
Kumari et al. Microbial Cell Factories  (2023) 22:226 
https://doi.org/10.1186/s12934-023-02234-8

REVIEW Open Access

© The Author(s) 2023, corrected publication 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver 
(http://​creat​iveco​mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a 
credit line to the data.

Microbial Cell Factories

Plants and endophytes interaction: 
a “secret wedlock” for sustainable biosynthesis 
of pharmaceutically important secondary 
metabolites
Poonam Kumari1, Nikky Deepa1,6, Prabodh Kumar Trivedi2,6, Brajesh K. Singh3,4, Vaibhav Srivastava5* and 
Akanksha Singh1,6* 

Abstract 

Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive 
secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance 
between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large 
scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are 
being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water 
pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural 
workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes 
where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay 
between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, 
with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. 
This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their 
multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their 
plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential 
role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation 
through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.
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Introduction
Almost all the living organisms on Earth interact with 
one another in different ways, and they all coexist as 
a community. Similarly, plants are interconnected and 
impacted by the presence of microbes both above and 
below ground, which ultimately play a critical role in 
the fitness of the host plants [1]. The term "plant micro-
biome" broadly refers to all distinctive microbial com-
munities that inhabit the endosphere (plant internal 
tissues), phyllosphere (air-plant interface), and rhizos-
phere (plant roots-soil interface) [2, 3]. The endophytes 
form tight associations with their host and thus play 
a pivotal role in plant growth, fitness, and develop-
ment in addition to protecting against biotic and abi-
otic stresses via secretion of indole-3-acetic acid (IAA), 
siderophores, phosphate solubilizers, etc. [4–6]. In 
addition, some bacterial endophytes provide nitrogen 
to the host via nitrogen fixation [7].

In most cases, the interaction is mutually benefi-
cial as the plant provides carbon in return for other 
nutrients, metabolites and protection against pests, 
pathogens and abiotic stresses, thereby altering the 
plant metabolome in various ways [8]. The bioactive 
secondary metabolites are derived from intermediate 
compounds of primary metabolism, and they are not 
directly required for the organism’s basic growth and 
development [9]. Although the precise roles of second-
ary metabolites in plant metabolism and physiology are 
not fully known, it is thought that they participate in 
a variety of interactions between plants and their envi-
ronment, such as protection from biotic and abiotic 
stressors, pollinator attractants, signaling molecules 
etc. and thus offer a selective advantage to the sessile 
plants [10–13]. Additionally, once viewed as waste 
products, these secondary metabolites hold immense 
pharmaceutical importance for human health [14].

The enormous diversity of secondary metabolites in 
medicinal plants is gaining more recognition as a valua-
ble reservoir of novel chemical compounds that exhibit 
diverse pharmacological effects. These metabolites have 
been isolated from higher plants in amounts close to 
100,000, where medicinal plants hold a major share 
[15]. In the past few decades, with the advancement 
in science, the concept that plants individually pro-
duce metabolites has changed, and the role of microbes 
in modulating the metabolites has been increasingly 
documented [16–19]. In this regard, the ability of the 
endophytes to produce active compounds appears to be 
integral to their functions, as recent studies have dem-
onstrated that endophytes influence the production of 
host secondary metabolites through a number of bio-
chemical processes [15].

Most of the studies involving endophyte plant inter-
actions have majorly focused on yield-enhancing attrib-
utes with less focus on how these microbes alter the 
plant chemistry, particularly the biosynthesis of sec-
ondary metabolites [20–22]. Nevertheless, few studies 
have been conducted in various non-medicinal plants, 
including tomato [23], rice [24, 25], soybean [26] and 
grapevine [27], where the impact of endophytes on sec-
ondary metabolite biosynthetic pathways have been elu-
cidated with regard to biotic and abiotic stress tolerance 
mechanism. However, given that medicinal plants are 
highly recognised for their pharmacological attributes, a 
demand fueled by the pharmaceutical, herbal medicine, 
and nutraceutical industries, it becomes imperative to 
delve deeper to understand their role as it might lead to 
drug discovery, promote sustainable agriculture and can 
have wider applications in the field of medicine, environ-
mental science, and biotechnology [28].

Thus, the focus of this article is primarily to compre-
hend the mechanism and role of endophytes in fine-tun-
ing the reservoir of incredibly diverse pharmaceutically 
functional compounds, especially in medicinal plants. 
We believe that a more comprehensive understanding in 
this regard can be effectively utilized and harnessed for 
developing superior and more potent drugs derived from 
medicinal plants. Additionally, through this review, we 
have also highlighted the potential role of “core endo-
phytes” in secondary metabolites enhancement that 
could be game changers in time to come. Finally, we pro-
pose that integrating multiomics approaches may help 
design a “customized bioformulation” of metabolites in 
the near future.

Medicinal plants: gold mine of bioactive secondary 
metabolites
Plant metabolites are low molecular weight organic 
compounds classified into three main categories. This 
includes the primary metabolites that are usually highly 
conserved and directly required for the growth of plants. 
The second category consists of secondary metabolites 
comprising major groups of phenolics, terpenes, and 
nitrogen-containing compounds, and the third is the 
plant hormones that regulate organismal processes and 
metabolism of plants [29]. The documented plant metab-
olome comprises approximately over 2,000,000 charac-
terized secondary metabolites in the plant kingdom with 
multidimensional applications, which majorly belong to 
categories like tannins, alkaloids, phenols, glycosides, 
volatile oils, saponins, resins, steroids, terpenoids, and 
bitter principles [30–32]. Among the diverse group of 
plants, medicinal plants are the “goldmines” of an exten-
sive assortment of phytopharmaceutically important 
bioactive molecules. This is why these plants have been 
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utilized for restoring and maintaining health, preserving 
and flavoring food, enhancing daily life with color and 
aroma, and opening doors to mystical experiences and 
spiritual dreams since the dawn of humanity [33]. Medic-
inal plants biosynthesize and accumulate a diversified 
class of secondary metabolites in sufficient extractable 
form to be economically utilized as primary resources for 
various commercial, scientific or technological applica-
tions [34]. Usually, the biosynthesis of primary and sec-
ondary metabolites occurs along the same pathway. The 
excess carbon produced during primary metabolism is 
essentially absorbed and stored in the form of second-
ary metabolites, which in time of need, are disintegrated 
and used again in primary metabolism, thereby maintain-
ing the perfect balance between primary and secondary 
metabolic pathways in the plants [10]. Although the sec-
ondary metabolites do not take part in the plants’ pri-
mary growth and development, they serve various roles 
in plants, from serving as defense mechanisms against 
pathogens, attracting pollinators and as chemical signals 
to other plants [33].

Bioactive molecules produced by the plant possess 
broad range of pharmacological and therapeutic poten-
tialities such as antimicrobial, anticancer, antioxidant, 
antiviral, antitumor, anti-inflammatory, hepatoprotec-
tive, antidepressant, antidiabetic, antiatherosclerotic, 
antithrombotic, vasoprotective, memory enhancer, car-
diovascular improver, anti-AIDS, anti-Parkinson’s dis-
ease, anti-Alzheimer’s, anti-cognitive impairment and 
immunoprotective effects [33, 35]. In fact, 40% of human 
medicine originates from natural sources, of which 25% 
and 13% are majorly contributed by plants and microbes, 
respectively [36]. For example, many plant-based novel 
drugs such as paclitaxel, toptecan, teniposide, ectopo-
side, plaunotol, vinblastin, z-guggulsterone, gomishin, 
nabilone, lectinan, artemisinin are being used globally 
for the wellbeing of the humans. The remarkable contri-
bution of medicinal plants can be well validated by cit-
ing examples like the serpentine compound obtained 
from the roots of Rauwolfia serpentina, which is known 
for its anti-hypertension effect on the body. Similarly, 
vinblastine from Catharanthus roseus is applied to treat 
neck cancer, Hodgkins and choriocarcinoma [37]. The 
medicinal plants are also home to a variety of bioactive 
components which have an antineoplastic effect, such 
as vermodalin (Vernonia amygdalina), chebulinic acid, 
ellagic acid, and tannic acid (Terminalia chebula) and 
allicin (Allium sativum) [38].

The significant pharmaceutical contribution of sev-
eral medicinal plants belonging to families like Liliaceae, 
Asteraceae, Rutaceae, Apocynaceae, Solanaceae, Piper-
aceae, Caesalpinaceae, Sapotaceae, Ranunculaceae, Api-
aceae are considered potential sources of many bioactive 

compounds with direct application in pharmaceutical 
industries. It is believed that the immense biosynthetic 
potential of medicinal plants has not yet been fully 
unveiled, and it is proposed that leveraging the most 
recent advancements in technologies like microbiome 
engineering and gene editing may produce unique chem-
ical compounds with improved or novel bioactivities.

Diversity and distribution of endophytes 
in the medicinal plants
Microbial endophytes are known to be associated with all 
plant species, ranging from perennial trees and medicinal 
plants to various other crops [39, 40]. Endophytes inhabit 
various plant parts, including roots, leaves, stems, flow-
ers, and seeds. The composition, richness, and popula-
tion of endophytic microbial communities differ based on 
factors such as plant species, the specific plant compart-
ments (e.g. roots, stems and leaves), plant age, and sur-
rounding environmental conditions [1, 41, 42]. Evidence 
suggests that endophytes are acquired vertically (via 
seed) and horizontally from the plants soils where plant 
grow. Most of these endophytes are acquired from the 
soil by active filtration and mutual recognition between 
plant hosts and microbes. Plants secrete chemoattract-
ants in various forms through root exudates to attract 
specific microbes. Only those microbes that can rec-
ognize those plant chemoattractants can migrate to the 
plant tissues, recognise the host, and penetrate the plant 
surface. The majority of endophytes colonize the intercel-
lular spaces; however, many times, they are also found to 
be colonizing the intracellular spaces and vascular system 
of the plants [43].

Additionally, only endophytes with specific traits like 
the presence of plant polymers breakdown machinery, 
protein secretion system, redox response regulatory sys-
tems, quorum sensing, etc., successfully colonize and 
inhabit the plant endosphere, which is a relatively small 
space [44]. Furthermore, the interaction between the 
plant immune system and microbial recognition signifi-
cantly impacts the successful colonization of plant tissues 
by microbes [1]. Continuous and progressive filtering 
means endophyte diversity declines from root to leaf to 
flower and seeds. Some microbes are shared between 
different compartments, while others are specialised for 
a particular compartment/niche (e.g. leaves). A greater 
understanding of the microbial makeup and abundance is 
now attainable because of the advancements in sequenc-
ing technology, which have also made it possible to 
decode the whole endophytic variety of organisms living 
inside the plant tissues. Compared to the high through-
put next-generation sequencing technologies, traditional 
culture-dependent methodologies offer far less infor-
mation on the variety of microorganisms. However, the 
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direct examination of microbial activity and its interac-
tions with the host is an additional benefit of conven-
tional techniques [45]. The information available through 
modern sequencing and traditional technologies reveals 
the presence of both prokaryotic and eukaryotic groups 
of microorganisms in the plant system [4]. Amongst the 
prokaryotic group, most of the endophytic bacteria are 
distributed among four bacterial phyla, namely Proteo-
bacteria, Firmicutes, Actinobacteria and Bacteroidetes, 
with major dominant genus as Pseudomonas, Streptomy-
ces, Bacillus, Serratia, Micrococcus, Burkholderia, Enter-
obacter, Mycobacterium, Rhizobium etc. [4, 19, 46].

Similarly, endophytic fungi too are found to be active 
colonizers of the plant tissues, with Ascomycota pre-
dominating over 95% of the endospheric population 
of the plants, followed by Basidiomycotas [47, 48]. The 
dominance of ascomycetous fungi such as Penicillium, 
Curvularia, Cladosporium, Aspergillus, Colletotrichum, 
Trichoderma, etc., has been documented in the plant 
endosphere by various research groups [48, 49]. The 
detailed list of endophytic diversity associated with the 
various plant parts of medicinal plants with their respec-
tive plant growth-promoting activity has been mentioned 
[19, 50–107] in Additional file 1: Table S1.

Rooted bonds: unravelling the early colonization 
events in plant‑endophyte interaction
The exact mechanisms responsible for the relationship 
between plants and endophytes are still poorly under-
stood. However, studies to date suggest that endophytic 
microbes, like any other microbe, share characteristic 
features such as rhizosphere competence, motility trait, 
protein-enzyme secretion systems and an ability to over-
come plant immunity [108]. Due to selective pressure, 
the colonization of endophytic plant partners is organ 
and tissue-specific, ranging from roots to shoots, shoots 
to flowers, flowers to fruits and finally, many times to the 
seeds [109, 110]. According to Kandel et al.  [43], success-
ful colonization involves the deployment of endophytes 
by the host plant near its vicinity, followed by the attach-
ment of the endophytes to the host plant’s surface and, 
finally, their entry into the plants [43].

The primary step of colonization begins with the 
recruitment of endophytes towards the roots of the 
host plant with subsequent migration to stems and 
leaves through the xylem vessels, a process influenced 
by the rich exudates released by plants into the rhizo-
sphere [111, 112]. Researchers have previously demon-
strated that bacterial endophytes possess chemotactic 
abilities, enabling them to swim toward the plant’s root 
system by detecting root-secreted molecules [109, 113]. 
A study carried out in support of bacterial chemotaxis 

revealed maximum utilization of the root exudates by 
endophytic Stenotrophomonas maltophila RCT31, 
which ultimately resulted in enhanced plant growth of 
a medicinal legume Clitoria ternatea L. [114]. Like-
wise, fumaric acid released by Panax notoginseng sig-
nificantly stimulated the chemotaxis ability, growth 
and biocontrol-related genes of an endophytic Bacillus 
amyloliquefaciens subsp. plantarum YP1 [115].

Upon reaching the plant, bacterial endophytes employ 
various structural components like pili, flagella, and fim-
briae, along with secretory products such as lipopolysac-
charide (LPS) and exopolysaccharides (EPS), for adhering 
to the surface. These microbial appendages serve as pro-
pellers, translocating bacteria toward the plant’s surface 
and overcoming repulsive obstacles [116]. In contrast, 
the recognition and attachment of specific hosts by fun-
gal endophytes involve the release of fluids facilitating 
germling assemblage necessary for penetration. Tran-
scriptional studies have revealed that fungal endophytes 
like Piriformospora indica secrete small secreted protein 
(SSP) effectors and disrupt phytohormone homeostasis 
during early symbiosis [117]. Upon successful attachment 
to the plant surface, endophytes find entry points through 
various plant structures, such as elongation zones, root 
hairs, cotyledons, stems, leaves, and flowers [118]. Pas-
sive penetration occurs through cracks, root tips, lenti-
cels, stomata, and hydathode openings [119], while active 
entry is facilitated by molecules like EPS, LPS, quorum 
sensing signals, and chitin [21]. To avoid triggering plant 
resistance, endophytic microbes produce fewer cell wall-
degrading enzymes and maintain lower cell densities to 
avoid getting detected as pathogens [120, 121]. Endo-
phytes further utilize the xylem vessels for upward trans-
location, capitalizing on the low nutrient concentration 
in these vessels. Studies on Paraburkholderia phytofir-
mans PsJN revealed entry through the root exodermis 
into cortical cells via the endodermal layer [122], while 
the active role of alcohol dehydrogenases was observed 
in Azoarcus sp. BH72 colonization in waterlogged rice 
[123]. Likewise, dark septate endophytes (DSE) have 
been observed in fungal interactions that form alliances 
with plants through the root cortex, similar to arbuscular 
mycorrhizal fungi, employing strategies to maintain sym-
biosis [124]. Similarly, a unique strategy was observed in 
Piriformospora indica that secreted extracellular hydro-
lyzing enzyme adenosine 5’-triphosphate (eATP) in the 
host plant’s apoplast during later stages of interaction 
[125]. These findings illustrate the diverse and intri-
cate mechanisms endophytes employ to colonize plants, 
shedding light on the complexity of these interactions. A 
diagrammatic illustration representing the early coloni-
zation events happening at plant endophyte interaction 
interphase has been represented in Fig. 1
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In planta secondary metabolite enhancement 
by the endophytes in medicinal plants
Recent studies reveal the enormous impact of the 
plant microbiome, including epiphytic and endophytic 
microbiomes, on the plant’s overall health and per-
formance [126]. Plant microbiomes are dynamic and 
can rapidly adapt to biotic, abiotic, and other environ-
mental pressures [127, 128]. This can help host plants 
produce bioactive compounds at a steady rate. In addi-
tion, endophytes can mediate the re-configuration of 
the plant metabolome that depends on the combina-
tion of plant species/cultivar and other interacting 
microbial partners. Increasing evidence suggests that 
the interactions between the plant and the endophytic 
microorganisms increase the production of second-
ary metabolites such as alkaloids, flavonoids, and ter-
penoids in medicinal plants [129–133] (Fig.  2). These 
interactions in most cases are mutually beneficial, and a 
number of medicinal plants produce bioactive second-
ary metabolites that have significant direct and indirect 
impacts on the population and physiological processes 

of endophytic microbiota [134]. In addition, numer-
ous research studies have indicated that root exudates 
play a significant role in shaping the rhizomicrobiome, 
affecting root-microbe interactions and endophytic 
diversity [135, 136]. In one study, the fungal commu-
nities associated with grapevines were influenced by 
the age of the leaves, with younger leaves exhibiting 
higher endophytic fungal diversity and richness com-
pared to mature leaves [137]. However, the processes 
by which endophytes encourage the production of sec-
ondary metabolites in plants have been the subject of 
several investigations without a common consensus. 
In one such investigation, endophytes of Panax gin-
seng were found to convert ginsenosides into different 
forms that ultimately influenced the efficacy of the host 
plant [138]. It is postulated that endophytes’ secondary 
metabolite enhancement in planta is linked with plants’ 
encouragement to accumulate more photosynthetic 
material. This promotes the upregulation of the genes 
involved in the plant secondary metabolite biosynthesis 
pathway, changes in the genetic makeup of the plants 

Fig. 1  Schematic illustration depicting routes adopted by endophytes for successful colonization in the host plant. A Recruitment mechanism 
of potential endophytes and its resultant diversity gradient in the host plant. B Crosstalk between host plant and endophytes leads to host plant 
nutrient and defence management. root exudates (REs), N-Acyl homoserine lactone (AHL), volatile organic compounds (VOCs), siderophore (Sid), 
secondary metabolites (SMs), indole-3-acetic acid (IAA), cytokinin (CK), gibberellic acids (GAs), reactive oxygen species (ROS), 1-aminocyclopropa
ne-1-carboxylic acid (ACC), jasmonic acid (JA), ethylene (ET), salicylic acid (SA), pathogenesis-related (PR), type III secretion system (T3SS), type IV 
secretion system (T6SS), microbe-associated molecular patterns (MAMPs), quorum sensing (QS)



Page 6 of 19Kumari et al. Microbial Cell Factories  (2023) 22:226

or distinctive metabolites produced by the endophytes 
impacting the plant biosynthetic pathways [139].

Microbes also produce many metabolites for vari-
ous purposes, including interacting with the host 
plant [140]. Since many metabolites are produced by 
microbes or by their interaction with the host plant, 
the focus is currently being shifted from the medici-
nal plants’ bioactive secondary metabolites individu-
ally to linking the secondary metabolome of plants 
with the plant’s endomicrobiome [141]. This is because 
endophytic microbes are important in forming bio-
active secondary metabolites such as steroids, alka-
loids, polyketones, peptides, flavonoids, terpenoids, 
and phenols [142, 143]. Similarly, some fungi, like 

Curvularia sp. and Choanephora infundibulifera, are 
known to increase the level of vindoline, a terpenoid 
indole alkaloid (TIA), in the leaves of endophyte-free 
Catharanthus roseus plants by 403% and 229%, respec-
tively. The research conducted by Pandey et  al. [144] 
yielded molecular evidence indicating an increase in 
the expression of genes responsible for both the struc-
tural and regulatory aspects of the TIA biosynthesis 
pathways in plants inoculated with endophytes [144]. 
Likewise, tanshionone biosynthesis was significantly 
increased in hairy root cultures upon application of the 
polysaccharide portion of an endophytic Trichoderma 
atroviride [145]. Similarly, an integrated study involv-
ing comparative metabolomics and transcriptomics 

Fig. 2  Endophyte mediated enhanced production of secondary metabolites and its applications. A Depicts plants inoculated with beneficial 
endophytes, significantly improving plant growth and development over non-inoculated plants. The zoomed-out leaf portion represents 
the modulation of host plant secondary metabolic pathways by multiple transcription factors regulated by upstream signals in response 
to endophytic colonization. B Different categories of bioactive secondary metabolites (structures given alongside) and their multifaceted 
industrial applications. microbe-associated molecular patterns (MAMPs), transcription factors (TFs), secondary metabolite (SM), mevalonic 
acid (MVA), methylerythritol phosphate (MEP), acetoacetyl CoA thiolase (AACT), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), mevalonate kinase (MVK), phosphor mevalonate kinase (PMK), -hydroxy-3-methylglutary-CoA 
(HMG-CoA), 3 mevalonate5-diphosphate decarboxylase (MVD), isopentenyl diphosphate (IPP), dimethylallyl diphosphate (DMAPP), IPP 
isomerase (IDI), mevalonate pyrophosphate (MVPP), farnesyl-diphosphate synthase (FPS), famesyldiphosphate (FPP), geranyl phosphate synthase 
(GPS), geranyldiphosphate (GPP), geranyl diphosphate synthase (GPPS), geranyl geranyl diphosphate (GGPP), geranyl geranyl diphosphate 
synthase (GGPPS), 1-deoxy-D-xylulose5-phosphate synthase (DXS), 1-deoxy-D-xylulose5-phosphate (DXP), 1-deoxy-D-xylulose5-phosphate 
reductoisomerase (DXR), MEP cytidylyltransferase (MCT), 1-hydroxy-2-methyl-2-(E)-butenyl4-diphosphate synthase (HDS), MEP-cPP synthase (MCS), 
squalene synthase (SQS), cytochrome P450 reductase (CPR), sterol methyltransferase (SMT), squalene epoxidase (SQE)
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of Epichloe festucae-infected and uninfected ryegrass 
plants reported the host metabolism reprogramming in 
favor of secondary metabolism over primary metabo-
lism [146].

Many studies have reported endophytes-mediated 
modulation of plant metabolites in recent years. For 
example, an endophyte-mediated accumulation of for-
skolin content in Coleus forskholli was observed by 
the application of three indigenous endophytes of C. 
forskohlii namely Fusarium redolens (RF1), Phialem-
oniopsis cornearis (SF1) and, Macrophomina pseudo-
phaseolina (SF2) [147]. The findings were validated by 
the expression study of five key forskolin biosynthetic 
pathway genes, namely CfTPS2, CfTPS3, CfTPS4, 
CfCYP76AH15, and CfACT1-8 [148]. Similarly, bacte-
rial and fungal endophytes linked with the Agarwood 
tree (Aquilaria malaccensis) increased the production 
of agarospirol, a highly sought-after product in the 
pharmaceutical and fragrance industries [149]. Inter-
estingly, tissue-specific localization of the endophytes 
was found to be linked with Papaver somniferum 
overall plant performance, as most leaf endophytes 
influenced plant development and productivity, while 
capsule endophytes played a key role in influencing 
alkaloid production [72]. Many other endophytic bac-
teria, such as Pseudomonas fluorescens, Azospirillum 
brasilense, Bacillus subtilis, Paenibacillus polymyxa, 
Stenotrophomonas and others, have also been reported 
to increase the production and accumulation of signifi-
cant secondary metabolites in the host [11, 12, 16–19, 
39, 129, 147, 149, 150–193] (Additional file 1: Table S2). 
We argue that we have only scratched the surface, and 
many secondary metabolites produced by plant-micro-
bial interaction remain to be discovered and charac-
terized. Theoretically, endophytes can impact plant 
metabolites’ types, quantity and quality. We hypothe-
size that the endophytes can encourage plants for more 
primary and secondary metabolites through the secre-
tion of microbial metabolites or other signal molecules, 
phytohormones, upregulation of defence pathways, epi-
genetics, etc. Additionally, they can also influence the 
quality of these metabolites by microbial degradation 
or conjugation between plant and microbial metabo-
lites. At this point, the role of endophytic enzymes can-
not be ignored, which might catalyze the initial steps of 
secondary metabolite biosynthetic pathways in the host 
plant by initiating, activating or inhibiting certain bio-
synthetic routes. There is also a high possibility that the 
endophytic microorganisms can harbor novel enzymes 
not present in the host plant, which may introduce new 
chemical reactions or biosynthetic pathways, leading to 
the synthesis of previously unknown secondary metab-
olites in the plant.

Can core endomicrobiome be a key player 
in the modulation of secondary metabolites 
biosynthesis in medicinal plants?
Broadly, the set of operational taxonomic units consist-
ently connected and shared by microbial communities 
from various but related hosts that provide specific host 
functions is often referred to as the “core microbiome” 
(CM) [194, 195]. Core microbiomes of various plants 
have been identified and reported [196–198]. Recently, 
the concept of identifying functionally important micro-
organisms that consistently associate with a host species 
is being added to the prevailing concept of CM, which 
is majorly based on the idea that a taxon’s persistence 
across the spatial and temporal boundaries of a particular 
habitat is directly reflective of its functional importance 
within the niche it occupies [199, 200]. The endosphere 
of the plants is reported to be colonized by the com-
munity of microbial taxa with desired functional attrib-
utes, which collectively form the “core endomicrobiome” 
(CEM). Some genera, like Bacillus and Pseudomonas, 
are ubiquitous and can be found across the entire plant 
system [46, 201]. Previous studies have highlighted the 
seeds’ vertical transmission of such essential microbiota 
over generations [202, 203]. CEMs, because of their con-
stancy and uniformity, are thought to be essential for 
host fitness and hence have the ability to modulate plant 
microbiomes to achieve desired outcomes [204, 205]. 
These CEMs could be mutualists, commensalist, or occa-
sional antagonists who, apart from directly influencing 
the secondary metabolite biosynthesis, might also act as 
key modulators for the secondary metabolite level [206]. 
The composition and role of CEMs have been obtained 
for various plants such as Arabidopsis, tomato, and cit-
rus. However, limited research has been conducted to 
establish connections between the potential beneficial 
traits of the CEMs and their functions. For example, the 
CEMs analysis of Oryza sativa leaves divulged that Aci-
netobacter, Enterobacter, Pseudomonas, Pantoea, Sphin-
gomonas, Stenotrophomonas, and Rhizobium genera 
were found to be a part of the core microbiome [207]. 
Likewise, Bulgarelli et al. [208] and Lundberg et al. [209] 
defined the microbial community structure and core 
endophytic population of the Arabidopsis  root microbi-
ome, which showed the dominance of Actinobacteria fol-
lowed by Proteobacteria, Bacteroidetes and Firmicutes 
[208, 209]. Similar outcomes were also observed in the 
core-endophytic community analysis of tomato and sug-
arcane roots [210–213].

Since it is evident that medicinal plant endophytic 
microbial assemblage influences the synthesis of sec-
ondary bioactive metabolites directly or indirectly by 
regulating the plant metabolic pathways [214–216], the 
role of CEMs in this context needs further exploration. 
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In one of the earliest studies carried out on deciphering 
the CEM of medicinal plants, Wicaksono et  al. [217] 
provided valuable insights into the fact that distinct 
plant organs of Leptospermum scoparium are capable of 
co-harboring specific core microbial taxa that affect the 
bioactive properties of the plant [217]. Likewise, some 
signature key core microbes were also identified from 
two medicinal plants, namely Achillea millefolium L. 
and Hamamelis virginiana that were hypothesized to 
be the key modulators of the metabolome of the plants 
[48].

In another investigation, Echinacea purpurea has been 
proposed to be an excellent model herb for investigat-
ing microbiome-secondary metabolites interactions as 
endophytes of this plant modified the production of 
volatile compounds such as phenylpropanoid and alka-
mides [218]. Similarly, significant induction of enantio-
meric naphthoquinones such as alkannin and shikonin 
by endomicrobiome in Alkanna tinctoria [16] and 19-tet-
rahydrocannabinol and cannabidiol in Cannabis sativa 
and morphine production in Papaver somniferum, were 
observed [215, 219]. Recently, in one of the studies, seed-
associated CEMs were proposed to influence tanshinone 
production [220]. This postulation is based on the evi-
dence that the identified CEMs comprise a gene reservoir 
associated with the terpenoid backbone synthesis, offer-
ing extra metabolic capabilities to Salvia miltiorrhiza. 
Working on the above line, our group has identified a set 
of core endomicrobiome genera, namely Pseudomonas, 
Paenibacillus, and Bacillus from Andrographis panicu-
lata that, along with the introduced endophytic strain 
were speculated to contribute to the enhanced andro-
grapholide content within the plant tissues [221].

Growing evidence suggests that these CEMs, in com-
bination, probably enhance the plant’s physicochemi-
cal homeostasis by triggering secondary metabolite 
biosynthesis. However, there are still several gaps and 
challenges in this study area, as identifying effective 
endophytes for specific metabolite enhancement is dif-
ficult due to their vast diversity. Additionally, the ability 
of endophytes to enhance secondary metabolites can be 
species-specific and variable. Therefore, understanding 
the factors contributing to this specificity and variability 
is essential for reliable application. Complex host-endo-
phyte interactions and the impact of environmental 
conditions also require further investigation for reliable 
applications. Despite observing shifts in endophyte diver-
sity in response to plant metabolites, the functional 
consequences of these changes remain inadequately 
understood. Therefore, advanced genomic tools and a 
comprehensive understanding of endophyte biology and 
plant secondary metabolism are required to address 
these gaps and challenges.

Bridging the gap through microbiome engineering
Irrespective of the important roles played by the micro-
biome, the vast bulk of the transformative potential of 
the microbial world is yet to be discovered and applied. 
It is postulated that targeted manipulation of plant 
microbiome via inoculation with beneficial microbes 
and pre- and postbiotics that promote the production 
of secondary metabolites can potentially help produce 
industrial and economically viable quantities of target 
metabolites. However, such approaches have their own 
set of limitations and have been discussed in detail in 
agricultural contexts [139, 222]. Recently, approaches 
to overcome such limitations were proposed, includ-
ing explicit consideration of theoretical framework in 
inoculant testing and in  situ microbiome manipula-
tions/engineering [42, 222]. In this regard, modulating 
the plant holobiont through microbiome engineering is 
an emerging biotechnological approach for increasing 
crop yields, resilience and secondary metabolite bio-
synthesis in plants [223, 224].

The preliminary aspect of microbiome engineer-
ing is identifying the core microbiome and host func-
tions provided by individual members and their 
interaction. This is followed by targeted manipulation 
of plant microbiome composition to achieve specific 
phenotypes, in this case, high quantity and quality of 
secondary metabolites for pharmaceutical and other 
applications. However, our current knowledge and 
ability to manipulate microbiomes are limited. We 
need systematic studies first to identify the interactive 
impact of plant microbiomes and then identify signal 
molecules (including volatiles) that trigger metabolite 
synthesis and microbial modification. This will require 
the utilization of manipulative work in combination 
with combined multi-omics techniques like metagen-
omics, metaproteomics, and metatranscriptomics to 
determine the functionality of the entire microbial 
community within a particular niche [225, 226] (Fig. 3).

Identification of signal molecules using sensitive 
instruments (e.g. GC–MS, HPLC–MS) that trigger plant 
synthesis and/ or microbial modification can be used to 
manipulate in  situ microbiomes in future. Recently, a 
four-step cycle was proposed to enable efficient microbi-
ome engineering: design-build-test-learn (DBTL) [227]. 
This cycle entails creating an initial microbiome design 
to accomplish a specified engineering goal, building the 
microbiome, testing its functionality against a set of pre-
determined metrics to see if the design-build solution(s) 
produced the designed objective, understanding the out-
comes and shortcomings, and utilizing new information 
for the upcoming DBTL cycles. By following this cycle 
iteratively, researchers can make step-by-step improve-
ments, enhance the endophyte-host interaction, and 



Page 9 of 19Kumari et al. Microbial Cell Factories  (2023) 22:226	

achieve targeted enhancement of specific secondary 
metabolites in the host plant.

The top‑down and bottom‑up approach to design 
microbiomes
Empirical-based attempts to pinpoint the specific func-
tions of individual components in producing commu-
nity-derived phenotypes are difficult to accomplish due 
to biology’s nonlinearity and the functional complexity 

present in microbial communities [228]. Therefore, to 
address the intricacy and to create biotechnological 
applications, top-down and bottom-up approaches can 
be adopted to design “customized endomicrobiome”. The 
top-down design enables the user to select various envi-
ronmental parameters, which in turn enforces the exist-
ing microbiome to remodel itself and modulate to exhibit 
the desired biological functions [229]. For implementing 
a top-down approach, microbial resource management is 

Fig. 3  Top-down and bottom-up approaches to engineer microbiomes. A The panel represents the bottom-up design methodology that begins 
with isolates. Genome editing boosts system functions by recognizing gene editing sites that reroute metabolic flux to the intended secondary 
metabolites. B The panel represents the top-down design methodology. a Depiction of native endophytic micriobiome hub with interacting 
partners. Categories of the hub endomicrobiome are exclusively based on network topology information within a microbial network. The possible 
roles of secondary metabolites (SM) inducing core endomicrobiome (CEM) that are expected to mediate interactions between plants and native 
microbial species includes (i) Scoring of CEMs based on enrichment of SM inducing microbial species in the rhizosphere through chemoattractants 
released in the form of root exudates. (ii) Restrainment of deleterious biotic stressors. (iii) Bolstering of SM inducing functional CEMs by applying 
facilitative microbiomes. b Preparation of endosymbiotic cells derived from plant samples. (i) Surface sterilization of plant tissue for removal 
of epiphytic microbes. (ii) Sample crushing followed by gradient centrifugation for concentrating endomicrobiome. (iii) Isolation of single cell 
microbial droplets with CEMs using microdroplet devices (iv) Compartmentalization of single cell CEMs using microfluidic devices to separate cells 
from microbial mixtures. (v) Cell sorting using vibrational spectroscopy techniques like surface enhanced Raman scattering (SERS)/tip enhanced 
Raman scattering (TERS) and Fourier transform infrared (FTIR) (vi) Optimization of culture media for isolating CEM/s with varying nutritional 
requirements and growth conditions. (vii) Library development of all possible CEMs using permutations and combinations (viii) High throughput 
inoculation of sets of CEMs in seeds/seedlings/plants (ix) Identification of potential SM inducing CEMs by chemical profiling of plant tissue/s (x) 
Mass multiplication of potential SM inducing CEMs for large scale cultivation with the ultimate aim of increasing microbial heterogeneity. The 
middle panel represents the key aspects of microbiome engineering with increasing and decreasing complexities in bottom-up and top-down 
approaches. The various shapes of the microbes indicate different isolates chosen throughout the designing process
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an effective way of predicting the process of manipulat-
ing an ecosystem, which requires researchers to intellec-
tualize a system that takes into account different inputs 
and outputs considering physiological parameters such 
as pH, redox potential, temperature, humidity etc. and 
predicts their capabilities to promote or restrict the par-
ticular biological process of interest [230]. Whereas, in 
the bottom-up approach, systems are pieced together 
to create increasingly sophisticated systems, making 
the initial systems subsystems of the budding system. 
When we move from DNA components to microbial 
ecosystems, this approach requires understanding how 
the interacting metabolic networks of each microorgan-
ism to be incorporated into the microbiome may affect 
the desired output [223, 227]. This will require a design 
process involving genomes of key microbiome members 
[231], reconstructing their metabolic networks [232], and 
the use of modelling tools [233] and/or network analysis 
tools [234] to finally come up with a best-fit design. Over-
all, the bottom-up engineering approach is supported 
by logical guidance and requires experienced practition-
ers with the requisite foundation for wise engineering 
decision-making since all implementation depends on 
prior knowledge. This approach can be well adapted for 
systematically enhancing secondary metabolites through 
endophytic plant partners in controlled conditions. We 
believe that if the study is precisely designed and con-
structed to engineer a microbiome, achieving targeted 
and reliable enhancement of specific secondary metabo-
lites in the host plant is not a very far-off dream.

Assembling microbiomes for achieving the desired traits 
in the host plant
New inventive approaches are needed to recruit benefi-
cial microbes that positively impact plant performance. A 
theoretical network framework was proposed to identify 
optimal CMs recruited in a microbial network at central 
positions with associated extra microbes encompassing 
desired functions for the benefit of the hosts [206]. We 
thrust upon that utilizing the same approach can poten-
tially enhance secondary plant metabolites production. 
For example, CEM in medicinal plants can be manipu-
lated/ engineered in two ways: by self-assembly or by 
synthetic approach. Self-assembled microbiomes can 
be developed as open consortia using bio-reactors or 
biostimulators in which the building process actualizes 
an atmosphere conducive to the growth and desirable 
activity of the selected microorganisms [227]. Though 
building up microbiomes by applying axenic microbial 
cultures results in less complexity, designing synthetic 
microbiomes is difficult because of significant knowl-
edge gaps about the taxa that are unculturable, unchar-
acterized and genetically unavailable with potentially 

substantial roles in agriculture applications. Therefore, 
to bridge the gap, innovative separation and controlled 
microbiome assembly methods like single-cell sorting 
[235] in combination with progressive culturomics [236] 
and phenotyping [237] can be used to encapture and 
employ the uncharacterized class of the metabolically 
diversified community.

Further, a designer assembly can be potentially attained 
if the latest cell phenotyping and sorting techniques are 
considered. Raman-activated cell sorting (RACS) is an 
emerging technology that allows sorting and pheno-
typic characterization of cells based on their intrinsic 
biochemical profiles without needing external labelling 
[238]. Another technique, namely bio-orthogonal non-
canonical amino acid tagging (BONCAT), offers an addi-
tional approach to analyze microbial anabolic activity 
in situ, which could be coupled with cell sorting to sepa-
rate active cells from complex samples and further iden-
tify them by DNA sequencing [239]. After the cells are 
individually sorted, culturing through current techniques 
requires sophisticated setups occupying large spaces. 
However, advancement in culturomics has introduced 
microfluidic devices such as microfluidic chips, also 
known as lab-on-a-chip technology [240–242], which can 
be further used to create and modify micro-droplets that 
can facilitate close analysis of axenic cultures with rela-
tively low reagent consumption, elimination of undesired 
microbial species followed by sequencing, characteriza-
tion and phenotyping through multi-omics approaches 
[243]. Moreover, they also offer an additional ability to 
control microbial communities’ density, shape and size 
[241] with an analysis rate of 100,000 microbiomes/day. 
Overall, even though no single study has been carried out 
in the case of medicinal plants in this regard, we firmly 
believe that information from databanks and associated 
informatics tools offering the functionality of microbes 
to the annotated network data can be of great help in 
designing CEMs for the introduction into medicinal 
plant endosphere for successfully modulating the plant’s 
chemistry.

Conclusion, prospects and key questions
Endophytes play important roles in manipulating the 
secondary metabolite biosynthetic pathways with phar-
maceutical and other chemical applications. Increasing 
quality and quantity of secondary metabolite productions 
are high and demand, and we propose that leveraging the 
core endomicrobiome of medicinal plants can provide 
effective solutions. However, owing to the complexity 
and multitude of interactions between microbiome-plant 
and the large diversity of plant microbes that remains 
poorly described, the precise engineering of CEMs for 
producing secondary metabolites will need concerted 
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planning and collective efforts. The emerging tools of 
omics combined with the application of microfluidics, 
synthetic biology, genome editing, machine learning and 
data designing provide an opportunity to carry out large-
scale endomicrobiome and plant/microbial metabolite 
screening. The success of such approaches will require 
transdisciplinary approaches involving active collabora-
tions among agriculturists, chemists, engineers, micro-
biologists, plant molecular biologists/biochemists, and 
big data analysts. Based on the recent advancements in 
research tools and techniques, there is an opportunity 
to transform the production of secondary metabolites 
in medicinal plants by harnessing core microbiomes 
and plant-microbiome interactions through sustained 
resourcing and systems-based approaches (Fig.  4). In 
addition, we believe that by addressing some important 
key questions given below, the lacunas in the endophyte 
plant secondary metabolite enhancement can be bridged.

1.	 Are there any specific core endophytic species or 
strains consistently associated with all the medicinal 

plants in general that hold promise for discovering 
new drugs or therapeutic agents?

2.	 Considering their vast diversity, how can effec-
tive endophytes be identified for specific metabolite 
enhancement?

3.	 How do endophytes establish and maintain their 
interactions with medicinal plants, which are rich 
reservoirs of antimicrobial compounds?

4.	 Have the medicinal plants and their associated endo-
phytes coevolved over time, and can investigating the 
drivers of host specificity and the ecological factors 
provide insights into the evolution of these interac-
tions?

5.	 What factors contribute to species-specific and vari-
able abilities of endophytes to enhance secondary 
metabolites?

6.	 How do host-endophyte interactions and environ-
mental conditions influence the efficacy and reliabil-
ity of endophyte applications?

7.	 Can understanding the functional variation among 
different endophyte taxa and their effects on host 

Fig. 4  Schematic representation of the complex dynamics of plant-endophyte interactions: Harnessing the power of endomicobiome engineering 
and mutiomics insights for its practical applications
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plants help harness their potential for medicinal 
plant cultivation?

8.	 How can we better understand the functional conse-
quences of shifts in endophyte diversity in response 
to plant metabolites?

9.	 How can advanced genomic tools and approaches 
effectively address the gaps and challenges in study-
ing endophytes and plant secondary metabolism?
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