distance between
neighboring rod surfaces. The algorithm we employ is summarized in Appendix A.
Repulsive interparticle forces acting normal to fiber surfaces are employed to represent
the fibers’ excluded volume. Two different types of forces can be employed. The short
range position dependent force
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fiy? = —Fexd—20(g;; —2)]n;; (21)

can be used, whegj = Gjj /R, andF = 120muL Ry is empirically found to eliminate
surface overlaps. Here, interparticle forces are appliegjfor 2.33.
Alternatively, repulsive forces can be applied that satisfy the no-approach constraint

Avij ~nij = 0, (22)
whereAuyj; is the relative velocity of the rod surfaces at the interaction point
Avij = i’i+Sijwixpi—'rj—Sjiwjxpj+0.5(3ij(wi+wj)xnij . (23)

Here, forces are applied faj; < 2.01, simulating mechanical contact between rods.
Substituting rod velocities and angular velocities from E§sand(9) for C contacts in
a cluster ofM fibers yields a system of equations for the repulsive force magnitudes
flrjep Nj (<0).

Simulations of unconnected rigid rodsl (= 1, rp = 20, nL3 = 20) in shear flow
with these two methods agree fairly well. Using position dependent repulsive forces
results in an average of 0.32 interactions per fiber compared to 0.25 contacts per fiber for
repulsive forces that satisfy ER2). Suspension rheological properties agree similarly
closely. In results reported here, short range, position dependent repulsive forces are
employed, as this method is computationally simpler.

Static friction, which prevents fibers from sliding over one another, is incorporated
through no-slip constraints on the motion of interacting particles

Avij tl(Jl) = 0, Avij tI(JZ) = 0. (24)

Hereti(jl) and ti(jz) are unit vectors tangent to both fiber surfaces at the point of closest
approach

. xet(D)
- (07N gy Xy 25
T emmgmp-glt T g x

t

When friction is applied along with position dependent repulsive interparticle forces, the
condition

f1%n; = 0 (26)
is imposed on each friction ford‘%’c.

Equationg24) and(26) are nondimensionalized, and translational and angular veloci-
ties from Eqs(6) and(9) are substituted, yielding aB3x 3C system of equations for the
unknown friction force vectors in a cluster M fibers connected throug@ interaction
points. These equations contaiM8N— 1) unknown constraint force$* , and must be
solved together with BI(N—1) inextensibility constraint$Eq. (19)]. We employ an
approximate technique, described below. _

Friction forces are applied at interaction polatf ) < L S@HeR | whereu ™ is
the static friction coefficient. Iffl"°| > u3*f® at one or more interaction points, the
frictional interaction with the highest value [f°|/|f"H is removeda repulsive force is
still applied, and friction forces are recalculated. This procedure is repeated|tE|’ﬁjI

< w7 at all interaction points. This scheme mimics a sliding friction coefficient of
zero, similar to the rigid fiber simulations of Thomassetl. (1997).
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B. Computational details

In numerical simulations, an approximate technique is adapted wherein constraint
forcesxi* from the previous time step are used to solve for current friction forces. With
this simplification, the motions of adjacent rods in chains are temporarily uncoupled.
Friction forces at onlyc contacts in a cluster of rods.e., a group of rods connected
through frictional interaction pointsnust to be calculated simultaneously, rather t@an
contact forces in a cluster of fibe(g/pically c =~ 0.02C). For a cluster of rods witle
interactions, the dimensionless forms of the constraints in €4$.and (26), combined
with rod translational and angular velocitigsgs. (6) and(9)], yield a 3 X 3c system of
equations for the friction forces

Ul le o Wl ffric*
Z
W1 Uy ! B :1 -
f];I’iC* ZC .
Wer o Ue

HereUy, andWy, are second order tensors, e@ghis a vector. These terms are described
in Appendix B.

At each simulation time step, bending and twisting torques are first evaluated, fol-
lowed by a search for interaction points and calculation of position dependent forces. If
rodsi andj interact, frictional interactions are not considered betweamd eitherj
—1 orj+1 (rods adjacent tq in its chain. Likewise, rodj does not interact with
—1 andi+1 through frictional forces. This avoids the numerically unstable situation of
having two friction forces applied at closely spaced positions near a hinge. Repulsive
forces are applied for afjjj < 2.33.

Once all interactions are found, rods are sorted into clusters. The friction forces in
each cluster are calculated using E27) with constraint forceé(i* from the previous
time step(friction forces are not calculated the first time gteéphen, current constraint
forces are found by Eq19), and rod motion is calculated with Eq®%) and (9). Fiber
c.m. velocities are calculated ang,,, updated by

Frem(y+Ay) = rem(¥) +H[L.5cn(¥) =05 m(y—Ay)]Ay. (29)

Rod Euler parameterg are updated by

% 0 ~onx ~opy “obz|rg,
' 1l wpx O Whz T
gi =5 wny —wpy O wb,xy 22 : (29
G wp; @y —wopy O [L%;
and
ay+Ay) = q(y)+[1.59(y) - 0.5a(y—Ay)]Ay. (30)

The vectormp ;| = R j; is the rodi angular velocity in the body frame. Each chain
is regrown using Eq(2) with the new orientations ang , .

Comparisons with an exact technique, in which the motion and forces in each cluster
of fibers are calculated simultaneously, show that the approximate technique gives con-
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TABLE |. Dimensionless rotation periodey for model fibers with BR
= 2.[! ValuesTy = 27 (rg+1/rg) with rg from empirical correlation of

Cox (197D)].

Fiber Experimental Model Model fiber  rg /1
aspect ratio period Ty* fiber periodTy in simulation
50 197.1 5X(rp, = 10) 1988 0.75
! ! 10X(rp, = 5) 196.8 0.78
70 264.8 5X(rp, = 14)  263.1 0.70
80 297.6 8><(rpr = 10) 298.4 0.71
100 363.3 1O><(rpr = 10) 361.5 0.69
150 522.2 5X(rp, = 30) 520.9 0.63
280 919.0 14X (rp, = 20) 921.8 0.61

sistent suspension properties fry < 2x10 4 [Schmid (1999]. In the simulations
reported hereAy = 2x 10 4.

Explicit, rather than position dependent, repulsive forces can be applied with friction
forces. In this case, the no-slip constraifisy. (24)] are imposed, along with the no-
approach constraifEq. (22)]. Comparisons show that the number of close range inter-
actions with position dependent forces is within 5% of the number of physical contacts
with explicit repulsive forces for flexible fiber simulations with = 80, N = 8, DS
= Eyl/(pyL?) = 7.7x1074, 6%9= 1.4, ¢%9= 1.1, ui™= o, and nL® = 26.2
[Schmid(1999]. Thus, we employ position dependent repulsive forces exclusively, and
take the number of close interactions to be a good estimate of the number of true me-
chanical contacts.

Rigid fiber simulations[Eq. (27) is used withN = 1; X andY;" on the right hand
side set to zerp with r, = 20, ,u?tat: », andnL® = 10 predict consistent steady state
suspension properties, and only 5% slower equilibration as the simulation box side length
is decreased froB = 4L to B = 2L [Schmid(1999]. Here we perform simulations in
cubic boxes with side lengths 1.6< B < 4L.

Neglecting fluid and particle inertia suggests that Reynolds numbers are limited to
Re= pyLD/n < 0.1. For typical pulp fibers with length = 2.5 mm and diameted

= 32um [Smook (1982] suspended in water withp = 10°kg/m® and u

= 10 2 Pas, simulations with DS- 0.008 (BR= 0.25) imply that fiber stiffnesses are
limited to El < 4x 10" 16Nm2 Although such fibers appear stiff in simulatiofi.,
they do not bend appreciably; see belpwuch values folEl are much smaller than
experimentally measured values for wood fibgtsrekes and Tam Do@l985]. Simu-
lations with larger DS can be performed at increased computational cost.

Ill. SINGLE FIBER AND HOMOGENEOUS SUSPENSION SIMULATIONS

This model successfully replicates Jeffery orbits of isolated, neutrally buoyant, rigid
fibers. The equivalent aspect ratios of the rigid rogrsare chosen such that the orbit
periods of stiff model fibers (BR= 2) match experimentally measured orbit periods
(Ty = 2m(re+ 1ire), wherery is related to the fiber aspect ratig by the correlation
re = 1.24,/\Inr,[Cox(1971]). Model fiber rotation periods are independent of initial
fiber orientation, in agreement with Jeffery’s analysleffery (1922]. Table | summa-
rizes the equivalent rod aspect ratios used in the simulations.
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FIG. 3. Snapshots of intrinsically straight, model fibens, = 50, N = 10) of three different stiffnesses,
undergoingC = o orbits.

The model reproduces isolated fiber motions in shear flow over a wide range of fiber
stiffnesses. Figure 3 shows snapshots of model fibers with three different values of the
BR [Eqg. (1)] undergoing orbits in the flow/gradient plateC = «” orbits [Mason
(19541]). The minimum radius of curvature attained by a smooth line that is tangent to
each rod at its c.mthe model fiber “centerline) during aC = <o orbit is plotted as a
function of BR for intrinsically straight model fibers of various aspect ratios in Fig. 4.
Intrinsically straight model fibers do not bend appreciably BBR < 0.1; thus they are
stiffer than actual fibers, which bend fBIR < 1. The symmetricab shapes of intrinsi-
cally straight model fibers also differ qualitatively from t@eshapes observed in experi-
ments[Forgacs and Maso(1959h]. To obtainC shapes during flexible fiber rotations,
model fibers are given small permanent deformatidfig. 5. The bending behavior of
model fibers with intrinsic radii of curvatul®, = 10L, shown by the filled symbols in
Fig. 4(a), agrees with qualitative experimental observations of Forgacs and Mason
(1959, represented by the dashed line in that figure. A quantitative comparison with the
data of Salinas and Pittmdh98)) in Fig. 4b) demonstrates that small permanent defor-
mations in model fibers are needed to accurately capture correct fiber bending behavior—
intrinsically straight fibers act much stiffer than actual fibers.

1000f0 o 5 oo ] 10001008y i pzno © ()]
& =150 permanent Dpum.dsﬁxmm,rp-
100f v 2% wy ° M‘m’%m" 100
21p=280
= N . o
j 10¢ v ° 4 10} 1
& 1t ° .. 1k ]
4'8 L * g 2p % O
0]; OAQQUW Experiments 0.1 o P
0.01 . 0.01 L L
0.001 0.01 0.1 1 0.001 0.01 0.1

BR=E, (In2r,-1.5)
WY 2r

FIG. 4. Dimensionless minimum radius of curvatuRg,, attained by fibers ifC = o orbits as a function of
BR. (@ Comparison of intrinsically straight and permanently deform&j € 10L) model fibers ofr
= 50, 100, 150, and 280 with qualitative observations of Forgacs and Md€&93. (b) Comparison of

intrinsically straight and permanently deformed model fibers pf 280 with measurements of Salinas and
Pittman(198J).
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BR=2.65
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FIG. 5. Snapshots of permanently deformgultrinsic radius of curvatur&®, = 10L), model fibers withr

= 50, N = 10, and three different stiffnesses undergofdg= > orbits. For stiff fibers (BR= 2) slightly
deformed withR, = 10L, the change in the orbit period relative to that of a straight fiber varies roughly
linearly with aspect ratio, from a 9% decrease fgr= 50 to a 37% decrease fop = 150.

Simulations capture the rheological behavior of homogeneously dispersed, flexible
fiber suspensions. The slender-body approximation for the fiber contribution to the de-
viatoric stress i§Mackaplow and Shaqfetl996]

< Zl [spf (s)+sf(s)pl; d%+[F rc.m)+(ri—rc.m)Fih]

1
+IT+0| —

p

(31)

where the second term on the right hand side accounts for the moment exerted by the
hydrodynamic force on each rod about its chain ¢Batchelor(1970; Sundararajaku-

mar and Koch(1997)]. Brackets( ) denote averages over all fibers in the suspension,

is the position along the rodaxis, and IT is an isotropic term that is not of interest here.
The hydrodynamic force per unit lengtfs;) at points; on rodi is taken as the leading
order slender body theory approximatiatchelor(19704],

f(si) = 3mulXopipi+ Yoy 6= pip)]1-(0™(s) — 1, —Sipp), (32

where Ysb 2XS,D 4/(3In2rp) are scalar resistance functiors,is the rodi c.m.
translational velocity, and”(s;) is the ambient fluid velocity at positics on rodi. The
hydrodynamic force on rod is approximated a§ih = 37r,uI[X§bpi pi+YsAb(5— pipi)]
-(v™(r;)—r;) for calculating the stress. For simple shear fknf\)jv: vy, the dimension-
less fiber contribution to the stress(igeglecting I

’/

77,uynL3 N
6N3in2r, N .Zl(pypeﬁpyexp). (PP* +p* P)i — (PxPyPP);

p| Pi

3 N
+rf< 2|2 (@ w*(r?>—fr><rr—r:.m.>>-
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FIG. 6. First normal stress difference as a function of shear rater for 100, ¢, = 0.01: experimental
measurements of Gotet al. (1986 (circles, our simulations with flexible, intrinsically straight fibe(si-

angles, and flexible, permanently deformed®¥ = 0.105, 9 = 0.524) fibergsquare} and rigid fiber simu-
lations of Sundararajakumar and Ko997) (solid line).

Simulation results demonstrate that rheological properties are strongly impacted by
both fiber flexibility and equilibrium shape. In Fig. 6, the first normal stress difference,
N1 = 7yx—7yy, IS plotted as a function shear rate for various fiber suspensions with
rp = 100 and¢, = 0.01 (n L3 = 127) in simple shear flow. The circles are experimen-
tal data reported by Gote@tal. (1986 for suspensions of nylon fibersE¢ ~ 3
x10°Pa,L = 1.4mm,D = 14um) in glycerol (u ~ 4 Pas). Simulations of straight,
rigid fiber suspensiongSundararajakumar and Ko¢h997] produce much smaller val-
ues of N;. Our simulations of intrinsically straight, flexible fibefdN = 7, DS
= 0.368//(s )] produce larger values dfi; than in rigid fiber simulations at high
shear ratesyy > 100/s), but they are still considerably smaller than the measured val-
ues. Simulations of suspensions of flexible fibers with slightly deformed equilibrium
shapedN = 7, 69 = 0.105, $*9 = 0.524 (shape illustrated in Table)ll produce first
normal stress differences that nearly match the experimental v@dtres bars represent
the standard deviation over three runs with different initial configurations

TABLE Il.  Summary of fiber equilibrium shapes used in simulations of
Fig. 15, and in rheological simulations in Sec. Ill.
" ¢ Side view Front view

0.9 1.0 2N @)

04 | 07 ~_ — ®,

0.5 | 01 U “

0.3 0 v

0.25 0 \/

0.2 0 N

0.1 0 ~

0.105 | 0.524 T— X
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FIG. 7. Second normal stress difference as a function of shear rate for simulations of flexible, permanently
deformed fibers witlr, = 100, ¢, = 0.01, #%9 = 0.105, $®9 = 0.524, DS= 0.368%.

Nawab and Masori1958 observed a dramatic Weissenberg rod climbing effect in

their experiments with a concentric cylinder rotational viscometer and fibens;, of
> 170 suspended in Castor oil &, = 0.002. They attributed this behavior to the

increased rate of fiber flipping caused by fiber flexibility and permanent deformations.
For isolated model fibers at = 300/s, the end-to-end vector of a permanently deformed
fiber (9= 0.105, ¢*9= 0.524) flips through the flow/vorticity plane roughly four
times more frequently than for intrinsically straight fibers. In the sheared suspensions
studied here, the average permanently deformed fiber holds about 20 times more elastic
energy than an intrinsically straight fiber. Hence, in addition to the increased rate of fiber
flipping, permanent deformations stimulate elastic fiber deformation, contributing to the
elastic character of the fluid.

Second normal stress differencél, = 7yy—7,,, are plotted as a function of shear
rate in Fig. 7 for simulations of flexible, permanently deformed fibet¥1& 0.105,
¢®%= 0.524) under the same conditions as above. Simulations predict values that are
negative at low shear rates, go through a minimum, and then become positive at higher
shear rates.

IV. FLOCCULATION

Flexible fibers in shear flow often flocculate, generating heterogeneous distributions of
fiber mass. Our simulations show that flocculation can be induced by interfiber friction, in
the absence of attractive forces between fibers. Below we describe how flocculation
behavior depends on the coefficient of friction, fiber stiffness, equilibrium shape, and
concentration.

A. Effect of friction coefficient

Simulations are performed with suspensions of helical, flexible fibéf§ € 0.9,
$%9= 1.0) withr, = 80, DS= Eyl/(uyL? = 7.7x10"3, at a volume fractionp,
= 0.0032 hL?’ = 26.2), and for various friction coefficien]‘@?tat. Snapshots of fiber
configurations after shearing suspensions to a shear strair2000 are illustrated in Fig.

8 for u$'™= 5, 10, andw. For ' = 5, the fibers remain homogeneously dispersed.

For,u?tatz 10 ande, the suspensions exhibit the formation of distinct fiber flocs. This

behavior does not change as the simulation box size is increasedBfren2.5L to B
= 3.5 [Schmid(1999].

Flocs form in the absence of attractive forces between fibers—friction alone drives
flocculation. However, the static friction coefficient required to cause flocculation is
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FIG. 8. Suspensions with, = 80, N = 8, DS= 7.7x10"3, ¢°9= 0.9, ¢*4= 1.0, nL3 = 26.2 for: (a)
ui®= 5, (b) ui®= 10, and(c) ui™ = =, after strains ofy = 2000.

much larger than the experimentally measured value of approximately 0.5 for pulp fiber
suspensionfAndersson and Rasmust®97); Amelinaet al. (1998]. Possible explana-
tions for this discrepancy are discussed in Sec. V

Flocculation induced by increasir‘;q;?tat can be quantified with the fiber c.m. pair
distribution functiong(r) [Allen and Tildesley(1987], wherer is the distance between
c.m.s. Time-averaged pair distribution functions, calculatedyfer 1000, are plotted in
Fig. 9 for u{® = 0, 5, 10, ande. For u{' = 0 and 5,g(r) < 1 at small separations.

For,u?tatz 10 andw, g(r) > 1 at small separations, reflecting the tendency of fibers to
reside in flocs. Again, this aggregation occurs without attractive forces between fibers.
Theories of fiber flocculation attribute the formation of coherent networks to fibers
elastic interlockingiMeyer and Wahrer{1964), Kerekeset al. (1989, Farnoodet al.
(1994)]. Fibers are held in networks by friction forces, with the requisite normal forces
arising from elastic energy stored in fibers. At least three contacts per fiber are needed to
hold a fiber in the network. The average number of contacts per{fieraveraged over
all fibers in the suspensipris plotted as a function of strain in Fig. 10 for the same
simulations depicted in Fig. 9. A static friction coefficient of 5 leads to about twice as
many contacts per fiber as with purely repulsive interparticle fomféak: 0), butin
both cases(n¢) fluctuates about a small value throughout the entire simulation. In con-
trast, for,u?tat = 10 and», (n,) first increases with strain, and then levels off at lagge
For these flocculated suspensiofig,) > 3, consistent with the mechanical interlocking
mechanism of flocculation.

The magnitude of contact forces, and the extent of elastic fiber deformation, are

directly linked to friction. Asu?tatincreases, the average frictioraid repulsive inter-

particle forcesfe*) = (|f*|) and (f'"®P*) = (|f'®P*|), both increasdTable IlI).

The average elastic energy per fitQEré) also increases witha‘?tat. These observations

1.0

FIG. 9. Fiber c.m. pair distribution functions for sheared suspensions under conditions in F(@.;B?at
=0, (b) u™=5, (c) u™= 10, and(d) u® = o, averaged fory = 1000 [fiber c.m.s may coincide,
henceg(0) isn’t necessarily zefo
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FIG. 10. Average number of contact points per fiber vs strain for sheared supensions,witf80, N = 8,

DS = 7.7x10 3, nL® = 26.2, and various values gf;™".

demonstrate that interfiber friction not only inhibits contacting fibers from sliding, but
also assists in pinning fibers together and deforming them.

Friction also helps store elastic energy in fiber flocs upon the cessation of shear flow.
Flocs were formed by shearing a suspension wjth= 70, N = 5, DS = 0.050, 64
= 0.8, ¢°9= 0.7, ¢, = 0.00125 (L3 = 7.8), and u{®'= 20, to a strain ofy
= 2000, at which point the average elastic energy per fiberkgas 0.41Eyl/L. The
flow was then stopped and the structure allowed to relax, using four different friction
coefficients. The fraction of initial elastic energy stored in the fibers is plotted as a
function of time for u§'® = 0, 10, 20, and 100 in Fig. 11. Here, time is scaledtby
= 7uL#(62.5Ey!), and the dimensionless bending stiffness is BSEyIts/(ul?)
= 0.050. For,u?tat# 0, elastic energy is permanently stored in the fibers. This energy
storage behavior is consistent with experimental observations showing fiber flocs to re-
tain their structural integrity when shearing is stopped. In experiments of Soszynski and
Kerekes(1988, dense nylon fiber flocs are lifted out of the suspending fluid by holding
only a few of their constituent fibers.

Friction also helps hold flocs together in unbounded shear flow. Flocs were formed in
simulations with shear flow and periodic boundary conditiomg, € 70, N = 5, DS
= 0.050, 6°9= 0.8, 9= 0.7, nL3 = 7.8), and then removed from the suspension
and placed alone in an unbounded shear flow. As fibers break free from the floc, they are
carried away by the flow, the number of fibers remaining in aieitially containing 80

fibers is tracked as a function of strain in Fig. 12. Wi«nlftat: o, the floc loses half of

its fibers in a strain ofy ~ 350, roughly twice as long as With?tat: 20, and ten times

TABLE IIl. Interparticle forces and elastic energy per fiber as a function of
ui® for sheared suspensions with, = 80, N = 8, DS= 7.7x10" 2,
6%9= 0.9, ¢°9= 1.0, andnL® = 26.2, averaged foyy = 1000. Forces
are scaled with LR, and elastic energy with 0.002q. yL3.

#?tat (ffric* ) (frepky <ffric* VI(FTEPx ) (E: )

0 0 0.45 0 0.23
5 18 12 15 0.49
10 3.5 2.1 1.7 13

% 5.5 2.3 25 2.6




798 SCHMID, SWITZER, AND KLINGENBERG

=
(=]

o
o0

o
o

L u* =100
~ 20

10

I
~

e
)

Fraction of initial elastic energy

1/0

0 100 200 300 400 500
dimensionless time

e
=)

FIG. 11. Fraction of initial elastic energy stored t&s after cessation of shear flow for suspensions wjh

= 70,N = 5,DS2= Eyltg/(uL* = 0.050,6%1 = 0.8, %9 = 0.7, anchL® = 7.8: 7= 0, 10, 20, and
100.

as long as with purely repulsive interfiber forces?kat: 0). Thus friction induces fibers
to mechanically interlock, and also resists their dispersion.

B. Effect of fiber stiffness

Fiber stiffness plays an important role in the formation and persistence of simulated
flocs. Flocculation in suspensions with = 80, N = 8, ¢°9= 0.9, ¢%9= 1.0, nL3
= 26.2, and,u?tatz w becomes less prevalent as the dimensionless fiber stiffness de-
creases, as illustrated by simulation pictures in Fig. 13.

The decreased aggregation is reflected by the fiber c.m. pair distribution function. For
DS = 3.9x10™ 4, the shape ofi(r) is similar to that for DS= 7.7x 10~ 3 [curve(d) of
Fig. 9], but g(r = 0.01L) drops from 15 to 7. For DS 7.7X 1075, g(r = 0.01L)
~ 1.1. Interparticle force magnitudes and elastic energy storage in fibers diminish as
fiber stiffness decreases. Table IV presents values of the average frictional and repulsive
contact force magnitudes, as well as the average elastic energy per fiber, calculated for
v = 1000 for sheared suspensions under the conditions in Fig. 13 and various fiber
stiffnesses. Simulations are consistent with the experimental observations that flocs are
more prevalent at low shear rates and low suspending fluid viscoddrge dimension-
less stiffnessgq Takeuchiet al. (1983, Zhao and Kereke&1993]. Here, the reduction
in flocculation is not attributable to fluid and particle inertia effects. Rather, decreased
elastic energy storage in fibers relative to hydrodynamic forces produces weaker contact
forces, diminishing aggregation.

Kerekes(1995 has suggested that coherent flocs appear in fiber suspensions as the
Reynolds number is increased above approximately one. Although our model shows that

@®
<

=23
<

Th g sinfinity

Fibers remaining in floc
v I
S =

0
0 100 200 300 400 500
strain

FIG. 12. Fibers remaining in a floc in unbounded shear flow as a function of strgir; 70, N = 5, DS
= 0.050,6° = 0.8, $°9= 0.7: uJ® = 0,20, and.
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| [b]

FIG. 13. Sheared suspensions withy = 80, N = 8, §°9= 0.9, ¢*9= 1.0, nL3 = 26.2: (a) DS = 3.9
%1074, and(b) DS = 7.7x107%, at y = 1000[the suspension with DS 7.7x 10~ 3 is illustrated in Fig.
8(c)].

flocculation can appear as the viscosity is decredsed DS is increased we have
neglected particle and fluid inertia, and thus all simulations are performed in the limit of
vanishing Reynolds number. Therefore, we cannot comment on Kerekes’ suggestion.
Flocs break up more rapidly in unbounded shear flow as fiber stiffness is decreased. A
flocculated structure was formed by simulating a suspensign=(70, N = 5, DS
= 0.050, 6°9= 0.8, $°9= 0.7, u3™ = =, andnL® = 7.8) in shear flow with peri-
odic boundaries to a strain of = 2000. A floc containing 80 fibers was then removed
and sheared in an unbounded flow with various fiber stiffnesses. The number of fibers
remaining in the floc is plotted as a function of strain in Fig. 14, showing that flocs break
up more quickly as DS decreases. This result is consistent with experiments of Soszynski
and Kereke$1988, who have found that nylon fiber flocs disperse readily when bending
stresses are diminished by heating the flocs above the nylon glass transition temperature.
Here, even flocs made of stiff fibers eventually break apart. This supports the dynamic
equilibrium hypothesis of Mason and co-workers—fibers constantly enter and leave flocs,
and do not irreversibly bind to thefMason(1950].

C. Effect of fiber shape

Fiber equilibrium shape strongly impacts the bending behavior of single fibers, as well
as the first normal stress differences in flexible fiber suspeng®es Il). Its dramatic
effect on flocculation behavior is now explored. The flocculation behavior of sheared
suspensions with, = 80, N = 8, DS= 7.7x10 3, and u{'* = = is mapped as a
function of fiber equilibrium shape and concentration.§) in Fig. 15. Suspensions that
remain homogeneously disperseg{r = 0.01L) < 3] to a strain ofy = 2000 are in-
dicated by open symbols; suspensions that floccylgfe = 0.01L) > 3] within y
= 2000 are indicated by filled symbols. Points are labeled with letters for discussion
below.

Suspensions with nearly straight fiber equilibrium shapes at low concentrations remain
homogeneously dispersed. At a fixed concentration, increasing permanent fiber deforma-

TABLE IV. Average interparticle forces and elastic energy per fiber as a
function of DS for sheared suspensions with= 80, N = 8, 6°9= 0.9,
#%9= 1.0, ui®= o, andnL® = 26.2, averaged foy = 1000. Forces
are scaled with & yLR, and elastic energy with O.OOE}QL')/L3.

DS (fffexy ooy (ffickypgrepey gy

7.7x10°3 55 2.3 25 2.6
7.7x10°4 1.8 0.68 2.7 0.90
3.8x1074 1.0 0.32 3.1 0.48

7.7x107° 0.30 0.069 4.4 0.14
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FIG. 14. Fibers remaining in a floc in unbounded shear flow as a function of strain for various fiber stiffnesses,
rp =70, 6°9= 08, ¢°9= 0.7, uf® = .

tion (quantified as#®™H ¢°% induces a dramatic transition in suspension structure. For
example, U-shaped fibers with€%= 0.2 atnL® = 26.2 remain homogeneously dis-
persed over a strain of 2000, while fibers witff! = 0.3 flocculate, as illustrated in Fig.
16.

Fiber equilibrium shape strongly impacts suspension microstructural and mechanical
properties. In Fig. 1), {n.) is plotted as a function of strain for suspensions C, J, K,
and L, illustrating significantly more fiber interactions and faster aggregation for suspen-
sion C (#°9= 0.9, ¢®9= 1.0) than for suspension Lo = 0.2, %9 = 0). Highly
irregular fiber equilibrium shapes also stimulate elastic fiber deformation in flowing sus-
pensions, and lead to stronger interparticle forces, as exhibited by the val(fé%cbf),
(f'®P*)  and(EZ}) (averaged fory = 1000) presented in Table V.

Although irregular fiber equilibrium shapes facilitate aggregation in the presence of
friction forces, our simulationdo notexhibit flocculation with purely repulsive interpar-
ticle forces. Suspensions of stiff (DS 7.7x10 %) permanently deformed 669

= 0.8, $°9 = 0.2) fibers ofr, = 80 with u7*'= 0 remain homogeneously dispersed
even ainL3 = 65.5.

D. Effect of fiber concentration

Simulations show that flocculation becomes more prevalent with increa:kjﬁgin
agreement with theory and experimé¢iason (1954, Kerekes and Sche{ll992]. For
sheared suspensions wity = 80, N = 8, DS = 7.7x 1073, ¢°9= 05, ¢%9= 0.1,

stat

andu; " = o, a distinct transition from homogeneously dispersed to flocculated occurs
.
09+1Jineop c D
e¢0+¢¢4 '
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FIG. 15. Flocculation behavior as a function of fiber equilibrium shape and concentratio?) for suspen-
sions withrp, = 80, N = 8, DS= 7.7x 1073, andﬂ?tat: .
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FIG. 16. Suspensions of U-shaped fibers with = 80, N = 8, DS= 7.7x10 3, and u{™' = «: ¢
= 0.3(J), 6°9= 0.25(K), and6®9= 0.2 (L) at y = 2000.

betweemL® = 3 andnL® = 12, as illustrated in Fig. 18. Suspensions flocculate below
nL3 = 3 with 6%9= 0.9, ¢®9= 1.0. In contrast, nearly intrinsically straight fibers
(6%9= 0.1, $%9 = 0) remain uniformly dispersed even foL® = 105, as shown in
Fig. 19.

Although flocs do not form in simulations of nearly intrinsically straight fibjds
6%9= 0.1, %= 0,nL3 = 105,g(r = 0.01L) = 1.9 aty = 2000, evidence suggests
that a transition from a homogeneous suspension to a uniform fiber network occurs
betweennL?® = 52.5 andnL® = 105. Upon cessation of shear flow at2 = 105,
fibers initially holding(on averageE, = 1.1EyI/L relax to a static configuration by
= 2.7uL?/(Eyl), retaining roughly 40% of their initial elastic energy. In contrast, at
nL3 = 52.5 the elastic energy relaxes to zerotby 0.2uL*/(Eyl). Kerekes and co-
workers[Kerekes and Schelll992; Kerekes(1995] also observed a transition to floc
formation at sufficiently large concentrations. They found that coherent fiber flocs formed
for nL® = 115 (N = 60), albeit for different flow fields.

In sheared suspensions withy = 80, N = 8, DS= 7.7x 1073, 6%9= 0.1, ¢
= 0, and ,u?tat: ©, the average number of contact points per fiber increases from
(n¢) = 1.7 atnL® = 52,5 to(nc) = 4.8 atnL® = 105. Upon relaxation of shear flow,
(n¢) decays to zero for the suspension rat® = 52.5, where it increases ttnc)
= 5.4 for the static fiber network atl.® = 105. Meyer and Wahrefi964 predict(n.)
for static networks of straight, randomly oriented fibers. Fpe> 1, Kerekes and Schell
(1992 simplify the result to

8ne)°
T (g1

In Fig. 20,(n.) is plotted as a function afiL3 for various sheared and static simulated
suspensions. These results show that the simulated structures differ markedly from that

nL3

(34)

L

avg. number of contacts/fiber

0 1000 2000 3000
strain

FIG. 17. Average number of contacts per fiber versus strain for sheared suspensiomg witBO, N = 8,
DS = 7.7x1073, u®= 0, and nL® = 26.2: ¢°9= 0.9, 9= 1 (C), 6°9= 0.3, ¢%9= 0 (J), 6
= 0.25,¢%= 0 (K), 6%9= 0.2, 9= 0 (L).
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TABLE V. Average interparticle forces and elastic energy per fiber as a
function of equilibrium shape for sheared suspensions wjith= 80, N

=8, DS=7.7x1073, uf®= =, and nL® = 26.2, averaged fory

= 1000. Forces are scaled with7m&yLR, and elastic energy with
0.00207 . yL3.

689 ¢eo( rad) <ffric* > <frep* > <ffric* >/<frepk > (E: >

0.2,0 2.0 0.45 4.4 0.35
0.25,0 4.4 1.0 4.4 0.85
0.3,0 5.7 1.6 3.6 15
0.9,1 5.5 2.3 25 2.6

predicted for randomly oriented fibel&q. (34); solid curve in Fig. 20, and depends on
the interfiber friction coefficient, the equilibrium fiber shape, as well as the imposed flow
field.

The average contact force in static, elastically interlocked fiber suspensionsgwith
=80, N =8, DS2= 7.7x10 3, and u®= = is impacted by fiber equilibrium
shape. For a network with nearly straight fibeé§{= 0.1, ®9 = 0) atnL® = 105, we
find (1) = 140EyIR/(L3) and (fP = 550EyIR/(L%). For softwood fibers ot
= 25mm,R = 16um, andEyl = 8x 10 2N m?, the corresponding average repul-
sive interparticle force iéf"*P) = 4.5uN. In contrast, for a static, flocculated suspension
with permanently deformed fibersg{%= 0.9, $°4= 1.0) at a lower concentration
(nL® = 65.6), the average contact force magnitudes are largéfc)
= 352(EyIR/L3 and(f™®P) = 177EyIR/L3 = 14.4uN for softwood fibers. Wahren
(1980 estimates

Evl(ng
(o ~ S5 £e

for the average repulsive contact force in an elastically interlocked fiber network. For
nL3 = 105, Eq.(34) yields (n;) ~ 3, and the average repulsive contact force is pre-
dicted to be(f™P = 3.8uN, in close agreement with our simulations of nearly intrin-
sically straight fibers. FonL® = 65.6, Wahren’s theory estimatg$"™P) = 2.8uN,
which is five times lower than our simulations of highly permanently deformed fibers.

V. CONCLUSION

Flocs form in particle level simulations in the absence of attractive forces between
fibers—interfiber friction and repulsive interactions alone induce flocculation. The behav-
ior and properties of these flocs suggest that they form through an elastic interlocking
mechanism; aggregation is more prevalent as elastic energy held in the fibers increases,
and flocs contain high percentages of fibers with three or more contact points, remain

A

FIG. 18. Sheared suspensions witly = 80, N = 8, DS= 7.7x10°3, ¢®9= 05, $®9= 0.1, andu{™
= o for three concentrationsiL3 = 3 (Q), nL® = 6 (F), andnL3 = 12 (G) at y = 1000.
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FIG. 19. Sheared suspensions with = 80, N = 8, DS= 7.7x10 3, 6°9= 0.1, ¢°I = 0, anduf®' = o
for two concentrationsnL3 = 52.5(0), andnL3 = 105 (P), at y = 1000.

coherent upon removal of shear flow, and retain structural integrity when sheared in
unbounded flow. High interfiber static friction coefficients, stiff fibers, and large perma-
nent fiber deformations all stimulate increased elastic energy storage in fibers, as well as
stronger frictional and repulsive interfiber forces. The friction coefficient, as expected,
impacts frictional forces more, while fiber stiffness and equilibrium shape exert more
influence on repulsive forces. These simulations have demonstrated that fiber features and
interaction forces strongly affect flocculation behavior and floc properties. This technique
provides a means of exploring effects that are difficult to incorporate into theories that
assume particular suspension structures.

The simulation technique has shortcomings and limitations that should be mentioned.
Static friction coefficients that lead to flocculation in simulations are much higher than
the experimentally measured value of 0.5 for pulp fiber surfpgéadersson and Rasmu-
son (1997, Amelina et al. (1998]. Possible explanations for this discrepancy include
neglecting inter- and intrafiber hydrodynamic interactions, the lack of sliding friction,
neglecting attractive interfiber forces, and assuming isotropic fiber bending. The existing
techniques for studying long range hydrodynamic interactions between fibers mentioned
in the introduction could be implemented, at an increased computational cost. For a
typical simulation of 200 fibers, each witty = 80, N = 8, DS= 7.7X 10 2% atnL®

= 50, roughly 60 hrs. of computation time is required to simulate a strain of 1000 on a
533 MHz workstation with 256 megabytes of RAM. To probe larger systems, extensive
computer speed and memory are required. Future work should also further explore the
dependence of flocculation behavior on system parameters, as well as the sensitivity of
results to initial conditions.

o0

o o
2
Sl *
8 .
g o
o
=4
x —
g /
22
&b °
>
= 0 . s
50 100 150
nL3

FIG. 20. Comparison of the average number of contact points per ingrvs nL3: sheared suspensions with
(rp.N,DS,6%,¢%9 13 = (80,8,0.0077,0.9,1.8) (open circle, (80, 8, 0.0077, 0.1, O%) (open squares
(100, 7, 0.0033, 0.105, 0.524) @iamond, and(100, 7, 0.0033, 0, 0,)Qtriangle); static networks with80, 8,
0.0077, 0.9, 1.0¢) (filled circle), (80, 6, 0.0077, 0.1, Op) (filled squarg; Eq. (34) (solid line).
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FIG. 21. Four cases for end/side and end/end interactions: separation distances considered in finding the point
of closest approach.
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APPENDIX A

The smallest distance between rods may be between two rod side surfaces, two rod
ends, or one side and one end. Consider first the distance between a point on the center-
line of rodi and a point on the centerline of rgdG = |rj+xpj— rj —ypjl, wherex and
y are the distances from the c.m.s of rddand | to the respective points along their
centerlines. The minimum distance between the centerline§jjs= |ri+$jpi—rj
—Sjipj|, where

o Mm=rp)-pdCepy) — (i) - py
Sj = Xmin 1—(pi'|0j)2

: (36)

and

[(rj=ri)- P (- py) = (rj = i) - pj
1-(p-p))°

Si = Ymin = (37

are distances along the centerlines corresponding to the minimum distance between the
centerlines. If rods andj are exactly parallel, which is improbable in suspension simu-
lations, they do not interact.

If Gjj is greater than a cutoff distan€®, (values ofG, for different types of inter-
actions are given in the textrodsi andj do not interact. IfGj; < G, and —1/2
< §j, Sji = /2, then a side/side interaction is considered.

If Gjj < Gg, but|S;j| > 1/2 and/or|S;;| > 1/2, then one of several end/end or
end/side interactions occurs. The distances that must be evaluated depend on whether
either rodi or j is the Nth rod in its chain(which has two hemispherical capshe
situations that must be considered are illustrated schematically in Fig. 21.

If i,j # N, then three distances are comparél: the minimum distance from the
centerline of rod atx = —1/2 (the center of curvature of the hemispherical)ctpthe
centerline of rod ; (2) the minimum distance from the centerline of odty = —1/2 to
the centerline of rod; and(3) the distance between the poinis= —1/2 on the center-
line of rodi andy = —1/2 on the centerline of rogl. Distance(1) occurs at

I
Ymin = Sji = (fi—gpi—fj) P (39)
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on the rodj centerline. Likewise, if one or both df andj are Nth rods in a chain,
distances are compared as shown in Fig. 21. The shortest distance for whigh
< §jj,Sji = l/2is the closest approach between r@js; if it is less thanG., then a
rod/rod interaction is counted.

APPENDIX B

Referring to Eq(27), we denotesj; = Sjj /R, and suppress rod subscriptandj on
fL”C* , t(kl), t(kz), nk, andgy for clarity. Each interactiork between rods andj (i
< j) contributes a diagonal term

— (U

Uc= | = 1" — |, 39)
— nl —

where the notatioar-v T — signifies a vectov placed in a row withvy in column one,
vy in column two, and, in column three. The second order tendfy is

Uy = ug 6+ Uy pip;+ Uz Pjpj+ Ug (PNt NPy + Us (Nt Ngepy)
+Ug (6= ning) — Uz (N (P + PjRy) - Ni), (40)
where

2 3

Yc[5|2j+512i+gk(3j”k' Pi = Sji N Py 1,

U =—5+—>—¢
17 yA 4r,§J

u AT A H
27 xA YA 4rf,r\(C
] 1 1) 3y L %k
ST XA YA 4r§rY°’ 4 8r§rY°’
2
350« 30«
5 8r2pYC 6 16rzerC’
3¢ (1 1
Uz = - ]
/ 16r2pr xC Y€
0 Nk, N
Nk_ nkz 0 _nkx (41
_nky nkx 0

The right hand side vectd for each interactiork is
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Z .t
Ze = | 26, (42)
0

where

Zk = aj—ai-i—sijpixbi—sjiijbj+O.5gknk><(bi+bj), (43)
and
o = oA x|,

(44

—1x * *
im +Ci '(_Yi +Yi+1)'

. 3
ff
b = f° *+4 2o ChiX rp,(xi*‘LXi*H)*E Simfie
rer m

Herefi”;t* is the net position-dependent force between rodsmd m, and all X are

previous time step values. For simulations in simple shear flow and periodic boundary
conditions, the termo;™* —v;™* = (rj*y— ri*y)ex in Z, must be adjusted if rotlinteracts
with a minimum image of rod from either above or below the main simulation box. In
this case, we replacej*y—ri’; with rj*y—ri*y—NINT[(rJ-*y—ri’;)/B*]B*, where B*
= B/R and NINT(a/b) is the nearest integer &/b.

The off-diagonal tensors

— [WL"[(kl)]T —
W= |« WL — (45)
0 0 0

are nonzero when interaction poirksand| occur on the same rodithe tensoWy is
obtained by exchanging subscritand| in Eq. (45)]. Tensorswy, assume one of four
different forms, depending on the indices of the interacting rods. For ircdsl j (i
< j) interacting at pointk, and rodsi andh (i < h) interacting at point, W,
= Wf(}) where

W(k}) = Wy 8+ Wy pp; + W3 PN+ Wy Nip;+Ws NN —Weg (N pip; - Np),  (46)

and

1 3
Wy = At W(Sﬁh_"o-&ij 9Ny P+ 0.58r 9 Nie - P+ 0.25g, gy Ny Ny),

e — 1 1) 3sisn w _ Ssn%
2= e v azve T are
(47
3s;j9 399

Wp=——>5—5, Wg=——5 &,
4 Srf)rvc S 16rf,rYC
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W__3gk9| 1 1
6 16r2 xC Y|

The tensofvv(l) is obtained by exchanging indicksandl, and exchangingsi, ands;;
everywhere in Eq946) and (47).

If the same rods interact, bt < i, Wy, = W(Z) is obtained by first taking
(—1)X Eq. (46), and then replacing, with —n; everywhere in Eq946) and(47). The
tensorW”f) is obtained by exchanging indicksand|, and replacingj with —sj, , and
Sih with —s;jj , everywhere in the expression fw(z).

For rodsi andj (i < j) interacting at poink, and rodg andh (j < h) interacting
at pointl, Wy, = W(k‘T’) where

W(s) = Wq 8+ Wy pjp;+W3 pjNg+Wy Npj+Ws ning—Wg (Ni- pjp; - N, (48)

and
1 3
Wy = = Atz e (T SiSin T 0-585i 91 - Py + 0-56j Ok Py 0-250k 9N ),
Y 4rpr
wom |3 39
20 DA YA Talye R ey
r r
(49
3s;ig, 30k9i

o > Wg = T2 _C>
8rf,Y° s 16r§ y©
r r

" o See( 1t 1
6 16r?prxT Ye)

The tensorW(3) is obtained by exchanging indicésand |, and replacingsj; with
—Spj, andspj with —sj; everywhere in Eqsi48) and (49).

If the same rods interact, blt < j, the tensorWy, = Wkl is obtained by first
taking (—1)X Eg. (48), and then replacing, with —n; everywhere in Eqs(48) and
(49). The tensoW(4) is then found by exchanging indic&sandl, and exchanging;
ands;j, everywhere in the expression fw(4).
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