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Abstract

Modular robots have been proposed to overcome the adaptation limitations inherent to stan-

dard industrial robots. To complete a given task in an arbitrary environment, modular robots

can be reconfigured in a number of different compositions from a set of modules. However,

the kinematics and the dynamics of each individual composition (called a module composi-

tion throughout this thesis) must be obtained to determine how they will be used in a given

task. This time consuming process has restrained the widespread use of modular robots in

industry-especially in those with limited experience with robotics. With the development

of automated generation of kinematics and dynamics of modular robots, the have become

more practical and the potential of modular robots is better understood.

However, the different assemblies (called as module compositions throughout this thesis)

have their own unique kinematics and dynamics. Hence, the kinematics and the dynamics

must be obtained for each module composition. This makes the usage of modular robots

troublesome- especially for the people with limited knowledge on robotics. With the help of

the automated generation of kinematics and dynamics of modular robots, they have become

more practical and their potential is well-understood.

This thesis seeks to generate automated solutions to the cost-optimal module composition

problem for a given task. This body of work tackles the two main pieces of this problem:

i) establishing the automated cost-optimal composition synthesis algorithms, and ii) deter-

mining the manner of performing a task in a cost optimal way. To this end, the following

three main contributions of this thesis are the development of: i) an exhaustive search-

based automated module composition generation algorithm that systematically finds the

cost-optimal solution, ii) an evolutionary algorithm-based optimal module composition al-

gorithm that considers the task-related objectives while finding the cost-optimal solution,

and iii) computationally fast hierarchical path planning methods.

Throughout this thesis, the theoretical considerations behind both automated composition

synthesis algorithms and path planning algorithms are theoretically demonstrated in dif-

ferent chapters. Detailed simulations and experiments demonstrate the efficiencies of the



proposed algorithms. The results show that the proposed methods give accurate solutions

in a reasonable time that enable users to easily reconfigure modules to fulfill various tasks.



Zusammenfassung

Modulare Roboter stellen einen vielversprechenden Ansatz dar, das Anpassungsproblem

von Standard-Industrierobotern an beliebige Aufgaben und/oder Umgebungen zu lösen.

Modulare Roboter können auf verschiedenste Weise rekonfiguriert werden um so neue

Baugruppen aus einem Satz von Modulen zu erzeugen. Jede Anordnung hat jedoch ih-

re eigene, einzigartige Kinematik und Dynamik. Daher müssen diese für jede Modulzu-

sammensetzung neu ermittelt werden. Dies macht die Verwendung von modularen Robo-

tern problematisch-insbesondere für Personen mit begrenzten Kenntnissen in der Robotik.

Durch die automatisierte Generierung von Kinematik und Dynamik modularer Robotern

lässt sich deren Potential der praktischen Anwendung näher bringen.

Diese Dissertation befasst sich mit der automatisierten Generierung der kostenoptimalen

Modulkomposition für eine gegebene Aufgabe. Im Hauptteil dieser Arbeit werden hierzu

die beiden wichtigsten Teilprobleme betrachtet: i) der Aufbau des automatisierten kosten-

optimalen Kompositionssynthesealgorithmus und ii) die Bestimmung von Methoden zur

kostenoptimalen Aufgabenerfüllung. In diesem Zusammenhang sind die drei wichtigsten

Ergebnisse dieser Arbeit: i) ein auf erscöhpfender Suche basierender automatischer Algo-

rithmus zur Erzeugung von Modulkompositionen, welcher die kostenoptimale Lösung auf

systematische Weise findet, ii) ein auf evolutionären Algorithmen basierender optimaler

Modulkompositionsalgorithmus, der auf der Suche nach der kostenoptimale Lösung findet

die aufgabenbezogenen Ziele berücksichtigt, und iii) hierarchische Pfadplanungsmethoden,

die es ermöglichen, einen Pfad in kurzer Rechenzeit zu finden.

In den verschiedenen Kapiteln dieser Dissertation werden sowohl automatische Kompo-

sitionssynthesealgorithmen, als auch Bahnplanungsalgorithmen an theoretischen Beispie-

len demonstriert. Um die Effizienz der vorgeschlagenen Methoden zu bewerten, werden

detaillierte Simulationen und Experimente durchgeführt. Die Ergebnisse zeigen, dass die

vorgeschlagenen Methoden in brauchbarer Zeit genaue Ergebnisse liefern und so Benut-

zer ermöglichen, auch ohne Kenntnisse der Robotik, einen gegebenen Modulsatz neu zu

konfigurieren, um verschiedene Aufgaben zu erfüllen.
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Chapter 1

Introduction

This introductory chapter provides a general overview of modular and reconfigurable robots, particularly

those employed in industrial settings. This chapter also addresses the main challenges to this area, the

motivation behind this thesis, as well as its scope and addressed goals. Then, the thesis is outlined and

the definitions used throughout are explained.

1.1 Scope and Goals

Industrial robots are an inseparable part of today’s manufacturing processes because they are efficient,

robust, and accurate in their execution of tasks. These fixed-assembly robots consist of structures that are

designed to perform specific sets of tasks in predefined environments. Although their performance may

be sufficient for a particular workspace or task, their adaptation to flexible tasks or changing environ-

ments limits their use in many industrial environments. Products in manufacturing are becoming more

and more complex as the variety of products increases daily. Therefore, the continual purchase of new

robots for different tasks makes the manufacturing process expensive. As an affordable solution to this

problem, modular and reconfigurable robots have been proposed, which consist of a set of predesigned

modules that can be reassembled into different robot structures. These module sets are grouped into the

following categories: base modules, joint modules, link modules, and end effector modules. While base

modules fix the robot onto a mobile platform or a desired position, joint modules provide the degrees of

freedom (DOF) to a robot and contain mechanisms to move it. Link modules provide different lengths

and connections to each robot and end effector modules provide the tools for various tasks. Numerous

robot compositions can be generated by using different modules or by changing the order of modules in

the assembly (see Figure 1.1).

1



1. INTRODUCTION

L�nk Modules

Base Modules

Jo�nt Modules

End Effector 
Modules

 Set of modules                                                    A subset of poss�ble module comb�nat�ons

Figure 1.1: The illustration of a modular robot setup.

The idea of modular and reconfigurable robots was proposed in the 1960s [10] and became extremely

popular in the late 1980s. Since then, they have attracted many researchers all over the world and a

large number of studies have been published in the literature [10]. Modular robots have been divided

in two groups based on their reconfigurability type: self-reconfigurable modular robots and manually-

reconfigurable modular robots [11].

Self-reconfigurable robots have the ability to configure themselves with or without human assis-

tance and generally consist of small cubic- or prismatic-shaped modules [11]. More details about self-

reconfigurable and modular robots can be found in [10, 12–20]. However, self-reconfiguration in large-

sized robots, like industrial manipulators, can be difficult or infeasible because the self-movement of a

large module is restricted by weight and different features. All large-sized modular robots and a subset

of small-sized modular robots that need a human operator for assembly are categorized as manually-

reconfigurable modular robots.

Modular and reconfigurable robotic systems can be reconfigured in three different ways: i) on the

module-level, ii) on the assembly-level, or iii) on the configuration-level [21]. In each category, the sys-

tem’s flexibility is obtained differently. For example, in module-level reconfigurable systems, flexibility

is obtained by changing the module’s parameters such as the size or the feature of the modules. Chang-

ing the module order or the selection of the assembly port enables the user to obtain different solutions

in assembly-level reconfigurable systems. Finally, in configuration-level reconfigurable modular robotic

systems, flexibility is obtained by changing the configurations of the modules [21].

Another classification of modular and reconfigurable robots considers their structure. In terms of the

structure type, modular robots can be divided into three categories: i) serial robots, ii) parallel robots,

or iii) hybrid robots [22]. Serial robots have an open-loop kinematic chain. For instance, starting from

2



1.1 Scope and Goals

a base module and ending with one or more end effector modules (for tree-like robot structures, they

may have more than one end effector module). Parallel robots have two or more closed-loop kinematic

chains and there is more than one independent kinematic chain between the base and the end effector

modules. Hybrid robots are the combinations of serial and parallel robots and they have both open-loop

and closed-loop kinematic chains.

Throughout this thesis, we focus on manually-reconfigurable, serial, and assembly-level modular

and reconfigurable industrial manipulators. The main advantages of these robots can be summarized as

follows:

• High versatility and task interchangeability: Modular and reconfigurable robots are more adaptive

when compared to standard fixed-assembly robots because they can be easily and quickly recon-

figured for different tasks. Thus, their adaptability in case of a component or product change is

high.

• Easy maintenance and upgrade: In case of malfunction, the broken module can be easily replaced

by another module without a need for specific expertise. Moreover, the modules can be attached

or detached quickly and thus reduces the lead time.

• Efficiency: There is no guarantee that a fixed-assembly robot can fulfil a changing task. In such a

situation, a new robot is required or the current robot must be reprogrammed by an expert, which

causes time loss during production. Because modular robots can be reassembled in various ways,

they offer more efficient solutions for a variety of tasks when compared to standard fixed-assembly

robots.

• Low cost: A standard industrial robot might be useless when tasks change, thus costing a lot of

money for enterprises. Moreover, a malfunction in a robot causes a break in a production line

that also leads to money loss. Modular and reconfigurable robots address all of these problems

and only an initial investment cost is required. Besides these reasons, the production of repeated

modules also decreases the per-module cost.

Considering the above-mentioned advantages, modular and reconfigurable industrial robots are ex-

pected to be popular in the manufacturing environment in the near future. Because this technology

provides a solution for future flexible manufacturing scenarios, their potential impact is high. The main

customers for modular and reconfigurable industrial robots are small and medium-sized enterprises

(SMEs)1 because of the decrease in risk of investment and increase in the level of automation. As a re-

sult, modular and reconfigurable industrial robots are a perfect solution for companies, especially those
1SME: Based on the definition provided by the European Commission in [23], SMEs are defined as:
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Figure 1.2: An illustration of the problem of finding the optimal module composition for modular robots.

with limited budgets. Although modular and reconfigurable industrial robots have many advantages,

their concept also has some drawbacks such as i) an enormous number of different module composi-

tions can be generated even from a small number of different modules and the user may not know which

module composition provides the best solution for a given task, ii) mechanical components are com-

plicated compared to standard industrial robots because reconfiguration requires a complex connection

mechanism, iii) apart from standard robots, each module is an individual component in modular and re-

configurable robots, thus, the payload capacity is reduced, and iv) control and communication systems

are also more complicated when compared to standard robots [24, 25].

One of the main challenges to modular robotics is the problem of determining the cost-optimal

composition for given modules for a given task as illustrated in Figure 1.2. A plethora of compositions

can be generated by varying modules or changing their order. This large search space makes the modular

robot synthesis problem complex and time consuming. Designing a robot under consideration of a given

task is called a task-based design (TBD) problem and it includes the kinematic and the dynamic models

of the robot, its trajectory definition, and its control [25]. In addition to that, the optimal solution is

desired as an output for most TBD problems, which is then called a task-based optimal design (TBOD)

• Staff headcount is less than 250, and

• annual turnover is less than or equal to e50m or annual balance sheet total is less than or equal to e43m.
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problem. The TBOD problem is a highly nonlinear, complex, and computationally expensive problem

because the design space rapidly increases with number of modules or change to their order. In addition,

the objective function and its constraints are coupled and nonlinear [26]. Since storing models of all the

different robot assemblies requires a huge amount of disk storage space, an automated model generation

method is needed. After generating the kinematic and the dynamic model of a module composition, the

module composition is checked by an algorithm to see if it fulfils the given task in a cost-optimal way.

The cost is defined by the user, which can be defined in many forms such as minimum execution time,

minimum power consumption, minimum jerk, or minimum displacement of the joints of the robot,

etc. Obtaining the cost-optimal composition among all possible compositions is a highly nonlinear

optimization problem in a discrete search space and the lack of solutions to this problem limit the

usability of modular and reconfigurable robots.

1.2 Modular and Reconfigurable Industrial Manipulators

The first-known concept for modular and reconfigurable robotic systems was proposed in the 1960s by

Neumann [27] in which a framework for modular and reconfigurable robots was presented [10]. Starting

from the late 1980s, several modular and reconfigurable industrial robots have been designed and pro-

duced. One of the first examples of modular and reconfigurable robots was named the Reconfigurable

Modular Manipulator System (RMMS), which was developed at Carnegie Mellon University [28]. The

RMMS consists of joint and link modules that have discrete mechanical and electrical units (see Fig-

ure 1.3(a)). Each produced module is independent and has a standardized connection mechanism that

allows the user to easily attach or detach modules. The connector design enables the user to connect the

modules in eight different orientations. All joint modules have an actuator, a transmission mechanism,

a position sensor, and a power amplifier to control the motor. Their design has two different types of

2-DOF joint modules to vary the direction of movement, namely, rotational and pivot joints. Besides

hardware, the proposed software to operate this robot is also modular [29]. The modules are manually

assembled considering task requirements and a centralized controller is automatically generated with

the help of the developed modular software.

Modular Reconfigurable Robots (MRRs) developed at Nanyang Technological University is another

example of early modular robot design, which consist of link modules of different lengths and revolute,

prismatic, and pivotal joint modules [30]. As opposed to the RMMS, these designed modules have

cubic or prismatic shapes that can be configured to form serial, parallel, or hybrid manipulators (see

Figure 1.3(b)). All modules have connectors on all of their faces, which increase the total number of
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(a )  (b )  (c )  (d )

Figure 1.3: Different modular robot designs (a) the reconfigurable modular manipulator system (RMMS)
developed by Carnegie Mellon University (CMU) [1], (b) modular reconfigurable robots (MRRs) developed
by Nanyang Technological University [2], (c) the Waterloo modular and reconfigurable robot (WMRR) devel-
oped by the University of Waterloo [3] and (d) the SCHUNK LWA 4P robot developed by SCHUNK GmbH
& Co. KG [4].

possible assemblies. A host controller-based control system is used and the communication between

modules is achieved by a controller area network (CAN) bus. Although this idea is applicable to indus-

trial use, the designed modules are not robust enough for industrial applications due to their low payload

capacity [31].

The Toshiba Modular Manipulator System (TOMMS) was designed by Toshiba Corporation in the

first half of the 1990s. Their design includes a 1-DOF revolute module with three input and two output

connectors per module and a link module consisting of concentric two cylinders that enable the user

to adjust the link length [32]. TOMMS uses a single control software with no specification and the

robot is controlled with a joystick operated by a human. However, the designed modules can generate

robots with a maximum of 3-DOF. Control inputs are sent from the joystick and the inverse Jacobian

matrix-dependent control algorithm calculates the desired joint values.

The Waterloo Modular and Reconfigurable Robot (WMRR) in Figure 1.3(c) was developed by the

University of Waterloo [3]. The WMRR has three different joint modules with varying power capabil-

ities and link modules of multiple lengths. The designed joint modules are categorized as rotational,

pivotal, or perpendicular-rotational joints. Each joint module has an embedded micro-controller unit

(MCU) board that allows the user to control the joint actuator, communication between modules, and

synchronize the operation [3].

Another modular robot manipulator was developed by the Technical University of Munich to be used

for agricultural purposes [33, 34]. Their design consists of one prismatic joint module, eight revolute

joint modules with three different sizes, and link modules with different lengths. They use a bus system
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to transfer data while fulfilling a task and each joint is controlled by a decentralized control system on

the motor drivers on a position or velocity level. Although the idea is modular, they focus on three

different structures, namely, 6-DOF, 7-DOF and 9-DOF, and only use these pre-determined structures

in their tasks. They place large and relatively heavy modules close to the base module and only use the

above-mentioned three assemblies when considering the requirements for tasks.

Besides these mentioned research-oriented modular robot designs, several companies have also de-

signed industrial modular robots for commercial use. The company SCHUNK GmbH & Co. KG designs

and produces commercially available modular robots [35]. They have several modular industrial ma-

nipulators such as the SCHUNK LWA 4D and the SCHUNK LWA 4P (see Figure 1.3(d)). One of the

latest generations of their lightweight arm SCHUNK LWA 4P consists of three spherical 2-DOF joint

modules called powerballs, two link modules with different designs, and various types of end effector

modules whose details can be found in [35]. Although this robot is modular, its reconfigurability is

limited because the input and output ports of the link modules are different and each joint module is not

compatible with all other modules.

The company igus® designs Robolink®, which has pre-defined and user-defined structure options [36].

The design has only one type of rotational joint module and various link modules with different lengths.

The current modules allow the user to configure 2-DOF to 5-DOF robots with a maximum 3-kg payload

capacity [36] and its payload capacity decreases with the increase in the robot’s DOF. One well-known

robot producer, COMAU, also produces a modular robot called e.Do that is used for personal or educa-

tional purposes. It is designed as an industrial robot but the commercially available version does not fit

the industrial scenarios due to limited capabilities such as payload capacity, which is only 1 kg [37].

The previously mentioned modular and reconfigurable industrial robot manipulators developed by

research institutes or universities have not been adapted to a large-scale production and are not yet

commercially available [3, 28, 30, 32–34]. As a result, it is not possible to buy or rent them for use in

experiments. The commercially available ones produced by the companies listed above [35–37] have

several drawbacks. The payload capacity of Robolink® is limited and its capacity decreases with an

increase in the number of DOFs, which limits its industrial usage. Similar to Robolink®, the load

capacity of e.Do is also too low even with the structure predetermined by the company.

1.2.1 Modules Designed for Numerical and Real Experiments

Throughout this thesis, we use two different module sets to implement our algorithms. In view of the

robots detailed above, we design new virtual modules to perform our algorithms in a simulated en-

vironment. The first module set is designed considering the most widely used modules in industrial

7



1. INTRODUCTION

robots. Although the modules are not physically produced, they are utilized in the simulation environ-

ment (more details can be found in Appendix A). Users can employ the same module as many times as

they prefer, which increases the number of possible assemblies.

The second module set is the extended version of the SCHUNK LWA 4P robot and this set allows us

to demonstrate our algorithms in a real environment. When compared to other commercially available

robots, the 7-kg load capacity of the SCHUNK LWA 4P robot makes it preferable even though it has a

reconfigurability problem. Because designing and producing a new robot from scratch is time consum-

ing and not the target of this thesis, the Chair of Robotics, Artificial Intelligence and Real-time Systems

purchased the SCHUNK LWA 4P robot. New modules were designed to solve its reconfigurability

restrictions and its was reconfigurability augmented as explained in Appendix B.

1.3 Formulation of the Optimal Task-based Modular Robot Prob-
lem

Serially connected, modular, and reconfigurable robot manipulators are considered in this problem with

n-DOFs and kinematics defined uniquely by the vector q ∈ Rn of the joint positions, where angles stand

for rotational joints and translations stand for prismatic joints. Throughout the thesis, we assume i) four

different types of modules, which are bases, joints, links, and end-effectors, ii) each link module and

each joint module has only one input connection port and one output connection port. Each base module

has only one output connection port and each end effector module has only one input connection port,

and iii) all manipulators begin with a base module, end with an end effector module, and there are only

joint and link modules between the base and end effector modules. These are realistic assumptions for

industrial robots.

The variable k ∈ {1, . . . , N} uniquely refers to a possible module composition and the variable N

refers to the maximum number of possible compositions without considering task-defined constraints.

The task requirements are constrained by the kinematic and dynamic models of the module composition

and static obstacles in the environment. The environmental space containing the robot and obstacles is

denoted by W ⊂ R3. The subset of space occupied by the robot is A ⊂ W and the robot’s occupancy

for a joint position vector q is shown by A(q) ⊂ W. The variable A(qk) ⊂ W indicates the space

occupied by the kth composition. Obstacles can be in any geometric shape in R3 and the union of all

obstacles is shown by O =
⋃

j Oj . An obstacle-free space in the environment is defined as F = W\O.

We indicate the time variable with t ∈ [0, tf ] and tf is the total time to reach the goal with an

initial time of zero. The vector q(t) maps the time t to the joint position vector. The forward kinematic
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function from the joint position vector q(t) to the end effector position is denoted by f(q(t)). We define

all path planning problems starting from a given initial position ps as ps = f(q(0)) and ending at a

given position pg as pg = f(q(tf )).

The dynamic model of the modular robot is obtained from the Newton-Euler formula in (1.1), where

M(q) ∈ Rn×n is the definite symmetric mass matrix, C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal

matrix, g(q) ∈ Rn is the gravity vector term, τ ∈ Rn is the actuation forces/torques vector, q̇(t) is the

joint velocity vector, and q̈(t) is the joint acceleration vector (see [38]).

τ (t) = M(q(t))q̈(t) + C(q(t), q̇(t)) q̇(t) + g(q(t)) (1.1)

The set of module combinations, K, that fulfils a given task is described as:

K = {k | 1 ≤ k ≤ N ∧ ∀t ∈ [0, tf,k] ∃ qk( · ) :

∧ A(qk(t)) ∈ F

∧ qk(t) ∈ [qk,min, qk,max]

∧ q̇k(t) ∈ [q̇k,min, q̇k,max]

∧ |τk(qk(t))| ≤ τk,max

∧ fk(qk(0)) = ps ∧ fk(qk(tf,k)) = pg}.

(1.2)

The composition that gives the cost-optimal solution is denoted by κ and the optimal cost value for

the kth composition is denoted by ck:

κ = argmin
k∈K

ck. (1.3)

The motivation behind this thesis is to develop algorithms that find the optimum composition κ.

1.4 Author’s Contribution

New methods to determine the optimal composition of modular and reconfigurable robots for a desired

task have been proposed by the author. Finding the cost-optimal module composition from an enormous

number of different module combinations can be divided into two subsections: i) the determination

of the composition synthesis algorithm, and ii) the determination of the method to perform the task

in a cost-optimal way. In the first step, research is focused on classification of the tasks that must

be fulfilled and the production of exhaustive search-based generation methods to obtain all possible

compositions. Because checking all possible compositions is inefficient and time consuming, a method

based on the systematic elimination of unfeasible compositions is proposed. This approach was first
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published in [24]. This algorithm is also applied in [5] to a real-world problem given by industry and

implemented using the extended SCHUNK LWA-4P robot (as detailed in Appendix B). This method

enables the user to generate all feasible compositions that can fulfil the desired task and shows them

how each module composition can achieve a given task.

Secondly, optimality is taken into consideration and the research is concentrated on finding the task-

optimal solution that can be generated from the module set. The generation and computation of all

possible compositions to achieve a given task is time-consuming and not essential. Both deterministic

and evolutionary approaches to solve the task-based cost-optimal composition synthesis problem are

proposed throughout this thesis. The implementation of deterministic optimization methods is the first

approach used to find the task-optimal solution. The composition synthesis method is based on the

elimination of the less-likely compositions from being the optimal one in each iteration and the proposed

exhausted search-based was published in [39]. In the second proposed method, evolutionary algorithms

are used to find the task-optimal solution, which was published in [40]. Task-related objectives are

used in the evaluation of generated compositions and thus reduces the search space of the potential

compositions. A set of the best compositions considering the evaluation function was generated. Then,

the best composition is selected from this subset of compositions.

Because a large number of compositions exist, an algorithm that not only efficiently synthesizes

compositions but also performs the task in a short computational time is required. Due to the fact that a

task can be achieved in numerous ways (especially for redundant robots), fast path planning algorithms

are needed to find how a robot fulfils a given task in an optimal way in the shortest computational

time. A hierarchical path planning method was introduced in [6] which generates multiple collision-

free paths and then finds the shortest collision-free path. A hierarchical path planning method consisting

of i) multiple local task-space RRT planners running in parallel, and ii) a global planner that uses the

free-space connectivity information for coordinating the local planners was introduced in [41].

To make each chapter clear, we explain terms which are widely used throughout the thesis. Module

composition is the assembly of the modules which has the information of which module is used in the

robot structure and the order of the used modules in the structure. Configuration is the joint position

vector of a robot structure. Posture is the position of the manipulator in work space in a specific set

of joint angles. Posture is composed of a the specified position and the specified orientation of the

end effector. Robot kinematics is the motion of the a robot mechanism without considering the forces

and torques that cause it. In the kinematic model, forces, torques, masses and moments of inertia are

disregarded and the position and the orientation of the end-effector is calculated with the help of the

robot kinematics. Robot dynamics is the representation of the relationship among the driving force or
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torque on the joint actuator, the external work load, the mass and inertia. Path is a curve in pose space

specifying position and attitude. A path specification contains no time specification. Trajectory is a

time-parametrized curve in pose space specifying position and attitude and time. Implicitly, a trajectory

specifies a velocity profile of motion along a path in pose space.

1.5 Thesis Outline

The problem of building task-based optimal compositions of modular and reconfigurable robots is struc-

tured in this thesis with two main subsections: task-based composition synthesis algorithms and task

execution algorithms. It should be noted that the chapters are independent with each chapter considered

as a stand-alone contribution. In each chapter, a detailed literature review is given at the beginning, then

problems are formulated, and then the proposed solutions are detailed afterwards. At the end of each

chapter, the applicability of the proposed methods are demonstrated with various examples.

Chapter 2 describes the proposed optimal composition generation method. The main contributions

of this chapter are i) an exhaustive search-based possible compositions synthesis method, and ii) an

exhaustive search-based the optimal composition generation method. The proposed approach for (i) is

based on discarding unfeasible compositions in a systematic way. The contribution for (ii) is based upon

elimination of the least-likely compositions during the optimization process. Deterministic optimization

methods are also considered in this chapter.

Chapter 3 details a new evolutionary algorithm-based optimal composition generation method. An

approach that considers task requirements in the objective function is explained in detail. The pro-

posed method only considers a set of best module compositions while applying time-consuming tasks

and it gives faster solutions when compared to finding optimal assemblies by individually optimizing

trajectories for each assembly.

Unlike the other chapters, Chapter 4 focuses on the execution of given tasks and novel path planning

algorithms. A path planning method that aims to reach the goal positions following the largest gaps in

the environment was proposed. In these regions, the probability of the existence of obstacles is lower,

therefore it allows the user to find a path in a shorter computational time. Additionally, a two-level path

planning algorithm is introduced. Due to the large number of different module compositions, task-space

path planners are considered in the first level and refined planning is applied in the second level of

the algorithm. Both methods highly decrease the computational time and comparisons are given with

several examples. The conclusion of the thesis is provided in Chapter 5, which also includes possible

future research directions.
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To quickly demonstrate the results of the simulations used throughout this thesis, the reader is invited

to explore the virtual module set, the extended SCHUNK LWA 4P robot, and the generated visualization

toolbox found in Appendix A, Appendix B, and Appendix C, respectively.
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Chapter 2

Exhaustive Search-Based,
Cost-Optimal Composition Synthesis
of Modular and Reconfigurable
Robots for a Given Task

Standard industrial robots are robust, efficient, and accurate while demonstrating remarkable perfor-

mance of a single pre-defined task. On the other hand, it is difficult to adapt standard industrial robots to

new tasks or environments. Modular robots are a solution to this problem because they can be reassem-

bled in a variety of ways. However, one drawback associated with modular robots is difficulty with

determining the optimal module composition from a set of modules for a given task. In this chapter, we

propose a search-based composition synthesis algorithm for modular robots that eliminates the unfeasi-

ble or least-likely compositions in a hierarchical order. It is well known that search-based approaches are

accompanied by high computational times. However, the algorithm proposed in this thesis overcomes

this drawback by systematically eliminating unfeasible compositions with tests that ascend in difficulty

and computational time. Thus, to dramatically decrease the simulation time, unfeasible compositions

are first rejected through simple tests, which leaves the more complex and time-consuming tests for the

few remaining compositions.

First, a literature review on presently available modular robot synthesis algorithms is conducted in

Section 2.1 and the task-based modular robot synthesis problem is formulated in Section 1.3. Then, the

proposed algorithm is detailed in Section 2.2 and the assumptions made in the algorithm are detailed in

Section 2.3. The task requirements are explained in Section 2.4 and its implementation is demonstrated
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for two module sets in Section 2.6.

2.1 Literature Review

The task-based robot design problem, which determines the optimal lengths of link modules for a pre-

defined structure, has been investigated for decades [42–45]. In our task-based design problem, only

modular robots are considered with the aim of finding the optimal assembly of modules from a set of

pre-defined modules so-called the optimal module composition throughout this thesis. As understood

from the definition, the task-based robot design problem not only considers executing the given task

in the optimal way, but also targets the module composition that can perform said task in an optimal

way among many potential module compositions. Thus, the search space increases tremendously. In

this section, existing algorithms are reviewed for a task-based, optimal module composition of modular

robots. The existing works consider this problem as three sub-problems: assembly representation, model

generation, and the task-optimal module composition selection. Literature reviews of each sub-problems

are detailed in the following sub-sections.

2.1.1 Representation of the module composition

To generate different module compositions, several assembly representation methods have been pro-

posed in [31,46,47]. These methods are classified as graph theory-based methods, task-based configura-

tion methods, and axiomatic design theory-based methods (ADT) (more details can be seen in [47,48]).

Authors in [46] introduce a graph-based technique called the assembly incident matrix (AIM) to

represent module compositions. They use cubic-shaped or rectangular prism-shaped link modules that

have ports on each side (one port for cubes or square faces of rectangular prism-shaped modules and two

ports on rectangular faces of rectangular prism-shaped modules). As a result, there are many assemblies

generated from different modules that produce the same module composition due to symmetry in the

modules and the locations of their connection ports. Thus, AIM enables the user to discard identical

assemblies from a set of potential module compositions. Then, serial or tree-structured module com-

positions can be generated with the help of AIMs. For each module composition, a string is generated

using AIMs and this string represents a unique module composition.

Another research group in [47] combines graph-based and axiomatic design theory-based techniques

to represent different module compositions. First, they group the module compositions considering

their functional requirements (such as topology, kinematic chain structure, etc.) and then they narrow

the search space with the features of the system like module and connection types. They also consider
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similar modules as in [46] and use AIM for their assembly representation. The authors insert additional

data to AIM considering the modules’ features and this new representation is called the object incidence

matrix (OIM). All matrices are stored in a database and they use this database for their task-based

optimal design (TBOD) algorithms.

Besides, the configuration coupling matrix (CCM) is introduced in [49]. The authors consider the

direction of the output ports of joint modules, length of link modules, and the direction of the rela-

tive connection between two sequential joints to represent the assembly of their module compositions.

Different from previous groups, link modules with one input connector and one output connector are

designed in [31] and the authors propose a novel modular robot representation called the kinematic

matrix representation (KMR). Similar to CCM, KMR has information on the orientation of each com-

ponent, the type of joint module, and the type of link module. Then, the models of possible module

compositions are generated using these matrices.

Another representation of module composition is proposed in [50] and the authors parameterize

their modules considering their properties like geometric dimensions, control parameters, etc., in the

representation of their robot. Their modules are represented as nodes and their connections are repre-

sented by edges. Their assembly representation is done with configuration graphs and their method is

called parameterized module configuration graphs (PMCG). This parameterized representation enables

the user to represent various fixed modules in one variable and decrease the computational time spent

for module composition generation.

Throughout this thesis, we consider simple modules that are detailed in Appendix A and Ap-

pendix B. Both module sets consist of modules that have only one input and output connection ports

and they can be assembled in a fixed orientation. Considering their simplicity, the complex matrix rep-

resentations as in [31, 46, 47, 49] are not essential. In the module representation method that we follow,

all modules are classified based on their types and all their properties are embedded within, which en-

ables the user to easily select the modules and configure them. More information about the module

composition representation that is used throughout this thesis is given in Section 2.3.

2.1.2 Model generation

After assembling the modules, the kinematic and dynamic models of the robot compositions need to be

generated. For modular robots, it is important to automatically obtain the kinematic model of the module

composition because each module composition has unique kinematic and dynamic models and manual

attainment of these models for each composition is troublesome. The previous studies on automated
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kinematic model generation are mainly focused on the product-of-exponentials (POE) formulation and

Denavit-Hartenberg (D-H)-based methods [22].

The POE formulation consists of 3× 3 rotation matrices and 3× 1 transformation matrices, both of

which transmit information among components (for more detail see [51]). In [52], the authors introduce

a POE formula-based, automated kinematic model generation method for tree-structured modular robots

so-called dyad kinematics. The proposed method is independent of the module composition and only

considers cubic-shaped modules with connection ports on each side. Using the module composition

representation method in [46], the proposed algorithm automatically derives forward kinematics using

dyad kinematics.

The same authors improve their automated model generation algorithm in [53] to obtain not only

the kinematic model of the module composition but also the dynamic model using the Newton-Euler

algorithm. However, kinematic models obtained from these methods are independent of joint type since

POE-based methods represent different types of joint motions as the same. Another dyad kinematics-

based, automated forward kinematic algorithm for modular robots is proposed in [54]. AIM is used to

represent the assembly angles in their method and they introduce a new term called the path matrix to

define a multi-chain assembly. In their proposed method, sequential link and joint modules are defined

as a dyad and the forward kinematics solution is obtained by multiplication of the dyads considering

the gathered path matrix. It should be noted that POE-based methods are only applicable to serial or

tree-like structured robots [22].

D-H-based methods generally use 4× 4 homogeneous matrices to define relations among the com-

ponents [55]. In [56], the authors propose a new D-H-based kinematic model generation method for all

types of modular robots in which they generalize the existing D-H method. The proposed automated

kinematic and dynamic modelling method maps the modular design variables on the module assem-

bly and generates D-H parameters. The same authors also develop a specific finite element method

(FEM)-based automated kinematic and dynamic model generation method for modular robotic systems

in [22], which is applicable to serial, parallel, or hybrid robots. Different from the previously mentioned

approaches, the D-H-based method presented in [57] considers two sets of coordinate frames for robot

definition: a modular frame and a D-H frame. Kinematic parameters of the modules are given in the

modular frame and the D-H notation is represented in the D-H frame. The kinematic model of the

whole robot is automatically obtained by transforming the modular frame to the D-H frame. In [8], the

authors extend the standard D-H convention adding new parameters to make the automated generation

procedure easier and all kinematic and dynamic parameters are stored in each module.
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In addition to kinematic and dynamic model generation, the calculation of inverse kinematics (IK)

also plays an important role in the TBOD problem. To solve the IK problem, analytic, numerical, and

meta-heuristic methods have been used [58]. Analytic methods are not common in modular robotics

because they depend on the structure of the robot. Moreover, they are not efficient in case there are

multiple or infinite (i.e., redundant robots) IK solutions, which is one of the main difficulties of the IK

problem. To address this difficulty, numerical methods and meta-heuristic methods have been widely

used for IK calculations [58]. The authors introduce the Newton-Raphson iteration method as an IK

solver for modular robots [59] and they use an extra DOF to avoid the singularities. Similar to this work,

another Newton-Raphson iteration method-based IK solver is introduced in [60]. The main difference

between those works is the authors in [60] use a local POE formula for their model generation and

also consider non-redundant and tree-like robot structures in their calculations. Another task-based

inverse kinematics solver for serial manipulators is proposed in [61] and uses a mixture of the Newton-

Raphson algorithm and the genetic algorithm (GA). This combination gives better results in terms of

computational time and accuracy when compared to only the Newton-Raphson algorithm. In [31], the

authors consider all possible IK solutions for each composition and select the optimal IK solution among

them. They implement the Niching genetic algorithm-based IK solver proposed in [62].

Considering its easy applicability and flexibility, we implement the method proposed in [8] while

generating the kinematic model and the dynamic model of potential module compositions. More details

on the kinematic model generation are given in Section 2.4.2.

2.1.3 Task-optimal module composition selection

The task-optimal module composition selection is the last step of the algorithm. In most of the works

done so far, evolutionary algorithm-based task optimal module composition methods have been used [63–

67]. All those works aim to optimize a given objective function by applying a predetermined evolution-

ary algorithms. A more detailed literature review of these kind of algorithms is presented in Section 3.1.

A framework for the task-based design of serial manipulators with revolute joints, called the pro-

gressive design, is introduced in [65]. The method consists of four sequential steps: design, prototype,

planning, and control. The multi-population genetic algorithm (MPGA), which basically uses the stan-

dard GA in parallel, is used to solve the highly nonlinear optimization problem by pursuing the following

procedure: first, it selects the number and the orientation of the joint modules, then it defines the lengths

of link modules and joint angles for predefined sequential positions and then it generates a planner to

reach intermediate task points in the given order.
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The same research group presents a numerical approach in [66] to find the optimal module assem-

bly for fault-tolerant systems to perform the given task considering reachability, joint limits, obstacle

avoidance, and a measure of isotropy. They use task specifications as an input to their algorithm and

the algorithm determines the kinematic configuration for the desired manipulator. Then, it selects the

modules that can generate the desired kinematic configuration. After that, the proposed algorithm syn-

thesizes the feasible module compositions, which is called form synthesis, and finally it optimizes the

dimensions of the components to create the desired form called dimension synthesis. A simulated an-

nealing algorithm is used to optimize the objective function and the algorithm works by penalizing

module compositions that do not satisfy all task requirements. An analytical approach for a 2-DOF

planar manipulator and a numerical approach for a 6-DOF manipulator is proposed in [68] to solve the

IK problem of modular robots. They use D-H notation to calculate the forward kinematics and consider

Pieper’s inverse kinematic solution for their analytic approach and simulated annealing for their numeric

approach. However, these proposed methods are limited as they do not consider singularities. The same

authors also present another approach in [69] to determine the configuration of fault tolerant modular

robot manipulators for a given task, which has the same objective function as in [66]. They aim to find

the best inverse kinematics solution using their simulated annealing-based inverse kinematics algorithm

and define the module composition that gives the best inverse kinematics solutions for a given task.

Another task-based serial manipulator synthesis algorithm is introduced by the same authors in [70].

They propose a concept of a rapidly deployable manipulator system to solve the drawbacks of the fixed

manipulators with their developed modular and reconfigurable control software. The same authors in-

troduce an agent-based approach in [71] for modular robots that simultaneously considers kinematics,

dynamics, trajectory planning, and control in the synthesis algorithm.

Different from the aforementioned work, a concurrent design procedure is applied in [21] in which

the authors reduce the number of independent variables. They consider the types of modules and their

quantities as design variables and task specifications while using joint limits as design constraints. The

authors implement GA as an optimization algorithm and consider the manipulability, error measures,

torque requirements, and the difference in joint angles between sequential points in the objective func-

tion.

A hierarchical selection method that classifies the modules according to their physical capabilities is

presented in [72]. While generating assemblies, the authors categorize each module based on their

features and cancel the sets of modules and assemblies that have incompatible groups of modules.

However, this elimination process only considers simple physical design rules as it decreases the search

space. The same authors extend their method in [73] and categorize the design problem into three
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levels: i) module level, ii) sub-assembly level, and iii) assembly level. In the module level, the proposed

method eliminates the modules that are not suitable for the given task such as those with a specific type

of power supply or maximum payload capacity. Then, it cancels unfeasible module combinations in

sub-assemblies such as module compositions in which the end effector is an intermediate component or

the joint’s capability is not sufficient enough to fulfil the task.

A method to obtain the optimal design of 6-DOF modular parallel manipulators based on choosing

the composition from a look-up table is proposed in [63]. The table is generated based on the experi-

ences and knowledge within the database. Geometric and actuator parameters are considered as design

parameters and the task is defined as reaching a predefined set of task points. The performance con-

straints are set as reachability, joint and torque limits, and accuracy. The look-up table is generated by

the authors, which consider the type of task, and users are able to decide which composition is appro-

priate for the task using the look-up table. Thus, they can obtain an optimal robot composition from the

selected compositions using the simplex method. The same authors also introduce a two-stage design

methodology to obtain the task-specific optimal configurations for reconfigurable parallel manipulators

in [74]. In the first stage of the proposed algorithm, the robot structure is determined using an enu-

meration of the modules. In the second stage, design parameters are determined considering the given

objective function.

A stochastic programming-based approach for modular and reconfigurable robots is proposed in

[75]. The approach is based on a two-stage decision-making process called a two-stage mixed integer

linear stochastic model. In the first stage, a decision is made with uncertain future possibilities about

the task and a set of possible module compositions is defined afterwards. The set of compositions are

checked as to whether they are feasible for the given task in the second stage.

All the works mentioned above consider evolutionary-based synthesis algorithms and these algo-

rithms do not guarantee reaching the global optimal solution. The reason behind this is that evolutionary

algorithms only consider a subset of their search space and are therefore unable to check all possible

solutions. Approaches that consider and investigate all potential solutions are needed. However, check-

ing all potential solutions is not feasible with existing methods. Therefore, we aim to find a solution to

this research gap and propose a method that considers all possible solutions. The main contribution of

this chapter is a search-based hierarchical composition synthesis algorithm that finds the cost-optimal

solution for any user-defined task. The proposed method applies the brute-force algorithm to generate

all possible compositions and eliminates the unfeasible compositions by tests that are sorted from the

simplest one to the most complicated one. With these tests, one can obtain all potential module com-

positions that can fulfil the given task. The proposed cost-optimal composition generation algorithm
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checks the obtained solution at a specified number of iterations and eliminates the least-likely module

compositions. With the proposed algorithm, the problem of finding the global optimum solution using

heuristic algorithms and the problem of high computational time with search-based algorithms can both

be solved.

2.2 The Cost-Optimal Composition Synthesis Algorithm for Mod-
ular Robots for the Execution of a Given Task

We propose a solution to the cost-optimal module composition for the given task problem: a hierar-

chical composition elimination method. The main idea behind this proposed method is to group task

requirements into subtasks (called as tests) and to implement these tests starting from the simplest and

computationally fastest test to the more complicated and time-consuming ones. After the implementa-

tion of each test, the unfeasible compositions that cannot fulfil this test are eliminated and more complex

and time-consuming tests are only applied to the remaining compositions. The required tests can vary

among different tasks and some tests are not needed for some tasks (see Table 2.1). For example,

welding does not require an additional path planning because all points that a robot must follow have

already been determined, therefore, the algorithm skips the path planning test. Details of these tests

are explained in Section 2.4. After the implementation of all required tests for all generated module

compositions, those compositions that can fulfil the given task (called as feasible compositions) are

obtained.

To find the cost-optimal module compositions among all feasible compositions, trajectory planning

is implemented afterwards. When compared to tests, the computational time to find the cost-optimal

trajectory is extremely high, therefore implementation of this to all feasible compositions is not efficient.

To handle this disadvantage, we propose a method that eliminates the cost-inefficient compositions after

every user-defined number of iterations. We roughly optimize all remaining compositions in parallel and

record the obtained cost values for each user-defined number of iterations. The obtained cost values for

all feasible compositions are compared to the best obtained cost value among them in every user-defined

iteration is obtained as in (2.1),

ck,p =
ck,l − cbest,l

ck,l
(2.1)

where ck,l is the cost value of the kth composition in the lth iteration and cbest,l is the minimum cost

value among all remained compositions in the lth iteration. The value of ck,p is compared with a specific

threshold determined by the user. This composition is eliminated if it is greater than the threshold and

it is no longer considered in further iterations. This procedure is applied to all module compositions
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remaining in each iteration and it is repeated until the optimal cost values of all remaining module

compositions are obtained. When the optimization procedure ends, there may be several remaining

module compositions. To find the optimal composition, the obtained cost values are compared and the

module composition that gives the best solution is selected as (1.3).

2.3 Preliminaries

The first step of the proposed algorithm is the assembly representation and search space determination.

Most industrial modular robots are similar to standard industrial robots in terms of single input and

output connection ports. The module sets used throughout this thesis (in Appendix A and Appendix B)

are similar to standard industrial robots in terms of single input and single output connection ports with

a single orientation and so forth. These simple module features do not require a complex assembly rep-

resentation as the matrices in [31, 46, 47]. Even with these module features, one can generate numerous

different module compositions. For example, one can generate infinite different module compositions

using the virtual module set as explained in Appendix A. However, some of these compositions are

apparently not feasible to form a robot structure such as compositions consisting of only one module or

compositions considering a base module or an end effector module as an intermediate module (see Fig-

ure 2.1). To restrict the search space, it is assumed that modules can only be assembled in the following

order:

Base - Joint - Link - Joint - · · · - Link - End Effector.

The crossed compositions in Figure 2.1 are a set of discarded compositions based on this assumption.

Starting from the base module, all possible robot compositions are generated from the required mini-

mum number of DOF to the desired maximum number of DOF, which are shown as nmin and nmax,

respectively. We consider that each joint module has one DOF and each link module and base module

have zero DOF. The variable x shows the total number of DOF of the end effector. The total number of

all possible module compositions can be obtained from the following formula:

N =

nmax−x∑
i=nmin

b̃ · j̃i · l̃i · ẽ (2.2)

where b̃, j̃, l̃, ẽ indicate the number of unique base modules, joint modules, link modules, and end

effector modules, respectively. This assumption substantially decreases the search space, i.e., for the

first set of modules, the search space decreased to 15552 different compositions to generate a 6-DOF

robot. Nevertheless, the search space is still exceptionally large and should be pruned to speed up the
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Figure 2.1: A set of possible module compositions generated from the first set of modules detailed in Ap-
pendix A and the eliminated composition using the above-mentioned assumption.

process. To do this, the task requirements (as detailed in Section 2.4) are determined so that the search

space decreases after each test.

Each module is encoded with a unique name and the following data: module type, kinematic pa-

rameters, dynamic parameters, and module properties such as length, thickness, and limits for joint

modules.

2.4 Task Requirements

As a second step, the task requirements should be considered in the design procedure. The most common

tasks in manufacturing environments are assembling, pick and place, welding, spot welding, and gluing

[76]. In this section, requirements (called tests) for the above-mentioned tasks in the manufacturing

industry are explained in detail (see Table 2.1). These tests are i) reachability test, ii) kinematic test,

iii) static force-torque test, iv) collision test, and v) path planning test. The main motivation behind

classifying tasks into tests as mentioned above is that these tests are individually simple and they are all

Table 2.1: Possible tasks for industrial robots and required tests for them

Pick and Place Welding Gluing Spot Welding

Reachability Test X X X X
Kinematic Test X X X X
Static-torque Test X X X X
Collision Test X X X X
Path Planning Test X - - X
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independent of one another. Every test determines a prerequisite ability that is a part of fulfilling the

entire task.

We sort tests in the following order considering their simulation time: reachability test, kinematic

test, static torque/force test, path planning in the obstacle-free environment, and path planning in the

obstacle-laden environment. The total number of compositions tested decrease with each test and finally,

optimal trajectory planning is implemented. For example, the order of the pick and place test, which is

one of the tasks required by all tests, is

Nreachability ≥ Nkinematics ≥ Nstatic ≥ Npath planning without obstacles ≥ Npath planning with obstacles

where NA = |κA| and |κA| is the cardinality of κA.

2.4.1 Reachability Test

The reachability test demonstrates whether the desired point is in the workspace of the robot, and it is

obvious that a robot cannot fulfil the requested task if desired points are not in its workspace. To check

this, the point is mapped on the robot’s configuration space and the availability of a solution is checked.

Although simple, checking this for all compositions takes time and it is a computationally expensive

process. Therefore, to quickly discard the unfeasible compositions, we only consider the reachability in

terms of a robot’s total length and check whether the given point is in a sphere with a radius matching

the maximum total length of the robot. The maximum length of the robot (l) is obtained from:

l = lB + lE +

n−x∑
i=1

(lJ,i + lL,i) (2.3)

where lB , lJ,i, lL,i, and lE are the length of the base module, the length of the ith joint module, the length

of the ith link module, and the length of the end effector module, respectively. For prismatic joints, the

value of lJ,i is the length of the joint with the maximum displacement. The variables n and x are the

number of DOFs of the robot and the end effector module, respectively. The distance between the base

location of the robot pb and the desired position to be reached pd is calculated by db2d = ‖pd − pb‖2,

where ‖pd− pb‖2 is the Euclidean distance between pd and pb. Then, whether the module composition

can satisfy the condition l ≥ db2d is checked. If a module composition cannot satisfy the condition, it is

not considered in further tests.
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2.4.2 Kinematics Test

The kinematic test demonstrates whether a robot can reach the desired point. Kinematics includes the

motion of structures without considering the forces or moments that results in the motion. Finding

the end effector’s position with joint angles is called forward kinematics and finding the angles of joints

from the end effector’s position is called inverse kinematics (IK). Because each module composition has

different kinematic models, generating kinematic models for all possible compositions is not efficient.

To solve this problem, we implement the automated kinematic modelling method proposed in [8]. The

authors extend the D-H convention, where all kinematic and dynamic parameters are stored in each

module, to make the automated generation procedure easier.

In standard D-H parameters, there are four variables, which are: ai, di, αi, and θi. The variable

ai denotes the distance along the xi-axis between the origins of the frames oi and oi′ . The variable

di denotes the distance along zi−1 between the origins of the frames oi−1 and oi′ . The variable αi

denotes the angle between the axis zi−1 and zi around the xi axis and the variable θi denotes the angle

between the axis xi−1 and xi around the zi−1 axis. In the method proposed by [8], the authors extend the

standard D-H convention with two new parameters and thus facilitate automated capture of the standard

D-H parameters: ai, αi, pi, ni, and γi where pi represents the distance along z-axis between the origin

oi′ and joint connection PJi−1 (joint between linki and linki−1), ni represents the distance along z

axis between oi and joint connection PJi (joint between linki and linki+1), and γi is the parameter that

shows the angular offset between the sequential x-axes at the time that the joint is in its zero position

(qi = 0). These three variables are used to determine di and θi considering the joint type. More details

about the method in [8] can be seen in Appendix D.

As an inverse kinematics algorithm, we use the unit quaternion-based, closed-loop inverse kinemat-

ics (CLIK) algorithm from [77] in the proposed method. Based on the CLIK algorithm, the relationship

between ṗ and ωωω is shown in (2.4), which represents the linear velocity and angular velocity of the end

effector, respectively. The variables J(q) and q̇ denote the geometric Jacobian of the manipulator at the

joint variables q and joint velocities, respectively.[
ṗ
ωωω

]
= J(q)q̇ (2.4)

The given rotation matrix in Euler angles is shown in (2.5). The unit quaternions are defined as

Q = {η, εεε}, where the variables η and εεε represent the scalar part and vector part of the quaternion,
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respectively, and are shown in (2.6) and (2.7), respectively.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.5)

η =
1

2

√
r11 + r22 + r33 + 1 (2.6)

εεε =


1
2sgn(r32 − r23)

√
r11 − r22 − r33 + 1

1
2sgn(r13 − r31)

√
r22 − r33 − r11 + 1

1
2sgn(r21 − r12)

√
r33 − r11 − r22 + 1

 (2.7)

Based on the method in [77], the desired end effector position and orientation are represented as pd

and Qd = {ηd, εεεd}, respectively. The position and orientation errors are calculated as in (2.8) and (2.9),

respectively, where S is the matrix operator that gives the cross product between the (3× 1) vector.

epos = pd − p(q) (2.8)

eori,quat = η(q) εεεd − ηd εεε(q)− S(εεεd) εεε(q) (2.9)

The velocities of the joints are calculated as in

q̇ = J−1(q)

[
ṗd + Kpos epos

ω̇ωωd + Kori eori,quat

]
(2.10)

where Kpos and Kori are positive gain matrices. The CLIK algorithm calculates the position and orien-

tation errors and runs until those values are less than the user-defined threshold. If the algorithm cannot

find a solution, the composition is discarded for the following tests.

2.4.3 Static Force-Torque Test

The static force-torque test shows if a robot’s joints can carry the given payload or not. Each joint in an

industrial manipulator has a static force-torque capacity to carry a specific payload. Forces based on the

carried payload are distributed across all joints and affect the robot’s entire structure. While calculating

the effect of the payload on each joint, the wrench vector W ∈ R6 is used where W = [f;n]. The

two variables f ∈ R3 and n ∈ R3 indicate the force and moment vectors applied to the end effector,

respectively. If the wrench vector of an end effector W is known, the static force-torque values applied

to each joint can be calculated from:

τ (q) = J(q)T W (2.11)
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where τ (q) is the static force-torque vector and J(q)T is the transpose of the Jacobian matrix at the

joint position q. In this test, the static force-torque vector is checked for the satisfaction of the con-

dition τ (q) ≤ τmax where τmax is the maximum force-torque vector of the manipulator. The robot

composition is discarded from further tests if it does not satisfy the condition.

2.4.4 Collision Test

The collision test is implemented to check if there are any collision-free solutions for a robot’s given

task. Collision checking is a complex and computationally expensive work that can be done either in

the configuration space (C-space) of the robot or in the workspace [78]. One way to check for collisions

is to map all obstacles onto the robot’s joint space. These mapped obstacles in C-space are called C-

obstacles. However, the projection of obstacles onto C-space has exponential complexity in the number

of DOFs and, because each module composition’s C-space is different, the projection of obstacles for

each module composition is required [79]. Considering these drawbacks, the implementation of C-space

collision detection algorithms is difficult and computationally inefficient for our problem. Therefore,

we use a second collision checking method that gives faster solutions when compared to the C-space

collision detection algorithms. This is because workspace collision detection methods do not require

mapping obstacles onto the robot’s joint space.

To simplify the problem and reduce the computational resources, we consider the following assump-

tions: i) all modules are modelled as spheres or cylinders considering the ratio of a module length to a

module radius (if the ratio l/r >> 1 modules are modelled as cylinders, otherwise, modules are mod-

elled as spheres), and ii) obstacles are enclosed by a sphere or spheres about their shape. For example,

in case the l/r ratio of an obstacle is around one (e.g. cubes), the obstacle is considered to be enclosed

by one sphere. Otherwise, the obstacle is represented by more than one sphere as in [80]. For both

module sets used in this thesis, the l/r ratio is much greater than 1 for link modules and around 1 for

joints, end effectors, and base modules. For this reason, link modules are considered as cylinders and

represented by (xs, ys, zs, xe, ye, ze, r) where the subscripts ( · )s and ( · )e represent the center points

of the input port and the output port of the cylinder, respectively. The notations x, y, and z represent

the Cartesian coordinates of the center points and r is the radius of the component. Other components

are represented by their center points and their radii (xc, yc, zc, r). We perform collision checking in

the following categories: i) collision check between spheres, ii) collision check between a cylinder and

a sphere, and iii) collision check between cylinders.
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2.4.4.1 Collision between spheres

The distance between the center points of two spheres, i.e., pA and pB , are calculated from dA2B =

‖pA − pB‖. The variable dA2B must satisfy the condition dA2B ≥ rA + rB where rA is the radius of

sphere A and rB is the radius of sphere B.

This procedure is applied to collision checks between the base module and obstacles, the base mod-

ule and joint modules, the base module and end effector modules, end effector module and obstacles,

joint module and obstacles, and between two joint modules. Using forward kinematics, the position

of the center of the end effector is obtained as in Appendix D. The coordinates of the center of each

joint are obtained by the subsequent multiplication of the homogeneous transformation matrices of D-H

frames as in Appendix D. The length of the last joint is added to the transformation matrices to find the

joint’s center point.

2.4.4.2 Collision between a cylinder and a sphere

The distance between a cylinder and a sphere is considered as the distance between a point and a line.

Collisions between link modules and obstacles or any components except other link modules are some

examples of this type of collision. Each link module is modelled as a cylinder, which can be represented

by a line and a radius. The start point of the line pL,s and the endpoint of the line pL,e are calculated

using transformation matrices as explained in Appendix D. The start and the end point of the ith link is

calculated as in (2.12) and (2.13) where li is the total length of the ith link and ppl is the distance along

the z-axis between the origin oi′ and joint connection PJi−1 as in Figure D.2 in Appendix D.

T i
L,s = T i

0


1 0 0 0
0 1 0 0
0 0 1 ppl

0 0 0 1

 (2.12)

T i
L,e = T i

0


1 0 0 0
0 1 0 0
0 0 1 li
0 0 0 1

 (2.13)

The first three rows of the last column of T i
L,s and T i

L,e give pi
L,s and pi

L,e, respectively. The line

made using those two points defines the center line of the cylinder. The distance between the line and a

point is represented by the subscript ( · )P and is calculated as

dL2p =
|(pL,e − pL,s)× (pL,s − pP )|

|pL,e − pP |
. (2.14)
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Then, this distance is compared to the sum of the obstacle’s radii and the cylinder dL2p ≥ rL+rP . If the

distance is less than the sum, a collision between the link module and obstacle or end effector module

and joint module will occur. This procedure is repeated for all link modules in the robot’s composition

and all obstacles in the environment along with all other components of the robot.

2.4.4.3 Collision between cylinders

The collision between two cylinders can be calculated as the distance between two lines. Therefore,

the collision between two link modules is represented by a collision between cylinders and the distance

between two cylinders is calculated as follows:

dL12L2
=
|(pL2,s − pL1,s) · ((pL1,e − pL1,s)× (pL2,e − pL2,s))|

|(pL1,e − pL1,s)× (pL2,e − pL2,s)|
(2.15)

where the subscript ( · )Li
represents line 1 and line 2. The minimum distance between two lines is

compared against the sum of the radii of cylinders dL12L2
≥ rL1

+rL2
and the composition is discarded

from the further tests if it does not satisfy the condition.

2.4.5 Path Planning Test

The path planning test is implemented to find feasible points in the environment that a robot can follow

while moving from initial to final position. This test is important because the task cannot be executed

if a path between these two positions does not exist. To perform a path planning test, two methods are

used: i) configuration space (C-space) approaches and ii) Cartesian space approaches [81]. Because

C-space approaches provide better efficiency and singularity avoidance, they are widely preferred for

the generation of a feasible path between the initial and goal positions. To form the path, first the initial

and goal positions are mapped onto joint space using the inverse kinematics, which maps the problem

from workspace to C-space. Then, any path planning algorithm in the literature (see [78, 81]) can be

used to generate a feasible path between the initial and goal positions. The rapidly-exploring random

trees-connect (RRT-connect) algorithm is selected in the proposed method due to its simplicity and high

success rate. Collision detection and obstacle avoidance is also needed to find a feasible path between

two points. As explained in Section 2.4.4, we implement collision checks in the workspace to all knots

obtained from the path planning algorithm, regardless of which algorithm is used. Considering only

the kinematic requirements, the remaining compositions from all the tests completed so far are now

considered capable of potentially fulfilling the given task.
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Indeed, all tests done up until this point help the user find all feasible module compositions that

can fulfil the given task and roughly show how each composition can achieve the task. All steps ex-

plained so far give a solution to the task-based design (TBD) problem. After finding all feasible module

compositions, optimal trajectory planning is implemented for the remaining compositions to find the

task-optimal solution. The following sections are for finding a solution to the task-based optimal design

(TBOD) problem.

2.5 Optimal Trajectory Planning

The optimal robot composition is the composition that fulfils the given task considering the user-defined

objective function with the constraint of minimum cost. For optimal trajectory planning, the task is to

generate the optimal trajectory considering the given objective function. Finding the optimal trajectory

for a robot is considered an optimal control problem. The general form of an optimal control problem

is defined as

minimize
x( · ),u( · ),tf

∫ tf

0

L(x(t),u(t)) dt (2.16)

where x( · ) indicates the vector of state variables shown as x = (q; q̇) and x ∈ R2n, u( · ) indicates the

vector of control variables described as the torques/forces acting on the joints where u = τ and u ∈ Rn,

and L(x(t),u(t)) defines the desired objective function as in [82]. The value obtained from (2.16)

gives the optimal cost value, c, in (1.3). While calculating this value, robot dynamics are transformed

from (2.16) to the state space form which is showns as ẋ = g(xk(t),uk(t)). Point to point motion is

constrained by x(0) = x0 and x(tf ) = xf where x0 and xf indicate the initial and final state variables,

respectively. Joint limits and collision avoidance constraints are defined as inequality constraints in the

function h(x(t),u(t)).

Direct methods can transform the infinite problem in (2.16) into a finite-dimensional nonlinear prob-

lem and provide better computational efficiency and accuracy in comparison to other methods in the

literature [82]. We use the direct multiple shooting method in our problem because it is more robust

and faster than other methods, it is easy to parallelize, and it is applicable to unstable systems [82]. The

idea behind the direct multiple shooting method is to discretize the state variables and control variables

into Nint pieces between the initial and goal positions. Each discretized control value is formulized as

{∀t : u(tint) = bm, tint ∈ [tm, tm+1]} to simplify the problem where m ∈ {0, . . . , Nint−1}. An ordi-

nary differential equation (ODE) solver is implemented individually to each interval (tint). The points

generated by the path planning method and artificial velocity values are considered as state variables

where the starting points of each interval are represented as xm(tm) = sm. The results obtained from
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the ODE solver give the trajectories and each trajectory must satisfy the following condition at each

interval: sm+1 = xm(tm+1; sm,bm).

We rewrite the optimal control problem given in (2.16) considering the direct multiple shooting

method for modular robots as in (2.17). The cost-optimal trajectory for the kth composition is formulated

in (2.17) where the variable lk,m represents the discretized objective function for the kth composition in

the interval [tk,m, tk,m+1]. The variables xk,min and xk,max are the minimum and maximum state vari-

ables for the kth composition, respectively, and the variables uk,min and uk,max are the minimum and

maximum control variables for the kth composition, respectively. The vector h indicates the inequality

constraints. The occupancy set of the robot is projected onto a function dk,j(t) and thus represents the

distance between the kth robot’s components and jth obstacles at time t. The variable rj is the radius of

the jth obstacle.

ck = minimize
sk,bk

Nint−1∑
m=0

lk,m(sk,m,bk,m) (2.17)

subject to

sk,0 − xk,0 = 0, (initial constraints)
sk,m+1 − xk,m(tk,m+1; sk,m,bk,m) = 0, (ODE model)
h(sk,m,bk,m) ≥ 0, (path constraints)
sk,Nint

− xk,f = 0 (terminal constraints)

where

h(sk,m,bk,m) =


xk,max − sk,m
sk,m − xk,min

uk,max − bk,m

bk,m − uk,min

dk(t)− rj

.

Initial constraints, final constraints, and path constraints represent a part of (1.2) and those parts can

be shown as fk(qk(0)) = ps, fk(qk(tf,k)) = pg , and the remaining parts of (1.2), respectively. In the

determination of the optimal trajectory, collision avoidance is considered as an inequality constraint

during optimization and the collision test detailed in Section 2.4.4 is implemented. It should also be

noted that the first two rows of h(sk,m,bk,m), xk,max − sk,m and sk,m − xk,min, correspond to qk(t) ∈

[qk,min, qk,max] and the third and fourth rows of h(sk,m,bk,m), uk,max − bk,m and bk,m − uk,min,

correspond to |τk(qk(t))| ≤ τk,max.

As explained in Section 2.2, the values for all feasible compositions obtained from (2.17) are

recorded at every user-defined iteration and compositions that are the least-likely optimal compositions

are discarded. At the end of the simulation, a set of c values in (1.3) is obtained from (2.17) and the best

solution among the set (κ in (1.3)) is selected as the optimal one.
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2.6 Numerical Experiments

This section demonstrates the application of the proposed optimal composition synthesis algorithm to

several scenarios to illustrate the applicability of the method. All computations are performed on a stan-

dard computer with an Intelr CoreTM i7 processor with 2.30 GHz and 16 GB of RAM. We implement

our algorithm as explained in Chapter 2 in both module sets in Appendix A and Appendix B. For the

first module set, all experiments are done in the simulation environment and it is assumed that there

is an unlimited number of pieces from each module. The details of the simulations are explained in

Section 2.6.1. In the second experiment, we use the extended SCHUNK LWA 4P robot. As opposed to

the simulation, there is only one piece from each module and the experiment is demonstrated in the real

world. The task is based on a real problem from industry, which is defined as inserting an insulation

material into a car door in the minimum time, and it is explained in Section 2.6.2.

To compare the simulation time for each test, we generate random scenarios for the pick and place

task that requires the implementation of all tests. As seen in Table 3.1, we sort tests in the following

order considering their simulation time: reachability test, kinematic test, static torque/force test, path

planning in the obstacle-free environment, path planning in the obstacle-laden environment, and optimal

trajectory planning. The total number of compositions decrease after each test.

2.6.1 Numerical experiments for the virtual module set

To test our algorithm, we consider a pick and place task and use the virtual module set explained in

Appendix A. We consider serially connected modular manipulators whose DOF varies from 2 to 5. The

type of modules, the number of modules, and the combination of modules are the three main design

parameters of our combinatorial problem.

In the given task, the robot is expected to take a predefined payload from a given initial position

and place it at a given goal position in the shortest time without collision with any obstacles in the

environment and the robot itself. Moreover, the robot should not exceed joint limits. Without loss of

Table 2.2: Comparison of the simulation time of the a 5-DOF module composition generated from the mod-
ules explained in Section 2.2.2 ( B − J1− L1− J1− L2− J1− L3− J1− L2− J1− L3− EE1)

.

Test Time [sec]

Reachability Test 0.007
Kinematic Test 0.143
Static Force / Torque Test 0.156
Path Planning in Obstacle-Free Environment 5.353
Path Planning in Obstacle-Laden Environment 5.871
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generality, we test our algorithm by generating 10 random scenarios with the base module positioned at

pb = (0; 0; 0)T in all scenarios. For each scenario, the initial positions, goal positions, the obstacles’

positions and their radii, and the number of the obstacles in the environment are generated using the

uniform random number generator of MATLABTM (with the rand function) in a 10x10x10 m environ-

ment. It should be noted that the base of the robot is placed at the center of the cube and all obstacles

are static. All obstacles are considered as spheres and their radii are also randomly generated within the

following limits: ro = [0.01 : 1] m. Besides, the number of obstacles for each scenario is also randomly

generated to vary between 0 and 10 and the payload to vary between 1 kg and 7.5 kg.

All possible configurations from 2 DOF to 5 DOF are generated and 3108 different compositions

are obtained following the predetermined structure in Section 2.3. Because the task requires a mini-

mum of 3 DOF, 12 module compositions having 2 DOF are cancelled from all scenarios. As a first

step, the reachability test detailed in Section 2.4.1 is applied to all module compositions, and module

compositions whose lengths are greater than the distance between the base and the initial and goal po-

sitions (κreachability) is obtained. After that, the kinematic test detailed in Section 2.4.2 is applied to the

remaining compositions and all compositions that can reach the initial and goal positions (κkinematics) are

obtained for each scenario. Considering the given payload is in the −z-direction, a static test is applied

as detailed in Section 2.4.3. To the compositions that can pass the static test (κstatic), collision and self-

collision tests are applied to the initial and the goal positions as in Section 2.4.4. The path planning test

is applied to the successful compositions from the previous test (κcollision) as in Section 2.4.5. We im-

plement the rapidly-exploring random trees-connect (RRT-connect) algorithm detailed in [83] as a path

planning algorithm due to its simplicity and high success rate. Different from the standard RRT, two

trees are simultaneously generated from the initial (qs) and goal positions (qg). A random point qrand is

generated and the closest points to the initial points of both trees are selected and called qnear,( · ). New

points qnew,( · ) are simultaneously generated considering the given step size from both sides. Then, the

algorithm is implemented as in standard RRT algorithms and the new generated points are checked for

collisions. In case the generated point is collision free, it is added to the tree, otherwise another point

is generated. When two trees intersect, a path is generated. We consider the step size as 0.1 and the

number of maximum nodes is set to 100 for all scenarios. The RRT algorithm is applied a maximum of 5

times to each module composition and a module composition is discarded if a feasible path is not found.

All compositions that can fulfil the given task and their corresponding paths are found after applying

those tests (κpath planning). It should be noted that the collision test is applied to all generated points on

the path.
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All successful compositions from the κpath planning test are examined in optimal trajectory planning

as explained in Section 2.5. While implementing optimal trajectory planning, the positions generated

by the path planning algorithm are set as an initial guess in the optimization to speed up the algorithm.

The time is set 10 as an initial guess for all scenarios and the number of knots (generated points on the

path) is set as the number of points defined from the path planning algorithm. Because the task is to be

executed in a minimum amount of time, the objective function L(xk(t),uk(t)) is set as 1 where ( · )k

indicates the kth composition. Each joint modules’ limits qkmin,max , q̇kmin,max
and τkmin,max define the lower

and upper bounds of the optimization. The velocities of each joint at the initial and goal positions are

set to zero. The multiple shooting method is applied to all remaining compositions and the trajectories

are generated that integrate the equation ẋk(t) = g(xk(t),uk(t)) for each knot starting from the initial

position. The ODEs are solved for each of these points using the Runge-Kutta method from the library

in [84].

The fmincon solver in MATLAB Optimization ToolboxTM is used and the interior-point method

is selected. Tolerances for position and velocity are set to 0.001. All remaining compositions from

the path planning test are considered in the optimization and the maximum iteration number and the

maximum number of evaluations for each composition is set to 4 and 20000, respectively. The results

for all compositions obtained at the end of the fourth iteration are compared to the best results obtained

among the compositions. The composition is discarded in case its ck,p value calculated from (2.1) is

above the predefined threshold that is set as 0.5 for the experiments.

This process is repeated in each iteration until the algorithm reaches the optimal cost value. In an

average of all 10 scenarios, the total number of iterations is reduced by 56.1% and the total simulation

time is reduced by 54.68% compared to the brute force algorithm. As an example, the task of moving

the 5.1 kg payload from the initial position pi = (0.392, 0.097, 0.195)T to the final position pd =

(−0.371, 0.024, 0.266) in the environment with one obstacle is investigated and the position and velocity

values of the best solution is given in Figure 2.2.

2.6.2 Numerical experiments for the extended SCHUNK LWA 4P robot

We also implement our algorithm on the second module set detailed in Appendix B and thus demonstrate

the algorithm’s results in a real environment. As opposed to the simulation experiment, only one piece

from each module exists and the task is based on a real problem from the industry, which is defined as

inserting insulation material into a car door within a minimum amount of time (see Figure 2.3).

The car door used in the experiment is provided by BMW and the given task is defined as following

a predefined trajectory while pressing a mounted fabric on a door, which can be seen in Figure 2.3.
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Figure 2.2: The position and velocity values of the cost-optimal solution for a given task.

The trajectory is obtained by Programming by Demonstration (PbD) [85] and a Vicon infrared motion

tracking system is used to accurately track the position of the markers during the demonstration (see

Figure 2.4(a)). More details on the generation of the points to be followed are detailed in [5]. Coordi-

nates of all points that the robot has to follow are obtained by PbD and there are more than 15000 poses

to be followed in sequence (see Figure 2.4(b)). However, implementing all tests on all obtained poses is

time consuming and not practical. To decrease the computational work, we select 150 of the obtained

points including all extreme poses in all directions. Because the positions to be followed are given in the

task description, we only apply the following tests on these 150 predetermined poses: the reachability

test, the kinematic test, the static test, and the self-collision test in sequence.

The production environment is generated in the laboratory and the base of the robot is placed in

the position pb = (0; 0; 0)T . In total, 986409 different module combinations can be generated using

the extended SCHUNK LWA 4P module set. To reduce the search space, we consider the following

assumptions in addition to the ones given in Section 2.3: i) each module can be used once and ii) L3,

L4, and L5 cannot be placed after the first joint module because it reduces robustness. Considering

these assumptions and constraints, we reduce the number of possible compositions to 83. Afterwards,

we implement the mentioned tests in sequence with the remaining module compositions. The desired

task is completed in a 3D environment and requires at least 6 DOF, which means all joint modules
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Figure 2.3: The illustration of the task given by the company [5].

must be used. After implementing the reachability test, all 83 compositions followed the obtained

positions. Then, we implement the kinematic and static tests. From 83 compositions, 70 are eliminated

because they could not reach all given positions. The 9 remaining compositions could not pass the

self-collision test leaving only 4 module compositions. For the remaining 4 compositions, namely

B − PB1 − L1 − PB2 − L3 − L2 − PB3 − E, B − PB1 − L1 − PB2 − L4 − L2 − PB3 − E,

B−PB1−L1−PB2−L5−L2−PB3−E, andB−PB1−L1−L5−PB2−L2−PB3−E, we follow

their given trajectory point by point and calculate the minimum execution time for each one. We consider

the maximum velocity limit for each joint (see Table B.1) during each interval while calculating the

quickest execution time. As a result, the module compositionB−PB1−L1−PB2−L5−L2−PB3−E

fulfills the task in the least amount of time. The optimal robot assembly can be seen in Figure 2.4(c).

After the robot is assembled, the controller is generated as in [5] and the reproduction snapshots are

shown in Figure 2.4(d).

2.7 Summary

In this chapter, we review the proposed modular robot composition synthesis algorithms and propose

a new, time-efficient composition synthesis algorithm that not only finds the cost-optimal solution but

also shows how the task should be fulfilled. The proposed method is based on the elimination of un-

feasible compositions starting from relatively easy and less time-consuming tests to more difficult and

time-consuming ones. After obtaining all compositions that may fulfil the task, the proposed elimi-

nation method is implemented, which eliminates compositions with higher cost values than others in

the early stages and applies the optimization to the more likely ones. As a result, the proposed algo-
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Figure 2.4: Overview of experimental results for inserting insulation material task with (a) demonstration
of the task, (b) the task model obtained by PbD, (c) the optimal assembly, and (d) the snapshots of the
reproduction [5].
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rithm decreases the total computational time when compared to optimal trajectory planning tests on all

remaining compositions. The results also prove that the proposed algorithms i) are computationally ef-

ficient, ii) applicable to different module types, iii) prevent the repetition of compositions, iv) consider

not only robot kinematics but also robot dynamics if the task requires, and v) not only find the optimal

composition but also compute how the task is fulfilled.
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Chapter 3

Evolutionary Algorithm-Based
Synthesis of Modular and
Reconfigurable Robots for a Given
Task

In this chapter, we present an evolutionary algorithm-based composition synthesis method for modular

and reconfigurable robots that finds the cost-optimal module composition considering task-related ob-

jectives. As opposed to the previous chapter, an evolutionary algorithm is used to find the cost-optimal

solution. Evolutionary algorithms are commonly used for many optimization problems because they

provide faster solutions when compared to deterministic methods. Because the solution space of the

problem is huge, we propose a method that guides the optimization algorithm while generating a set

of intermediate points along the cost-optimal path. Only the end effector’s position is taken into ac-

count while generating the set of intermediate points. The achievability of intermediate points is set as

a parameter in the objective function. After that, the proposed two-step evolutionary algorithm-based

method is implemented to find the set of best compositions. In the last step, the best solution is selected

among the set of best compositions by applying an individual path planning algorithm to each of them.

Simulations show that the presented algorithm provides a solution in a shorter simulation time than

deterministic methods.

In addition to a literature review on the determination of task-based optimal module compositions

explained in Section 2.1, a more detailed literature review on evolutionary algorithm-based optimal

modular robot synthesis algorithms is given in Section 3.1. The proposed algorithm is outlined in
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Section 3.2. The generation of a set of intermediate points is explained in Section 3.2.1 and the set

of the best compositions is determined using evolutionary algorithms as detailed in Section 3.2.2. The

selection of the cost-optimal solution is described in Section 3.2.3. Finally, the simulation results are

shown in Section 3.3. The proposed method explained in this chapter was published in [40].

3.1 Introduction

Over the last few decades, optimization techniques based on evolutionary algorithms have gained con-

siderable attention as an alternative to deterministic methods. Although they are not guaranteed to find

a globally optimal solution, they are preferred due to offering solutions much faster than deterministic

methods. Besides, it is easier to implement evolutionary algorithms when compared to deterministic

methods. Numerous evolutionary optimization algorithms have been proposed so far, such as the ge-

netic algorithm (GA) [86], memetic algorithm [87], ant colony algorithm [88], artificial bee colony

algorithm [89], particle swarm optimization [90], and cuckoo search [91]. All these algorithms are

biologically inspired and based on the principle of survival of the fittest. Each algorithm has its own

advantages and disadvantages and more detail on each evolutionary algorithm can be found in [92].

These biology-based evolutionary algorithms have also been widely used to solve the task-optimal

modular robot composition synthesis problem [64,67,93–96]. In particular, the genetic algorithm (GA)

has been ubiquitous due to its simplicity and short computational times compared to the other meth-

ods [94]. For example, a GA-based optimal module composition synthesis algorithm is proposed in [64]

in which a set of potential assemblies are encoded in a string. The proposed GA-based algorithm uses

the reproduction, crossover, and mutation operators and finds the best solution for the given objective

function, which checks the reachable number of given task points for each module composition. The

same research group also introduces a minimized degrees of freedom (MDOF) approach in [93] to obtain

the optimal module composition. The GA-based optimal module composition generation algorithm op-

timizes the given objective function that consists of reachability, joint range availability, manipulability,

and feasibility of the mechanical structure. Another GA-based method that finds the best module com-

position for a given task is proposed in [72]. They first implement their hierarchical selection method to

reduce their search space and then implement GA to select the best module composition. The authors

also represent potential module compositions as chromosomes and implement GA to obtain the module

composition providing the best fitness value among them.

Another automated task-based composition synthesis algorithm is presented in [50] and based on

the combination of GA and an object-oriented structure. Each module is defined with information-
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containing parameters and are represented by two groups: binary values and real values. To generate

new robots, they use different types of crossover and mutation operators for each group, which enables

the separate exchange of modules and their parameters.

Besides implementing standard GA, some researches implement GA in several steps to find the

cost-optimal module composition. The authors in [97] consider coupled joint and link modules as

sub-assemblies and implement two-level GA to obtain the cost-optimal module composition. Each sub-

assembly is represented by a chromosome and encoded in binary. Each chromosome has the following

information: the joint type, the orientation of the joint, the link type, the link length, and the orientation

of the link module. However, this is one of the drawbacks of this method since robots that only differ

in the type of joints have the same structure in a chromosome. Furthermore, the posture of assemblies

is represented with real coding because of the wide range of joint angles. The proposed method in [97]

divides the objective function into three categories: hard requirements, soft requirements, and hard-soft

requirements. While hard requirements must be achieved, the solutions closest to the soft ones are the

better solutions and the hard-soft requirements must be given in predetermined thresholds. The proposed

two-level algorithm first generates topologies and then it calculates the joint angles in the second level.

Another two-level GA-based composition synthesis algorithm for fault-tolerant modular robots is

introduced in [26]. Their algorithm finds a set of robot compositions that fulfil the task considering

a fault-tolerant workspace reachability in the first step. After that, the algorithm selects the optimal

composition considering the failure possibility of each joint and joint limits among the successful com-

positions remaining from the first step.

The two-level genetic algorithm (TGA) detailed in [67] also determines the optimal module compo-

sition considering the specifications of a given task. The algorithm first finds a set of the best topologies

in the upper-level GA and then it solves inverse kinematics of the obtained robot compositions in the

lower-level GA. In this method, all information about a robot’s composition is defined on a single bi-

nary chromosome that leads to a long-string large chromosome. Thus, the method is inefficient because

changing a small part of the chromosome using GA operators affects a large part of the whole structure.

As a consequence, the computational time of the process increases. To overcome this problem, the same

authors propose a multi-chromosome algorithm (MEA) in [94]. The MEA differs from their previous

work in the following way: i) the MEA has one evolution loop, which makes it faster than TGA, ii) the

algorithm divides a chromosome into several chromosomes and this separation enables each chromo-

some to obtain remarkably related information without any effects from the global crossover, and iii) the

algorithm divides the objective function into two sub-objective functions: topology and configuration.

Thus, the global objective function is the product of these two sub-objective functions and this approach
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allows the user to optimize configurations while fixing module compositions. Their experiments show

that the MEA is 100 times more computationally efficient than the TGA [94]. In addition to previously

explained methods, another algorithm introduced in [98] also uses a two-step GA. As opposed to other

studies, the authors consider adjustable link modules, and they aim to determine optimal lengths of the

links. In this method, the configuration is determined in the first step of the algorithm considering robot

kinematics and the second step is to find the optimal link length for the given task.

In addition to either implementing existing evolutionary algorithms as stand-alone or in sequence, a

combination of the two has also been used to solve the task-based optimal module composition problem.

An adapted simulated annealing and genetic algorithm (ASAGA)-based optimal composition synthesis

algorithm for parallel modular robots is proposed in [96]. They consider the sum of the reachability of

task points and the differences between joint angles in sequential task points as the objective function.

In this algorithm, the mutation operator is replaced with a simulated annealing (SA) algorithm. This

change makes the algorithm faster and increases its reliability.

Similar to [96], the authors in [49] also use a genetic-simulated annealing algorithm to solve the

TBOD problem. The proposed algorithm combines the advantages of the searching capability of the

GA and the superior local search capability of the simulated annealing algorithm. As a result, the

proposed algorithm increases the accuracy and success rate of the search. As an objective function, the

authors consider accessibility of the positions and orientations.

The novel task-based optimal design approach detailed in this chapter differs from the above-

mentioned algorithm as the task is considered during the optimization. The search space is reduced

considerably when taking the hard requirements of the task into account and thus the GA-based method

is only applied to most likely compositions. The main novelty of the proposed method is the inclusion

of the task-related part considering the previously defined guidance points in the objective function.

The implementation of the optimization algorithm generates a set of best assemblies and then individual

task planning is applied to them. After this, the composition that gives the best result is selected as the

task-optimal solution.

3.2 Proposed Algorithm

As mentioned in previous sections, the search space must be narrowed as much as possible to obtain the

cost-optimal solution in the shortest computational time. The same assumptions detailed in Section 2.3

are followed while generating module compositions. Instead of iterating all possible module combi-

nations as in the previous chapter, an evolutionary algorithm-based composition synthesis method is
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Figure 3.1: The proposed composition synthesis method for modular robots
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Figure 3.2: Wavefront algorithm (a) numeration of obstacles and the starting point (b) numeration of all cells,
and (c) the set of intermediate points

proposed in this chapter. Considering the task requirements, the required minimum DOF, and the max-

imum DOF are defined by the user and a set of module compositions are randomly generated. As seen

from the schematic representation of the presented method in Figure 3.1, it can be divided into three

steps: 1) the generation of the set of the guidance points, 2) the determination of the best compositions

using evolutionary algorithms with the help of the additional objectives, and 3) the determination of the

cost-optimal composition considering the given objective function.

3.2.1 Generation of the set of guidance points

As a first step of the algorithm, a set of intermediate points that are in the shortest geometric path

between the initial position and the goal position are generated. Because each module composition has

different solutions for a given task, a geometric path between the initial position and the goal position

is created independently from the module composition. To achieve this, any geometric path planning

method in the literature can be implemented (the most well-known geometric path planning algorithms

can be found in [81]). We apply the wavefront algorithm in our simulations due to its simplicity [78].

The main idea behind the wavefront algorithm is to divide the environment into cells with a pre-defined

cell size. All cells are initially numbered as 0. Then, all cells that contain obstacles are numbered by 1

and the goal position is numbered by 2 as in Figure 3.2(a). Starting from the goal position, all obstacle-

free cells are numbered considering the distance to the goal position as in Figure 3.2(b). The path is

generated starting from the goal position following the values in an increasing order and finishing at the

initial position. Yellow cells in Figure 3.2(c) indicate the set of intermediate points to fulfil the given

task with the shortest path.
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3.2.2 Determination of the best compositions using evolutionary algorithms

As a second step, the set of the best compositions are defined considering the task-related constraints

in the objective function. Any evolutionary algorithm can be implemented in this step. In the proposed

method, the genetic algorithm (GA) is selected to solve the task-based cost-optimal composition synthe-

sis problem as it is appropriate for multidimensional and nonlinear problems and it gives decent results

for problems with a large search space [92].

Genetic algorithms are heuristic algorithms that are a subclass of evolutionary algorithms inspired

by the principle of evolution proposed by Darwin [86]. The GA is based on a population of chromo-

somes in which potential solutions to the problem are encoded. Each chromosome has a fitness value

that measures how good the solution is considering the given objective function. A chromosome (shown

in a red frame in Figure 3.3) consists of a sequence of genes (shown in a blue frame in Figure 3.3) that

are represented by a unique name (chromosomes can be seen in Figure 3.3 with the names Ai where i is

a number). A gene can be encoded as binary, alphabetical, or floating-point values. Starting from an ar-

bitrarily generated population of chromosomes (i.e. generation N in Figure 3.3), a process begins based

on the selection of the best fitness values and then the successful ones are considered in the next genera-
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Figure 3.3: Genetic algorithm operations
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tion. This evaluation is done by using the following three operators: selection, crossover, and mutation.

The schematic representation of these operators can be seen in Figure 3.3. The selection operator of a

GA guides the evolution process using the fitness values of the chromosomes. For the selection process,

there are several algorithms to choose from such as roulette, tournament selection, random stochastic

selection, etc. (for more details see [99]). As seen in Figure 3.3, chromosomes A1 and A2 are selected

by the selection operator. The crossover operator creates offspring chromosomes by exchanging the

genes from selected parents. Several algorithms for crossover operation exist in the literature such as

one-point crossover, two-point crossover, multi-point crossover, cut and splice, three-parent crossover,

etc. and their details can be found in [99]. Chromosomes in the bottom-right of Figure 3.3 are gen-

erated by implementing the crossover operator to the selected A1 and A2 chromosomes. To increase

the diversity within a population, the mutation operator is used, which introduces random modifications

to offspring chromosomes depending on the mutation rate. With the implementation of the mutation

operator, chromosomes A5, A6, A7, and A8 in Figure 3.3 are generated and the genes changed by the

mutation operator are seen in red in generation N+1.

Besides these four parameters, the population size and the generation size are also important in GAs.

The population size gives the number of chromosomes in one generation, which is 4 for the example

in Figure 3.3. The generation size gives the number of the generations in the algorithm. These two

parameters are related to better fitness values. In the first generation, the fitness value generally shows

higher improvements and then the changes decrease as the optimum solution is approached.

In each generation, random chromosomes are selected as parents and they produce the next gener-

ations of chromosomes. For each chromosome, the fitness value is calculated in every generation and

this process is repeated until there is either no change in the population of fitness values, the maximum

number of generations has been reached, or a certain time has elapsed [100].

In our composition synthesis problem, each module is represented by a gene and each assembly is

represented by a chromosome. Modules are grouped as base modules, joint modules, link modules,

and end effector modules and each module is encoded with its own binary numbers within itself. Then,

compositions are randomly generated following the previously defined robot structure in Section 3.2. A

representation of a module composition as a chromosome is shown in Figure 3.4.

00 01 01 1011 111000

Figure 3.4: Representation of a module composition where blue box, gray boxes, red boxes and green box
indicates base module, joint modules, link modules and end effector modules in the structure, respectively.
The binary numbers in each group of module represents different modules.
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The proposed optimization algorithm consists of two levels in a sequence to make the synthesis

process faster. In the first level, task definitions (TaskDef ) and a user-defined number of populations

(NumOfPop) are given as an input. As seen in Algorithm 1, possible module compositions are generated

with the generateComps() function following the rules explained in Section 3.2. It should be noted

that the main purpose behind the implementation of this algorithm is to generate the initial generation

and to discard unfeasible module compositions during the early stages. The first part of the algorithm

checks whether the module composition can meet the hard constraints, which are the constraints that

any module composition must achieve. For this algorithm, hard constraints are defined as the ability of

the module composition to reach the given positions in the task definition such as the initial position, the

goal position, and intermediate positions and whether or not there are any intermediate positions in the

task description. To check whether the module composition meets the hard constraints, the following

tests are implemented via the tests() function in Algorithm 1: the kinematic test (in Chapter 2.4.2), the

static test (in Chapter 2.4.3) and the collision test (in Chapter 2.4.4). With these simple tests, the search

space decreases as the unfeasible compositions are eliminated before applying the GA. In case the given

positions are not reachable by a generated module composition, the module composition is penalized

meaning that it is not considered for the next generation or in the second level of the algorithm. The

penalized compositions can be summarized as compositions in CheckedComps but not in PossibleComps

of Algorithm 1.

The output of the first level of the algorithm, PossibleComps, is a set of possible module composi-

tions that will be considered as the first generation of the second level of the algorithm as in Algorithm 2.

Algorithm 1 FirstLevel()

1: Input: TaskDef , NumOfPop, tests(), generateComps()
2: Output: PossibleComps, CheckedComps
3: PossibleComps := []
4: CheckedComps := []
5: while size(PossibleComps, 1) = NumOfPop do
6: Comp← generateComps()
7: if Comp ∈ CheckedComps then
8: go step 6
9: else

10: CheckedComps := [CheckedComps; Comp]
11: Flag ← tests(Comp, TaskDef)
12: if Flag then
13: PossibleComps := [PossibleComps; Comp]
14: end if
15: end if
16: end while
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Algorithm 2 SecondLevel()
1: Input: PossibleComps, CheckedComps, TaskDef , targets, selectionPop, crossoverPop,
mutationPop, genSize, terminationF lag, evalsol(), sort(), sortedPopOfSols(),
ismember(), append(), bestSolOf(), encodedSol(), mutate(), crossover()

2: Output: ASetOfBestAssemblies
3: while i=1:genSize or terminationF lag do
4: PossibleCompEvals← evalsol(PossibleComps, TaskDef, targets)
5: SortedPopOfSols← sort(PossibleComps, PossibleCompEvals)
6: j ← 1
7: k← 1
8: while j ≤ selectionPop do
9: newCandidate← SortedPopOfSols(k)

10: if ismember(newCandidate, newGeneration) then
11: k← k + 1
12: else
13: newGeneration← append(newCandidate)
14: k← k + 1
15: j ← j + 1
16: end if
17: end while
18: j ← 1
19: k← 1
20: while j ≤ crossoverPop do
21: parent1← encodedSol(SortedPopOfSols(k))
22: parent2← encodedSol(SortedPopOfSols(k + 1))
23: [offSpring1, offspring2]← crossover(parent1, parent2)
24: newGeneration← append(bestSolOf(parent1, parent2, offSpring1, offSpring2))
25: k← k + 2
26: j ← j + 1
27: end while
28: j ← 1
29: k← 0
30: bool← 1
31: while j ≤ mutationPop do
32: if bool then
33: newCandidate← SortedPopOfSols(popSize− k)
34: newCandidate←mutate(newCandidate,mutationRate1)
35: if newCandidate ∈ CheckedComps then
36: go : step : 34
37: end if
38: else
39: newCandidate← SortedPopOfSols(k)
40: newCandidate←mutate(newCandidate,mutationRate2)
41: newCandidate←mutate(newCandidate,mutationRate1)
42: if newCandidate ∈ CheckedComps then
43: go : step : 41
44: end if
45: end if
46: bool← !bool
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47: k← k + 1
48: j ← j + 1
49: newGeneration← append(bestSolOf(evalsol(newCandidate(newCandidate,
50: TaskDef, targets))))
51: end while
52: PossibleComps := newGeneration
53: end while
54: ASetOfBestAssemblies := PossibleComps

In this part of the algorithm, first fitness values for all compositions generated in the first level are calcu-

lated using the evalSol() function in Algorithm 2. While calculating these values, the objective function

seen in (3.1) is used (the objective function is given in TaskDef in Algorithm 2). The set of guidance

points targets are also considered in the objective function. The obtained fitness values for each module

composition are stored and sorted by the sort() function. The sorted compositions and their obtained

fitness values are placed in SortedPopOfSols. The first selectionPop individuals (i.e., the user-defined

number of individuals to be selected for the next generation) among SortedPopOfSols are selected. The

algorithm checks whether they are in sets of already assigned or checked module compositions with the

ismember() function. In case they are not, the selected individuals are assigned to the newGeneration

with the append() function. Then, the crossover operator (crossover()) is implemented to a user-defined

number of individuals (crossoverPop) using the uniform crossover technique. In this technique, two

best individuals are selected as parents since the expectation of better offspring is higher for elite par-

ents [99]. With the encodedSol() function, the binary representation of chromosomes are encoded. After

offspring are generated (see offspring1 and offspring2), their fitness values are obtained and compared

with their parents using the bestSolOf() function and the best two fitness values out of the four chro-

mosomes (parent1, parent2, offspring1 and offspring2) are selected for the next generation. Then, the

mutation operator (mutate()) is applied to a user-defined number of individuals (mutationPop) while

generating a random change in random bits considering the user-defined mutation rate. As seen in the

Algorithm 2, the mutation rate is different for the best and the worst candidates. The variable mutation-

Rate1 is higher than mutationRate2 as a higher mutation rate enables larger changes in a chromosome,

which increases the possibility of generating better candidates. It should be noted that ! means negation

in Algorithm 2.

For each generation, the generated module compositions are compared with their ancestors and

selected only if their fitness values are better than their ancestors. The fitness values of chromosomes

generated via operators are calculated only if they are not in the set called CheckedComps and they

fulfill the hard requirements. This process continues until the algorithm reaches the maximum number
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of generations (genSize) or there is no improvement in the population (terminationFlag).

The objective function considers soft constraints, which means that their fulfilment is not essential,

but better results are obtained if the robot meets them. The objective function is defined as follows:

g = w1 · e−(k1 ·R+k2 ·L+k3 ·A+k4 ·D+k5 · I+k6 ·V+k7 · 1
1+O ) + w2 ·P (3.1)

where ki are the weighting values for the for the first part of the algorithm and wi are the weighting

values of each part of the objective function. In the first part, the algorithm considers criteria related to

how the robot fulfils the given task such as reachability (R), linear distance (L), angular distance (A),

dexterity (D), involved modules (I), joint value differences between the initial and the goal positions

(V), and obstacle proximity (O). The criterion in the second part of the objective function considers the

achievability of intermediate points (P) obtained from Section 3.2.1. It should be noted that the first part

of the algorithm is taken from [67] and thus we use the normalized values of each sub-criterion.

The details of the criteria in the first part of the objective function are given as follows:

1. Reachability (R): Reachability is the ability to reach the given positions only considering the

robot’s length. The variable dd2b indicates the distance between a given position to be followed

(pd) and the base location of the robot (pb) and calculated as dd2b = ‖pd − pb‖. The total length

of the robot is calculated by the sum of the length of each component where li is the length of the

ith component and n is the total number of DOF.

R =

dd2b −
2n∑
i=1

li

dd2b
(3.2)

2. Linear distance (L): Linear distance is the normalized distance between the end effector’s position

pe and the desired position pd that gives the user how the robot far from the desired position in

the work space.

L =
‖pd − pe‖
‖pd‖

(3.3)

3. Angular distance (A): Angular distance is the normalized distance between the orientation of the

end effector re and the desired orientation rd, which gives the user how the robot is far from the

desired position in the joint space.

A =
‖rd − re‖
‖rd‖

(3.4)

4. Dexterity (D): Dexterity is the ability of a robot manipulator to easily move and apply force in

arbitrary directions. The Yoshikawa manipulability index y [101] is used to define dexterity and
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it is calculated as

y =
√
det(J · JT ), (3.5)

where J is the Jacobian matrix and (J)T is its transposed matrix. Then, dexterity is calculated by

D =
1

1 + y
. (3.6)

5. Involved modules (I): The mass and complexity of the robot structure is measured by involved

modules that are calculated as in

I =

∑n
i=1 li + ζ · lmax,i

de2b
. (3.7)

where the variable li is the length of the ith module in the composition and ζ is a parameter

depending on the joint type with a value of 0 for link modules and revolute joints and 1 for

prismatic joints. The variable lmax,i is the maximum limit of the ith joint and de2b is the distance

between the end effector and the base module. This parameter is used to minimize the complexity

and the total mass of the robot. A small value of this parameter gives better solutions.

6. Joint value differences between the initial and the goal positions (V): Joint value differences are

the total angular distance between the initial and the goal positions of all joints. It is calculated as

the sum of all the joint position differences for each joint as in

V =
n∑

i=1

|qi(0)− qi(tf )|. (3.8)

Smaller values of V indicate that the robot is closer to the desired position.

7. Obstacle proximity (O): Obstacle proximity is the closest distance between the robot and an ob-

stacle in the environment. The larger the distance between the robot and obstacle, the safer it is.

The variable di2Oj indicates the distance between the ith component and the jth obstacle. The

variable rOj
and the variable ri indicate the radius of the jth obstacle in the environment and the

ith component of the robot, respectively.

O = argmin
i∈1···2n,j∈1···s

(di2Oj
− (rOj

+ ri)) (3.9)

The optimization is performed in the second step and it is expected to minimize the objective function,

which is the weighted sum of these seven criteria.
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The first part of the objective function is very similar to the method proposed in [67]. The criteria

R, L, A, D, and I in this part of the equation are also considered in [67] and the criteria O is modified

from [67]. The criteria V is added in our approach. The proposed approach in [67] only considers the

initial and goal positions and not how the robot moves between them. The main novelty of the proposed

method is the second part of the equation (3.1), which enables the selection of the compositions taking

the task-related objectives into account. With this additional criteria, we consider the ability of the robot

to reach all possible intermediate points in the optimization. These points are the common points for all

possible compositions that are close to the optimal solution and the higher the possibility of reaching

these points, the higher the possibility of the composition being the optimal solution. Fitness values of

compositions are obtained using equation (3.1). The algorithm runs until it reaches one of the stopping

criteria, which are i) reaching the maximum number of generation, ii) a certain time has elapsed, and

iii) no change in the population fitness value.

3.2.3 Determination of the cost-optimal composition

The set of module compositions that give the best fitness values (ASetOfBestAssemblies) are obtained

from a common geometric path. While finding the common geometric path, we only consider the end

effector’s positions and do not take the movement of each joint into account. Because the geometric

path is only used as guidance for the algorithm, an additional path planning algorithm that is specific

to each module composition must be individually implemented to all compositions among the set. This

additional step generates finer paths for all selected module compositions. Any path planning algorithm

in the literature can be implemented to find finer paths. Many widely used path planning algorithms can

be found in [81]. Considering the desired cost function, cost is calculated for the module compositions

and the cost-optimal solution is selected among them as in (1.3).

3.3 Numerical Experiments

We implemented our algorithm in Matlab R2019b running on the Intelr CoreTM i7 processor with 2.30

GHz and 16 GB of memory. The virtual module set detailed in Appendix A is used in the simulations

and it is encoded as follows:

i) the base module (B) is coded as 0,

ii) revolute joint (JR) is coded as 0 and prismatic joint (JP ) is coded as 1,
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iii) link modules with α = 90◦ whose length along y-direction of the previous coordinate system (L1),

α = 0◦ whose length is along x-direction of the previous coordinate system (L2) and α = 90◦

whose length along the z-direction (L3) are encoded as 00, 01 and 10, respectively, and

iv) end effectors ER and EP are encoded as 0 and 1, respectively.

The base module is positioned at point pb = (0, 0, 0)T and only the robot compositions with 5-DOF are

generated using the assumptions given in Section 3.2. In total, 2592 different robot compositions can be

generated following those criteria.

The task is defined by picking a randomly generated payload that varies between 0.1 kg and 5

kg and moving it from the initial position ps to the goal position pg along the shortest possible route

without collision with any obstacles in the environment or the robot itself. It should be also noted that

the robot cannot violate its joint limits during the execution. We consider the environment as a cube

whose edges are 7 m in length and centered at the position pb. In total, 20 different scenarios were

randomly generated using a standard uniform distribution within the aforementioned environment. In

each scenario, we consider spherical obstacles with radii varying between r0 = [0.05, 0.4] m and the

number of obstacles varying between 1 to 6. While generating these scenarios, we check whether the

generated initial positions and goal positions are within the obstacles and generate new ones in case they

are.

As a first step, we generate the shortest geometric path for all scenarios as explained in Section 3.2.1.

The step size for the wavefront algorithm is set to 0.1. Cells with an obstacle are numbered with 1 and the

numbering is implemented starting from the initial position. The shortest geometric paths are generated

for all 20 scenarios. All points on the shortest geometric paths in each cell are considered as possible

intermediate points.

The parameters for the GA are tested while fixing mutation rate, selection rate and crossover rate

as in Table 3.1 with different values for different groups. The variables population size and generation

size are closely related to each other in terms of the exploration and diversification of the solutions.

Experiments are done in order to determine the optimal population size and generation size by com-

paring the best fitness value obtained as well as the required computation time. We tested values for

different scenarios and found all tests provided similar results. The results of simulations with varying

population size and generation size for Scenario 1 demonstrate that the best fitness value remains the

same (Figure 3.5(a)) even as the simulation time increases (Figure 3.5(b)) after a certain value of each

parameter. Considering these results, the population size and generation size are chosen as 100 and 150,

respectively.
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Table 3.1: The GA parameters.

Group I Group II

the mutation rate 60% 30%
the selection rate 10% 10%
the crossover rate 30% 60%

Two different groups are employed during the execution of the GA. The first group is used in the

first few steps to prioritize the diversity of the population, so the mutation rate is selected to be a high

number. This process prevents the algorithm from being stuck at a local minima. The second group

is used after a few generations and its purpose is to place more importance on the best individuals to

increase exploitation.

While defining the weighting values of the objective function, we treat all variables as equally im-

portant. Because each criterion is equally important, they receive the same priority (ki) in the first part

of (3.1) as detailed in Section 3.2.2 with each ki value set as 1/7.

The same priority is also given to each criterion of the objective function with both w1 and w2 in

(3.1) set to 0.5. The best 15 individuals reached in the last generation of the GA (called the set of the

best compositions) are considered for each scenario and the method explained in Section 3.2.3 is applied

only the set of the best compositions. We implemented RRT as detailed in [81] to generate finer paths.

The simulation results for each scenario are given in Table 3.2 in which the success ratio (success

ratio) is defined as the ratio of the number of compositions that can find a feasible path to the number

of sets of the considered compositions (all compositions for the method in [67] and the set of best

compositions for the proposed method). The maximum step size and the maximum number of points

was set to 0.1 and 100, respectively. We ran the RRT algorithm 5 times for each module composition

   (a)                                                                                                     (b) 

Figure 3.5: The simulation results for different population size and generation size: (a) simulation time and
(b) the best fitness value for each simulation

54



3.3 Numerical Experiments

Table 3.2: Experimental Results for each Scenario

Proposed Method Method in [67] Method in [24]

number of ps ratio of
Scenario success comp. success comp. and pg feasible feasible

ratio time ratio ratio time ratio compositions compositions

1 0.81 0.21 0.26 0.31 134 0.77
2 1 0.45 0.67 0.98 26 0.91
3 0.74 0.22 0.12 0.60 53 0.91
4 0.83 0.48 0.49 1.18 24 0.85
5 N/A 0.98 N/A 1.24 0 N/A
6 1 0.68 0.50 1.24 9 0.89
7 1 0.14 0.90 0.11 171 0.89
8 0.96 0.46 0.30 0.66 74 0.92
9 0.93 0.24 0.78 0.28 92 0.90

10 0.89 0.21 0.66 0.36 120 0.84
11 0.95 0.37 0.59 0.36 119 0.92
12 0.88 0.74 0.02 1.58 12 0.83
13 0.95 0.27 0.43 0.28 107 0.93
14 0.89 0.26 0.51 0.52 13 0.77
15 0.72 0.43 0.62 0.64 76 0.88
16 0.56 0.28 0.41 0.33 162 0.85
17 1 0.35 0.77 0.21 232 0.93
18 0.95 0.35 0.81 0.44 97 0.91
19 1 0.23 0.80 0.18 207 0.98
20 0.8 0.50 0.65 0.25 92 0.94

and considered their average as success ratio because the RRT algorithm gives different results for each

run. It was found that 88.71% compositions of the set were able to find a collision-free path on average

(see Table 3.2).

To see the advantages of our algorithm, we compare our proposed method with the method proposed

in [67]. To make a fair comparison, we also selected sets of the best compositions obtained from the

algorithm and implement the same path planning methods with the same parameters. We compare the

results obtained from the RRT algorithm and an average of 54.6% compositions from the set were able

to find a collision-free path. However, the best compositions obtained from [67] could not find a solution

for 7 scenarios since the robots collided with obstacles in the environment while performing the task.

Even though the computational time of [67] is shorter than the proposed method, the simulations show

that the best compositions, only taking the initial and goal positions into account (called as ps and pg

55



3. EVOLUTIONARY ALGORITHM-BASED SYNTHESIS OF MODULAR AND
RECONFIGURABLE ROBOTS FOR A GIVEN TASK

Figure 3.6: Screen shots for the composition B−J1−L2−J1−L1−J1−L3−J1−L2−J1−L3−EE1
for the scenario. tf = 1 and (a) t = 0, (b) t = 0.2tf , (c) t = 0.4tf , (d) t = 0.6tf , (e) t = 0.8tf , (f) t = tf

feasible compositions), are not the cost-optimal composition when the full task is considered. Moreover,

one cannot guarantee that ps and pg feasible compositions are able to perform the task.

We also compare the proposed method with our previously published method detailed in [24] and

compare the total computation time. To make a better comparison, we implement the same path planning

algorithms on the remaining compositions, calculate the ratio of the simulation time for each scenario,

and show the computation time ratio (comp. time ratio) in Table 3.2. Compositions that can find a

collision-free path between ps and pg are called as feasible compositions. The ratio of ps and pg feasible

compositions and feasible compositions (ratio of feasible compositions) are also given in Table 3.2. The

simulation results show that the proposed algorithm is computationally more efficient when there are

multiple solutions for the given task. The computational efficiency increases with the number of feasible

compositions of the initial and goal positions. Furthermore, simulations show that compositions that can

reach the ps and pg may not find a collision-free path between them.

The screenshots of the best composition generated by using the visualization tool explained in Ap-

pendix C for the following scenario are given in Figure 3.6. In this scenario, the robot is moving the

5 kg payload from ps = (1.5, 1.5, 2)T to pg = (−2,−1.2, 0.6)T with two obstacles defined in the

environment as po,1 = (1.5,−1.3, 1.1)T , ro,1 = 0.34 and po,2 = (−1.2, 2.1, 0.8)T , ro,2 = 0.39.
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3.4 Summary

In this chapter, a task-based optimal composition synthesis method for modular and reconfigurable robot

manipulators was presented. To the best of our knowledge, none of the evolutionary algorithm-based

approaches presented in the literature so far has considered task-related constraints in the evaluation

function. This idea enables the user to generate the optimal composition of the modules in a time-

efficient way, which makes modular and reconfigurable robots a more promising technology in the

industrial environment. Comparisons show that our method is more efficient than the current methods

in the literature, which is based on eliminating compositions from a brute-force algorithm in case there

are many compositions that can fulfil the task when only considering the initial and goal positions. This

proposed algorithm also shows that consideration of only the initial and goal positions does not provide

the cost-optimal solution for the given task. Although the proposed method does not guarantee that the

best composition is the one obtained from this heuristic algorithm, the obtained solution does have a

higher chance of being the best as it is selected using the fitness values.

The main advantages of the proposed optimal composition synthesis algorithm can be summarized

as follows: i) it is applicable to all types of modules, ii) it only generates cost-optimal obstacle-free paths

for the set of the best compositions, which makes it computationally efficient, and iii) it provides a faster

solution when compared to finding assemblies by optimizing trajectories for each assembly individually.

57



3. EVOLUTIONARY ALGORITHM-BASED SYNTHESIS OF MODULAR AND
RECONFIGURABLE ROBOTS FOR A GIVEN TASK

58



Chapter 4

A Time-Efficient Collision-Free
Motion Planners for Redundant
Modular Manipulators

The generation of an optimal modular robot composition not only requires efficient algorithms, but also

computationally efficient motion planners that perform the task in a short time. One test that composition

synthesis algorithms spend a significant amount of time on is motion planning. Indeed, the focus of

this chapter is computationally fast and efficient motion planning of several module compositions as

this test significantly contributes to the total computational time. The main idea behind the proposed

motion planners is the implementation of a two-step path planner. First, a common geometric path

for all possible compositions is generated, which is followed by an individual path planner for each

composition. These proposed path planning methods are investigated and their results are given at the

end of the chapter.

First, a literature review on current workspace-based path planning algorithms (Section 4.1) is given.

Then, the proposed algorithms are detailed in Section 4.2 and Section 4.3. The implementation for

the proposed algorithms in Section 4.2 and Section 4.3 are given in Section 4.4.1 and Section 4.4.2,

respectively. The proposed method explained in Section 4.3 was published in [6].

4.1 Introduction

Collision-free path planning for robots can be summarized as finding a path between an initial and goal

position without collision with any obstacles in the environment. It is a well-known problem in the
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area of robotics and, as a result, it has been intensively studied by many approaches [78, 102–110].

Depending on the environment, the path planning problem can be divided in two groups: static path

planning and dynamic path planning. The environment that we consider in this thesis is static and

therefore has obstacles in stationary, pre-determined positions so there is no need for updates in the

environment. The proposed approaches for static path planning can be grouped into bug algorithms,

graph search-based methods (such as A?), potential field algorithms, sampling-based methods, roadmap

algorithms, cell decomposition methods, Voronoi diagrams, and heuristic approaches (for more details

see [78]).

All of the approaches above are classified as either configuration space (C-space) or workspace

approaches. In C-space approaches, the manipulator is represented as a point in an n-dimensional

space where n is the number of degrees of freedom (DOF) of the manipulator, which requires the

transformation of task points and obstacles (the latter are known as C-obstacles) from the workspace

to the C-space [102]. However, the generation of C-space and C-obstacles exponentially increases the

complexity by a factor of n that will obviously increase the computational time. In contrast, workspace-

based approaches directly generate a path in the physical environment without requiring mapping from

one space to another. These algorithms not only result in more geometric and intuitive paths, they

also decrease the computational work, especially for high-DOF systems, because they do not require

mapping of the whole environment.

A common approach to workspace algorithms is to first find a collision-free space for the end effector

and then to calculate the inverse kinematics for certain points along the path. In [111], a workspace path

planner that is based on mapping links from 3D to 2D environments is proposed. A motion planner for

redundant manipulators using a bi-level optimization algorithm is presented in [112]. In this method, the

path is partitioned into small pieces and the next position of the end effector is generated in workspace.

The optimal configuration of the generated position is calculated by using the redundancy. A repulsive

potential field-based approach is proposed in [113]. The method considers that surfaces of obstacles

are charged and thus generate forces and torques between obstacles and manipulators. The algorithm

finds a path using the potential field generated by the above-mentioned forces and torques. However,

this algorithm also has a major drawback: the potential field-based algorithm can stack local minima.

Some algorithms using C-space path planning approaches have proposed a partial transformation of the

environment: they do the planning in C-space but do not map the whole environment to C-space. For

example, the probabilistic roadmap method (PRM) proposed in [107] introduces a two-phase roadmap-

based planner that does not require the mapping of the whole environment into the C-space. In PRM,

a graph (called roadmaps) consisting of collision-free configurations represented by edges and nodes
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are generated and stored in the first phase (called the learning phase). In the second phase (called the

query phase), the method searches for a path from any given start and goal position to the nodes of

roadmaps. Then, it finds a set of edges connecting the previously found nodes using graph search. Even

though PRM has been very successful for many problems (e.g. for manipulators with high DOF), it may

terminate without finding a feasible path because of its time constraint.

In another approach, the rapidly-exploring random tree (RRT) algorithm uses a workspace heuristic

function as a guide to the generated trees in C-space to reach the target [114]. The main advantages

of this algorithm are the non-essential explicit IK calculations and the fact that generated paths are al-

ready nearly the shortest possible paths because they are in the same topological class as the shortest

path solution. Another RRT-based workspace path planner called Jacobian transpose-directed rapidly

exploring random tree (JT-RRT) is proposed in [115]. In JT-RRT, the authors use the Jacobian trans-

pose (JT) method while growing the trees in the workspace. In [79], an RRT algorithm in task-space

is proposed to find an obstacle-free path for redundant manipulators in high-dimensional space. In JT-

RRT approaches, inverse kinematics are solved independently, which may lead to collisions between

two sequential arbitrary points. To solve this problem, a hierarchical path planner consisting of a global

path planner (GPP) and a local motion planner (LMP) is introduced in [9]. The algorithm finds a geo-

metric path in GPP using a workspace planner and the genetic algorithm-based LMP finds a finer path

between the positions determined by the GPP. Aa genetic algorithm with non-random initial population

dramatically decreases the neighboring points in C-space. However, it selects only one path generated

for the end effector and the planner fails if the algorithm could not find a collision-free path within the

predefined path. Because a large number of different compositions exist and mapping each composition

to find C-obstacles for each composition is computationally expensive, this thesis focuses on motion

planners that find solutions in the workspace of the robot.

For the proposed planners, we consider two different approaches. The first method focuses on

finding a trajectory for a robot following the gaps in the environment from largest to smallest. In the

first part of the algorithm, a path is found without considering any objective function. Then, a cost-

optimal trajectory for the generated path is created. The second method is also a two-step algorithm. In

the first step of this algorithm, the planner finds several shortest geometric paths for a robot. Then, in

the second step, the best path using the best inverse kinematics solutions along the geometric path are

selected.
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4.2 Extended Follow-the-Gap Method

The proposed approach is a workspace-based, two-step motion planner. In the first step, a geometric

obstacle-free path is generated considering the size of the gaps between obstacles in the environment

until the goal position is reached. Then, trajectories are generated between the path points obtained

in the first step. The obtained points along the splines are checked against possible collisions and

then collision-free trajectories are generated. While checking for collisions, the same assumptions of

Section 2.4.4 are also considered here. As in Section 2.4.4, each module and obstacle are defined by

4 variables: (x, y, z, r) where x, y and z are the Cartesian coordinates of the centers of each module

or obstacle and r is the radius of the component or obstacle. For the collision check, we follow the

algorithms detailed in Section 2.4.4.

The proposed method is an extension of the Follow-the-Gap Method (FGM) in [116]. In [116],

the authors consider autonomous vehicles in a 2D environment. They consider the mobile robot as a

point, modelled obstacles in 2D, and used sensor data to generate a path in real-time. In contrast to

this approach, this work adapts FGM to manipulators in a previously known 3D environment. The end

effector is directed towards the goal position following the largest gap between obstacles or boundaries

of the environment in its immediate surroundings. The main idea behind the proposed algorithm is

to keep the end effector as far away as possible from obstacles or boundaries in the environment thus

reducing the risk of end effector collisions.

The motion planning methods mentioned in the previous sections target the generation of an optimal

path for individual solutions (or a common optimal solution). Contrary to these methods, the main

motivation behind the proposed extended FGM is to obtain a feasible path in the shortest computational

time. As a result, the generated path may not be the optimal solution, however, decreasing computational

time is one of the main challenges to task-based design and this algorithm achieves that.

The proposed algorithm works as follows:

1. Obstacles and the end effector are represented by spheres and the distance between the center of

an obstacle and the current position of the end effector is calculated from dO2r = ‖pr − pO‖ as

explained in Section 2.4.4.1, where subscripts ( · )O and ( · )r represent an obstacle and the robot,

respectively.

2. A distance between two obstacles is calculated as in Section 2.4.4.1 and the vector that represents

the distances between all obstacles is shown as dO2O,b. In addition to that, the distances between

each obstacle’s border and the limits in the environment, denoted by dO2L,b, are calculated. In

the following, the vector dgap = [dO2O,b;dO2L,b] is obtained.
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3. The components of the dgap vector are sorted in descending order.

4. Starting from the maximum dgap value, the midpoint of the gap is obtained. Then, the existence of

an obstacle between the robot and the midpoint of the gap is checked. Furthermore, it is checked

whether the robot is closer to the goal position than the midpoint of the gap ‖pmid − pg‖ <

‖pi − pg‖, where the distance between the midpoint of the gap pmid and goal position pg is

denoted by ‖pmid−pg‖ and the distance between the robot’s current position pi and goal position

pg is denoted by ‖pi − pg‖.

Figure 4.1: Flow chart of the proposed method.
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5. In case i) there is an obstacle between pi and pmid and ii) pmid is closer to pg than pi, the point

pmid is checked to determine whether it is kinematically reachable or not. To this end, while

using the inverse kinematic algorithm, the accuracy is defined by the length of the gap. When

pmid satisfies these conditions, it is added as a path point. If it does not satisfy the conditions,

step number 4 is repeated as in Figure 4.1.

6. In case the robot cannot reach pmid, the algorithm checks the next largest gap and repeats step

numbers 4 and 5 as in Figure 4.1.

This procedure is repeated until the manipulator reaches the goal position. After finding a collision-

free path for the end effector, the entire robot is then considered and the algorithm checks if the generated

path is collision-free or not. To check the collisions between the robot and obstacles while the robot is

moving from one point to another, a trajectory using cubic spline functions for each joint between two

sequential path points is generated. The motivation behind selecting the cubic spline is its simplicity.

Due to the huge computational effort of mapping each obstacle into C-space, each spline is divided into

pieces of finite length that is defined by the radius of the smallest obstacle in the environment. The algo-

rithm checks for collision at each piece in the workspace using the methods explained in Section 2.4.4.

The position of each robot’s components are obtained from the transformation matrices detailed in Ap-

pendix D. Considering the velocity and acceleration limits of the joints, the cost optimal trajectories

between the points obtained by the geometric path are generated as in [117]. After obtaining all tra-

jectories for each feasible composition, the results are compared and the module composition with the

minimum cost value is selected as the optimal module composition.

4.3 Hierarchical Genetic Path Planner for Highly Redundant Ma-
nipulators

This approach is based on task-space-based two-step path planner consisting of a global path planner

(GPP) and a local motion planner (LMP). In the GPP, a collision-free path in the workspace is obtained

and the LMP selects intermediate points for each position obtained from the GPP. The LMP is based

on a genetic algorithm that reuses the population from one intermediate goal to the next, which reduces

joint angle variations. Different from the previous chapter, the GA is used while calculating the inverse

kinematics of the robot. It should also be noted that the proposed algorithm is applied only for 2D path

planning problems.
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4.3.1 Global Path Planner (GPP)

The proposed global path planner uses binary space partitions to generate several collision-free paths

in the workspace. The obstacles in the environment are represented by polygons and their vertices are

named as obstacle vertices. The algorithm divides the free space into convex areas using obstacle ver-

tices as seen in Figure 4.2(a). Obstacle vertices are connected to each other or to workspace boundaries

with lines that are called free links. In the proposed algorithm, we firstly select candidate free links to

connect obstacle vertices with other vertices or to the boundaries of the environment. It should be noted

that only segments that do not intersect with the edges of obstacles are selected. The candidates are

sorted from the shortest to longest length.

As a next step, the candidates are selected one-by-one and the algorithm checks whether it is a

convex hull of vertices (a vertex is defined as a convex if all angles formed by adjacent segments are less

than 180◦ [118]). The candidate segment is selected as a free link if it makes a convex vertex or reduces

the largest angle. This step is repeated until all obstacle vertices are convex. Redundant free links

are removed if their removal does not change the convexity of the vertices that it connects with. The

midpoints of all remaining free links are selected (see Figure 4.2(b)) and visibility graphs that connect

all midpoints without intersecting with obstacle edges are generated (see Figure 4.2(c)). We generate

multiple collision-free paths from the graphs for given initial and end points as in Figure 4.2(c).

Because manipulators have a fixed base and cannot freely move in a workspace, paths generated

by MAKLINK (proposed for mobile robots) are not always feasible. As seen in Figure 4.3, the path

found by the algorithm cannot be followed by the manipulator without collision with the obstacles in the

environment. The path planner in [9] follows the shortest path in the graph, but it is not always possible

(a) Free link division of the free space
into convex areas

(b) Visibility graph for midpoints (c) Collision-free paths in the visibility
graph

Figure 4.2: Global Path Planner [6]
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Figure 4.3: Shortest path in the visibility graph [6]

to achieve that without any collision with obstacles in the environment, so the LMP fails for these cases

(see Figure 4.3). In the proposed algorithm, we solve this problem by selecting multiple paths and trying

other solutions if the algorithm fails to find a feasible path. Other important advantages of the proposed

planner is that it only generates non-homotopic paths, which means that a path does not deform the other

paths. For each new path, the homotopy of every path in the set is computed. A set of homotopic paths

is called as homotopic group. If the new path is non-homotopic with the rest of the generated paths, it

is added to the set. In case there is a homotopy, the shortest path is selected. As a result, the generated

non-homotopic paths are the shortest paths from their homotopic groups. Because the shortest path in

each homotopic group is relevant, this approach reduces the computational effort. Even if another path

in the homotopic group is feasible, a robot that can follow the shortest path is preferred over one that

requires a longer homotopic path.

The paths are generated using a depth-first traversal algorithm with a cut-off condition that ensures

that the path’s length is less than 2.5 times that of the robot’s length. This number for the maximum

length is arbitrarily chosen to limit the path that robot will follow. In the proposed approach, the GPP

provides the LMP with each non-homotopic path starting from the shortest path to the longest one.

4.3.2 Local Motion Planner (LMP)

To obtain a finer path, equally-spaced points along the global path are linearly interpolated by the MAK-

LINK algorithm. These points are called intermediate goals and the end effector is expected to follow

these points from the initial position to the goal position. To find robot configurations at intermediate

points, GA is used due to its ability to find minima or maxima of non-differentiable functions. Details
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of the GA are explained in Section 3.2.2. The LMP with non-random initial population uses the Al-

gorithm 3 that is proposed in [9]. The sequence of joint angles [q1, q2, . . . , qn] in n-dimensional space

generates a chromosome while the gene values are floating point numbers from the interval [0, 2π). The

fitness function is defined as follows:

F = fcollision ·Ds (4.1)

where fcollision is the collision coefficient and Ds is the Euclidean distance between the position of the

end effector and the intermediate points. The variable fcollision equals to 1 if the robot is collision-free

in the given configuration, otherwise, the given configuration is a high-value constant (Vmax).

When an intermediate goal is reached, the final population is set as the initial population for the next

generation. The reason behind this is to ensure continuity. The randomly-generated initial population

increases the probability of the next solution being far away from the previous goal’s solution, which

also might lead to incorrect solutions. Figure 4.4(a) can be given as an example of this. The incorrect

solution led by a random search is non-homotopic and the manipulator reached the next intermediate

point that was not collision-free. The proposed planner checks the existence of the obstacle’s vertices

in the area swept by the manipulator. To do this, it constructs a polygon using the manipulator in two

sequential configurations. In case there is an obstacle vertex in the polygon, the path is unfeasible and

the GPP selects the next shortest path as an alternative (see Figure 4.4(b)).

Algorithm 3 Genetic algorithm with non-random initial population [9]

1: i← 1 {Initialize the first intermediate goal}
2: t← 1 {Initialize the genetic generations}
3: randomly generate an initial population Pi(t)
4: compute fitness Fi(t)
5: repeat
6: repeat
7: select Pi(t+ 1) from Pi(t)
8: crossover Pi(t+ 1)
9: mutate Pi(t+ 1)

10: compute fitness Fi(t+ 1)
11: t← t+ 1
12: until reached intermediate goal qi
13: Pi+1(t)← Pi(t)
14: i← i+ 1
15: until reached final goal qn
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(a) Incorrect avoidance of an obstacle (b) Alternative path around the obstacle

Figure 4.4: The proposed path planner

4.4 Simulation Results

4.4.1 Simulation Results for the Extended Follow the Gap Method

To demonstrate the applicability of our proposed algorithm, we implement it in MATLAB R2016a

on an Intelr CoreTM i7 processor with 2.30 GHz and 16 GB of memory. We use the virtual mod-

ule set explained in Appendix A. The task is defined as carrying the given payload from the ini-

tial position to the goal position in the shortest time without colliding with obstacles in the environ-

ment and without violating the joint limits of the 5-DOF robot. The payload is 5 kg and the initial

and goal positions are defined as ps = (1.95,−1, 1.25)T m and pg = (−1.55, −1.75, 1.25)T m, re-

spectively. It is assumed that there are four static obstacles in the environment whose center points

are defined as p1,O = (0.75, −1, −0.6)T m, p2,O = (1, −2.3, 2)T m, p3,O = (0, −0.6, 1)T m, and

p4,O = (−0.5, −1.5, −0.9)T m. The radii of the obstacles are given as r1 = 0.1 m, r2 = 0.15 m,

r3 = 0.15 m, and r4 = 0.1 m. We also define the limits of the environment as xmin = −3 m, ymin =

−2 m, zmin = −3 m, xmax = 2 m, ymax = 3 m, and zmax = 3 m.

As a first step, we apply the composition synthesis algorithm in [24] and obtain 57 compositions

that are feasible at the initial and goal positions. As a second step, we apply the proposed method to

all 57 compositions. First, all distances between the obstacles and all distances to each limit in the

environment are calculated and sorted from the largest gap to the shortest gap. Starting from the largest

one, the midpoints between the obstacles are found and the planner checks whether i) there is any

obstacle between the current point and determined point, ii) the midpoint is kinematically reachable,

and iii) the midpoint is closer to the goal point than the current point. If the point satisfies these three
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conditions, the planner considers it as a path point and this procedure is repeated until the end effector

reaches to the goal point. After path points are generated, trajectories between two pre-determined path

points are generated using cubic splines and divided into pieces. The planner checks each piece for

collision in workspace. It was observed that using 100 pieces to approximate the path yields sufficiently

accurate results.

We compare our method against the RRT algorithm [109], wavefront algorithm [78], and task space-

RRT algorithm (TS-RRT) [79]. The wavefront and TS-RRT algorithms could not find a collision-free

path between the initial and goal position for most of the remaining compositions and they were com-

putationally expensive. The RRT algorithm, which is a popular path planning approach due to its fast

convergence and high success probability [109], employs random points generated in the configuration

space to find a collision-free path from the initial position to the goal position. Although random points

are generated in configuration space, the collision check is done in workspace. To be consistent with the

proposed algorithm, the maximum displacement at each iteration (step size) and the maximum number

of iterations (max number of trees) were set to 0.1 and 200, respectively. The proposed algorithm obtains

the trajectory in an 84.6% shorter time than the RRT algorithm. When comparing the computational

times of both methods to perform the task, the trajectory obtained by the proposed method is 30.8%

less than that of the RRT algorithm in terms of total CPU time. The cost-optimal paths obtained from

the both algorithms are given in Figure 4.5. As seen from Figure 4.5, the trajectories obtained from the

proposed method are smoother than that of the RRT algorithm.
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Figure 4.5: Comparison of the trajectories obtained by CS-RRT and FGM.
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4.4.2 Simulation Results for the Hierarchical Path Planner

To demonstrate the applicability of our path planner, we implement it in Java on a Mac mini with a

2.6 GHz Intel Core i5 processor. We use a 6-DOF manipulator in a workspace with several rectangular

obstacles as in [9]. We used the same scenarios generated in [9] to make a better comparison between

planners. The environments given in Figure 4.6(a) and in Figure 4.6(b) are Figure 15 and Figure 10 in

[9], respectively. We first compare the proposed planner with another hierarchical planner in [9] whose

GPP only considers the shortest path. For the comparisons, the LMP algorithm and its parameters are

considered to be the same for both planners. We perform the same experiments in the same environment

with 1000 randomly generated scenarios using standard uniform distribution. It should be noted that

base location, initial point, and final point are different for each scenario. While generating these points,

we ensure that all points are in i) the workspace, ii) the obstacle-free areas, and iii) the initial and the

final points are reachable for the manipulator (implementing GA-based inverse kinematic algorithm).

We count the number of solved path planning problems for each planner. The planner is considered

to be successful if it finds a collision-free path from the initial point to the final point within a radius

of 0.1 cm. It should be noted that the dimensions of the environment in Figure 4.6(a) are 67 x 53

cm, which demonstrates how small the considered radius is. We also set another condition for early

detection of unfeasible paths. Based on that condition, the maximum distance between the end effector

and the goal should not exceed twice the distance between two intermediate goals. The reason behind

this is to prevent unfeasible paths as in Figure 4.4(a). In the given scenario, the potential solution will

be discarded due to this condition because the manipulator is fully extended and it is wrapped around

(a) Scenario 1 (b) Scenario 2

Figure 4.6: The scenarios used in the experiments.
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Table 4.1: The comparison of the method in [9] and the proposed method in 1000 scenarios.

method in [9] proposed method

number of solutions found for the environment in Figure 4.6(a) 771 987
number of solutions found for the environment in Figure 4.6(b) 906 977

the obstacle on the left. In this case, no further progress is possible along the prescribed path and this

solution is directly discarded.

In the environment of Figure 4.6(a), the planner [9] that only considers the shortest path found

solutions for 771 scenarios while the proposed path planner found 987. The average execution time for

each case was 8.07 sec. We also initiated both algorithms for the environment in Figure 4.6(b) and the

planner that only considers the shortest path found solutions for 906 scenarios while the proposed path

planner found 977 scenarios. The average execution time for the proposed planner for each of these

cases was 0.089 sec. The summary of the results are given in Table 4.1.

To find optimal parameters for the genetic algorithm, we consider the following criteria: i) the

percentage of the reached intermediate goals, ii) the required number of the generations to reach the

intermediate goals, and iii) the average joint variations of every joint for each adjacent intermediate

goals. Apparently, the higher the percentage of reached intermediate goals, the lower the number of

generations and lower joint variation values. Reusing the population from the previous intermediate

goal as an initial population helps the user achieve lower joint variations. To use the same parameters

as in [9], we consider the following values: the population size is 100, the maximum number of gener-

ations is 600, the selection takes the fittest 50% chromosomes to generate two offspring, the crossover

exchanges one gene between two parents, and the mutation changes one gene in a chromosome. For the

missing parameters, we consider the following assumptions: i) the module compositions (represented

by chromosomes) whose end effectors collide with obstacles or boundaries are penalized and the colli-

sion punishment cost (Vmax) is taken as 1000 (where higher values give safer solutions), ii) the distance

between two adjacent intermediate goal points is 2.5 cm and is proportional to the width and the height

of the environment to the robot’s length, and iii) the parent chromosomes are randomly chosen between

the fittest 50% of the chromosomes obtained from the selection step. It should be noted that the most

dominant parameter in path planning is the mutation rate, however, the mutation rate is not given in [9].

To define it, we analyzed all possible combinations for the mutation rate of the base and distal joint from

0 to 0.9 in 0.1 intervals. A mutation rate of 0 or 1 is not useful because 0 means no changes in genes (so,

we take 0.01 instead of 0 in our simulations) and 1 means changing all genes all the time. Assigning the

same mutation rate to all joints is also not realistic and we consider different mutation rates for the joint
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Figure 4.7: Mutation rate analysis for the workspace in Figure 4.6(a)

close to the base and end effector. The intermediate joints between them are calculated by an arithmetic

progression. For instance, if the mutation rate for the base joint is 0.2 and that of the distal joint is

0.6, the mutation rates for all joints is the array [0.2, 0.28, 0.36, 0.44, 0.52, 0.6]. The mutation rates can

also be decreasing. For example, if the base joint mutation is 0.8 and the distal mutation rate is 0.3,

then the mutation rates for all joints is the array [0.8, 0.7, 0.6, 0.5, 0.4, 0.3]. The algorithm is run 100

times for each pair and the averages for the quality criteria are gathered. Results for the environment

in Figure 4.6(a) can be seen in Figure 4.7. The best values for the mutation rate in terms of efficiency,

accuracy, and low value of joint variations can be found along a line going from (0.4, 0.9) to (0.9, 0.4)

in Figure 4.7. These graphs also prove that using the same mutation rate for all joints is not the best

solution. Results for the other scenario in 4.6(b) are similar. As seen from the comparison with a con-

ventional GA implementation in Figure 4.8, the average joint variations are reduced by 4 to 8 times,
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Figure 4.8: Average joint variations for the workspace from Fig. 4.6(b)

which increases the probability of finding a feasible C-space path.

The proposed path planner shows significant improvements and is more robust when it is compared

to the planner in [9] because it considers paths other than the shortest one. The proposed path planner

improves the percentage of successful path planners from 77% to 99% and from 91% to 98% for the

scenarios in Figure 4.6(a) and Figure 4.6(b), respectively. Completing a mutation rate analysis also

allowed us to find proper GA parameters making 96% of the cases successful. The presented GA

provides better solutions than the conventional GA, which creates feasible C-space paths because it

reduced the average variations by 4 to 8 times. Moreover, the experiments showed that the genetic

algorithm is only slightly more efficient when using non-random initial populations compared to random

ones, which contradicts the claim in [9]. We also verify the viability of the solution directly in the

workspace by checking that the space swept by the manipulator does not contain any obstacle vertices.

If it does, the solution is not viable and another path must be selected.

4.5 Summary

As opposed to the previous chapters, this chapter focuses only on the path planning part of a robot’s

task fulfilment. A computationally efficient hierarchical task space path planning algorithm was given.

After a literature review, two novel path planning approaches for manipulators were presented.

The method presented in Section 4.2 generated a path following the largest gaps in the environment

and thus enabled the user to obtain a path in a short computational time. Taking into consideration that
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one can generate thousands of different robot compositions using modular robots, any level of reduction

in path planning simulation time could significantly decrease the total simulation time. It should be

noted that the proposed algorithm does not guarantee the cost-optimal path, but it does give the cost-

optimal solution for the generated path. The main advantage of this planner is that it remarkably reduces

the total computational time. The experiments also show that the proposed algorithm gives better results

when compared to other algorithms.

In the second planner, detailed in Section 4.3, a fast and robust two-step path planner was presented.

The method divided the path planning problem into two steps. It found a set of geometric paths in

the first step and a finer module composition-dependent path planner in the second step. It used the

genetic algorithm in the second step that considers the previous intermediate point’s joint angles as

initial guesses. The robustness of the proposed algorithm and its short computational time while finding

feasible paths encouraged the authors to use it for the automatic search for modular robot assemblies.
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Chapter 5

Conclusions

The task-based composition synthesis problem of modular robot manipulators was investigated in this

thesis. The available composition synthesis methods for modular robots in the literature only consider

if the user-defined positions are achievable and notably do not consider how the task should be ful-

filled. In contrast to other works, task constraints and the manner of task fulfilment are considered in

this thesis while finding potential module compositions. In addition, both robot kinematics and robot

dynamics were considered during the search for those compositions. The simulations and experiments

in this thesis demonstrated that the proposed methods not only enable the user to find feasible module

compositions, but also provide the cost-optimal solution for a given task.

The main ideas behind the proposed algorithms are grouping the task requirements and systemati-

cally discarding the unfeasible or least-likely optimal module compositions. Then, these grouped task

requirements are ordered based on their computational time. In the exhaustive search-based method

detailed in Chapter 2, a new hierarchical composition synthesis method was proposed in which all task

requirements are sequentially checked by first using fast and easy tests and then moving to more com-

plex and computationally expensive ones. After each test, compositions that do not pass are eliminated

leaving the more complex and computationally expensive tests for the fewer remaining compositions.

This method allows all potential modular robot compositions for a given task to be generated with de-

tails of how the task can be fulfilled. The first results of this algorithm are shown in [24] which is

implemented into a framework proposed for flexible manufacturing as published in [5].

In addition to finding solutions to the task-based composition synthesis problem, the task-based opti-

mal composition synthesis problem is investigated using both deterministic and evolutionary algorithms.

The deterministic method detailed in Chapter 2 was the best solution for the predetermined objective

function, which is based on the elimination of the least-likely compositions during optimization. The
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proposed method can also be applicable to different optimality conditions and task requirements. In-

deed, simulations showed that the proposed method provides a solution over a shorter computational

time when compared to a brute-force search and these results are shared in [39].

The implementation of deterministic methods can be time-consuming when compared to evolutionary-

based algorithms. To handle this problem, we proposed a GA-based approach that considers task re-

quirements in the objective function. Detailed performance analysis of each method has been completed

and compared to exhaustive search-based methods. Experiments showed that the proposed methods

found the cost-optimal solution in a shorter computational time when compared to the brute-force algo-

rithm. The simulations that prove the applicability of the proposed method are shown in [40].

Besides composition synthesis algorithms, path planning is one of the sub-tasks that synthesis algo-

rithms spend an excessive computational time on. Available path planning methods are time-consuming

or not suitable to modular robots because thousands of different compositions must be investigated. To

combat this problem, two new planners that provide faster solutions are proposed. Both of these are

two-step path planners where a geometric path for all compositions in a workspace is first calculated

and then a local motion planner is implemented to find individual solutions for all potential module com-

positions. In the first method, a path is generated following the largest gaps between obstacles. Then,

individual planning is done for each potential composition. In the second method, multiple collision-

free paths are generated and considered for all module compositions. The inverse kinematics of each

module composition are individually solved for all generated intermediate goals. While solving the in-

verse kinematics problem, the GA-based IK solver uses the population from the previous intermediate

point as an initial guess. Thus, the non-random initial population technique not only decreases the vari-

ations of joint angles but also reduces the risk of collisions. The first results of this method are shown

in [6] and then the improved algorithm is published in [41]. These proposed path planning methods can

be also applied to non-modular robots.

All proposed algorithms are shown by simulations or experiment. The proposed approaches enable

users without any knowledge in robotics to reconfigure a modular robots for different production sce-

narios. The developed visualization tool also helps users quickly see the algorithm’s results and foresee

how the robot will move while performing the task before reassembling the modules. Based on these

results, we can say that our approaches are mature enough to be applied to real robots.
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5.1 Future Directions

The task-based composition synthesis approach presented in this thesis serves as a foundation for fu-

ture advanced research in modular robots. The continuation of this work may involve learning-based

composition synthesis algorithms. Machine learning algorithms may guide the composition synthesis

algorithm with eliminating modules or module compositions that are the least-likely to fulfil a given

task based on previous simulations. Cancelling the least-likely combinations dramatically reduces the

search space, which decreases total computational time. In addition, learning-based methods may also

help the user determine a set of module compositions that have a higher chance of fulfilling the task.

Algorithms can be applied only to this set, which considerably reduces the computational time as it

shrinks the search space.

Another potential continuation may be to improve module design. The commercially available

modular robots are not robust enough and their payload capacities are too limited for most industry

tasks. More complex and robust designs that improve their capabilities are required. Moreover, for

tasks that require longer link modules, the user should assemble two link modules to extend the robot’s

length, which decreases the load capacity. Robust telescopic link modules with strong connectors will

solve this problem and help widen their usage in industry.

In addition, the application of different optimization methods (especially for the different evaluation

algorithms) may be considered to speed up the process and to avoid stacked local minima. The genetic

algorithm is selected for the evolutionary-based composition synthesis algorithm based on its superior

features to other algorithms. New evolutionary-based optimization algorithms have been proposed and

may give better results for this problem.
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Appendix A

Virtual Module Set

To demonstrate our proposed algorithms, we design simple modules in the Computer-Aided Design

(CAD) environment considering the specifications of the available modular and reconfigurable manip-

ulator designs detailed in Section 1.2. To increase the variety of the modules, we design one type of

0-DOF base module, two types of joint modules, namely, 1-DOF revolute joints (JR) and 1-DOF pris-

matic joints (JP ), and three types of 0-DOF link modules which are i) α = 90◦ link module whose

length is along the y-direction of the previous coordinate system (L1), ii) α = 0◦ link module whose

length is along the x-direction of the previous coordinate system (L2), and iii) α = 90◦ link module

whose length is along the z-direction of the previous coordinate system (L3) where α represents the an-

gle between the input and output in the z-direction, and two types of 1-DOF end effector modules that

are the revolute end effector module (ER) and the prismatic end effector module (EP ) (see Figure A.1).

Figure A.1: Virtual module set
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Table A.1: The module parameters of virtual modules involved in simulations (see Figure A.1)

Length Diameter Max τ Joint Limits
[m] [m] [Nm] [rad or m]

L1 0.75 0.2 − −
L2 0.75 0.2 − −
L3 0.75 0.2 − −
JR 0.25 0.2 80 [−π,π]
JP 0.25 0.2 75 [0,0.2]
ER 0.2 0.2 75 [−π,π]
EP 0.2 0.2 70 [0,0.1]

The specifications of each module are given in Table A.1. The connection mechanism allows the user

to attach two modules in only one orientation and the user has unlimited numbers from each module to

generate their robot.

The parameters used to generate kinematic and dynamic models of both virtual module set are given

in Table A.2 below. Besides, the dynamic parameters of the virtual module set can be seen in Table A.3.

Table A.2: The D-H parameters for the Virtual Module Set (see Figure A.1)

apl αpl ppl npl δpl adl αdl pdl ndl δdl
[m] [rad] [m] [m] [rad] [m] [rad] [m] [m] [rad]

L1 0 −π/2 0 0.75 0 0 0 0 0 0
L2 0.75 0 0 0 0 0 0 0 0 0
L3 0 −π/2 −0.75 0 0 0 0 0 0 0
JR 0 0 −0.15 0 0 0 0 −0.1 0 0
JP 0 0 −0.15 0 0 0 0 −0.1 0 0
ER 0 0 −0.1 0 0 0 0 −0.1 0 0
EP 0 0 −0.1 0 0 0 0 −0.1 0 0
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Appendix B

Extended Schunk LWA 4P Robot

The SCHUNK LWA 4P robot is designed as a lightweight, 6-DOF industrial manipulator whose stan-

dard assembly can be seen in Figure B.1(a). It weighs 12.7 kg (without gripper) and has a high-resistance

aluminium structure, high torque capacity, and relatively low energy consumption (more details can be

found in [7]). The commercially available modules designed by SCHUNK can be seen in Figure B.1(b)

and their details are given in Table B.1. The joint modules called powerballs have two perpendicular

revolute joints with different connectors. Although the available robot gives the user modularity and

reconfigurability, its reconfigurability is very limited since input and output connectors of each module

are different. The possible connections of the modules are as follows: i) the larger powerballs (PB1 or

PB2) can be assembled with the base module, input and output ports of L1, and the input port of L2,

   B                     PB1                    PB2               PB3

          L1                                      L2                    

      (a)                                                                    (b)

Figure B.1: (a) The commercially available SCHUNK LWA 4P robot and (b) its available modules in the
market

83



B. EXTENDED SCHUNK LWA 4P ROBOT

Figure B.2: All possible compositions obtained from available modules. Because there are several different
commercially available end effectors compatible with the robot, the number of possible compositions can be
increased by 4× e where e is the number of different end effector modules.

and ii) the smaller powerball (PB3) can only be connected with the output port of L2 and the input port

of the end effector.

The only reconfigurability that the robot offers is changing its end effector with another end effector

that SCHUNK produces [35] or by changing the place of PB1 and PB2 (which forms almost the same

robot only diverging joint limits of the first and the second joint), or by reducing the DOF of the robot

(removing PB1 or PB2 from the original assembly). All possible module compositions that can be

obtained from the available modules produced by SCHUNK can be seen in Figure B.2. To increase

reconfigurability, we design link modules with different lengths as detailed in Section B.2.

Table B.1: The module parameters of the available modules produced by SCHUNK (see Figure B.1) [7]

Length Diameter Max τ Joint Limits Velocity Limits Acceleration Limits
[m] [m] [Nm] [rad] [rad/s] [rad/s2]

L1 0.35 0.068 - - - -
L2 0.305 0.068 - - - -
PB11 0.1013 0.1013 64 [−2.967,2.967] 1.257 2.618
PB12 0.1013 0.1013 64 [−2.967,2.967] 1.257 2.618
PB21 0.1013 0.1013 64 [−2.731,2.731] 1.257 2.618
PB22 0.1013 0.1013 64 [−2.967,2.967] 1.257 2.618
PB31 0.0748 0.0748 19 [−2.967,2.967] 1.257 2.618
PB32 0.0748 0.0748 19 [−2.967,2.967] 1.257 2.618
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B.1 Design Constraints

We consider the technical data given by the manufacturer in [7] while designing new modules. Based on

the user manual, the maximum load capacity of the robot is considered as 6 kg (even though it is given

as 7 kg in [7], it is recommended that it should not exceed 6 kg in the same document) and the maximum

load value against the distance from the center of the first powerball, PB1 (called axis A2) is given in

Figure B.3. As seen from Figure B.3, the maximum load capacity (7 kg) can be applied until a horizontal

projected distance of 450 mm from the axis A2, which is considered as a reference point. Starting from

this point, the load capacity falls linearly and it decreases by 3 kg at a length of 800 mm from the

reference point as in Figure B.4. The end effector’s weight that we have in the chair (SCHUNK parallel

gripper in [119]) is 1.2 kg and thus strict the maximum load capacity is 1.8 kg at the full extension at

800 mm. The reason why the graph drops to zero at 800 mm in Figure B.3 is that the manufacturer

does not consider the extension of the robot. Based on the linear decrease in Figure B.3, we consider

the maximum and useful load capacities as in Table B.2, which shows that 150 mm is considered as

the maximum extension for the design although the weight of the possible module slightly reduces this

value. While designing new modules, we consider the following requirements: i) mechanical robustness,

ii) limited strain, iii) full functionality, and iv) variable extension. The material is defined as PA 2200

Performance 1.0 from the supplier EOS whose nominal yield strength and ultimate strength are 40

MPa and 50 MPa, respectively [120]. Parameters detailed in Table B.3 are used for representing the

kinematic and dynamic parameters throughout the simulations and finite element (FE) analysis. We

consider the following conditions (called normal severe dynamic conditions) for simulations and FE

analysis: i) all tests are completed at the position in which the robot is fully extended horizontally

(as in Figure B.4), ii) maximum accelerations of joints are applied to joints PB11 and PB22 and the

maximum acceleration against gravity is applied to PB12, iii) in addition to the end effector’s weight,

a 0.5-kg payload is considered as a wrist load, iv) all modules are placed between PB2 and L2 for

0               100              200              300             400             500             600              700             800             900   0
10
20
30
40
50
60
70
80

Distance from axis A2 to center point of load [mm]

L
oa

d 
[N

]

Figure B.3: Robot’s load capacity as a function of its length [7]
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800

A2

Figure B.4: Representation of the robot’s position used in Figure B.3.

the original SCHUNK robot, v) maximum extension is considered 150 mm (see Table B.2), and vi) the

safety factor is taken as 2. Accelerations at the joints PB11 and PB12 mostly generate bending and

the acceleration at PB22 mostly causes torsion. To validate the dynamic scenarios, the Newton-Euler

method (for more details see [38]) is used.

B.2 Designed Modules

While designing new components to extend the robot’s length, the first focus is on basic tubular module

designs that can be easily mounted or dismounted with 8 screw-flanges located at both ends as in Fig-

ure B.5. Cables are considered along the inside of the tube and original printed circuit boards (PCBs)

provided by the company are mounted on both ends. The finite element analysis of the first design

is done under the previously mentioned normal severe dynamic conditions with the selected PA 2200

Performance 1.0 material. The maximum Von Misses stress occurs at the fillet radius between the base

flange and the cylindrical wall and around the holes in the base flange, which is caused by bending. The

results show that the obtained maximum stress is less than the critical stress value and the safety factor

is around 8.5 for this design. Pin holes at the base flange and the upper flange are also exposed to torsion

but the maximum stress there is insignificant when compared to critical values. The stress analysis of

Table B.2: Possible load capacities and their corresponding potential extension

Extension [mm] Maximum Load Capacity [kg] Useful Load Capacity [kg]

0 3 1.8
30 1.66 1.4
60 2.31 1.1
90 1.97 0.7

120 1.63 0.4
150 1.29 0.1
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Table B.3: Kinematic and dynamic parameters representing normal severe conditions

Joint number Joint position Joint velocity Joint acceleration Torque
[rad] [rad/s] [rad/s2] [Nm]

PB11 0 0 5.2 18.8
PB12 π/2 0 −3 −64.1
PB21 0 0 0 −26.3
PB22 0 0 5.2 0.7
PB31 0 0 0 −3.0
PB32 0 0 0 0

the first design under the given condition is also shown in Figure B.5. In addition, we analyze this design

in terms of strain under the applied conditions and it is seen that the maximum strain is around 0.3 mm,

which occurs at the upper flange. This is such a large displacement especially when precision is needed

for a task. Moreover, the displacement of the wrist would be even larger than this value. For example,

this strain value corresponds to a 1.4-mm displacement at the wrist for the pre-defined robot assembly

used in the simulation (in case that we mount the module after PB2 and before the L2 in the standard

robot assembly) and this displacement is caused by the bending of the designed prototype.

Because precision is important for trajectory planning and the aim is to design a robust component,

the above-mentioned design should be improved. To solve the problems in the first design, the cylin-

drical wall is thickened from the inside because it is not possible to thicken it on the outside due to the

screw holes. Moreover, fins are added to the outer surface of the cylinder in the middle of screw holes

between both flanges as in Figure B.6. Stress and strain analyses are done for the new design under the

same conditions, which are normal and severe dynamic conditions, and the simulations show that the

0
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Figure B.5: Stress analysis of the basic tubular design under normal severe dynamic conditions.
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Figure B.6: (a) Stress and (b) strain analysis of the second design under normal severe dynamic conditions.

fins improve the stress distribution as they allow traction from bending to flow through the fins. The

maximum stress for this design occurs at the external fillet radius, between the base flange and fins, as in

Figure B.6(a). When compared to the first design, the maximum stress is reduced by 40%. In addition,

it also shows better stress distribution around the screw holes with respect to the previous design. The

safety factor under the applied conditions is calculated around 10. The current design not only improves

the stress distribution but also improves the strain behavior of the component. The simulations show

that the maximum displacement is 0.24 mm, which occurs at the top flange (see Figure B.6(b)) and it is

20% less than the previous design.

Although the second design gives a feasible solution for the applied conditions, its robustness and

strain behavior should still be improved. As a final design, the fins are extended to the outer diameter of

both flanges and their thicknesses are increased in both directions. The design should allow the user to

tighten the screws from the outside, which could potentially interfere with the signal connector on the
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Figure B.7: (a) Stress and (b) strain analysis of the final design under normal severe dynamic conditions.
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PCBs. Considering these constraints, the thickness of the design is optimized to 4.5 mm. Simulations

are run under the same conditions and they show that the final design significantly improves the strength

especially for bending. The maximum stress value is 11% less than the previous design and it occurs

at the pin hole. The stress distribution of the final design is shown in Figure B.7(a). Contrary to the

previous designs, the maximum stresses are at screw holes and result from torsion rather than bending

and thus show that the final design is much stronger against bending. The safety factor for the stress

of the final design is around 12. Since the bending characteristics of the final design are better than the

previous ones, the final design also shows better strain behavior. Simulations show that the maximum

strain is 0.17 mm for the same conditions, which corresponds to around 30% improvement in strain

when compared to the second design (see Figure B.7(b)).

To see the detailed bending and torsion characteristics of the final design, pure bending and pure

torsion cases were also simulated. Under pure bending, an estimated yield stress of 40 MPa reached

1660 N transversal force applied at the top flange and occurred at the fillet radii between the base

flanges. Under this condition, the maximum displacement was measured as 3 mm at the top flange. The

simulation results under pure bending conditions are shown in Figure B.8(a) and Figure B.8(b).

For pure torsion, the fins and walls were barely stressed while pin holes were mainly affected by

torsion. The critical stress value of 40 MPa at the pin holes reached just under 21 Nm applied torque from

the top flange and the analysis is shown in Figure B.9(a). However, it should be noted that the described

situation at the pin is a worst-case scenario and the static friction produced by the joint pressure of

the bolts is capable of transmitting a significant torque and thus reduces the stress value. The torque

transmitted via friction can be estimated by using the recommended tightening torque of the joint bolts.

The thread dry friction coefficient between the M4 coarse threaded bolts and a head friction coefficient

between the heads of screws and the PA extension are taken as 0.2 and 0.2, respectively, based on [121].
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Figure B.8: (a) Stress and (b) strain analysis of final design under pure bending.
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Figure B.9: (a) Stress and (b) strain analysis of final design under pure torsion.

The stress values are calculated using the online tool in [122], which uses the following formula:

MT = Kfriction ·σpreload · dN (B.1)

where MT is the tightening torque, Kfriction is a friction coefficient obtained from the type of the

thread and the friction coefficients, σpreload is the desired tensile preload, and dN is the diameter of

the bolt. Considering the tightening torque as 0.53 Nm (as recommended in [120]), the tensile stress

in each bolt is calculated as 57.6 MPa and the effective thread stress is calculated as 95.4 MPa in the

case where shear effects in the thread are considered. The preloading is limited by the aluminium thread

as the effective thread stress is close to the alloy’s yield strength, which results in a compression of

510 N from each bolt or 4080 N at the total joint. A maximum static force is obtained as 816 N while

multiplying the obtained total thread stress with the static friction coefficient between the aluminium

and PA. The screws are positioned at 28-mm distances from the center, which results in an estimated

frictional torque transmission of up to 22.8 Nm. Therefore, it can be assumed that friction transmits

around half of the torsion effort while the static friction is still valid. In case the tightening torque is

guaranteed as 0.53 Nm at mounting, 40 Nm, which is approximately the half of the torsion effort (static

friction is still valid), is a more realistic pure torsion resistance for the component. The maximum strain

under pure torsion is calculated to be around 0.58 mm and it occurs at the outer radius of the top flange

(see Figure B.9(b)). The tangential displacement is calculated to be around 0.52 mm at the flange screw

holes, which corresponds to a 1.2◦ angular displacement.

In case the critical situation occurring at the pin holes is disregarded due to the torsion resistance of

the part, a failure torque is calculated around 120 Nm that corresponds to a 6◦ angular displacement.

The FE analysis of the realistic scenario is also done in which tangential forces at pins are considered. It

90



B.3 Produced Prototypes

5,0e+006
0

0,262
1,0e+007

1,5e+007

2,0e+007

2,5e+007

3,0e+007

3,5e+007

4,0e+007

VoncMissescstress
Max:c3,955e+007cN_m2

Min:c26031,3cN_m2

Translationalcdisplacementcvector
Max:c2,08382cmm

Min:c0cmm

0,525

0,788

1,05

1,31

1,58

1,84

2,1

(a)ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc(b)

Figure B.10: (a) Stress and (b) strain analysis of the final design under realistic scenario.

is seen that this scenario mainly causes bending and the failure torque is calculated as 20 Nm, which is

similar to the scenario where the friction from the bolts’ pressure is discarded. The corresponding bend-

ing force for the worst-case scenario is 715 N. In case friction resulting from the screws is considered,

the torque capacity is increased up to 40 Nm and the bending force is increased to 1430 N. As seen in

the FE simulation of the final design in Figure B.10, the simulations show that the final design is very

strong against bending and torsion, while bending plays a more important role than torsion when the

transverse displacement is considered.

B.3 Produced Prototypes

We printed three components with different lengths based on the final design (see Figure B.11). The

lengths of the components are set to 64 mm for L3, 84 mm for L4 and 104 mm for L5. The PCB plates

Figure B.11: Produced modules
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are bought from the manufacturer SCHUNK GmbH & Co. KG and all modules are electrically tested.

Although the larger extensions are possible while assembling two printed modules randomly, it is not

recommended since it exceeds the maximum allowed length given in Figure B.3. Since the modules are

easily mountable, the replacement procedure takes around half an hour based on where the new module

is mounted.
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Appendix C

Visualization Tool

Various assemblies can be generated by the above-detailed sets of modules and it is not practical to

implement the results obtained from our algorithms without visualizing them in the simulation envi-

ronment. The use of current visualization toolboxes is limited for our case as all different assemblies

cannot be defined in their libraries. Motivated by this fact, we generated our own visualization tool

based on MATLAB® SimMechanicsTM [123]. SimMechanicsTM is a Simulink® [124] based software

used for modeling and simulating 3D, multi-body, dynamic mechanical systems. The SimMechanicsTM

software generates the model using interconnected blocks considering their geometric and kinematic

relations. It enables the user to solve the equation of motion for the whole system and automatically

visualize the system. The basic idea behind the generated visualization tool is to store the module data

in a custom library that has details about the kinematics of modules (length, transformations, etc.) and

the Computer Aided Design (CAD) models of modules in the Standard for the Exchange of Product

model data (STEP) format. We generate two different libraries for each module set in which parame-

ters of all modules are defined. For both sets of modules, their CAD models are individually drawn in

SolidWorks® [125] (for original modules from SCHUNK LWA 4P are downloaded from the company’s

website [35]) and they are assembled to define their mate types. The generated CAD assemblies are ex-

ported using the SimMechanicsLink tab and their XML (Extensible Markup Language) and STEP files

are obtained automatically. The XML files include information about how the modules are assembled,

spatial relationships of modules, and couplings between modules and material properties of modules.

The STEP files have the information about module geometries. Subsystems including a set of blocks

described in the Simulink® environment are used to define all modules. Each module is given a unique

name. Each module’s solid model, reference frame, transformations, and its input and output ports are

defined as in Figure C.1 in a subsystem. For the definition of each component the following Simulink®
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(a)

(b)

Figure C.1: (a) The Simulink® model of module L1 in the virtual module set and (b) the Simulink® model
of module L2 for the SCHUNK LWA 4P robot.

blocks are used:

1. Solid has a solid element with its geometry, inertia and color.

2. Reference Frame defines the local reference frame for each component and indicates how to locate

the component in the robot structure.

3. Rigid Transform defines the translations and rotations between two sequential frames.

4. Connection Port defines the physical modeling connection port block for subsystems.

The model definition of L1 for the virtual module set and the model definition of L2 for the SCHUNK

LWA 4P robot are given as examples in Figure C.1. All modules are defined with the above-explained

Simulink® blocks and stored in a library called ModRobLib. A user interface is generated to start

the SimMechanicsTM-based visualization tool which calls the ModRobLib library considering the user-

defined task and user-defined module composition. For each simulation, this code generates the robot

model and defines how the robot moves using the following Simulink® blocks:

1. World Frame generates a unique, motionless, orthogonal and right-handed coordinate frame for

the whole mechanical model.

2. Mechanism Configuration defines mechanical and simulation parameters for the entire model.

3. Block Parameters sets the solver settings used in the simulation.
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Figure C.2: The automatically generated Simulink® Model of module composition ModRob =
{B; J1;L2; J1;L1;EE1} and obstacles.

4. Revolute Joint represents a revolute joint movement between two sequential frames which has

one-DOF. The z-axes of the previous and the following frames are considered as coincident and

the joint can rotate around the x-axis and the y-axis.

5. Prismatic Joint represents a prismatic joint movement between two sequential frames which has

one-DOF. The z-axes of the previous and the following frames are considered as coincident and

the joint can move along the z-axis.

All above-mentioned features are pre-defined in the visualization tool and the tool requires the following

inputs from the user to visualize the requested movement:

i) the obstacle-laden environment: the coordinates of obstacles and coordinates of the base module

should be defined by the user.

ii) the structure of the robot: the robot composition in the following format: ModRob = {C1;C2; . . . Cend}

where ModRob and C( · ) represents the structure of robots and ( · )th component of the robot com-

position, respectively, and

iii) trajectory: the desired trajectory in the following form

TrajData =


t0 t1 t2 . . . tm
q1,0 q1,1 q1,2 . . . q1,m

...
...

...
. . .

...
qn,0 qn,1 qn,2 . . . qn,m


where the variables n and m define the DOF and knots, respectively.

For the generated visualization tool, the center of the base module is automatically placed to the position

(0, 0, 0) and the place of obstacles must be determined with respect to this position. Then, the visual-

ization tool sequentially adds the components of the robot from the library using user-definedModRob.
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C. VISUALIZATION TOOL

Figure C.3: The visualization of robot the same module composition and obstacles in Figure C.2.

Each component is defined with a block and lines connect these blocks considering their input and

output ports. The Simulink® model for the robot composition ModRob = {B; J1;L2; J1;L1;EE1}

(from the virtual module set) with two generated obstacles in the environment and the screenshot of the

same module composition and obstacles generated in visualization tool are shown in Figure C.2 and

Figure C.3, respectively. Similarly, the Simulink® model for the standard assembly of SCHUNK LWA

4P robot ModRob = {B;PB1;L1;PB2;L2;PB3} can be seen in Figure C.4.
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Appendix D

Extended D-H Convention

Standard D-H parameters consist of four variables, which are ai, di, αi, and θi. The variable ai denotes

the distance along the xi axis between the origins of the frames oi and oi′ , the variable di denotes the

distance along zi−1 between the origins of the frames oi−1 and oi′ , the variable αi denotes the angle

between the axis zi−1 and zi around the xi axis, and the variable θi denotes the angle between the axis

xi−1 and xi around the zi−1 axis. In the method proposed in [8], the authors extend the standard D-H

convention with the following parameters: ai, αi, pi, ni, and γi where pi represents the distance along z

axis between the origin oi′ and joint connection PJi−1 (joint between linki and linki−1), ni represents

the distance along the z axis between oi and the joint connection PJi (joint between linki and linki+1),

and γi is the parameter that shows the angular offset between the sequential x-axes at the time the joint

is in its zero position (qi = 0) (see FigureD.1). These three variables are used to determine di and θi

considering the joint type as follows:

di =

{
ni−1 − pi (revolute joint),
ni−1 − pi + qi (prismatic joint),

(D.1)

θi =

{
γi + qi (revolute joint),
γi (prismatic joint).

(D.2)

A typical joint module presented in [8] consists of three elements: an input connector, a joint,

and an output connector, which are shown in Figure D.1(a). Each joint module is considered 1-DOF

and is divided into distal (( · )dl) and proximal (( · )pl) parts as in Figure D.1(b) and Figure D.1(c),

respectively. The x-axes of the input and output connectors are located along a particular direction on

the connection plane and the z-axes are located towards and outwards through the input and output

connectors, respectively (see Figure D.1). The y-axes of both connectors are defined considering the
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Figure D.1: The representation of kinematic notation for joint module where the connectors are indicated in
light-grey color, (a) is the entire module, (b) the distal part and (c) the proximal part [8].
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right-hand rule for Cartesian coordinate systems. Both proximal and distal parts are shown by four

parameters a(pl), α(pl), p(pl), n(pl) and a(dl), α(dl), p(dl), n(dl), respectively. All of these parameters are

detailed in [8] and can be seen in Figure D.1(b) and Figure D.1(c). Besides these, three more parameters

namely δpl, δdl, and δJ are introduced in [8]. The variable δpl represents the angle between the axes

x
′

pl and xin, the variable δdl represents the angle between the axes x
′′

dl and xout, and the variable δJ

represents the angle between x
′′

pl and x
′

dl when the joint is in its zero position. A typical link module

presented in the same approach can be seen in Figure D.2. The frames are considered similar to the distal

or proximal parts of the joint modules and the details on how the axes are placed are given in [8]. The

link modules are also represented with the same parameters as joints (al, αl, pl, nl) and these parameters

can be summarized as follows: al is the distance between two origins (ol′ and ol′′ ) along the common

normal, αl is the angle between the z-axes (zin and zout), pl is the z coordinate of the origin of the

input (oin) from o
′
, and nl is the the z coordinate of the origin of the output connection point from o

′′
.

In addition, the angles δl,in, and δl,out are defined as the angles between xl′ and xin and xl′′ and xout,

respectively. It should be noted that the end effector module is considered as a link module [8]. Using

the above-defined parameters, the kinematic model of a robot can be generated automatically using the

homogeneous transformation matrices.

The connection between the (i − 1)th and ith module, called the ith connection, and the synthesis

matrix Fi are calculated as in (D.3) where F
′

i is the auxiliary matrix calculated as in (D.4), the variable

φi is an additional rotation around zi and Tm( · ), and Rm( · ) are the homogeneous transformation and

rotation matrices along/around the axis m. The details of the calculation of φi can be seen in [8].

Fi = F
′

iRz(φi) (D.3)

zin

xin

oin

δl,in

al

oout

xout

zout

δl,out

xl''

zl''

ol''

nlαl

pl

xl'

zl'

ol'

Figure D.2: The representation of kinematic notation for link modules where the light-grey colored parts are
connectors [8].
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F
′

i =Tz(−pdli−1)Tx(adli−1)Rx(α
dl
i−1)Tz(n

dl
i−1)

Rz(δ
dl
i−1 − δ

pl
i )Tz(−ppli )Tx(a

pl
i )Rx(α

pl
i )Tz(n

pl
i )

(D.4)
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[99] T. Bäck, D. Fogel, and Z. Michalewicz, “Handbook of evolutionary computation,” Release,

vol. 97, no. 1, p. B1, 1997. 46, 49

111



REFERENCES

[100] S. Sivanandam and S. Deepa, Introduction to genetic algorithms. Springer Science & Business

Media, 2007. 46

[101] T. Yoshikawa, “Manipulability of robotic mechanisms,” The international journal of Robotics

Research, vol. 4, no. 2, pp. 3–9, 1985. 50

[102] T. Lozano-Perez, “A simple motion-planning algorithm for general robot manipulators,” Robotics

and Automation, IEEE Journal of, vol. 3, no. 3, pp. 224–238, 1987. 60

[103] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous

robot vehicles, pp. 396–404, Springer, 1986. 60

[104] O. Takahashi and R. J. Schilling, “Motion planning in a plane using generalized voronoi dia-

grams,” IEEE Transactions on Robotics and Automation, vol. 5, no. 2, pp. 143–150, 1989. 60

[105] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field techniques for robot

path planning,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 22, no. 2, pp. 224–

241, 1992. 60

[106] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile robots,” Systems, Man

and Cybernetics, IEEE Transactions on, vol. 19, no. 5, pp. 1179–1187, 1989. 60

[107] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path

planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automa-

tion, vol. 12, no. 4, pp. 566–580, 1996. 60

[108] R. Geraerts and M. H. Overmars, “A comparative study of probabilistic roadmap planners,” in

Algorithmic Foundations of Robotics V, pp. 43–57, Springer, 2004. 60

[109] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006. 60, 69

[110] F. Fahimi, “Autonomous robots,” Modeling, Path Planning and Control, 2009. 60

[111] J. Yu and P. Müller, “An on-line cartesian space obstacle avoidance scheme for robot arms,”

Mathematics and Computers in Simulation, vol. 41, no. 5, pp. 627–637, 1996. 60

[112] R. Menasri, A. Nakib, B. Daachi, H. Oulhadj, and P. Siarry, “A trajectory planning of redundant

manipulators based on bilevel optimization,” Applied Mathematics and Computation, vol. 250,

pp. 934–947, 2015. 60

112



REFERENCES

[113] C.-C. Lin and J.-H. Chuang, “A potential-based path planning algorithm for hyper-redundant

manipulators,” Journal of the Chinese Institute of Engineers, vol. 33, no. 3, pp. 415–427, 2010.

60

[114] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated approach to inverse kine-

matics and path planning for redundant manipulators,” in Proceedings 2006 IEEE International

Conference on Robotics and Automation, 2006. ICRA 2006., pp. 1874–1879, IEEE, 2006. 61

[115] M. V. Weghe, D. Ferguson, and S. S. Srinivasa, “Randomized path planning for redundant ma-

nipulators without inverse kinematics,” in 2007 7th IEEE-RAS International Conference on Hu-

manoid Robots, pp. 477–482, IEEE, 2007. 61

[116] V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm:follow the gap method,”

Robotics and Autonomous Systems, vol. 60, no. 9, pp. 1123–1134, 2012. 62

[117] C. Lin, P. Chang, and J. Luh, “Formulation and optimization of cubic polynomial joint trajectories

for industrial robots,” IEEE Transactions on Automatic Control, vol. 28, no. 12, pp. 1066–1074,

1983. 64

[118] A. Alexandrov, “Basic concepts and simplest properties of convex polyhedra,” Convex Polyhedra,

pp. 7–86, 2005. 65

[119] “Schunk parallel gripping system.” https://schunk.com/de_en/

gripping-systems/series/mpg/. Accessed: 2017-12-18. 85

[120] “Eos e-manufacturing solutions, material data center.” http://eos.

materialdatacenter.com/eo/de. Accessed: 2017-10-18. 85, 90

[121] “Maryland metrics.” https://mdmetric.com/fastindx/TI-168.pdf. Accessed:

2017-02. 89

[122] “Engineering-abc, tightening torque to preload a bolt.” www.tribology-abc.com/

calculators/e3_6a.htm. Accessed: 2017-10-18. 90

[123] “Simmechanics multibody - matlab-simulink.” https://de.mathworks.com/

products/simmechanics.html. Accessed: 2016-08-11. 93

[124] “Matlab-simulink.” https://de.mathworks.com/products/simulink.html. Ac-

cessed: 2016-08-11. 93

[125] “Solidworks.” https://www.solidworks.com/. Accessed: 2016-08-11. 93

113

https://schunk.com/de_en/gripping-systems/series/mpg/
https://schunk.com/de_en/gripping-systems/series/mpg/
http://eos.materialdatacenter.com/eo/de
http://eos.materialdatacenter.com/eo/de
https://mdmetric.com/fastindx/TI-168.pdf
www.tribology-abc.com/calculators/e3_6a.htm
www.tribology-abc.com/calculators/e3_6a.htm
https://de.mathworks.com/products/simmechanics.html
https://de.mathworks.com/products/simmechanics.html
https://de.mathworks.com/products/simulink.html
https://www.solidworks.com/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Scope and Goals
	1.2 Modular and Reconfigurable Industrial Manipulators
	1.2.1 Modules Designed for Numerical and Real Experiments

	1.3 Formulation of the Optimal Task-based Modular Robot Problem
	1.4 Author's Contribution
	1.5 Thesis Outline

	2 Exhaustive Search-Based, Cost-Optimal Composition Synthesis of Modular and Reconfigurable Robots for a Given Task
	2.1 Literature Review
	2.1.1 Representation of the module composition
	2.1.2 Model generation
	2.1.3 Task-optimal module composition selection

	2.2 The Cost-Optimal Composition Synthesis Algorithm for Modular Robots for the Execution of a Given Task
	2.3 Preliminaries
	2.4 Task Requirements
	2.4.1 Reachability Test
	2.4.2 Kinematics Test
	2.4.3 Static Force-Torque Test
	2.4.4 Collision Test
	2.4.4.1 Collision between spheres
	2.4.4.2 Collision between a cylinder and a sphere
	2.4.4.3 Collision between cylinders

	2.4.5 Path Planning Test

	2.5 Optimal Trajectory Planning
	2.6 Numerical Experiments
	2.6.1 Numerical experiments for the virtual module set
	2.6.2 Numerical experiments for the extended SCHUNK LWA 4P robot

	2.7 Summary

	3 Evolutionary Algorithm-Based Synthesis of Modular and Reconfigurable Robots for a Given Task
	3.1 Introduction
	3.2 Proposed Algorithm
	3.2.1 Generation of the set of guidance points
	3.2.2 Determination of the best compositions using evolutionary algorithms
	3.2.3 Determination of the cost-optimal composition

	3.3 Numerical Experiments
	3.4 Summary

	4 A Time-Efficient Collision-Free Motion Planners for Redundant Modular Manipulators
	4.1 Introduction
	4.2 Extended Follow-the-Gap Method
	4.3 Hierarchical Genetic Path Planner for Highly Redundant Manipulators
	4.3.1 Global Path Planner (GPP)
	4.3.2 Local Motion Planner (LMP)

	4.4 Simulation Results
	4.4.1 Simulation Results for the Extended Follow the Gap Method
	4.4.2 Simulation Results for the Hierarchical Path Planner

	4.5 Summary

	5 Conclusions
	5.1 Future Directions

	A Virtual Module Set
	B Extended Schunk LWA 4P Robot
	B.1 Design Constraints
	B.2 Designed Modules
	B.3 Produced Prototypes

	C Visualization Tool
	D Extended D-H Convention
	References

