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Abstract—Data plane programmability brings network flexi-
bility to a new level. However, it introduces the complexity of
the data path’s program as a new factor that influences packet
forwarding latency and thus devices’ performance. Accurate
identification of the relation between data path complexity and
packet forwarding latency enables the design and management
of networks with predictable performance.

In this paper, we leverage the characteristics of P4 program-
ming language to provide a method for estimating the packet
forwarding latency as a function of the data path program. We
analyze the impact of different P4 constructs on packet pro-
cessing latency for three state-of-the-art P4 devices: Netronome
SmartNIC, NetFPGA-SUME, and T4P4S DPDK-based software
switch. Besides comparing the performance of these three targets,
we use the derived results to propose a method for estimating the
average packet latency, at compilation time, of arbitrary P4-based
network functions implemented using the surveyed P4 constructs.
The proposed method is finally validated using a set of realistic
network functions, which shows that our method estimates the
average packet latency with sub-microsecond precision.

Index Terms—Performance Evaluation, Programmable Data
Plane, P4, Software-Defined Networking, Modeling, Device
Benchmarking.

I. INTRODUCTION

HE introduction of programmability into networks has
many advantages in terms of flexibility, operational cost,
etc., compared to legacy network forwarding devices that work
under the restriction of fixed packet processing pipelines [1],
[2]. Software-Defined Networking (SDN) [3] enhanced net-
work programmability, making it possible to customize packet
forwarding based on specific header fields [2]. Network flex-
ibility [1] was further increased with the introduction of
data plane programmability [4], enabling the customization
of packet processing pipelines in forwarding devices. There
are multiple network devices [5]-[8] available in the market
that support data plane programmability through different
programming languages such as C, micro C, POF [8], and
P4 [9], i.e., the language which we focus on in this paper.
Data plane programmability enables a large variety of
new services such as in-network computation, load balancing,
resilient and efficient forwarding, and telemetry. In-network
computation offers the possibility to offload path aggrega-
tion, caching, or even AI/ML to the network. Efficient load
balancing and forwarding not only need programmable data
planes but also heavily rely on detailed measurements and
monitoring. Telemetry helps here by offering deep insights

into the network and partly into end hosts as well. Data plane
programmability can thus not only be applied to pure data
centers, but also offers new possibilities in cellular and campus
networks.

There exists a trade-off between network performance and
flexibility as well as a considerable cost factor. Performance
and efficiency have always been key and in the past were
achieved through fixed forwarding pipelines with limited flex-
ibility. Over time, this lack of flexibility became a burden
as deployed hardware could not be easily upgraded with
new features or used for any other than its original purpose.
Therefore, the idea to run network functions as software on
commodity servers was introduced but faced its own set of
challenges. While software is very flexible, the server platform
underneath usually cannot offer the same performance level
as purpose-built hardware or only at a significantly increased
cost. Data plane programmability is positioned as a solu-
tion to augment these two extremes: Offering reliable high-
performance networking with significant functional flexibility
as is required in the hyper-dynamic networks of the future.
However, this opens up a new problem space for future
network operators that rely on programmable hardware as
well as software solutions: placement and scheduling. The
P4 language is envisioned to simplify this task by making
network functions platform independent, i.e., the functionality
remains the same, independent of where the function is run.
Therefore, it becomes key to understand the performance
of P4 and its building blocks (P4 constructs) on different
platforms (P4 targets) to make a correct and ideally automated
decision on which platform to execute a specific network
function in a given scenario, e.g., when two platforms are
available for two virtual networks used by different verticals
in the same vicinity with non-complementary requirements.
Choosing the right platform for the respective network func-
tions and adapting the decision based on demand may be the
difference between happy customers and an SLA-violation,
particularly in resource-constrained edge locations with low-
latency requirements on the packet processing pipeline.

While data plane programmability is promising for the
previously mentioned reasons, the performance of P4-enabled
packet processors depends on the complexity of the pro-
grammed data plane pipeline. Specifically, the impact of
programmable data plane complexity on the packet processing
latency of different network functions, e.g., L3 forwarding and
VxLAN tunneling, has to be understood.



Understanding the relation between packet forwarding la-
tency and the pipeline complexity helps to characterize the
forwarding performance of programmable networking devices.
The latter enables operators to better manage their network-
ing infrastructure and provide performance guarantees (e.g.,
latency guarantees), for a known traffic flow, to their tenants
— an essential feature in data centers or 5G networks [10].
Moreover, knowing the forwarding latency of networking de-
vices is the first building block for deriving analytical models
of the performance of these devices as in queuing theory.
Additionally, a priori knowledge of the packet latency of
running different network functions on different programmable
devices is critical to optimally schedule and provision network
functions in a hybrid environment [11], [12].

Towards identifying the relation between P4 pipeline com-
plexity and the forwarding latency of packet processors, we
consider the following reasoning. Measuring the forwarding
performance of running every possible network function, writ-
ten as a P4 program, on every possible P4 device is clearly not
an option. Hence, we consider the basic set of P4 constructs,
such as parsing, header operations, and tables, as the basis that
can be used to build arbitrary P4-based network functions.
Therefore, by analyzing the impact of the basic set of P4
constructs on packet processing latency, we can estimate the
latency of realistic network functions that span the measured
P4 constructs.

The impact of the basic set of P4 constructs on packet
latency was extensively measured on three state-of-the-art P4
programmable devices: NetFPGA-SUME card [5], Netronome
SmartNIC [6], and T4P4S DPDK-based Software Switch [7].
More than 75 P4 pipelines, each written in three versions
to be compatible with the investigated targets, were carefully
designed and measured to quantify the impact of different P4
constructs on packet latency. This paper extends our previous
work [13] which estimates the latency of a single P4 device
based on a limited number of P4 constructs with a simple
technique. The contributions of this paper are twofold:

1) Measure, compare, and analyze the impact of different

P4 constructs on packet latency of three state-of-the-art
P4 targets.

2) Propose a method for estimating the packet latency
of realistic network functions based on the given P4
program using the results of the measurement campaign
conducted on atomic P4 constructs.

In our evaluation, we focus on P4 as a programming
language for being a domain-specific language designed to
program packet processors, and for its increasing popularity
in the research community. Moreover, the characteristics of the
P4 language enable the estimation of the packet latency. These
characteristics include (i) Abstraction of the programming of
packet processing pipelines into a limited set of constructs.
(ii) Prevention of loops with unknown iteration counts, and
dynamic memory allocation to limit performance variation at
run-time [14].

The paper is organized as follows. Section II contains
relevant information on P4 language and its targets. In Section
III, the measurement testbed, and the designed experiments are
described. The measurement results are reported and analyzed

Target
E> config.
file

Fig. 1: P4 compiler design: All P4 targets share the same
front-end compiler but have different back-end compiler.

Back-end

in Section IV. Section V explains and validates the proposed
packet latency estimation method. Related works are discussed
in Section VI. Section VII concludes the paper.

II. BACKGROUND

In this section, we provide relevant background information
about the P4 language and its basic constructs, the P4 com-
pilation process, and the available P4 programmable devices.

A. P4 Language

P4 [15] is a domain-specific language designed to program
packet processors. This data plane program specifies which
header information to parse, how to match on the parsed
header, and what actions to take when a hit takes place. P4
adopts an abstract model for the packet processing pipeline
which is made up of a basic set of constructs [9] that are
described in the following.

Header type defines the format of each header in a packet
as a set of fields and their respective sizes. Parser works as
a Finite State Machine (FSM) and describes the sequence in
which headers are extracted from a packet when it arrives into
the packet processing pipeline. The FSM ensures that different
packets can have different headers extracted and stored into the
parsed-headers-stack.

Control flow specifies an invoke sequence of match-action
units that operate on the extracted headers stored in the parsed-
headers-stack. Each match-action unit does the following three
steps: (1) builds lookup keys from packet header fields and
run-time metadata, (2) performs lookup with the keys in the
table and choose the associated action and input data, and (3)
executes the chosen action. An action is made up of a set of
operations that can modify fields of a header, or manipulate
the parsed-headers-stack by copying, adding, and removing
headers.

After traversing the control blocks, the packet reaches the
deparser stage. The deparser reassembles the packet through
attaching the manipulated parsed-headers-stack (including any
newly inserted header) back to the payload and pushing it
to an egress queue, if not dropping it. Extern objects are
architecture-specific constructs (e.g., header checksum and
encryption units) that can be invoked via pre-defined APIs.
Their internal behavior is hard-coded and therefore cannot be
programmed by P4 [9].

B. P4 Compilation

To enable target-independence and ease of future upgrades,
P4 compilers are divided into a common front-end compiler
and a target-specific back-end compiler as shown in Fig. 1.
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Fig. 2: Two architectures that are used by the studied P4 targets
in this work. Their difference resides in the order of stages,
i.e., parser, match-action units (ingress/egress pipeline), traffic
manager and deparser.

The common open-source front-end compiler (ie.,
P4C [16]) is provided by the P4 community which transforms
a P4 program into an Intermediate Representation (IR) in
the form of JSON consisting the definitions of parser, tables,
and actions. P4C provides some basic implementations
of optimizations (e.g., dead state elimination and constant
propagation) [17].

The back-end compiler, on the other hand, is provided by
the vendor who designs the target. It generates a configuration
file to program the target’s behavior, as well as the control
plane APIs to update its state (e.g., table entries and register
values) at run-time. Based on the properties of the target,
the back-end compiler implements all atomic operations of
P4 in a compatible way. Additionally, the back-end compiler
may perform optimizations to enhance the packet processing
performance of the target. In our analysis, we measure the
packet forwarding latency of a P4 target considering all the
optimizations of the back-end compiler as a part of the tested
P4 target, i.e., the P4 target and its back-end compiler define
the device under test.

C. P4 Targets

A P4 target is a system that can execute a P4 program and
process data packets.

The architecture serves as a template of a pipeline structure
for a P4 target. Fig. 2 illustrates the two most common
architectures, i.e., VIModel and SimpleSumeSwitch. For the
measurements, we create different versions of P4 programs
with the same set of operations on parsers and match-action
units following the respective architectures of different targets.

P4’s target-independence feature enables different types of
both software and hardware networking devices to be pro-
grammed via P4. The software family includes BMv2 [18] and
T4P4S [7] targets, and the hardware family includes different
targets with different hardware platforms.

As the first software prototype switch of P4, BMv2 is
mainly used for proof-of-concept implementations with lim-
ited performance in terms of processing rate, i.e., around 1
Gbps. This work focuses on state-of-the-art P4 targets that
can process packets at high rates, therefore does not consider
BMv2. We evaluate the performance of three P4 targets

that have different processing platforms. In the following we
provide details about these investigated targets:

Netronome SmartNIC: Netronome SmartNIC is a Network
Processor Unit (NPU) with tens of multi-threaded purpose-
built cores that enable high parallelism. Hierarchical trans-
actional memory and built-in accelerators in the device also
boost the packet processing capability. The P4 architecture
used by Netronome SmartNIC is the VIModel. The back-
end compiler generates a C implementation of the datapath,
which is then used to create the firmware for the SmartNIC. It
takes a few minutes to build from a P4 source code and load
the firmware. [19] presents further details about Netronome
SmartNIC’s hardware design and programmability.

T4P4S DPDK-based Software Switch: Data Plane Devel-
opment Kit (DPDK) [20] is an open-source framework for
accelerating packet processing on x86, ARM and PowerPC
processors. It accelerates the packet processing of software
switches through the following features. First, the incoming
packets of all flows are distributed to all CPU cores that are
reserved for the switch. Second, the data path between the
interfaces and the processing threads only lies in user space,
thus, saving unnecessary copying of packets between user
and kernel spaces. Third, to better use the CPU’s cache, it
processes packets in batches.

T4P4S [7] is a compiler that turns a P4 code into a target-
independent C core program that can run on top of the
DPDK framework to execute the designed P4 datapath. The
compilation process usually takes a few minutes. By default,
two CPU cores (one as master and the other as slave) are
reserved for packet processing with NUMA mode enabled.
T4PA4S also uses the VIModel architecture.

NetFPGA-SUME: With the increasing specialization of
packet processors, Field Programmable Gate Array (FPGA)
is a promising alternative that satisfies the requirements of
low-latency, high-throughput concurrent packet processing.
NetFPGA-SUME [5] enables easier programmability on FP-
GAs by leveraging the P4—NetFPGA workflow [21].

Hardware resources on an FPGA are represented mainly
as its number of slices, the number of on-chip memories
(Block RAMs). Memory resources are used for different types
of matching: TCAM for ternary matches, and SRAM for
hash-based exact matches. The back-end compiler generates a
Register-Transfer Level (RTL) implementation of the datapath,
which is then synthesized to a bitstream to program the
FPGA chip. The whole process takes about one hour. The
P4 architecture of NetFPGA is SimpleSumeSwitch with only
one control flow, whereas the V1Model consists of two control
flows abstracted as ingress and egress stages.

III. TESTBED & EXPERIMENT DESIGN

In this section, we describe the measurement testbed setup,
shown in Fig. 3, and the experiments designed to evaluate the
latency cost of different P4 constructs.

We perform the experiments using two Nokia NDCS16RM
AirFrame Compute Nodes with 16 cores (dual-socket Intel
Xeon CPU E5-2630 v3 @ 2.40GHz) and 64GB of 2133 MHz
DDR4 memory. 82599ES 10-Gigabit Ethernet network inter-
face card is installed to each server. Three different P4 targets,
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Fig. 3: Testbed setup consisting of two servers connected by
two cables. The P4 device is installed in Server I, and the
packet generator (MoonGen) runs in Server II. The measure-
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II for latency analysis.
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belonging to different processor families, are evaluated: (i)
An Agilio CX 2x10GbE SmartNIC from Netronome [6], (ii)
A NetFPGA-SUME board with Xilinx Virtex-7 XC7V690T
FFG1761-3 FPGA [22], and (iii) An open-source T4P4S
DPDK-based P4 software switch [20]. Hardware targets are
attached to Server I’s PCI bus, whereas the T4P4S switch runs
as software in this server. The two physical ports of the P4
target under test are connected to two interfaces of Server II
running MoonGen packet generator [23]. Each measurement
case corresponds to its respective P4 program that is loaded
into the P4 target. Packets are generated by MoonGen and
sent over one link to the P4 targets at 10 Gbps rate, except for
T4P4S software switch where the generated rate is set equal
to the maximum rate where no packet drop was observed,
which is equal to 9.7 Gbps. After being processed in the P4
target, packets are sent back to MoonGen for measuring and
reporting the packet latency.

Three different packet sizes are considered, namely 256,
1000, and 1500 Bytes. For each measurement case, we collect
more than 100,000 data points of latency values. MoonGen
packet generator is a DPDK-based packet generator that
generates 10 Gbps Ethernet traffic and beyond. It uses hard-
ware timestamping capabilities of modern commodity NICs to
deliver accurate and precise latency measurements with sub-
microsecond precision [23].

Seven experiments are designed to study the effect of the
basic elements (i.e., constructs) of a P4 pipeline on packet
latency. The examined P4 constructs cover parsing headers,
executing different header operations, and applying match-
action tables. The P4 pipelines in these experiments are
designed with different initial parsing cases to make sure that
only one P4 construct is varied at a time, and accordingly, any
measured variation in packet latency is due to this varying
P4 construct. All the pipelines also includes a single table
that forwards packets back to MoonGen by modifying the
egress port while matching on the ingress port based on a
fixed rule. Table I summarizes the different parameters and
cases evaluated in our measurement campaign. The results of
these experiments are used in Section V to derive a method for
estimating the packet latency of an arbitrary network function,
which is made up of the examined constructs, by analyzing
its P4 program. In the following, we describe the objective of
the performed experiments and the P4 pipelines used in every
test case.

TABLE I: Cases and parameters considered while measuring
the packet latency.

Variable Value
Netronome SmartNIC, NetFPGA-SUME,

T4P4S DPDK-based Software Switch

Parsing Headers, Modifying Header Fields,
Modifying Headers, Copying Headers,
Removing Headers, Adding Headers,

Adding Tables
256 Bytes, 1000 Bytes, 1500 Bytes

9 to 10 Gbps

P4 Targets

P4 Constructs

Packet Sizes
Rate

1) Parsing Headers: In this experiment, we quantify the
latency cost of parsing headers in a P4 pipeline. For this
purpose, we start with a baseline P4 pipeline, denoted by
Base_1, which parses Ethernet header. Then, we increase the
number of parsed headers in the parser stage until 14 and
measure the packet latency of each P4 pipeline. The parsed-
headers-stack is made up of Ethernet, IPv4, UDP, PTP, and
10 dummy headers each of size 16 Bytes. The first 4 headers
should be maintained to ensure that the used packet generator,
MoonGen, measures latency properly [23].

2) Modifying Fields within a Header: The objective of this
experiment is to find the relation between the number of modi-
fied fields within a header and packet latency. This answers the
question: What is the difference in packet processing latency
of a P4 pipeline when a single Ethernet header field, such
as source MAC address, is modified versus the case when
multiple Ethernet header fields, such as source and destination
MAC addresses, are modified? To investigate this question, we
prepare and measure two sets of P4 programs that differ in
the following: In the first set, a single field of three different
headers: Ethernet, IPv4, and UDP is modified, while in the
second set, multiple fields of these headers are modified.

3) Modifying Headers: In this experiment, we target quan-
tifying the latency cost of modifying a different number of
headers, defined in the header stack, of a P4 pipeline. For this
purpose, we start with a P4 pipeline, denoted by Base_14, that
parses 14 headers. Then, we modify the 14 parsed headers
incrementally by changing one field of every modified header.
The selection of Base_14 to be a common pipeline in all
the cases is done to avoid varying the number of parsed
and modified headers at the same time, as headers cannot be
modified without being parsed. The selection of the baseline
pipeline in the remaining experiments is also done to fulfill
the same single variable requirement.

4) Copying Headers: The objective of this experiment is to
quantify the latency cost of applying copy-header operations,
where one parsed header is copied into another parsed header
in a P4 pipeline. In this experiment, we start with the Base_14
P4 pipeline, and then we copy one of the parsed headers to
another header. The latency results of copying 1 to 10 headers
were recorded.

5) Removing Headers: The latency cost of removing head-
ers from a received packet was measured in this experiment.
The Base_14 P4 pipeline was again used in this experiment as
a baseline pipeline. Afterwards, we measure the latency of 10
P4 pipelines that only vary in the number of removed headers.
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Fig. 5: Average forwarding latency given number of parsed
headers for different targets and packet sizes.

6) Adding Headers: In this experiment, we evaluate the
latency cost of adding headers into a packet in a P4 pipeline.
We start with a baseline pipeline, denoted by Base_4, which
parses Ethernet, [Pv4, UDP, PTP headers. Then, we add 1 to 10
headers after the four parsed headers in the baseline pipeline,
while measuring the latency of each add-header pipeline. In
this experiment, the maximum packet size is set to 1300
Bytes instead of 1500 Bytes to guarantee that the received
packets, with the added headers, do not exceed the MTU
size. Additionally, we decrease the rate at which the packets
are transmitted from 10G as more headers are added. This is
important to make sure that the rate of the packets, with the
added headers, sent back from the P4 target does not exceed
the line rate.

7) Adding Tables: The objective of this experiment is to
quantify the latency cost of adding tables into a P4 pipeline.
We start with the Base_4 pipeline, which already includes a
single table matching on the ingress port and writing the egress
port based on a fixed rule. Then, we add to the ingress stage
of the P4 pipeline 1 to 14 additional tables, while measuring
the packet latency. All added tables performs exact matching
on a single field and executes the same forwarding action.

IV. MEASUREMENT RESULTS

In this section, the results of the experiments described in
Section III are presented.

A. Parsing

Fig. 4 shows the box plots, which include the minimum,
first quartile, median, third quartile, and the maximum of
the measured packet latency in pus, as a function of the
number of parsed headers for Maximum Transfer Unit (MTU)
sized packets. The measurement results corresponding to the
Netronome SmartNIC, presented in Fig. 4a, show that the
median of the forwarding latency of the Base_1 pipeline where
only one header is parsed is around 7.5 us. Then, the latency
increases slightly as the number of parsed headers increases.

Similarly, the results corresponding to the NetFPGA-SUME
card, illustrated in Fig. 4b, also show that parsing more headers
leads to a linear increase in latency, as the measured latency
increased by 2.3 wus when the number of parsed headers
increases from 1 to 14. Parser states are translated into a Finite
State Machine on the FPGA board which appears to have
a high impact on processing latency [24]. We can observe
a stable performance of NetFPGA-SUME as the distribution
of measured packet latencies is very similar for the different
parsing cases.

The measurement results corresponding to the T4P4S
DPDK-based software switch, displayed in Fig. 4c, show that
the median of the measured latency is constant at around 45
us, as the number of parsed headers increases. This software
switch implements header-parsing by storing meta-information
related to the parsed header’s first bit and size. Then, all parsed
headers are emitted back through one memory copy operation,
where the main latency cost is in the memory access, while the
size of the copied headers has a negligible effect [7], [20]. We
can observe that most measured packet latencies are centered
around the median except for some outliers that could reach
200 ps. In our measurements, we observe that the packets with
high latency values appear periodically, and this may be due
to batch processing in DPDK.

Fig. 5 shows the average measured latency, in us and in
logarithmic scale, for the three investigated targets and packet
sizes equal to 256 Bytes, 1000 Bytes, and 1500 Bytes as a
function of the number of parsed headers. We can observe that
for all targets, the packet latency variation is equally small as
in Fig. 4. For every target, the packet size has an effect of
shifting the curves by almost a constant latency factor, while
the slopes are almost the same. While smaller packets are
forwarded faster than larger packets on NetFPGA-SUME card
and T4P4S, it is not the case on the Netronome SmartNIC,
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where we observe that the average forwarding latency of 256
Byte packets is larger than that for 1000 Byte and 1500 Byte
packets. This is due to the frequent memory access, especially
at small packet sizes, i.e., higher packet rates [25]. On average,
the packet forwarding is performed on the NetFPGA-SUME
card faster than that on the Netronome SmartNIC, which is
faster than that on the T4P4S DPDK-based switch.

B. Modifying Fields within a Header

Fig. 6 shows the box plots of the measured packet latency,
in us, when a single field of Ethernet, IPv4, and UDP headers
is modified versus the case when multiple fields of these
headers are modified. The figure shows the results collected
from the three investigated targets when the packet size is
equal to 1500 Bytes. For all considered headers, and for all

targets, we can observe that the latency results when modifying
a single header field are very similar to the results when
multiple header fields are modified. This is explained by
the fact that all considered targets write the complete new
header when a single field of the header is modified. This is
also consistent with the P4 language deparsing syntax, where
complete headers are emitted to reconstruct the packet. As
a result, we infer that the packet latency of a P4 pipeline
is independent of the number of fields modified within one
header.

C. Modifying Headers

The results of modifying a different number of headers
within a P4 pipeline is analyzed in this subsection. Note that
the number of fields modified within each header is irrelevant
as revealed in the previous experiment. The box plots of the
measured packet latency, in us, as a function of the number
of modified headers for MTU sized packets is shown in Fig.
7. We recall that the pipelines of this experiment are built on
top of the Base_14 pipeline where 14 headers are parsed and
whose median latency, for every target, is also plotted in this
figure as baselines.

Fig. 7a shows that the median of the measured latency on
the Netronome SmartNIC increases almost linearly with the
number of modified headers from 9.8 us to 15.9 ps. On the
contrary, Fig. 7b and Fig. 7c show that there is no extra latency
cost when headers are modified in the case of NetFPGA-
SUME and T4P4S where the median of the measured latency
is equal to 5.8 us and 45 pus respectively. The reason for



1 U
i [ T N R |
15 L e e
i
o 1 | s [ | (3 1 L
1] _-I_ ©5r, + L 4 1
<} | s e <4
S 8 — S
EmT !! E4
c c
Iy | 33
2 2
i) 2
85 82
1
0 Baseline 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

Number of Copied Headers

(a) Netronome SmartNIC.

Number of Copied Headers

(b) NetFPGA-SUME.

%= =T T T
T ] 1 [ 1 i : 1 H H
[ T T T R T S T R B !
BH88H ‘ '
- SO o 150
e N 2
o
8
£
c 100
>
2
2
o
- 50 + + + + + + +
P S S S
Baseline 0 Baseline
6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of Copied Headers

(c) T4P4S Switch.
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Fig. 10: Average forwarding latency given number of copied
headers for different targets and packet sizes.

this variation is related to the implementation of every P4
target. While NetFPGA-SUME and T4P4S always write back
all parsed headers [26], the Netronome SmartNIC writes back
only the modified, dirty, headers. The FPGA writes all parsed
headers back without differentiation because the additional
logic to keep a record of the modified headers might become
a critical component to satisfy the timing requirement, and its
overhead will surpass its gains [27]. The distribution of the
packet latency measured on different targets is similar to what
was described in Subsection IV-A and it is consistent as the
number of modified headers increases.

The average measured latency, in ps and in logarithmic
scale, which corresponds to the three investigated targets for
different packet sizes as a function of the number of modified
headers is shown in Fig. 8. For all targets, we can still
observe the same relation between the size of the packet
and the average measured packet latency as the one analyzed
based on Fig. 5. The figure also shows that the average
packet forwarding latency of the NetFPGA-SUME card is
minimal compared to the other two targets for all packet sizes.
Additionally, we can observe that the Netronome SmartNIC
outperforms T4P4S except for small packet sizes.

Note that the impact of calculating IP checksum in the P4
program after modifying an IP header field was also tested,
and we do not observe any increase in measured latency in the
cases of Netronome SmartNIC and T4P4S, while we observe
a negligible increase, i.e. less than 0.15 ps, in the case of
FPGA.

D. Copying Headers

The results of copying a different number of headers within
a P4 pipeline is analyzed in this subsection. The pipelines of
this experiment are built on top of Base_14 pipeline where
14 headers are parsed and whose median latency results are
presented in Fig. 9 as baselines. This Figure also shows the box
plots of the packet latency measured on the three investigated
targets, in us, as the number of copied headers increases from
1 to 10 for MTU sized packets. We can generally observe that
the results of this experiment are very similar to those obtained
when we varied the number of modified headers from 1 to
10 in the previous experiment. This is also observed when
looking at the results of Fig. 10, which shows the average
measured latency, in us and in logarithmic scale, as a function
of the number of copied headers for different targets and
packet sizes. The equivalence of these two experiments further
verifies our previous observation in Experiment IV-B which
says that modifying a single field of a header has the same
impact on latency as modifying multiple fields, where copying
a header to another header is an extreme case where we always
modify all fields of the destination header. Note that the slight
difference in the measured latency, up to 4 copied headers, in
the results of these two experiments is because the headers
being modified and copied in each experiment is different, as
described in III-3 and III-4.

E. Removing Headers

Fig. 11 shows the box plots of the measured packet latency,
in us, as a function of the number of removed headers for
packets of size equals MTU. In addition, the figure shows the
median latency of the Base_14 pipeline which is used in this
experiment as a baseline.

Fig. 11a, shows that the median of the forwarding latency,
measured on the Netronome SmartNIC, increases linearly from
8.7 us to 17.5 us as the number of removed headers increases
from 1 to 7. Then, we observe a sharp increase in the measured
latency which reaches 35.1 us at 8 headers followed by a linear
increase to reach 39 us at 10 headers. The sharp increase
in latency observed after 7 headers is related to Netronome
SmartNIC’s implementation specifics. When 7 headers need
to be removed, an infrastructural process in the SmartNIC
at the deparsing stage is involved. This process depends on
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Fig. 12: Average forwarding latency given number of removed
headers for different targets and packet sizes.

the space between the headers to be removed and the end
of the packet. If the removed headers exceed a specific size,
this process becomes more expensive and involves moving the
whole payload which makes it also dependent on the size of
the packet. Our measurements reveal that this behavior takes
place when more than 7-16B = 1128 are removed from the
header stack of a packet.

Figures 11b and 11c show that the median of the measured
latency on the NetFPGA-SUME card and T4P4S slightly
decreases from 5.7 us to 5.6 ups and from 45 us to 43 us
respectively when the number of removed headers increases
from 1 to 10. This slight decrease in latency is related to
the fact that the NetFPGA-SUME card and T4P4S write the
whole parsed stack back in the deparsing stage, as discussed
in Subsection IV-C, and when headers are removed from this
stack, the cost of this operation will decrease. The distribution
of the packet latency measured on different targets is similar
to what was described in Subsection IV-A and it is consistent
as the number of removed headers increases.

The average measured latency, in ps and in logarithmic
scale, which corresponds to the three investigated targets for
different packet sizes as a function of the number of removed
headers, is shown in Fig. 12. The same relation as before
between the size of the packet and the average measured
packet latency still holds for all the targets except for the
Netronome SmartNIC after 7 headers where removing headers
operation becomes more expensive for larger packets due to
the reason discussed before. The figure also shows that the
average packet forwarding latency of the NetFPGA-SUME

card is the smallest compared to the other two targets for
all packet sizes. We can also observe that the Netronome
SmartNIC outperforms T4P4S except when the packet size is
equal to 256 Bytes, and the case when the number of removed
headers exceeds 7 headers at packet size equals 1000 Bytes.

F. Adding Headers

The box plots of the measured packet latency, in us, as
a function of the number of added headers for 1300 Bytes
packets, almost MTU, is shown in Fig. 13. The pipelines
of this experiment are built on top of the Base_4 pipeline
where 4 headers are parsed. The result of the baseline pipeline,
although corresponds to 1500 Bytes packets, is presented in
Fig. 13 for different targets.

Fig. 13a shows that the median of the forwarding latency,
measured on the Netronome SmartNIC, increases linearly from
8.7 us to 16.2 us as the number of added headers increases
from 1 to 6. Then, the latency increases with a steeper slope
to reach 75.4 ps when the number of added headers increases
to 10 headers. The reason for the sharp increase in latency
after 6 headers is again related to the involvement of the
infrastructural process in the Netronome SmartNIC, which
depends on the space between the headers to be added and
the beginning of the packet. Note that if the added headers
exceed a specific size, this process becomes more expensive
and involves moving the whole payload which makes it also
dependent on the size of the packet. From Fig. 13a, we can
observe that this behavior starts when more than 6-168B = 968
are added to the header stack of a packet.

From Fig. 13b and Fig. 13c, we can observe that the
median of the measured latency on the NetFPGA-SUME card
increases from 4 ps to 5.8 us as the number of added headers
increases from 1 to 10, while the median of the measured
latency on T4P4S increases from 40.3 us to 43.1 pus when the
number of added headers increases from 1 to 8. This increase
is again related to the fact that these two targets will emit a
larger header stack as more headers are added. Note that the
maximum number of headers that can be added on T4P4S is
8 headers due to the DPDK implementation. In front of the
packet data, there is an extra space for adding headers which
is defined as the constant RTE_PKTMBUF_HEADROOM and
set equal to 128 Bytes [20]. In our case, each added header
has the size of 16 Bytes, which makes the maximum number
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Fig. 14: Average forwarding latency given number of added
headers for different targets and packet sizes.

of headers that can be added into a packet before filling its
HEADROOM is 8 headers, 128 B/16B = 8. The distribution
of the packet latency measured on different targets is similar
to what was described in Subsection IV-A and it is consistent
as the number of added headers increases except for the
NetFPGA-SUME card, where we observe more outliers with
high latency values.

Fig. 14 shows the average measured latency, in ps and in
logarithmic scale that corresponds to the different investigated
targets for different packet sizes as a function of the number of
added headers. The previously analyzed relation between the
size of the packet and the average measured packet latency still
holds for all the targets except for the Netronome SmartNIC
after 6 headers where adding headers operation becomes more
expensive for larger packets due to the reason discussed before.
The NetFPGA-SUME card always has the lowest average
packet forwarding latency compared to the other two targets
for all packet sizes. The Netronome SmartNIC outperforms
T4P4S except for small packet size after adding one header
and the case when the number of added headers is equal to 8
with packet sizes equal 1000 and 1500 Bytes.

G. Adding Tables

The box plots of the measured packet latency, in us, as a
function of the number of added tables for packets of size
equals 1500 Bytes is shown in Fig. 15 along with the median
latency of the Base_4 pipeline which serves as a baseline.

As the number of added tables increases from 1 to 14, we
can observe from Figures 15a, 15b, and 15c that the median

of the measured latency increases from 8.4 us to 13.2 pus in
the case of the Netronome SmartNIC, from 4 us to 5.7 us
in the case of the NetFPGA-SUME card, while it slightly
increases from 45.5 us to 46.1 us in the case of T4P4S.
This increase is expected for all targets as more matching and
lookup operations are applied.

Fig. 16 shows the average measured latency, in pus and in
logarithmic scale, that corresponds to the three investigated
targets for different packet sizes as a function of the number
of added tables. For all packet sizes, we can observe that
the average forwarding latency of the NetFPGA-SUME card
is less than that of the Netronome SmartNIC which is less
than that of the T4P4S. The relation between packet sizes
and measured latency described before still holds for all the
targets except for T4P4S when the packet size is equal to 256
Bytes and the number of added tables exceeds 3 tables. In this
case, the latency increases significantly and we observe packet
drop. In T4P4S, tables for exact lookup are implemented with
DPDK hash tables [7], [20]. For small packet size case, i.e.,
higher packet rate, as the number of tables increase, more
lookup operations per second are executed. This increasing
number of required lookup operations hit a performance limit
related to the number of table lookups and actions that can
be fitted on the same CPU core due to hardware constraints
such as available CPU cycles, cache memory size, cache
transfer Bandwidth, memory transfer Bandwidth, etc [20]. For
256 Bytes packets, the maximum rate that can be processed
in T4P4S with 14 matching tables without packet drop was
examined and it is equal to 4.5 Gbps. Finally, it is worth noting
that the impact of increasing the number of rules installed in
a single table from 1 to 20 rules was examined and we did
not observe a notable change in the measured latency on all
three targets. Moreover, the type of matching, i.e, exact versus
wildcard, was also investigated where we did not observe
noticeable difference in the measured packet latency when
matching type changed.

V. ESTIMATION METHOD

In this section, with the assumption of deterministic pro-
cessing, we build on top of the previously derived results and
observations to propose a method for estimating the average
latency of any network function (NF) written as a P4 program.
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Then, we validate the prediction accuracy of the proposed
method.

The estimation method regards the surveyed P4 constructs
as a basis and the P4 data paths as a span of this basis.
Therefore, by quantifying the impact of the basic set of P4
constructs on packet latency, we can estimate the latency of an
arbitrary P4 program as the linear combination of the analyzed
constructs. First, Subsection V-A describes how the profiles of
the three investigated P4 targets are derived using the results of
Section IV related to the impact of different P4 constructs on
packet latency. Second, Subsection V-B describes the relevant
information that should be extracted from a P4 program to
perform the estimation. Then, Subsection V-C explains how
the estimated average latency, parameterized with the derived
targets’ profiles, can be calculated as a function of P4 pro-
grams’ extracted information. Fig. 17 illustrates the workflow
of the proposed estimation method. Finally, in Subsection V-D,
we validate the proposed method by testing it on three different
realistic network functions.

A. Profiling Targets

Using the results observed in Section IV, and for every
target, we require the following two information:

(1.) The mapping between the number of parsed headers
and the measured packet latency, denoted by Piurge¢, Which
returns the measured average forwarding latency, in us, as a
function of the number of parsed headers for a given target.
This mapping can be read using the results shown in Fig. 5.

(2.) Using linear interpolation, we extract the slopes of the
curves capturing the increase in packet latency as a function of
the number of modified headers, number of copied headers,
number of removed headers, number of added headers, and
number of added tables from Figures 8, 10, 12, 14, and 16
respectively. The slopes of the fitted curves indicate the packet
latency cost, in us, per added P4 construct. For example, if
the interpolated slope of adding headers curve is equal to
1, then the latency cost of every added header on top of
the baseline pipeline is equal to 1 us. Note that piece-wise
linear interpolation is performed for the cases of adding and
removing headers on the Netronome SmartNIC to capture the
changing behavior of the card when big number of headers
are added or removed. The root mean square error when
performing the linear interpolation for the latency plots of all
the targets and for all P4 constructs is always less than 0.4 us.

In the following, we refer to the results with MTU sized
packets. The method can be easily extended to other packet
sizes by applying necessary substitutions, especially that the
packet size has the effect of only shifting the parallel curves
corresponding to a specific target, without major changes on
curves’ slopes as analyzed in Section IV.

[ A target
AN
ModifyHeader

target
AC’opyHea,der

T _ target
Ctarget = RemoveH eader Q)

target
AAddHeader

t t
A.Aa;g’;able

We define the target-profile-vector, a;q,g4c, t0 be a row
vector containing the interpolated slopes corresponding to
different P4 constructs for a specific target, denoted by
A9t ver- The order of the slopes of P4 constructs in
Gtarget 18 shown in Eq. 1.

Accordingly, the targets-profile-vectors corresponding to
T4P4S, NetFPGA-SUME, and Netronome SmartNIC can be

derived as shown in Equations 2, 3, and 4 respectively.

arspas = [0 0 —0.29 0.4 0.08] (2)
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aNetronome = [0.5 0.28 143 1.59 0.37] (4

For accurate profiling of Netronome SmartNIC’s latency
variation, the following two measures should be taken. In
case the number of added headers is greater than 6, the
interpolated slope corresponding to adding headers in Eq. 4
should be substituted with the value 14.4 instead of 1.59 to
capture the steeper slope after adding 6 headers, as described
in Subsection IV-F. Additionally, a correction factor of 17.68
us should be added to the estimated average latency when the
number of removed headers is more than 7 as observed in
Subsection IV-E.

B. Analyzing P4 Programs

Given a P4 program, we first compile it with the standard
front-end compiler and get the IR of the program’s logic which
can be drawn as a Control Flow Graph (CFG). The CFG is
a directed acyclic graph that starts when a packet is taken
from an ingress queue and terminates when that packet is
pushed to an egress queue or dropped. The arrows indicate
the relative order. Note that because of the generality of a P4
program, different packets can traverse different paths in the
CFG. Therefore, the vector should reveal the actual path of a
packet (e.g., the green lower path with two parsed headers and
two packet header operations shown in Fig. 17). In the parse
phase, each node represents a state where a header is parsed

(extracted), and the next header to be parsed is identified based
on a certain field of the extracted header, e.g., Ethernet Type
or IP Protocol fields. In the match-action phase, each node
represents a matching table and all associated actions, e.g., a
table matching on IP destination address and two actions to
modify the address or mark to drop the packet.

Afterwards, we extract the program-features-vector, de-
noted by z(NF'), from the CFG of the analyzed P4 program.
The vector z(NF') contains the number of occurrence of
the basic P4 constructs in the given P4 program, written for
network function NV F', with the following order:
2(NF) = [#tparsed headers, #modified headers, #copied
headers, #removed headers, #added headers, #tables-1].

Note that the last element in this vector counts the number
of tables added to the baseline pipeline used in the experi-
ment described in III-7. In this experiment, the used baseline
pipeline, Base_4, already contains a table for forwarding the
packets, so the number of added tables on top of this pipeline
will be equal to the total number of tables counted in the P4
program minus one.

C. Average Latency Calculation:

We recall that all designed experiments in Section III,
corresponding to all analyzed P4 constructs, build on top of
baseline pipelines that parse some number of headers, and
modify the egress port according to the ingress port in a single
table to forward the packet. Additionally, we made sure that
the analyzed P4 construct is the only parameter varying in
every experiment. Therefore, in estimating the average latency
of an NF, we add the following two terms: (/.) The measured



packet latency as a function of the number of parsed headers
captured by Piqrget, Which includes: tx delay, propagation
delay, packet processing delays before and after entering the
P4 pipeline, and the processing delay of parsing operation;
(2.) The sum of the extra latency cost of applying a P4
construct on top of the baseline parsing pipelines, captured
by atarget, weighted with the number of occurrences of each
P4 construct after parsing extracted for a given P4 program,
2(NF)[2 : end]. Eq. 5 shows the formula for evaluating
the estimated average packet latency in us, IA/nget(N F), of
running network function, NF, on any target.

f/ta'rget (NF) = Pta'rget (l’[l]) + Qtarget * xT [2 : end} (5)

D. Validation

For validation and illustration purposes, we apply our pro-
posed estimation method on three network functions, with an
increasing complexity, written in P4. Then, we compare the
estimated latency to the latency measured when the tested
network functions are loaded to each of the investigated P4
targets. The examined network functions are the following:

L3_Forwarding: The P4 pipeline of this network function
includes parsing Ethernet and IPv4 headers, matching on
IPv4 destination address in a single table, and modifying the
source and destination MAC addresses of Ethernet header and
the time to live (TTL) field of IPv4 header upon matching.
The program-features-vector corresponding to this network
function, x(L3_Fwd), is equal to [2 2 0 0 0 0].

L3_Forwarding + UDP-based Firewall: The P4 pipeline
corresponding to this network function is similar to the one
described in L3_Forwarding but it also involves parsing UDP
header. Additionally, the data path of this network function
includes one more table matching on UDP destination port
to drop undesired packets. The program-features-vector corre-
sponding to this network function, z(L3_Fwd + Firewall),
is equal to [3 2 0 00 1].

VXLAN Decapsulation: In this network function, VXLAN
decapsulation is performed. Note that we perform this func-
tionality while maintaining the header stack up to PTP header
to guarantee that the packet generator, MoonGen, can still per-
form latency measurements. The evaluated P4 pipeline parses
the following header stack: Eth, IPv4, UDP, PTP, ETH, 1Pv4,
UDP, VXLAN, Eth, IPv4, UDP. Besides the table that forwards

TABLE II: Validation results of the proposed method for
different network functions and P4 targets.

NF P4 target Meas. Avg. [,  Est. Avg. L
T4P4S 459 ps 459 us

L3_Fwd Netro. SmartNIC 8.2 us 8.7 us
NetFPGA-SUME 3.7 s 3.7 us
T4P4S 459 us 459 us

L;,IT:; ::Zlf Netro. SmartNIC 8.9 s 9.1 s
NetFPGA-SUME 4.0 ps 4.0 ps
T4P4S 459 us 45us

PALAN= | Netro. SmartNIC 15.2 s 1578

P NetFPGA-SUME 5.2 us 5.2us

packets based on ingress port matching as in the baseline
pipeline, we have another table that matches on VXLAN Net-
work Identifier (VNI) and performs the VXLAN Decapsulation
action. The VXLAN Decapsulation action includes copying
the inner Ethernet, inner IPv4, and inner UDP headers into
the outer headers, then removing the VXLAN, inner Ethernet,
inner IPv4, and inner UDP headers. The program-features-
vector, x(VaLAN_Decap), corresponding to this network
function is equal to [11 0 3 40 1}.

Then, the estimated average latency of each network func-
tion can be calculated using Eq. 5, for a given target where its
profile information should be substituted. As an example, the
average latency of L3_Forwarding network function running
on Netronome SmartNIC is estimated as follows
Py etronome(2)+10.5, 0.28, 1.43, 1.59, 0.37] - [2, 0, 0, 0, 0]
which is equal to 7.73 +2 - 0.5 = 8.73 us.

The three tested network functions are loaded into the three
investigated P4 targets. The average latency for each network
function was measured and compared to the estimated latency
derived based on the method described in Subsections V-A,
V-B, and V-C. Table II shows the measured and estimated
average latency of the three tested network functions on the
three investigated P4 targets. We can always observe that the
difference between the estimated latency and the measured
latency is less than one microsecond.

Moreover, the accuracy of the method in estimating the
average packet forwarding latency is always greater than
94%. This recorded high accuracy reflects the validity of
the proposed estimation method. By looking into different
P4 targets, we can observe that predicting the latency of the
NetFPGA-SUME card has the highest accuracy, followed by
that of T4P4S, followed by that of the Netronome Smart-
NIC. This is due to the high dependence of the Netronome
SmartNIC on the loaded P4 pipeline compared to the other
targets, as can be inferred based on the target-profile-vectors
derived in Subsection V-A. On the other hand, through looking
into different network functions, we can observe that as the
complexity of the network function increases, the accuracy of
the estimation method slightly decreases, as we can see in the
case of the VXLAN Decapsulation network function.

The proposed methodology can be generalized to other P4
targets by profiling these targets and extracting the target-
profile-vector as described in Subsection V-A. The profil-
ing step needs to be performed once per target, where the
relevant performance information, summarized in the target-
profile-vector, can be published by researchers or third part
institutions such as OPNFV. The compiler can easily analyze/
decompose the provided P4 program to extract the programs-
feature-vector, and make use of the publicly available target-
profile-vector to calculate the estimated average packet la-
tency for a given P4 program on a specific target, as described
in Subsections V-B and V-C.

VI. RELATED WORK

The most closely related work is Whippersnapper [28],
which describes a P4 performance benchmarking tool. We
proceed a step further by evaluating the impact of a com-



plete set of P4 constructs on packet latency for state-of-the-
art software and hardware P4 targets with comprehensive
measurements. Moreover, we propose a method to estimate
the average latency given a P4 pipeline, which does not
exist in the literature. Below, we explain in detail the related
work on benchmarking of networking devices, general latency
modeling and analysis, and performance evaluation of P4.

Benchmarking. Various tools have been proposed for dif-
ferent kinds of networking devices, e.g., legacy switches [29],
[30], SDN switches [31], [32], SDN control plane [33],
VNFs [34], [35], and P4 switches [13], [28], to evaluate
various aspects such as throughput, latency, and reliability.
Our work focuses on the latency aspect and covers various
P4 architectures.

General latency modeling and analysis. Numerous studies
have been performed to analyze the network latency from
different aspects such as the underlying software architec-
ture [36] and the impact of control plane [37]. From the
modeling perspective, single devices, such as general soft-
ware switches [38], software DPDK switch [39], OpenFlow
switch [25], [40] and VNF [41], and networks ranging from
switches [42], [43] and VNF chains [44] are covered in
depth. The models applied include stochastic models based
on queuing theory [25], [43], [45] and network calculus [46].
Our work, however, follows an experimental approach: we
derive the latency of each P4 construct with comprehensive
measurements.

Performance evaluation of P4. Static performance of
software switches [28] and FPGA [27] running P4 programs,
as well as performance variation during runtime reconfigura-
tion [47], are explored in different works. On a smaller scale,
researches have been performed on evaluating the performance
of P4 targets executing specific functionalities, such as en-
cryption [48] (on NetFPGA and SmartNIC), in-network event
processor [49]-[51] (on SmartNIC and Tofino), and stateless
load-balancing [52], [53] (on NetFPGA and Tofino). Instead
of taking a network function written in P4 as a whole, we
break it down into atomic constructs, which can be applied
to all targets and assembled back to form different network
functions.

VII. CONCLUSION

The introduction of data plane programmability into packet
processors added the complexity of the configured data plane
as one more variable that affects packet processing latency.
The relation between the complexity of P4 data planes and
packet forwarding latency was investigated in this paper.
Towards this objective, we measured the impact of the basic P4
constructs on packet latency for three P4 targets: NPU-based
Netronome SmartNIC, NetFPGA-SUME card, and DPDK-
based T4P4S software switch. The measurement results reveal
that different P4 targets had different P4 constructs as influ-
ential parameters that affect the target’s forwarding latency.
Additionally, we observed a linear variation in the forwarding
latency, for all the targets, when an influential P4 construct
varied. Based on these observations, we proposed a method for
estimating the average packet forwarding latency of arbitrary

P4 programs written using the surveyed P4 constructs. The
proposed method was applied to three realistic network func-
tions on the three investigated targets and recorded a promising
sub-microsecond precision.

This work can be extended by applying the proposed
methodology to other P4 targets. Although our prelimi-
nary evaluation revealed that the number of installed flow
rules/entries has a negligible impact on measured packet
latency, a thorough evaluation can be further performed on
this topic. Moreover, extending the proposed approach for
estimating the deadline latency and jitter of a device by consid-
ering the maximum and the variance of the measured packet
latency can be further investigated. This work serves as the
first building block towards deriving analytical performance
models for P4 programmable devices. Based on the estimated
processing latency analyzed in this work, which provides
information related to the service process of P4 devices, we
can consider different arrival processes where the impact of
different input traffic patterns can be evaluated using queuing
theory based models.
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