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“Our humble art, on the other hand, is not a dweller in gilded
monuments to amusement with crimson curtains lit by gas lamps;
ours is not caparisoned in sumptuous costumes, painted in alluring
colors, festooned with oil and tempera canvas flats. No, our stage
is a humble thread of metal stretched beneath the dark and cold
ocean wave; ours is a cord lying on the frigid and muddy bottom
of the sea. Our art manifests itself in the tiny galvanic flickers of
light in a squalid, cramped, and dark room; a flicker with no more
nuance or affection than on or off, positive or negative, left or right,
dot or dash, yes or no. But that binary essence is about to join
continents, unite nations and unseat tyrants through the spread of
truth; it will permit monarchs to converse with presidents, mother
with son, lover with beloved, you with me, no matter where on
earth either of us may dwell; we shall converse as intimately or as
grandly as we might right here, sitting face-to-face.”

John Griesemer, Signal € Noise
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Zusammenfassung

Diese Arbeit behandelt informationstheoretische Grenzen der Datentibertragung iiber
faseroptische Kanale. Eine detaillierte Diskussion der wechselwirkenden physikalischen
Effekte ermoglicht die Formulierung abstrahierter Kanalmodelle. Durch Zerlegung der
Transinformation in Polarkoordinaten wird eine informationstheoretische Methode ent-
wickelt, die sich zur Analyse partiell koharenter Kanéle eignet. Fin Kanalmodell im Fre-
quenzbereich erlaubt die getrennte Analyse miteinander wechselwirkender nichtlinearer
Effekte. Mit diesem Modell wird die Kapazitéit des faseroptischen Kanals fiir verschiedene
Szenarien abgeschatzt. Die hochste Kapazitéat erreicht ein Kanal, der nur durch Rauschen
und durch die nichtlineare Wechselwirkung von Signal und Rauschen gestort wird. Fir
die Abschéatzung der Kapazitiat von Wellenlangenmultiplex-Systemen wird zusétzlich ein
phanomenologisches Kanalmodell im Zeitbereich entwickelt, das bestehende Ergebnisse
bestatigt.

Abstract

This work addresses the information-theoretic limits of communication over fiber-optic
channels. A detailed discussion of the interacting physical effects provides the back-
ground for a formulation of abstract channel models. An information-theoretic method is
developed that decomposes the mutual information in terms of polar coordinates. This
method is useful for the analysis of partially coherent channels. A channel model in
the frequency domain allows the separate analysis of interacting nonlinear effects. The
capacity of the fiber-optic channel is estimated with this model for various scenarios.
The maximum capacity is reached by a channel that is impaired only by noise and by
the nonlinear interaction of signal and noise. A phenomenological time-domain channel
model is developed to obtain an additional estimate of the capacity of wavelength division
multiplexing systems. This model confirms existing results.






Introduction

Digital communications has become an ubiquitous part of everyday life. Broadband con-
nections to the internet are available in most parts of the developed world. Access net-
works transport data on copper lines, wireless links and — increasingly — optical fibers.
The backbone network, which connects cities, regions, countries and continents, consists
entirely of optical fibers. This network has become one of the key drivers of economic
growth, in developed countries as well as in emerging regions of the world. Perhaps more
importantly, the cultural and political progression of our world evolves more and more
around the internet; fiber-optic communications has changed the world and continues to
do so.

This change is reflected in the growing demand for capacity. According to market re-
search [Tell0], the used international capacity has increased 22-fold since 2002. The
compound bandwidth is predicted to continue its growth at an annual rate of 40 percent
in the next five years. Unlike for example the capacity of the mobile communications
channel, the capacity of optical fibers can grow infinitely. The available bandwidth can
always be increased by deploying additional fibers. This option is economically unfea-
sible, of course; the telecommunications market is driven by technological advance and,
consequently, falling prices per unit capacity (i.e. bits per second).

In the past thirty years, technological innovation has enabled an exponential growth
(approximately 10-fold every four years) of the capacity-distance product (in bit/s - km)
of optical fibers [Des06]. This “optical Moore’s law” cannot persist. The amount of
data that can be reliably transmitted over any channel, including optical fibers, is limited
by the channel’s capacity. This is one of the key statements of information theory, the
discipline that Claude Shannon gave birth to in 1948 [Sha48].



2 Chapter 1 m Introduction

The fiber-optic channel is characterized by an incomparably large bandwidth and low
attenuation on the one hand but also by dispersion and nonlinear effects on the other.
The nonlinear interaction of signal and noise from optical amplifiers during propagation
presents an additional difficulty. What is the capacity of such a channel? The physics
of light propagation in fibers are too complicated for a simple answer to this question.
Moreover, the capacity of fiber-optic communication channels depends on a large variety
of system parameters but also on how practical system constraints render physical effects
fundamental, i.e. purely random or irrevertible. The motivation and aim of this thesis
is to gain and provide insight into the fundamental limits that information theory sets
to communication over optical fibers. In lieu of simple answers, methods and models are
developed that can be applied to obtain a capacity estimate of a given specific channel.
The results that are obtained for a variety of different scenarios suggest that the data rates
of today’s fiber-optic communication systems have by far not approached their theoretic
limits as closely as those of for instance wireless or copper-based communication systems.

The thesis is organized as follows:

Chapter 2 introduces the physical background of light propagation in optical fibers,
starting from Maxwell’s equations and ending at the nonlinear Schroedinger equation.
Material polarization is discussed as the origin of (almost) all linear and nonlinear fiber
effects. An effective cubic susceptibility is calculated to include the effect of the randomly
varying light polarization in the scalar propagation equations. The chapter’s second
half introduces the most important components of a fiber-optic communication system.
Optical fibers are discussed from a system’s standpoint. The principles of distributed and
lumped optical amplification are explained.

Fundamental terms of information theory are reviewed in Chapter 3. The channel
capacity as the maximum rate of reliable communication over any channel is introduced
and discussed for various channel types. In the second part of this chapter, a method
for the decomposition of mutual information in terms of polar coordinates is developed
and discussed. Among other useful applications, this method can be applied to partially
coherent channels such as the nonlinear fiber-optic channel in both time and frequency
domain. To support the discussion of partially coherent channels, a short introduction to
directional statistics is given. Finally, the discussion is extended to noncoherent channels
such as optical direct-detection systems.

Chapter 4 deals with polarization mode dispersion (PMD). After a review of PMD
fundamentals, the effect of PMD on the channel capacity of fiber-optic communication
systems is considered in the absence of fiber nonlinearities. If the channel is considerably
nonlinear, the interplay of PMD and fiber nonlinearities can lead to cross-polarization
modulation, which causes fading and intereference between polarization-multiplexed sig-
nals.

The limits that fiber nonlinearities set on the channel capacity of fiber-optic communi-
cation systems transporting a single signal are considered in Chapter 5. A frequency-
domain model is developed that allows separating the relevant nonlinear effects and ob-
taining an analytical solution for the capacity. Finally, the interaction of signal and noise



from optical amplification is included in the discussion. The case where nonlinear interac-
tions of the signal with itself can be removed (either at the transmitter or at the receiver)
is treated separately.

Chapter 6 treats the propagation of multiple channels in a system using wavelength
division multiplexing. In view of the situation in transparent optical networks, it is
assumed that intra-channel nonlinearities can be compensated for, while inter-channel
nonlinearities remain as fundamental impairments. Two approaches for calculating the
capacity in this scenario are considered. The first is based on a published numerical
study that determines the capacity in the time domain. A phenomenological channel
model with only two free parameters is proposed which permits a rapid calculation of the
capacity using the decomposition method of mutual information introduced in Chapter 3.
The second approach extends the frequency-domain model developed in Chapter 5. The
nonlinear interaction of signal and noise is included in this discussion.

Finally, Chapter 7 summarizes the results and suggests open research problems that
are related to the content of this thesis.

Notes on the notation:

This thesis covers topics from such different disciplines as information theory, communi-
cations theory and optical communications. The notation was chosen such that it diverts
as little as possible from the standard notation of those fields.

In consequence, different notations are used for similar cases depending on the context.
For instance, electrical fields are denoted by capital letters (e.g. FE(t)), whereas small
letters are used for arbitrary time-domain signals (e.g. a(t), s(t)). Captical letters denote
the Fourier transforms of these signals (A(f),S(f)). Unless they represent continuous-
time physical signals, random variables are denoted by capital letters, their realizations
by small letters.

In other cases, the same notation denotes different meanings. The power spectral density
(PSD) of a signal z(t) is denoted by ®,(f). The same symbol is used in Chapter 4 to
denote the PSD of the transmit signal in x-polarization. The symbol Ps denotes either the
total average signal power, the total average signal power per polarization (Chapter 4) or
the total average signal power per WDM channel (Chapter 6).

In any case, the correct meaning is always clear from the context. Additionally, Ap-
pendix B contains an exhaustive list of symbols for reference.






Introduction to fiber-optic
communications

A certain level of abstraction is necessary for defining information-theoretic channel mod-
els. However, any such model needs to be justified on the lowest level of abstraction, the
physical level. In this chapter, the fiber-optic channel is reviewed on this lowest level.

This chapter is organized as follows. Section 2.1 starts from Maxwell’s equations to de-
rive the nonlinear Schroedinger equation (NLSE) that governs light propagation in optical
single-mode fibers. The origin of linear and nonlinear effects during the propagation of
light in optical fibers is reviewed and the role of light polarization is discussed. Analytical
and numerical solutions of the NLSE are presented. In the remainder of the chapter, the
most important components that are part of optical communication systems as well as
the impairments they produce are introduced. In practice, some of these components are
mature, others pose severe practical system limitations. In the derivation of fundamen-
tal conclusions and limits, it is sensible to differentiate between systematic impairments
(such as dispersion, nonlinear fiber effects, noise and square-law photodetection) and im-
pairments that have their origin in the degree of development of the components that are
available today. This thesis is limited to the analysis of systematic impairments; therefore,
the description is limited to the properties of “ideal” components. Section 2.2 introduces
optical single-mode fibers on a system level. The parameters characterizing optical fibers
are specified, and the most important effects and impairments are discussed. Section 2.3
introduces optical amplifiers, which are the dominant source of noise in optical commu-
nication systems. Other important components are reviewed in Section 2.4. Section 2.5
briefly summarizes the main results of this chapter.
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2.1 Light wave propagation in single-mode fibers

2.1.1 The general wave equation

Light is an electromagnetic wave and as such, its propagation in any medium is governed
by Maxwell’s equations [AgrO1]:

VxE = —g, (2.1)
VX?I:?JF%, (2.2)

v.D =y, (2.3)
vV.B=o (2.4)

E and ﬁ are electric and magnetic field vectors, respectively, B is the electric flux density
field vector, B is the magnetic flux density vector and V denotes the Nabla operator.

The electric current density vector J as well as the electric charge density py equal zero
in a dielectric medium such as optical fibers. The flux densities are related to the field
vectors through the material equations

B = 5OE + ?, (2.5)
B = uoH + M, (2.6)

where ¢( is the vacuum permittivity, pg is the vacuum permeability, and ﬁ and ﬁ are
the electric and magnetic material polarizations, respectively. For a nonmagnetic medium

such as optical fibers, = 0.

By taking the curl of (2.1), we obtain an expression for the propagation of the electric

field:
0B 2o OV xH) ey 0D

VX UXE = ¥k s Bt T

(2.5) (3QE 82ﬁ

=" —UpE — .
Ho€o o2 Ho 2

Using the identity
VxVxE=V(V-E)-AE (2.8)
together with (2.3) and (2.5), we can write (2.7) as
19PE 9P
Aﬁ+v( v. f?) s =g (2.9)

where ¢q = 1/,/Eo/1o is the light velocity in vacuum and AE = VQE denotes the Laplace
operator.

Equation (2.9) is known as the general wave equation.
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2.1.2 Material polarization

The interaction of light and matter is included in (2.9) through the material polariza-

tion ﬁ Applying an external electric field to a dieletric medium leads to a shift of the
internal carriers. This creates a dipole moment which itself is the source of electromag-
netic radiation. On a macroscopic scale, the summation over all dipole moments per unit

volume yields the material polarization P [Sch04]. The incident electric field E can be
related to the material polarization ? through the material’s susceptibility x [Agr01] by

P = o\ E. (2.10)

In isotropic and linear media, the susceptibility x is a scalar; optical fibers are different
from such media in two aspects. For materials with a non-isotropic structure, ﬁ can have

a direction different from that of E; in this case, the (linear) susceptibility is a 2"d-rank
tensor denoted by ? When the incident field power is very high, the reset force of the
shifted carriers becomes nonlinear [Sch04]; in this case, the susceptibility is a function of

E, and ? can be described by a power series expansion [Han95]:
P=PW yBO L BO (2.11)

where B (") is related to ﬁ through the n'"-order material susceptibility ? ™). Optical
fibers are composed of silicon dioxide (SiO,); because of the inversion symmetry of SiOs
molecules, even-order ? (") are zero. The fifth- and higher-order susceptibilities are very
small and can be neglected, as the power required to excite material polarization of fifth
order would physically destroy the fiber [Hel77]. Therefore, (2.11) can be written as

P =P | PO, (2.12)

Linear material polarization

Each cartesian component P( ), 1 = x,1, z, of the linear material polarization at posi-
tion 7 is related to B through [Han95]

D t) = / Z X () Bj(7 t — 1) dr (2.13)

The so-called Einstein summation convention allows a compact notation of (2.13) by
implying summation over all possible values of indices common to all factors of a product:

W(F 1) = /OOOX” (r)- E;(7,t —7)dr (2.14)

By taking the Fourier transform of (2.14), the linear polarization in frequency domain
can be written as

P, ) =e0- X () - Ex(7, ), (2.15)
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where -
X = /O X () - et dt, (2.16)
In matrix-vector notation, (2.15) can be expressed as [Sch04]
P 1) X (f) Xu)(f) X2(F) E,(7. )
BT | =eo | X0 X0 X0 || B ) (217)
PO, f) xB) xXG X2 E(7.])

All linear fiber effects have their origin in the first-order material susceptibility tensor
(1A separation of these effects is obtained by expressing ?(1) through the relative
permittivity tensor of the material:

s <>

0 0 Err 0 0 &

chromatic dispersion loss

Er,Axx ErAxzy ErAxz 1
+ | erdye Eragy Eray: | —| 0
Er,Azz ErAzy ErAzz 0

0 0
10 |. (2.18)
0 1

Vv
birefringence, mode coupling

The first term in (2.18) causes the effect of material dispersion, which is the main con-
tributor to chromatic dispersion in standard single-mode fibers [Agr02].! The quantity
- 18 equal to the squared refractive index at position {z,y}:

erp =0 (f,2,y) = n?(f,r) (2.19)

with r = /22 + y?; the second equality is justified by the rotation-symmetric geometry of
an ideal fiber. The dependence of the refractive index n on the wavelength X is depicted
in Figure 2.1.

The second term in (2.18) is imaginary and governs the linear attenuation. Material
absorption limits the light propagation in the ultra-violet range (A < 0.4 um) through
electronic resonances and in the infra-red range (A > 2um) through molecular vibra-
tions [Agr01]. In the wavelength range used for telecommunications, however, the scat-
tering of light at local density variations and material impurities is the main cause of
attenuation. This effect is called Rayleigh scattering; it scales with the fourth power
of the light wave’s frequency, so that scattering (and thus attenuation) increases with

IThe other contributor to chromatic dispersion is waveguide dispersion, which has its origin in the
frequency-dependence of the transversal field distribution (2.37). By adapting a fiber’s refractive index
profile, the waveguide dispersion can be modified in order to design dispersion-shifted, -compensating or
-flattened fibers (cf. Section 2.2.1) [Agr02].
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Figure 2.1: Refractive index versus wavelength for fused silica (after [Agr01]).

decreasing wavelength [Sch04]. The attenuation curve of silica fibers exhibits a broad
minimum around 1.55 um, so that ,; can be regarded constant in many cases. As the
local density variations in the fiber have a homogeneous character on a larger scale, €, ;
is considered independent of the spatial coordinates. The attenuation (in dB/km) versus
wavelength is depicted in Figure 2.5.

In a perfectly cylindrical fiber, only the three diagonal elements of ?(1) are non-zero
and Xg(ﬁi)(f) = X?S;)(f) = Xg;)(f) In this case, all elements of € 5 are zero. Real
fibers deviate from this ideal because of fabrication imperfections or external influences
such as pressure or torsion. These imperfections, modeled by the tensor <€_T>7 A, lead to
birefringence, i.e. unequal propagation velocities of the cartesian components of a light
wave, and mode coupling, i.e. coupling of the cartesian components of a light wave.
Random birefringence and mode coupling are the cause of polarization mode dispersion
(PMD), which is discussed in Chapter 4. By allowing the elements of <s_r>7 A to have an
imaginary component, polarization-dependent loss (PDL) can be modeled as well.

Cubic material polarization

The third-order polarization ?(3) is related to the eletrical field through the cubic non-
linear susceptibility tensor %¢®) by

Pz'(g)(??t) =<0~ ///Xz(?l)cl(Tn7Tp7TQ)
00 0
B (7t — 1) Ep (Wt — 1) Ey(7 L — 7,) drpdrydry, (2.20)

where the Einstein summation convention was used again.

The cubic material polarization in the frequency domain is obtained from the Fourier
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transform of (2.20) as

e}

DT, f) =0 / / / O o s )

Ei(7, f0) BV 1) - BT ) - 6(f — fu— fo— o) dfudfpdf,, (2:21)

where

(e ole oo o}

Xff’,il (fos for fo) = / / / xﬁj-’,ll(tn,tp,tq)-e—ﬂ’ffnt"-e—ﬂ”fptv-e—ﬂ”fqtq dt,, dt, dt,. (2.22)
0 0 O

It is apparent from (2.21) that any combination of four frequencies that satisfies f =
frtf+f, contributes to the material polarization Pi(?’) (7, f). For this reason, the nonlinear
process that generates cubic material polarization is known as four-wave mizing (FWM)
or four-photon mixing. Relevant to optical communications are frequency combinations
of the form f= f,,+f,—f;, as these generate FWM products at frequencies within or near

the original signal band through x® (fo, fos = 14)-

AxNi

The cubic material polarization can be separated into contributions from electrons and
nuclei. While the electrons’ response to an incident light wave is instantaneous [Agr01]
and can be modeled by a single scalar parameter o, the contribution of the heavier nuclei
is described by two independent time-varying response functions a(t) and b(t) [Hel77].

?(3) is a 4'"-rank tensor with 3* = 81 elements. However, the number of non-zero
components is reduced to 21 by material symmetries, so that only the following elements
remain [Han95, Hel77]:

o+ QA(fp - fq) + B(fn - fq)

X3 (s fo— 1) = i (2.23)
X (o fpr— ) = T 24 _6fqio+ BUy = fa), (2.24)
X (s e fy) = T gq_)gj By = Ju) (2.25)
XD fos for—fa) = 30+ 2A(fn — fo) +2A(S, —6ff1)80+ 2B(fn — fo) +2B(f, — fq)’
(2.26)

where i, j € {x,y, z} withi#j. A(f) and B(f) are the Fourier transforms of a(t) and b(t)
respectively. Figure 2.2 shows A(Af) and B(Af) as a function of the frequency difference
for SiO, [Hel77].

The cubic nonlinear material susceptibility tensor ?(3) is responsible for all impor-
tant nonlinear fiber effects with the exception of Brillouin scattering. The Kerr effect,
responsible for degradations through self-phase modulation (SPM), cross-phase modu-

lation (XPM) and four-wave mixing (FWM), is caused by 3‘%{?(3)}, whereas S{?(?’)}
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Figure 2.2: Fourier transforms A(Af) and B(Af) of the time-dependent nonlinear sus-
ceptibility functions a(t) and b(t) governing the nuclear contribution to the third-order
polarization (after [Hel77]).

governs the power exchange between light waves through the inelastic process of Raman
scattering [Han95].

In the analysis of these effects, two scenarios need to be distinguished. The maximum
of —=3{A + B} depicted in Figure 2.2 lies at Af = 13.2THz [Agr01, Han95]. At this
frequency difference, the efficiency of the Raman process is maximized, while it can be
neglected for frequency differences smaller than 1 THz. In contrast, distortions due to
XPMS, FWM® and FWM? decline with increasing frequency spacing between interacting
waves; this will be explained in detail in Section 6.2.1.

The standardized spacing of channels in a dense wavelenth division multiplexing (DWDM)
system is up to 100 GHz [ITU02], so that the Raman contribution can be neglected in
the analysis of intra-channel effects and interactions between neighboring channels, and
Equations (2.23)-(2.26) can be approximated by assuming Af — 0:

X(3) _ o+ QA(O) + B(O)

A 2.27
i1jJ 6'80 ’ ( )

2These terms are introduced in Section 2.2.2.
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o+ 2A(0) + B(0)

3 3
Xijy = 62, = Xy (2.28)
(3) o o+ 23(0)
3 4A(0) +4B(0
xg) = 221240 - O (2.30)

Table 2.1 lists numeric values for the parameters determining the cubic nonlinear sus-
ceptibility. From these values, the nuclear contribution to the nonlinear cubic material
susceptibility is calculated to lie between 10.3% and 28.7%.

Table 2.1: Numeric values for the cubic susceptibility parameters in Asm V~3(taken
from [Han02]).

o 2.7.10733
A(0) 467107
B(0) 1.55- 10-34
max [S{A(Af) + B(Af)}] | 829107
max [S{A(Af)}] 7.8-107%
max [S{B(Af)} 5107

It must be noted that in general evaluating the material polarization requires a quantum-
mechanical approach [Agr01]. The results presented in this section were derived under
the assumption that the shift of (light) electrons and (heavy) nuclei can be separated in
the analysis of the susceptibility functions (Born-Oppenheimer approximation) [Han95,
Hel77]. This assumption can be made when the optical frequencies used are far away from
the material’s resonance frequencies. In optical fibers, this is the case in the wavelength
range from 0.5 um to 2 um, in which optical communication systems operate [Agr01].

2.1.3 The nonlinear Schroedinger equation

The general wave equation (2.9) governs the propagation of light in optical fibers but is not
well suited for the practical analysis of this propagation. For that purpose, a simplified
equation called nonlinear Schroedinger equation (NLSE) is used. In this section, the
NLSE is derived, starting from Equation (2.9).

Fiber modes

A first step is made by observing that the contributions of ﬁ(S) as well as of <€_,«>7¢ and é:ﬁ), A
to the material polarization ﬁ are small compared to that made by ?r)m. These small
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contributors are therefore neglected at first and added later as perturbative terms. With
(2.12), (2.15) and (2.18), the material polarization is simplified to

P=c (5, 1) E, (2.31)

and the wave equation becomes

AE +V (iv- (50(5m ~1). E)) = Srr 823 (2.32)

€0 6(2) ot?

Using (2.3) with (2.5), (2.32) can be written as

AE +V ( L (Ve E) = for 823 (2.33)

Ery 2 ot?

In general, Equation (2.33) is solved numerically. For the special case of a step-index
fiber, the refractive index n(r) is independent of the spatial coordinates in the fiber’s core
and cladding, so that the relative permittivity’s gradient is zero:

Ve, =0. (2.34)

Therefore, for step-index fibers, (2.33) reduces to the well-known wave equation of a
homogeneous transparent medium (homogeneous wave equation), which can be solved
analytically [AgrO1]:

2
B PE

. =0. 2.35
& ot (2.35)

Equation (2.33) can be solved to yield solutions of the form [Han95]
E(7,t) = E-F(z,y) /2t ¢-800, (2.36)

where E is the amplitude (in V/m) of the electrical field at frequency fo, ?(x,y) de-
scribes the transversal field distribution and §(fy) is the field’s propagation constant at
fo- Each solution of the wave equation is called a mode. For a given transversal profile
of the refractive index and frequency fy, the number of modes supported by the fiber

and their respective modal distributions F'(z,y) and propagation constants (fy) can be
calculated [Agr01].

In single-mode fibers, the difference between the refractive indices in the fiber’s core
and cladding is small. Such weakly guiding fibers support only two orthogonal fun-
damental modes above a certain cutoff wavelength. For typical values of single-mode
fibers — ncore — Neladding ~ 0.005 and core radius 7c¢ore = 4 pm — the cutoff wavelength
Aeutoff = 1.2 um [Agr01]. The fundamental modes are approximately linearly polarized,

F(z,y) 0
?x(m, y) = 0 and Fy(x, y) =1 Flx,y) |. (2.37)
0 0
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The transversal field distribution F'(z,y) can be obtained numerically for arbitrary re-
fractive index profiles. For a certain class of fibers with a power-law refractive index
profile, F'(z,y) can be approximated by a Gaussian distribution of the form [Mar78|

F(r) a e~ /ren)?, (2.38)

where r = /22 + y? and the effective fiber core radius r.g is a wavelength-dependent
fitting parameter that shall be discussed later in this chapter. The approximation (2.38)
applies to step- and graded-index fibers but is invalid for fibers with a more complex
refractive index profile such as dispersion-shifted fibers.

Nonlinear wave propagation

To obtain the guided modes’ transversal field distribution, the terms <€_T>Z and &/ E, A cOn-

tributing to ﬁ(l) as well as ﬁ () have been neglected. These relatively small terms have
a perturbative effect on the light wave’s propagation but do not significantly change the
modes’ transversal field distribution. Therefore, the guided modes still satisfy (2.33),

implying V - (5,1,74@) = 0. Using this condition, we can write the general wave equation

AE +V ( (Verr)-ﬁ) — 1823 = 821_3. (2.39)

2or Mo

61”7’

The perturbative terms contained in the right-hand side of (2.39) modify the wave am-
plitude along the propagation, so that the amplitude E in (2.36) becomes z-dependent.
A real-valued light wave of arbitrary polarization can be written as

B(7.0)=1

> (Ba2) ol y) + By(2) - Fylwy)) -2t 2005 4 e, (2.40)

where cc stands for the expression’s complex conjugate.

Inserting (2.40) into (2.39) yields (in complex notation) [Han95]

=7 -B(fo)- (%Ex(Z) Fo(ry)+ %Ey(z) : Fy(x,y)) ¢ (2mfot=5(fo)2)

:“05_; (—g-go-gr,i.ﬁﬁ ) teo-Ea-E(7,1)+ BO ) (2.41)

The perturbed field’s amplitude changes very slowly compared to the light wave’s oscil-
lations. Therefore, in obtaining (2.41), terms involving the second-order derivative of the
field amplitudes with respect to z have been neglected (so-called slowly-varying wave ap-
proximation) [Han95]. Additionally, since the transversal field distribution is unchanged
by the perturbative terms, those parts of the result that correspond to (2.33) equal zero
and do not appear in (2.41).

A major simplification is achieved by reverting the vectorial equation (2.41) to a scalar
description. The resulting model governs the propagation of identically linearly polarized
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light waves in a perfectly cylindrical fiber or, likewise, the propagation of light exciting
one of the fundamental modes of a polarization-maintaining fiber. The randomly varying
birefringence and mode coupling in real fibers, modeled through ?f A, entail two important
consequences:

> Birefringence, i.e. polarization-dependent propagation constants, and mode cou-
pling, i.e. the exchange of power between light waves with orthogonal polarizations,
lead to different frequency-dependent propagation constants. This linear effect is
known as polarization mode dispersion (PMD). The modeling of PMD and its con-
sequences on the capacity of fiber-optic communication systems are discussed in
Chaper 4.

> As seen from Equations (2.23)-(2.26), the state of polarization determines the
strength of nonlinear effects. Conversely, the polarization of a light wave can be
affected by power present at another frequency through the third-order susceptibil-
ity. Therefore, a complete model of light propagation in optical fibers requires two
coupled differential propagation equations [Han95]. In the simpler scalar model, it
is possible to account for the interplay of light polarization and fiber nonlinearities
by introducing an effective nonlinear susceptibility. This approach will be discussed
in Section 2.1.6. The effect of the interaction between PMD and nonlinearities on
optical communication systems is reviewed in Section 4.4.

To reduce the vectorial propagation equation (2.41) to a scalar description, we assume a
light wave exciting only one of the fundamental modes (2.37) and consider only that carte-
sian component of the field which coincides with the excited mode (the index specifying
the cartesian component is dropped in the following):

1
E(7.t) = 5 B(2) Flzy)- e 2mhot L e =3Bf0)z 4 e, (2.42)
Neglecting imperfections in the fiber geometry by omitting the term %_2, A, (2.41) becomes
92

0
=+ B(fo) 5_E(2) - F(a,y) - & Cr0=Aor) (=7 €0 eri- E(7,t) + PY).

(2.43)

= g

The cubic polarization term P®) in (2.43) can be evaluated assuming N + 1 monochro-
matic, i.e. unmodulated, waves co-propagating at frequencies fo, f1, f2,..., fn, Where
each wave is described by

1
EO(T 1) = o B (z) - FU (w,y) - e 7 P00 4 cc. (2.44)

The total electric field composed of N + 1 waves of the form (2.44) is inserted into (2.20).
Using the Fourier transform (2.22) and evaluating the result at f; yields

PO =2 S XD (fus for fa) - F P ay) - FO () FO (s, )

n7p7q

EM(2). EW)(2). BW(z). 2ot gm1(BUnHBU) A= (9 45)

fo
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where the summation considers all combinations of three frequencies f,, f,, f;, €
{£fo, £f1,..., £ fn-1, £ fn} that satisfy fo = fu + f, + o

Inserting (2.42) and (2.45) into (2.43) yields

—J - B(fo) - §E(z) L F(z,y) - e @rfot=Bfo)2)
4

— %kggr,i E(2)-F(z,y)-¢ (2m fot—P(fo)z)

k2
ST X o fa) O ) FO ) FO, )

n7p7q

CEM(2)- EW)(2). BW(z). 220t =9 (BUn)+BUp) 452 (2.46)

where 02 /0t%e??m/ot = — (21 )2 - €227 /ot was used and ko = 27 fo\ /o€ is the wavenumber
of light in vacuum. Multiplying (2.46) with j - e=7@m/0t=8(f0)2) / 3( f,) yields

D B) Flry) = - 2 B() )
kg E p q

n,p,q

. E(n) (Z) . E(p) (Z) . E(Q)(Z) . efj AB.Z7 (247)

where the attenuation coefficient o = k2 -¢,;/B(fy) was introduced and AB = B(f,) +
B(fp) + B(fq) — B(fo).

Equation (2.47) describes a propagating electromagnetic wave with field distribution
F(z,y). It can be simplified further by reducing the model to that of an equivalent plane
wave propagating within an effective area. For this purpose, (2.47) is multiplied by

F(z,y)
[ F?(z,y)dzdy’

where F'(z,y) is assumed to be real. Integrating the resulting equation over the entire
fiber cross-section, one obtains

(2.48)

. .« kg 3)

(z,y)dx dy

(2.49)

In a last step, (2.49) is multiplied by

\/fflmacydxdy7 (2.50)
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where

\/ff F2(x,y)dx dy\/ff F0?* (x dxdy\/ff F(P)Q(:v,y)dxdy\/ff F@?*(z,y)dx dy

Aep =
JI F @, y) O (2, y) FO (2, y) @ (z, y)dz dy
(2.51)
is known as the effective fiber core area. Using the following substitution for the field
amplitudes,
F?(x,y)dzd

\/H (z,y)dz dy (2.52)

and

F? (2, y)da d
B () = E® (= \/ff (z,y) iy (2.53)

(2.49) becomes

0 -

’ Z mx:rx(fn»fp’fq) E(n( )E(p)(z) _E(q)(z)_e—]ﬂﬂ‘z‘ (254)

n?p’q

The power of the electromagnetic wave described by (2.54) is calculated as [Han95]

1 N
P=—|E? A 2.55
57 1B Ao, (2.55)

where Z = Zy/Neore 18 the wave impedance, Zy = \/jig/eo being the impedance of free

space.

The effective core area Aoz is weakly dependent on the interacting waves’ frequencies.
When the Gaussian field approximation (2.38) is valid, (2.51) can be written as

m (o S A e o Sk
Aett(fu oo far fo) = 3 | Tegr et W e Tel g |- (2.56)
eff 7aeff Teff Teff

In the case where the spacing between the interacting waves is small, the difference be-
tween the effective fiber core radii is negligible and (2.56) becomes

A = 7155 (2.57)

A heuristic description of the frequency-dependence of r.g has been reported in [Mar78|
(numerical values taken from [Han95)):

(2.58)

1.619  2.879
Tof (V) = Teore - (0.65 + 15 + ) :

0



18 Chapter 2 m Introduction to fiber-optic communications

/A is the normalized frequency and 7o is the fiber

_ 2
where v = 277 core \/n?:ore - ncladding

core radius. For typical values of standard single mode fibers at A\ = 1.55 um, rog =~
5um [Han95, Agr01].

For any three frequencies £f,,, £f,, £f,, the sum term in (2.54) yields 48 combinations.
Not all of these are relevant for optical communication systems, as only products of the
form fy = f. + f, — f, affect frequencies f, within or near the original signal band.
Therefore, a further simplification is obtained from considering only these frequency com-
binations. For one particular case, e.g. fo = f1 + fo — f3, six out of the original 48
combinations remain. Equation (2.44) describes a real-valued signal, so that the ampli-
tude at the negative frequency is the complex conjugate of that at the positive frequency:

ECM(2) = EM(2). (2.59)

Applying this conjugation to one of the amplitudes, the summation can be further re-
stricted to only positive frequencies. This reduces the number of cases from six to two, so
that a factor 3 is introduced to account for the omitted products. Finally, (2.54) becomes

0 » a
gE(Z) =— §'E(Z)

_ (3) N) (p) (@)" —34B" %
Jot 3 X9 > F LEW(2)- B9 (2) e 2.60

n,p,q

with the phase mismatch

AB = B(fn) + B(fp) — B(fa) = B(fo)- (2.61)
In (2.60), a sufficiently close spacing of the interacting waves is assumed, so that the cubic
susceptibility can be replaced by its approximation (2.30).
NLSE in frequency domain
The model of co-propagating monochromatic waves is now extended to govern the prop-
agation of a modulated carrier

E(z,t) = E-5(2,t) - e22et . 718Uz (2.62)

where s(z,t) denotes the slowly varying complex envelope. Replacing the amplitude
E(z)-e77%$)2 in (2.60) by the Fourier transform of (2.62),

E(z, f)=E-S(z, f — fo)- 727U (2.63)

the propagation equation for the spectral component at frequency f is obtained as [Han95|

S S(auf = F - (BU) = B -5, = ) =~ S(2, f = fo)-

(e ole elie o]

k2 , * o
86( ) -3 Xa::mm |E‘ ///S . (nyp _ fc) .S (Zafq fc>
0(f = (futtfp— 1) d fnd fpd fa (2.64)
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The signal bandwidth of S(z, f) is very small compared to the carrier frequency f., which
is on the order of 200 THz. Therefore, a useful simplification of (2.64) is to set

kg _ hoso(2mf)? pogo(27 fe)?
86(f) 85(f) 86(fe)

and a = a(f) = af.). In addition, the phase constant f(w) is developed into a Taylor
series about w.=27 f.:

(2.65)

B(w)%ﬂ(wc)+61-(w—wc)+%-(w—wc)2+%-(w—w0)3+..., (2.66)

where

5, = d"B(w)
T dwm w=w,
Considering the usable bandwidth of optical fibers, the fourth and higher-order terms
in this expansion are generally negligible. The cubic term can be neglected in many
practical cases as well; however, it must be included when the signal is located near the
zero-dispersion wavelength of the fiber, i.e. when gy &~ 0. With these approximations,

(2.64) becomes

(2.67)

C%+Jﬂrw—%%w-%%w—%f+m%3w—wf)6&J—ﬁﬂ=

(e ole elle o]

_a. ey M0€0(27ch) 2

S(Zafn_fc)'s(z7fp_fc)' ( 7fq_fc)' (f_ (fn"‘fp_fq)) dfndfpde' (2-68)

Equation (2.68) is called the nonlinear Schrédinger equation (NLSE) in the frequency
domain.

NLSE in time domain

Applying an inverse Fourier transform to (2.68) yields [Han95]

3
(g—i-ﬂl%— BQ —ﬁ?’a).s(z,t):

0z 2 8152 6 O3
—%suw—ﬁ%%%@—3xmxmﬁr@ﬂr sen). (269)

Equation (2.69) is the nonlinear Schridinger equation (NLSE) in the time domain. This
term is used because of the NLSE’s similarity to the Schrodinger equation in quantum
mechanics.

The nonlinearity contained in the right-hand side of (2.69) can be attributed to the Kerr
effect, i.e. to a power-dependence of the refractive index, resulting in a power-dependent
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phase rotation of the signal. This becomes more obvious in a different formulation of the

NLSE (2.69):

0 0 ﬁg 82 53 83 « .
($+ﬂ1a— ?@—E@—FE '8<Z,t)——]-’y~P(Z,t)'S(Z,t). (2.70)

In (2.70),
1 .
P — — . |EI%. 2.4 2.71
(1) = g B 32, ) - A 2.71)
is the signal power (cf. (2.55)) and

el o 22 2. 270-3-Xidh
8/8(fc) e Aeff CO'Aeff 8'”2

core

(2.72)

n2

is called nonlinear coefficient [Sch04] or nonlinear parameter [AgrOl]. It has units of
W m™ In (2.72),

B(fc) ~ 2:_0]00 * Ncore (273)

was used. The nonlinear parameter ~ is proportional to the nonlinear index coeffi-
cient [Agr01] or nonlinear Kerr constant [Sch04] ny, measured in units of m? /W. The
total refractive index observed in the presence of the Kerr effect is

P
Aeff ‘
In practice, different fiber types are characterized by the nonlinear parameters v, no and

Aegr. Section 2.2.1 discusses these parameters as well as the linear coefficients governing
attenuation and dispersion for various fiber types.

(2.74)

Ntotal = Neore + N2

As mentioned above, (33 is usually neglected unless 35 is near zero. An additional simpli-
fication of the NLSE comes from observing the signal propagation relative to a reference
frame moving along the fiber with the signal’s group velocity

1 1
Vg=— = —. 2.75
By making the substitution
t'=t—z/v,=t— [Pz, (2.76)
the NLSE becomes
0 52 0 o / / /
— _,.2 =) . — .~ Pz ) . 2.
(5 -0 B+ 5) (et = =19 Plat)s(ant) 277
The literature (see e.g. [Agr02]) frequently defines a normalized signal
A~
a(z,t) =/ =2 B s(z,1), (2.78)

2Z
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such that |a|> = P. The NLSE can then be written as

0 ﬁg (92 (67 no__ |2 /
(& —J .?825/2 + 5) ‘G(Z,t) =17 ’a(zvt)‘ CL(Z,t). (279>

The corresponding frequency-domain NLSE governing the propagation of A(z, f) (the
Fourier transform of a(z,t)) can be obtained by performing a Fourier transform to (2.79).
Alternatively, (2.68) can be modified using (2.72), (2.76), (2.78), f, = f — f.+ f, and the
substitution [’ = f — f. to read

(5402w 3) A=

— - //A(z,ffl) 'A*(Z,fé)'A(Z,f’ 7 —i—fé) df;dfcll. (2.80)

—00—00

The prime signs denoting shifted time and frequency are dropped in the following. To
avoid confusion, this is noted throughout the thesis where necessary.

2.1.4 Raman scattering

Raman scattering is an inelastic scattering process, in which photons of a higher frequency
fp are absorbed by the material’s molecules (SiO, for fibers), exciting them from their
ground state to a higher energy state. Upon return to a lower energy state, the molecule
emits a photon with energy h- fg, where fg < fp. The effect was discovered by and
named after Indian physicist C. Raman. Allegedly, it was the beautiful blue color of
the Mediterranean sea during an extended ship travel in 1924 that inspired Raman to
investigate the scattering of light in fluids and gases. Raman received the Nobel prize
in 1930 for his discovery. Unknown to Raman, the effect named after him had been
predicted theoretically as early as 1923 by A. Smekal. Its experimental demonstration
was described in 1928 by Raman and, simultaneously and independently, by G. Landsberg
and L. Mandelstam [Sch04].

Figure 2.3 illustrates the energy exchange of light and matter during Raman scattering.
A photon of the so-called pump wave with energy h - fp is absorbed by a molecule, exciting
it from its ground state (G in Figure 2.3) to a virtual state (V), which for the molecule is a
forbidden energy state [Han95|. Therefore, simultaneously to the destruction of the pump
photon, a new (so-called Stokes) photon of energy h- fg is emitted and the molecule falls
down to a lower intermediate energy level (I), from where it returns to its ground state
relatively quickly (77 &~ 107'2s). The difference energy h-(fp — fs) = h- Af remains in
the material as vibrations. Unlike the effects governed by the real part of the material
susceptibility, Raman scattering is an inelastic process in the sense that an energy transfer
between photon and molecule takes place.

Stimulated Raman scattering (SRS) denotes the case where the emission of the Stokes
photon is stimulated by an already existing Stokes photon. In this case, the newly emitted



22 Chapter 2 m Introduction to fiber-optic communications

G

Figure 2.3: Energy diagram illustrating Raman scattering.

photon is identical to the stimulating photon in frequency, phase, polarization and direc-
tion. In practice, SRS has great relevance for optical amplification (see Section 2.3.2),
where signals at f. = fg are amplified using a pump wave at fp, and wavelength division
multiplexing (WDM) systems, where signal power is transferred from higher-frequency to
lower-frequency channels through SRS.

Much less frequently than the down-conversion of a pump to a Stokes wave, the inverse
process occurs. A molecule in state I absorbs a pump photon and, upon emission of an
anti-Stokes photon of energy h-(fp + Af), returns to its ground state.

The evolution of the pump and Stokes wave is described by two coupled differential
equations, which are derived from the propagation equation (2.60) in the following. In
the frequency relation fy = f,, + f, — f, assumed by (2.60), we set

fo=/fu=1Ffs —and  f,= [ = fp. (2.81)

Obviously, AB = B(fs)+B(fr)—B(fr) — B(fs) = 0, so Raman scattering is always phase
matched. With (2.81), the propagation equation for the Stokes wave at fg is

O sy ) me ey K vm) Sy AP 2

To obtain an expression for the evolution of the wave’s intensity during propagation
along the fiber using

0 - - 0 ~g)- G
&|E(S)(z)|2 = E9(z)- %E(S) (2) + B (2)- EE<S>(z), (2.83)

the propagation equation of E®)” (z) must be calculated. Using

fo=Jn=—1s, (2.84)

ES)(~fs) = ES(fs), (2.85)
X8 (= fs, o, —fp) = X8\ (fs, fp, = fr), (2.86)
B(—fs)=—=B(fs) and a(—fs)=a(fs) (2.87)
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yields
250 (2) = -2 5 ) 4y 6 XL B ) BOGR (289)

Inserting (2.82) and (2.88) into (2.83) results in

SIBS)P =~ alfs)- B9 )

2

- P b 7(S) 2 | i(P) 2. ‘

+6-

Wlth (2 55 =V NO/5O/ncore> kO - 27T-fS\/ Ho€o, and ﬁ(fS) ~ 27TfS v/ Ho€o 'ncore(fS)a

one obtains a propagatlon equation for the Stokes wave power:

2 PO(z) =~ a(fs) PO(2)
) 27TfS',uo . P(P)<Z) s)
T oiFs) e f7) S{X D ([, e, fp)}; P ORICRD)

Gr(fpfs)

Gr(fp, fs) is the Raman gain spectrum, whose shape has been obtained from measure-
ments, e. g. [SI73, SLJ84, MBG196]. Tt is related to the nonlinear susceptibility functions
depicted in Figure 2.2 through (2.90) and (2.26) for linearly co-polarized pump and Stokes
waves. Various analytical expressions for the Raman gain spectrum and the correspond-
ing Raman impulse response hg(t) have been reported [WK82, BW89, SGTHS89, HC02,
LAO06]. Essentially, all these approaches are based on phenomenological expressions whose
parameters are chosen such to provide an optimum agreement with the measured data.
The particularly precise model of Hollenbeck and Cantrell describes hr(t) as a weighted
superposition of damped harmonic oscillator functions reflecting the molecules’ vibrational
modes [HC02].

The Raman gain spectrum obtained from this model is depicted in Figure 2.4. It can
be seen that the Raman gain is maximum for a frequency shift Af ~ 13.2 THz, where it
reaches the value [SLJ84]

sm 532nm om?  fp
—- =9895 107" — - —.
W Ap W ¢

GRmax = 1.86-107" (2.91)
Hence, the amplitude of G'g scales linearly with the pump wave frequency. The maximum
value of —3{A+ B} given in Figure 2.2 has been obtained from (2.91) using the definition
of Gg in (2.90) and neore(fs) = Neore(fr) = 1.51 [Han95]. The scalar model used in the
derivation of (2.90) implies linearly co-polarized pump and Stokes waves. When this is

not the case, the Raman gain is reduced by a factor of 2 as discussed in Section 2.1.6. For
Ap = 1550nm, (2.91) yields GRrefmax =~ 3.2-107m /W. A slightly different value of
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Figure 2.4: Normalized Raman gain spectrum over Af= fp — fg.

GReff max =~ 3.1-107 m /W was reported in [MBG™96] for a standard single-mode fiber.
In general, the Raman gain spectrum and its maximum value vary among different fiber
types, depending on the fiber core doping and the fiber geometry [Sch04, Bro04].

Raman scattering reaches its maximum efficiency for Af = 13.2THz. In view of this
large difference, the frequency dependence of the parameters a (see Figure 2.5), neore (see
Figure 2.1) and Aeg used in (2.90) must be taken into account. A.g is obtained from
(2.51). Under the Gaussian field approximation, Aeg is given by (2.56) with (2.58). For
the case of one pump and one Stokes wave, this simplifies to

Ar = 2+ (r§ 4507, (2.92)

From (2.90), the evolution of the Stokes wave intensity 1¢*) = P) /A is

0

5. 17(2) = —alfs) - 19(z) + Gulfe, f5) - 1(2) - 19(z). (2.93)

Analogously to the derivation of (2.93), the equation governing the pump wave intensity
can be calculated as

0

£ 1) = —a(fp) - 1P(z) -

Ir
fs

where the minus sign on the left hand side applies to the case of a counter-propagating
pump wave, i.e. traveling in the direction of decreasing z.

“Gr(fp, fs) 1¥9(2) - 17)(2), (2.94)

In contrast to stimulated Raman scattering, spontaneous Raman scattering describes the
spontaneous emission of Stokes light. When the pump power exceeds a certain threshold,
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spontaneously emitted Stokes light becomes amplified, leading to significant conversion
from pump power to Stokes power. This critical pump power Piticalr is defined as that
value of the pump wave input power at which the entire pump power is converted to
Stokes power. It has been determined as [Smi72]:

Aeff
)
Leff : GR,max

where Leg = (1— e 2UP) L) /a(fp) is the effective fiber length (2.142) introduced in
Section 2.2.3. In obtaining (2.95), pump depletion (i.e. the second term on the right
hand side of (2.94)) has been neglected. Even so, the result for P.iticar is accurate, as
confirmed by [AY78], where (2.93) and (2.94) are solved analytically for the case o, =
a,. For counter-propagating pump and Stokes wave, the critical power is increased by
approximately 25%, so the numerical factor 16 in (2.95) becomes 20 [Smi72].

Pcritical,R ~ 16- (295)

For a long fiber, Ly — 1/a(fp). As an example, the critical power for a sufficiently
long standard single-mode fiber (SSMF) with Ap = 1550 nm, o = 0.2dB /km and A =
80(um)2 is Puiticalr ~ 0.92 W. This value is doubled when the polarization of the pump
wave is randomly scrambled (cf. Section 2.1.6).

As signal power levels are usually well below the values obtained for P.iticair, Sponta-
neous Raman scattering is not a critical issue in optical communication systems and is
not considered in this thesis.

2.1.5 Brillouin scattering

Brillouin scattering (named after Léon Brillouin) has its origin in the reflection of light at
material density fluctuations. These density fluctuations propagate through the medium
at the speed of sound and can be regarded as acoustic waves [Sch04]. A light wave is
partly scattered at the periodic density fluctuations of the acoustic wave. This scattering
process is maximized when the scattered light waves interfere constructively [Han95]. As
the acoustic wave propagates at the speed of sound, the scattered light experiences a
frequency shift through the Doppler effect. As in the case of Raman scattering, original
and scattered light wave are denoted by the terms pump and Stokes wave, and their
frequencies are fp and fg, respectively.

Caused by thermal motion, numerous acoustic waves of different wavelength and direc-
tion occur in the fiber. Consequently, a very small fraction of light is constantly scattered
into all directions through spontaneous Brillouin scattering. When a Stokes wave propa-
gating in opposite direction to the pump wave builds up through spontaneous Brillouin
scattering from a pump with high power (or if Stokes light is coupled into the fiber at
the opposite end, e.g. in a fiber that is used for bi-directional communication), the in-
terference of pump and Stokes waves will amplify the acustic wave through the effect of
electrostriction [VP02]. This case is called stimulated Brillouin scattering (SBS). Because
increasing the pump power beyond a certain threshold leads to a total reflection of the

light wave, SBS limits the maximum light power that can be used for transmission over
optical fibers [Han95.
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Analogously to (2.93) and (2.94), the evolution of the SBS pump and Stokes wave in-
tensities can be described as

D 1O) = alfs) - 196) ~ Galfe, f5) - 1) 19(2) (2.96)
and 5
D 102) = ~alf)- 170) = Golfo. ) 192) - TPE). (297)

where the inverted sign in (2.96) reflects the Stokes wave’s counter-propagation [Han95].
The Brillouin gain spectrum Gg(fp, fs) can be shown to have a Lorentzian shape [Agr01].
Compared to Raman scattering, the bandwidth of SBS is very small; typical values lie
in the range of 10 MHz to 30 MHz [VP02]. The Brillouin gain is independent of the
pump frequency, its bandwidth scales with Ap>. The SBS efficiency is maximized at
Af = fp — fs = 11 GHz, where it reaches a value of Gppax = 5-107"m /W for co-
polarized pump and Stokes waves [AgrO1]. This value is halved when the pump wave’s
polarization is completely scrambled [AgrO1l, Han95]. Precise numerical values charac-
terizing the Brillouin gain function have been obtained experimentally for various fiber
types [NTR97, YDT02].

As for Raman scattering, a critical power Peiticalp can be specified for Brillouin scat-
tering above which the spontaneous scattering process becomes significantly stimulated.
Various definitions for Piiticarp €xist [Sch04]; Smith defines Piiticalp as the pump power
level at which the backscattered Stokes wave power is equal to the pump power and

obtains [Smi72]

Pcritical,B ~21- L&f‘AATeﬂCB,m~ (298)
For standard single-mode fibers (SSMF) at A = 1.55 um, Peiticas ~ 3mW. As light
propagation beyond the critical power is effectively suppressed through SBS, this sets
a tight upper limit on the maximum launch power that can be used for transmission.
However, the power threshold given by (2.98) implies a monochromatic pump wave. When
the pump wave is modulated, the Brillouin gain reduces as the data rate (i.e. the spectral
width of the pump signal) increases. This relation is not observed for modulation schemes
with a discrete DC component, i.e. with a Dirac delta at f = 0 in the power spectral
density (PSD) function, so that the launch power of these modulation schemes is more
severely limited by SBS [Han95|. Signals that lack a discrete DC component — e. g. on-off
keying (OOK) signals with carrier-suppressed return-to-zero (CSRZ) pulses or duobinary-
coded signals — may still contain arbitrarily long sequences of identical amplitude levels,
so that SBS can occur temporarily. This can be avoided by use of DC-free line coding
schemes such as alternate mark inversion (AMI). Other means of raising the critical power
include intentionally increasing the transmit laser linewidth (so-called SBS suppression)
through frequency dithering and adapting the fiber parameters, e.g. increasing the core
diameter [Sch04].

Because the SBS gain reaches its maximum at Af ~ 11 GHz and the gain bandwidth is
small, Brillouin scattering does not induce any crosstalk between WDM channels. If the
maximum power in each WDM channel is below the critical value, SBS will not occur.
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Impairments caused by SBS are not considered in this thesis. It is assumed that the
precautions mentioned above are employed in a practical system so that SBS does not
occur. From a theoretic point of view, SBS defines upper limits on the PSD of the
transmit signal. The analysis of other nonlinear fiber effects such as XPM, FWM or
SRS caused by the cubic material polarization yields optimum (in the sense of maximum
channel capacity) transmit power levels that are below the SBS threshold. Therefore, SBS
plays a subordinate role in fiber-optic communication systems that have been optimized
according to information-theoretic results.

2.1.6 Effect of light polarization on the nonlinear propagation

As discussed in Section 2.1.3, two orthogonal fundamental modes are able to propagate
in a single-mode fiber. In deriving the scalar NLSE, an ideal geometry of the fiber was
assumed, so that the fundamental modes have identical propagation properties. In prac-
tice, however, all fibers exhibit some modal birefringence, i.e. a slight difference between
the effective refractive indices n, and n,, which has its origin in imperfections during fab-
rication or in external stress such as pressure or torsion [AgrO1]. Two coupled differential
equations are therefore required to completely describe light propagation in a single-mode
fiber [Han02].

Therefore, before the scalar model is used for the analysis of the fiber-optic channel,
its validity in the presence of random polarization changes needs to be discussed. Pri-
marily, birefringence and mode-coupling lead to the linear effect of polarization mode
dispersion (PMD), which is discussed in Chapter 4. Changes in the light polarization
due to mode coupling lead to a continuous power exchange between a light wave’s x-
and y-componenent. These cartesian components of the propagating waves determine the
strength of fiber nonlinearities, caused by the cubic susceptibility (2.23)—-(2.26) or (2.27)—
(2.30), respectively. Therefore, an averaged effective cubic susceptibility X éff) is expected.

In this section, the value of X é?f) is derived for different cases.

For a short segment of fiber whose length is smaller than the correlation length Loy,
(cf. Section 2.2.3), a constant birefringence profile can be assumed. In such a fiber seg-
ment (or likewise in polarization-maintaining fibers (PMF) which have an intentionally
strong birefringence profile that is kept constant over the entire fiber length), the state
of polarization (SOP) of a light wave coupled into the fiber will evolve periodically and
return to its initial SOP after the beat length Lp (cf. Section 2.2.3, (2.151)). Each such
fiber has two orthogonal SOP’s called eigenpolarizations in which light waves maintain
their SOP’s during propagation along the fiber. These eigenpolarizations are described in
Jones space [GK00] as [Han02]

e, = \/%TW ( 01 ) (2.99)

and

€, = \/%W < Clx ) . (2.100)
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On the Poincaré sphere, the eigenpolarizations are two points located on opposite sides
of the surface. During propagation along the beat length of the fiber, the SOP of a light
wave evolves as a circle around one of the eigenpolarizations on the Poincaré sphere’s
surface. Causes that lead to linear eigenpolarizations (located on the equator of the
Poincaré sphere) include an elliptical fiber core, bending of the fiber and transversal
pressure. For linear eigenpolarizations, ¢y, c, € R. Torsion of the fiber leads to circular
eigenpolarizations (located on the Poincaré sphere’s poles); in that case, ¢, = £7 and
¢y = FJ. Generally, the eigenpolarizations can be elliptical and ¢y, ¢, € C [Han02].

To determine the effective cubic susceptibility X e(?f), the fiber link is decomposed into
segments of length L.. Within each segment, constant eigenpolarizations are assumed.
The eigenpolarizations of successive segments are independent random variables. Because
the SOP of a light wave evolves rapidly according to the birefringence in each segment,
the SOP at the input of each segment can be considered completely random as well. As
light propagates through many such segments, its SOP draws a random trajectory on the
Poincaré sphere, resulting in an averaged cubic susceptibility. Because the effective length
Leg along which fiber nonlinearities are active (cf. Section 2.2.3) is much larger than the
correlation length L., an ergodicity argument allows to obtain X éf’f) as an average over
an ensemble of random fiber segments rather than as an average over the entire fiber

length.
Small frequency spacing

The first case consuiers four co-propagating waves at frequencies fo, f,, f, and f, with
identical input SOP €. When a sufficiently close spacing of the frequencies is assumed,
all four waves undergo identical polarization changes, i.e. the four waves are in a com-
mon SOP at every point along the fiber length (even though this SOP changes rapidly
and randomly during propagation). Neglecting rapidly oscillating terms that will not
yield significant nonlinear contributions, Hanik [Han02] obtains the following propaga-
tion equations for the wave amplitude at f, and for the orthogonal component at the
same frequency (which is zero at the fiber input):

D gy Y f kS 6. ema BB 2 (). B0 (5) . B (5).
82E< z) = 5 E(z) — 85(f0) 6. 2 EM () EP) (). B ()
(Dy- (€€l + € @yl") +4-D0- [@- 23 - [€- @) (2101)
a . ) k2 . . .
5 D10 == 5 Bul() sy 04 EY() - BV B ()

(D —2D,)- (€-23) - (€-2;) - (|@

2) L (2.102)

Using the ellipticity € and inclination ¢ that define a SOP, the vector products are calcu-
lated as

€€ = cos(e —ey) - cos(p— dy) 47 - sin(e 4+ &,) - sin(¢ — ¢y) (2.103)

X
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and
e - ?Z = cos(e + ¢, ) sin(¢p — ¢,) — 7 - sin(e — &) - cos(p — @y). (2.104)

In (2.101) and (2.102), the coupling parameters D) and D, are related to the cubic
material susceptibility by

— 1 ®3) 2 3) 2 2
Dy = (1+ |Cx|2>2 ’ (sz (1 + ley] ) +4sz lex]” + sz' (CX T )) (2.105)
and
1
D, =
(Tt fexl?) - (T lewl?)
<2X”” T X“]J (|0X|2 + |C¢|2 - 2) + sz ’ (Cx% + C;CTZJ)) ’ (2'106)

In (2.101) and (2.102), the polarization of the light waves € as well as the fiber’s eigen-
polarizations ?x, ?w are random variables. To obtain the effective susceptibility, the
expectation value of the propagation equations is calculated. It is assumed that all polar-
izations occur with equal probability; this corresponds to a uniform distribution on the
Poincaré sphere surface. Values for {e,¢} such that the SOP is uniformly distributed
on the Poincaré sphere are obtained from transforming random variables u, v uniformly
distributed in [—1, 1] as

5:%%—% and ¢ = —-v. (2.107)

s
2

When {¢, ¢} are chosen as in (2.107), the expectation of (2.101) and (2.102) over {e, ¢}
is independent of the fiber’s eigenpolarizations:

a ~ - Oé ~ kz —)AB 2z
BT (2)- BV (2)- B (2) - g (D + Dy), (2.108)
N——
Ra
0
557(1){8 EJ_( )} 0. (2.109)

The expectation value of the component orthogonal to the incident field is zero. Therefore,
it can be concluded that in a sufficiently long fiber no nonlinear polarization rotation is
created and a scalar description of the wave propagation is valid. In such a scalar approach,
however, information about the SOP of the propagating light is lost.

When the eigenpolarizations are orthogonal, the sum of the coupling parameters is con-
stant:

Dy+D, =X+ X

1041 ijg "

(2.110)
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It is interesting to remark that this sum is independent of the cubic susceptibility com-
ponent XZ(JSJ)z Taking (2.27) and (2.30) and the numerical values given in Table 2.1 yields

X

i1j]

/X%~ 0.358; (2.111)

the effective cubic susceptibility becomes

X% ~ 0905 x2) (2.112)
Using the approximation Xi(;é / XS;E- ~ 1/3 yields
8

a value that is frequently found in the literature [Agr01, MMOG].

The above calculation extends to the analysis of any four frequencies fo = f,, + f, — f4,
so that the propagation of multiple waves or of a signal with a continuous spectrum in a
real fiber can be described in a scalar approach by replacing the nonlinearity parameter
(Xi(f;z, v or ny) with the corresponding effective parameter (X e(?f), Veff OT Ngefr) Obtained

by multiplication with the numerical factor given in (2.112) or (2.113).

When the incident light waves are not identically polarized, X e(?f) can be further reduced

below the value given in (2.112) [Han02]. In these cases, however, the orthogonal com-
ponent does not vanish and a scalar approach is invalid. Assigning different SOP’s to
different spectral components of a signal as a means of reducing the overall nonlinear
impairment remains an interesting open research problem that is not considered in this
thesis.

Large frequency spacing

The case of a large frequency spacing between interacting waves, e.g. in a WDM system,
requires a separate treatment. Because the fiber’s birefringence is frequency-dependent,
the assumption that the interacting waves undergo identical polarization changes along
the fiber does no longer hold. In this scenario, FWM is effectively suppressed because of
the waves’ phase mismatch, and the dominating effect is cross-phase modulation (XPM),
i.e. the interaction of two waves with fo = fo + f, — fn (cf. Section 2.2.2).

Analoguously to (2.101) and (2.102), Hanik [Han02| derives propagation equations for a
wave at fo with SOP 4 interacting with a wave at f,, with SOP em through XPM:

(or- (02 [@ 2+ [ 2y @ 2if) +
Dy ([@0- @y [& e + [ e[ [¢- ")), 1)

6-E(2)- |[E™(2)

-
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6-B(2)- ‘EW(Z)‘

2 _ e .

(@€ - (€€, (2115)

As before, the effective cubic susceptibility is obtained by calculating the expectation value
of (2.114) and (2.115). In contrast to the case of waves with a small frequency spacing,
the expectation is calculated over uniformly distributed SOPs @ and €™ characterized
by independent sets of ellipticity and inclination angles (obtained as in (2.107)). The
result is independent of the fiber’s eigenpolarizations:

0 A
Ee i etn) pm) {aE(z)} - _ % E(z)

kg - 1
6-E(z) |[E™W(2)| -~ (Dy+D1), (2116
T8 (2) ‘ ()] -5 (Dy+D1),  (2.116)
X
0 ~
Eepem ptm {@EL(Z)} = 0. (2.117)

Again, the expectation value of the component orthogonal to the incident field is zero, so
that a scalar approach is valid.

In principle, the effective cubic susceptibility is frequency-dependent as seen in Figure 2.2.
However, for channel spacings at which XPM is a relevant effect (cf. Chapter 6), this
frequency dependence of R{X®} can be neglected and one can use (2.110) and (2.111)
to write

X% ~0.68 X7 (2.118)

1098

With the approximation Xff% / ()~ 1 /3 one obtains

1111

YO o2 O
eff 3

00"

(2.119)

Because the SOPs € and €™ evolve randomly (relative to each other), the effective cubic
susceptibility (2.118) is valid for any two input polarizations of the interacting waves.

For Raman and Brillouin scattering, analoguous calculations assuming a random polar-
ization evolution of pump and Stokes waves lead to [Han95, Agr01]

1
GR/Beff = 3 GRr/B- (2.120)

Table 2.2 summarizes the factors X, e(?f) /X ®) and Gr/B.et/Gr/B, respectively, used for a

1111

scalar description of wave propagation in a randomly birefringent fiber.
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Table 2.2: Summary of effective nonlinear parameters for various cases.

’ Effect ‘ Properties ‘ Factor ‘
SPM, small spacing; identical input polar- | 0.905 ~ 8/9
XPM, ization of interacting waves; identi-

FWM cal SOP evolution
XPM large spacing; any input polariza- | 0.68 ~ 2/3

tion of interacting waves; random
relative SOP evolution

SRS, SBS random relative SOP evolution of | 1/2
pump and Stokes wave

2.1.7 Solving the nonlinear Schroedinger equation

Closed-form solutions to the NLSE (2.79) and (2.80) exist only in the special cases where
either attenuation, dispersion or the cubic susceptibility can be neglected. A general
analytical solution to the NLSE can be obtained by a Volterra series expansion. Several
algorithms exist for the numerical simulation of the wave propagation described by the
NLSE [AgrO1]; all numerical results in this thesis were obtained by using the split-step
Fourier method.

Analytical solutions
When dispersion can be neglected, i.e. 3 = 0, the NLSE (2.79) can be written as
0
& ’ G(Z7 t) = _% ’ (I(Z, t) —J |CL(Z, t>|2 ) CL(Z7 t) (2121)
and has the time-domain solution
a(z,t) = a(0,t) - exp (—% : z) -exp (=7 -7+ 1a(0,0)]* Leg) , (2.122)

where L.g = (1 —e L) /ais the effective fiber length (2.142) introduced in Section 2.2.3.
In this case, the signal aquires a power-dependent phase shift along the effective length,
whereas the amplitude is not changed.

When the fiber is treated as a linear channel, i.e. v = 0, it is useful to write the NLSE
(2.80) in the frequency domain as

0 __x -
CAG ) = =S ) - g 2P AL f), (2123)
The frequency-domain solution is
Az, f) = A0, f) - exp (— (% + «%-aﬂ) «z) . (2.124)

When the fiber attenuation can be neglected, i.e. o = 0, the NLSE (2.79) has solutions
called solitons [Agr02]. In the anomalous dispersion regime, i.e. when [, is negative, soli-
tons are hyperbolic-secant-shaped pulses whose envelope either remains unchanged during
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propagation (fundamental soliton) or changes periodically (higher-order solitons). The
undistorted propagation of a fundamental soliton can be understood qualitatively by the
following consideration. Due to the non-constant group delay caused by chromatic disper-
sion, different spectral components of a pulse propagate at different group velocities; as a
consequence, pulses broaden. At the same time, pulses can be compressed by an interplay
of nonlinearities and dispersion. Because of fiber nonlinearities, the increasing power at
the leading edge of a pulse causes a red shift, i.e. a frequency decrease, whereas the
trailing edge is blue-shifted (cf. (2.122)). When the fiber exhibits anomalous dispersion,
the group delay decreases with increasing frequency, so that the blue-shifted trailing edge
of the pulse propagates faster than the red-shifted leading edge, resulting in pulse com-
pression. In fundamental soliton pulses, these two effects counteract each other exactly.
Because the balance of chromatic dispersion and fiber nonlinearities is disrupted by the
fiber attenuation, practical soliton systems require frequent optical amplification [Agr02].

Volterra series expansion

Nonlinear time-invariant causal systems with real-valued input z(¢) and output y(t) can
be described by the Volterra series [Unb98]

y(t) :Z /"'/hn(Tl,...,Tn)'x(t—Tl)"'x(t—Tn)dTl"'dTn, (2.125)

where h,, is called the n'-order Volterra kernel. The Volterra series is named after Ital-
ian mathematician Vito Volterra who developed it in 1887. The Volterra series can be
regarded as an extension of the Taylor series to systems with memory. In fact, when
hp=ay,-0(11)---(7,) the Volterra series becomes a Taylor series, describing a nonlinear
memoryless system. If h,, = 0 for all n>2, the Volterra series turns into the convolutional
integral of input function and impulse response of a linear time-invariant (LTI) system.

When the input function x(t) is a modulated passband signal with carrier frequency
fe, even-order terms (n =2,4,...) produce out-of-band signals at f =0 and at integer
multiples of 2f.. In systems where such out-of-band terms do not appear (as in optical
communication systems), all even-order Volterra kernels can be set to zero. The Volterra
series (2.125) describes the system response to a real-valued input signal. When the signal
is represented by a complex equivalent baseband notation, a modified Volterra series can
be used which lacks even-order terms [BBC87]. The equivalent baseband Volterra series
in the frequency domain is obtained by a Fourier transform. A detailed derivation can be
found in [Fel03]; the result can be written as



34 Chapter 2 m Introduction to fiber-optic communications

/ / Ha(z, fur s £)- AU A (DA — fu+ f) dfud fyt

—o0—00
o0

777 Hs (2, fos fos for o ) - AUf) AT (o) A(fy) -

—OR0—00—00—0Q

A FAf = fo+ fo— fo+ ) dfudfodfydfe + ..., (2.126)
where A(f)=A(z =0, f).

The solution of the NLSE (2.80) with a Volterra series has first been described by Ped-
danarappagari and Brandt-Pearce [PBP97]|. They use the generic NLSE formulation

9 Az, f) =Gulf) - Al )+

0z
//G:a(fn,fq,f)~A(z,fn)A*<z,fq)A(z,f—fn+fq) df,df,,  (2.127)

where GG; and Gj are the linear dispersion kernel and the fiber nonlinearity kernel, re-
spectively. By comparison with (2.80), these are

Gi(f) = —% —J -%w«ﬂ (2.128)

and
Gz =—7 7. (2.129)

When needed, (31 or higher-order terms of the expansion (2.66) can be included in Gj.
Likewise, GG3 can be used to model higher-order nonlinear effects such as self-steepening
or Raman scattering that arise from the frequency-dependence of X ©®) [PBP97].

To solve the NLSE, (2.126) is inserted into (2.127). By ordering and comparison of
coefficients with an identical number of integrals, linear differential equations for the
Volterra kernels are obtained. Using the boundary conditions Hy(z = 0,f) = 1 and
H,(z=0,f) =0,n > 1, unique solutions to these differential equations are obtained:

(GLUAGIF)+GLI~fatfa))2 _ oGa(f)2

Hole foo Jor 1) =Cslb Jor 1) G Gy G + G = Fa ) = Go)

! B2 o e @ty B2(wn—w)(wn—wq))z _ |
7 p( (2 75 ) ) &+ 7 Ba(wn — w)(wn = wy) e
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The (rather complex) solution for Hj is given in [PBP97]; kernels of higher order have
not been reported. Even-order kernels are zero because of the pass-band characteristic of
the optical channel on the one hand (see above), and because of the absence of even-order
fiber nonlinearities on the other. When the square-law characteristic of the photodiode
in a direct-detection receiver is included in the Volterra series, only even-order kernels
remain.

In the analysis of fiber links where o and 35 are not constant, e. g. when inline dispersion
compensation and optical amplification are considered, Hs can be defined by an integral
over the link length [Lou06].

The Volterra series solution, usually including only the first and third kernel, is used in
many analytical studies of fiber-optic communication systems. Its accuracy depends on
how nonlinear the system behaves. The error incurred by neglecting terms of order n and
higher is proportional to Pr2, where

Prax = max [a(0, 1) (2.132)

is the peak power of the optical field [PBP97]; when the only nonlinear kernel taken
into account is Hs, the error is proportional to Pé’& Feldhaus derives an upper limit of
10mW for the input power below which the error of the Volterra series truncated after
the third-order term remains small [Fel03]. This value is supported by numerical simu-
lations comparing the Volterra series with the split-step Fourier method [Fel03, XBP03].
Therefore, the (cubic) Volterra series is not of much practical use for systems with high
input powers or with many WDM channels.

Split-step Fourier method

Although the Volterra series approach can be used for a numerical evaluation of the
NLSE and several finite-difference methods have been proposed [Agr01], the algorithm
most commonly used for solving the NLSE is the symmetrized split-step Fourier (SSF)
method.

The idea of the SSF algorithm is to subdivide the fiber into differential segments of
length dz. In each segment, the linear and nonlinear fiber effects are assumed to act
independently, so that they can be evaluated using (2.122) and (2.124). To improve the
accuracy, the nonlinear operation is placed in the middle between two linear operations
cach acting on a fiber length dz/2 (symmetrized SSF). The solution for a differential fiber
segment of length dz can then be written as

B2 dz

ale +dz ) m F(F(F (Fla(z ) e (3075 F) oo (oG0P sierazor) - £)
6_(%+j.ﬁ72-w2)-¢;>7 (2.133)

where the optical power determining the nonlinear phase shift stems from the trapezoidal
approximation

z+dz dz
/ la(¢, 1)d¢ ~ 5 (Ja(z, ) + |a(z + dz, t)[?) . (2.134)
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Obviously, this term is difficult to evaluate as |a(z+dz, t)|* is unknown at first. Therefore,
la(z+dz,t)|* is set to |a(z,t)]* at first and the calculation is iteratively repeated until the

result converges (cf. Algorithm 2.1), which is usually the case after one or two iterations.

The choice of the step size dz presents a trade-off between accuracy and computational
complexity. It is common to use a variable step size that increases as the optical power is
attenuated during propagation. Various criteria for determining the step size have been
proposed [SHZMO3]|. A common method to obtain dz is to use to the maximum nonlinear
phase shift

ONL.max = max -y - la(z,t)|? - dz = Y Ppaxdz (2.135)

so that dz = ¢NLmax/(7Pmax). Commonly used values for ¢np max range from 1072 to
1072 to keep the global error small [SHZMO03].

Algorithm 2.1 summarizes the implementation of the symmetrized split-step Fourier
method.

Algorithm 2.1 Symmetrized split-step Fourier method.
€= 10_127 ¢NL,max =0.01,2=0
while z < Lge, do
Pax = max, |a(2,t)|27 dz = quL,max/(’YPmaX), s = 2+ ds
if z > Lﬁber then
dZ = Lﬁber - (Z — dz)’ Zz = Lﬁber
end if .
dy = F (Fa) e (307500 %)
ay = dy-e? Il dz
ar = F 7 (Fla) e (i3 %)
err = 1
while err > ¢ do
ag =a)-e? T (lal>+la1]?) - 42

ay = F~ (]: (az) '67(%+~7'%2'“’2)'7>

err = max; <|a17a2|2>
a1 = a2
end while
a(z,t) = a
end while

2.2 Optical fibers

2.2.1 Parameters

The linear and nonlinear propagation properties of fibers depend on the concentration of
dopants in the material, the refractive index profile, the effective area and, of course, the
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wavelength of the propagating field. The various types of single-mode fibers are typically
characterized by measureable parameters.

For a specific wavelength \., the fiber’s chromatic dispersion is specified by the dispersion
parameter D and the slope parameter S which are related to 8y and S5 (cf. (2.67)) through

dt,(N) co
b== ‘ =i 2.1
AN oy, — 2T (2.136)
and 2
d?ty(N) o 2mcy
5= e ’AZAC =g P ( ) P (2.137)

Standard single-mode fibers (SSMF) have a dispersion value of around 17 ps /nm / km at
their attenuation minimum at A = 1.55 um. Their zero-dispersion wavelength is approx-
imately 1.3 um. Dispersion-shifted fibers (DSF) have their zero-dispersion wavelength at
1.55 um. Because waves interacting through FWM are fully phase-matched in DSFs (see
below), this fiber type is not used in modern lightwave systems and is replaced by non-
zero dispersion-shifted fibers (NZDSF) which have a dispersion value larger than zero but
smaller than SSMFs. Dispersion-compensating fibers (DCF) exhibit normal dispersion
(i,e. fo >0 < D < 0)at 1.55 um. These fibers are used for optical dispersion com-
pensation. Figure 2.5 depicts the attenuation and dispersion curves for these typical fiber

types.
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Figure 2.5: Attenuation and dispersion curves of various single-mode fibers (after
[KLW08a]).

When the fiber is birefringent, different modes have different group velocities, leading
to a differential group delay (DGD) between two polarizations. Due to the stochastic
character of PMD, the DGD increases linearly with the square root of the distance (see
Chapter 4). The PMD parameter (in units of ps/vkm) of a fiber characterizes this
feature. New fibers can have PMD parameters smaller than 0.1ps /vkm [VP02].
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Fiber nonlinearities are specified by the nonlinear index coefficient ny and the effec-
tive fiber core area A.g. These parameters are combined in the nonlinear coefficient
v (cf. (2.72)). Taking the cubic susceptibility value in Table 2.1, ncoe = 1.445, Aeg =
80(pm)? and A\, = 1.55 um yields ng = 2.7-1072m? /W and v &~ 1.37 (W km)~*. Tt must
be noted that ny varies considerably among different fibers as a consequence of the doping
of the silica core with other materials such as GeO,; measured values for n, lie in the
range 2.2...3.9-107* m? /W [Agr01]. Additionally, the value of ny differs depending on
which nonlinear effect is used for measuring it. As the light polarization changes randomly
along the fiber, measurements yield an effective value ng e that is reduced by a factor
of 8/9 (cf. Section 2.1.6) compared with the value expected for polarization-maintaining
fibers. Agrawal recommends using a value of ngeg = 2.6-1072 m? /W for pulses wider
than 1ns [Agr01]; this corresponds to ny = 2.9-107*°m? / W.

For the numerical simulations in this thesis, the fiber parameters specified in Table 2.3,
taken from [DBDB02, VP02], have been used unless stated otherwise. The nonlinear
parameters v and nsy of Table 2.3 need to be weighted with the appropriate factors given
in Table 2.2 to account for random polarization changes.

Table 2.3: Typical parameters of different fiber types at A = 1.55 um.

Type o in % Din —P— | Sin - | Ay in (um)? | ngy in sz v in ﬁ
SSMF 0.2 17 0.057 80 2.9-10720 | 1.47
DSF 0.2 0.0 0.07 50 2.9-1072 | 2.35
NZDSF+ || 0.2 2.8 0.07 53 2.9-10720 | 2.22
NZDSF- || 0.2 —2.3 0.07 o7 2.9-1072° | 2.06
DCF 0.5 —80 —0.15 20 2.9-1072° | 5.88

2.2.2 Fiber effects

As detailed in Section 2.1, light propagation in optical fibers is affected by the linear and
cubic material susceptibility. None of the resulting impairments is genuinely stochastic or
irrevertible, so that any information-theoretic analysis of the fiber-optic communication
channel must include a discussion about which impairments to consider quasi-stochastic.
This discussion requires a clear distinction between the different effects.

Linear fiber effects comprise attenuation, chromatic dispersion and polarization mode
dispersion. Although the attenuation in optical fibers is small and has a very broad min-
imum, transmission over long distances requires optical signal amplification. Amplified
spontaneous emission (ASE) is the main source of noise in optically amplified transmission
systems (cf. Section 2.3).> While all other effects can — in principle — be inverted, noise

3Rayleigh scattering is not only the cause of attenuation, but also a source of interference through
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is a stochastic impairment. Therefore, the channel capacity of fiber-optic communication
channels is ultimately limited by attenuation.

Chromatic dispersion requires sophisticated electrical or optical equalization in practical
systems, but poses no theoretic limit to the transmission of data. However, because of the
interaction with nonlinear fiber effects, dispersion must be considered in the analysis of
nonlinear impairments. In addition, optical dispersion compensation using DCF's suffers
from the additional attenuation and nonlinearity of the DCF's.

Polarization mode dispersion is a random effect although when the PMD properties of
a fiber change slowly with time, they can be measured and PMD equalization can be
employed [Agr02]. The information-theoretic implications of PMD are treated in Chap-
ter 4. As chromatic dispersion, PMD interacts with fiber nonlinearities; this interaction
is briefly discussed in Section 4.4.

Nonlinear effects, which have their common origin in the cubic material susceptibility, can
be further divided into Raman scattering and the Kerr effect, i.e. the power dependence
of the refractive index, which leads to the interaction of four waves whose frequencies are
related by fo = f. + f, — f, as stated in (2.60).

> When fy # f, # f, # f, the interaction is termed four-wave mizing (FWM).
The case when f,, = f, so that fy, = 2f, — f, is called degenerate FWM. The
phase mismatch (2.61) of FWM depends on the dispersion difference between the
interacting waves; when D is large or the waves are spaced far apart, the exponential
term in (2.60) oscillates rapidly; in this case, the nonlinear contribution cannot build
up efficiently. In contrast, when D is small (or even zero as in DSFs), the nonlinear
contribution builds up coherently.

> cross-phase modulation (XPM) denotes the case where f, = f, which implies f,, =
fo. For XPM, the phase mismatch (2.61) is always AfS = 0, and (2.60) becomes

d - a - k2 . R
5 E() =5 B(z) =) 06 X5 Bk Y .‘E@)(Z)
plfp#fo

(2.138)

Hence, XPM causes a nonlinear phase rotation of the wave at f; which is propor-
tional to the power of the waves co-propagating at other frequencies. The value of
X e(?f) depends on the frequency spacing between the interacting waves and ranges
between the values given in Table 2.2. Because XPM is always phase matched, the
effect does not depend on the frequency spacing between the interacting waves.

> Finally, there is the nonlinear interaction of the wave at fo = fo+ fo — fo with itself;
this effect is called self-phase modulation (SPM). The propagation equation for this
case becomes

0z 2
double Rayleigh scattering. As this effect can be limited by inserting optical isolators along the link, it is
not considered as a fundamental impairment in this thesis [EKW10].

2
: (2.139)

3 X B()- |B(2)
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so SPM describes a nonlinear phase shift of a wave which is proportional to the
wave’s own power. As XPM, SPM is always phase matched.

In the context of WDM systems, the terms SPM, XPM and FWM are used somewhat
differently than explained above. To avoid confusion, we introduce the notation SPM?,
XPMS and FWM¢ to denote WDM effects.* SPM® refers to the temporally instantaneous
nonlinear phase shift by vP(z,¢) in the NLSE (2.79). When the term SPM? is used in
this meaning, the effect includes SPM, XPM and FWM as defined above. This “group” of
nonlinear effects that are all covered by the NLSE (2.79) are sometimes referred to as intra-
channel nonlinearities. In contrast, the inter-channel effects XPM® and FWM® describe
the nonlinear phase rotation in one WDM channel induced by the power present in another
and the mixing of the signals in four WDM channels, respectively. SRS also belongs to this
group of inter-channel effects. In Section 6.2.1, coupled differential equations governing
the simultancous propagation of WDM channels will be derived, and the effects SPM®,
XPM?®, FWM? and SRS will be discussed in this context.

Occasionally, the terms intra-channel XPM (iXPM) and intra-channel FWM (iIFWM)
can be found in the literature [EMR99]. They desribe the nonlinear interaction of over-
lapping pulses in the time domain through XPM and FWM, respectively [Sch04]. These
terms are not used in this thesis; the effects they describe are of course included in the
above description of fiber nonlinearities.

2.2.3 Length scales

In the analysis of the various effects that influence the propagation of light in optical fibers,
it is very helpful to define charateristic length scales to quantify the range in which certain
impairments are effective. Several length-scale arguments are implied in the derivation of
the NLSE; a rigorous discussion of optical fiber transmission based on length scales can
be found in [Men99.

A fiber segment of length L has an effective fiber length

fOL P(z)dz.

Leff = P(O)

(2.140)

The general definition of (2.140) is important in the context of distributed amplification,
cf. Section 2.3.2. For a passive fiber with

P(z) = P(0) e, (2.141)
(2.140) is reduced to
1 —e @ L

L= —— 2.142
ff . (2.142)

and specifies the distance at which the initial light power is attenuated by a factor of e.
Leg is a measure of the fiber length along which nonlinearities are effective (cf. e. g. (2.122)

4The letter © is used to refer to a WDM system effect.
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and (2.95)). For a SSMF with a = 0.2dBkm™" = 0.02- (log,ge) " km™' ~ 0.046 km ™,
the effective fiber length tends towards L.y = o' ~ 21.7km for long L. In optically
amplified multi-span systems, the total effective length is obtained as the sum of the
spans’ individual effective lengths. In a multispan system with Nga,s identical spans of
length Lgyan and lumped amplification, the effective length of the entire link is [Sch04]

1 — e_a * Lspan
Leff,total = Nspans : T (2143)

Two length scales that can give information about whether nonlinearities or dispersion
are dominant effects in a particular system are the dispersion length

1

Ly=——"#— 2.144
D= (2.144)

and the nonlinear length
1

7P’
In (2.144) and (2.145), B is the (arbitrarily defined) bandwith of the signal a(z,?) and
P =& {|a(0,t)*} is the average signal power. The NLSE can be expressed as a function

of Lp and Lyy,. To do so, it is useful to introduce a dimensionless unattenuated signal by
substituting

Lyt = (2.145)

alz,t) =u(z,t)-e 2% \/%, (2.146)

and a dimensionless time
T=1-B, (2.147)

where t refers to the reference time defined in (2.76) and its prime sign has been dropped
to improve readability. Using (2.146) and (2.147), the NLSE (2.79) can be written as

) ~sgn(By) QPu(z,T) e~ )
8ZU(Z’T) =] 2LD (97'2 J LNL |U(Za7_)|

cu(z, 7). (2.148)

The impact of fiber nonlinearities and dispersion can be assessed using this equation. The
dispersion term, i.e. the first term on the right-hand side of (2.148), vanishes for long
dispersion lengths; as seen from (2.144), this is the case when either the fiber’s dispersion
or the signal’s bandwidth is small. The nonlinear term, i.e. the second term on the
right-hand side, vanishes for long nonlinear lengths; from (2.145), this occurs when the
nonlinear parameter ~ is small or when the average signal power is low. Generally, four
propagation regimes can be distinguished for a fiber of length L [Agr01, Sch04]:

> L < Lp and L < Lyi,: Neither dispersion nor nonlinearities act significantly on
the signal.

> L < Lp and L 2 Lyi: Nonlinear effects dominate over chromatic dispersion. In
good approximation, the fiber channel can be described by (2.121).
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> L 2 Lp and L < Lyi: The propagation is dominated by chromatic dispersion. The
fiber can be considered a linear channel as in (2.123).

> L 2 Lp and L 2 Lyi: In this case, nonlinearities and dispersion act together and
their interaction must be considered.

The length scale of the efficiency of FWM is given by the coherence length [Sch04]

™

Leop = —— 2.149
VY] (2.149)

which determines the oscillation length of the exponential term in (2.60). When the phase
mismatch of the waves interacting through FWM is large, L., is small and the rapid
oscillation averages out the FWM product of the slowly varying amplitudes. In contrast,
when Ly, is large, the FWM products add up coherently to yield a significant distortion.
In fused silica at A = 1.55 um, L., = 2.8 m for a channel spacing of Af = 1000 GHz,
Leon = 286m for Af = 100 GHz, Leo, = 1144 m for Af = 50 GHz and L., = 2864 km for
Af =1GHz [Sch04].

The effect of XPM® between two WDM channels at \g and )\, is affected by the walk-off

length
1

- B- |tg()\o) - th‘p)”

where ¢,()\) denotes the wavelength-dependent group delay and B is the signals’ band-
width. L is large when B is small or when the channels are closely spaced. In this case,
a temporal section of one WDM channel (e. g. a pulse of width 1/B) acts on a temporal
section of another WDM for a significant length of the fiber; hence, XPM® causes signal-
dependent distortions. In contrast, when Ly is small, the signals’ group delay difference
is large, so that the XPMS-induced nonlinear phase rotation is averaged and becomes
proportional to the average power in the modulating channel.

Lw

(2.150)

It is more common in the literature to relate Lp and Ly to the pulse width instead of
the signal bandwidth and Ly, to the pulse power. The above expressions are of course
equivalent, but have been defined with the intention of greater generality, as signals do
not necessarily consist of pulse sequences but can be arbitrary band-limited waveforms in
general.

A length scale that characterizes a constantly birefringent fiber is the polarization beat

length
A A 2T 2m

ST T R A
As mentioned in Section 2.1.6, the SOP of a light wave evolves periodically in such a
fiber over Lg. In (2.151), Af is the difference between the propagation constants of the
two orthogonal fundamental fiber modes and An is the corresponding refractive index
difference; they are related through 8 = 27 fn/cy. The beat lengths of standard fibers are
typically ~ 1...10m, giving An ~ 10~7 [GMO05]. PMFs have beat lengths of a few mm,
whereas spun fibers can have beat lengths of more than 100 m [VP02].

(2.151)
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A statistic measure that characterizes long fibers which are subject to random birefrin-
gence and mode coupling is the correlation length Leo... It is defined as the length after
which a fraction of =2 of the light power has been transferred from the initial SOP to the
orthogonal SOP on average [GMO05]. The correlation length is useful to determine whether
a deterministic approach (assuming constant birefringence; L < Lco,) Or a stochastic ap-
proach (assuming random distortions; L >> L) is appropriate in the modeling of PMD
(cf. Section 4.1). The correlation length varies between a few meters and about 1 km; it
depends strongly on the way the fiber is deployed [GMO05].

2.3 Optical amplification

Despite the low attenuation in optical fibers, long-haul lightwave systems such as links
bridging transoceanic distances cannot be operated without periodic signal amplification.
For that reason, optical long-haul systems required expensive electrical regeneration until
the 1990s, when erbium-doped fiber amplifiers (EDFA) became available and amplification
could be achieved without optical-electrical conversion [KL02b, Ch. 5].

Today, EDFAs are widely deployed in optical communication systems. Raman amplifiers
play a vital role in theoretical and experimental reseach, but are not yet commercially
successful [Bro04]. A third type of optical amplifiers are semiconductor optical amplifiers

(SOAs) [Agr02].

2.3.1 Erbium-doped fiber amplifiers

All optical amplifiers are based on the same principle. The material is excited by a
pump wave, and incoming light is coherently amplified by stimulated emission. An EDFA
consists of a fiber that is doped with erbium ions (Er?"); other rare earth elements such as
holmium, neodymium, samarium, thulium and ytterbium can be used to build amplifiers
that operate at different wavelengths [Agr02]. As depicted in Figure 2.6, the erbium
ions exhibit energy levels that allow them to absorb light at 980 nm and 1480 nm. Ions

1520-

%80MM 1 480 nm 1570 nm

Ground state

Figure 2.6: Energy levels of erbium ions.

that are excited to the higher energy level (1) decay nonradiatively to the metastable
first excited state (2) within 74 ~ 1lus. The time constant of this metastable state
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is » = 10ms [KK97b, Ch. 2]. Light that is coupled into the erbium-doped fiber (in
which a sufficiently large population of erbium ions must be excited) is amplified through
stimulated emission: incident photons stimulate the excited ions to return to the ground
state upon emission of a photon of identical frequency, phase and polarization. However,
ions also return to their ground state spontaneously, thereby emitting photons of random
phase and polarization; this spontaneous emission becomes amplified upon propagation
along the doped fiber, a process that is known as amplified spontaneous emission (ASE).

ASE is the main source of noise in optically amplified lightwave communication systems.
The power spectral density (PSD) of ASE noise can in good approximation be modeled
as additive white Gaussian noise (AWGN) [Agr02, GLW63, GWL63]. The one-sided PSD
per polarization is given by

NASE =h- fs : (G — 1) *Ngp, (2152)

where G is the amplifier’s gain, h is Planck’s constant and fg is the signal frequency. For
typical signal bandwidths of optical communication systems, the frequency dependence
of Nagr can be neglected. The parameter ng, is the spontaneous emission factor; it is
related to the erbium ion population in the ground state Ngouna and in the higher states
Nexcited by [AgFOQ]

N, excited

(2.153)

Ngp = .
Nexcited - Nground

When total population inversion is achieved, ng, = 1.

The spontaneous emission factor can not be directly observed, so the optical amplifier
is characterized by its noise figure F,. This parameter is defined as the ratio of the
electrical signal-to-noise ratio (SNR) before the optical amplifier to the electrical SNR
after the amplifier. A calculation assuming an ideal receiver delivers [Agr04]

G-1 1

F,=2-ng e —l—G. (2.154)
In obtaining (2.154), a photodiode with maximum quantum efficiency was assumed and
thermal noise was neglected. The noise figure is lower bounded by F,, = 2; this value
is obtained when G' > 1 and ng, = 1, i.e. for total population inversion. Hence, the
(electrical) SNR is reduced by 3dB even for an ideal amplifier. The reason for this
reduction lies in the shot noise process generated during photodetection. In practice,
EDFAs achieve noise figures in the range 4...8dB [Agr02].

Inserting (2.154) into (2.152) yields

h-fs
2

1 1
NASE=§'h'fS'G'Fn— %§-h-fs~G-Fn, (2.155)

where the second (approximate) equality holds for G > 1.

In multispan systems, the total ASE noise power is the sum of the ASE noise powers pro-
duced by each amplifier along the link. When all Ng,ans spans have identical fiber lengths
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Lepan and identical gains G = e L=pa the one-sided ASE noise PSD per polarization
becomes
1 1 a- Ltotal
Nasgitota = = h- fs-G-F, - Nypans = = - h- fs- G- F, - ———. 2.156
ASE,t tal 2 fS P 2 fS ln G ( )

The optimum amplifier spacing (in the sense of minimum ASE noise) for such systems is
found by setting ONasE tota1/OG = 0 which yields G = e or Lgpan opt = 1/cv.

The gain of optical amplifiers depends on the signal and pump powers. When the signal
power is low and the pump maintains population inversion, the observed gain is known
as the small signal gain. When the input increases and G is reduced to half the small
signal gain (i.e. reduced by 3dB), the amplifier reaches saturation. Because of the large
time constant 75 of the metastable energy level, the gain dynamics of EDFAs is slow even
when the amplifier is in saturation. Therefore, the gain of an EDFA responds to the
average incident power and is thus transparent to variable data rates and modulation
formats [KK97b, Ch. 2|. Another important advantage of EDFAs is that their gain is
polarization independent [KK97b, Ch. 2].

2.3.2 Distributed amplification

EDFAs provide lumped amplification, meaning that the attenuation that accumulates
along the transmission fiber is compensated in an EDFA module containing a few (10. . .20)
meters of highly doped fiber. Although distributed amplification can be achieved by
(lightly) doping the transmission fiber itself, such distributed EDFAs are not used com-
mercially [Agr02]. In contrast, stimulated Raman scattering (SRS, cf. Section 2.1.4) is
widely (although not commercially) used for distributed amplification. For Raman ampli-
fication, a high-power pump wave is coupled into the transmission fiber; this can be done
in forward, backward or both directions. The silica material absorbs the pump power
and the signal wave is amplified through stimulated emission during propagation along
the fiber. The gain of Raman amplification depends on the frequency spacing between
pump and Stokes (signal) wave and is depicted in Figure 2.4. The evolution of signal and
pump wave is governed by (2.93) and (2.94), where the sign in (2.94) is determined by
the propagation direction of the pump wave.

In contrast to EDFAs, Raman amplifiers are polarization sensitive. The reason lies in the
polarization dependence of the cubic material susceptibility given by (2.23)-(2.26). The
gain that is observed when the pump’s polarization is orthogonal to the signal’s is one
magnitude below that for co-polarization [Bro04]. However, when the fiber length along
which amplification through SRS occurs is sufficiently long (as is the case in practice), the
polarization randomization discussed in Section 2.1.6 provides an effective gain (2.120) for
both polarizations. This averaging effect is even more effective for counter-propagating
signal and pump. Other means to reduce polarization-dependent gain (PDG) include the
use of two orthogonally polarized pumps. Hence, PDG is not an issue in Raman-amplified
systems [Bro04].

When the signal wave is amplified by a single co- or counter-propagating pump wave, the
evolution of the signal intensity is governed by the differential equation (2.93). Neglecting
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pump depletion, i.e. setting Gr = 0 in (2.94), (2.93) can be easily solved. The result,
expressed through the signal power P = It9 A4 is [Agr04]

Gr(fp, [s) - PP (z=0)- Leg )
Aeff 7

where Leg = (1—e L) Jap is the effective fiber length (2.142) and as = a(fs),
ap = a(fp).

PO (z) = PY(z=0)- exp (—045 -z 4+ (2.157)

Raman amplification provides distributed gain, where the local gain is given by

Gr(fp, fs)- P(P)(Z).

G(z) = 2.158
) L (2.15%)
To make the scheme comparable to lumped amplification, the on-off gain is defined as
PE(L) Gr(fp, fs)- PP(0)- Leg
Gon—off = P(S)(O) .e—asL = &Xp ( Aeff ) : (2159)

When the amplifier compensates the loss of a fiber of length L, Go, o = a- L. An effec-
tive noise figure F,, o is introduced as the noise figure that a (fictitious) lumped amplifier
delivering Gon—of and producing the same amount of noise would exhibit [Bro04]. This
effective noise figure of Raman amplifiers can lie below one (or zero in decibel units),
showing that a lumped amplifier (whose noise figure is lower-bounded by 3 dB in the
high-gain region) can never outperform distributed amplification in terms of noise perfor-
mance [Bro04, Agr04],[KL02a, Ch. 5]. On the other hand, the higher signal power levels
maintained by distributed amplification can increase fiber nonlinearities (cf. (2.140)).

ASE noise in Raman amplifiers has its origin in spontaneous Raman scattering (cf. Sec-
tion 2.1.4). Because of its distributed nature, it is sensible to describe the ASE noise
process by its differential autocorrelation function [Agr04] or by its differential power
spectral density (per polarization)

Nasi(2) = ngp - h- fs - G(2), (2.160)

Nep = (1 — exp (—ZBAY{))_ (2.161)

is the spontaneous scattering factor which depends on the phonon population in the
vibrational state (and thus on the temperature T') [Agr05]. At Af = |fp— fs| = 13.2THz
and 7' = 290 K, ng, ~ 1.13.

where

The differential evolution of ASE power is described by [PW02]

%PASE(z) = (G(2) — ag) - Pase(z) + nep - h- fs- G(2) - Bopt, (2.162)

where B, is the optical bandwidth of the Raman amplifier or of the optical filter.
The local gain G(z) depends on the pumping scheme (single or multiple co- or counter-

propagating pumps) and the solution of the differentional equation (2.162) requires inte-
gration over G(z) [PW02, Agr05].
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In comparison to a counter-propagating pump, when the pump co-propagates with the
signal, the noise performance is improved but fiber nonlinearities are enhanced because
of the increased maximum signal power. It can be shown that the best performance in
terms of the optical signal-to-noise ratio (OSNR) for a fixed nonlinear phase rotation ¢nr,
is obtained by maintaining a constant signal power along the link, i.e. when the local
gain equals the local loss [PW02]. Such a scheme can be achieved by cascaded pumps. In
this case, the ASE PSD (per polarization) of the entire link simplifies to

Nase = Nspay - I fs-as- L, (2.163)

where ngp, »y is an averaged value that depends on the various pumps and their spectral
distance from the signal [PW02].

The physics behind optical amplification and the engineering challenges that the design
of optical amplifiers implies fills volumes [Des02a, DBDB02]. Since the invention of EDFAs
in 1987, enormous progress has been made in the development of amplifiers [KL02a]. Am-
plifiers with a spectrally wide flat gain are available using multiple pump lasers at different
wavelengths and gain-flattening optical filters [Bro04, Agr02, KL02a]. In this thesis, am-
plifiers are considered ideal components in the sense that they provide a spectrally flat
and signal-independent gain and produce AWGN with PSD (2.155) or (2.160). The dif-
ference of noise in optically amplified communication systems to that in conventional
communications is three-fold:

> In multi-span systems, noise accumulates, resulting in a total PSD that is the sum
of the PSDs of all amplifiers along the link. The accumulated noise power depends
on the (lumped) amplifier spacing. For identical spans, Lspanopt = 1/

> ASE noise propagates with the signal (except in the case of a single-span system
with lumped amplification) and interacts with it through the fiber nonlinearities.
This interaction is discussed in Chapter 5.

> In direct-detection (DD) systems, the incoming light (which is signal and additive
noise) is squared, transforming the ASE into a non-additive non-Gaussian noise
process. DD is discussed in Section 3.6.3.

2.4 Other components

2.4.1 Photodetection

The conversion of light into electrical current at the receiver is achieved by semiconductor
photodiodes. A photon with energy hf generates an electron-hole pair if the photon
energy exceeds the semiconductor’s bandgap energy. The photocurrent ip is proportional
to the optical power P, i.e.

ip=R-P=R-|al, (2.164)
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where R is the photodiode’s responsivity (in A /W), and the normalized signal a(z,t)
in units of VW was defined in (2.78). Hence, the photodiode is a square-law device
that delivers the squared absolute value of the optical signal. The implications this has
for DD receivers are discussed in Section 3.6.3. To recover the electric field of the light
wave, coherent receiver structures must be used. Such receivers combine the incident
lightwave with light from a local laser so that the photodiode produces a beat term that
mixes the optical signal into the electrical baseband. Such coherent receiver structures
are introduced in Chapter 4.

Owing to the particle nature of light, photodetection causes shot noise. This noise
process sets the quantum limit of photodetection, i.e. the minimum number of photons
per bit required to achieve a given bit error rate (BER). This limit can be as low as 9
photons per bit for a BER of 107 for coherent receivers and phase-shift keying (PSK)
modulation [Agr02]. In addition, the electric receiver circuit produces thermal noise. Both
shot and thermal noise can be neglected in the analysis of optically amplified lightwave
systems, in which ASE noise dominates.

Photodiodes are characterized by parameters such as their quantum efficiency, dark
current, rise time and bandwidth. These parameters are not considered in this thesis.
The responsivity can range from R = 0.4 A /W in p-i-n photodiodes to R > 100A /W
for avalanche photodiodes (APD) [Agr02].

2.4.2 Lasers

The light source in optical communication systems are semiconductor lasers (light ampli-
fication by stimulated emission of radiation). They are based on the same principle of
stimulated emission as optical amplifiers. A resonator structure reflects part of the light,
so that a coherent light wave can build up inside the laser cavity if the pump power is
sufficient to compensate for the light that exits the laser and for internal loss. When the
reflection is not wavelength-selective, several longitudinal modes are emitted by the laser.
To obtain single-longitudinal mode (SLM) lasers, frequency-selective reflectors are used;
these can be grating structures that reflect light by means of Bragg diffraction or external
cavities [Agr02].

Because of phase fluctuations, the light wave generated by a laser is not perfectly
monochromatic. Commercial distributed feedback (DFB) lasers have linewidths in the
MHz range [Agr02]; external cavity lasers (ECL) can have linewidths as small as 100 kHz
[JMST09]. The demands on the laser linewidth depend on the data rate and the mod-
ulation format of the signal and are not satisfied by commercially available lasers in all
cases [Sei08]. In this thesis, the impact of the nonzero laser linewidth is not considered.

2.4.3 Modulators

At high data rates, lasers are not directly modulated because of the unwanted frequency
chirp they produce [Agr02]. Instead, external modulators are used to modulate the
monochromatic laser light.
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In a Mach-Zehnder modulator (MZM), schematically depicted in Figure 2.7, unmod-
ulated laser light with amplitude Ej, is split into two branches. A waveguide material

uy (t)

>
=

Eout (t)

us(t)

Figure 2.7: Structure of a dual-drive Mach-Zehnder modulator.

showing a strong electro-optic effect is used, commonly LiNbO3 [Agr02]. As voltages u;(t)
and usy(t) are applied to the branches, the refractive index of the material changes and a
phase shift is induced. The complex envelope of the recombined branches can be written

as [KWMT05]

W (2.165)

Eout(t) = Fj, - cos <7T ‘ (UI(t) 2 UQ(t))) e’ R

where V. denotes the voltage difference u;(t) — us(t) that generates a phase shift of 7
between the two branches and
uy () — uz(t)

is the asymmetry factor. To generate pure amplitude modulation, the MZM is driven in
push-pull configuration by selecting u;(t) = —uq(t) = u(t)/2, i.e. = 0, resulting in

0= (2.166)

Eout(t) = Fy, - cos (Wz—?/frt)) . (2.167)

The dual-drive MZM reaches every point in the complex plane and can — in principle —
be used to generate arbitrary waveforms. However, in practice, triple MZM structures
are less error-prone [WFBP06]. A triple MZM consists of two separate MZMs in push-
pull configuration for the signal’s in-phase and quadrature component, respectively, and
a phase modulator that imprints a 7/2 phase shift onto the output of the quadrature
branch’s MZM. The resulting signal is described by

A

Eou(t) = Ezi“ : <cos (W;‘L}:w) — j cos (%‘Z@)) . (2.168)

Two parameters characterizing practical external modulators are the extinction ratio and
the modulation bandwidth. They are not considered in this thesis, so MZMs are modeled
as ideal elements with nonlinear transfer function (2.167).
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2.4.4 Other optical components

Optical couplers can be used to split or combine optical signals as depicted in Figure 2.8.
An optical coupler with a power splitting ratio of 1/2 (3-dB coupler) is modeled as [Agr04]

(em0)-7 (1) (5, 2169

Eout

T4

Ein

e e e — o

Figure 2.8: Optical coupler.

If this is mathematically more convenient, it is common to use different coupler transfer
matrices such as (the factor of 1/v/2 omitted) [Ho05a, EKW*10]

Go) () (o) = (40) em

Other components of optical communication systems, such as optical filters, polarization
controllers, polarization beam splitters, multiplexers and optical hybrids are introduced in
the text where they appear.

2.4.5 Electrical components

The aim of optical communication systems is to transmit information which is encoded
and stored in electrical signals. Therefore, the electrical transmitter and receiver are
crucial components of lightwave systems. Frequently, the limited speed and bandwidth of
the electrical components are the limiting factor in the design of optical communication
systems.

This thesis does not consider limitations set by electrical components. The exponential
development in the performance of electronic equipment described by Moore’s law renders
the persistence of such limitations in the future unlikely. Noise generated by electrical
components is of course an exception. However, as mentioned before, shot noise generated
during photodetection as well as thermal noise originating from the electric receiver circuit
are subordinate noise sources compared to ASE noise and are therefore neglected in this
thesis. In optical communication systems that are not optically amplified, they are of
course the limiting factor.
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2.5 Summary

This introductory chapter is intended to introduce the fundamentals of optical communi-
cation systems on a physical level. A focus is put on the propagation of electro-magnetic
waves in optical fibers. In summary, the main points of this chapter that later chapters
will build upon are:

>

Light propagation in optical fibers is governed by Maxwell’s equations. The nonlin-
ear Schroedinger equation (NLSE) describes the propagation of a signal’s envelope
in a nonlinear dispersive fiber. To derive the NLSE, small terms of the material
susceptibility are treated as perturbative terms.

With the exception of Brillouin scattering, all relevant fiber effects have their origin
in the material susceptibility y. Due to the high signal intensities in single-mode
fibers, the third order in a series expansion of xy must be taken into account. Even-
order terms equal zero because of material symmetries in SiOs.

The linear material susceptibility causes attenuation, chromatic dispersion, birefrin-
gence and mode coupling. The cubic material susceptibility is responsible for the
Kerr effect, causing self-phase modulation (SPM), cross-phase modulation (XPM)
and four-wave mixing (FWM), and for Raman scattering. The relation of all these

effects to the susceptibility function was derived. The frequency-dependence of ?(3)
can be neglected in many cases.

Stimulated Brillouin scattering limits the peak power in fiber-optic systems. Because
of its narrow gain, it does not cause WDM channel interference.

A light wave’s polarization is not changed through nonlinear effects on average.
Therefore, a scalar description of the light propagation in optical fibers is valid.
The cubic susceptibility is reduced to an effective value by random polarization
rotation. This value depends on the frequency spacing between interacting waves.

The NLSE has a closed-form solution only for few special cases. A Volterra series
expansion can be used for a formal solution; its third-order term represents an
approximate expression for the distortions imposed by fiber nonlinearities in the

presence of dispersion. The split-step Fourier method is used for a numerical solution
of the NLSE.

Nonlinear fiber effects were introduced on a system level. Characteristic length
scales were defined.

Photodiodes represent a square-law element in direct-detection receivers, i.e. only
the power of the electrical field is received and information about the phase is lost.

The capacity of lightwave systems is ultimately limited by fiber loss and the ASE
noise from optical amplifiers used to compensate it. In the presence of ASE noise,
shot and thermal noise play a subordinate role and can be neglected.






Elements of information theory

The optical fiber channel introduced in Chapter 2 offers an incomparably large usable
bandwidth and a very small attenuation but impairs the signal through nonlinearities.
How much data can we reliably transmit over such a channel? This type of question is
answered by information theory, a field that builds upon Claude Shannon’s 1948 publi-
cation A mathematical theory of communication [Sha48]. Shannon showed that there is
a maximum rate (the channel capacity C') at (or below) which communication is possible
with arbitrarily small error probability. For the band-limited channel with additive white
Gaussian noise (AWGN), Shannon derived

P
CcC=W-1 1 - 3.1
where W is the channel bandwidth, Ny the power spectral density of the equivalent
baseband channel and P; the average signal power.

In a very simplified model that neglects all nonlinear effects, we can consider the fiber-
optic channel with optical amplification as an AWGN channel. Because of the fiber’s large
bandwidth, it is tempting to let W — oo, which transforms (3.1) into

P,
Ii =—.
W25 T Ny

(3.2)

Using (2.163) to approximate Ny, we obtain a capacity-distance product (per polariza-
tion and normalized to the input power) of C'- L/Py=(ngpay - h- f-a) ' x2.2-10% bit/s
~km /W (for ngay ~ 1.13, f ~ 193THz and o = 0.2dB /km). Although it must be
noted that C' converges to (3.2) only for unrealistically long distances (Ny large) or large
bandwidths W, the numerical result nevertheless gives an idea of the enormeous channel
capacity of optical fibers.
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The first part of this chapter (Sections 3.1-3.2) provides the background on information
theory that is required for a more substantiated analysis of the fiber-optic communication
channel. In Section 3.1, basic terms of information theory are introduced. Section 3.2 con-
tains a discussion of the channel capacity and provides capacity results for some important
channel types.

In the second part of this chapter (Sections 3.3-3.6), a very intuitive and useful decompo-
sition method for mutual information is developed. This method is derived and illustrated
in Section 3.3. In Section 3.4, the decomposition method is applied to the AWGN channel
with Gaussian input and phase-modulated input as well as for discrete input constella-
tions. Section 3.5 contains a compact introduction to directional statistics. The reviewed
terms and methods are required for the treatment of phase noise. Section 3.6 discusses
channels that are only partially able to convey information encoded in the phase of the
signal. Such channels are said to be partially coherent. Examples include systems affected
by phase noise as well as optical communication systems with direct-detection receivers.
Section 3.7 summarizes the results of this chapter.

3.1 Fundamentals

3.1.1 Entropy

Even before 1948, information was regarded (e.g. by R. V. L. Hartley and R. A. Fisher)
as the randomness of a random variable. In this historical context, Shannon developed his
information theory as a probabilistic concept. Shannon defines the entropy of a random
variable X with realizations x from the support X as

H(X)=Ex {log } Z P(z)log P(z), (3.3)

where P(X) is the probability mass function (PMF) of X, i.e. X ~ P(x). It is common
to use either the natural logarithm, leading to a result in nats, or the binary logarithm,
which yields the entropy in units of bits, short for binary digits.! The entropy can be
seen as a measure of the average uncertainty in the random variable; it is the number of
bits required on average to describe the random variable [CT91]. Shannon chose the term
entropy because of the similarity of (3.3) with the entropy in thermodynamics [Sha48].
His work fueled the discussion of connections between physics and information theory and
fundamental physical limits for the storage, representation and processing of information.
Significant contributions to this field were made by L. Brillouin [Bri56], who is well-
known in optical communications for the scattering effect named after him (Section 2.1.5).
Entropy satisfies H(X) > 0; it is maximized for uniformly distributed random variables.
In that case, H(X) = log|X| (|X]| being the cardinality of X’), a quantity sometimes
referred to as Hartley entropy [Har28].

!Shannon attributes the term bits to J. W. Tukey [Sha48].
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The entropy rate of a discrete stochastic process, X1, X, ..., is defined as
1
H(X) = lim —H(Xy,Xs,...,X,). (3.4)
n—oo M,

If the process is stationary, (3.4) can be written as [CT91]

H<X) = lim H<Xn|Xn—17 Xn—27 Xn—37 . ) (35)

n—o0

If X3, Xs,... are independent and identically distributed (i.i.d.) random variables, the
entropy rate is calculated from (3.3). Entropy acquires its significance from Shannon’s
source coding theorem, which states that the data rate of a source cannot be reduced by
data compression to a value below the source’s entropy rate.

The joint entropy of two random variables X,Y is defined as

==Y > Plx,y)log P(z,y), (3.6)

reX yey

the conditional entropy is defined as

H(X|Y) ==Y P(x,y)log P(z[y). (3.7)

reX yey

Similarly to (3.3), (3.6) and (3.7), the (joint, conditional) differential entropy of contin-
uous random variables X ~ p(x),Y ~ p(y) are defined as

M@=—Ap@bMMM% (3.8)

—//bmwmwmwmw, (3.9)

h(X]Y) = // x,y) log p(x|y)dzdy. (3.10)

Differential entropy is less intuitive than the entropy of a discrete random variable. In
particular, it can become negative. For example, the differential entropy of a complex
Gaussian random variable, given in (3.24), becomes negative for Py < 1/(me).

3.1.2 Mutual information

Mutual information is the amount by which the uncertainty about a random variable can
be reduced by observing another random variable:

I(X;Y) = H(X) - H(X]Y) = HY) - HY|X)
P(z,y)
:Zszylogp<) (

zeX yey

(3.11)
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Mutual information is symmetric, i.e. I(X;Y)=1(Y; X), and non-negative, i.e. I(X;Y)
> 0, with equality if and only if X and Y are statistically independent. The mutual
information between continuous random variables has the same properties. It is defined
as

I(X;Y)=h(X) - h(X]Y)= // p(z,y log @ ())dxdy (3.12)

Conditional mutual information between discrete random Varlables is defined as

[(X;Y|2) = H(X|2) - HX[Y.2) = >33 Pla,y,2)log 0 s e Plylz) g

TeX ye) zeZ ‘ ) (y’ )

Similary, the conditional mutual information between continuous (or between continuous
and discrete) random variables can be defined. The chain rule of information is stated
in terms of the conditional mutual information as [CT91]

I(X1, X, ..., X} Y) = ZI(Xi;Y|Xi—1aXi—2> o Xa). (3.14)

i=1
The mutual information between discrete random processes,

1
[(X:Y) = lim —I(X1, Xs,...; Y1, Ys,...), (3.15)

n—oo N,
is called the information rate between the processes [ALVT06].

An important property of mutual information is given by the data processing inequality.
Let X, Y, Z be random variables that form a Markov chain in that order; this is the case
if and only if X and Z are conditionally independent given Y. Then [CT91]

I[(X;Y) > I(X: 2). (3.16)

The important implication of (3.16) is that it is impossible to infer any additional infor-
mation about X (e.g. a channel input) by manipulation of Y (e.g. the channel output):
I(X;9(Y)) < I(X;Y). To satisfy (3.16) with equality, the function g : Z = ¢g(Y) must
be injective, so that I(X;Y|Z) = 0.

A useful measure of the “distance” between probability distributions is given by the
Kullback Leibler (KL) distance or relative entropy or divergence. For PMFs P(X) and
Q(X), it is defined as

D(PQ) =) Plx ; (3.17)

reX
The KL distance is always non-negative, D > 0, with equality if and only if P = Q.
However, as it is not symmetric and does not satisfy the triangle equation, it is not a true
distance measure. It is instructive that the mutual information between X and Y (3.11)
can be expressed as the KL distance between the joint PMF P(x,y) and the product of
the marginal distributions P(z)P(y), i.e. the joint PMF under statistical independence

of X and Y, as I[(X;Y) = D(P(x,y)||P(z)P(y)).
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3.2 Channel capacity

3.2.1 Introduction and calculation

In contrast to the physical channel description of Chapter 2, it suffices for information-
theoretic purposes to characterize a channel with time-discrete input X and output Y by
the conditional PDF p(Y'|X). This definition incorporates a variety of practical channel
types: memory-less channels with i.1.d. input can be characterized by p(y|z); continuous-
time channels (so-called waveform channels, of which optical fibers are an example) can
be discretized in time by means of the sampling theorem; discrete channels with finite
input and output alphabet X and ) are described by the conditional PMF P(Y|X).

Shannon showed [Sha48] that the channel capacity
C=max[(X;Y) (3.18)
p(X)

is the maximum rate at which communication is possible with arbitrarily small error prob-
ability. Shannon offered an intuitive geometrical proof (sphere packing) of this channel
coding theorem in 1949 [Sha49]. The capacity of a discrete-time channel is usually given
in units of bits per channel use or bits per symbol. If the channel is continuous-time, the
number of samples per time permitted by the sampling theorem determines a capacity
value in units of bits/s. Dividing this value by the channel bandwidth yields a capacity
value in units of bits/s/Hz. If the channel bandwidth equals the symbol rate, the capacity
in bits/s/Hz is identical to the capacity in bits per symbol. In this thesis, the unit of ca-
pacity will be clear from the context. If the input symbols are i.i.d. and the channel does
not introduce memory (i.e. statistical dependencies among the symbols), (3.18) becomes

C=max[(X;Y). (3.19)

p(X)

The maximization in (3.18) or (3.19) is performed over all possible input distribu-
tions p(X) or p(X), usually under some constraint such as an average power constraint,
E{|X|*} < P, or a peak power constraint. Although I(X;Y') is a concave function of
p(z) [CTI1], the maximum can be difficult to find because of the large number of possible
distributions satisfying the given constraint(s). An analytical solution may be found using
the method of Lagrange multipliers or the Kuhn-Tucker conditions. For numerical input
optimization, the iterative Blahut-Arimoto algorithm may be used [CT91]. In general,
there is no closed form solution for the capacity [CT91].

In many cases, e.g. for channels with additive noise, H (Y| X) is independent of p(x), so
that the capacity-achieving input distribution can be found by maximizing the entropy
H(Y'). The entropy of a random variable X ~ p(X) satisfying m constraints of the form

/X (@) fi@)dr =i, 1<i<m, (3.20)

is maximized by the input distribution

p(z) = Motz Aifil@) (3.21)
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where Ao, ..., A, are chosen such that (3.20) and [, p(z)dz = 1 are satisfied [CT91].

The following maximum-entropy distributions appear later in this chapter:

> The Gaussian distribution maximizes the entropy of a continuous random variable
under an average power (variance) constraint.

> The Maxwell-Boltzmann distribution maximizes the entropy of a discrete random
variable under an average power (variance) constraint. This distribution varies from
a uniform to a Gaussian distribution.

> The uniform distribution maximizes the entropy of an unconstrained (circular) ran-
dom variable.

> The von Mises distribution maximizes the entropy of a circular random variable
under a circular variance constraint.

These four distributions are all special cases of (3.21).

3.2.2 Important channel types

The additive white Gaussian noise channel

The time-discrete additive white Gaussian noise (AWGN) channel with complex-valued
input X and output Y is described by

Y =X+N, (3.22)

where N is a sampled zero-mean circularly symmetric complex-valued white Gaussian
noise process with variance per real dimension o2, denoted by N ~ N¢ (0,202):

p(n) = # exp (— Feini 2;%{”} ) . (3.23)

If the input is unconstrained, the capacity of this channel is infinitely large. It is sensible
to assume an average power constraint, i.e. £{|X|?} < P,. In that case, a Gaussian input
X ~ N¢ (0, Ps) maximizes the differential entropy (3.8), which becomes [Sha48, CT91]

h(X) = log(mePs). (3.24)
The capacity of the AWGN channel can be calculated as

C =maxh(Y)— h(Y|X) =maxh(Y) — h(X + N|X)

p(z) p(z)
= m(aich(Y) — h(N) = logy(me( P, + 202)) — log,(me20?)
p(x

P
=] 1 * . 2
0g5 < + 20%) (3.25)
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Equation (3.25) yields a result in bits per symbol or bits per channel access. It is remark-
able that this result depends only on the signal-to-noise ratio (SNR) P,/(202).

According to the sampling theorem, the number of independent samples per time unit
that a continuous-time channel can carry is given by its bandwidth W. Hence, the capacity
of the complex-valued band-limited waveform AWGN channel (3.1) is obtained from (3.25)
by multiplication with the channel bandwidth W, yielding a result in bits/s. Divided by
W, the waveform channel capacity in bits/s/Hz is given by (3.25). This differential
expression is useful for channels with frequency-dependent SNR (discussed later in this
section) or channels whose bandwidth is not explicitly stated.

In practical systems, the channel input is usually constrained to a discrete set of input
symbols (the constellation). The capacity is then given by

— Inax X — Imax X Z) 10 p(y|x)
C = s 106Y) = s 37 P(0) /y byl tog 20y, (3.26)

Under an average power constraint, the capacity-achieving input distribution is a Maxwell-
Boltzmann distribution [KP93].

The Shannon limit (3.25) as well as the capacity curves of uniform M-ary input con-
stellations, M = 2,...,10, are shown in Figure 3.1. At high SNRs, the curves saturate

10 ........... | ........... | ........... | ...........

EE

][]

Capacity in bits per symbol
Ul

abo 7} 27—
b 3} [3}—
b 7} Z}—
............... (1)

! ® O
0 1 1 1 1

-10 0 10 20 30 40

SNR in dB

Figure 3.1: Capacity of AWGN channel over SNR in dB, 101og;,(Ps/(202)), with Gaus-
sian input (unmarked line) and uniform M-QAM input (lines marked with numbers
log, M); M =2: BPSK, M =8: rectangular 8-QAM.

at log, M, which is the entropy H(X) of the input X. It can be observed that uniform
discrete input constellations with a sufficient number of points M approach the Shan-
non limit closely for low SNRs. With increasing SNR, a gap opens up between uniform
and Gaussian inputs. By replacing the uniform input distribution with a “Gaussian-like”
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distribution — a process known as signal shaping —, this gap can be closed; it is there-
fore known as the shaping gain. The shaping gain tends towards a maximum value of
10logy(me/6) ~ 1.53dB for large SNRs [FU9S|.

The discrete memoryless channel (DMC)

The capacity of a channel with discrete input and continuous output (3.26) is determined
by the conditional probability density function p(y|z). In contrast, the capacity of the
memoryless discrete-input discrete-output channel is governed by the conditional proba-
bility mass function P(y|z). As an example for a DMC, consider a system whose receiver
processes the output samples of the AWGN channel (3.22) in order to recover the trans-
mitted symbols. To minimize the symbol error probability in that case, the receiver will
decide for the symbol that has the minimum Euclidean distance to the received sample.
As a consequence of the data processing inequality (3.16), this quantization (known as
hard decision) of the AWGN channel output Y will inevitably destroy information and
decrease the channel capacity. In contrast, soft-decision receivers process the continuous
output samples Y, e. g. as an input to iterative error correcting codes [Kra09]. Figure 3.2
illustrates the capacity of this examplary DMC for 4-QAM and 16-QAM input constel-
lations. The significant capacity loss induced by hard decision can be clearly observed.

Shannon limit
4-QAM, soft dec.
357 — — - 4.QAM, hard dec.
— — = 16-QAM, hard dec.
16-QAM, soft dec.

sl — N/ .

Capacity in bits per symbol
N

15b |
1 |
05k - AT |
0 L L i L 1
-10 -5 0 5 10 15 20
SNR in dB

Figure 3.2: Comparison of channel capacities of AWGN channel with soft-decision (solid
lines) and hard-decision (dashed lines) receiver for 4-QAM (red) and 16-QAM (blue) input
constellations. The top line (black) indicates the Shannon limit.
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Channels with memory

The capacity calculation is significantly complicated by channels that introduce statistical
dependencies between the transmitted symbols. To find the capacity of such channels,
(3.15) is maximized over all possible input processes p(X).

An important special case of a waveform channel with memory is the Gaussian channel
with memory. This channel can be characterized as a linear time-invariant (LTI) system
with transfer function H(f) followed by additive white or colored Gaussian noise with
power spectral density (PSD) &,(f). The frequency-dependent SNR of this channel is
D,.(f) - |H(f)|?/ Pu(f), where &,(f) denotes the input signal power spectral density. The
channel capacity can be found by decomposing the channel into many parallel flat, i.e.
frequency-independent, sub-channels, which leads to [CT91]

" () [H(f)*
C= /_W/2 log, (1 + 5.7 ) df. (3.27)

The capacity-achieving input distribution is Gaussian N¢ (0, Ps) [CT91]. The input PSD
must be chosen such that more power is allocated to frequencies where the noise PSD is
small. In an illustrative analogy, this procedure is known as water filling. The capacity-
achieving input PSD can be expressed as

(p - @n(.f))+
D.(f) = i, 3.28
D="Egr 22
where the function ()" returns the positive part of its argument, i.e.
B +_J p=Du(f), p= Dulf),
- ={ 4 pz (3.20)

This ensures @.(f) > 0; no power is allocated to frequencies whose noise spectrum
@,(f)/|H(f)|? exceeds a certain threshold p. In (3.28), the constant p = &,(f) - |H(f)|*+
®,,(f) is chosen such that the average power constraint

/ i — P (3.30)

w/2
is satisfied.

In many cases, the capacity of a channel with memory is higher than that of a comparable
memoryless channel (“memory increases capacity”) [Wol67, EKW*10]. However, there
are cases in which memory decreases capacity [Arn03]. In general, the effect of memory
on the channel capacity depends on the exact channel model and the normalization of
the channel’s transfer function or impulse response [XP03]. In fiber-optic communication
systems, the main source of memory is the fiber’s chromatic dispersion (cf. Section 2.2.2).
Neglecting nonlinear fiber effects, the fiber channel can be characterized by the transfer
function (2.130), from which |H(f)|* = const. is easily derived. Considering the white
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PSD of ASE noise (2.152), it can be seen that (3.27) and (3.1) are equivalent. Hence,
the memory introduced by chromatic dispersion does not (by itself) affect the channel
capacity.

A numerical approach to calculating the information rate (3.15) was proposed in [ALO1]
and [PSSO01]. The idea is to make use of the Shannon-McMillan-Breiman theorem,

1
lim ——log P(z1,2a,...,2,) = H(X) (3.31)

n—oo n

for any ergodic source X [CT91]. The channel, characterized by P(Y|X), can be de-
scribed by a finite state model and represented in a trellis diagram. Using

log P(xy,...,x,) = Z log P(z;|®i—q,...,21), (3.32)
i=1

the entropy rates H(Y ') and H(Y'|X) required for computation of the information rate
(3.15) can be calculated by computing the forward sum-product recursion of the BCJR
algorithm [ALVT06, BCJR74, BC02]. In a series of papers, this numerical approach has
been applied by Djordjevic et al. and Franceschini et al. to estimate the information
rate of direct-detection optical communications in the presence of chromatic dispersion
and filtering [FFRB06, FBFT07], fiber nonlinearities [DVIG05, IDV07], analog-to-digital
conversion [DAPRO7] and PMD [MDB*07].

Channels with feedback

The capacity of channels with a feedback link, i.e. an ideal and instantaneous link from
receiver to transmitter, was considered by Shannon in 1956 [Sha56]. He showed that
feedback does not increase the capacity of the AWGN channel. The situation is different
for the Gaussian channel with colored noise, where feedback can increase capacity by up to
one bit (for the complex-valued Gaussian channel) or a factor of two [CT91]. Nevertheless,
feedback links are not considered in this thesis, as their implementation in high-speed
optical transport networks is doubtful.

Time-variant channels

The transfer function H of a linear time-variant channel changes with time and can
therefore be regarded as a random variable. The instantaneous realization H (t) is called
a channel state. As the capacity (3.27) is a function of H, C=C(H), it becomes a time-
variant random variable with PDF p(C) itself. To determine a single capacity value for
such channels, it is common to differentiate two cases [BPS98].

The ergodic capacity,
C = Eo{CU} = En O} = [ ptmcman. (33

can be reached if the channel is ergodic, i. e. if it reveals a large number of channel states
within the duration of one code word, or if both receiver and transmitter have perfect
channel state information (CSI).
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If the channel is non-ergodic (its time variance is slow relative to the length of a code
word) and transmitter CSI cannot be assumed, the transmitter will send data at a certain
constant rate. At the receiver, this data is declared lost whenever the instantaneous
capacity falls below the transmission rate and the data cannot be decoded error-free
(outage). The z% outage capacity C, is defined as the value at which the capacity’s
cumulative distribution function (CDF) reaches Prob(C' < C,) = 2/100:

Co

/ p(H)dH = p(C)dC = = (3.34)
H:0<C(H)<Cly C=0 100

The fiber-optic communication channel is largely time-invariant with the exception of
polarization mode dispersion. The effect of PMD on the channel capacity is discussed in
Chapter 4.

Multiple-input multiple-outpout (MIMO) channels

The channel with multiple transmitters and receivers can be written in matrix-vector
notation as
Y=HX+N. (3.35)

Single-mode fibers support two orthogonal fundamental modes. As these modes are
subject to mode coupling (cf. (2.18)), SMFs can be modeled as a 2 x 2 MIMO system

with
Y, Hyy Hyp Xy Ny
= . + ) 3.36
(3/2) <H21 H22) <X2) <N2> (3.36)

This model is used in Chapter 4 to discuss the capacity of polarization-multiplexed (Pol-
Mux) systems in the presence of PMD.

In general, the capacity of an Ny x Ng MIMO channel with AWGN, no channel infor-
mation at the transmitter (neither CSI nor information about the channel distribution)
and full receiver CSI is given by [GJJV03, Wit05]

I
C = C(H) =logdet | Iy, + HAH"), (3.37)
NpP,

where Iy, is the Ng x Np identity matrix, P, = S_0% £ {|X;|?} is the combined signal
power of all inputs, P, = &£{|N;|?} is the noise power per output and H™ denotes the
Hermitian transpose of H. Equation (3.37) implies that the transmit power is divided

equally among all transmitters, i.e. £{|X;|*} = P;/Nr, and that the transmitted signals
X; are mutually uncorrelated Gaussian random variables.

3.3 A polar decomposition of mutual information

The information encoded in complex-valued signals has two degrees of freedom which
are commonly taken to be the signal’s two quadratures — its real and imaginary parts.
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Alternatively, the signal can be decomposed into its polar coordinates — amplitude and
phase. Historically, the first digital modulation constellations with two degrees of freedom
were a combination of one-dimensional amplitude modulation (AM) and phase modulation
(PM) [Cah60]. Quadrature amplitude modulation (QAM), i.e. amplitude modulation of
two orthogonal carriers, was not described until 1962, with the most significant progress
in understanding made in the 1970s [HWKO00].

The decomposition of complex-valued signals into their real and imaginary parts is the
method of choice when the sub-channels transporting them have identical form and noise
statistics. In particular, this is the case for the AWGN channel e.g. with circularly
symmetric Gaussian or square QAM input. In contrast, the “old-fashioned” AM-PM
view can be useful when physical effects act differently on the different sub-channels.
Examples are systems that clip the amplitude (e. g. nonlinear amplifiers) or systems that
introduce phase noise (e.g. phase-locked loops or certain nonlinear optical fiber effects).
However, even for channels that introduce equal impairments to the signal’s quadratures
(such as the complex-valued AWGN channel), the AM-PM view may be preferable if this
facilitates the input description, for instance for ASK-PSK modulation schemes.

Decomposing signals using polar coordinates motivates decomposing the mutual infor-
mation between the channel input and output using polar coordinates. We choose a
decomposition that results in four terms: two partial channels with one degree of freedom
each (an amplitude and a phase channel) and two mixed terms that govern the exchange
of mutual information across the sub-channels.

Consider a channel with complex-valued input
X=X,-¢%, X, €0,0),X,€[-m7) (3.38)
and output
Y=Y e Y €l0,00),Ys € [-m,T), (3.39)

where the notation X, Y, (amplitudes) and X, Y, (phase angles) reminds us of what parts
of the signal these variables refer to. (We use lower-case fonts z, to denote a realization
and calligraphic fonts &, to denote the support of the random variable X .)

The mutual information 7(X;Y’) between this channel’s input and output can be ex-
panded by repeatedly applying the chain rule of mutual information (3.14) as

[(X; Y) = I(XIHX<I§Y|7Y<I)
- ](Xm Kn Y<I) + I(X<Ia KI7Y<I|XH)

= [<XII7KI) +[(X<17Y<I|XH>+[(X|\7Y<I‘X|)+I(X<[7Y\|X|I7Y<I) (340)
N s N ~~ > N ~~ > A\ ~~ >
Amplitude term Phase term Mixed term I Mixed term II

The expansion (3.40) can be interpreted as decomposing the complex-valued channel with
two degrees of freedom (amplitude and phase) into two sub-channels with one degree of
freedom each.
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The first sub-channel, represented by the amplitude term of the mutual information

I(X,:Y) = /X ) [ p(y..\x>1ogpf(;j'ﬁ"dydx (3.41)

conveys only the amplitude of the signal and is unaffected by impairments such as phase
noise.

The second sub-channel is characterized by the phase term of the mutual information

[(Xa: Y| X)) = /X (@) (X o2 Yalz,)da,

Ly X,
:/ p(‘/rll) // p(xq,y<|m”) 10g p( = y<I| ) d$<dy<dl’u
X, X, Vs p(

r|T,), p(y<|z))

p(yq‘x«xu)
= p(x, p(rglz, P T4, x,)log ————=dy dr dz,
[ pted [ et || pludeasn)og? 25y,

(&

~
I(Xq;Yq|my)

= gX‘. {I(X<I§ Y<i|XH = l‘l,)} ) (3'42>

where Ex { f(X =x)} denotes the expectation of f(X) with respect to the random variable
X that takes on the values z. Eq. (3.42) can be paraphrased in words as the information
that can be obtained about the input phase by observing the output phase, given that
the input amplitude is already known. This term is significantly affected by phase noise,
but agnostic to amplitude distortions such as clipping as long as the input amplitude is
known.

After separating the complex-valued channel into an amplitude and a phase part, the
two mixed terms (I and II) in (3.40) yield the “cross information” between these two sub-
channels. Mixed term I represents the amount of information about the input amplitude
that can be drawn from the output phase in addition to what has already been learnt
about the input amplitude by observing the output amplitude. Finally, mixed term II
yields the information about the input phase that can be obtained from observation of
the output amplitude given the input amplitude and the output phase.

The polar decomposition of mutual information can be helpful in understanding the char-
acteristics of the channel input, e. g. concerning symbol constellations, and transmission
impairments. Moreover, the decomposition significantly simplifies the computation of the
mutual information in cases where the mixed terms are zero or negligibly small. The
computation of I(X;Y") then reduces to evaluating the conditional probability densities
in (3.41) and (3.42), which are often known. Even if the mixed terms do not vanish, the
two main terms yield a lower bound on the mutual information (and can hence be used
to get a lower bound on capacity).

We remark that maximizing the mutual information over all input distributions, as is
required to obtain the channel capacity, cannot be performed separately for the four
decomposition terms. For instance, maximizing the amplitude term over all possible
input amplitude distributions and then maximizing the phase term over all input phase
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distributions given the already determined input amplitude distribution does not yield
the capacity (cf. Section 3.4.1).

3.4 Decomposition of the AWGN channel

The decomposition (3.40) is now applied to the AWGN channel (3.22) with the power
constraint € {| X |*} < P,. Analytical expressions are derived for the AWGN channel with
average power constraint (Gaussian input) and with constant power constraint (phase-
modulated input). In addition, decomposition results for discrete ASK/PSK and QAM
constellations are presented.

3.4.1 Gaussian input

Amplitude term

The first term in the decomposition is I(X,;Y;)=h(Y;) — h(Y;|X,). The capacity of the
AWGN channel (3.22) with average power constraint is maximized by X ~ N¢ (0, Py) [CT91].
Since N ~ N (0,202), the channel output is Gaussian distributed, Y ~ N¢ (0, Py + 202).
Then, Y, = /R{V}2+ 3{Y}? follows a Rayleigh distribution with parameter (P; +

202)/2 [Pro95]:
p(y) = LU exp (—y—> : (3.43)

The differential entropy of the output amplitude in bits is [CT91]

1 1 v
h(Y,) = =logy(Ps + 202) + — —1,
(Y1) = g loga(Ps +200) + 15 + 935

(3.44)

where v ~ 0.577 is the Euler constant.
Calculating h(Y;| X, ) requires knowledge of p(y,|z,), which is a Ricean distribution [Pro95]:

p(yilz,) = %- exp (—M> Ty (a:,ly) , (3.45)

2 2
n 20n On

where Iy(.) is the modified Bessel function of the first kind with order zero. It can be seen
that for x, = 0, the Ricean distribution turns into a Rayleigh distribution; for P, =0,
(3.43) and (3.45) are equal. Using the general form (3.45) of the conditional PDF, the
integration required to calculate h(Y|X,) is intractable. A significant simplification is
obtained when the channel’s signal-to-noise ratio (SNR) P,/(202) is large. In this limit of
large arguments of the Bessel function (x,y,/02 > 1), we can use Iy(z) — e*/v/2mz [AST2].
The Ricean PDF (3.45) then turns into the Gaussian PDF

~ 1 _ (v — IH)Q
p(yu|l‘”) ~ Un\/ﬂ. €xp ( —20721 ) . (3.46)




3.4 Decomposition of the AWGN channel 67

In deriving (3.46), we dropped a factor /vy, /x, which decays to 1 asymptotically with
increasing SNR. With (3.46), the conditional differential entropy can be calculated as

1
h(Y|X,) = 3 log, (2mea?). (3.47)

Finally, using (3.47) and (3.44), an asymptotic approximation for the amplitude term is

I(X,;Y) = h(Y,) — h(Y,| X))

11 n P, _I_l—i—fy
v 202 ) " 27527 T 91
1 P, 1 I+~ 9
~ -1 1 LA T 3.48
5 %2552 T3 T oy T s> 2 (3:48)
z7‘6.69

Phase term

The phase term I(Xq;Ye[X,) = h(Y4|X)) — h(Y4[X4, X,) is calculated similarly. For
any input amplitude z,, the output phase is uniformly distributed in [—m, 7), so the first
conditional entropy is easily found to be

h<Y<i’XH) = _/ / p<xmy<1) lOng(y<I|'ru)dy<idxu
-)(H <

_ /X pla) / " p(yl) logy plyale,)dy< da,

—Tr

~
— logy (27)

= log,(27). (3.49)

Similarly, we can write

h(Y4 | X4, X)) =— // p(z,xq)- / p(y<|x,, v4) logy p(y<|z,, x4)dy do,dz. (3.50)
X, X4 Y

—Tr

~\~

_h(Y<I|CUmx<I)

The conditional entropy h(Yi|z,, ) is not affected by the constant phase shift ., so
that we can assume z =0 without loss of generality and write the conditional phase PDF
as [Mid60, Pro95, AB93]

1 x%
p<y<1|xu7 Ty = 0) :% exp <_ﬁ>

2 2
T, COS UYq 2?(sinyy) ) T, COS Yq
+ = exp | ——— ) cerfe | - —— | 3.51

2\/m202 p< 207, ( V207, ) 0

The PDF (3.51) is periodic with a period of 27; integrating it over any contiguous 27
interval yields one. Such circular PDFs are reviewed in Section 3.5.
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If the channel SNR is low and we have 22 < 202, the phase becomes uniformly dis-
tributed. On the other hand, when 22 >> 202, (3.51) can be approximated by the Gaussian
PDF [Pro95]

Y2

wH
ks =0~ o (i) .
With this approximation, the inner entropy integral in (3.50) can be approximated as
1 on 2 2
MY |z, xq) ~ 5 log, | 2me-—5 |, x> 20, (3.53)

and the entropy (3.50) becomes

* 7, z? 1 o2
~ /0 P2 - exp (—FS) '3 log, (271'6 . F) dzx,

1. 202 14~ 1
=1 L ———+ 21 P> 207 54

The separation of the integrals (second equality) is possible because h(Y,|z,, z) is inde-
pendent of . In the same line, we used p(x,|z5) =p(x,) (which is a Rayleigh distribu-
tion).

Finally, the decomposition phase term can be approximated from (3.49) and (3.54):

I(X<Ia Y<I|X||) - h'(Y<I|Xu) - h(Y<I|X<Ia X\I)

1 202 147
%10g2(2ﬂ')—§10g2 Ps —m—§10g2ﬂ'
1 Ps 1 1_’_,-)/ 2
= —log, — + =1 —— +1 P, > 207, 3.55
g %255 TR T T > 20 (3:55)

Mixed terms

For the AWGN channel with Gaussian input, mized term I in the decomposition is always
zero. To prove this, observe that p(y<) =p(y<|z,) =p(y<|z,, v,)=1/(27) in any 27 interval.
Then, we obtain the conditional entropies

hYA|Y) = — / () / " p(yal) logs plyalm,) g da, = / " o), - logy(2m)

—T
.

-~

—logy (27)

= log, (27) (3.56)
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and
h(Y<I‘KnXu) = _// p(%ayu) / p(!/d%;?/u) 10g2p(y<‘$\.,yu\)dy< dxndyu
0 -7
710;;(271')
= // p(z,, y,)dx,dy, - logy(27) = log,(27), (3.57)
0
and so
I<Xu; Y<I|}/H) - h(Y<I|}/H) - h<Y<I|YIVI7 Xu) =0. (358)

Mized term II, I(X ;Y| X,, Yy), reaches its (numerically calculated) maximum value of
approximately 0.08 bits/symbol at 101log;y(Ps/(202)) =1dB and tends to zero for large
SNRs.

10

Mutual information in bits per symbol

e |

0 —
-10 0 10 20 30 40
SNR in dB

Figure 3.3: Mutual information decomposition terms as a function of SNR in dB,
10log,o(Ps/(202)), for the AWGN channel with Gaussian input. Lines show numeri-
cal results, markers correspond to analytical approximations (3.48) and (3.55). The inset
shows the magnified curve of mixed term II.

The results of the decomposition for the AWGN channel with Gaussian input are shown
in Figure 3.3. The depicted curves were obtained from numerical integration of the mutual
information integrals; markers indicate the analytical approximations (3.48) and (3.55).
Observe that the amplitude and phase terms are the main contributors to the channel
capacity, whereas mixed term II (shown in the inset) is negligibly small. It can be seen
that the analytical approximations are accurate at SNRs of approximately 15 dB and
higher. At high SNRs, both mixed terms are (exactly or near) zero and the amplitude
and phase terms add up to the full capacity, as expected from (3.48) and (3.55).
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As mentioned earlier, it is noteworthy that the complex Gaussian input, which maximizes
I(X;Y), does not maximize the single decomposition terms independently. The amplitude
term I(X,;Y;), for instance, is maximized by a “half-Gaussian” rather than a Rayleigh
distribution at large SNRs, see Section 3.6.3.

3.4.2 Phase-modulated input

The terms constant-intensity, constant-envelope or ring modulation are used in the litera-
ture to characterize the input of a system which encodes information only in the phase of
the transmitted signal. Results on the capacity of constant-intensity channels in the pres-
ence of AWGN have been reported over a period of 50 years, e.g. [Blab3, Bla87, Gei90,
AB93, HK02]. The capacity of a channel constrained to constant intensity (“continuous
PSK”) is an upper limit on the rates achievable with discrete PSK constellations.

An important detail in the definition of phase-modulated AWGN channels is whether
the receiver has access to amplitude and phase of the received signal or to the phase
only. Although it has been observed [AB93] that both capacities are equal in the limit of
large SNRs, evaluating the capacity difference at lower SNR values has remained an open
problem.

Performing a polar decomposition (3.40) of the phase-modulated AWGN channel is the
key to shed light on this question. As no information is encoded in X, =+/FP;=const., the
amplitude term and the mixed term I of the decomposition equal zero.

As expected for a phase-modulated system, the phase term conveys the greatest share
of the transmitted information. In the absence of amplitude modulation, this term can
be written as I(X;Y4|X, = P,) = h(Ys) — h(Y(|X,). The capacity-achieving input
distribution is uniform in [—m,7) [Bla87]. Hence, Y, is uniformly distributed, too, and
h(Y,) = logy(2m). To calculate h(Y4|X,), the entropy integral has to be solved for
the conditional phase PDF (3.51). An asymptotic approximation can be found for large
SNRs, where (3.51) can be replaced by its Gaussian approximation (3.52). The conditional
differential entropy h(Y,|X,) then approaches (3.53), and the decomposition phase term
becomes

I X<17Y<I|XH \/ - h Y<I (Y<I|X<i)

2
~ log,(2m) — % - log, (27Te~ %’;)
L ()

2 *\e 202

1

P,
- logy —= 202 + 1.1 bits, P, > 202, (3.59)

2

Hence, the capacity of the phase-modulated AWGN channel is approximately 1.1 bits/sym-
bol larger than half that of the AWGN channel with Gaussian input for large SNRs.

Finally, mixed term II I(X;Y,|X, = /P, Y,) represents the (small) amount of infor-
mation that can be gained by receiving the signal amplitude and phase rather than the
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phase only. Figure 3.4 shows the decomposition terms as a function of SNR; the phase
term markers indicate the asymptotic approximation (3.59), which is accurate at SNRs
greater than 15 dB.

4.5

- _I(X<1§Y<1|XH) 7
arl— — I(X<I;Y\V||XH:Y<I)”3 """"" ‘ oy ]

Mutual information in bits per symbol

SNR in dB

Figure 3.4: Mutual information decomposition terms as a function of SNR in dB,
101log,o(Ps/(202)), for the AWGN channel with constant-intensity (continuous ring) in-
put. Lines show numerical results, markers correspond to analytical approximation (3.59).

Ho and Kahn [HK02] have used the constant-intensity channel model to calculate the
effect of four-wave mixing on the capacity of phase-modulated optical WDM systems.
However, since chromatic dispersion converts phase modulation into amplitude modula-
tion in optical fibers, this approach is limited to dispersion-shifted fibers (cf. Section 6.1).

3.4.3 Discrete input constellations

In practical communication systems, the input consists of points from a discrete alphabet
rather than of continuous values. Performing the polar decomposition for these discrete
inputs is useful in two ways:

> The decomposition can help to adapt constellations to certain channel character-
istics. For example, it may be beneficial for channels impaired by strong phase
noise to re-arrange the points of a constellation in a way that the amplitude term
is increased at the expense of the phase term. While the overall capacity may be
hardly affected in the absence of phase noise, an increased capacity is obtained in the
presence of phase noise. An example for this situation can be found in [BRHF02],
where 8-PSK is compared to 8-OOK-PSK (7-PSK plus a point at the origin) and
8-star-QAM in the presence of fading and phase noise. The decomposition could
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help to accelerate this search for good constellations and possibly to make it more
systematic.

> When determining the mutual information numerically, the computational complex-
ity can be significantly reduced by calculating the amplitude and phase terms rather
than the full mutual information. This approach requires both mixed terms to be
negligibly small.

In the following, decomposition results are given for some exemplary modulation schemes.
Modulation using one degree of freedom
As examples of modulation schemes where either amplitude or phase are modulated,

Figure 3.5 shows the decomposition of on-off keying (OOK), i.e. X € {0,1}, and phase-
shift keying (PSK) with M =16 phase levels.
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= o8f -1 SRR
> )
- ) R
— — :
L 06 - )
oF o8 ok
©n %)
= =
"2 04 - I(X;Y) i 15F - I(X;Y)
= 10X,7) i 1(X,: %))
E 02t -/ - I(Xq; Y4 X)) ] 2 - I( X4 Y4 X))

S I I(X,; Y<|Y0) 05} - A I(Xi; Y<|Y0)
: - I(X<7K\‘XI\7Y<) : 1 — =1 X<[;K\|XH7Y<[)
0 . - — 0l= el A - L
-10 0 10 20 30 40 -10 0 10 20 30 40
SNR in dB SNR in dB

Figure 3.5: Polar decomposition of mutual information (MI) for OOK (left) and 16-PSK
(right).

As the input phase carries no information with OOK, the phase term and the mixed
term II are zero. The amplitude term yields the amount of information available when
only the signal amplitude is received and processed. An example for such a system is the
direct-detection receiver used in optical communication systems, where the photodiode
responds to the incident light power [Agr02]. Receivers that have access to the full signal
(amplitude and phase) can extract additional information about the input amplitude
from the output phase. This information gain is reflected in the mixed term I (dotted
line). In the optical communications example, this gain can be obtained by upgrading an
optical OOK system from direct to coherent detection. At SNRs larger than 10 dB, all
the information is contained in the received amplitude, so that receiving the signal phase
does not yield any additional information.

For the PSK input, the amplitude term and the mixed term I are zero. A phase-only
receiver captures most of the available information; the (rather small) gain that is obtained



3.4 Decomposition of the AWGN channel 73

from additional amplitude reception is mirrored in the mixed term II (dash-dotted line).
Combined ASK-PSK modulation

The simultaneous digital modulation of both amplitude and phase was first proposed
in 1960 [Cah60]. Examples for this type of constellation, which later became known as
Type I or star-QAM constellation, are shown in Figure 3.6.2 The constellations depicted
in the left column are combinations of 4 amplitude levels and 4, 8 and 16 phase levels,
respectively. The constellations shown in the right column are modifications of these
ASK/PSK schemes, where an additional phase offset was introduced between adjacent
amplitude levels, thus increasing the minimum distance between neighboring constellation
points.

The decomposition results shown in Figure 3.7 illustrate the capacity gain obtained from
the phase offset. As the joint amplitude PDF p(z,,y,) remains unaffected by the phase
offset, the amplitude term (red line) is equal for both constellations (compare plots on
the left and on the right side of Figure 3.7). Similarly, the conditional joint phase PDF
p(T4, y<|x,) only experiences a constant shift for amplitude levels with phase offset, which
does not change the decomposition phase term (blue line). The capacity gain achieved
by the phase offset is reflected in the increase of the mixed term I (magenta line; cf. top
left and top right plots); this gain decreases with increasing number of phase levels (top
to bottom).

By letting the number of phase levels go to infinity, the constellation turns into continuous
concentric rings and the mixed term I tends towards zero. Such modulation schemes
with a discrete number of amplitude levels and continuous phase angles (so-called ring
modulation) were used in an extensive numerical study to estimate the channel capacity
of fiber-optic channels [EKWT10] (see Section 6.2.2). As for the constellations discussed
above (and most other constellations), the mixed term II (green line) is negligibly small
but non-zero for ASK/PSK constellations.

QAM

The polar decomposition results for M-QAM constellations with M =4, 16, 64,256,512,
1024 are shown in Figure 3.8. It can be seen that the amplitude and phase terms saturate
at H(X,) (3.3) and H(X4|X,) (3.7), respectively. For instance, 16-QAM has three distinct
amplitude levels with four or eight distinct phase levels each, so the decomposition terms
tend towards

2 1
H(X,) = 7 log 4 + 5 logy 2 = 1.5 bits (3.60)
and 5 ]
H(X X, = 1 log, 4 + 5 log, 8 = 2.5 bits. (3.61)

2A concise summary of the history of digital modulation schemes can be found in [HWKO00]. For a
comprehensive discussion of the capacities and error rates of various discrete modulation schemes on the
AWGN channel, the reader is referred to [EKW*10, App. C] and [KAvWWO03].
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Figure 3.6: Combined ASK/PSK signal constellations with 4 phase levels (top), 8 phase
levels (center) and 16 phase levels (bottom) without (left) and with (right) phase shift.
The number of amplitude levels is always 4.

Among the considered QAM constellations, 4-QAM is a special case in the sense that
its mixed term I is zero; being a PSK format, its decomposition resembles that of 16-PSK
depicted in Figure 3.5. For M > 4, QAM constellations exhibit a significant mixed term I,
so that in the analysis of this modulation scheme, the mutual information may not be
approximated by the sum of the amplitude and phase terms only. Again, mixed term II
is non-zero but negligibly small for all QAM constellations.
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3.5 Introduction to directional statistics

This section reviews results from directional statistics that are useful for understanding
phase noise and other circular random processes. Random variables such as phase angles
or points on a spherical surface cannot be treated with “conventional” statistical methods.
(E.g., the average wind direction calculated from two measurements of 358° and 2° is not
180°.) The field that deals with such directional (in contrast to linear) random variables
is known as directional statistics [Mar72].

3.5.1 Trigonometric moments

We restrict our review to one-dimensional directional (or circular) random variables, e. g.
phase angles. Such a random variable © is defined on an arbitrary interval of length 27
and has a periodic probability density function (PDF) that satisfies

ct+m
/ p(@)dd =1, ceR. (3.62)

—Tr

To ensure that the statistical moments of the directional random variable are invariant
under a rotation of the coordinate system, the trigonometric moments are calculated from
e’ rather than from ©. The i*" trigonometric moment mg ; of @ is defined as [Fis96]

ms, = / (&) p(6)do. (3.63)
The first trigonometric moment can be calculated as
Mg, = / e?'p(0)dl = p% - Mo, (3.64)

where p%, is the resultant length and p$, is the mean direction of © [Mar72]. The i
central trigonometric moment is calculated as the i*® trigonometric moment of © — .

To quantify the concentration (or, inversely, the dispersion) of a circular random variable
6, it is common to define the circular variance as [Mar72, Fis96]

Vg=1—[E{e} =1-p%. (3.65)

Clearly, the circular variance is maximized if @ is uniformly distributed (V§ = 1) and
minimized for a constant @ (V§ = 0). It must be noted that the circular standard

deviation is not defined as /V§, but as [Fis96]

o =4/—2In(1 -Vg3) =+/—2Inpy. (3.66)
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3.5.2 Circular distributions

An example for a circular distribution has been introduced above in (3.51), which describes
the probability density of the phase angle of a complex phasor corrupted by complex-
valued AWGN. This distribution ranges from a uniform distribution (in any 27 interval)
for small SNRs to a Gaussian distribution for large SNRs. Middleton gives a series
expansion of (3.51) [Mid60, § 9.2-2] which has been applied in the context of systems with
phase noise (cf. references given in [HoO5a, Appendix 4.A]).

Wrapped Gaussian distribution

Another important circular distribution is the wrapped Gaussian distribution [KJ82,

Bah06]:

[e.e]

pO) = —— 3 exp (_(9 il QWk)z) . (3.67)

2r0 o 202

This distribution occurs when a linear random variable X ~ Ng (i, 0?) is “wrapped”
around a circle, i.e. ©® = X mod 27. Various phase noise processes (generated by SPM,
XPM and XPM¢®) with a wrapped Gaussian distribution are introduced and discussed in
Chapters 5 and 6.

The mean direction pg, resultant length p% and circular variance Vg of a wrapped
Gaussian random variable can be calculated as [Bah06]

ey =i mod 2w, py e 27 (3.68)

and
2

Vi=1—¢27. (3.69)
The wrapped Gaussian approaches a uniform distribution for large o and can be approx-
imated by a Gaussian distribution for small ¢ as shown in Figure 3.9.

Von Mises distribution

While the wrapped Gaussian distribution shares some of the properties of the linear Gaus-
sian distribution [vBvT08], it does not maximize the entropy for a given (circular) variance.

This condition is met by the von Mises distribution (after Austrian mathematician R. von
Mises) [KJ82, Fis96]

_exp(rcos(d — )
(0) N 2m Io(/‘i)

(3.70)

where g is the circular mean (and is usually called the centrality parameter), r is the
concentration parameter and Ig(.) is the modified Bessel function of the first kind with
order zero. In engineering, the von Mises distribution is known as the Tikhonov distri-
bution (after V. I. Tikhonov) [dAO07]; it appears in the description of the phase error of
phase-locked loops [Vit63].
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The circular variance is calculated using (3.65) with (3.64) as
Vo =1-1rb
=1- '/ p(@)-ejedﬁ'
1

=1- 27 To(n) /_7r "% (cos 0 + 7 sin 0)dd
1 T I
=1- —/ 5050 o5 0 — 1 — L) (3.71)
mlo(k) Jo Io(r)

To obtain (3.71), we use the modified Bessel functions of the first kind of order n defined
as (see [AS72])

I.(k) = —/ e % cos(nx)dx. (3.72)
0

The differential entropy is calculated as

0 K cos 0
h(O) = / ‘ NELEICIRY

. o IQ(H) eticosd
A
2w Io<li) - 2m IO(I{) o
L1 (k)

=In2nIy(k)) — k-

(3.73)

where (3.72) was used twice in the last equality.

Among all linear distributions that satisfy an average power (or variance) constraint
E{|X|*} < P,, the Gaussian distribution maximizes the differential entropy h(X) [CT91].
Similarly, one can ask for the circular distribution p(f) that maximizes h(©) under a
circular variance constraint Vg < A. Without loss of generality, we assume pg =0 which
means that £ {e’®} is a non-negative real number and that € {sin ©} =0. We can thus
write the circular variance constraint as

v(—o) (325) 1 — |5{6]9}|

=1 —/ p(0) cos Hdﬁ—j/ p(0) sin 0d6

-7
(.

v~

=0

= 1—-E{cos O} < A. (3.74)

To prove that the von Mises distribution (3.70) maximizes the differential entropy under
the circular variance constraint (3.74), we calculate the Kullback-Leibler distance (3.17)
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between the von Mises distribution p(#) and an arbitrary other distribution ¢(0):

D) = [ 4@ 49 4

_W p(0)

_ /_ " 4(0) Ing(6)do _ﬂ 4(6) In p(6)d0
S

— —h(q) — / : ¢(6) In 2210(2) do

™

= —h(q) + n(27Iy(K)) — K - / q(0) cos 0o

= —h(q) +In(27Iy(k)) — K- Egngo) {cos 9}1
124

< —h(q) + h(p), (3.75)

where h(q) denotes the differential entropy h(©) of a random variable © ~ ¢() and
where k is chosen to satisfy 1 — A=Iy(k)/Io(k). Recall that D(q||p) > 0 with equality if
and only if p=¢ [CT91]. Hence, we find that

h(p) > h(q) (3.76)
with equality if and only if ¢=np.

A different path to get to the same result is to note that the von Mises distribution is a
special case of the maximum entropy distribution (3.21). With the constraint (3.74), the
maximum entropy distribution with coefficients A\g=— In(27 Iy(x)) and A\ =k transforms
into (3.70). Barakat finds the same result using Lagrange multipliers [Bar87]. Observe
that the von Mises distribution becomes uniform for large circular variance (small k) and
approaches a Gaussian distribution with variance 0? = 1/k when the circular variance
is small (k large) [KJ82]. Figure 3.9 shows the wrapped Gaussian PDF for =0 (i.e.
py=0) and various values of o.

Because of its maximum entropy property, the von Mises distribution is often considered
to be the circular analogue of the linear normal distribution. Hence, it is sometimes
referred to as the circular normal distribution; to avoid confusion with the wrapped
Gaussian distribution, it is advisable not to use this term. The wrapped Gaussian and
the von Mises distribution have a very similar shape [Bar87], see Figure 3.9. In practice,
one often uses whichever is more convenient [Fis96].

Truncated Gaussian distribution

Suppose now for the sake of argument that the phase constraint is the usual second-order
constraint £{6?} < A, where the expectation is performed over the interval [—m, 7).
Suppose further that we wish to maximize the entropy PDF over all PDFs with £{©} =0
(the latter constraint is made to simplify the discussion). Consider the truncated Gaussian
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distribution

2
p(@):Lexp( o ), —r<0<m, (3.77)

2ro 202

where ) is a scaling constant that ensures (3.62) is valid, and o2 is chosen so that £ { 0%} =
A. We compute

1. (270%\ A
- 51n( 7;’ )+—. (3.78)

We further have

Dl = [ at0ym a0

1 2mo? 1 T 9
——h(q)+§ln< 2 )—l—g/_ﬂ(](@)@ do
1 2mo? 1
=—h(g) + 51 < 2 ) + 5.3 €o~a0) {67}
<A
< —h(q) + h(p). (3.79)

Using D(q||p) > 0 with equality if and only if ¢ = p, we find that a truncated Gaussian
distribution maximizes entropy.

Figure 3.9 shows the PDF's for the truncated Gaussian distribution for £{@} = 0 and
various values of o (wrapped and truncated Gaussians) and x = 1/0? (von Mises). We
remark that the physical meaning of our second-order constraint is unclear, but the same
can be said for the circular variance constraint. It is interesting, however, that maximum
entropy considerations lead to either a von Mises distribution or a truncated Gaussian
distribution. Two interesting problems are whether the wrapped Gaussian distribution
is maximum-entropy under some natural circular constraint, and whether the wrapped
Gaussian has other natural “normal” properties [vBvt08].

3.6 Partially coherent channels

In Section 3.4, the transmitted phase was corrupted by AWGN. If the signal is impaired
by phase noise (in addition to AWGN), the channel is only partially able to convey
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Figure 3.9: Wrapped and truncated Gaussian and von Mises PDFs with p = 0 and
various values of o and k=1/02.

phase information even in the absence of AWGN. Such channels are called partially co-
herent [KSS04].3

Because of their phase noise impairment, partially coherent channels suggest themselves
as a natural application of the polar decomposition method. The earliest information-
theoretic results on channels with reduced degrees of freedom, e.g. transmitters or re-
ceivers that are limited to amplitude modulation (AM) or phase modulation (PM), date
back to 1953 [Bla53]. Some time later, partially coherent channels became an important
research topic in the context of phase jitter induced by phase demodulation [Vit63]. Good
modulation schemes for such channels were presented in [FGWT73]. To this date, little is
known about the capacity-achieving input for partially coherent channels [KSS04].

Partially coherent channels can be described in continuous-time form by
y(t) = z(t) -0 + (1), (3.80)

where n(t) ~ N¢ (0,202) is a complex-valued AWGN process and 6(¢) models the phase
noise process.* We can differentiate various types of phase noise appearing in communi-
cation systems:

3The term partially coherent was introduced to communications engineering by A. Viterbi in
1965 [Vit65]. Viterbi possibly adopted the term from physical optics, where it characterizes the tem-
poral or spatial correlation of electrical fields that are neither coherent (fully correlated) nor incoherent
(uncorrelated) [BW99]. In communication and information theory, the term noncoherent (rather than
incoherent) is used to refer to channels that are entirely unable to transmit any phase information.

4For the sake of consistency with the convention used in this thesis, continuous-time signals are denoted
by small letters (e.g. x(t)) in this section, even though they denote random variables.
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> The carrier itself as well as the local oscillator used for demodulation can have ran-
dom noise fluctuations. This type of phase noise is particularly relevant in lightwave
communication systems, where the laser phase performs a random walk (Brownian
motion). The nonzero laser linewidth broadens the signal spectrum, so that spec-
trally sensitive operations (filtering, sampling) require special attention. “Classical”
references on laser phase noise system aspects include [Sal85, FGV88, FVG89, SS89,
DSS91] and many references therein.

> Another type of correlated phase noise emerges in communication systems where
the carrier phase is imperfectly tracked at the receiver (e.g. in a phase-locked loop
[FGWT73, KSS04]). In this case, samples from the the phase noise process 0(t) are
usually assumed to have a von Mises (Tikhonov) distribution (3.70).

> Uncorrelated (white) phase noise can be used to model the nonlinear effect of cross-
phase modulation (XPM?) in multi-channel fiber-optic communication systems. In
this case, the phase noise samples follow a wrapped Gaussian distribution (3.67) as
explained in Section 6.2.2.

> Signal-dependent phase noise is produced in fiber-optic communication systems by
the nonlinear effect of self-phase modulation (SPM?), see Section 6.2.1.

In general, all types of phase noise are capable of broadening the spectrum of the trans-
mitted signal z(¢) [Ho05a]. This spectral broadening is the major obstacle in transforming
(3.80) into a discrete-time channel model. Filtering (and sampling) a signal whose spec-
trum is broadened by phase noise can result (1) in signal distortions and energy loss when
the filter is narrow [FGV88, DSS91] and (2) in an increased captured noise power when
the filter bandwidth is wide (see [DSS91] and references therein). These effects can be
neglected when the spectral broadening is moderate, which is the case for strongly corre-
lated phase noise processes. Filtering and sampling at the symbol rate is then possible and
leads to discrete-time channel models that have independent and identically distributed
(i.i.d.) signal and noise samples, but correlated phase noise samples (see e.g. [PSSG00]).
To obtain a discrete-time channel model with uncorrelated phase noise samples, the pres-
ence of an ideal interleaver and de-interleaver can be assumed (e. g., [KSS04]). It is then
possible to transform (3.80) into the discrete-time form

Y =X-¢9 4 N, (3.81)

in which the phase noise time samples ©; are assumed to be i.i.d. and statistically
independent of X. In Section 3.6.2, we discuss partially coherent channels with white
phase noise. There is no spectral broadening on these channels, so discretization by
filtering and sampling is possible. However, the discrete channel model must be modified
to account for an effect we call spectral loss.

Since the phase angle of AWGN is uniformly distributed, the order in which phase noise
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and AWGN act on the transmitted signal is irrelevant:

Y = (X +N)-e®
=X+ N-e°
=X+ N, (3.82)

where N’ ~ N¢ (0,202) has the same distribution as N.

The circular PDF p(Y,) can be obtained by circular convolution [GG95] of (3.51) with
p(©). In numerical experiments, it is usually more efficient to multiply the PDFs’ dis-
crete Fourier transforms (DFT) and perform an inverse DFT (IDFT) to obtain the final
result [JBS00]. In particular, when the phase noise has a wrapped Gaussian distribution,
the DFT of (3.51) can be multiplied with the DFT of the “unwrapped” Gaussian (which
is again Gaussian). The following IDFT will implicitly “wrap” the resulting PDF so that
it maintains its periodicity with 2.

In the following discussion of partially coherent channels, the term SNR refers to the
power ratio of signal and additive noise, P;/(2072).

3.6.1 Input optimization and information rate calculation

The capacity-achieving input distribution for the partially coherent channel (3.81) is not
Gaussian [HBF02]. It has been shown that the optimal distribution is circularly symmet-
ric [HBF02], i. e. uniform in phase, and has discrete amplitude levels [HBF03, KSS04]. In
other words, the capacity-achieving input distribution for the partially coherent channel
consists of a number of continuous rings; the number, radii and probabilities of these
rings are subject to optimization. Interestingly, the shaping gain that can be achieved by
using non-equiprobable input symbols rather than a uniform distribution was shown to
be significantly larger than the maximum shaping gain of 1.53 dB for the AWGN chan-
nel [HBF02]. Therefore, input optimization for the partially coherent channel may be
more rewarding than for the AWGN channel, but remains an open problem.

The polar decomposition is very useful for the analysis of partially coherent channels
when both mixed terms are small or can be neglected. As mentioned in Section 3.4,
this is the case for AWGN channels with Gaussian or ring inputs. As the amplitude
term I(X,;Y) is not affected by phase noise, it suffices to re-calculate the phase term
in the presence of phase noise. The conditional phase PDF p(y.|z,, x4 =0) is obtained
numerically or, where possible, analytically from a circular convolution [GG95] of (3.51)
with the phase noise PDF, usually (3.67) or (3.70).

Figure 3.10 shows the decomposition results for the AWGN channel with Gaussian input
with additional phase noise. The phase noise has a wrapped Gaussian distribution with
parameter o as shown in Figure 3.9.> The phase noise parameter values are =0, 0.5, 1, 2.

®We remind the reader that o2 denotes the AWGN’s variance per dimension, whereas o is used as the
parameter of the wrapped Gaussian distribution. Note that this distribution’s circular variance is given
by (3.69); it is not equal to o2.
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For large o, the circular variance goes to one and the wrapped Gaussian distribution
becomes uniform. In this case, no information can be transmitted in the signal phase and
the phase term tends to zero. An interesting observation can be made when o is small
(but nonzero). In this case, the phase term increases with increasing SNR, but tends
towards a constant value asymptotically. At the point when the phase term reaches this
asymptote, the SNR is so large that the effect of AWGN can be neglected and phase noise
becomes the dominant impairment for the signal phase. As the effect of phase noise is
independent of the SNR, increasing the SNR further does not bring any additional gain
in the phase term. Therefore, as the SNR increases, the contribution to the total capacity
I(X;Y) of the phase term (which remains constant) becomes increasingly small compared
to that of the amplitude term (which rises logarithmically with the SNR, cf. (3.48)). This
statement is valid for any (arbitrarily low) phase noise variance. The phase noise variance
determines the SNR at which the phase term contribution to the total capacity can be
neglected. Figure 3.10 shows the amplitude term and the phase terms for ¢ =0,0.5,1,2
and the respective total capacities. The (very small) contribution of the mixed term II
was neglected.
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Figure 3.10: Polar decomposition of mutual information (MI) for an AWGN channel with
Gaussian input with additional phase noise (0 =0,0.5,1,2). Mixed term II is negligible.
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3.6.2 Spectral loss induced by white phase noise

As discussed above, certain types of phase noise induce spectral broadening. If the phase
noise process 0(t) is white, i. e. if it is temporally uncorrelated, a related but qualitatively
different effect occurs which we call spectral loss.

To describe this effect, we use the continuous-time channel model (3.80). We next derive
the power spectral density (PSD) @,(f) of y(t). We assume that z(¢) and npx(t) =e’?® are
stationary, ergodic, and statistically independent random processes. The autocorrelation
function (ACF) ¢, (7) of y(t) is [OL02]

py(1) = E{a(t) 70 o (t+ 1) Y 4 E{n(t) -0 (t+ 1)}
=E{a(t) 2" (t+7)} - E{e?D eI 44 (1)
= ¢2(T) - Prex (7) + on(7), (3.83)
where £{.} denotes the ensemble average. In calculating the ACF ¢, (7) of npx(t), we
assume for simplicity that the phase noise follows a wrapped Gaussian distribution (3.67)
with parameter o. Since 6(t) and 0(t + 7) are independent samples of a Gaussian random

process, their sum or difference ¢'(t) = 0(t) £ 0(t + 7) ~ Ng(0,20?) for 7 # 0. The
autocorrelation function ¢, (7) of the phase noise process npn(t) is

(pnpN (7_) = g {eje(t) X 6_]6(t+7—)}

1, T =0,
—{ e A0, (3.84)

where the last result (for 7 # 0) is the resultant length (3.68) of an ergodic (wrapped)
Gaussian random variable 6 with zero mean and variance 20%:

£{e?C0-0wmY _ ¢ {ew/} —e ", 740 (3.85)

The piecewise defined ACF (3.84) can be written as

Gnpn (T) = €7 4 1im (1 — ") - sinc (Br), (3.86)

B—oo

where sinc (z) =sin(7rz)/(7z). By the Wiener-Khinchin theorem [OL02], the PSD &, (f)
of npn(t) is

Dupn () = F (nex (7))

= 76(f) + Blgn (1—e)- % -rect (é) : (3.87)
where
LoIfl <3,
rect (f) =% 3, |fl=3, p=F(sinc(t)) (3.88)
0, [fI>3



3.6 Partially coherent channels 87

is the rectangular function [GG95]. Finally, the PSD &,(f) of y(t) is calculated using
(3.83) and (3.87) as

Dy(f) = Du(f) * Prpx (f) + Du(f)

=)+ Jim @ () x (1 o) )

+ @, (f). (3.89)
The x sign denotes convolution. Equation (3.89) explains the spectral effect of phase
noise: The original PSD @,(f) is preserved in shape, but attenuated by a factor e,
The remaining signal power (a fraction of 1 — 6_02) is spread over the entire spectrum
from —oo to +o0o through convolution with a rectangular function of infinite width and
zero height. Because the fraction of power that leaks outside the original spectrum has
arbitrarily low power in any given finite band, it does not appear as spectral interference.

Hence, the effect is called spectral loss (in contrast to spectral broadening).

A remarkable feature of (3.89) is its simplicity: the original PSD &,(f) is not broadened.
One can therefore discretize the partially coherent channel with white Gaussian phase
noise by means of filtering and sampling at the symbol rate. However, (3.81) must be
adapted to account for spectral loss. The complete discrete-time model for this channel
can be written as

1.

Y =X.e 278 L N, (3.90)

where the factor 1/2 accounts for the amplitude attenuation.

If the phase noise distribution is not (wrapped) Gaussian, the same calculation will lead
to qualitatively similar results, with the value of the ACF (3.84) at 7 # 0 determining
the spectral loss factor.

For numerical simulations of phase noise, (3.89) has an important implication. Due to
the spectral loss effect, the output signal y(¢) has infinite bandwidth and is therefore
generally undersampled in numerical simulations with finite bandwidth. Inevitably, the
numerical simulation of phase noise will create aliasing inside and outside the original
signal band through convolution of @,(f) with a rectangular function of finite width and
nonzero height. To keep this aliasing effect small in numerical simulations, it is necessary
to oversample z(t) by a sufficiently large factor and to filter the spurious out-of-band
noise.

Figure 3.11 shows the decomposition of the AWGN channel with Gaussian input with
phase noise and spectral loss for 0 =0.5,1. Compared to the corresponding subplots in
Figure 3.10, the curves are shifted by 10 log,,(exp(—0c?)), i.e., by —1.1dB and —4.3 dB.

The channel model with phase noise and spectral loss introduced in this section can be
applied to estimate the channel capacity of fiber-optic WDM systems (Section 6.2.5).

3.6.3 Noncoherent channels

The noncoherent channel is the limiting case of the partially coherent channel (3.81)
when 6O is distributed uniformly in [—m, 7). As the phase is completely randomized,
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Figure 3.11: Polar decomposition of mutual information (MI) for an AWGN channel
with Gaussian input with additional phase noise (0 = 0.5,1) and spectral loss. Mixed
term II is negligible.

the output phase y., carries no information and the phase term and the mixed term I
of the polar decomposition are zero. The fact that the mixed term II is zero, too, is a
consequence of p(y, |z, y<) = p(y|z,y<). The only information that can be transmitted
over the noncoherent channel is, therefore, represented by the amplitude term 7(X;Y,).

The noncoherent channel is fully equivalent to the fiber-optic channel with optical am-
plification and direct detection (cf. Section 2.4.1). This channel can be described as®

Y =X + N|. (3.91)

Here, y. is constant, so phase term and mixed term I are zero. In the absence of condi-
tioning upon y., mixed term II is also zero since p(y,|z,) = p(y,|x). Hence, the direct-
detection (DD) channel is completely characterized by I(X,;Y;) and is thus equivalent to
the noncoherent channel.

A way to improve the spectral efficiency of practical noncoherent fiber-optic channels is
differential modulation, see e.g. [KAvWWO03, WE06].

A related but different situation occurs for channels that obey Y =|X|?+ N. Channels
of this kind are found in a variety of optical communication scenarios, with different
statistics for N. For example, in thermal-noise limited receivers N is a Gaussian process,
but other noise statistics can be found for channels limited by (multiplied) shot noise
or by large amounts of optical background noise, both in fiber and free-space optical
communications. For a discussion of optical intensity channels with AWGN, see e.g.
[HKO04]. While the phase term and the mixed term II are zero in this case as for the
noncoherent and DD channels, the mixed term I can be larger than zero. Similarly, when
the channel input is constrained to real-valued amplitude modulation, i.e. when the

5The photocurrent (2.164) is proportional to the optical power, so that the channel model should be
stated as Y =|X + N|2. However, as the square law is injective, the data processing inequality (3.16) is
satisfied with equality, so the two channel models are equivalent.
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channel model is Y =X + N, X'=][0, c0), the mixed term I can be larger than zero. The
decomposition of the AWGN channel with OOK modulation discussed in Section 3.4.3 is
an example.

Input optimization and information rate calculation

The conditional PDF p(y,|z,) of the noncoherent channel is Ricean (3.45), so the mutual
information 7(X;Y;) is calculated along the lines of the amplitude term calculation in
Section 3.4.1. The difficulty in finding the capacity of the noncoherent channel lies in
finding the optimum input distribution p(zx,). Similar to the partially coherent channel,
it is known that the optimum input distribution p(z) is not Gaussian [CRO1], i.e. the
optimum p(z,) is not a Rayleigh distribution (3.43). Rather, the capacity-achieving input
is discrete [KSS04]. By numerical optimization, Ho found an optimum input (for the
optical DD channel) that has a discrete probability mass at z, = 0 and a continuous
exponential profile at z, > 0 [HoO5b]. At low SNRs, this distribution collapses to two
discrete points at x, =0 and at z, > 0, i.e. OOK, confirming a result reported in [KSS04].

An analytical approximation to the noncoherent channel’s capacity is available in the
limit of large SNRs. In this case, the Ricean distribution p(y,|z,) can be approximated
by a Gaussian, and the capacity-achieving input distribution is a positive normal or half-
Gaussian distribution [Blab3|

pla,) = { Voo (-am ), 020 (3.92)

0, z < 0.

In a derivation analogous to that of (3.48), the capacity is found to be [Bla53]

1 P, 1
](x\\;yu> ~ - lOgQ ) Ps > 20'721, (393)
202 2

which is (logym — (1 4+ v)/(In2) + 1)/2 ~ 0.19 bits higher than the mutual information
(3.48) that results from a Rayleigh-distributed input. The same result was found in an

analysis of optical DD systems [MS01la]. Signal shaping methods for the optical DD are
discussed in [MKO0S].

Noise statistics of direct-detection receivers with electrical filtering

Using the channel model (3.91), the conditional PDF p(y,|z,) is a Ricean distribution. If
the square-law channel model Y = |X + N|? is assumed, p(y,|x,) is a noncentral (scaled)
x? distribution [MP92, Pro95]. As discussed above, both channel models have the same
capacity.

The problem is significantly complicated by placing a linear filter after the square-law
device. This situation occurs in optical direct-detection (DD) systems, where electrical
filtering after the photodiode is performed to limited the electrical receiver noise [Agr02].
The samples’ PDF at the output of the filter is unknown; finding the distribution of a
filtered non-Gaussian random process is a non-trivial problem [CFS86].
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An approach that has been successfully applied to the bit error rate calculation in optical
DD systems is to expand the signal into a Karhunen-Loéve series [1.S94, CMGT09]. The
output sample with unknown distribution can then be expressed as a summation of inde-
pendent random variables, each obeying a noncentral (scaled) y? distribution. Analytical
expressions for the PDF of such a summation exist [CMLBO05], but the usual approach
is to multiply the moment-generating functions of the series terms’ PDFs and obtain the
resulting PDF from numerical inverse Laplace transformation [CMGT09]. For practical
purposes, histogram-based methods or approximate PDFs [HA91, Lei07] are used.

The problem of determining the channel capacity of optical DD systems in the presence
of electrical filtering is not pursued further in this thesis.

3.7 Summary

The question for the fundamental limits of communication over fiber-optic channels can
be answered using methods from information theory. In the first part of this chapter, fun-
damental concepts of information theory were briefly introduced and reviewed. Channel
capacity is the maximum rate of transmission over a channel with arbitrarily low error
probability. The capacities of some important channel models were discussed for later
reference.

After this review of existing results, a decomposition method for mutual information
and its applications were proposed and discussed. In summary, the main results of this
second part of this chapter are:

> A polar decomposition of mutual information into an amplitude term, a phase term
and two mixed terms represents a tool for the analysis of how information is conveyed
over a channel. It is useful for the analysis of channel impairments and modulation
schemes and can be used for rapid numerical capacity calculations.

> The decomposition was performed for the AWGN channel with continuous and dis-
crete input. Analytical approximations were found for the AWGN channel with
Gaussian input. FExisting results on phase-modulated AWGN channels were com-
plemented with results from the polar decomposition.

> Fundamental concepts of directional statistics were reviewed.

> Partially coherent channels are channels with AWGN and additional phase noise.
The decomposition amplitude term of such channels is not affected by phase noise.
In contrast, the decomposition phase term is upper bounded by phase noise. Nonlin-
ear fiber-optic channels impaired by SPM, XPM and XPM¢ are modeled as partially
coherent channels in Chapters 5 and 6.

> A property of partially coherent channels with white phase noise that we call spectral
loss was derived and discussed. Effectively, this loss decreases the SNR; hence, the
amplitude term is indirectly affected by phase noise, too. Spectral loss must be
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taken into account in the analysis of channels impaired by phase noise as well as in
their numerical simulation.

> Noncoherent channels are equivalent to optical direct-detection channels. Only the
amplitude term remains from the decomposition of such channels. Asymptotically,
the capacity of noncoherent channels is 0.5 bits per symbol lower than half the
capacity of the AWGN channel with Gaussian input.






Capacity of PMD-impaired
channels

In the derivation of the nonlinear Schroedinger equation in Section 2.1, the vectorial
propagation equation was reduced to a scalar form by assuming that both orthogonally
polarized fundamental modes have identical propagation constants. In real single-mode
fibers, which lack perfect circular symmetry, this assumption is never fully justified. The
effect that results from birefringence and mode coupling is known as polarization mode
dispersion (PMD) [GMO05]. The impairments caused by PMD vary randomly with both
wavelength and time [KLO02b, Ch. 15]. Apart from amplified spontaneous emission (ASE)
noise from optical amplification, PMD can be regarded as the only really stochastic and
time-variant effect in fiber-optic communication systems.

PMD became an important resarch topic after the invention of the Erbium-doped fiber
amplifier, when all-optical links could be made long enough for the group delay difference
between two polarizations to become significant [KK97a, Ch. 6]. The statistical proper-
ties of PMD were investigated and PMD compensation methods were proposed, either
based on optical compensators or electrical equalization [GMO05]. The recent renewed in-
terest in coherent detection [KLWO08a, Ch. 3] has changed the view on PMD. On the one
hand, fast digital signal processing (DSP) in combination with signaling schemes such
as orthogonal frequency division multiplexing (OFDM) has made the compensation of
chromatic dispersion and PMD relatively simple. On the other hand, coherent receivers
(which are polarization-sensitive) need to receive two orthogonal polarizations in order
to avoid signal fading. This additional hardware effort facilitates the transmission and
reception of two independent orthogonally polarized signals (polarization division multi-
plexing, PDM), so that PMD can be understood as a multi-user interference problem in
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state-of-the-art fiber-optic communication systems.

The discussion of PMD in this chapter concentrates on systems with coherent detection.
We will show that PMD does not degrade the channel capacity when optimum coherent
receivers are used. In contrast, PMD was found to degrade the (numerically calculated)
information rate of systems with direct detection [MDB*07]. Following a brief review of
PMD basics in Section 4.1, coherent receiver structures for single and dual polarizations
are introduced in Section 4.2. The effect of PMD on the channel capacity is discussed in
Section 4.3 for these receivers. As described in Section 2.1.6, the effect of light polarization
on fiber nonlinearities can be taken into account even in a scalar propagation model by
using an effective value for the nonlinear material susceptibility. However, the interplay of
PMD and fiber nonlinearities leads to fading and interference in PDM systems. Section 4.4
illuminates this aspect. The results of this chapter are summarized in Section 4.5.

Polarization-dependent loss (PDL) is not considered in this thesis. Although PDL (as
every other loss phenomenon) does degrade the capacity, this degradation was shown to
be moderate [NMS09].

4.1 Introduction to polarization mode dispersion

Optical fibers generally support a number of modes, i.e. solutions (2.36) of the wave

equation, with distinct field distributions ?(m, y) and propagation constants 5(fy). The
modes’ different group velocities and the power exchange between them lead to trans-
mission impairments known as modal dispersion and mode coupling. Single-mode fibers
support only two orthogonal fundamental modes (above the cutoff wavelength). In ideal
single-mode fibers, these are indistinguishable or degenerate [KK97a, Ch. 6]. In contrast,
real fibers exhibit a certain amount of anisotropy (due to intrinsic geometrical asymetries
or due to external stress) that causes the orthogonally polarized fundamental modes to
have different group velocities. The resulting modal dispersion, in this context known as
birefringence, and the power exchange between the fundamental modes (mode coupling)
lead to polarization mode dispersion. Both birefringence and mode coupling are linear
effects modeled by sﬁ), A in the first-order material susceptibility tensor X () (2.18). If
the diagonal elements €, 4 ;; of the tensor <§7 2 are complex-valued, their imaginary parts
cause PDL.

PMD is usually characterized as a “doubly-ergodic” phenomenon [VP02] in the sense
that similar statistical properties are obtained from averaging over an ensemble of fibers,
over different wavelengths of the same fiber, and over time. However, it has been pointed
out that the time variance of the fiber strongly depends on its deployment and envi-
ronmental conditions [KL02b, Ch. 15]. A realistic fiber channel model that takes these
conditions into account is the hinge model, in which few “hot spots” or hinges (such as
huts, bridges, etc.) dominate the PMD statistics of the fiber [BFBT06]. An implication
of this model is that different wavelengths do exhibit different statistics, so that e.g. out-
age calculations [KLO02b, Ch. 15] need to be performed for each channel separately. In
contrast to the hinge model, the channel model introduced in this section is rather generic
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but widely used. The properties of PMD that are relevant for an information-theoretic
discussion of this effect are inherent to every PMD channel model, so that the simplest
available model is the best choice for this purpose.

4.1.1 Short fiber segments

In a fiber segment whose length L. is much smaller than the correlation length L.,
defined in Section 2.2.3, the birefringence can be assumed as constant. We restrict the
following discussion to fiber segments with linear eigenpolarizations, i.e. cy,c, € R in
(2.99), (2.100). In fact, most perturbations of the fiber geometry except fiber twist, e. g.
external stress, core ellipticity or bending, lead to linear birefringence. More importantly,
however, the PMD statistics of a long fiber, which is modeled as a concatenation of short
fiber segments, do not depend on these segments’ eigenpolarizations [VP02]. Assuming
linearly birefringent segments is therefore no limitation.

We assume that the linearly birefingent fiber segment’s eigenpolarizations are aligned
with the x and y axes of the coordinate system. These axes are called the slow axis
(larger group delay) and fast axis (smaller group delay). Light that is linearly polarized
in either axis’ direction maintains its polarization during propagation and is not impaired
by PMD. In contrast, if the light wave’s power is split between both eigenpolarizations,
e.g. if the wave is linearly polarized at a 45° angle, the differential refractive index
An = |n, — n,| causes a relative delay of the slow axis. The light polarization undergoes
periodic changes along the fiber; one full period is called the beat length (2.151). In
the assumed short fiber segment, the eigenpolarizations experience only the described
differential group delay; no higher orders of dispersion are present. Hence, a Taylor series
expansion of Af(w) = (2rAn)/\A = w/c- An about w, can be truncated after the linear
term and written in equivalent baseband notation as

Ap(w) = Af(we) + w- %@Em w=we
_{rw Aty (4.1)
L

In (4.1), At, is the differential group delay (DGD) in units of seconds or picoseconds.
The PMD parameter of such short constantly birefringent fiber segments, At,/L., has
units of s /m or ps/km, so the DGD grows linearly with the fiber length. The random
PMD phase angle € is frequently omitted in the literature. Its importance in the context
of first-order PMD in long fibers is pointed out in the next section.

4.1.2 Long fibers

When the fiber length L > L., the assumption of constant eigenpolarizations is no
longer valid. Instead, the birefringence axes randomly change their orientation, leading to
mode coupling. Long fibers are therefore modeled as a concatenation of N short fiber seg-
ments of length L. with constant but random and independent eigenpolarizations [KK97a,
Ch. 6] as depicted in Figure 4.1. Hence, a fiber channel devoid of attenuation, chromatic
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Figure 4.1: Fiber segments of length L. with random orientation of eigenpolarizations.

dispersion and nonlinear effects is governed by [Men06]

Eou(f) = H(f) - Eun(f), (4.2)
where

H(f) = [[R(=0) - Ui())- B(:). (4:3)

It must be noted that the fiber segments of (4.3) act on the signal in their reverse order,
i.e. segment N is the first segment of the link. In (4.3), the matrix

R(@):( cos f) sin9) (4.4)

—sinf cos6

rotates the coordinate system by a random angle 6; uniformly distributed in [0, 27), which
aligns the signal coordinates with the segment’s eigenpolarizations. Using (4.1), each
segment’s transfer matrix U;(w) can be written as

7 (§it2mf Aty :)/2
‘ 0 ) (45)

Ui(f) = ( 0 =9 (€+2m Aty,0) /2

where At,; and §; are i.i.d. random variables.

For a sufficiently large number N of fiber segments, the state of polarization (SOP) at
the fiber output assumes a uniform distribution over the Poincaré sphere regardless of the
input SOP and the segments’ eigenpolarizations [VP02]. This simplifies the modeling of
long fiber links, because it is unnecessary to know the exact physical perturbations and
their locations along the link. We may use fiber segments with arbitrary perturbations;
composing the entire link of linearly birefringent segments is the most convenient choice.

Although the pulse propagation is severely randomized on a long link composed of many
fiber segments, two SOPs exist for every frequency in which light propagates without
distortions from PMD to first order [GMO05]. Poole and Wagner, who were the first to de-
scribe this phenomenon, called these SOPs principal states of polarization (PSP) [PW86].
In the absence of PDL, the PSPs are orthogonal. For each pair of input PSPs, there is a
corresponding pair of orthogonal polarization states at the fiber output [GMO05].

The group delay difference between both PSPs is the differential group delay (DGD) At,,.
Unlike the DGD of short fiber segments described in Section 4.1.1, At, is proportional
to the square root of the fiber length of long links due to mode coupling [KK97a, Ch. 6].

!The reason that the hinge model [BFBTO06] leads to qualitatively different conclusions lies in the
limited number N of hinges assumed along the link.
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The PMD parameter of long fibers is therefore given in units of s /y/m. Fibers produced
today have PMD parameters of less than 0.05ps /vkm [GMO05]. The number obtained
by multiplying the PMD parameter with the square root of the fiber length yields the
expected DGD, i. e. the mean A_tg of the random variable At,, which follows a Maxwellian
distribution [GMO05].

The PSPs vary with frequency, which corresponds to a frequency dependence of the
DGD. To first-order in frequency, i.e. for narrow-band signals, the DGD between the
PSPs can be assumed constant, and the channel can be modeled as a single constantly
birefringent fiber as described in Section 4.1.1. The resulting effect is known as first-order
PMD.

The difference between modeling the delay between random eigenpolarizations in short
fiber segments and modeling first-order PMD in long fibers is the relation of the fiber
length L to the correlation length L.y.,. In the latter case, where L > L., the phase an-
gle  in (4.1) becomes a random variable uniformly distributed in [0, 27). The importance
of this random PMD phase angle was pointed out early [WMC91] and can be explained
by a length-scale argument [MMO6].

First-order PMD is an accurate model if the PSPs remain reasonably constant within
the spectral width of the considered signal. If this is not the case, higher-order terms of
the Taylor series expansion of the frequency-dependent DGD must be taken into account.
Second-order PMD, for instance, considers a linear frequency dependence of At, [GMO5].
The analysis of PMD becomes very involved beyond the first order. In contrast, numerical
simulations that use a sufficiently large number N of fiber segments produce an “all-order”
PMD model. An indication of the tolerable spectral width covered by the first-order
PMD model is given by the bandwidth Bpgp of the principal states. This bandwidth was
determined both experimentally and analytically to be inversely proportional to the mean
DGD:

Bpsp = cpsp/ Aty (4.6)

Depending on the definition of the bandwidth, reported values for the proportionality
constant cpgp include 1/4 [JNK99, GMO05], v/8/7 [KB99] and 0.64 [SMNO0]. Consider
the example of a fiber with At, = 1.25ps (e.g. PMD parameter 0.05 ps /v/km and length
L = 625km). The resulting bandwidths of the PSPs are 200 GHz, 720 GHz and 512 GHz.
The normalized correlation function of the PMD vector at Bpsp/2 drops to 0.89, 0.31
and 0.5, respectively, confirming that first-order PMD is sufficient to characterize the
propagation of signals in a 100-GHz grid [KL02b, Ch. 15].

4.2 Coherent receiver structures

Before optical amplifiers became available, coherent receivers were widely used in optical
communications because of their sensitivity [Agr02]. The recent renewed interest in co-
herent detection is motivated in part by the demand for increasing data rates that require
the detection of spectrally efficient modulation schemes. Coherent receivers grant full
access to the optical field, allowing modulation of both quadratures [ILBKO08]. On the
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other hand, advances in electronic digital signal processing (DSP) have made it possible
to build coherent receivers with relatively low (optical) complexity [KLWO08b, Ch. 3.

Three types of coherent receivers that can be differentiated are homodyne, heterodyne
and intradyne receivers. All employ the same principle of operation. The incoming signal
is combined with an unmodulated laser beam, called the local oscillator (LO). As the
resulting light wave is transformed into an electric current in the photodiode, the signal-
LO beat term mixes the signal either down to the baseband (homodyne detection) or
to an intermediate frequency (heterodyne detection). The term intradyne detection is
used if the intermediate frequency is smaller than the signal’s bandwidth. In the case
of heterodyne or intradyne detection, a second (electrical) local oscillator is required
to downconvert the signal to the baseband. The advantage is that carrier and phase
tracking algorithms can be implemented in the electrical domain. Most modern coherent
receivers use intradyne detection with a free-running local oscillator (i.e. one whose phase
drifts) and phase recovery implemented in DSP [KLWO08b, Ch. 3]. In contrast, homodyne
receivers require (rather complex) optical phase-locked loops [KLWO08b, Ch. 3]. However,
from a theoretical point of view, it is convenient to assume homodyne receivers with local
oscillators matched to the signal carrier in frequency and phase.

Coherent receivers are usually designed using pairs of balanced photodiodes to suppress
the DC components of photodetection [KLWO08b, Ch. 3]. Figure 4.2 shows such a balanced
coherent receiver. The polarization of the incoming signal F(¢) must be controlled to

Figure 4.2: Single-polarization phase-diversity homodyne balanced coherent receiver.

match that of the local oscillator. The transfer matrix of the 3-dB optical coupler is

%(} _i) (4.7)

We assume the local oscillator to be polarized in x-direction, i.e.

Erolt) = ( ELg(t> ) = Coomm - ( aL%(t) ) , (4.8)
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where the normalization constant ¢, ensures that apo(t) has units of VW, cf. (2.78).
The field components in x-direction entering the four photodiodes are given by

E14(t) = By (t) + Evo(t), (4.9)
Ey . (t) = Es . (t) — Ero(t), (4.10)
E3.(t) = Esa(t) + 7 Evo(t), (4.11)
Eyu(t) = Es4(t) — 7 Evo(t). (4.12)
Hence, the current produced by the first photodiode is
ia(t) = % (lasa (O + lao () + las, ()] +2- Rias.(8) - ao(t)}) (4.13)

where R is the photodiode’s responsivity introduced in (2.164). The other photocurrents
are calcuated in a similar fashion. Finally, the two currents at the receiver output represent
the signal’s demodulated inphase and quadrature components:

i1(t) = R-R{asat) - afo(t)} (4.14)

and
ig(t) = R-{as () -ajo(t)}. (4.15)

Similar and equivalent single-polarization coherent receiver designs can be found e.g.
in [KLO2b, ILBK08, EKW*10]. Ho proposes a slightly different design [HoO5a, Fig. 3.4]
which uses a circularly polarized local oscillator to demodulate the signal’s 1/Q compo-
nents into different polarizations that are separated using a polarization beam splitter
(PBS). The incoming signal must then be linearly polarized at a 45° angle.

Unlike direct-detection receivers, coherent receivers are polarization-sensitive. In the
worst case of orthogonally polarized signal and local oscillator, the signal-LLO beat term
vanishes. On the other hand, it is straightforward to extend the single-polarization design
shown in Figure 4.2 to dual polarizations. Such a receiver is shown in Figure 4.3. The

Lo ; ) . ZLy(t)
BLo(t) — Single-polarization _—»t
— > receiver iQ.y(1)

Figure 4.3: Dual-polarization coherent receiver.

local oscillator is linearly polarized at 45° and split by a PBS. Hence, the part of the
incoming field that is polarized in x-direction is received by the upper single-polarization
receiver, the y-component by the lower one. This receiver can be used to transmit two
independent signals in orthogonal polarizations, a technique known as polarization division
multiplexing (PDM or PolMux).



100 Chapter 4 m Capacity of PMD-impaired channels

4.3 Impact of PMD on the channel capacity

When fiber nonlinearities can be neglected and coherent reception is used, the fiber-
optic channel is linear and its capacity (3.27) can be calculated from the power transfer
function (PTF) |H(f)|?. Chromatic dispersion is an allpass filter function (cf. (2.124))
that does not affect the PTF; it can therefore be neglected. The remaining effects that
determine the capacity are attenuation, ASE noise and PMD. The time variance of the
channel that results from the temporal changes of PMD needs to be taken into account
(cf. Section 3.2.2).

4.3.1 Channel transfer functions

The channel transfer matrix (4.3) for first-order PMD is

= (5 ). (4.16)

where the matrix elements are calculated using (4.4) and (4.5) as

H,p = cos?(f) - 2 EF2mIA)/2 | gin2(g) . = (EH2mfAly)/2 (4.17)
H,, = cos(0) sin(f) - e? €2 44)/2 _ co5(0) sin(f) - e 77 (EF2m/At)/2) (4.18)
Hy, = Hyy, (4.19)
H,, = sin?(f) - ! €T3 40)/2 1 cog?(f) - ¢ 79 (EF2mAlg)/2 (4.20)

It is important to note that H is unitary, i.e. HH" = T,.

We can assume the transmit signals to be linearly polarized in x- and y-direction, so

that
En, single pol () = ( E“a(t) ) (4.21)

is the electrical field at the transmitter for a single-polarization system, and

B awn 0= 1701) ) (4.22)

describes the input of a PolMux system.

At the input to the coherent receiver, the polarization of the signal is controlled to match
that of the local oscillator. If the polarization controller is fast enough to track the varying
polarization and phase of the signal, PMD can be completely mitigated. However, the
PMD parameters can change on times scales on the order of milliseconds [KBAQO], so it
is sensible to assume that the automatic polarization control loop cannot respond to the
signal’s polarization changes instantaneously. Instead, we assume that the polarization
is set such that the maximum signal intensity is captured on average. Introducing an
additional rotation matrix R(#') before the receiver and maximizing the PTF with respect
to 0 yields @ = 0 [Kus06]. Hence, local oscillator and transmit signal should be identically
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polarized (e.g. in x-direction as assumed above) for the single-polarization system. When
two PolMax signals are transmitted in x- and y-polarization, the local oscillator should
be linearly polarized at an angle of 45°.

The transfer function that governs the PolMux channel is given by (4.16), that of the
single-polarization system is given by (4.17). The PTF in this case becomes

()P = |Hea(DP = 1= 5 sin?(20) (1 - cos(€ +2nfAty). (429

It can be seen from (4.23) that 0 < |[H(f)|* < 1. The PTF is periodic in f with a period of
21/ At,. This value is much larger than the bandwidth of the PSPs (4.6). Hence, a signal
for which the first-order PMD model is valid encounters a relatively constant spectral
slice of the PTF, whose value in this specific signal band depends on the random PMD
phase angle . Assuming that 6 and & are uniformly distributed in [0, 27), the PTF’s
expectation is independent of the DGD At, and can be calculated as

Eog.ne, {IH(f)]?} = 0.75. (4.24)

4.3.2 Noise statistics

The effect of PMD on optical ASE noise requires a separate discussion. ASE noise is
unpolarized; it can be modeled as AWGN with identical power spectral density (PSD) in
each polarization (see Section 2.3). In most cases, ASE noise propagates along the fiber,
either because distributed amplification is used or because multiple lumped amplifiers are
cascaded in a multi-span system. To show that any type of ASE noise can be replaced by
a lumped source of unpolarized AWGN noise at the receiver, it suffices to show that the
statistical properties of ASE noise remain unchanged upon propagation through a single
fiber segment with transfer function (4.16). The ASE PSD at the output of the fiber
segment is given by

ﬁASE o(f) = ( | Hoo|* | Hoy|” ) . ( Nasex(f) )
o |ny|2 |Hyy|2 NASEvy(f)
|How|* [ Hayl? ) ( 1 )
- . N
( |Hyo? [Hyy|? 1 ASE

_ (| Haeel? + [ Hey|? _ (1
(el ) o= (1) Mo 29

where the last equality holds because H(f) is unitary. Hence, PMD does not change
the statistics of ASE noise, which can be modeled as lumped unpolarized AWGN in any
scenario (single or multiple fiber segments, first- or higher-order PMD).

4.3.3 Capacity results for first-order PMD

As explained in Section 3.2.2; the capacity of time-variant channels is specified in terms
of their ergodic or outage capacity. The temporal changes of PMD are too slow to assume
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that the channel reveals its ergodicity during the codeword length [KBAOO]. We will
therefore determine the 10% outage capacity Cig (3.34) from the probability distribution
of the instantaneous capacity.

Because the parameters ¢, £ and At, are random variables, the PTF and the resulting
channel capacity are random variables, too. Both € and £ are uniformly distributed in
[0,27). This makes the distribution of At, irrelevant, as the argument of the exponential
function is uniformly distributed in any case. A remarkable consequence is that the
channel capacity is independent of the DGD.

Without any channel state information (CSI), the PSD of the transmit signal should be
flat. A feedback loop that provides the transmitter with information on the current PMD
properties of the channel seems unrealistic in high-speed optical networks. As we shall
see below, it is more promising to optimize the receiver design to achieve capacity. We
assume in the following that both Nagg(f) and @(f) are constant within the signal band
and replace @(f)/Nasg(f) by the SNR P;/P, where appropriate.

The instantaneous capacity (in bits/s/Hz) of the single-polarization receiver can be cal-
culated using (3.27) and (4.23) as

0 = og, 1.+ 2Dl

Nase(f)
~ log, (1 v |Hm<f>\2) , (4.26)

n

where @,(f) is the PSD of the transmit signal (in x-polarization), P; = ffooo Q. (f)df is
the signal power and P, is the ASE noise power in one polarization.

If two indendent signals with equal PSDs &,(f) = @,(f) = &(f) are transmitted (Pol-
Mux), PMD leads to fading and interference between the signals. Both sub-channels have
the same instantaneous capacity which can be calculated as

(f) - [Hay(f)|* + Nase(f)
| Hoo (1) )

| Hay()|? + Nase(f)/ 2(f)

_ | Heo (1)

- e (1 T H,(F + Pn/Ps) '

C = log, <1+ 3,

= log, (1 +

(4.27)

Since the channel is time-variant, the capacities (4.26) and (4.27) are random vari-
ables. Their probability distributions were numerically calculated assuming uniformly
distributed random variables 6 and £. From these distributions, the 10% outage capaci-
ties were calculated as in (3.34). Figure 4.4 shows these 10% outage capacities. It can be
seen that the capacity of the single polarization system is significantly reduced compared
to that of an AWGN channel. The capacity of each sub-channel of the PolMux system is
lower than that of the single-polarization system due to the additional interference from
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Figure 4.4: 10% outage capacities of linear fiber channel over SNR in dB, 101og,,(Ps/P,.),
with first-order PMD (single polarization and PolMux).

the orthogonally polarized sub-channel. As this interference increases with the SNR, the
capacity converges to a (low) value.

Obviously, both coherent receivers do not deliver satisfactory performance. A significant
improvement can be achieved by regarding the PolMux system as a multi-user system, in
which detection, equalization and decoding are performed jointly for both signals. The
system can then be seen as a 2 x 2 MIMO system with signal power Py in each sub-channel
(i.e. 2P, total signal power) and noise power P, per channel output (i.e. 2P, total noise
power). Using (3.37), the capacity of this MIMO system is

2P, P
C = log, det (I2 + 2PnHHH) = log, det (Ig + Fﬂb)

1A P,
= log, (1 + Fn) =2 log, (1 + Fn) , (4.28)

which is twice the capacity of an AWGN channel without PMD shown in Figure 4.4.
Hence, the capacity of the linear fiber-optic channel can be doubled (if the total transmit
power is doubled, too) using PolMux and joint detection independent of the PMD of the
fiber.

4.3.4 Extension to higher-order PMD

In order to model higher orders of PMD, the number N of fiber segments in the model
(4.3) is increased. The average signal energy (4.24) that the single-polarization receiver
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captures decreases from 0.75 to 0.5 as IV increases [Kus06]. An interesting result is that
the ergodic capacity of the all-order PMD channel (i.e. N — oo) asymptotically (i.e. for
P,/ P, — o0) approaches a value 1/1n(2) bits/s/Hz (or 1 nats/s/Hz) smaller than that of
an AWGN channel [GKHO7].

It must be noted, however, that a detailed analysis of suboptimum receivers for higher
PMD orders is of limited value. As discussed in Section 4.3.3, a PolMux system that
employs MIMO signal processing can achieve twice the single-polarization AWGN capac-
ity. MIMO detection for coherent PolMux systems was first proposed in 2005 [HLO5],
and such receivers have already been successfully implemented in practical lab experi-
ments [JMSTO08, JMST09].

For higher PMD orders, the channel transfer matrix (4.3) remains unitary. Consequently,
the ASE noise PSD remains white (see Section 4.3.2), the optimum input PSD remains
flat, and the channel capacity is given by (4.28).

4.4 The interplay of PMD and fiber nonlinearities

In the discussion of PMD so far, nonlinear fiber effects were neglected. When the power
of the propagating optical field is sufficiently high, however, fiber nonlinearities must be
taken into account and cannot be treated separately from PMD, as both effects interact
along the link. Recent experiments, e.g. [XWP*08, BPRC™09], confirm that PMD
compensation schemes optimized for the linear regime perform poorly when the system
is operated at higher powers.

A complete description of the light propagation in single-mode fibers is given by the
vectorial propagation equation (2.41). From there, the coupled NLSE, the Manakov-
PMD equation and the Manakov equation can be derived [MMO06]. These equations
govern the propagation of arbitrarily polarized fields in single-mode fibers. This propa-
gation can be simulated numerically by combining the split-step Fourier Algorithm 2.1
with the approach outlined in Section 4.1.2. This method is known as the coarse-step
method [MMW97].

The varying polarization state of the propagating field has an averaging effect on the
cubic susceptibility. This leads to an effective cubic susceptibility X e(?f). The derivation of

X é?f) outlined in Section 2.1.6 shows that no signal energy is transferred to the orthogonal
polarization due to nonlinear effects on average (see (2.109) and (2.117)). This observation
allows us to reduce the vectorial propagation equations to a scalar approach. It does not
imply, however, that the state of polarization (SOP) of a propagating light wave is not
affected by nonlinear interaction with co-propagating waves. Light waves do alter each
other’s SOPs in a random manner. The resulting SOPs are therefore random variables,
and the meaning of (2.109) and (2.117) is that these random variables have zero mean.

The nonlinear polarization rotation becomes apparent in WDM systems as cross-po-
larization modulation (XPolM) [KS06, PWS06]. Through this effect, rapid SOP changes
in one WDM channel are induced by the co-propagating channels. These polarization
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fluctuations occur on time scales on the order of a single symbol period [KS06]. PMD
compensators or the MIMO processing algorithms mentioned in Section 4.3 are unable
to track these rapid SOP changes. XPolM therefore introduces fast fading in single-
polarization systems; in PolMux systems, XPolM leads to fading and interference between
the sub-channels.

The impairments due to XPolM depend on numerous system parameters such as fiber
parameters (attenuation, dispersion, PMD parameter), link design (amplification scheme,
dispersion map) and system parameters (channel spacing, number of channels, power per
channel, data rate and format). Predicting these impairments requires prohibitively ex-
tensive numerical simulations. A more promising approach is to view XPolM as a random
distortion that can be quantified statistically. Winter et al. [WBSP09] have developed
a statistical theory of XPolM that delivers the probability distribution of a probe chan-
nel’s SOP as a function of the before-mentioned system parameters. In an application
of their theory to PolMux systems, the authors show that the resulting interference term
can be modeled as a random variable with Gaussian distribution under certain circum-
stances [WSP10]. The variance Vi of this crosstalk (xt) term is given as [WSP10, (9)]

Vi = Ps/(2V), (4.29)

where P is the average optical power in the interfering sub-channel. The auxiliary param-
eter V' is related to the variance parameter V' introduced by Winter [WBSP09] through

V = —21In (coth(V") — 1/V"). (4.30)

Whether XPolM sets fundamental limits to the data transmission in fiber-optic commu-
nication systems depends on the particular configuration of these systems. The analysis
of nonlinear fiber effects performed in Chapter 6 delivers optimum input powers that
maximize the channel capacity (see e.g. Figure 6.11). To determine whether XPolM
is significant at these optimum power levels, we will now derive the interference vari-
ance (4.29) as a function of the channel power of a simplified scenario using the theory
of [WBSP09]. After some algebra, the parameter V' can be written as

2

V=S PRz S L, (4.31)

where veg = 8/9-7 is the effective nonlinear fiber parameter and Lyy ,, is the walk-off
length (2.150) of Channel m and the probe channel. The summation in (4.31) is over all
WDM channels co-propagating with the probe channel. The following assumptions and
simplifications were made in the derivation of (4.31):

1. An optimal distributed optical amplification scheme was assumed in which the local
gain equals the local loss at every point along the link (cf. Section 2.3.2). While
such a scheme maximizes the SNR for a given nonlinear phase rotation [PW02],
it increases nonlinearities (compared to lumped amplification) because of the con-
stantly high power level along the link. In the given context, in which ASE noise is
not considered, this assumption corresponds to a worst-case scenario.
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2. The optical link has no inline optical dispersion compensation.

3. The co-propagating channels transport (arbitrarily modulated) NRZ pulses. The
autocovariance function [WBSP09, (40)] of the power in two interacting channels
can then be replaced by the simpler expression [WBSP09, (41)].

4. The fiber has a low PMD parameter, e.g. 0.1ps /\/E, so the SOP decorrelation
length [WBSP09, (53)] is very long compared to the walk-off length Ly ,,,. In that
case and in combination with the previous assumption, the SOP autocovariance
function [WBSP09, (46)] can be neglected (i.e. set to 1). In general, the effect of
XPolM is smaller in fibers with larger PMD parameters [WBSP09]. Assuming a
low-PMD fiber therefore corresponds to a worst-case scenario.

5. The link length z is very long compared to the walk-off length Ly ,,. In combi-
nation with the two previous assumptions, this turns the autocovariance function
[WBSPO09, (40)] into a constant.

The interference term’s variance (4.29) was calculated using (4.31) for a system with
2=2000 km of SSMF (fiber parameters given in Table 2.3). The probe channel is the center
channel of 21 WDM channels co-propagating at a channel spacing of B = 100 GHz. The
symbol rate in each channel is 1/B. Figure 4.5 shows the normalized crosstalk variance
as a function of the power per WDM channel. It can be seen that the variance remains
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Figure 4.5: Normalized variance of XPolM-induced interference term over signal power
per WDM channel in dBm.

low at moderate power levels. For comparison, the capacity-maximizing input power for
a 2000-km link is —2.6 dBm, cf. Figure 6.10. If a system is operated at power levels for



4.5 Summary 107

which the curve shown in Figure 4.5 indicates significant XPolM-induced crosstalk, it is
advisable to perform a more detailed analysis using the method of [WBSP09].

4.5 Summary

Single-mode fibers provide two orthogonal channels for light propagation, namely the two
orthogonally polarized fundamental modes. These channels are coupled linearly (through

PMD) as well as in a nonlinear way through the cubic susceptibility tensor ?(3)( f). It
is possible to neglect this vectorial nature of light propagation in optical fibers (and the
following chapters will do so), but a discussion of the linear and nonlinear effects related
to light polarization must precede this simplification and is therefore provided in this
chapter. In summary, the main points and results of this discussion are:

> Polarization-mode dispersion (PMD) as a linear fiber effect was briefly introduced.
PMD is a random effect that varies with time and wavelength.

> Channel models for short fiber segments and for long fibers were introduced. The
concept of principal states of polarization was explained. The bandwidth of the
principal states determines whether a first-order PMD channel model is valid.

> Single- and dual-polarization coherent receiver structures were introduced.

> In the absence of polarization-dependent loss, the fiber channel transmission matrix
H is unitary. As one consequence, PMD does not change the statistical properties
of ASE noise.

> The outage capacity of coherent fiber-optic communication systems in the presence
of PMD was calculated. PMD leads to fading in single-polarization receivers and
reduces the capacity significantly. In PolMux systems, uncompensated PMD leads
to sub-channel interference that sets an upper bound on the channel capacity.

> If the channel is seen as a 2x 2 MIMO system, the capacity is twice that of an AWGN
channel for any amount and order of PMD. This is due to H being unitary. The
transmitter does not require channel state information, and the optimum transmit

PSD is flat.

> In the nonlinear regime, the interaction of nonlinearities and polarization can be
allowed for by the effective cubic susceptibility X é?f). In WDM PolMux systems,
XPolM can generate rapidly varying sub-channel interference. A simplified sta-
tistical model was derived to estimate the variance of this interference term. A
case study showed that XPolM introduces only negligibly small interference at the
capacity-maximizing power level (derived in Chapter 6).






Nonlinear propagation of a
single field

The effect of fiber nonlinearities that impair the propagation of a single field (as opposed
to a number of WDM channels) on the channel capacity are discussed in this chapter.
Whether (and to what extend) fiber nonlinearities are “fundamental” and hence have an
effect on the channel capacity depends significantly on our view of the system and its
physical effects. For this reason, Section 5.1 opens the chapter with some introductory
remarks. Afterwards, Section 5.2 introduces the system model used for the channel capac-
ity discussion. The analysis of impairments is performed separately for the effects of self-
and cross-phase modulation (SPM, XPM) (Section 5.3) and four-wave mixing (FWM)
(Section 5.4). The interaction of signal and ASE noise through these nonlinear effects
is treated in Section 5.5. Finally, the main results of this chapter are summarized in
Section 5.6.

5.1 Introductory remarks

5.1.1 The character of nonlinear impairments

Noise generated by optical amplifiers (and, less dramatic, electrical shot and thermal
noise) and the polarization evolution discussed in Chapter 4 are the only truly random
effects in fiber-optic communication systems. Nevertheless, the literature that discusses
“Shannon limits” of the fiber-optic channel usually considers the Kerr effect to be the
fundamental impairment of this channel (apart from additive noise). However, the dis-
tortions caused by fiber nonlinearities are by no means fundamental. The nonlinear
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Schroedinger equation (NLSE) (2.79) is invertible. The idea of designing optical equaliz-
ers that invert the linear and nonlinear kernels of the Volterra series expansion solution of
the NLSE (Section 2.1.7) is sketched in [PBP97]. In a more practical approach, electronic
predistortion (or backpropagation) has been proposed and applied in numerous papers
including [EWW*06, RLST06, WFBP06, HWHP07, TK08]. In this method, the signal
is propagated backwards along the fiber (from z = L to z = 0), resulting in a distorted
waveform that, when transmitted, is received as the original signal. Backpropagation is
easily implemented using the SSF Algorithm 2.1 and replacing z by —z or, equivalently,
the fiber parameters «, S and v by their negatives. For predistortion of PDM signals,
backpropagation has also been applied to the coupled NLSE [YL09, MG09, Ip10].

It is pragmatic to view the impairments that originate from the material nonlinearity as
interference. The entire amount of interference that a fiber-optic communication system
is unable to remove is reducing this system’s channel capacity in practice. To what extend
the resulting limit is “fundamental” is then a question of practical system design.

The interference that fiber nonlinearity creates can be categorized in terms of signals
propagating in different frequency bands (as in a WDM system). Interference that has
its origin in the nonlinear interaction of the signal in one band (or channel) with one
or more out-of-band signals (or other channels) are discussed in Chapter 6. The term
inter-channel effects is usually used to refer to this class of nonlinearities. In contrast,
the nonlinear interaction of the spectral components of the signal within the same band,
treated in this chapter, leads to intra-channel effects. In practice, the latter are much less
“fundamental”; as they are easily removed e. g. by the mentioned predistortion approach,
whereas inter-channel nonlinearities mitigation is complicated by the limited access that
receivers of one particular channel have to the co-propagating channels in transparent
optically routed networks [EKWT10].

Both classes of nonlinearities can be further sub-divided into interactions of the signal
with itself (or other signals) and with co-propagating ASE noise. The latter can lead to
a parametric gain of the noise power and to a modification of the noise power spectral
density (PSD). Because nonlinear signal-ASE interaction results in really fundamental
distortions, it requires a separate discussion. In this chapter, Section 5.5 serves this
purpose.

5.1.2 Literature review

Comparatively few publications discuss the information-theoretic effect of fiber nonlin-
earities. A good overview is given by the review articles [KH04, EZC10, EKW*10]. In
the following, those contributions that consider intra-channel nonlinearities are briefly
summarized.

Tang considers the case of a dispersionless fiber, for which the NLSE has the explicit
solution (2.122). Using a formula derived by Pinsker [Pin63], he finds approximate analyt-
ical expression for the channel capacity of single- and multi-span links [Tan01b, Tan01a].
Turitsyn et al. have criticized the use of the Pinsker formula [TDYTO03]. For the same
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dispersion-less fiber, they obtain results by direct evaluation of (3.18). They argue that
the random nonlinear phase rotation eventually renders the channel noncoherent and ob-
tain the asymptotic (i.e. in the limit of large SNRs) capacity (3.93) for a Gaussian input.
This is in contrast to their (and Tang’s) result obtained using Pinsker’s formula; these
results suggest that C' — 0 asymptotically.

The channel model becomes significantly more complicated if the fiber has dispersion
and therefore introduces memory to the channel. Authors that have considered this
case have used so-called perturbative approaches which consider nonlinear effects as small
perturbations. In this scenario (which implies low signal powers), the channel can be
described by a Volterra series expansion (2.127) that is truncated after the first nonlinear
term. This term is then considered as an additive perturbation term in an AWGN channel
model. Using this approach, Louchet determines capacity results taking into account both
inter- and intra-channel nonlinearities [Lou06]. Tang applies the Volterra series method to
multi-span systems [Tan02, Tan06]. In his calculation, the output signal of each fiber span
serves as the input signal to the next span. Hence, new terms beyond the third order must
be neglected at every span and the resulting model is confined to very low power levels.
Narimanov and Mitra use a very similar perturbation approach and obtain an expression
for the capacity that equals the AWGN capacity decreased by two terms [NM02]. The
authors give a physical explanation of these terms’ orgins and relate them to nonlinear
out-of-band power loss (cf. Section 5.4) and noise enhancement (cf. Section 5.5).

Numerical calculations of the information rate of the nonlinear fiber-optic channel us-
ing the Shannon-McMillan-Breiman theorem (3.31) are presented in [DVIG05, IDVO07].
The authors assume binary input constellations for their simulation. Other specific sig-
naling schemes for which capacity results have been reported include OOK and code
division multiple access [WNO05] as well as orthogonal frequency division multiplexing

(OFDM) [GFCHO8, HM10].

5.1.3 A frequency-domain view on capacity

It is difficult to compare the reported results, mainly because of the different models,
assumptions and simplifications used by the various authors. One statement that most
authors explicitly agree to is that the time-domain NLSE is too difficult to use as a basis for
an information-theoretic discussion unless significant simplifications are made (such as e. g.
no dispersion or very weak nonlinearities). Therefore, no attempt to add any contributions
to this time-domain discussion is made in this chapter. Instead, the proposed methodology
to estimate the channel capacity is based on the analysis of the nonlinear processes in the
frequency domain. Despite the popularity of the time-domain NSLE, it can be argued
that the frequency domain is the “natural domain” of light propagation in optical fibers.
This is obvious for linear effects, i.e. attenuation and dispersion, which can be modeled
as a linear filter function H(f). In contrast, fiber nonlinearities are usually seen as a time-
domain phenomenon, namely the instantaneous power-dependent phase rotation invoked
by the Kerr effect (see e. g. (2.70)). This dependence of the refractive index on the incident
field strength (2.74), however, is a phenomenological description. It is physically rooted
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in the interaction of combinations of four spectral components through the cubic material
polarization (2.21) as discussed in Section 2.1.2. Rather than the time-domain NLSE, we
therefore use propagation equation (2.60) as the starting point of our discussion.

It can be argued that the results obtained from this frequency-domain discussion are
not universally applicable. As an example, the capacity obtained for dispersion-shifted
fibers (DSF) tends to zero rapidly with increasing SNR, as we will see later. This result
is in contrast to the above-mentioned asymptotic capacity (3.93) found by [TDYT03].!
Moreover, electronic predistortion is particularly easily implemented in the absence of
dispersion [Low07]. On the other hand, there are practical communication systems to
which the frequency-domain approach to capacity calculation directly applies, e.g. OFDM
systems [GFCHO8]. More importantly, the approach introduced in this chapter is easily
extended to the analysis of WDM systems. The critical reader who does not endorse the
fundamental character of the impairments caused by intra-channel effects may therefore
view this chapter as an introduction to Chapter 6.

5.1.4 Line coding schemes for fiber nonlinearity reduction

Apart from the electronic predistortion discussed in Section 5.1.1, which requires knowl-
edge of the link parameters, several line coding algorithms that reduce fiber nonlinearities
have been proposed. Such schemes do not change the channel capacity, but are one way
(in addition to error-correcting codes) to get closer to it.

In multi-carrier systems (e.g. OFDM), certain phase relations of the sub-carriers fa-
vor the generation of nonlinear distortions [Han95]. By encoding the corresponding data
patterns, fiber nonlinearities can therefore be mitigated. However, criteria for the de-
pendence of the sub-carriers’ phases and the resulting nonlinear distortions are difficult
to formulate. An efficient line coding scheme that operates in the frequency domain has
therefore not been reported. Instead, good results can be achieved by applying algorithms
that reduce the signal’s peak-to-average power ratio (or, more generally, the signal power
variance) in the time domain [GFCH08, GHHH09, HGH09, GHH10].

In high-speed optical pulse transmission, certain bit patterns are known to favor the gen-
eration of so-called ghost pulses through intra-channel FWM [Sch04]. Several constrained
coding schemes have been proposed to encode and avoid these bit patterns [VRD104,
DV06, KSV06, PK06, BDV07, STT07, TAP09].

5.2 System model

We consider the propagation of an arbitrary band-limited signal E(z,t) (2.62) with Fourier
transform FE(z, f) (2.63). The signal’s bandwidth is B. The equation that governs this
signal’s propagation in the frequency domain is the NLSE (2.68). The triple integral in

L Although (3.93) is the capacity of a linear noncoherent channel, the nonlinear channel considered
by [TDYTO03] approaches the same capacity in the limit where strong nonlinear phase noise renders the
channel noncoherent but does not affect the amplitude.
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this equation ensures that all frequency combinations that lead to SPM, XPM and FWM,
explained in Section 2.2.2, are included. The analysis of these nonlinear fiber effects is
much simpler if we consider the propagation of a number of discrete spectral components,
governed by (2.60). We will therefore use the following spectrally discrete description of
E(z, f) for the analysis of nonlinear impairments. Let E(M(2), E?)(z),..., EM=<)(2) be
N samples of E(z, f) at frequencies fi, fa, ..., fy.. with constant sampling interval Af =
B/Ng.. To avoid aliasing, we ask that E(z,t) is limited in time to 1/Af = Ny./B. To
obtain the original spectrally continuous (and unlimited in time) signal, we let Ny. — oo.
As we will see later, the nonlinear impairments converge relatively fast as Ny increases.
This allows us to obtain results that apply to general arbitrary signals from a discussion
of the nonlinear interaction of discrete spectral components.

This approach can be seen as a decomposition of the channel into Ng. parallel narrow-
band sub-channels with a common average power contraint. If each sub-channel can be
modeled as an AWGN channel, the total channel capacity is given by (3.27).

To derive a propagation equation for the discrete spectral components, we start at (2.60).
The frequency condition used in this chapter is

fm:fn+fp_fqa (51)

where 1 < n,p,q < Ng. The spectral broadening induced by FWM is reflected in the
condition 2— Ny, < m < 2N,.—1. To obtain a notation that is convenient for the problem,
we first define the normalized spectral component

XM (z) = /’gesz CEM(2)- Af (5.2)

in units of VW, cf. (2.55). Using (5.2) and (2.72), (2.60) can be written as

9 myy X xm,
X () = = 5 X0(z)
— - ZX(H)(Z) CXP) (). X7 (5). gm940 = (5.3)
with phase mismatch
AB = B(fn) + B(fp) — B(f9) = B(fm)- (5.4)

We ask that the signal E(z,t) is designed such that X 1 < n < N, are i.i.d. random
variables.? This implies that F(z,t) has a white PSD. If P, denotes the average signal
power, each spectral component has average power

P

pm :5{]X(")|2} _ o

1 <n < Ng. (5.5)

As N, — oo, the power of each spectral component goes to zero.

20FDM is an example for a transmission scheme that satisfies this condition.
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The signal bandwidth B is assumed to be sufficiently small so that the random polariza-
tion rotation can be accounted for by using veg = 8/9 -y (see Section 2.1.6, Table 2.2). To
separate the effects of SPM, XPM and FWM, we use the frequency conditions discussed
in Section 2.2.2 and write (5.3) as

QX(m)(Z) == 2 xm(y)
0z 2
——

attenuation
— [ X )P X(z)
SPM
NSC

— 772+ Y IXM () X (2)
n=1

n;zm

[

X}’,M
v Y X (2) XP(2) XD (z). 402, (5.6)
aEnaty

[

FWM

The summation in the FWM mixing term is over all {n,p, ¢} that satisfy m =n+p —q
except if ¢ = n or ¢ = p. The three nonlinear effects are discussed separately in the next
two sections.

5.3 Self- and cross-phase modulation

It is obvious from (5.6) that SPM induces a phase rotation of X (z) proportional to
its own power |X (™) (2)|2. Neglecting the XPM and FWM terms, (5.6) can be solved in
closed form, cf. (2.122). The SPM-induced phase shift is

dspm = Vet - | X ™ (2 = 0)? - Leg, (5.7)

where Leg is the effective fiber length (2.140). This deterministic phase rotation can be
undone at either the receiver or the transmitter. SPM is therefore not considered as a
relevant effect for the channel capacity.?

To isolate the effect of XPM, we neglect the SPM and FWM terms in (5.6). The solution

3An effect that we ignore in the following is that SPM translates FWM noise into a non-deterministic
phase shift, similar to the interaction of SPM and ASE treated in Section 5.5. It is shown later that the
magnitudes of FWM and ASE noise power are comparable at the optimum input power level. Conse-
quently, the phase noise that the two noise sources cause through SPM is comparable, too. The interaction
of ASE and SPM is shown to have a negligible effect in Section 5.5. We expect the same result for the
interaction of FWM noise and SPM.
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of the resulting differential equation is

Nsc

XM () = XM (2 =0)- exp <—%-z> ~exp | =7 2% Z XM (2 =0)|* Leg
nEm
a
= XM (z=0)- exp (—5 = jqbXpM) : (5.8)

Hence, XPM causes a random phase rotation by ¢xpn that is proportional to the com-
bined power of the co-propagating spectral components. As these are i.i.d. random
variables, the sum term ¢xpy has a Gaussian distribution for large Ny as a consequence
of the central limit theorem. The mean phase shift due to XPM,

.2'/Veff'Ps'Leff

5{¢XPM} = (Nsc - 1) N

%2'7eff'Ps'Leff7 (59)

is deterministic and can be removed as discussed above.

The variance Vxpum of ¢xpum is the sum of the variances of the individual terms in the
summation. To find an expression for Vxpy, we assume that the spectral components
have a Gaussian distribution, X™ ~ Ng (0, P;/Ny.), 1 <n < Ny.. The power | X™|? in
each sub-channel then follows an exponential distribution with parameter Ny./P;s [Pro95].
The variance of this (exponentially distributed) random variable is

E{IXMY — £{|IXM2V* = P2/N2. (5.10)
Finally, the variance Vxpy of ¢xpy becomes

P2 (2yeLegP,)?
2 2 S~ eff Meft 4 s
VXPM: (Nsc_l)'4'7eff'Leff'ngc ~ N—Sca

(5.11)

where the approximation holds for large Ny. Figure 5.1 shows Vipn/(27er Leg Ps)? as
a function of Ng. It can be seen that Vxpy — 0 as Ny. — oo. Because of (5.5), this
behavior is expected for any arbitrary distribution of X,

It is not immediately obvious from (5.11) and Figure 5.1 that XPM does not affect the
capacity as Ny, — co. Even though Vipy scales with P?/N,. (and hence decreases with
1/Ng.), the signal power per sub-channel (5.5) decreases at the same rate in Ny, but scales
with Ps/Ns.. Last, the noise power per sub-channel, Nagg - B/Ng., decreases with 1/Ng..

To show that the channel capacity does in fact converge to that of a linear AWGN channel
in the presence of XPM-induced phase noise as Ny, — 00, a numerical example is used.
A fiber link of L =2000km standard single-mode fiber (SSMF') without optical dispersion
compensation and with ideal distributed amplification (see Section 2.3.2) is assumed. This
link setup is similar to that used by Essiambre et al. for capacity calculations [EFKWO08,
EKW*10]. The relevant system parameters are specified in Table 5.1.

The mutual information (in bits/s/Hz or bits/symbol) of a single sub-channel was cal-
culated using the polar decomposition method derived in Section 3.3. All sub-channels
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Figure 5.1: Normalized variance of XPM-induced phase noise over the number of sub-
channels.

Table 5.1: System parameters used for numerical calculations.

System

Ag 1550 nm

B 100 GHz

Fiber

L 2000 km

a 0.2dB /km | Table 2.3
Voft 1.3/ W /km | Tables 2.3, 2.2
Distributed amplification

Log 2000 km (2.140)
Nask (2.163)
Af = fp — fs 13.2 THz

T 290 K

Nepay = Ngp | ~ 1.13 (2.161)

(including our channel of interest) have complex-valued Gaussian inputs. Both decom-
position mixed terms were neglected, cf. Section 3.4. As the XPM-induced phase noise
samples in the sub-channels are strongly correlated, spectral loss (Section 3.6.2) was not
taken into account.* Figure 5.2 shows the results of the described numerical calculation
of mutual information.

4In the currently discussed scenario of sub-channels in the frequency domain, the effect we call “spectral
loss” is in fact a temporal loss.
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Figure 5.2: Mutual information of the channel described in Table 5.1 for Ny. co-
propagating sub-channels with Gaussian input over SNR in dB, 10log;(Ps/Pasg). Top
x-axis shows signal power in dBm, 101log;y(Ps/1 mW).

It can be observed that XPM significantly decreases the mutual information when the
signal power is large. However, it also becomes clear that the mutual information ap-
proximates the channel capacity (3.25) of the AWGN channel as Ny, — co. Among the
curves shown in Figure 5.2, the case with the strongest phase noise (N =10%, red line)
allows an interesting observation. Between 22 dB and 33 dB SNR, the mutual information
decreases, whereas it grows logarithmically with the SNR outside this range. The reason
for this behavior is that the decomposition phase term (which is increasingly affected
by the power-dependent phase noise) decreases faster than the amplitude term (which is
unaffected by phase noise) grows. The phase term eventually tends to zero, while the
amplitude term obeys (3.48) for large SNRs.

We conclude that XPM-induced phase noise can cause severe capacity reductions for
practical fiber-optic communication systems that use multi-carrier modulation schemes
(such as OFDM) at high power levels. As discussed above, the phase noise variance
Vxpu is directly proportional to the power variance (5.10) of the co-propagating signals
multiplied by N, — 1 and hence inversely proportional to Ng. Therefore, increasing the
number of sub-carriers or using modulation schemes with a low power variance (e. g. PSK)
are means of decrasing the XPM impairments in multi-carrier systems. For the system
model lined out in Section 5.2, however, XPM does not affect the channel capacity.
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5.4 Four-wave mixing
Four-wave mixing (FWM) fundamentally differs from SPM and XPM in three aspects:

> The efficiency of FWM depends on the phase mismatch (5.4) of the interacting
waves. A large phase mismatch leads to rapid oscillations of the term e 747 % in
(5.6). In contrast, SPM and XPM are always phase-matched.

> FWM leads to an energy exchange between interacting waves. As a consequence,
the power spectral density (PSD) functions of the propagating signal and noise are

modified.

> New waves at frequencies outside of the original spectrum can be generated. FWM
leads to spectral broadening.

5.4.1 Estimate of the FWM power

Through FWM, three waves at f,,, f,, f; generate an additive signal at f,, = f, + f, — f
that we will call a FWM product. The total number of such FWM products in a system
with Ng. spectral components amounts to (N2, — N2)/2. This result as well as the number
of FWM products that fall on a specific frequency f,, are calculated in Appendix A. An
estimate of the power of a single FWM product is given in the following.

By neglecting the SPM and XPM terms, (5.6) can be solved for each specific frequency
combination. The power of the resulting FWM product is [HJIKM78],[KL02b, Ch. 13]

PE = (dp - yer)? - P - PO P (5.12)
with the FWM efficiency

T —exp(—(a+ 7 AB) Lspan) 2 1- c08(Nspans - A6 Lspan)
= a+ 1AL 1 — cos(AB+ Lspan) ’

(5.13)

where Ngpans is the number of (identical) fiber spans of length Lgya,. The total link length
is L = Nypans * Lspan- The degeneracy factor is dp = 1 for degenerate FWM products and
dp = 2 for non-degenerate FWM products.®

The second factor in (5.13) extends the result to multiple optically amplified spans [Sch91].
In this context, the coherence length (2.149) plays an important role. If the signal is am-
plified at multiples of 2Lcoh, i.€. Lspan = 2N Leon, N € N, the FWM product builds up
constructively. In contrast, the FWM efficiency is minimized if Lgyan = (2N — 1) Leon.
However, this observation cannot be used for link optimization, as the coherence length
is different for every FWM product.

®As explained in Section 2.2.2, non-degenerate products satisfy n # p,n # q,p # q. For a given set
{n,p,q}, two identical non-degenerate FWM products appear at f,, = fn + fp — fg=[fp + fn — [fq» L.
Appendix A. This doubles the amplitude of the resulting FWM term and a factor of 22 = 4 = d% must
be introduced in (5.12).
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We will only consider links that completely compensate the fiber loss by optical amplifi-
cation. For unamplified single-span links or multi-span links that do not compensate the
loss in the last span, an additional factor e~*Fsran must be included in (5.12).

Using the Taylor series expansion (2.66), the phase mismatch (5.4) can be approximated
as a function of the dispersion parameter (2.136) and slope parameter (2.137) as [SBW87,
Sch04]

27T)\2 )\2
Af ~ Coq “Afng - Afpq- (D + T;(Afnq + Aqu)-S)
27c C
= 20.Afnq-Aqu- (D—{——02(Afnq—f—Aqu)S) ’ (514)
fq 2fq

where Af,, =|f. — f;]. The introduced calculation of FWM products can be extended
to links with variable dispersion and slope parameters, e. g. dispersion-managed systems
that use dispersion-compensating fibers (DCF) [IT95].

Equation (5.12) is an estimate of the true FWM power in two aspects. First, pump
depletion is neglected, i.e. the spectral components are depleted by fiber loss only, but
not by the power exchange through FWM. Second, the FWM products do not produce
new “second-order” FWM products themselves. Both assumptions are valid if the total
power generated by FWM is small compared to the signal power [Sch04]. The accuracy
of our FWM model is discussed in Section 5.4.3.

Dispersion-shifted fibers
If the optical signal is transmitted at the zero-dispersion wavelength, Af ~ 0. In practice,

this is the case if dispersion-shifted fibers (DSF) are used. Assuming lumped amplification
after every span, (5.12) becomes

n P\’
PF(‘V\I;K/)[ = (dF’Yeﬁ”NspansLeﬁ“)2 : (N ) y (515)

where all spectral components are assumed to have equal power (5.5). The effective fiber
length Leg is given by (2.142), 1. e. NypansLesr corresponds to the total effective fiber length
(2.143).

Optimum distributed amplification

For a link with optimum distributed amplification, i.e. local gain equals local loss, the
FWM power can be calculated with a = 0. In this case, (5.12) becomes

P,\* 2(1 - cos(ABL))
NSC) ' A '

Pty = (drper)* ( (5.16)
This expression illustrates the above-mentioned significance of the coherence length (2.149).
If the link length L is a multiple of 2L}, the FWM product vanishes completely. In con-
trast, Prwy is maximum if L is an odd multiple of L.
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Finally, we can obtain the FWM power for & = 0 and Ap = 0 from either (5.15) or
(5.16) as

" P\’
Pty = (dpyer L) - (N ) : (5.17)

5.4.2 Capacity calculation

It was shown in Section 5.3 that SPM and XPM do not degrade the channel capacity
as the number of spectral components Ny, — o0o. Therefore, FWM remains as the only
nonlinear impairment to capacity.

FWM noise and capacity calculation

The single FWM products add up to form an additive random process. Because of the
large number of independent FWM products, given by (A.4) and (A.9), the resulting
additive random variable can be assumed to have a Gaussian distribution due to the
central limit theorem. We will refer to this additive Gaussian random process as FWM
noise.

The number of FWM products (and hence the FWM noise power) is different for each
frequency; it is largest at the center of the signal band and decreases towards the edges
of the spectrum (see e.g. Figure A.1). Hence, each spectral component (or sub-channel)
has a different channel capacity. Both ASE noise and FWM noise are additive with
a Gaussian distribution. Therefore, each sub-channel can be seen as an AWGN channel
(where the noise is partly signal-dependent). The optimum input distribution is Gaussian,
XM~ Ne (O, P(m)). The channel capacity is then given by (3.1), which we can write as

pm)
Cm = Af - log, [ 1+ @)
Af : NASE + PFWM

B Py
Nc B Nasg + Nee - Pawin

where PI%{,)M denotes the total FWM noise power at f,, that is obtained by summing up
the powers PPE’\;@’%} of all FWM products that satisfy m=mn + p — ¢. The second equality
implies that all sub-channels have identical average signal power (5.5). This does not
maximize the total channel capacity as we will discuss in the next paragraph. A lower

bound to the total channel capacity can be given as

c=) cm. (5.19)
m=1

As Ny, — oo, the summation becomes an integral over the signal bandwidth B.

It must be noted that by treating the spectral components as independent sub-channels,
we ignore any information that may be contained in the correlation of the FWM noise
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between the sub-channels. In this respect, too, the obtained capacity values are a lower
bound to the actual capacity. The idea to apply decorrelation techniques to the FWM
noise is not pursued in this thesis, but might yield higher and more precise capacity
estimates.

Optimum input power spectral density

The PSD @pwm(f) of the FWM noise is non-white. Its exact shape depends on the
used fiber type and the system parameters (cf. Sections 5.4.3 and 5.4.4), but it is always
maximum at the center of the signal band and falls off towards the band’s edges. Hence,
the nonlinear SNR

p(m)

Af - Nasg + PI

(5.20)

is a variable function of m.

The total channel can therefore be regarded as an additive non-white Gaussian noise
channel with average power constraint Py =) P The capacity of such a channel is
given by (3.27). It is maximized if the input signal’s PSD is matched to the noise PSD
according to (3.28) (water-filling).

The additional difficulty with the nonlinear fiber channel is that the noise PSD is not
independent from the input signal PSD. The input signal’s PSD could be optimized by
water-filling to match the expected FWM noise PSD @pwy(f). This would in turn alter
Ppwm(f). The water-filling procedure could then be repeatedly applied until the result
converges. Such an iterative water-filling approach would maximize the channel capacity,

but is not pursued further in this thesis. As Section 5.4.4 shows, the frequency dependence
of Ppwn(f) in SSMFs is moderate.

The idea to spectrally shape the input signal so that it matches the expected FWM noise
in order to reduce the BER in optical OFDM systems is patented [KERRO09].

Required number of spectral components

Calculations of the FWM noise power spectral density and the capacity (5.19) deliver
stable results very quickly as Ng. increases. In practice, a relatively low number of spec-
tral components, e.g. Ny, = 100...1000, allows us to obtain reliable results for the
system model of Section 5.2 which asks Ny, — oo. Similar observations were reported
for practical optical OFDM systems, for which fiber nonlinearities are found to be largely
independent of the number of subcarriers [LAR07, LWP07]. A qualitative explanation
for this independence of the system performance from Ny, can be derived from (5.18) as

follows. The argument inside the logarithm is independent from N if PF(TV?L,)M scales with

1/Ng. From (5.5) and (5.12) we see that the power Pé%gi/)[ of a single FWM product
scales with 1/N2. Hence, the number of FWM products must be proportional to N2.
The number Npwumnpe of non-degenerate FWM product, given in (A.9), satisfies this
condition. Finally, we note that — unless Ny is very small — Npwynpe dominates the
number of degenerate FWM products (A.4) (see e.g. Figure A.1).
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5.4.3 Phase-matched FWM

As mentioned above, the FWM process is nearly phase-matched, i.e. Ap ~ 0, if light
propagates at the zero-dispersion wavelength. The FWM efficiency and hence the FWM
power are then maximum, so that a link that consists of DSFs is a worst-case scenario.
This makes the DSF an inferior channel in practice. However, it is a very useful object for
the following discussion of fiber nonlinearities. We assume a DSF with parameters given
in Table 2.3. We will neglect the (non-zero) dispersion slope, so that Af = 0 exactly.

FWM noise power spectral density

Each FWM product now has identical power given by (5.15). The total FWM power
is obtained from a simple multiplication of (5.15) with the number of degenerate (A.3)
and non-degenerate FWM products (A.8). As Ny, — oo, the resulting discrete spec-
trum approaches the continuous FWM power spectral density. As mentioned before, this
convergence is very fast; for the results that follow, we have used Ny = 1000.

Figure 5.3 depicts the FWM noise PSD @pwy(f) normalized to (N2, L% P3)/B. Because

spanseff
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Figure 5.3: Normalized PSD of FWM noise over normalized frequency. The normalized
PSD has units of (W km)~2.

of the chosen normalization, the depicted result is rather general and can be used to calcu-
late the FWM noise impairment for different signal powers, link lengths and amplification
schemes. From the normalized PSD (and from (5.15)), we see that FWM scales quadrat-
ically with distance and and cubically with power. Scaling the FWM impairment with
a secondary parameter such as the mean nonlinear phase shift ¢ni, = Vet Ps NVspans Lef 1S
therefore not feasible.
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Figure 5.3 shows that new signals are generated outside of the original bandwidth (which
is | f| < B/2). The (one-sided) 3-dB bandwidth of the FWM noise PSD is approximately
0.64 - B. The ratio of in-band to out-of-band FWM noise power is approximately 3dB. In
other words, one third of the total FWM power is generated outside of the original spec-
trum. This power appears as interference in neighboring WDM channels. Simultaneously,
it is lost to the original band. It can be argued that this loss effectively reduces the usable
signal power and thus decreases capacity even for systems that are able to mitigate all
nonlinear effects that occur inside the original signal band [NM02]. As pump depletion is
neglected in our calculations, we do not take this loss into account. This is not a critical
restriction as the absolute amount of signal power that leaks out of the original band is
small; it is further reduced if the fiber has non-zero dispersion.

Accuracy of the FWM noise model

As mentioned in Section 5.4.1, the estimate of the FWM noise power becomes inaccurate
at high power levels for two reasons. On the one hand, pump depletion is neglected, so
that both the signal power and the FWM noise power are overestimated at high input
power levels. On the other hand, sufficiently powerful FWM products produce “second-
order” FWM products themselves. These second- and higher-order FWM products are
not captured by our model. At very large power, the actual PSD can be significantly
broader than that shown in Figure 5.3.

To gain confidence in our FWM model, it is necessary to demonstrate that the discussed
restrictions do not significantly affect the calculation of the channel capacity. This can
be achieved by means of a numerical simulation of the fiber link. Again, we use the
parameters of Table 5.1, but assume a DSF with parameters given in Table 2.3 and
Ap = 0. We use the closed-form solution (2.122) of the NLSE, so Algorithm 2.1 is not
required for the simulation of this channel. For the numerical simulation, each spectral
component is modulated with a 4-QAM symbol. The received signal constellation at an
SNR of 10dB is shown in Figure 5.4. The constellation plot does not show ASE noise.
The phase rotation is mainly due to XPM (€ {¢spm} < € {Pxpm}), whereas the circularly
symmetric additive noise is due to FWM.

The actual values of the received average signal power P;,« and of the FWM noise vari-
ance can be estimated from the received QAM symbols. Figure 5.5 shows the received
power as a function of the transmitted power. It can be seen that FWM does not signif-
icantly deplete the signal power for low power levels (10log;(Ps/1 mW) < 14dBm). At
larger transmit power levels, however, the received signal power is significantly reduced
by FWM. Eventually, all signal power is converted to FWM noise. Figure 5.5 allows us
to specify power regions for which the FWM model without pump depletion is valid. It
must be noted again, however, that the considered scenario maximizes FWM because
of the large nonlinear coefficient and zero phase-mismatch of DSFs and because of the
distributed amplification scheme.
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Figure 5.4: Received signal constellation of the numerically simulated DSF link described

in the text at 10dB SNR, corresponding to 10log,,(Ps) ~ —18.8 dBm. The plot does not
show ASE noise.
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Figure 5.5: Received average signal power in dBm over average transmitted signal power
in dBm. The angle bisector (dashed line) is shown for reference.

As we have seen, pump depletion leads to a systematic overestimation of the signal power
in the highly nonlinear regime. This in turn leads to an overestimation of the generated
FWM noise. We can observe this effect in Figure 5.6, which depicts the ratio of the
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in-band FWM noise power

B/2
PrwM in—band =/ Ppwm(f)df, (5.21)
—B/2
to the signal power P, in dB.° At an SNR of approximately 22dB this ratio exceeds

Signal power in dBm
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Figure 5.6: Ratio of in-band FWM noise power to received signal power in dB over SNR
in dB. Top x-axis shows signal power in dBm, 10log;,(Ps/1 mW).

0dB, i.e. our model predicts an amount of FWM noise power that exceeds the total
transmit power that was coupled into the fiber. This is an obvious violation of the energy
conservation principle.

Figure 5.6 also shows the same power ratio as obtained from the numerical simulation.
Luckily, we can observe that the systematic overestimation of both signal power and
FWM noise power is similar, so that the actual power ratio is very close to the analytically
predicted one even at very large SNRs. This observation is particularly important because
the ratio of signal power and FWM noise power determines the capacity (5.18) when the
SNR is large and ASE noise plays a subordinate role.

In conclusion, we find that the analytical FWM model is applicable for capacity calcula-
tions even at power levels for which it is not physically valid. More importantly, however,
it is fully valid (in the sense that pump depletion is negligible) at those power levels at
which the channel capacity reaches its maximum, as we shall see next.

6Since the ratio of total to in-band FWM noise power is approximately 1.5, the ratio of PrwM total t0
P; is approximately 1.76 dB higher than that depicted in Figure 5.6.
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Comparison of amplification schemes

Next, we use the FWM noise PSD of Figure 5.3 to calculate the channel capacity of a
given link. A capacity value in units of bits/s/Hz can be obtained by calculating (5.19)
and dividing the result by the bandwidth B. As a first step, the capacities achievable with
different amplification schemes are compared for a link with L = 2000 km of DSF and B =
100 GHz bandwidth. The parameters of the optimum distributed amplification scheme are
given in Table 5.1. For lumped amplification, a noise figure of F,, = 2 is assumed. From a
comparison of (5.15) and (5.17), it is expected that distributed amplification causes more
FWDM noise because of the constantly high signal power. Similarly, a system with lumped
amplification is expected to produce higher FWM noise power if the span length is shorter,
as this increases the total effective fiber length given by NgyansLeg. On the other hand, a
comparison of (2.156) and (2.163) shows that ideally distributed amplification produces
less ASE noise than lumped amplification.

Figure 5.7 shows the capacity of the described system with distributed amplification
and lumped amplification with Lgp.n, = 50km and Lgp, = 100km. It can be seen that

Signal power in dBm (Raman only)
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Figure 5.7: Channel capacity in bits/s/Hz of 2000-km DSF link with distributed and
lumped amplification over SNR in dB, 10log,,(Ps/Pask). Top x-axis shows signal power
in dBm, 10log,,(P;/1 mW), for the distributed amplification setup.

decreasing the fiber length per span from Lgp,, = 100km to Lgpa, = 50 km increases the
maximum capacity by almost one bit for lumped amplification. A further decrease of the
span length (the optimum length in terms of ASE noise is Lgpanopt =1/ &~ 21.7km, see
Section 2.3.1) yields only marginal capacity gains. Despite the higher FWM noise power,
distributed amplification yields the largest capacity due to the low ASE noise power. The
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top x-axis in Figure 5.7 shows the average signal power P, in dBm for this case of Raman
amplification. Although the capacity curves peak at similar SNR values, the signal power
values are quite different for the three depicted cases due to the different ASE noise levels.
The system with distributed amplification achieves the maximum capacity at an SNR of
13.6 dB, which corresponds to an input power of 10log,,(Ps/1 mW) = —15.2dBm. The
systems with lumped amplification have optimum input powers of —10.9dBm (Lgpan =
50km) and —5.9dBm (Lgpan = 100km). In conclusion, the maximum capacity can be
obtained by using ideal distributed amplification. This was expected from the discussion
in Section 2.3.2. However, if the system needs to be operated at signal power levels above
those optimum for the Raman case, it can be beneficial to use lumped amplification and
optimize the amplifier spacing with respect to both ASE and FWM noise generation.

Channel capacity as a function of distance

We have seen that the channel capacity as a function of the signal power exhibits a distinct
maximum. At power levels below this point, the channel is quasi-linear and its capacity
is limited by ASE noise. Beyond the optimum signal power, FWM becomes the dominant
impairment and any further SNR increase reduces the channel capacity. The optimum
capacity value and the corresponding optimum input power depend on the link length and
on the used amplification scheme. Figure 5.8 shows the maximum capacity as a function
of the link length (left x-axis, black line). Also shown is the input power at which the
capacity is maximized (right x-axis, red line). The results assume DSF with ideal Raman
amplification. As expected, the capacity decreases with increasing link length because of
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Figure 5.8: Maximum channel capacity in bits/s/Hz (black solid line) and optimum
signal power in dBm, 101log;,(Ps/1 mW), (red dashed line) over DSF length in km. Ideal
distributed amplification is used.
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an increase in ASE and FWM noise. The optimum signal power decreases as well. In
short links, high power levels can be used to increase the SNR without generating too
much nonlinear impairments. As the link length increases, this advantage of high signal
power is removed by the increase in FWM noise. Consequently, the optimum input power
continuously decreases.

5.4.4 FWM in standard single-mode fibers

Due to the non-zero dispersion in standard single-mode fibers (SSMFs), the phase mis-
match (5.4) is a variable function of the interacting frequencies. While the number of
FWM products falling on each frequency is still the same as in the DSF case, the power
(5.12) of each individual FWM product varies. The power of each FWM product and of
the total FWM noise process is decreased by phase mismatch, so that SSMF's suffer less
from FWM than DSFs do.

Power spectral density of FWM noise

The FWM noise power must be calculated separately for each FWM product in order
to find the FWM noise PSD. The resulting PSD’s shape and magnitude depend on the
system parameters B, Ngpans, Lspan and on the amplification scheme. A normalization
such as the one used in Figure 5.3 is therefore not generally possible in the SSMF case.

The FWM noise PSD was calculated for an SSMF link with parameters given in Table 5.1.
The SSMF parameters are taken from Table 2.3. For lumped amplification, F,, = 2 and
Lgpan = 50km was assumed. The resulting PSD functions for link lengths of 500 km,
1000 km and 2000 km are shown in Figure 5.9.

In comparison to Figure 5.3, we note that the FWM noise PSD is significantly different
in DSFs and SSMFs. Because of the different scaling, the magnitude difference is not
immediately obvious. The maximum value depicted in Figure 5.3 scaled to the x-axis
of Figure 5.9 is @pwy(f=0)/P3 ~2.6-107* W ?Hz '. The corresponding SSMF value
shown in Figure 5.9 is ®pywy(f=0)/P3 ~53-107TW 2 Hz .

By comparing the PSD functions of different link lengths, we observe that the magnitude
does not increase quadratically with L or L.g as in the phase-matched case. This is in
accordance with (5.12) and (5.16). Figure 5.10 shows the total FWM noise power as
a function of link length for ideal Raman amplification. The derivative of the depicted
function with respect to L shows that the FWM noise power increases slightly faster than
linearly with L for the first 400 km, but slower than linearly for L > 400 km. This point
is revisited at the end of this section.

The FWM noise PSD is considerably more confined to the original signal band. For
the 2000-km link with distributed amplification, we obtain a (one-sided) 3-dB bandwidth
of approximately 0.49-B. The ratio of in-band to out-of-band FWM noise power is
approximately 26.5dB. In contrast to the DSF channel, power leakage from the original
spectrum is almost negligible.
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Figure 5.9: Normalized PSD of FWM noise for link lengths of L =
500 km, 1000 km, 2000 km and distributed (black) or lumped (red) amplification. The
normalized PSD has units of W2 Hz ™.
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Figure 5.10: Total FWM noise power normalized to P2 as a function of link length L.

Because of the less efficient FWM noise generation, the analytical FWM model remains
physically plausible for a larger SNR range than in the DSF case. The ratio of in-band
FWM noise power to signal power for the 2000-km Raman link lies approximately 26.6 dB
below the line depicted in Figure 5.6. A power ratio of 0dB is reached at approximately
35dB SNR, corresponding to an approximate average signal power of 6.2 dBm.
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Channel capacity of SSMF links

The channel capacity of the SSMF can be obtained as explained in Section 5.4.3. The
results for the 2000-km link are shown in Figure 5.11.

Signal power in dBm (Raman only)
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Figure 5.11: Channel capacity in bits/s/Hz of 2000-km SSMF link with distributed and
lumped amplification over SNR in dB, 101og,,(Ps/Pask). Top x-axis shows signal power
in dBm, 10log;,(Ps/1 mW), for the distributed amplification setup.

In comparison to the DSF results of Figure 5.7, we can see that the maximum capacity
value is increased. This capacity gain is due to chromatic dispersion reducing the FWM
efficiency, but also due to the reduced vex of SSMF. The maximum capacity value of
C ~ 6.9bit/s / Hz is achieved with ideal Raman amplification. The capacity is maximized
at an SNR of approximately 22.5dB, corresponding to an approximate average signal
power of —6.25dBm. Similar to the DSF channel, the maximum capacity (6.4 bit/s / Hz)
achievable with lumped amplification lies in the same SNR region (21 dB), but at a higher
signal power (—1.9dBm).

Pump depletion is much less of an issue for the SSMF channel. The ratio of FWM
noise power to signal power at 22.5dB SNR, (where the capacity peaks) is approximately
—25.5dB.

The investigated link is identical to the one used for the analysis of XPM that lead to
the results shown in Figure 5.2. Although XPM is not a fundamentally relevant effect
as discussed in Section 5.3, it is interesting to relate the results obtained separately for
XPM and FWM. By comparison of Figures 5.2 and 5.11, we observe that Ny = 1000
is sufficient to effectively suppress XPM at the capacity-maximizing SNR. This number
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of sub-carriers is realistic for practical multi-carrier systems. We can conclude that such
systems should be operated at the optimum SNR as obtained from the analysis of FWM.
At this SNR, XPM is negligible if the number of sub-carriers is sufficiently large (but still
realistic).

Scaling of capacity and optimum signal power with distance

Finally, the capacity as a function of link length is discussed. With ideal Raman amplifi-
cation, we obtain the results shown in Figure 5.12. As expected, the maximum capacity
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Figure 5.12: Maximum channel capacity in bits/s/Hz (black solid line) and optimum
signal power in dBm, 10log,,(Ps/1 mW), (red dashed line) over SSMF length in km. Ideal
distributed amplification is used.

decreases with increasing fiber length on account of accumulating ASE and FWM noise.
The optimum average signal power at which the capacity is maximized, however, does
not decrease as it did for the DSF (see Figure 5.8). Instead, it exhibits a minimum in the
L =600...800km region and shows a slight increase with distance after that point. The
reason for this different behavior lies in the length dependence of the FWM noise power
in different fiber types.

The capacity is largest when the nonlinear SNR (5.20), i. e. the quotient of signal power
and the sum of ASE and FWM noise power, is maximized. At this point, the power
levels of ASE and FWM noise will always have comparable magnitude. (If FWM was
dominant, the nonlinear SNR could be increased by decreasing the signal power; vice
versa, if ASE was dominant, the nonlinear SNR would increase with increasing P;.) In
the DSF, the FWM noise grows quadratically with L, whereas the ASE noise power grows
linearly with L. Therefore, as L grows, the ratio of ASE and FWM noise powers becomes
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imbalanced (in favor of FWM) and the optimum P, decreases in order to maximize the
nonlinear SNR and hence the capacity. The length dependence of the FWM noise power
in SSMFs, shown in Figure 5.10, is qualitatively different. It grows faster than linearly
for L < 400 km and slower than linearly for L 2 400 km. This is reflected in the optimum
average signal power depicted in Figure 5.12. Beyond its minimum, P, must increase with
distance to restore the balance of ASE and FWM noise.

5.5 Nonlinear signal-noise interaction

5.5.1 Channel capacity including nonlinear signal-noise interac-
tion

So far, we have considered AWGN (from optical amplification) and the nonlinear inter-
action of signal components due to the Kerr effect as the two capacity-limiting physical
effects. Because the ASE noise is added to the signal on the link and co-propagates with
it, the nonlinear interaction of signal and noise must also be discussed.

We can immediately conclude from (5.11) that the signal-noise interaction due to XPM
is not relevant for the channel capacity. The variance of the XPM-induced phase noise is
increased by ASE noise, but tends to zero nevertheless as Ny, — oc.

The situation is different for SPM. The SPM-induced phase shift (5.7), which is deter-
ministic in the absence of ASE, becomes a random variable if noise is taken into account.
We can write it as

L
Psont = Yo / PO (2)dz, (5.22)
0

where P™)(z) is the total power at frequency f,, at fiber length z. With the noise field
variable N(™(z), we have

P (z) = [ X" (2) + N(2)|?
— XU (2)2 4 2R{ X (2) - N (2)} [N (2) 2 (5.23)

N

signaltsignal signaI:ASE ASE‘—,ASE
The signal-signal beat term in the summation is responsible for the deterministic phase
shift (5.7). The ASE-ASE beat term introduces a random phase shift (with central (scaled)
x? distribution). However, at SNRs that are large enough for fiber nonlinearities to appear,
this term is very small compared to the signal-ASE beat term and is therefore neglected
in the following. For a given realization o of X (™ (%), the signal-ASE term has a Gaussian
distribution with variance 2 [z|?- € {|N™)(2)|?}.

We will assume ideal Raman amplification in the following, but results for other ampli-
fication schemes can be obtained in a similar way. At every differential fiber piece along
the link at location z, an ASE noise sample is added to the signal and co-propagates with
it for the remaining link length L — z. All noise samples are i.1.d., so their variances must
be added to determine the variance Vspy of ¢spy. This differential summation can be
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formulated as an integral and leads to the solution

L
VSPM:’Yeff'2'|$|2'nsp,av'h'f5'a'B'/ (L_Z)de
0

2
:g'%ﬁ'mz-nsp,av-h'fg~a~B«L~L2. (5.24)

Pasg

A simple numerical example indicates that the effect of this phase noise on the capacity
is not dramatic. In Section 5.4.4, the capacity for the 2000-km SSMF link with Raman
amplification was found to peak at a signal power of —6.25dBm. If we insert this value
as |z|? into (5.24), we get Vspy ~ 1.4-1073.

Signal and noise also interact through FWM. ASE increases the power of each FWM
product, which is still given by (5.12). However, the power of each participating spectral
component in (5.12) is increased by the average ASE noise power at the respective fre-
quency. Since the FWM efficiency and thus the normalized FWM noise PSD depend on
the link length (see Section 5.4.4), a length-averaging approach such as (5.24) is not easily
possible for FWM. Instead, we assume a worst-case scenario in which all the ASE noise
is added at the transmitter and propagates with the signal for the entire link length. The
FWM noise power then scales with

(Py+ Pasp)® = P} +3P?Pusg + 3P,Pigp+ Pigp - (5.25)
~— ~ ~ - ~——
signal—signal signal—ASE ASE—ASE

The total capacity (5.19) including nonlinear signal-noise interactions is calculated from
the individual capacity values of the spectral components as before. In the absence of
phase noise, each sub-channel was modeled as an AWGN channel with capacity given by
(5.18). Due to the presence of phase noise, this model has to be slightly modified. The
sub-channels are now partially coherent (3.81). The phase noise has a wrapped Gaussian
distribution (3.67) whose parameter o2 equals (5.24). Because the phase noise is small,
the capacity-achieving input distribution is nearly Gaussian, see Section 3.6.1. Using the
decomposition method developed in Chapter 3, the influence of SPM (including phase
noise and the resulting spectral loss) and FWM on the channel capacity can be determined.
One detail that requires attention in the calculation of both amplitude and phase term of
the decomposition is that each amplitude level x, = |z| experiences a different degree of
spectral loss because the phase noise variance (5.24) is a function of |z|?.

Figure 5.13 shows the channel capacity of the 2000-km link with ideal Raman amplifi-
cation taking signal-ASE interaction through SPM and FWM into account (solid line).
The depicted markers are taken from Figure 5.11 and show the result without nonlinear
signal-noise interactions for comparison. Mixed term II was neglected in the calculation;
this explains the small offset visible at low SNRs, cf. Figure 3.3. A difference between the
results with and without signal-ASE interactions is hardly visible. We can conclude that
the channel capacity is limited by ASE noise and by nonlinear signal-signal interactions,
but not by nonlinear interactions of signal and noise. Consequently, the AWGN channel
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Figure 5.13: Channel capacity in bits/s/Hz of 2000-km SSMF link with ideal dis-
tributed amplification over SNR in dB, 10log,,(Ps/Pase) with (solid line) and with-
out (markers) nonlinear signal-ASE interaction. Top x-axis shows signal power in dBm,
101og;(Ps/1 mW).

model used for each sub-channels remains valid and the optimum input distribution is
Gaussian.

The described numerical calculations were repeated for fiber lengths between L =500 km
and L=10000km, both for distributed and lumped amplification (with Ly, =50 km and
Lypan =100km). In all cases, nonlinear signal-ASE and ASE-ASE interaction remained
negligibly small compared to the two capacity-limiting processes, ASE noise and nonlinear
signal-signal interaction.

5.5.2 Channel capacity with compensation of fiber nonlineari-
ties

The results reported so far were obtained under the assumption that the nonlinear inter-
action of the signal with itself imposes an irreversible impairment. However, as discussed
in Section 5.1.1, it is possible in principle to compensate these nonlinear distortions, e. g.
using electronic predistortion. Even if a system employs such a compensation scheme
to remove all nonlinear signal-signal interactions, the nonlinear interaction of signal and
ASE noise (and of ASE noise with itself) remains. Although these signal-ASE (and ASE-
ASE) interactions are weak as shown in Section 5.5.1, they are the only truly fundamental
nonlinear impairment that remains in a fiber-optic communication system that employs
all conceivable equalization mechanisms.
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The discussion of Section 5.5.1 is easily modified to the case where only signal-ASE
and ASE-ASE interactions remain. Electronic predistortion removes the constant phase
shift induced by SPM and XPM; this constant phase shift does not affect the capacity
anyway. The variable SPM part described in Section 5.5.1 is due to signal-ASE and
ASE-ASE interaction and remains as it is. In contrast, FWM is significantly reduced by
fiber nonlinearity compensation. The FWM noise considered in Section 5.5.1 scales with
(P, + Pxsg)®. The compensation of signal-signal nonlinearities removes the term PS3 in
(5.25), all other terms remain.

Taking SPM-induced phase noise and spectral loss as well as signal-ASE and ASE-ASE
FWM noise into account, we obtain the channel capacity depicted in Figure 5.14 for the
2000-km SSMF link with ideal Raman amplification (solid line). The capacity curve still
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Figure 5.14: Channel capacity in bits/s/Hz of 2000-km SSMF link with ideal distributed
amplification over SNR in dB, 10log,,(Ps/Pasg) impaired only by nonlinear signal-ASE
interaction. Top x-axis shows signal power in dBm, 101og;,(Ps/1 mW).

has a distinct maximum that marks the boundary between the regions in which the channel
is limited by ASE noise and by fiber nonlinearities, respectively. However, the maximum
capacity increases to almost 10bit/s /Hz; the optimum input power is approximately
4.2dBm. The result does not change if SPM is neglected and only signal-ASE and ASE-
ASE interaction through FWM is considered (markers shown in Figure 5.14). Hence,
the effect of SPM is negligible compared to FWM. This implies that the AWGN channel
model used for each sub-channels remains valid and the optimum input distribution is
Gaussian.

The capacity curve shown in Figure 5.14 matches a published result [EKW™10, Fig. 36(4)]
obtained for the same channel remarkably well. Both curves achieve the maximum ca-
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pacity at the same SNR value of approximately 33dB. In [EKW*10], a 16-ring input
constellation was used. On the AWGN channel with an SNR of 33dB, this constella-
tion achieves approximately 0.8 bit/s / Hz less capacity than a Gaussian input [EKW*10,
Fig. 16]. This explains the small mismatch (< 1bit/s/Hz) between the two maximum
capacity values for the nonlinear channel. Details of the model used in [EKWT10] are
explained in Section 6.2.2.

The main conclusion from Figure 5.14 is that ASE noise and nonlinear signal-ASE and
ASE-ASE interactions limit the capacity even if all other fiber effects are perfectly equal-
ized. For any link, there is a maximum capacity and an optimum input power level that
achieves this capacity.

The capacity calculation was repeated for larger signal bandwidths (B = 300 GHz,
B = 500GHz). The resulting capacities (in bits/s/Hz) were not significantly different
from those shown in Figure 5.14 for B = 100 GHz (less than 0.1bit/s /Hz difference
between B =100 GHz and B =500 GHz at the capacity-maximizing SNR). The effect of
signal-ASE interaction through SPM increases (relative to FWM) with larger bandwidths,
but remains very small (approximately 0.1 bit/s / Hz difference between SPM/FWM and
FWM only for B=500GHz at the capacity-maximizing SNR).

Finally, the capacity as a function of the link length is shown in Figure 5.15 for B =
500 GHz.
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Figure 5.15: Maximum channel capacity in bits/s/Hz (black solid line) and optimum
signal power in dBm, 10log,,(Ps/1mW), (red dashed line) over SSMF length in km
considering only signal-ASE (and ASE-ASE) interaction through FWM. Ideal distributed
amplification is used. The signal bandwidth is B =500 GHz.
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Because of the five-fold bandwidth increase, the optimum input power (right y-axis) is
increased by approximately 7 dB compared to the case where B=100 GHz (cf. top x-axis
in Figure 5.14).

As mentioned in Sections 5.4.2 and 5.5.1, the actual channel capacity values lie slightly
higher than the estimates shown in Figures 5.14 and 5.15 for two reasons. First, the
optimum input PSD is non-flat due to FWM. More importantly, nonlinear signal-ASE
and ASE-ASE interactions through FWM are overestimated by assuming that the full
ASE noise power propagates along the entire link length.

In obtaining the results presented in this section, the nonlinear signal-ASE (and ASE-
ASE) interaction with out-of-band ASE noise was not considered. The factor by which this
simplification reduces the resulting FWM noise power is easily calculated by comparing
FWM spectra for different bandwidths. For a signal with bandwidth B =100 GHz, the
FWM noise power is increased by approximately 11% if FWM products involving out-of-
band spectral components are taken into account. However, optical filters can be employed
to prevent out-of-band ASE noise from leaking into the signal spectrum through FWM.
In dense WDM systems that efficiently utilize the available bandwidth of the fiber, the
neighboring bands will be occupied with co-propagating signals anyway.

5.6 Summary

We considered the propagation of a single field along an optically amplified fiber link.
Such a field can be a single signal, but it can also comprise several co-propagating WDM
channels. The impact of fiber nonlinearities on the capacity of the fiber channel was
discussed in this chapter. This discussion takes the interplay of nonlinearities, chromatic
dispersion and ASE noise into account. After some important introductory remarks and
a review of the existing literature, the following main results were obtained:

> The channel model used in this chapter was introduced. In the proposed model, the

signal is represented by a number N, of signal samples in the frequency domain.
The fiber effects SPM, XPM and FWM were separated.

> SPM introduces a deterministic phase shift and has no effect on the channel capacity.

> XPM induces phase noise. The variance of this phase noise reduces the channel ca-
pacity (through the phase noise itself and through spectral loss). As the number Nj.
of spectral components (or sub-carriers in a practical multi-carrier system) grows,
the phase noise variance decreases. In the proposed channel model, XPM does not
affect the capacity.

> FWM leads to a spectral energy transfer. The resulting FWM noise is modeled
as AWGN. Its variance and power spectral density were derived. The underlying
model neglects pump depletion and the generation of higher-order FWM products.
A discussion of the model’s accuracy indicates that the model is valid nevertheless
at the capacity-maximizing signal power and beyond.
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The channel capacity was calculated for DSF and SSMF links. Because of phase-
mismatch, the capacity is higher in SSMFs. The capacity is limited by ASE noise at
low power levels and by FWM noise at high power levels. It has a distinct optimum
between the two regions, yielding an optimum input signal power.

Lumped and ideal distributed amplification were compared. The maximum capacity
is achieved with ideal Raman amplification. On a 2000-km SSMF link, the maximum
capacity is 6.9 bit/s / Hz.

The capacity and the optimum input power as functions of the link length L were
reported. The optimum power decreases with L for DSFs and increases for SSMFs.
This reflects the dependency of the FWM noise power on L.

Finally, the interaction of signal and ASE noise through fiber nonlinearities was
included in the discussion. A numerical calculation showed that the effect of non-
linear signal-ASE interaction on the capacity is negligible compared to signal-signal
interactions.

The proposed capacity calculation method was extended to systems that are able
to mitigate signal-signal nonlinearities. The resulting capacity is close to that of an
AWGN channel for a wide SNR range, but is still bounded by nonlinear signal-ASE
and ASE-ASE interactions to almost 10 bit/s / Hz for the 2000-km Raman link. It
matches a published result obtained with a different approach very well.



Capacity limits of WDM
systems

Modern fiber-optic communication links split the enormous available bandwidth into
smaller frequency bands (usually of 50 or 100 GHz bandwidth, cf. [ITU02]). The non-
linear effects that occur in such wavelength division multiplexing (WDM) systems are
divided into intra-channel and inter-channel effects (see Sections 2.2.2 and 5.1.1).

The approach taken in Chapter 5 assumes that none or all of these effects can be miti-
gated. In optical WDM networks, however, little is known to the transmitter or receiver
of one particular (probe) channel about co-propagating (pump) WDM channels. The rea-
son is that these channels originate and terminate at different network nodes. Moreover,
channels can be dropped and added at every network node along the link so that the
signals that impair the probe channel can change along the link.

This chapter discusses the capacity limits of such optical WDM systems. This discus-
sion assumes that intra-channel effects can be removed, e.g. by electronic predistortion,
while inter-channel effects (and signal-ASE interactions) remain as fundamental impair-
ments. Section 6.1 briefly reviews the literature that considers this scenario. Section 6.2
introduces a phenomenological time-domain channel model to determine the capacity of
optical WDM links. The frequency-domain method introduced in the last chapter is ex-
tended and applied to WDM systems in Section 6.3. Finally, Section 6.4 summarizes this
chapter.
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6.1 Literature review

Mitra et al. were among the first to consider the capacity of WDM systems [MSO01b,
SMS01, WPG*04]. They identified XPM? as the limiting inter-channel effect (and later
included FWM? in [WPG*04]) and formulated a phenomenological channel model for
the fiber-optic channel.! This model is essentially an AWGN channel with multiplica-
tive Gaussian noise. The central shortcoming of these contributions is that the physi-
cal justification of the proposed channel model remains largely unclear. This makes it
rather difficult to determine the accuracy of the results as well as the system configu-
rations that they are limited to. The same criticism applies to the model proposed by
Desurvire [Des02b, Des02c].

Ho and Kahn have considered constant-intensity modulation schemes [HK02]. In the
absence of random XPM¢-induced phase noise, they identify FWM® as the main impair-
ment. Since chromatic dispersion converts phase modulation into amplitude modulation,
this approach is limited to dispersion-shifted fibers (DSFs).

Essiambre et al. have obtained more generally valid results on the channel capacity by
evaluating extensive numerical simulations of the fiber-optic channel [EFKW08, EFW*08,
EFWKO08, EKFW08, EFWK09, FEW*09, EFKW10, EKW*10]. This approach is dis-
cussed in Section 6.2.2.

Finally, Taghavi et al. have proposed to calculate the capacity of WDM systems using
multi-user information theory [TPS06]. This approach requires a joint receiver that has
access to all co-propagating WDM channels. It is not surprising that each WDM channel
can achieve the capacity of a linear fiber channel in this scenario.

6.2 Time-domain analysis of the channel capacity

6.2.1 Nonlinear WDM effects

The nonlinear Schroedinger equation (NLSE) (2.70) governs the propagation of an ar-
bitrary field a(z,t) along the fiber. If this field comprises N WDM channels, it can be
written as

N
a(z.t) = Y al™(zt)-ematm (6.1)

m=1

where W denotes the channel spacing bandwidth. We use (2.78) to insert (6.1) into
(2.70) and obtain a set of N coupled differential equations. The propagation equation for

IThe letter © denotes a WDM system effect. See Sections 2.2.2 and 6.2.1 for an explanation of the
terms SPMS, XPM® and FWMS.
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where (™ stands for a(™(z,t). The phase mismatch term associated with FWM? is
given by (5.4).

The similarity of (6.2) with (5.6) motivated the use of the terms SPMS, XPM® and
FWM? to denote the interaction of WDM channels. It is important to emphasize the
difference between the equally named effects. All nonlinear interactions (through SPM,
XPM and FWM) of spectral components belonging to channel m are subsumed by the
SPMS term. Similarly, the XPM® term contains nonlinear interactions through XPM and
FWM.

Just as SPM® causes a phase modulation proportional to the instantaneous power, XPM®
rotates the phase proportionally to the power in all co-propagating WDM channels. XPM®
is always phase-matched; it does not become less efficient with increasing channel sepa-
ration. However, two interacting channels experience a group velocity difference in fibers
with chromatic dispersion. This channel walk-off has an averaging effect on the XPMS-
induced phase modulation, so that the distortions due to XPMS decline with increasing
channel separation [KK97a, Ch. 8]. The length scale governing this behavior is the walk-
off length (2.150). Finally, FWMS is responsible for an energy exchange between WDM
channels. Analogously to FWM, FWM¢ products can appear at occupied frequencies (es-
pecially in WDM systems with equally spaced channels) or at new frequencies. FWMS is
effectively suppressed by the phase mismatch in WDM system (unless dispersion-shifted
fibers are used).

At a large frequency spacing between interacting waves, 7.¢ reduces from 8/9-v to
2/3 -~ as discussed in Section 2.1.6. Nevertheless, we will use 7. = 8/9 -~ throughout
this chapter. As explained above, the closest WDM neighbors generate the strongest
inter-channel nonlinearities (XPM® and FWM?). Since modern single-mode fibers have
very low PMD parameters, the bandwidth (4.6) of the principal states of polarization is
larger than the bandwidth of a single WDM channel. It is therefore reasonable to assume
that the random changes of light polarization of neighboring WDM channels are strongly
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correlated. While this may lead to results that slightly overestimate the effect of inter-
channel nonlinearities, a more precise treatment would require knowledge of the exact
transition of y.g from 8/9 to 2/3 as a function of the frequency separation. This question
is left open for future research.

The one inter-channel effect that is not considered in this chapter is stimulated Raman
scattering (SRS), see Section 2.1.4. If the bandwidth occupied by the WDM channels is
very large, the Raman gain depicted in Figure 2.4 must be taken into account. SRS leads
to an energy transfer from channels at higher frequencies to channels at lower frequencies.
To maximize the capacity of the entire system, an iterative water-filling scheme (cf. FWM,
Section 5.4.2) is required to find the optimum transmit power allocation.

6.2.2 Phenomenological channel model

Review of published results

Essiambre et al. have obtained results for the channel capacity of fiber-optic networks by
evaluating numerical simulations of the channel [EKW710]. The reported results stand
out from the other contributions summarized in Section 6.1 in the sense that they are not
limited to specific fiber effects or system configurations.

The system configuration is summarized in [EKW™10, Tables I-V]. In short, five densely
packed WDM channels (channel bandwidth B =100 GHz, channel spacing 102 GHz) are
propagated along a standard single-mode fiber (SSMF) link with ideal Raman amplifi-
cation (local gain equals local loss) and ideal (rectangular) optical filtering. The cen-
tral channel acts as the probe channel. Simulating more than five WDM channels does
not change the results significantly [EKW™10], presumably due to walk-off. Distributed
ASE is generated in the simulation and co-propagated with the signal. In each channel,
sinc-shaped pulses are modulated with ring constellations (cf. Section 3.4.3). Hence,
each channel’s power spectral density (PSD) is rectangular. Intra-channel nonlineari-
ties (except signal-ASE and ASE-ASE interactions) are removed by electronic predistor-
tion. Links with different dispersion maps and link lengths are considered. We discuss
dispersion-managed links and links without inline dispersion compensation separately in
Section 6.2.3 and 6.2.4.

A numerical approach has the advantage of greater confidence in the results but at the
expense of computational effort and complexity rendering it very challenging for parameter
space optimization (such as for instance for the constellation optimization performed
in [FEW™09]). In the following, we try to escape this predicament by formulating a
phenomenological channel model which, while requiring a few observations made in the
full numerical simulations, allows a fast scaling of fiber-optic channel capacities to other
system operating regions.
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Phenomenological channel model

Figures 6.1(a)-(c) display the received signal after (numerically simulated) transmission
for a ring constellation with 7 = 4 rings (2000-km link as described in Section 6.2.3).%
The constellations are “backrotated” to a reference phase as described in [EKW™10].
The input powers per channel are —15dBm, —6 dBm and 3dBm. The observed signals
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Figure 6.1: Typical received signals (four-ring constellation) for each SNR region.

show characteristic differences for each of the three SNR regions. For very low SNRs
(Region 1), the channel is essentially linear and ASE noise is the dominant impairment.
In this regime, all the transmitted points that belong to a given ring in the signal space are
received as a “cloud” with circular symmetry (Figure 6.1(a)). The average phase rotation
visible in Figures 6.1(a)-(c) is due to fiber nonlinearities. It can easily be removed at
the receiver and consequently does not affect capacity. In the following, we will therefore
consider the received (backrotated) phase as a zero-mean random variable. As signal
powers increase, fiber nonlinearities become apparent (Region 2, SNR 215 dB), producing
large phase distortions that appear as kidney-shaped clouds (Figure 6.1(b)). The phase
noise causing this angular spread can be attributed to XPMS [EKW*10] as the signal
phase is modulated by the time- and distance-dependent power levels P (z,t) (n #m,
where m is the channel considered) of the co-propagating WDM channels. A third regime
(Region 3, SNR 2 23 dB) of transmission is observed at very large signal powers, where a
very strong nonlinear (NL) scattering of the received signal occurs in addition to AWGN
and nonlinear phase noise (Figure 6.1(c)).

In Region 1, the channel can be modeled as an AWGN channel. The channel capacities
using ring constellations grow logarithmically with the SNR (see Figure 6.3, or [EKWT10,
Fig. 16]).

With increasing signal power, the distortion becomes clearly non-Gaussian; an AWGN
channel model can no longer predict the correct fiber channel capacity. As each WDM
channel carries independent data, the power levels P(™(z,t) in the co-propagating WDM
channels can be considered as independent random variables. We assume all channels to

2The depicted results were produced by R.-J. Essiambre and are used with permission.
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have identical signal power P, and data format, so that all P (z,t) have identical mean
and variance. For the link with ideal distributed amplification considered in [EKW*10],
the mean remains constant and is given by P,. In contrast, the variance o3 of the random
variables P(™(z,t) is not constant. It evolves along z depending on the dispersion map
and is proportional to P2. The problem of how to determine an “effective” o3 is discussed
separately in Sections 6.2.3 and 6.2.4.

The probe channel’s phase is XPMS-modulated by the sum of the powers P (z,t). As
expected from the central limit theorem, the resulting nonlinear phase @pyx will (asymp-
totically, i.e. for large n) assume a Gaussian PDF with mean and variance proportional

to P, and 0% (where o2 in turn is proportional to P?), respectively. As mentioned be-

S
fore, the average phase rotation does not impact capacity and we consider Gpy as a
zero-mean random variable. Figure 6.2 shows an an examplary histogram of Opy (r=8,

101logy(Ps) =—2dBm, link setup as discussed in Sec. 6.2.3).
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Figure 6.2: Histogram of phase angle Opy of received samples (blue bars) and fitted
Gaussian PDF (red line) for 10log,,(Ps) =—2dBm.

The phenomenological fiber channel model in Region 2 is given by
Y =X 29N 4 N, (6.3)

where Opy ~ Ng (0, cra -02). Hence, the fiber channel is modeled as partially coherent
(see Section 3.6) with a wrapped Gaussian phase noise distribution (3.67). The capacity
in Region 2 is determined by the SNR P,/Pasg and the phase noise variance cR2~0123.
The phase noise parameter cry (in units of W) incorporates system specifications such
as the number of WDM channels, the channel walk-off due to chromatic dispersion, the
dispersion map and the link length. The estimation of cgrs is described in Section 6.2.3.
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In anticipation of the capacity calculation details given in Section 6.2.3, Figure 6.3 depicts
capacity values for various ring constellations obtained from the full numerical model
(FNM) of [EKW*10], from an AWGN channel model (as applicable in Region 1) and
from the phenomenological channel model (6.3) applicable in Region 2. The curves shown
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Figure 6.3: Channel capacity in bits/s/Hz of dispersion-managed 2000-km link over
SNR in dB, 10log,(Ps/Pasr), as obtained from AWGN channel model, partially coher-
ent channel model (6.3) and full numerical model (FNM) [EKW*10] for various ring

constellations. Top x-axis shows signal power in dBm, 10log,(Ps/1 mW).

in Figure 6.3 (and in all other figures of this section) were obtained using the polar
decomposition method of Section 3.3. The (very small) mixed term II was neglected
in all cases. In obtaining the depicted capacity values, spectral loss was not taken into
consideration.

It can be observed that the channel model (6.3) predicts the capacity reasonably well
for the SNR range we call Region 2. This region includes the point of maximum capacity,
at which the channel is weakly nonlinear, i.e. only few decibels above the linear regime
(Region 1) [EKW™10]. Hence, the single parameter cgo is sufficient to predict the capacity
values in the SNR regions where C' is maximum.

In regions of very high SNRs (Region 3, SNR = 23 dB), the channel (6.3) can no longer
convey any of the information encoded in the signal phase; it becomes noncoherent. At
this point, the phase’s circular variance tends to 1 and its distribution approaches the
uniform distribution. In contrast, the information encoded in the r amplitude levels
remains unaffected by phase noise, so that the capacity of the r-ring constellation tends
towards log,(r) for very large SNR. This effect can be observed in Figure 6.3, where the
dashed lines saturate at log,(r) bits/s/Hz. In order to rectify this disagreement with
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existing results from [EKW'10] (where C' — 0 for very large SNRs), a third parameter is
required to characterize the channel completely.

In Region 3, we observe a very strong nonlinear scattering of the received signal occurs in
addition to AWGN and nonlinear phase noise (Figure 6.1(c)). To account for this effect, we
heuristically introduce a power-dependent complex AWGN process Nyp, ~ N¢ (0, crs3 - PS),
where the value of ¢ determines the SNR level at which this process becomes apparent.
We obtained a good agreement with the existing results for ¢ =3, but did not optimize
this parameter. The parameter cgs has units of W'™¢ i.e. W2 here. The explicit fiber
channel model in Region 3 is

Y = X-e?9N 4 N + Ny (6.4)

The physical cause for Nyp, could be PM-to-AM conversion due to chromatic dispersion.
Furthermore, the efffect of spectral loss derived in Section 3.6.2 might contribute to Ny,
as discussed in Section 6.2.5.

6.2.3 Dispersion-managed links

Capacity results for dispersion-managed links with variable residual dispersion per span
(RDPS) are reported in [EKW™10]. Here, we confine the discussion to the link setup
used in [EFKWO08]. In addition to the technical details listed in Section 6.2.2, the link
uses a dispersion map with —1050 ps / nm pre-compensation and 20 ps / nm residual dis-
persion per span. Results for link lengths of 500 km [EFWKO09], 1000 km [EFWKO8] and
2000 km [EFKWO08] of SSMF are reported. We will concentrate on the 2000-km link in
the following.

Calculation of effective power variance o3

The phenomenological channel models (6.3) and (6.4) rely on accurate estimates of the
phase noise variance cgs - 03. This variance could be estimated directly from numerical
simulation results at a meaningful SNR value (in Region 2). As o3 scales quadratically
with Py, the phase noise variance could then be scaled to different SNR values. This
approach, however, requires separate numerical simulations for different data formats
(i.e. constellations).

In order to make the phenomenological channel model scalable to various input constel-
lations, we wish to estimate o3 analytically. A surprisingly simple estimate for the given
dispersion-managed link is to calculate o3 as the power variance of the input constellation,
e.g. op=0 for a 1-ring constellation and op ~0.57 - P? for r=4.

Although this approach appears overly simple, it delivers a much better agreement with
observations made in numerical channel simulations than e.g. calculating o2 from the
power variance of the actually propagating waveforms (taking pulses and dispersion into
account) does. A possible explanation could be the lowpass character of XPMS (see e. g.
[LWRO02]) which entails two consequences:
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1. The power variance of the signal waveform (which is a modulated sequence of sinc-
pulses) approaches the power variance of the constellation when its spectrum is
lowpass-filtered. For highly variant constellations, e.g. ring constellations with
large 7, this has a negligible effect. However, when the power variance is low, the
effect of filtering is significant. In particular, the single-ring constellation produces
very little phase noise through XPM¢ in numerical simulations (see e.g. [FEWT09,
Fig. 3]). This is reflected in the high capacity of this modulation scheme at large
SNRs, i.e. when XPMS is strong.

2. The broadband waveforms propagating in the WDM channels are transformed by
chromatic dispersion relatively quickly. However, only a lowpass-filtered version of
each signal spectrum induces phase noise through XPM®. These “effective” narrow-
band signals are less susceptible to dispersion. As the given dispersion-managed link
has only a limited amount of accumulated dispersion, the effect of dispersion can
be neglected. In contrast, the effect of dispersion must be taken into account for
uncompensated links as discussed in Section 6.2.4.

Parameter estimation

As mentioned above, the channel parameters cro and cgs incorporate system specifications
such as the number of WDM channels, the channel walk-off due to chromatic dispersion,
the dispersion map and the link length. It seems difficult to calculate these parameters
analytically. Instead, they are estimated from existing capacity results in a two-stage
process.

First, cre is estimated from an existing capacity value in Region 2 (SNR =20 4+ 2dB
here) for any constellation with more than one ring. To find cgs, the capacity of channel
(6.3) is determined using the polar decomposition of mutual information introduced in
Section 3.3. In a gradient search algorithm, cgrs is varied until the resulting capacity
equals the given value. For the given dispersion-managed link, this estimation method
delivers cpy ~ 7.75-10° W2,

In the second step, cro is fixed and cgrs3 is determined from a second existing capacity
value in Region 3. We use a point of capacity below half of the peak capacity of Region 2
(SNR=29dB £2dB here) as a reference capacity value. As before, the parameter cgs is
varied until the capacity of (6.4) (again calculated using the polar decomposition method)
matches this reference capacity value. For the given link, we obtain cgs ~ 8.2 - 10* W2,

This parameter estimatation method requires two capacity values obtained from the full
numerical simulation. These values must be taken at SNR values that are representative
for Regions 2 and 3, respectively. Once both parameters are estimated for a given link,
they can be used to produce capacity results for all SNR values and input constellations.

Numerical capacity results

Using the estimated values for cgro and crs3, we calculated the channel capacities for ring
constellations (uniform ring probability, equidistant radii) from 1 to 16 rings and for
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various values of SNR; the resulting curves are shown in Figure 6.4. The results match
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Figure 6.4: Channel capacity in bits/s/Hz of dispersion-managed 2000-km link over
SNR in dB, 10log,,(Ps/Pask), as obtained from phenomenological channel model (6.4)
and full numerical model (FNM) [EKW*10] for various uniform ring constellations. Top
x-axis shows signal power in dBm, 10log;,(Ps/1 mW).

the capacity values reported in [EFKWO08] for all values of  and SNR within few tenths of
bits/s/Hz, so that they are within the numerical uncertainty of a few tenths of bits/s/Hz
reported in [EFKWO08].

The proposed phenomenological channel may help understand the somewhat counter-
intuitively good performance of the 1-ring constellation in Region 3. This constellation
is scarcely affected by phase noise (low power variance), so it is only impaired by AWGN
N and nonlinear AWGN Ny, and outperforms the multi-ring constellations in Region 3
where phase noise is very strong.

Input optimization

Ring constellations with a sufficient number of rings approach the Shannon limit very
closely [EKW*10, Fig. 16]. However, they are not the optimum input constellation for
either an AWGN channel or a partially coherent channel. In [FEW™09], the ring radii and
probabilities were numerically optimized to increase the capacity. This optimization leads
to a small capacity increase of 0.5 bits/s/Hz for the 2-ring constellation. Using the same
phenomenological channel model and parameters, i. e. the same cro, crz, we performed an
optimization of the ring ratios and probabilities of the input constellation (see [FEWT09]
for details of the optimization method).



6.2 Time-domain analysis of the channel capacity 149

Figure 6.5 depicts the capacity results for the optimized ring inputs. As expected, the
capacity values as well as the optimum ring ratios and probabilities match those reported
in [FEWT09] (to within a few tenths of bits/s/Hz). This demonstates the ability of
the phenomenological channel model to predict capacity results for arbitrary modulation
schemes (once cge and crg have been estimated from two capacity values of one particular
modulation scheme).
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Capacity in bits/s/Hz

SNR in dB

Figure 6.5: Channel capacity in bits/s/Hz of dispersion-managed 2000-km link over SNR
in dB, 10log,,(Ps/Pask), as obtained from phenomenological channel model (6.4) and full
numerical model (FNM) [FEWT09] for various optimized ring constellations. Top x-axis
shows signal power in dBm, 10log;,(Ps/1 mW).

The estimation process as well as the calculation of capacity curves such as those shown
in Figure 6.4 take only a few seconds on a regular personal computer. One potential
application of the phenomenological model is therefore the fast screening of spectrally
efficient and robust modulation schemes to maximize the capacity of future fiber-optic
WDM transmission systems. Due to the heuristic nature of the approach, one would
always want to perform a closer examination of the identified modulation schemes using
the full numerical channel simulation. In that sense, the proposed method does not
intend to replace the approach of [EKW™10], but rather provide a tool for rapid capacity
estimation in the parameter space around a given capacity evaluation.

6.2.4 Uncompensated links

The results reported in Section 6.2.3 were obtained for a link with inline compensation
of chromatic dispersion. The used dispersion map with moderate residual dispersion per
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span (20 ps / nm) can reduce fiber nonlinearities in conventional fiber-optic communication
systems. However, the capacity is increased by reducing the amount of inline dispersion
compensation [EKW*10, Fig. 34]. This is even more so if dispersion-compensating fibers
are used, as such fibers have relatively large attenuation and nonlinearity parameters, see
Table 2.3.

The XPM¢®-induced nonlinear phase noise Gpy of the phenomenological channel model
(6.4) has a Gaussian distribution whose variance scales with the power variance o3, Opyx ~
Nk (0,cra-02). As discussed in Section 6.2.3, a good agreement with existing results is
achieved by calculating o2 from the signal constellation for dispersion-managed links with
low accumulated dispersion. This is different for uncompensated links. In the absence of
inline dispersion compensation, chromatic dispersion transforms the waveforms in each
WDM channel into zero-mean Gaussian random processes with variance P; relatively fast.
The waveforms, and hence the XPM®-induced phase noise, become independent of the
WDM channels’ data formats for long links. Therefore, o2 scales with the power variance
of the Gaussian random process. The power has a central (scaled) x? distribution with
variance P52, so we have Opx ~ Ng (0, cro - Pf)

Capacity results for the 16-ring constellation for uncompensated links with L = 500,
1000, 2000, 4000, 8000 km are reported in [EKW™10, Fig. 35]. In the phenomenological
channel model, different parameter sets {cra, cr3} are expected for each fiber length. The
parameter estimation procedure described in Section 6.2.3 is therefore repeated for each
link length separately. As before, crs is estimated from a single capacity result in the
region of maximum capacity and crg from a single result in the highly nonlinear regime.

For the given link lengths, the resulting values are cgo ~ 10200, 23500, 43800, 44300,
77400 W2 and cgrs ~ 1020, 1910, 3770, 4130, 7025 W2, A simple, e.g. linear, relation-
ship of cro, crz and L cannot be observed. Length scaling of the obtained results therefore
remains an open problem.

Figure 6.6 shows the results obtained from the phenomenological channel model for the
various link lengths and a 16-ring input constellation. The results from the full numerical
model (FNM) of [EKW™10, Fig. 35] are shown for comparison. We observe an excellent
agreement between the results. With every two-fold increase in distance, the SNR which
maximizes the capacity decreases by approximately 3dB. At the same time, the ASE
noise power increases by 3dB. Hence, the signal power that maximizes the capacity
remains approximately constant [EKW*10].

Finally, we use the parameter set {crs,crs} found for the 2000-km link (green line
in Figure 6.6) to obtain results for various input constellations. Figure 6.7 shows the
results obtained from the phenomenological channel model for the 2000-km link and for
r=1,2,4,16.

It can be seen that the phenomenological channel model does not reproduce the FNM
results for r =1 and r = 2 as accurately it did in the case of the dispersion-managed
link (Section 6.2.3). As the power variance of the constellation decreases, (6.4) tends to
underestimate the capacity. The reason for this disagreement lies in the estimation of
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Figure 6.6: Channel capacity in bits/s/Hz over SNR in dB, 10log,(Ps/Pasg), as ob-
tained from phenomenological channel model (6.4) and full numerical model (FNM)
[EKWT10] for uncompensated link with lengths L = 500, 1000, 2000, 4000, 8000 km and

a 16-ring input constellation.

o2 outlined above, which assumes a Gaussian distribution of the propagating waveforms.
However, the low-variance signals cause considerably less phase noise through XPM® for
a significant fiber length before dispersion eventually renders them Gaussian. To increase
the accuracy of the results for low-variance constellations, o2 could be estimated (or

measured) specifically for the format at hand.

6.2.5 Effect of spectral loss

As we have seen in Section 6.2.2, two nonlinear effects are necessary to obtain a good agree-
ment of the phenomenological channel model with the numerical results of [EKW™10].
The existence of nonlinear phase noise can be attributed to XPM®. In contrast, a phys-
ical origin of the nonlinear impairment Ny, is missing. If the model (6.4) is accurate,
a possible explanation for the noise Ny, is the conversion of XPM®-induced phase noise
to amplitude noise through chromatic dispersion. Another candidate explanation is the
spectral loss effect.

As discussed in Section 3.6.2, (6.3) is incomplete in that it neglects spectral loss. Includ-
ing spectral loss, the phenomenological model (6.3) becomes

1
Y =X exp (—5-02+]QPN>+N. (6.5)

By using the channel model (6.5) rather than (6.4), we attempt to replace the heuristic
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Figure 6.7: Channel capacity in bits/s/Hz of uncompensated 2000-km link over SNR in
dB, 10log,,(Ps/Pask), as obtained from phenomenological channel model (6.4) and full
numerical model (FNM) for various ring constellations. Top x-axis shows signal power in
dBm, 10log;y(Ps/1 mW).

additive noise term Ny, by the non-heuristic multiplicative term exp (—a?/2).

Figure 6.8 shows the decomposition results for ring constellations with » =1,4,16 for
the uncompensated 2000-km link. The same parameter cro~4.4-10* W2 as above was
used.

Observe that the spectral loss attenuates the received signal power with increasing trans-
mit signal power (or increasing SNR). The overall effect is similar to that of Nyp, in (6.4)
and the capacity tends towards zero for large SNRs. Spectral loss thereby lets us reduce
the two-parameter (cre,crs) channel model (6.4) to a single-parameter (crs) channel
model (6.5).

It must be noted that while the FNM results can be qualitatively reproduced when
spectral loss is taken into account, the curves of Figure 6.8 do not match the original
results [EKWT10] quite as well as those obtained from the phenomenological model (6.4).
This is best observed from the 16-ring results, where (6.5) overestimates the capacity in
the highly nonlinear regime, i.e. at high signal power levels (compare dashed and dotted
lines in Figure 6.8 in the SNR range from 25dB to 35dB).® Thus, spectral loss should
be considered only one further explanation for the capacity behavior caused by the fiber
nonlinearities. At the same time, the model (6.5) with XPM¢® phase noise Opy and spectral

3The results’ mismatch for =1 and r =4 is less meaningful. It has its reason in the imprecise estimate
of o3 as discussed in Section 6.2.4.
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Figure 6.8: Channel capacity in bits/s/Hz of uncompensated 2000-km link over SNR in
dB, 10logy,(Ps/Pask), as obtained from phenomenological channel models (6.3) (without
spectral loss (SL)) and (6.5) (with SL) for various uniform ring constellations. Top x-axis
shows signal power in dBm, 10log,,(Ps/1 mW).

loss 02 does show the same qualitative capacity behavior as the FNM. A potential further
refinement is to include amplitude-to-phase conversion through chromatic dispersion.

6.3 Frequency-domain analysis of the channel capacity

The method discussed in the previous section yields reliable estimates for the capacity
of an idealized fiber-optic communication channel operated in the time domain. The
original method [EKW™10] requires numerical simulations of the channel, the proposed
phenomenological channel model is heuristic.

A strictly analytical (i.e. neither numerical nor heuristic) way to estimate the channel
capacity is provided by the method introduced in Chapter 5. We will now extend this
method to the analysis of WDM systems. The system model introduced in Section 5.2
remains unchanged. However, we change our view on the co-propagating spectral compo-
nents X ™ defined by (5.2). Instead of assuming a number N, of co-propagating spectral
components, we now have Ng, - Ny co-propagating components. We assume that the
number Ny, of WDM channels is odd. The Ny. spectral components in the center of this
field (i.e. X WNse® (Nen=1)/2+1) "= X (Nsc* (Nnt1)/2)) yepresent the probe channel.
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FWM products (including SPM and XPM) that satisfy {n,p,q} € [Nec: (Nen —1)/2 +
1, Nse - (Nen +1)/2] represent intra-channel nonlinearities. In combination, these products
generate SPM® in the time domain. As in Section 6.2, we assume that these intra-
channel nonlinearities are perfectly compensated. Every FWM product (including XPM)
that involves at least one spectral component from outside the probe channel’s band
contributes to the inter-channel effects XPMS and FWM®. These FWM products satisfy
m=n+p—q € [Ny (Nen—1)/24+1, Ngc - (Nen+1)/2] and n or por ¢ ¢ [N+ (Nen —1)/2+
1, N - (Nen +1)/2]. Such products are not removed by individual electronic predistortion
of each WDM channel and remain as capacity-degrading impairments.

To find the resulting inter-channel FWM noise PSD, two spectra are calculated. The
FWM noise PSD for N, - Ny sub-carriers contains all inter- and intra-channel FWM
products. The FWM noise PSD for N, sub-carriers, which can be taken from Chapter 5,
contains only intra-channel FWM. The frequency spacing of the sub-carriers in both cases
is Af, so that the entire WDM bandwidth is Ny, - B. Subtracting the intra-channel FWM
noise PSD from the WDM FWM noise PSD yields a PSD that contains only inter-channel
FWM. The resulting FWM noise PSD for N, =5 and B=100 GHz is shown in Figure 6.9.
In comparison to Figure 5.9, we observe a significant reduction of the FWM noise PSD

-25 =2 -15 -1 -0.5 0 0.5 1 1.5 2 2.5
/100 GHz

Figure 6.9: Normalized PSD of FWM noise in a WDM system with five channels for
L=2000 km and ideal Raman amplification. The normalized PSD has units of W™ Hz ',

in the probe channel in the center of the depicted spectrum. The effect of the remaining
(inter-channel) FWM noise on the capacity of WDM probe channel is discussed in the
following sections.

Contrary to intra-channel FWM, the impairment of inter-channel FWM is stronger at
the edges of the probe channel and smaller in its center. As the FWM noise spectrum
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is non-flat, an iterative water-filling procedure as proposed in Section 5.4.2 is required
to maximize the capacity. Such a scheme would take some signal power away from the
band’s edges and concentrate it in the center of the channel. In effect, this would establish
soft guard bands between the WDM channels. This topic is left open for future research
and guard bands between the WDM channels are not considered in the following.

6.3.1 Effect of inter-channel nonlinearities in WDM systems

We will neglect nonlinear signal-ASE interactions in this section and add them to the
discussion in Section 6.3.3.

XPM was shown to have no effect on the channel capacity in Section 5.3. This result is
valid for WDM systems, too. In fact, the variance of XPM-induced phase noise converges
to zero even faster for WDM systems because of the larger number of interacting spectral
components.

To determine the effect of FWM on the capacity, we proceed as in Section 5.4 but use
the FWM noise PSD shown in Figure 6.9. For all calculations that follow, Ny = 1000,
N, =5 and B=100 GHz was used. The results obtained for N, =3 were very similar, so
that it is reasonable to assume that considering more than five channels does not change
the capacity results at all. This result can be explained by the large phase mismatch of
FWM between spectral components with very large frequency separation.®

The channel capacity results for a link with L = 2000 km SSMF with ideal distributed
and lumped amplification are shown in Figure 6.10. The system parameters used for
calculating the depicted curves are the same as in Section 5.4.4.

The only impairments that degrade the capacity in this system model are ASE noise
and inter-channel FWM noise from the co-propagating WDM channels. This FWM noise
has lower power than the intra-channel FWM noise considered in Chapter 5. The values
depicted in Figure 6.10 are therefore higher than those shown in Figure 5.11. Qualitatively,
the results for the WDM and the single channel scenario are similar. The largest capacity
(C ~ 8.0bit/s/Hz) is obtained with ideal Raman amplification. The optimum SNR
is approximately 26.15dB, corresponding to 10log,,(Ps/1 mW) = —2.6dBm. Lumped
amplification performs worse at any span length. The maximum capacity at Lgpan =
50km (100km) is C' ~ 6.9bit/s /Hz (5.5bit/s /Hz) at an SNR of approximately 22.7dB
(18.2dB), corresponding to an average input power of —0.2dBm (—2.3dBm).

The capacity curve of the system using Raman amplification can be compared to the cor-
responding result reported in Section 6.2.4. In Figure 6.6, the green curve (L =2000 km)
peaks at approximately 7bit/s /Hz. Hence, the maximum capacity values of the two
models differ by around 1bit/s / Hz; the optimum SNR value of the time-domain model
is approximately 2dB lower than that of the frequency-domain model. The numerical
uncertainty of the time-domain model (a few tenths of bits/s/Hz [EKWT10]) is not an

4In [EKWT10], the required (and sufficient) number of WDM channels is Ny, = 5, too. Here, the
reason lies in the walk-off between the channels.
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Signal power per WDM channel in dBm (Raman only)
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Figure 6.10: Channel capacity in bits/s/Hz of 2000-km SSMF link with distributed and
lumped amplification over SNR in dB, 10log,,(Ps/Pasg). Top x-axis shows signal power
per WDM channel in dBm, 10log,,(P;/1 mW), for the distributed amplification setup.

adequate explanation for the observed capacity difference. Moreover, only a very small
fraction of the capacity difference can be attributed to the different input constellations
(16-ring and Gaussian, respectively), cf. [EKWT10, Fig. 16].

A more satisfactory explanation for the observed capacity gap lies in the effect that inter-
channel fiber nonlinearities have in the two models. Both models incorporate the same
nonlinearities. In the time-domain model, they appear mainly as XPM®-induced phase
noise, while the frequency-domain model is impaired by FWM-induced AWGN. From the
decomposition shown in Figure 3.3, we know that the phase carries more information than
the amplitude does (I(X,;Y]) > I(X4;Y4|X,)).> The XPM®-induced phase noise mainly
impairs the phase term, i.e. the dominant sub-channel. In contrast, FWM affects both
sub-channels, but impairs the dominant sub-channel less (relative to XPM®) and thus
allows a larger sum capacity. A deeper understanding of the time-domain model (and
of the equivalence of nonlinear effects in the time and frequency domain) is required to
corroborate this explanation.

It is important to note that none of the two discussed capacity calculation methods is
“more correct” than the other. Ideally, both methods should deliver identical capacity
results. The capacity estimates are therefore expected to converge with a further refine-
ment of the two models. As outlined in Section 5.4.2, a refined frequency-domain model

5The decomposition of the AWGN channel with Gaussian input and with a 16-ring constellation yields
nearly identical values at SNRs up to 25 dB.
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would take the non-white FWM PSD as well as the (potential) correlation of FWM noise
between sub-channels into account. In turn, the time-domain model could deliver more
precise (and higher) capacity estimates by a systematic input optimization. Because of
the channel’s memory, the optimized input might consist of correlated symbols.

In their current formulation, i.e. in the absence spectral shaping, decorrelation and
input optimization measures, the models mimic “practical” fiber-optic communication
systems. The observed difference therefore suggests that fiber-optic channels can achieve
higher “practical” capacities when the information is encoded in the frequency domain,
e.g. using OFDM.

6.3.2 Capacity results for different link lengths

The capacity calculation was repeated for different link lengths. With ideal Raman am-
plification, we obtain the results shown in Figure 6.11. A channel capacity of C' =
6.5 bit/s / Hz can be achieved on a 10000-km link.
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Figure 6.11: Maximum channel capacity in bits/s/Hz (black solid line) and optimum
signal power per WDM channel in dBm, 10log,,(Ps;/1 mW), (red dashed line) over SSMF
length in km. Ideal distributed amplification is used.

At all link lengths, the capacities are slightly higher in the frequency-domain model than
in the time-domain model (cf. Figures 6.11 and 6.6) as discussed in the previous section.

The optimum input power shown in Figure 6.11 increases with the fiber length. As
explained in Section 5.4.4, the reason for this behavior lies in the length-dependence of
the FWM noise power which grows slower than linearly with distance. This observation
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is a second disagreement with the results of the time-domain model. It might have its
reason in the same qualitative differences between the nonlinear effects in both models
discussed in Section 6.3.1.

6.3.3 Nonlinear signal-noise interaction in WDM systems

Finally, we include nonlinear signal-ASE and ASE-ASE interactions in the capacity cal-
culations. As signal-ASE interactions through SPM are small compared to those through
FWM (see Section 5.5.2), we consider only FWM in the following. Hence, each sub-
channel is again modeled as an AWGN channel.

As in Section 5.5, we obtain a lower bound on the capacity by assuming that the entire
ASE noise power propagates with the signal along the full link length. Instead of scaling
the FWM noise PSD shown in Figure 6.9 with the average signal power per channel P,
we scale it with (P, + Pasg)? (5.25).

Electronic predistortion of each individual WDM channel removes only nonlinear signal-
signal interactions. The nonlinear interactions of signal and noise remain. In addition,
we therefore need to take into account the FWM noise that has its origin in the nonlinear
intra-channel signal-ASE (and ASE-ASE) interaction discussed in Section 5.5.2.

The channel capacity calculation was repeated including FWM noise from signal-ASE
interaction. The resulting capacity decrease is very small. For distributed amplification,
it amounts to less than 0.01 bit/s / Hz for L=>500 km, 0.045 bit/s / Hz for L =2000 km and
0.4bit/s /Hz for L=10000km. At L =10000km, the optimum SNR is reduced by 1dB.
It must be noted again that the actual capacity decrease is smaller than these values due
to the distributed generation of noise that was neglected in the calculation.

We can conclude that nonlinear signal-ASE interaction has a negligible effect on the
channel capacity for medium distances and a small effect in very long links. This result
is in agreement with the observations reported in [EKW10].

6.4 Summary

The effect that fiber nonlinearities have on the capacities of the individual channels in
an optical WDM network were discussed in this chapter. This discussion assumes that
intra-channel nonlinearities can be removed (e.g. by electronic predistortion), whereas
inter-channel nonlinearities remain as fundamental impairments. After a review of the
existing literature, the following main results were obtained:

> The nonlinear system effects SPM®, XPM® and FWM® were introduced using cou-
pled differential equations that describe the propagation of WDM channels. These
intra- (SPM?) and inter-channel (XPM®, FWM?) effects are related to SPM, XPM
and FWM.

> A phenomenological channel model (PCM) was proposed that is able to reproduce
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capacity results of a published numerical study. The PCM models the optical chan-
nel in the time domain as an AWGN with additional power-dependent phase noise
and additive noise. Only two existing capacity results are required to estimate the
two free parameters of the PCM. For a given link, the same set of parameters can
be used to calculate the capacity for different SNR values and input constellations.

> The PCM was used to obtain capacity results for dispersion-managed as well as
uncompensated links. The maximum channel capacity for a 2000-km link with ideal
distributed amplification is approximately 7bit/s /Hz, obtained in the absence of
inline dispersion compensation.

> Spectral loss was discussed as one possible physical explanation for the power-
dependent additive noise term.

> The frequency-domain model introduced in Chapter 5 was extended to the analysis
of inter-channel nonlinearities in a WDM system. The channel capacity can be
calculated from the FWM power spectral density in the absence of intra-channel
FWM. No more than five WDM channels have to be considered for this calculation
at B=100 GHz.

> A capacity value of around 8 bit /s / Hz was found for the 2000-km link. The channel
capacity obtained with lumped amplification does not exceed 7bit/s / Hz. The time-
domain and frequency-domain models deliver (slightly) different results. A possible
reason for this (small) difference lies in the unequal distribution of information
between the sub-channels represented by the amplitude and phase terms of the
decomposition of mutual information.

> The maximum capacity and the optimum input power per WDM channel were
calculated for different link lengths. The capacity ranges from 9.5bit/s /Hz for a
500-km link to 6.5 bit/s / Hz for L=10000km. The optimum input power increases
with distance.

> Finally, the interaction of signal and noise was included in the capacity calculation.
Both signal-ASE and ASE-ASE interaction through intra- and inter-channel non-
linearities have to be considered. The results confirm that the nonlinear interaction
of signal and noise has a very small effect.






Conclusions

How much information can we transmit over an optical single-mode fiber with arbitrarily
low probability of error? Multiple answers to this question are suggested in this thesis; a
single valid answer does not exist. The channel capacity of a fiber-optic communication
system depends on a large variety of system parameters but also on how practical sys-
tem constraints render physical effects fundamental, i.e. purely random or irrevertible.
In any case, the answers given in this thesis indicate that today’s practical fiber-optic
communication systems are much further away from the Shannon limit than for instance
wireless or copper-based communication systems. Improved system components as well
as advanced signal processing methods, line coding and channel coding schemes will help
close the gap to the Shannon limit in the future.

In the effort of increasing the data rate of future optical systems, it is important to know
how far away from the fundamental limit the system operates. The methods introduced
in this thesis can be used to answer this question individually for each specific system
setup. The main contributions of this thesis can be summarized as follows:

> The linear and nonlinear processes that affect the signal propagation in optical
fibers were derived rigorously from physical equations. In the development and for-
mulation of (inevitably abstract) information-theoretic channel models, the implicit
assumptions and simplifications remain transparent.

> A method of decomposing the mutual information in terms of polar coordinates
was developed. This method essentially splits the channel into an amplitude and
a phase part and yields insight into how information is conveyed over the channel.
The decomposition was applied to the AWGN channel with Gaussian as well as non-
optimum inputs. An application of the decomposition method to partially coherent
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channels reveals a property of such channels that we call “spectral loss”. Three
different nonlinear effects (SPM, XPM and XPM?) render the fiber-optic channel
partially coherent so that the proposed (general) decomposition method has an
important application to fiber-optic channels.

Polarization-mode dispersion (PMD) was discussed as a fading phenomenon. It was
shown that coherent receivers should detect the light in two orthogonal polariza-
tions separately. PMD as a linear effect does not reduce the MIMO capacity. If
fiber nonlinearities are considered, cross-polariztion modulation leads to fast polar-
ization rotations and hence interference between polarization-multiplexed signals.
The variance of this interference term was calculated in a simple numerical example
to show that the effect of XPolM is very small at optimum power levels. (These
optimum power levels were determined in Chapters 5 and 6.)

A frequency-domain model of the nonlinear fiber-optic communication channel was
proposed for capacity calculation. In this model, the nonlinear effects of SPM,
XPM and FWM can be treated separately. The same model was used to calculate
the capacity for different fiber types (DSF, SSMF), amplification schemes (Raman,
EDFA), nonlinear distortions (intra- or inter-channel effects) and signal-ASE inter-
action. In all cases, the capacity is limited by ASE noise at low power levels and
by FWM noise at high power levels. It has a distinct optimum between the two
regions, yielding an optimum input signal power.

SPM and XPM were shown to have no fundamental effect on the capacity. The
nonlinear effect that limits the channel capacity is FWM. An approximate expression
for the power of a single FWM product was shown to be sufficiently accurate for
capacity calculations even at very high signal power levels. The number of FWM
products at a given frequency was determined analytically. FWM generates AWGN
so that each spectral sub-channel can be modeled as an AWGN channel. The length
dependence of FWM was discussed. As this function is (at most) quadratic in z,
secondary parameters such as the mean nonlinear phase shift cannot be used to
obtain generally valid scaling laws for capacity.

The FWM power is reduced by chromatic dispersion; the highest capacity is there-
fore achieved with SSMF. Ideal distributed (Raman) amplification enables higher
capacity values than ideal lumped (EDFA) amplification in general.

The most fundamental capacity limit was obtained by considering only nonlinear
signal-ASE interactions. At large bandwidths, the resulting capacity for a 2000-km
link is approximately 10 bit/s /Hz. This value is limited by signal-ASE interaction
through FWM, whereas ASE-ASE interaction and signal-ASE interaction through
SPM play a subordinate role.

The frequency-domain model was extended to the analysis of WDM systems, and
a maximum capacity of approximately 8 bit/s / Hz was found for the 2000-km link.
In WDM systems, inter-channel signal-signal interactions dominate over signal-ASE
interactions.
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> Based on observations made from a published numerical study [EKW™10], a simple
phenomenological time-domain channel model was proposed. The capacity of the
proposed channel model can be rapidly calculated using the polar decomposition
method. Spectral loss is identified as an important effect in this model. The results
agree very well with those of the published numerical study and show only small
differences to the results of the frequency-domain model. A result from the decom-
position method was used to provide a potential explanation for this difference.

In short, the main contribution of this thesis is that — for the first time — an approach for
estimating the channel capacity was proposed that is neither approximate nor heuristic nor
numerical. This approach is complemented by the decomposition of mutual information
that provides insight as well as a rapid numerical calculation tool.

There are a number of interesting questions and problems that remain open for future
research:

> The total channel capacity of an optical fiber is very high due to the large usable
bandwidth. If this bandwidth is fully occupied, channels at high frequencies will lose
power to lower-frequency channels due to Raman scattering. Finding the optimum
input power spectral density requires an iterative water-filling approach. As Raman
amplification is infeasible in such a broadband system, the capacity would have to
be calculated assuming lumped amplification.

> The FWM noise spectrum is not flat. Optimizing the input PSD using an iterative
water-filling algorithm would increase (or rather achieve) the capacity. Performing
this procedure separately for each channel in a WDM system is expected to produce
soft guard bands between WDM channel.

> The proposed frequency-domain model ignores any information that may be con-
tained in the correlation of the FWM noise between the sub-channels. Decorrelation
techniques could therefore be applied to obtain more accurate (higher) capacity es-
timates.

> In the context of signal-ASE interaction, the capacity calculation can be refined
using an effective ASE power level instead of assuming that the full ASE noise
power is added at the transmitter.

> Polarization multiplexing can double the capacity of fiber-optic channels almost
effortlessly. Presumably, the main additional limitation in WDM PolMux systems
is set by cross-polarization modulation. This question requires a more detailed
(possibly numerical) investigation.

> Many practical optical communication systems still use direct-detection receivers.
The noise statistics encountered at this receiver are very complicated due to the
electrical filtering that follows the photodiode. Detailed numerical calculations are
required to determine whether the capacity of DD systems is accurately predicted
by noncoherent channel models.






Calculation of the number of
four-wave mixing products

The generation of four-wave mixing products obeys the condition f,, = f, + f, — f; with
fo # fns fq # fp- The number of FWM products at a specific frequency f,, as well as the
total number of FWM products are derived in the following as a function of Ng..

This problem was adressed in the context of intermodulation interference in radio systems
long before communication over fiber was possible [Bab53]. Our calculations assume
equally spaced frequencies fi, fa,..., fn... Methods for finding the number of FWM
products in the more general scenario of unequally spaced carriers were reported in [HT98,
CYKO00].

In Section A.1, the calculation is explained in detail and separately for degenerate and
non-degenerate products. Section A.2 gives an example that may be helpful to consult
when reproducing the calculations.

A.1 The number of FWM products

We consider a system with N, channels or subcarriers, located at equally spaced frequen-
cies fi1, fa, ..., fn.. What we are interested in is the number of FWM products arising at
a given frequency f,.

We differentiate between degenerate (DG) (f, = f,) and non-degenerate (NDG) (f,, #
f») FWM products. No distinction is made between f,,, = f,+f,— f, and fo, = fo+fu— 1o,
so that every non-degenerate FWM product is actually two-fold. In cases where f, = f,, or
fq = fp, no new frequency is generated. These cases give rise to SPM (f,, = f. = f, = f;)
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and XPM (fo, = fu, fo = f2)-

To formalize the problem, we introduce integer indices m,n, p,q and ask

>m=n+p-—g,
> {n,p,q} € Nwith 1 <n,p,q < N,

> m € 7Z with 2 — N <m < 2N — 1,

> q # nand q # p,

i.e. the original channels are located at n = 1. .. N, and new products can arise anywhere
between m = 2 — Ny, and m = 2N — 1.

The total number of FWM products is obtained by counting all combinatorial combina-
tions of {n,p, ¢} satisfying the above-mentioned constraints:

> There are N, different possibilities for n.

> Either p = n (degenerate product, one possibility) or p # n (non-degenerate prod-
uct, Ng. — 1 possibilities).

> For g, Ny — 1 (degenerate) or Ny — 2 (non-degenerate) options are left.

Dividing the number of non-degenerate products by two, this sums up to

Nge - (Nge = 1) - (Nge — 2 N3 — N2
NFWM,total = Nsc -1 (Nsc - 1) + ( 2) ( ) = ( 9 ) (Al)

A.1.1 Degenerate FWM products

Degenerate FWM products satisty f,, = f, + fn — f; or m = 2n — ¢. The total number
of degenerate FWM products is

NFWM,total,DG = Nsc : (Nsc - 1) = stc - NSC' (AQ)

Now we determine the number of combinations at a given index m (i.e. the number of
degenerate FWM products falling on a given frequency f,,). There are Ny, possibilities
for n. For each of these, and for any given m, there exists exactly one or no ¢ that satisfies
m = 2n — q. No ¢ exists if

(i) ¢ =mn, or if

(i) ¢ <1, orif

(iii) ¢ > M.
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Ad (i): ¢ = n is equivalent to m = n. If 1 < m < N, this is one single case, otherwise
none.

Ad (ii): ¢ < 1 is equivalent to 2n < m or n < m/2. If m > 0, there are |m/2]
possibilities. If m < 0, there is no case in which ¢ < 1.

Ad (iii): g > N is equivalent to 2n > Ny.+morn > (Nge+m)/2. If (Nse+m)/2 < N
or m < N, there are [ Ny./2 —m/2] possible ¢’s. If m > N, there is no case in which
q>1.

In summary, the number of degenerate FWM products for a given m is

O, m < —Nsm

NSC_ ((NSC_m)/2—‘7 _Nscgméoj
Newmpa(m) =< Nee —1—[m/2| — [(Nse —m)/2], 1 <m < Ng, (A.3)

NSC_ Lm/2J7 NSC<m§2NSC7

0, m > 2Ng..

The number of degenerate FWM products falling into the original signal band (1 < m <
Ni) can be written as

Nsc/2 - 17 1 S m S Nsc: Nsc even,

Newwm,pa(m) = { Ny/2—1—(=1)"/2, 1<m < Ny, Ny odd. (A-4)

A.1.2 Non-degenerate FWM products

Non-degenerate FWM products can arise anywhere between 3 — Nye < m < 2Ng, — 2.
The total number is given by (A.1)—(A.2):

N3 3NZ
2 2

NEWM total NDG = + Nec. (A.5)

To determine the number of non-degenerate FWM products at a given index m, we
follow the procedure of Section A.1.1, however with the additional complication that n
and p are now independent. We have the following conditions:

> m=n+p-—q,
> all {n,p,q} are different, i.e. n # p, n # ¢, and p # q,

> 1< n,pq< N,

> The order of n and p is not considered, i.e. we make no distinction between {n, p}
and {p,n}. This simply introduces a factor 1/2 in every calculation.

For every combination {n, p} and given m there exists exactly one or no ¢ that satisfies
all conditions. No ¢ exists if
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(i) g=mnor g =p, or if
(i) ¢ <1, orif
(i) ¢ > Nic.
There are Ny - (Ng. — 1)/2 possibilities for {n,p}. Hence, the number of non-degenerate
FWM products is given by (N2 — Ni.)/2 less the number of cases (i), (ii), (iii).

Ad (i): g=norqg=pis equivalent ton=morp=m. If 1 <m < N, there are
(Nee = 1)+ (Nse — 1)) /2 = — 1 possibilities for this case. Outside this range, there
are no possiblhtles to count.

Ad (ii): Because m =n+p—gq, ¢ < 1is equivalent to n+p < m. Counting possibilities
for the case of equality, we have m — 1 possible n’s, and exactly one p for every n.
Subtracting the case n = p if m is even, we get

> 0 possibilities if m < 2 or m > 2N,

> (m — 2)/2 possibilities if 2 < m < Ny, m even,

> (m — 1)/2 possibilities if 2 < m < Ny, m odd,

> (2Ns. — m)/2 possibilities if Ng. < m < 2Ny, m even,

> (2Ng. — m + 1)/2 possibilities if Ny, < m < 2Ng., m odd.

The total number of possibilities for n 4+ p < m is obtained by summing up the number
of cases of each equality contained in the inequality. For instance, the calculation for even
m € [3, Ng| is

NE

Ngy(m) =y (possibilities for n + p = a)
a=1
=0+0+B-1)/2+(4—-2)2+(B-1)/2+...
1 (Zq—m 2 _m2—2.1_1_2>
:m2/4—m/2.

In summary, the number of possibilities for (ii) is

(0, m <1,
m?/4 —m/2, 1 <m < Ny, m even,
m2/4 —m/2+1/4, 1 <m < Ny, m odd,
Ny(m) = —N2/2 —m?/4 — Ny /2 + Nyem, Ny < m < 2Ny, m even, (A.6)
—N2/2 —m?/4 — Ny./2 + Neem + 1/4, Ny < m < 2Ny, m odd,
| N2/2- N2, m > 2N,
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Ad (iii): Because m =n+p—q, ¢ > N is equivalent to n + p > Ny, +m. Again, we
count possibilities for the case of equality, n + p = Ny + m, and have

> 0 possibilities if m < —N. + 1 or m > Ny,
> (Ng +m — 2)/2 possibilities if —Ng. +1 <m <0, Ny + m even,

> (Nse +m —1)/2 possibilities if —Ng. + 1 <m <0, Ny +m odd,

\%

(

(

(Ns. —m)/2 possibilities if 0 < m < Ny, N + m even,
> (N

sc —m +1)/2 possibilities if 0 < m < Ny, Ng +m odd.

As before, the total number of possibilities for n + p > Ng. + m is obtained by summing

up the number of cases of each equality contained in the inequality. Then, the number of
possibilities for (iii) is

( ( Nsc) /27 m < _Nsca
(N2 —m? + 2m — 2N,cm) /4, —Nye <m < 1, Ny, +m even,
) (NZ - m2 +2m — 2Ngem — 1) /4, —Nge < m < 1, Nye +m odd,
N (m) = 4 (N2 +m? — 2N,m) /4, 1 < m < Ny, Ny +m even, (A7)
(N2+m — 2Ngem — 1) /4, 1 <m < Ny, Ny +m odd,
0, m > Ngc.

The last step is to evaluate Npwwnpa(m) = (N2 —Nee)/2—Ngy(m) — Ny (m) — Ny (m).
We obtain

0, m < —Ng,
[(N2 + m? — 2Ns — 2m + 2N,em) /4] , —Nge <m < 1,
NFWM,NDG(m) - I_( 6Nsc_2m +2m+4)/4+ L scm/ZJ-I ) 1 Sm S Nsca
LNSZC +m?/4 — Nyem] , Ny <m < 2N,
0, m > 2N,..
(A.8)

The number of non-degenerate FWM products falling into the original signal band (1 <
m < Ng) can be written as

N FWM,NDG (m)

_ [ (N2 = 6Ny + 2Nem — 2m* + 2m + 4) /4, 1< m < N, Ny even,
© L (VE = 6N + 2Neem — 2m® + 2m + 4+ (1)) /4, 1 <m < Ne, Nie odd.
(A.9)

A.2 An example

For the reader who would like to reproduce the combinatorics of Section A.1 by means of
an example, Table A.1 lists all possible combinations of n + p — ¢ for Ny, = 4.



170 Appendix A m Calculation of the number of four-wave mixing products

Table A.1: All possible FWM cases for Ny, = 4.

[n]p]qg][m][DG]NDG | other [n[p]qg]m]DG]NDG [ other |
1 1|1 1 SPM 31111 3 XPM
1 1] 2 0 X 31112 2 X
1 1131 -1 b'e 31113 1 XPM
1 114 -2 X 31114 0 X
1121 2 XPM 3121 4 X
1122 1 XPM 31212 3 XPM
11213 0 X 31213 2 XPM
1124 -1 X 3121 4 1 X
11311 3 XPM 31311 5 X
11312 2 X 3 13| 2 4 x
1133 1 XPM 3 131]3 3 SPM
11314 0 X 31314 2 X
11411 4 XPM 31411 6 X
11412 3 X 3142 5 X
1143 2 X 31413 4 XPM
11414 1 XPM 31414 3 XPM
2 [ 1]1 2 XPM 4 111 4 XPM
2 1] 2 1 XPM 4 |12 3 X
2 1113 0 X 41113 2 X
2 11]4] -1 X 4 1114 1 XPM
2 211 3 X 4 2 11 5 X
21212 2 SPM 4 122 4 XPM
21213 1 X 4 1213 3 X
21214 0 X 4 1214 2 XPM
2 13| 1 4 X 4 | 3|1 6 X
2 3] 2 3 XPM 4 13| 2 5 X
21313 2 XPM 4 1313 4 XPM
2 3|4 1 X 4 13| 4 3 XPM
21411 5 X 4 141 7 X
2 142 4 XPM 4 14| 2 6 X
21413 3 X 4 |43 5 X
2 |44 2 XPM 4 | 4| 4 4 SPM

The number of degenerate and non-degenerate FWM products is shown in Figure A.1
for Ng. = 4 and Ny, = 64. It can be seen that FWM products arise symmetrically around
the original band (m = 1,..., Ns). With increasing N, the number of non-degenerate
FWM products becomes dominant compared to the number of degenerate products.
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Figure A.1: Number of degenerate and non-degenerate FWM products at frequency
fm=1fn~+ fp — [y for Noe=4 (left) and Ny =64 (right).



Notation, symbols and
abbreviations

Mathematical notation

Nabla operator
Laplace operator

geometric vector

tensor

vector cross product

vector dot product

convolution

conjugate of argument

inverse of a matrix

transpose of a matrix

complex conjugate and transpose of a matrix
positive part of argument

expectation of a random variable

floor function

ceiling function

absolute value or cardinality of argument
short for |z|

phase angle of argument

denotes distribution of random variable
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det H determinant of matrix H
erfc(z) complementary error function
EAX} expectation of a random variable X with respect to a
F(x(t)) Fourier transform
F1(X(f)) inverse Fourier transform
L(x) modified Bessel function of the first kind with order «
{x} imaginary part of argument
In(x) natural logarithm
log(x) logarithm to unspecified base
log,(z) logarithm to base b
max,|(...) maximum value of arguments with respect to a
ming(...) minimum value of arguments with respect to a
Prob(x) probability of argument
R{x} real part
rect () rectangular function
sgn () sign of x
sinc () sinus cardinalis, sinc (z) = sin(7wz)/(7x)

Physical constants

~v  Euler’s constant 0.577215665

co speed of light in vacuum 2.99792458 - 108 ms ™!

e  base of the natural logarithm 2.718281828

£p vacuum permittivity 8.8541878-10"12AsV'm™!
h  Planck constant 6.62606896 - 1034 W &2

] imaginary unit V-1

kg Boltzmann constant 1.3806504 - 102 Ws K !

[o vacuum permeability 47-107"Vs A tm™!

™ 3.14159265

Zy impedance of free space Vo /€0 = 376.73 Q
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List of Symbols

100 M =222 @R
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(0]

Q

[\ Aql\')
S

4099
jav)

71,71, T2

oNL

¢SPM
(Z)XPM
e(T)

o(f)

X
<7(1)

1
()

attenuation

propagation constant
m'-order coefficient in Taylor series expansion of 8(w)

phase mismatch

nonlinear fiber parameter
effective nonlinear fiber parameter
ellipticity (polarization)

material permittivity

relative permittivity tensor

FWM efficiency

realization of circular random variable ©

MZM asymmetry factor (2.166)

random angle of fiber segment, cf. (4.4)

parameter of von Mises distribution (3.70)
parameter of maximum entropy distribution (3.21)

wavelength

mean of random variable

mean direction of circular random variable
random PMD phase angle

water-filling constant (3.28)

resultant length of circular random variable

free charge density

Electronic contribution to cubic material polarization
circular standard deviation of circular random variable
variance of real-valued Gaussian (noise) process
variance of signal power in a WDM channel

time variable

normalized time variable

time constants

inclination (polarization)

nonlinear phase shift

nonlinear phase shift induced by SPM

nonlinear phase shift induced by XPM
auto-correlation function

power spectral density

material susceptibility (general, time domain)
linear material susceptibility tensor (time domain)

component of linear susceptibility tensor (time domain)

m~! or dB /km

Asm™3
AmsV~3

W2



174

Appendix B ® Notation, symbols and abbreviations

a(z,t)

A(z, f)
Aeff

Bpsp
b(t)

B(Af)

B(7,1)

CX, CQ/,

linear material susceptibility tensor (frequency domain)
component of linear susceptibility tensor (frequency do-
main)

cubic material susceptibility tensor (time domain)
component of cubic susceptibility tensor (time domain)
cubic material susceptibility tensor (frequency domain)
component of cubic susceptibility tensor (frequency do-
main)

effective cubic susceptibility

angular frequency, w = 27 f

Nuclear contribution to cubic material polarization
(time domain)

Nuclear contribution to cubic material polarization (fre-
quency domain)

normalized signal envelope

Fourier transform of a(z,t)

effective fiber core area

bandwidth (of a signal)

bandwidth of PSPs

Nuclear contribution to cubic material polarization
(time domain)

Nuclear contribution to cubic material polarization (fre-
quency domain)

Magnetic flux density
eigenpolarization coefficients
channel capacity

ergodic capacity

x-% outage capacity

parameters of phenomenological channel model
degeneracy factor (FWM)

dispersion parameter

Electric flux density
polarization coupling parameters
Kullback-Leibler distance between PMFs P, @) (or PDFs

P, q)

AmV~3

AmsV™3

AmV™3
AmsV™3

Vsm 2

bit /s
bit/channel use
bit/symbol
bit/s/Hz

(as above)

(as above)
W—2

psnm~ ' km ™
Asm™2
m2 V_2
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Gg(fp, fs)
GB,max
GR(fP7 fS)
GR,max
hX)
H(X)

h(t)

H(f)

hn

H,

eigenpolarization vectors
polarization vectors

Normalized field amplitude E (2.52))
Electric field (time domain)

Electric field (frequency)
frequency variable

|fn - fp|

modal distribution

noise figure

effective noise figure

gain

(differential) gain

on-off gain

linear dispersion kernel (Volterra series)

fiber nonlinearity kernel (Volterra series)
Brillouin gain spectrum

Maximum value of Brillouin gain spectrum
Raman gain spectrum

Maximum value of Raman gain spectrum
differential entropy

entropy

impulse response of LTI system

LTI channel transfer function

n'-order Volterra kernel (general, time domain)
first-order Volterra kernel (frequency domain)
third-order Volterra kernel (frequency domain)
fifth-order Volterra kernel (frequency domain)
Raman impulse response

transfer matrix

Magnetic field

n X n identity matrix

photocurrent

intensity

mutual information between random variables
current density

angular wavenumber, kg = w/cy = 27/
fiber link length

beat length

constant length of fiber segment
coherence length

B B
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Lo correlation length m
Lp dispersion length m
Leg effective length m
L, nonlinear length m
Lgpan fiber length per span km
Ly walk-off length m
M magnetic polarization Vsm™2
m; ™ moment of random variable
m; ™ trigonometric moment of circular random variable
n refractive index
Ngy nonlinear index coefficient m2W!
N2 eff effective nonlinear index coefficient m2 Wt
Ngp spontaneous emission factor (EDFA) or spontaneous
scattering factor (Raman)
n(t) continuous-time noise process VW
n realization of random variable N (noise) VW
No/2 power spectral density of real-valued white noise process W Hz ™!
Nask ASE noise power spectral density WHz !
Nasge(2) differential ASE noise PSD WHz 'm™!
Newwm number of FWM products
Nge number of spectral components, sub-carriers or sub-
channels
Nypans number of spans in multi-span system

Ne (11,202)  complex-valued Gaussian distribution
Nr (p,0%)  real-valued Gaussian distribution

P (optical) power W

P mean power W

P itical.R critical pump power for SRS AW

Pritical B critical pump power for SBS W

P, average noise power W

P, average signal power W

Py 1« average received signal power W

p™ average signal power of spectral component at f, W

Prwwn total FWM power W

PF(WV?M total FWM power at f,, W

%(%’K/)[ power of a single FWM product W
(7,1 material polarization (time domain) Asm™2
(7, f) material polarization (frequency domain) As?’m—?

p(z) probability density function (PDF) of continuous ran-

dom variable



177

P(x) probability mass function (PMF) of discrete random

variable
Eid position vector m
r radius, r = /22 + y? m
Teore fiber core radius m
Toff effective fiber core radius m
R responsivity of photodiode AwW!
R rotation matrix (4.4)
s(z,t)  dimensionless signal (time domain)
S(z, f) Fourier transform of s(z,1) S
S dispersion slope psnm 2 km ™
T temperature K
t,t time variable s
t, group delay sm™!
Aty differential group delay s
A_tg mean differential group delay s
u(z,t)  normalized signal envelope
U transfer matrix of fiber segment (4.5)
v normalized frequency
g group velocity ms~!
%4 variance of random variable
Vspm variance of random SPM-induced phase shift
Vipum variance of random XPM-induced phase shift
Ve circular variance of circular random variable
Vit variance of XPolM crosstalk term (4.29)
W bandwidth (of a channel)
T,Y, % cartesian coordinates
x,y realizations of random variables X, Y
X,y support of random variables X,Y
x(t) (input) signal

X(f) Fourier transform of x(t)
XM (z)  spectral component at f,
y(t) (output) signal

Y (f) Fourier transform of y(t)

7 wave impedance, Z = Zy/n

wn

"23233 37
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List of abbreviations

ACF auto-correlation function

AM amplitude modulation

AMI alternate mark inversion

APD avalanche photodiode

ASE amplified spontaneous emission

ASK amplitude-shift keying

AWGN  additive white Gaussian noise

BCJR  algorithm by Bahl, Cocke, Jelinek, Raviv
BER bit error rate

BPSK  binary phase-shift keying

cc conjugate complex

CDF cumulative distribution function
CSI channel state information

CSRZ carrier-suppressed return-to-zero
DC direct current

DCF dispersion-compensating fiber
DD direct detection

DFB distributed feedback (laser)
DFT discrete Fourier transform

DGD differential group delay

DOP degree of polarization

DSF dispersion-shifted fiber

DSP digital signal processing

DWDM  dense wavelength division multiplexing

ECL external cavity laser

EDFA  erbium-doped fiber amplifier
FEC forward error correction
FNM full numerical model

FWHM full width at half maximum

FWM four-wave mixing

FWMS  four-wave mixing (of WDM channels)
IDFT inverse discrete Fourier transform
iFWM  intra-channel four-wave mixing

i.i.d. independent and identically distributed
IM/DD  intensity modulation / direct detection
iXPM intra-channel cross-phase modulation
LO local oscillator

LTI linear time-invariant

MI mutual information
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MIMO
MZM
NLSE
NRZ
NZDSF
OFDM
OOK
OSNR
PBS
PCM
PDF
PDG
PDL
PDM
PolMux
PM
PMD
PMF
PSD
PSK
PSP
PTF
QAM
RDPS
RZ
SBS
SL
SMF
SNR
SOP
SPM
SPM®
SRS
SSF
SSMF
WDM
XPM
XPM?®
XPolM

multiple-input /multiple-output
Mach-Zehnder modulator
Nonlinear Schroedinger equation
non-return-to-zero

non-zero dispersion-shifted fiber
orthogonal frequency division multiplexing
on-off keying

optical signal-to-noise ratio
polarization beam splitter
phenomenological channel model
probability density function
polarization-dependent gain
polarization-dependent loss
polarization division multiplexing
polarization multiplexing

phase modulation

polarization mode dispersion
probability mass function

power spectral density

phase-shift keying

principal state of polarization
power transfer function
quadrature amplitude modulation
residual dispersion per span
return-to-zero

stimulated Brillouin scattering
spectral loss

single mode fiber

signal-to-noise ratio

state of polarization

self-phase modulation

self-phase modulation (of WDM channel)
stimulated Raman scattering
split-step Fourier method
standard single mode fiber
wavelength division multiplexing
cross-phase modulation
cross-phase modulation (of WDM channels)
cross-polarization modulation
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