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Synopsis

Non-Brownian fibers commonly flocculate in flowing suspensions at relatively low concentrations
( , 1% by weight!. We have developed a particle-level simulation technique modeling fibers as
chains of rods connected by hinges to probe fiber flocculation. The model incorporates fiber
flexibility, irregular fiber equilibrium shapes, and frictional fiber interactions. Model fibers
reproduce known orbits of isolated rigid and flexible fibers in shear flow. Simulation predictions of
first normal stress differences in homogeneously dispersed, dilute flexible fiber suspensions agree
with experimental data. Fiber features such as flexibility and irregular equilibrium shapes strongly
impact single fiber and suspension behavior. Fibers aggregate in simulations with interfiber friction,
in theabsenceof attractive forces between fibers. Strong flocculation is observed in suspensions of
stiff fibers with irregular equilibrium shapes. Flocs contain many fibers with three or more contact
points, and derive cohesiveness from elastic energy held in fibers—consistent with the elastic
interlocking mechanism of flocculation. At higher concentrations (nL3 ' 100, wheren is the fiber
number density andL is the fiber length!, coherent fiber networks form in simulations. Average
numbers of contacts per fiber and contact force magnitudes in sheared and static networks are
compared with existing fiber network theory predictions. ©2000 The Society of Rheology.
@S0148-6055~00!01404-8#

I. INTRODUCTION

In applications such as papermaking and composites processing, fibrous particles are
suspended in flowing viscous media. Predicting and controlling fiber motion in these
processes is critical to achieving the desired spatial arrangements of fibers in products. A
complication is that fibers in these suspensions do not always move affinely with the
fluid, but rather aggregate@Mason ~1950!, Kerekeset al. ~1985!, Kerekes and Schell
~1992!#. A major goal in the processing of fiber-filled fluids is to understand how fiber
mass distribution in flowing suspensions is affected by suspension conditions, and mi-
croscopic fiber features and interaction forces. Direct observation of fiber motions in
concentrated, flowing suspensions is difficult, as fibers are small, opaque, and moving
rapidly in most applications. In this work, a particle-level simulation technique is devel-
oped to systematically probe microstructure and flocculation in flowing fiber suspensions.

Much is known about the motion of isolated fibers in low Reynolds number flow.
Jeffery~1922! solved for the motion of an isolated prolate spheroid in simple shear flow,
vx

` 5 ġy, showing that a spheroid rotates periodically, spending most of the time nearly
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aligned with the flow. The spheroid rotation periodT increases with increasing spheroid
aspect ratior s 5 a/b ~ratio of major to minor axis lengths! as T 5 2p(r s11/r s)/ġ.
Jeffery’s analysis was shown to be valid for any axisymmetric body with fore–aft sym-
metry, provided that an equivalent aspect ratior e is used in place of the actual spheroid
aspect ratior s @Bretherton~1962!#. For rigid cylinders of length-to-diameter ratior p
5 L/D, equivalent aspect ratios have been experimentally measured@Goldsmith and

Mason~1967!#, yielding the correlationr e 5 1.24r p /Aln rp @Cox ~1971!#.
Forgacs and Mason~1959a! and Goldsmith and Mason~1967! have theoretically and

experimentally investigated the flow induced deformation of single fibers in simple shear
flow. A cylindrical fiber in the flow/gradient plane is predicted to bend when the dimen-
sionless group~called the bending ratio BR here!

BR [
EY~ ln 2re21.50!

~mġ!2r p
4 ~1!

is less than one, whereEY is the fiber Young’s modulus andm is the fluid viscosity. Fiber
shapes observed experimentally in shear flow have been classified and correlated with
values of BR@Forgacs and Mason~1959b!#. Salinas and Pittman~1981! have quantified
fiber bending by measuring the minimum radius of curvatureRmin attained by fibers
during their orbits, finding smallerRmin with decreasing BR.

Studies have elucidated the forces responsible for holding fibers in flocs. Mason
~1950, 1954! was the first to recognize that flocs form under conditions where electro-
magnetic and chemical forces are negligible compared to hydrodynamic forces. He pro-
posed that, above a critical volume fractionfv,crit 5 3/(2r p

2), at which exactly one fiber
center of mass~c.m.! is present in the spherical volume swept out by a fiber of lengthL,
extensive fiber collisions result in mechanical fiber entanglement. Meyer and Wahren
~1964! applied the concept of mechanical entanglement to highly concentrated fiber net-
works, suggesting that network strength derives from the interlocking of elastically
loaded fibers. Assuming randomly oriented fibers, they derived an expression for the
average number of contact points per fiber^nc& in a network as a function ofr p andfv .
They also predicted that the network shear modulus increases with increasingr p , fv ,
and fiber stiffness. This and similar models for fiber network yield stress@Bennington
et al. ~1990!# and individual floc strength@Farnoodet al. ~1994!# agree qualitatively with
experiments, supporting the mechanical interlocking hypothesis.

Less is known about the processes by which fibers flocculate. Mason~1950! postulated
that flocculation is a dynamic equilibrium process, with fibers continuously entering and
leaving flocs, both rates being equal at steady state. Kerekes~1995! has identified dimen-
sionless groups that help predict flocculation in specific experiments. He defines the
crowding factor,Nc 5 2fvr p

2/3, which is the average number of fiber c.m.s present in
the spherical volumepL3/6. A closely related quantity isnL3 5 6Nc /p, the number of
fiber c.m.s per unit volumen times the cubic volumeL3. Though useful, the crowding
factor understandably cannot explain all phenomena, such as the dramatic dispersive
action of water-soluble polymer in pulp fiber suspensions@Zauscheret al. ~1999!#. Thus,
a technique that explores the effects of microscopic fiber features and interaction forces
on suspension behavior is needed.

Direct particle level simulations have been employed to study non-Brownian fiber
suspension flow behavior. Rigid fiber simulations have incorporated long range hydro-
dynamic interactions~HI! @Mackaplow and Shaqfeh~1996!, Harlenet al. ~1999!#, short
range lubrication forces@Yamaneet al. ~1994!#, and combined long and short range HI
@Claeys and Brady~1993!, Fanet al. ~1998!#. Other rigid fiber simulations incorporate
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purely repulsive@Sundararajakumar and Koch~1997!#, and repulsive plus frictional@Tho-
massetet al. ~1997!, Harlen et al. ~1999!# contact forces. Sundararajakumar and Koch
~1997! and Harlenet al. ~1999! showed that hydrodynamic lubrication cannot prevent
physical contact between fibers, and thus nonhydrodynamic contact forces will become
important. Sundararajakumar and Koch~1997! show that for concentrated rigid fiber
suspensions (nL3 . 40), simulations that neglect long range HI but include mechanical
contacts predict fiber suspension dynamics~shear viscosity and orientation distributions!
more accurately than results that include HI but neglect contacts. In simulations of falling
ball rheometry, Harlenet al. ~1999! showed that nonhydrodynamic contact forces domi-
nate over hydrodynamic interactions as the concentration is increased (nL3 * 12). Thus,
in our study of fiber flocculation, we neglect hydrodynamic interactions and probe the
effects of repulsive and frictional fiber/fiber interaction forces. Simulations of flexible
fibers, composed of linked rigid spheres@Yamamoto and Matsuoka~1996!, Skjetneet al.
~1997!# and spheroids@Ross and Klingenberg~1997!# have successfully replicated single
fiber motions and predicted suspension viscosities. Following Ross and Klingenberg
~1997!, we employ chains of elongated bodies~rigid rods!, enabling the simulation of
high aspect ratio (r p 5 50– 280) fibers with relatively few bodies per chain.

In Sec. II, details of our simulation technique are presented. The model is shown to
reproduce experimentally observed single fiber motion and homogeneous suspension
rheological properties in Sec. III. Results of simulations probing fiber flocculation are
then presented in Sec. IV, demonstrating that flocculation can be induced by purely
mechanical means~interparticle friction, elastic fiber deformation, and irregular equilib-
rium shapes!—without attractive forces. Simulated flocs derive cohesiveness from elastic
energy storage in fibers, consistent with the elastic interlocking mechanism of floccula-
tion. Fiber features and interactions are shown to dramatically impact flocculation.

II. SIMULATION METHOD

A. Mechanical model and equations of motion

A fiber is modeled as a chain ofN rigid rods andN21 hinges, as shown in Fig. 1.
Rods have side lengthl , diameterD, and aspect ratior pr

[ l /D. The chain contour

length is L 5 Nl, and fiber aspect ratior p [ L/D. Rods rotate and twist about the
hinges, replicating fiber bending and twisting deformations. However, the chain contour
length remains fixed. Indexi refers to a rod, as well as the hinge preceding it,~hinge 1 is
fictitious!. Each rodi in a chain~except for rodN) has a hemispherical end cap at hinge
i , and is blunt at hingei 11. RodN has hemispherical caps on both ends. When a chain
is straight, the hemispherical end of each rodi overlaps the adjacent rodi 21. This model
retains a smooth fiber surface even when bent.

A fiber configuration is specified by 3(N11) independent coordinates; the fiber c.m.
positionrc.m. relative to space-fixed coordinates, and 3N internal coordinates relating the

FIG. 1. Mechanical model of a fiber.
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orientations ofN orthonormal sets of rod base vectors (x̂i , ŷi , pi ) ~illustrated in Fig. 1!
to the space-fixed frame. Rod c.m. positions are obtained by

r1 5 rc.m.2
l

2N
(

i 5 2

N S p11pi12 (
j 5 2

i 21

pj D ,

~2!

ri( Þ 1) 5 r11
l

2
p11 l (

j 5 2

i 21

pj1
l

2
pi .

All vectors are based in the space-fixed frame unless otherwise indicated by bracketed
subscripts, e.g.,v [frame] .

Equations of motion in Cartesian coordinates for chains of rigid rods connected by
hinges are derived from force and torque balances on each rod in a chain, with the
constraint that the fiber contour length remains constant. For certain fiber interactions,
additional constraints are imposed on the motion of contacting fibers. Balances contain
contributions from five different sources: hydrodynamic forces and torques, body forces,
elastic bending and twisting torques, constraint forces and their moments~to hold rods
together in a chain!, and interparticle forces~repulsive and frictional! and their moments.
Particle and fluid acceleration are neglected.

The force balance on rodi is

F i
h2Xi1Xi 111F i

b1(
j

f i j 5 0, ~3!

whereF i
h is the hydrodynamic force,Xi andXi 11 are the constraint forces in hingesi

and i 11, respectively,F i
b is the body force, and( j f i j is the net interparticle force from

all rods j interacting with rodi . The torque balance on rodi is

Ti
h1S 2

l

2
pi D 3~2Xi !1

l

2
pi3Xi 112Yi1Yi 111(

j
ti j 5 0, ~4!

whereTi
h is the hydrodynamic torque, the second and third terms are the moments about

the rodi c.m. exerted by the constraint forces acting in hingesi and i 11, respectively,
Yi 5 Yi

bend1Yi
twist is the sum of the bending and twisting torques in hingei , andYi 11 is

the analogous quantity for hingei 11. The term( j ti j 5 ( j (Si j pi10.5Gi j ni j )3f i j is the
net moment about the rodi c.m. exerted by the interparticle forces acting on rodi , where
Si j is the point on the rodi centerline at which the interaction with rodj occurs, the unit
vectorni j points from rodi to rod j at the interaction point and is perpendicular to both
rod surfaces, andGi j is the separation distance between rod centerlines at the interaction
point.

In this model, the suspending fluid is Newtonian and hydrodynamic interactions be-
tween rods in different fibers, as well as within the same fiber, are neglected. The hydro-
dynamic force on a rodi is

F i
h 5 Ai•~v i

`2 ṙ i !, ~5!

whereṙ i is the translational velocity of the rodi c.m.,v i
` is the ambient fluid velocity at

the rodi c.m., andAi 5 3pm l @YAd1(XA2YA)pipi # is the second order, hydrodynamic
resistance tensor. The resistance functionsXA(r s) andYA(r s) for a prolate spheroid of
aspect ratior s @Kim and Karrila ~1991!# are used, with an effective aspect ratior er

in
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place ofr s . The choice ofr er
is explained in Sec. III. In this work, lengths are scaled

with rod radiusR except where noted. For simulations of simple shear flow,vx
` 5 ġy,

time is scaled with the inverse of the shear rate 1/ġ ~straing [ ġt), and all forces with
3pmġ lR, ~superscripted asterisks denote dimensionless variables!. The dimensionless
rod velocity ṙ i* [ ṙ i /Rġ, obtained from Eq.~3!, is

ṙ i* 5 v i
`* 1Ai

21* •S 2Xi* 1Xi 11* 1F i
b* 1(

j
f i j* D , ~6!

where

Ai
21* 5 F 1

YA d1S 1

XA 2
1

YAD pipi G .

The hydrodynamic torque on rodi is

Ti
h 5 Ci•~Vi

`2vi !1H̃:ġ, ~7!

wherevi is the angular velocity of rodi , Vi
` is the ambient fluid angular velocity at the

rod i c.m., andġ 5 1
2(¹v`1¹v`†) is the rate of deformation tensor of the ambient

fluid. The resistance tensors Ci 5 pm l 3@YCd1(XC2YC)pipi #, and H̃
5 2pm l 3YH(e•pi )pi @Kim and Karrila~1991!#, wheree is the third order permutation

tensor, employ the resistance functionsXC(r s), YC(r s), andYH(r s) for a prolate spher-
oid, with an effective aspect ratior er

used in place ofr s . From Eq.~7!, a torque-free

spheroid has the angular velocity given by Jeffery~1922!,

vjeff 5 V`2C21
•H̃:ġ. ~8!

For simple shear flowvx
` 5 ġy, the ambient fluid angular velocity isV` 5 (0,0,

20.5ġ), and C21
•H̃:ġ 5 20.5ġYH(pxpz ,2pypz ,py

22px
2)/YC. The dimensionless

rod angular velocity can thus be obtained from Eq.~4! as

vi* 5 vi
jeff* 1Ci

21* •S 3

4r pr

2 (
j

ti j* 2Yi* 1Yi 11* D 1
3

4r pr
YC pi3~Xi* 1Xi 11* !, ~9!

whereti j* 5 ti j /(3pmġ lR2), Yi* 5 Yi /(pmġ l 3), and

Ci
21* 5 F 1

YC d1S 1

XC 2
1

YCD pipi G .

In this work, body forces are not applied. They are retained in the equations of motion for
completeness.

Bending and twisting torques attempt to hold a chain in a specified equilibrium shape.
Fiber equilibrium shape is defined by fixing a coordinate system (x̂i , ŷi , pi ) on each rod
i , and an equilibrium coordinate system (x̂i

eq, ŷi
eq, pi

eq) for each rodi on the preceding
rod i 21 @Fig. 2~a!#. At equilibrium, the coordinate system fixed on rodi and its equi-
librium frame on rodi 21 are aligned. The relative orientation between the equilibrium
orientation for rodi ( x̂i

eq, ŷi
eq, pi

eq) and the orientation of rodi 21 (x̂i 21 , ŷi 21 , pi 21)

is prescribed. Vectorŷi
eq is rotated by an anglefeq relative to ŷi 21 , and vectorpi

eq is
rotated by an angleueq relative topi 21 , as shown in Fig. 2~b!.
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The anglesueq andfeq are specified to mimic a variety of equilibrium fiber shapes.
For an intrinsically straight fiber,ueq 5 0 and feq 5 0. For a U-shaped fiber whose
centerline lies in a plane and has an intrinsic radius of curvatureRu , ueq

5 2tan21(l/2Ru) and feq 5 0 (ueq ' l /Ru for Ru @ l ). For a helical fiber whose
centerline encircles a cylinder of radiusRh and rises a distanceH in one period,
cosueq 5 cosacos2(b/2)1sin2(b/2) and cosfeq 5 cosasin2(b/2)1cos2(b/2), where
a 5 2tan21(l/2Rh) andb/2 5 tan21(H/4Rh).

Bending and twisting torques are applied when a chain deforms from its equilibrium
shape. The bending torque in hingei is

Yi
bend5 2kb ab,ieb,i , ~10!

wherekb is the bending constant,ab,i 5 cos21(pi•pi
eq) is the bending angle, and

eb,i 5 S pi3pi
eq

upi3pi
equ D

is the bending torque direction. For small deformations, the chain bending stiffness is
related to the bending stiffness of an elastic cylinder bylkb ' EYI where EY is the
Young’s modulus of the fiber material andI is the area moment of inertia, (I
5 pR4/4 for a circular cylinder with radiusR). The twisting torque in hingei is

Yi
twist 5 2k ta t,ici , ~11!

wherek t is the twisting constant,a t,i 5 cos21(ŷi
'
• ŷi

eq,') is the twisting angle, and

ŷi
' 5

~d2cici !• ŷi

u~d2cici !• ŷi u
, ŷi

eq,' 5
~d2cici !• ŷi

eq

u~d2cici !• ŷi
equ

,

are the projections of vectorsŷi and ŷi
eq perpendicular to unit vector connecting adjacent

rod c.m.s,ci 5 (r i2r i 21)/ur i2r i 21u. For small deformations,lk t ' GJ, whereG is
the shear modulus of the fiber material andJ is the appropriate area moment of inertia
(J 5 pR4/2 for a circular cylinder with radiusR). In this work,k t /kb 5 0.67, which
for an elastic cylinder corresponds to a Poisson’s ratio of 0.5. For simple shear flow, the
sum of the dimensionless bending and twisting torques in hingei is

FIG. 2. ~a! Frame on rodi , and equilibrium frame for rodi fixed on rodi 21 used to define fiber equilibrium
shape.~b! Relation between rodi 21 frame and rodi equilibrium frame.
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Yi* 5
Yi

pmġ l 3 5 2
kb

pmġ l 3 @ab,ieb,i10.67a t,ici #, ~12!

where

kb

pmġl3
[ kb* 5

N4

p
S EYI

mġL4D
is the ratio of the elastic restoring torque scale to hydrodynamic torque scale. The dimen-
sionless fiber stiffness DS[ EYI /(mġL4) is related to the bending ratio BR, defined in
Eq. ~1!, by DS5 pBR/@32(ln 2re21.5)# for cylindrical fibers. The elastic energy stored
in a fiber is

Ee 5
EYIN

L
(

i 5 2

N

~ab,i
2 10.67a t,i

2 !. ~13!

In Eqs. ~10!, ~11!, and ~13!, we have assumed that the fiber deformations are small
~i.e., tanab,i ' ab,i). Even for the most flexible fibers investigated here (DS5 7.7
31025), the resulting error in the average bending torque is only 5%.

The orientation of each rod can be represented by four Euler parameters@Wittenburg
~1977!# qi 5 (q0 ,q1 ,q2 ,q3) i , which are related to the unit vectors (x̂i , ŷi , pi ) by

q0 5
1

2
A11R111R221R33, q1 5

1

2

R232R32

A11R111R221R33

,

~14!

q2 5
1

2

R312R13

A11R111R221R33

, q3 5
1

2

R122R21

A11R111R221R33

,

where R11(i ) 5 x̂i•ex , R12(i ) 5 x̂i•ey , R21(i ) 5 ŷi•ex , etc. The orthogonal rotation
matrix

Ri 5 F q0
21q1

22q2
22q3

2 2~q1q21q0q3! 2~q1q32q0q2!

2~q1q22q0q3! q0
22q1

21q2
22q3

2 2~q2q31q0q1!

2~q1q31q0q2! 2~q2q32q0q1! q0
22q1

22q2
21q3

2
G

i

~15!

~whereRi
† 5 Ri

21), relates the vectorŷi in the space frame to the body fixed vector

ŷi [bodyi ] 5 (0,1,0) by ŷi 5 Ri
†
• ŷi [bodyi ] . Analogous expressions relatex̂i and pi to

x̂i [bodyi ] 5 (1,0,0) andpi [bodyi ] 5 (0,0,1). The vectorsŷi
eq andpi

eq, needed in twisting
and bending torque expressions, respectively, are obtained by

ŷi
eq 5 Ri 21

†
•Req

†
• ŷi [eqi ]

eq , ~16!

whereŷi [eqi ]
eq 5 (0,1,0), and an analogous expression forpi

eq. The rotation matrixReq
is defined as

Req 5 F cosueqcosfeq cosueqsinfeq 2sinueq

2sinfeq cosfeq 0

sinueqcosfeq sinueqsinfeq cosueq
G , ~17!
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whereReq 5 Rbend•Rtwist is the product of a bending and twisting rotation, as illus-
trated in Fig. 2~b!.

The fiber contour length is held constant by requiring thatr i1 ( l /2)pi 5 r i 11
2 ( l /2)pi 11 for each pair of adjacent rods in a chain. Taking the time derivative leads to
the constraint

ṙ i2 ṙ i 111
l

2
~vi3pi1vi 113pi 11! 5 0. ~18!

Substituting Eqs.~6! and ~9! for the translational and angular velocities yields

Qi* •Xi* 1Si* •Xi 11* 1Ti* •Xi 12* 5 Vi* , ~19!

where

Qi* 5 Ai
21* 2

3

4YC ~d2pipi !,

Si* 5 2~Ai
21* 1Ai 11

21* !2
3

4YC ~2d2pipi2pi 11pi 11!,

Ti* 5 Ai 11
21* 2

3

4YC ~d2pi 11pi 11!,

Vi* 5 2r pr
~pi3gi* 1pi 113gi 11* !1Ai

21* •F i
ext* 2Ai 11

21* •F i 11
ext* 1v i

`* 2v i 11
`* ,

gi* 5 vi
jeff* 1

3

4r pr

2 YC (
j

ti j* 2
1

YC ~Yi* 2Yi 11* !,

F i
ext* 5 F i

b* 1(
j

f i j* .

The N21 inextensibility constraints@Eq. ~19! for 1 < i < N21# can be solved simul-
taneously for theN21 unknown constraint forcesXi* in a chain (X1* 5 0), provided all

interparticle forcesf i j* are known. For a chain of five rods, the system of equations takes
the form

FS1 T1 0 0

Q2 S2 T2 0

0 Q3 S3 T3

0 0 Q4 S4

G *

•F X2

X3

X4

X5

G *

5 F V1

V2

V3

V4

G *

. ~20!

The (3N23)3(3N23) matrix is banded, thus computational effort for solving this
system of equations can be made to scale linearly withN.

Including fiber interactions requires determining the minimum distance between
neighboring rod surfaces. The algorithm we employ is summarized in Appendix A.

Repulsive interparticle forces acting normal to fiber surfaces are employed to represent
the fibers’ excluded volume. Two different types of forces can be employed. The short
range position dependent force
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f i j
rep 5 2F exp@220~gi j 22!#ni j ~21!

can be used, wheregi j [ Gi j /R, andF 5 120pmLRġ is empirically found to eliminate
surface overlaps. Here, interparticle forces are applied forgi j < 2.33.

Alternatively, repulsive forces can be applied that satisfy the no-approach constraint

Dvi j •ni j 5 0, ~22!

whereDv i j is the relative velocity of the rod surfaces at the interaction point

Dvi j 5 ṙ i1Si j vi3pi2 ṙ j2Sji vj3pj10.5Gi j ~vi1vj !3ni j . ~23!

Here, forces are applied forgi j < 2.01, simulating mechanical contact between rods.
Substituting rod velocities and angular velocities from Eqs.~6! and~9! for C contacts in
a cluster ofM fibers yields a system of equations for the repulsive force magnitudes
f i j
rep

•ni j ( , 0).
Simulations of unconnected rigid rods (N 5 1, r p 5 20, nL3 5 20) in shear flow

with these two methods agree fairly well. Using position dependent repulsive forces
results in an average of 0.32 interactions per fiber compared to 0.25 contacts per fiber for
repulsive forces that satisfy Eq.~22!. Suspension rheological properties agree similarly
closely. In results reported here, short range, position dependent repulsive forces are
employed, as this method is computationally simpler.

Static friction, which prevents fibers from sliding over one another, is incorporated
through no-slip constraints on the motion of interacting particles

Dvi j •ti j
(1) 5 0, Dv i j •ti j

(2) 5 0. ~24!

Here ti j
(1) and ti j

(2) are unit vectors tangent to both fiber surfaces at the point of closest
approach

ti j
(1) 5

~d2ni j ni j !•ex

u~d2ni j ni j !•exu
, ti j

(2) 5
ni j 3ti j

(1)

uni j 3ti j
(1)u

. ~25!

When friction is applied along with position dependent repulsive interparticle forces, the
condition

f i j
fric

•ni j 5 0 ~26!

is imposed on each friction forcef i j
fric .

Equations~24! and~26! are nondimensionalized, and translational and angular veloci-
ties from Eqs.~6! and~9! are substituted, yielding a 3C33C system of equations for the
unknown friction force vectors in a cluster ofM fibers connected throughC interaction
points. These equations contain 3M (N21) unknown constraint forcesXi* , and must be
solved together with 3M (N21) inextensibility constraints@Eq. ~19!#. We employ an
approximate technique, described below.

Friction forces are applied at interaction pointk if ufk
fricu < m f

statufk
repu, wherem f

stat is

the static friction coefficient. Ifufk
fricu . m f

statufk
repu at one or more interaction points, the

frictional interaction with the highest value ofuffricu/ufrepu is removed~a repulsive force is
still applied!, and friction forces are recalculated. This procedure is repeated untilufk

fricu
< m f

statufk
repu at all interaction points. This scheme mimics a sliding friction coefficient of

zero, similar to the rigid fiber simulations of Thomassetet al. ~1997!.
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B. Computational details

In numerical simulations, an approximate technique is adapted wherein constraint
forcesXi* from the previous time step are used to solve for current friction forces. With
this simplification, the motions of adjacent rods in chains are temporarily uncoupled.
Friction forces at onlyc contacts in a cluster of rods~i.e., a group of rods connected
through frictional interaction points! must to be calculated simultaneously, rather thanC
contact forces in a cluster of fibers~typically c ' 0.02C). For a cluster of rods withc
interactions, the dimensionless forms of the constraints in Eqs.~24! and ~26!, combined
with rod translational and angular velocities@Eqs.~6! and~9!#, yield a 3c33c system of
equations for the friction forces

F U1 W12 ¯ W1c

W21 U2 A

A �

Wc1 ¯ Uc

G •F f1
fric*
A

fc
fric*

G 5 F Z1

A
Zc

G . ~27!

HereUk andWkl are second order tensors, eachZk is a vector. These terms are described
in Appendix B.

At each simulation time step, bending and twisting torques are first evaluated, fol-
lowed by a search for interaction points and calculation of position dependent forces. If
rods i and j interact, frictional interactions are not considered betweeni and eitherj
21 or j 11 ~rods adjacent toj in its chain!. Likewise, rod j does not interact withi
21 andi 11 through frictional forces. This avoids the numerically unstable situation of
having two friction forces applied at closely spaced positions near a hinge. Repulsive
forces are applied for allgi j < 2.33.

Once all interactions are found, rods are sorted into clusters. The friction forces in
each cluster are calculated using Eq.~27! with constraint forcesXi* from the previous
time step~friction forces are not calculated the first time step!. Then, current constraint
forces are found by Eq.~19!, and rod motion is calculated with Eqs.~6! and ~9!. Fiber
c.m. velocities are calculated andrc.m. updated by

rc.m.~g1Dg! 5 rc.m.~g!1@1.5ṙc.m.~g!20.5ṙc.m.~g2Dg!#Dg. ~28!

Rod Euler parametersqi are updated by

Fq̇0

q̇1

q̇2

q̇3

G
i

5
1

2F 0 2vb,x 2vb,y 2vb,z

vb,x 0 vb,z 2vb,y

vb,y 2vb,z 0 vb,x

vb,z vb,y 2vb,x 0

G
i

Fq0

q1

q2

q3

G
i

, ~29!

and

q~g1Dg! 5 q~g!1@1.5q̇~g!20.5q̇~g2Dg!#Dg. ~30!

The vectorvb,i 5 Ri•vi is the rodi angular velocity in the bodyi frame. Each chain
is regrown using Eq.~2! with the new orientations andrc.m..

Comparisons with an exact technique, in which the motion and forces in each cluster
of fibers are calculated simultaneously, show that the approximate technique gives con-
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sistent suspension properties forDg < 231024 @Schmid ~1999!#. In the simulations
reported here,Dg 5 231024.

Explicit, rather than position dependent, repulsive forces can be applied with friction
forces. In this case, the no-slip constraints@Eq. ~24!# are imposed, along with the no-
approach constraint@Eq. ~22!#. Comparisons show that the number of close range inter-
actions with position dependent forces is within 5% of the number of physical contacts
with explicit repulsive forces for flexible fiber simulations withr p 5 80, N 5 8, DS
[ EYI /(mġL4) 5 7.731024, ueq 5 1.4, feq 5 1.1, m f

stat 5 `, and nL3 5 26.2
@Schmid~1999!#. Thus, we employ position dependent repulsive forces exclusively, and
take the number of close interactions to be a good estimate of the number of true me-
chanical contacts.

Rigid fiber simulations,@Eq. ~27! is used withN 5 1; Xi* andYi* on the right hand

side set to zero#, with r p 5 20, m f
stat 5 `, andnL3 5 10 predict consistent steady state

suspension properties, and only 5% slower equilibration as the simulation box side length
is decreased fromB 5 4L to B 5 2L @Schmid~1999!#. Here we perform simulations in
cubic boxes with side lengths 1.6L < B < 4L.

Neglecting fluid and particle inertia suggests that Reynolds numbers are limited to
Re[ rġLD/m < 0.1. For typical pulp fibers with lengthL 5 2.5 mm and diameterD
5 32mm @Smook ~1982!# suspended in water withr 5 103 kg/m3 and m
5 1023 Pa s, simulations with DS5 0.008 (BR5 0.25) imply that fiber stiffnesses are

limited to EI < 4310216N m2. Although such fibers appear stiff in simulations~i.e.,
they do not bend appreciably; see below!, such values forEI are much smaller than
experimentally measured values for wood fibers@Kerekes and Tam Doo~1985!#. Simu-
lations with larger DS can be performed at increased computational cost.

III. SINGLE FIBER AND HOMOGENEOUS SUSPENSION SIMULATIONS

This model successfully replicates Jeffery orbits of isolated, neutrally buoyant, rigid
fibers. The equivalent aspect ratios of the rigid rodsr er

are chosen such that the orbit

periods of stiff model fibers (BR5 2) match experimentally measured orbit periods
(Tġ 5 2p(r e11/r e), wherer e is related to the fiber aspect ratior p by the correlation
r e 5 1.24r p /Aln rp @Cox ~1971!#!. Model fiber rotation periods are independent of initial
fiber orientation, in agreement with Jeffery’s analysis@Jeffery ~1922!#. Table I summa-
rizes the equivalent rod aspect ratios used in the simulations.

TABLE I. Dimensionless rotation periodsTġ for model fibers with BR
5 2. @1 ValuesTġ 5 2p(r e11/r e) with r e from empirical correlation of

Cox ~1971!#.

Fiber
aspect ratio

Experimental
periodTġ1

Model
fiber

Model fiber
periodTġ

r er
/r pr

in simulation

50 197.1 53(r pr
5 10) 198.8 0.75

9 9 103(r pr
5 5) 196.8 0.78

70 264.8 53(r pr
5 14) 263.1 0.70

80 297.6 83(r pr
5 10) 298.4 0.71

100 363.3 103(r pr
5 10) 361.5 0.69

150 522.2 53(r pr
5 30) 520.9 0.63

280 919.0 143(r pr
5 20) 921.8 0.61
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The model reproduces isolated fiber motions in shear flow over a wide range of fiber
stiffnesses. Figure 3 shows snapshots of model fibers with three different values of the
BR @Eq. ~1!# undergoing orbits in the flow/gradient plane~‘‘ C 5 ` ’’ orbits @Mason
~1954!#!. The minimum radius of curvature attained by a smooth line that is tangent to
each rod at its c.m.~the model fiber ‘‘centerline’’! during aC 5 ` orbit is plotted as a
function of BR for intrinsically straight model fibers of various aspect ratios in Fig. 4.
Intrinsically straight model fibers do not bend appreciably untilBR < 0.1; thus they are
stiffer than actual fibers, which bend forBR < 1. The symmetricalS shapes of intrinsi-
cally straight model fibers also differ qualitatively from theC shapes observed in experi-
ments@Forgacs and Mason~1959b!#. To obtainC shapes during flexible fiber rotations,
model fibers are given small permanent deformations~Fig. 5!. The bending behavior of
model fibers with intrinsic radii of curvatureRu 5 10L, shown by the filled symbols in
Fig. 4~a!, agrees with qualitative experimental observations of Forgacs and Mason
~1959b!, represented by the dashed line in that figure. A quantitative comparison with the
data of Salinas and Pittman~1981! in Fig. 4~b! demonstrates that small permanent defor-
mations in model fibers are needed to accurately capture correct fiber bending behavior—
intrinsically straight fibers act much stiffer than actual fibers.

FIG. 3. Snapshots of intrinsically straight, model fibers (r p 5 50, N 5 10) of three different stiffnesses,
undergoingC 5 ` orbits.

FIG. 4. Dimensionless minimum radius of curvatureRmin attained by fibers inC 5 ` orbits as a function of
BR. ~a! Comparison of intrinsically straight and permanently deformed (Ru 5 10L) model fibers ofr p
5 50, 100, 150, and 280 with qualitative observations of Forgacs and Mason~1959a!. ~b! Comparison of

intrinsically straight and permanently deformed model fibers ofr p 5 280 with measurements of Salinas and
Pittman~1981!.
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Simulations capture the rheological behavior of homogeneously dispersed, flexible
fiber suspensions. The slender-body approximation for the fiber contribution to the de-
viatoric stress is@Mackaplow and Shaqfeh~1996!#

tfib 5
n

2 K (
i 5 1

N E
2 l /2

l /2
@spf~s!1sf~s!p# i dsi1@F i

h~r i2rc.m.!1~r i2rc.m.!F i
h#L

1IT1OS 1

r p
D , ~31!

where the second term on the right hand side accounts for the moment exerted by the
hydrodynamic force on each rod about its chain c.m.@Batchelor~1970b!; Sundararajaku-
mar and Koch~1997!#. Bracketŝ & denote averages over all fibers in the suspension,si
is the position along the rodi axis, and IT is an isotropic term that is not of interest here.
The hydrodynamic force per unit lengthf(si ) at pointsi on rod i is taken as the leading
order slender body theory approximation@Batchelor~1970a!#,

f~si ! 5 3pm@Xsb
A pipi1Ysb

A ~d2pipi !#–~v`~si !2 ṙ i2si ṗi !, ~32!

where Ysb
A 5 2Xsb

A 5 4/(3ln 2rp) are scalar resistance functions,ṙ i is the rod i c.m.
translational velocity, andv`(si ) is the ambient fluid velocity at positionsi on rodi . The
hydrodynamic force on rodi is approximated asF i

h 5 3pm l @Xsb
A pipi1Ysb

A (d2pipi )#

•(v`(r i )2 ṙ i ) for calculating the stress. For simple shear flowvx
` 5 ġy, the dimension-

less fiber contribution to the stress is~neglecting IT!

tfibY S pmġnL3

6N3ln 2rp
D 5 K (

i 5 1

N

~pypex1pyexp! i2~pṗ* 1ṗ* p! i2~pxpypp! i L
1

3

r pr

2 K (
i 5 1

N Fd2
1

2
pipi G•~v`* ~r i* !2 ṙ i* !~r i* 2rc.m.* !L .

~33!

FIG. 5. Snapshots of permanently deformed~intrinsic radius of curvatureRu 5 10L), model fibers withr p
5 50, N 5 10, and three different stiffnesses undergoingC 5 ` orbits. For stiff fibers (BR5 2) slightly

deformed withRu 5 10L, the change in the orbit period relative to that of a straight fiber varies roughly
linearly with aspect ratio, from a 9% decrease forr p 5 50 to a 37% decrease forr p 5 150.
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Simulation results demonstrate that rheological properties are strongly impacted by
both fiber flexibility and equilibrium shape. In Fig. 6, the first normal stress difference,
N1 5 txx2tyy , is plotted as a function shear rate for various fiber suspensions with
r p 5 100 andfv 5 0.01 (nL3 5 127) in simple shear flow. The circles are experimen-
tal data reported by Gotoet al. ~1986! for suspensions of nylon fibers (EY ' 3
3109 Pa, L 5 1.4 mm,D 5 14mm) in glycerol (m ' 4 Pa s). Simulations of straight,
rigid fiber suspensions@Sundararajakumar and Koch~1997!# produce much smaller val-
ues of N1 . Our simulations of intrinsically straight, flexible fibers@N 5 7, DS
5 0.368/ġ(s21)# produce larger values ofN1 than in rigid fiber simulations at high

shear rates (ġ . 100/s), but they are still considerably smaller than the measured val-
ues. Simulations of suspensions of flexible fibers with slightly deformed equilibrium
shapes@N 5 7, ueq 5 0.105, feq 5 0.524 ~shape illustrated in Table II!# produce first
normal stress differences that nearly match the experimental values~error bars represent
the standard deviation over three runs with different initial configurations!.

FIG. 6. First normal stress difference as a function of shear rate forr p 5 100, fv 5 0.01: experimental
measurements of Gotoet al. ~1986! ~circles!, our simulations with flexible, intrinsically straight fibers~tri-
angles!, and flexible, permanently deformed (ueq 5 0.105,feq 5 0.524) fibers~squares!, and rigid fiber simu-
lations of Sundararajakumar and Koch~1997! ~solid line!.

TABLE II. Summary of fiber equilibrium shapes used in simulations of
Fig. 15, and in rheological simulations in Sec. III.
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Nawab and Mason~1958! observed a dramatic Weissenberg rod climbing effect in
their experiments with a concentric cylinder rotational viscometer and fibers ofr p
. 170 suspended in Castor oil atfv > 0.002. They attributed this behavior to the

increased rate of fiber flipping caused by fiber flexibility and permanent deformations.
For isolated model fibers atġ 5 300/s, the end-to-end vector of a permanently deformed
fiber (ueq 5 0.105, feq 5 0.524) flips through the flow/vorticity plane roughly four
times more frequently than for intrinsically straight fibers. In the sheared suspensions
studied here, the average permanently deformed fiber holds about 20 times more elastic
energy than an intrinsically straight fiber. Hence, in addition to the increased rate of fiber
flipping, permanent deformations stimulate elastic fiber deformation, contributing to the
elastic character of the fluid.

Second normal stress differences,N2 5 tyy2tzz, are plotted as a function of shear
rate in Fig. 7 for simulations of flexible, permanently deformed fibers (ueq 5 0.105,
feq 5 0.524) under the same conditions as above. Simulations predict values that are
negative at low shear rates, go through a minimum, and then become positive at higher
shear rates.

IV. FLOCCULATION

Flexible fibers in shear flow often flocculate, generating heterogeneous distributions of
fiber mass. Our simulations show that flocculation can be induced by interfiber friction, in
the absence of attractive forces between fibers. Below we describe how flocculation
behavior depends on the coefficient of friction, fiber stiffness, equilibrium shape, and
concentration.

A. Effect of friction coefficient

Simulations are performed with suspensions of helical, flexible fibers (ueq 5 0.9,
feq 5 1.0) with r p 5 80, DS[ EYI /(mġL4) 5 7.731023, at a volume fractionfv
5 0.0032 (nL3 5 26.2), and for various friction coefficientsm f

stat. Snapshots of fiber
configurations after shearing suspensions to a shear straing 5 2000 are illustrated in Fig.
8 for m f

stat 5 5, 10, and`. For m f
stat 5 5, the fibers remain homogeneously dispersed.

For m f
stat 5 10 and`, the suspensions exhibit the formation of distinct fiber flocs. This

behavior does not change as the simulation box size is increased fromB 5 2.5L to B
5 3.5L @Schmid~1999!#.

Flocs form in the absence of attractive forces between fibers—friction alone drives
flocculation. However, the static friction coefficient required to cause flocculation is

FIG. 7. Second normal stress difference as a function of shear rate for simulations of flexible, permanently
deformed fibers withr p 5 100, fv 5 0.01, ueq 5 0.105,feq 5 0.524, DS5 0.368/ġ.
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much larger than the experimentally measured value of approximately 0.5 for pulp fiber
suspensions@Andersson and Rasmuson~1997!; Amelinaet al. ~1998!#. Possible explana-
tions for this discrepancy are discussed in Sec. V

Flocculation induced by increasingm f
stat can be quantified with the fiber c.m. pair

distribution functiong(r ) @Allen and Tildesley~1987!#, wherer is the distance between
c.m.s. Time-averaged pair distribution functions, calculated forg > 1000, are plotted in
Fig. 9 for m f

stat 5 0, 5, 10, and̀ . For m f
stat 5 0 and 5,g(r ) , 1 at small separations.

For m f
stat 5 10 and`, g(r ) . 1 at small separations, reflecting the tendency of fibers to

reside in flocs. Again, this aggregation occurs without attractive forces between fibers.
Theories of fiber flocculation attribute the formation of coherent networks to fibers

elastic interlocking@Meyer and Wahren~1964!, Kerekeset al. ~1985!, Farnoodet al.
~1994!#. Fibers are held in networks by friction forces, with the requisite normal forces
arising from elastic energy stored in fibers. At least three contacts per fiber are needed to
hold a fiber in the network. The average number of contacts per fiber^nc& ~averaged over
all fibers in the suspension! is plotted as a function of strain in Fig. 10 for the same
simulations depicted in Fig. 9. A static friction coefficient of 5 leads to about twice as
many contacts per fiber as with purely repulsive interparticle forces (m f

stat 5 0), but in
both cases,̂nc& fluctuates about a small value throughout the entire simulation. In con-
trast, form f

stat 5 10 and`, ^nc& first increases with strain, and then levels off at largeg.
For these flocculated suspensions,^nc& . 3, consistent with the mechanical interlocking
mechanism of flocculation.

The magnitude of contact forces, and the extent of elastic fiber deformation, are
directly linked to friction. Asm f

stat increases, the average frictionaland repulsive inter-
particle forces,̂ f fric* & [ ^uffric* u& and ^ f rep* & [ ^ufrep* u&, both increase~Table III!.
The average elastic energy per fiber^Ee* & also increases withm f

stat. These observations

FIG. 9. Fiber c.m. pair distribution functions for sheared suspensions under conditions in Fig. 8:~a! m f
stat

5 0, ~b! m f
stat

5 5, ~c! m f
stat

5 10, and~d! m f
stat

5 `, averaged forg > 1000 @fiber c.m.s may coincide,
henceg(0) isn’t necessarily zero#.

FIG. 8. Suspensions withr p 5 80, N 5 8, DS5 7.731023, ueq 5 0.9, feq 5 1.0, nL3 5 26.2 for: ~a!

m f
stat

5 5, ~b! m f
stat

5 10, and~c! m f
stat

5 `, after strains ofg 5 2000.
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demonstrate that interfiber friction not only inhibits contacting fibers from sliding, but
also assists in pinning fibers together and deforming them.

Friction also helps store elastic energy in fiber flocs upon the cessation of shear flow.
Flocs were formed by shearing a suspension withr p 5 70, N 5 5, DS5 0.050, ueq

5 0.8, feq 5 0.7, fv 5 0.00125 (nL3 5 7.8), and m f
stat 5 20, to a strain ofg

5 2000, at which point the average elastic energy per fiber wasEe 5 0.41EYI /L. The
flow was then stopped and the structure allowed to relax, using four different friction
coefficients. The fraction of initial elastic energy stored in the fibers is plotted as a
function of time form f

stat 5 0, 10, 20, and 100 in Fig. 11. Here, time is scaled byts
5 pmL4/(62.5EYI ), and the dimensionless bending stiffness is DS2[ EYIt s /(mL4)
5 0.050. Form f

statÞ 0, elastic energy is permanently stored in the fibers. This energy
storage behavior is consistent with experimental observations showing fiber flocs to re-
tain their structural integrity when shearing is stopped. In experiments of Soszynski and
Kerekes~1988!, dense nylon fiber flocs are lifted out of the suspending fluid by holding
only a few of their constituent fibers.

Friction also helps hold flocs together in unbounded shear flow. Flocs were formed in
simulations with shear flow and periodic boundary conditions, (r p 5 70, N 5 5, DS
5 0.050, ueq 5 0.8, feq 5 0.7, nL3 5 7.8), and then removed from the suspension

and placed alone in an unbounded shear flow. As fibers break free from the floc, they are
carried away by the flow, the number of fibers remaining in a floc~initially containing 80
fibers! is tracked as a function of strain in Fig. 12. Withm f

stat 5 `, the floc loses half of

its fibers in a strain ofg ' 350, roughly twice as long as withm f
stat 5 20, and ten times

FIG. 10. Average number of contact points per fiber vs strain for sheared supensions withr p 5 80, N 5 8,

DS 5 7.731023, nL3 5 26.2, and various values ofm f
stat.

TABLE III. Interparticle forces and elastic energy per fiber as a function of

m f
stat for sheared suspensions withr p 5 80, N 5 8, DS5 7.731023,

ueq 5 0.9, feq 5 1.0, andnL3 5 26.2, averaged forg > 1000. Forces
are scaled with 3pmġLR, and elastic energy with 0.0020pmġL3.

m f
stat ^ f fric* & ^ f rep* & ^ f fric* &/^ f rep* & ^Ee* &

0 0 0.45 0 0.23
5 1.8 1.2 1.5 0.49

10 3.5 2.1 1.7 1.3
` 5.5 2.3 2.5 2.6
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as long as with purely repulsive interfiber forces (m f
stat 5 0). Thus friction induces fibers

to mechanically interlock, and also resists their dispersion.

B. Effect of fiber stiffness

Fiber stiffness plays an important role in the formation and persistence of simulated
flocs. Flocculation in suspensions withr p 5 80, N 5 8, ueq 5 0.9, feq 5 1.0, nL3

5 26.2, andm f
stat 5 ` becomes less prevalent as the dimensionless fiber stiffness de-

creases, as illustrated by simulation pictures in Fig. 13.
The decreased aggregation is reflected by the fiber c.m. pair distribution function. For

DS 5 3.931024, the shape ofg(r ) is similar to that for DS5 7.731023 @curve~d! of
Fig. 9#, but g(r 5 0.01L) drops from 15 to 7. For DS5 7.731025, g(r 5 0.01L)
' 1.1. Interparticle force magnitudes and elastic energy storage in fibers diminish as

fiber stiffness decreases. Table IV presents values of the average frictional and repulsive
contact force magnitudes, as well as the average elastic energy per fiber, calculated for
g > 1000 for sheared suspensions under the conditions in Fig. 13 and various fiber
stiffnesses. Simulations are consistent with the experimental observations that flocs are
more prevalent at low shear rates and low suspending fluid viscosities~large dimension-
less stiffnesses! @Takeuchiet al. ~1983!, Zhao and Kerekes~1993!#. Here, the reduction
in flocculation is not attributable to fluid and particle inertia effects. Rather, decreased
elastic energy storage in fibers relative to hydrodynamic forces produces weaker contact
forces, diminishing aggregation.

Kerekes~1995! has suggested that coherent flocs appear in fiber suspensions as the
Reynolds number is increased above approximately one. Although our model shows that

FIG. 11. Fraction of initial elastic energy stored vst/ts after cessation of shear flow for suspensions withr p

5 70, N 5 5, DS2[ EYIt s /(mL4) 5 0.050,ueq 5 0.8, feq 5 0.7, andnL3 5 7.8: m f
stat

5 0, 10, 20, and
100.

FIG. 12. Fibers remaining in a floc in unbounded shear flow as a function of strain,r p 5 70, N 5 5, DS

5 0.050,ueq 5 0.8, feq 5 0.7: m f
stat

5 0,20, and̀ .
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flocculation can appear as the viscosity is decreased~i.e., DS is increased!, we have
neglected particle and fluid inertia, and thus all simulations are performed in the limit of
vanishing Reynolds number. Therefore, we cannot comment on Kerekes’ suggestion.

Flocs break up more rapidly in unbounded shear flow as fiber stiffness is decreased. A
flocculated structure was formed by simulating a suspension (r p 5 70, N 5 5, DS
5 0.050, ueq 5 0.8, feq 5 0.7, m f

stat 5 `, andnL3 5 7.8) in shear flow with peri-
odic boundaries to a strain ofg 5 2000. A floc containing 80 fibers was then removed
and sheared in an unbounded flow with various fiber stiffnesses. The number of fibers
remaining in the floc is plotted as a function of strain in Fig. 14, showing that flocs break
up more quickly as DS decreases. This result is consistent with experiments of Soszynski
and Kerekes~1988!, who have found that nylon fiber flocs disperse readily when bending
stresses are diminished by heating the flocs above the nylon glass transition temperature.
Here, even flocs made of stiff fibers eventually break apart. This supports the dynamic
equilibrium hypothesis of Mason and co-workers—fibers constantly enter and leave flocs,
and do not irreversibly bind to them@Mason~1950!#.

C. Effect of fiber shape

Fiber equilibrium shape strongly impacts the bending behavior of single fibers, as well
as the first normal stress differences in flexible fiber suspensions~Sec. III!. Its dramatic
effect on flocculation behavior is now explored. The flocculation behavior of sheared
suspensions withr p 5 80, N 5 8, DS5 7.731023, and m f

stat 5 ` is mapped as a
function of fiber equilibrium shape and concentration (nL3) in Fig. 15. Suspensions that
remain homogeneously dispersed@g(r 5 0.01L) < 3# to a strain ofg 5 2000 are in-
dicated by open symbols; suspensions that flocculate@g(r 5 0.01L) . 3# within g
5 2000 are indicated by filled symbols. Points are labeled with letters for discussion

below.
Suspensions with nearly straight fiber equilibrium shapes at low concentrations remain

homogeneously dispersed. At a fixed concentration, increasing permanent fiber deforma-

FIG. 13. Sheared suspensions withr p 5 80, N 5 8, ueq 5 0.9, feq 5 1.0, nL3 5 26.2: ~a! DS 5 3.9
31024, and ~b! DS 5 7.731025, at g 5 1000 @the suspension with DS5 7.731023 is illustrated in Fig.
8~c!#.

TABLE IV. Average interparticle forces and elastic energy per fiber as a
function of DS for sheared suspensions withr p 5 80, N 5 8, ueq 5 0.9,

feq 5 1.0, m f
stat

5 `, and nL3 5 26.2, averaged forg > 1000. Forces
are scaled with 3pmġLR, and elastic energy with 0.0020pmġL3.

DS ^ f fric* & ^ f rep* & ^ f fric* &/^ f rep* & ^Ee* &

7.731023 5.5 2.3 2.5 2.6
7.731024 1.8 0.68 2.7 0.90
3.831024 1.0 0.32 3.1 0.48
7.731025 0.30 0.069 4.4 0.14
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tion ~quantified asueq1feq) induces a dramatic transition in suspension structure. For
example, U-shaped fibers withueq 5 0.2 at nL3 5 26.2 remain homogeneously dis-
persed over a strain of 2000, while fibers withueq 5 0.3 flocculate, as illustrated in Fig.
16.

Fiber equilibrium shape strongly impacts suspension microstructural and mechanical
properties. In Fig. 17~a!, ^nc& is plotted as a function of strain for suspensions C, J, K,
and L, illustrating significantly more fiber interactions and faster aggregation for suspen-
sion C (ueq 5 0.9, feq 5 1.0) than for suspension L (ueq 5 0.2, feq 5 0). Highly
irregular fiber equilibrium shapes also stimulate elastic fiber deformation in flowing sus-
pensions, and lead to stronger interparticle forces, as exhibited by the values of^ f fric* &,
^ f rep* &, and^Ee* & ~averaged forg > 1000) presented in Table V.

Although irregular fiber equilibrium shapes facilitate aggregation in the presence of
friction forces, our simulationsdo notexhibit flocculation with purely repulsive interpar-
ticle forces. Suspensions of stiff (DS5 7.731023) permanently deformed (ueq

5 0.8, feq 5 0.2) fibers ofr p 5 80 with m f
stat 5 0 remain homogeneously dispersed

even atnL3 5 65.5.

D. Effect of fiber concentration

Simulations show that flocculation becomes more prevalent with increasingnL3, in
agreement with theory and experiment@Mason~1954!, Kerekes and Schell~1992!#. For
sheared suspensions withr p 5 80, N 5 8, DS5 7.731023, ueq 5 0.5, feq 5 0.1,
andm f

stat 5 `, a distinct transition from homogeneously dispersed to flocculated occurs

FIG. 14. Fibers remaining in a floc in unbounded shear flow as a function of strain for various fiber stiffnesses,

r p 5 70, ueq 5 0.8, feq 5 0.7, m f
stat

5 `.

FIG. 15. Flocculation behavior as a function of fiber equilibrium shape and concentration (nL3) for suspen-

sions withr p 5 80, N 5 8, DS5 7.731023, andm f
stat

5 `.
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betweennL3 5 3 andnL3 5 12, as illustrated in Fig. 18. Suspensions flocculate below
nL3 5 3 with ueq 5 0.9, feq 5 1.0. In contrast, nearly intrinsically straight fibers
(ueq 5 0.1, feq 5 0) remain uniformly dispersed even fornL3 5 105, as shown in
Fig. 19.

Although flocs do not form in simulations of nearly intrinsically straight fibers@for
ueq 5 0.1, feq 5 0, nL3 5 105, g(r 5 0.01L) 5 1.9 atg 5 2000#, evidence suggests
that a transition from a homogeneous suspension to a uniform fiber network occurs
betweennL3 5 52.5 andnL3 5 105. Upon cessation of shear flow atnL3 5 105,
fibers initially holding~on average! Ee 5 1.1EYI /L relax to a static configuration byt
5 2.7mL4/(EYI ), retaining roughly 40% of their initial elastic energy. In contrast, at

nL3 5 52.5 the elastic energy relaxes to zero byt 5 0.2mL4/(EYI ). Kerekes and co-
workers@Kerekes and Schell~1992!; Kerekes~1995!# also observed a transition to floc
formation at sufficiently large concentrations. They found that coherent fiber flocs formed
for nL3 * 115 (Nc * 60), albeit for different flow fields.

In sheared suspensions withr p 5 80, N 5 8, DS5 7.731023, ueq 5 0.1, feq

5 0, and m f
stat 5 `, the average number of contact points per fiber increases from

^nc& 5 1.7 atnL3 5 52.5 to^nc& 5 4.8 atnL3 5 105. Upon relaxation of shear flow,
^nc& decays to zero for the suspension atnL3 5 52.5, where it increases tônc&
5 5.4 for the static fiber network atnL3 5 105. Meyer and Wahren~1964! predict^nc&

for static networks of straight, randomly oriented fibers. Forr p @ 1, Kerekes and Schell
~1992! simplify the result to

nL3 '
8^nc&

3

^nc&21
. ~34!

In Fig. 20, ^nc& is plotted as a function ofnL3 for various sheared and static simulated
suspensions. These results show that the simulated structures differ markedly from that

FIG. 16. Suspensions of U-shaped fibers withr p 5 80, N 5 8, DS5 7.731023, and m f
stat

5 `: ueq

5 0.3 ~J!, ueq 5 0.25 ~K!, andueq 5 0.2 ~L! at g 5 2000.

FIG. 17. Average number of contacts per fiber versus strain for sheared suspensions withr p 5 80, N 5 8,

DS 5 7.731023, m f
stat

5 `, and nL3 5 26.2: ueq 5 0.9, feq 5 1 ~C!, ueq 5 0.3, feq 5 0 ~J!, ueq

5 0.25, feq 5 0 ~K!, ueq 5 0.2, feq 5 0 ~L!.
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predicted for randomly oriented fibers@Eq. ~34!; solid curve in Fig. 20#, and depends on
the interfiber friction coefficient, the equilibrium fiber shape, as well as the imposed flow
field.

The average contact force in static, elastically interlocked fiber suspensions withr p

5 80, N 5 8, DS25 7.731023, and m f
stat 5 ` is impacted by fiber equilibrium

shape. For a network with nearly straight fibers (ueq 5 0.1, feq 5 0) atnL3 5 105, we
find ^ f fric& 5 1400EYIR/(L3) and ^ f rep& 5 550EYIR/(L3). For softwood fibers ofL
5 2.5 mm,R 5 16mm, andEYI 5 8310212N m2, the corresponding average repul-

sive interparticle force iŝf rep& 5 4.5mN. In contrast, for a static, flocculated suspension
with permanently deformed fibers (ueq 5 0.9, feq 5 1.0) at a lower concentration
(nL3 5 65.6), the average contact force magnitudes are larger:^ f fric&
5 3520EYIR/L3 and ^ f rep& 5 1770EYIR/L3 5 14.4mN for softwood fibers. Wahren

~1980! estimates

^frep& '
EYI ^nc&

L2 ~35!

for the average repulsive contact force in an elastically interlocked fiber network. For
nL3 5 105, Eq.~34! yields ^nc& ' 3, and the average repulsive contact force is pre-
dicted to bê f rep& 5 3.8mN, in close agreement with our simulations of nearly intrin-
sically straight fibers. FornL3 5 65.6, Wahren’s theory estimates^ f rep& 5 2.8mN,
which is five times lower than our simulations of highly permanently deformed fibers.

V. CONCLUSION

Flocs form in particle level simulations in the absence of attractive forces between
fibers—interfiber friction and repulsive interactions alone induce flocculation. The behav-
ior and properties of these flocs suggest that they form through an elastic interlocking
mechanism; aggregation is more prevalent as elastic energy held in the fibers increases,
and flocs contain high percentages of fibers with three or more contact points, remain

FIG. 18. Sheared suspensions withr p 5 80, N 5 8, DS5 7.731023, ueq 5 0.5, feq 5 0.1, andm f
stat

5 ` for three concentrations:nL3 5 3 ~Q!, nL3 5 6 ~F!, andnL3 5 12 ~G! at g 5 1000.

TABLE V. Average interparticle forces and elastic energy per fiber as a
function of equilibrium shape for sheared suspensions withr p 5 80, N

5 8, DS5 7.731023, m f
stat

5 `, and nL3 5 26.2, averaged forg
> 1000. Forces are scaled with 3pmġLR, and elastic energy with

0.0020pmġL3.

ueq,feq(rad) ^ f fric* & ^ f rep* & ^ f fric* &/^ f rep* & ^Ee* &

0.2,0 2.0 0.45 4.4 0.35
0.25,0 4.4 1.0 4.4 0.85
0.3,0 5.7 1.6 3.6 1.5
0.9,1 5.5 2.3 2.5 2.6
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coherent upon removal of shear flow, and retain structural integrity when sheared in
unbounded flow. High interfiber static friction coefficients, stiff fibers, and large perma-
nent fiber deformations all stimulate increased elastic energy storage in fibers, as well as
stronger frictional and repulsive interfiber forces. The friction coefficient, as expected,
impacts frictional forces more, while fiber stiffness and equilibrium shape exert more
influence on repulsive forces. These simulations have demonstrated that fiber features and
interaction forces strongly affect flocculation behavior and floc properties. This technique
provides a means of exploring effects that are difficult to incorporate into theories that
assume particular suspension structures.

The simulation technique has shortcomings and limitations that should be mentioned.
Static friction coefficients that lead to flocculation in simulations are much higher than
the experimentally measured value of 0.5 for pulp fiber surfaces@Andersson and Rasmu-
son ~1997!, Amelina et al. ~1998!#. Possible explanations for this discrepancy include
neglecting inter- and intrafiber hydrodynamic interactions, the lack of sliding friction,
neglecting attractive interfiber forces, and assuming isotropic fiber bending. The existing
techniques for studying long range hydrodynamic interactions between fibers mentioned
in the introduction could be implemented, at an increased computational cost. For a
typical simulation of 200 fibers, each withr p 5 80, N 5 8, DS5 7.731023 at nL3

5 50, roughly 60 hrs. of computation time is required to simulate a strain of 1000 on a
533 MHz workstation with 256 megabytes of RAM. To probe larger systems, extensive
computer speed and memory are required. Future work should also further explore the
dependence of flocculation behavior on system parameters, as well as the sensitivity of
results to initial conditions.

FIG. 19. Sheared suspensions withr p 5 80, N 5 8, DS5 7.731023, ueq 5 0.1, feq 5 0, andm f
stat

5 `

for two concentrations:nL3 5 52.5 ~O!, andnL3 5 105 ~P!, at g 5 1000.

FIG. 20. Comparison of the average number of contact points per fiber^nc& vs nL3: sheared suspensions with

(r p ,N,DS,ueq,feq,m f
stat) 5 (80,8,0.0077,0.9,1.0,̀) ~open circle!, ~80, 8, 0.0077, 0.1, 0,̀ ! ~open squares!,

~100, 7, 0.0033, 0.105, 0.524, 0! ~diamond!, and~100, 7, 0.0033, 0, 0, 0! ~triangle!; static networks with~80, 8,
0.0077, 0.9, 1.0,̀ ! ~filled circle!, ~80, 6, 0.0077, 0.1, 0,̀ ! ~filled square!; Eq. ~34! ~solid line!.
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APPENDIX A

The smallest distance between rods may be between two rod side surfaces, two rod
ends, or one side and one end. Consider first the distance between a point on the center-
line of rod i and a point on the centerline of rodj , G 5 ur i1xpi2r j2ypj u, wherex and
y are the distances from the c.m.s of rodsi and j to the respective points along their
centerlines. The minimum distance between the centerlines isGi j 5 ur i1Si j pi2r j
2Sji pj u, where

Sij [ xmin 5
@~r i2r j !•pj #~pi•pj !2~r i2r j !•pi

12~pi•pj !
2 , ~36!

and

Sji [ ymin 5
@~r j2r i !•pi #~pi•pj !2~r j2r i !•pj

12~pi•pj !
2 ~37!

are distances along the centerlines corresponding to the minimum distance between the
centerlines. If rodsi and j are exactly parallel, which is improbable in suspension simu-
lations, they do not interact.

If Gi j is greater than a cutoff distanceGc ~values ofGc for different types of inter-
actions are given in the text!, rods i and j do not interact. IfGi j , Gc , and 2 l /2
< Si j , Sji < l /2, then a side/side interaction is considered.

If Gi j , Gc , but uSi j u . l /2 and/oruSji u . l /2, then one of several end/end or
end/side interactions occurs. The distances that must be evaluated depend on whether
either rod i or j is the Nth rod in its chain~which has two hemispherical caps!. The
situations that must be considered are illustrated schematically in Fig. 21.

If i , j Þ N, then three distances are compared:~1! the minimum distance from the
centerline of rodi at x 5 2 l /2 ~the center of curvature of the hemispherical cap! to the
centerline of rodj ; ~2! the minimum distance from the centerline of rodj at y 5 2 l /2 to
the centerline of rodi ; and~3! the distance between the pointsx 5 2 l /2 on the center-
line of rod i andy 5 2 l /2 on the centerline of rodj . Distance~1! occurs at

ymin [ Sji 5 Sr i2
l

2
pi2r j D •pj ~38!

FIG. 21. Four cases for end/side and end/end interactions: separation distances considered in finding the point
of closest approach.
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on the rod j centerline. Likewise, if one or both ofi and j are Nth rods in a chain,
distances are compared as shown in Fig. 21. The shortest distance for which2 l /2
< Si j ,Sji < l /2 is the closest approach between rodsGi j ; if it is less thanGc , then a

rod/rod interaction is counted.

APPENDIX B

Referring to Eq.~27!, we denotesi j [ Si j /R, and suppress rod subscriptsi and j on
f k

fric* , tk
(1) , tk

(2) , nk , and gk for clarity. Each interactionk between rodsi and j ( i
, j ) contributes a diagonal term

Uk 5 F← @Uk
†
•tk

(1)#† →
← @Uk

†
•tk

(2)#† →
← nk

† →
G , ~39!

where the notation←v† → signifies a vectorv placed in a row withvx in column one,
vy in column two, andvz in column three. The second order tensorUk is

Uk 5 u1 d1u2 pipi1u3 pjpj1u4 ~pink1nkpi !1u5 ~pjnk1nkpj !

1u6 ~d2nknk!2u7 ~Nk•~pipi1pjpj !•Nk!, ~40!

where

u1 5
2

YA1
3

4rpr

2 YC @sij
21sji

21gk~sijnk•pi2sji nk•pj !#,

u2 5 S 1

XA2
1

YAD2 3sij
2

4rpr

2 YC ,

u3 5 S 1

XA2
1

YAD2 3sji
2

4rpr

2 YC , u4 5 2
3sijgk

8rpr

2 YC ,

u5 5
3sjigk

8rpr

2 YC , u6 5
3gk

2

16r pr

2 YC ,

u7 5
3gk

2

16r pr

2 S 1

XC 2
1

YCD ,

Nk 5 F 0 2nkz
nky

nkz 0 2nkx

2nky
nkx 0

G . ~41!

The right hand side vectorZk for each interactionk is
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Zk 5 FZk•tk
(1)

Zk•tk
(2)

0
G , ~42!

where

Zk 5 aj2ai1si j pi3bi2sji pj3bj10.5gknk3~bi1bj !, ~43!

and

ai 5 v i
`* 1Ai

21* •S (
m

f im
net* 2Xi* 1Xi 11* 1F i

b* D ,

~44!

bi 5 vi
jeff* 1

3

4r pr

2 YC pi3S r pr
~Xi* 1Xi 11* !1(

m
simf im

net* D 1Ci
21* •~2Yi* 1Yi 11* !.

Here f im
net* is the net position-dependent force between rodsi and m, and all Xi* are

previous time step values. For simulations in simple shear flow and periodic boundary
conditions, the termv j

`* 2v i
`* 5 (r j y

* 2r i y
* )ex in Zk must be adjusted if rodi interacts

with a minimum image of rodj from either above or below the main simulation box. In
this case, we replacer j y

* 2r i y
* with r j y

* 2r i y
* 2NINT@(r j y

* 2r i y
* )/B* #B* , where B*

5 B/R and NINT(a/b) is the nearest integer toa/b.
The off-diagonal tensors

Wkl 5 F← @Wkl
†
•tk

(1)#† →
← @Wkl

†
•tk

(2)#† →
0 0 0

G ~45!

are nonzero when interaction pointsk and l occur on the same rod,@the tensorWlk is
obtained by exchanging subscriptsk andl in Eq. ~45!#. TensorsWkl assume one of four
different forms, depending on the indices of the interacting rods. For rodsi and j ( i
, j ) interacting at pointk, and rodsi and h ( i , h) interacting at pointl , Wkl

5Wkl
(1) where

Wkl
(1) 5 w1 d1w2 pipi1w3 pink1w4 nlpi1w5 nlnk2w6 ~Nk•pipi•Nl !, ~46!

and

w1 5
1

YA1
3

4rpr

2 YC~sijsih10.5si j glnl•pi10.5sihgknk•pi10.25gkglnk•nl !,

w2 5 S 1

XA2
1

YAD2 3sijsih

4rpr

2 YC , w3 5 2
3sihgk

8rpr

2 YC ,

~47!

w4 5 2
3sijgl

8rpr

2 YC , w5 5 2
3gkgl

16r pr

2 YC ,
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w6 5 2
3gkgl

16r pr

2 S 1

XC 2
1

YCD .

The tensorWlk
(1) is obtained by exchanging indicesk and l , andexchangingsih andsi j

everywhere in Eqs.~46! and ~47!.
If the same rods interact, buth , i , Wkl 5Wkl

(2) is obtained by first taking
(21)3 Eq. ~46!, and then replacingnl with 2nl everywhere in Eqs.~46! and~47!. The
tensorWlk

(2) is obtained by exchanging indicesk andl , and replacingsi j with 2sih , and

sih with 2si j , everywhere in the expression forWkl
(2) .

For rodsi and j ( i , j ) interacting at pointk, and rodsj andh ( j , h) interacting
at point l ,Wkl 5Wkl

(3) where

Wkl
(3) 5 w1 d1w2 pjpj1w3 pjnk1w4 nlpj1w5 nlnk2w6 ~Nk•pjpj•Nl !, ~48!

and

w1 5 2
1

YA1
3

4rpr

2 YC~2sjisjh20.5sji glnl•pj10.5sjhgknk•pj10.25gkglnk•nl !,

w2 5 2S 1

XA2
1

YAD1 3sjisjh

4rpr

2 YC , w3 5 2
3sjhgk

8rpr

2 YC ,

~49!

w4 5
3sjigl

8rpr

2 YC , w5 5 2
3gkgl

16r pr

2 YC ,

w6 5 2
3gkgl

16r pr

2 S 1

XC 2
1

YCD .

The tensorWlk
(3) is obtained by exchanging indicesk and l , and replacingsji with

2sh j , andsh j with 2sji everywhere in Eqs.~48! and ~49!.
If the same rods interact, buth , j , the tensorWkl 5Wkl

(4) is obtained by first
taking (21)3 Eq. ~48!, and then replacingnl with 2nl everywhere in Eqs.~48! and
~49!. The tensorWlk

(4) is then found by exchanging indicesk and l , and exchangingsji

andsih everywhere in the expression forWkl
(4).
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