
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Kommunikationsnetze

Design, Implementation, and Evaluation of

Mechanisms for Predictable Latency in

Programmable Networks

Amaury Van Bemten, M.Sc.

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Tech-
nischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Andreas Herkersdorf

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Wolfgang Kellerer

2. Prof. Dr. Laurent Vanbever

Die Dissertation wurde am 18.05.2020 bei der Technischen Universität München eingereicht und
durch die Fakultät für Elektrotechnik und Informationstechnik am 21.09.2020 angenommen.

Design, Implementation, and Evaluation of Mechanisms for
Predictable Latency in Programmable Networks

Amaury Van Bemten, M.Sc.

21.09.2020

iii

Abstract

Communication networks form the backbone of our digital society, connecting users to data centers,
data centers to each other, and sensors and actuators to automation controllers. This high connectiv-
ity enables the industry and public authorities to provide an ever growing plethora of services with
systems such as the Internet of things, cyber-physical systems, smart cities, smart grids, cloud com-
puting, and more generally, 5G networks. Ever since the deployment of the ARPANET and the �rst
Internet node in 1969 at the University of California, Los Angeles, the Internet and communication
technologies have grown and developed at an increasing pace. Originally designed for providing
a simple best-e�ort connectivity, our modern digital society and its new applications and services
now impose additional requirements for the underlying infrastructure. The quality of the service
o�ered to users, customers, and tenants depends on the quality of service o�ered by the underlying
communication infrastructure.

Generally, emerging applications require this underlying infrastructure to provide predictability,
both from a correctness and from a performance point of view. Predictability is hard to achieve given
the distributed nature of communication networks. As a result, the last decade has seen a shift from
statically con�gured networks towards programmable networks, where the behavior of the network,
and in particular of its constituting nodes, is not anymore governed by con�guration �les and an
immutable logic, but rather by software that operates independently from the network hardware.
Technologies such as OpenFlow and P4 enable network operators to remotely program the behavior
of their network, thereby reducing costs and increasing �exibility, but most importantly allowing
to cope with the heterogeneity and high variability of today’s applications and communications. To
which extent such technologies can provide the predictability required by modern applications is an
ongoing research problem. This thesis investigates the particular problem of providing predictable
latency to applications using programmable networks. Latency is a critical quality of service metric
for applications, as guaranteed latency enables services to provide response time guarantees to their
users, tenants, and customers. The focus of this thesis is on providing strict per-packet latency
guarantees to users and applications. Providing predictability and strict determinism in distributed
systems raises numerous interesting challenges and research questions.

Communication networks involve many components to transport data from one endpoint to the
other. In fact, even the seemingly simple local task of forwarding a data packet from one port to the
other involves many components, e.g., packet bu�ers, memory units, and queuing disciplines. As a
result, gaining a deep understanding of all the involved components, the possible sources of delay,
their causes and in�uential factors, is a challenging problem, especially given the fact that switching
hardware has not been built with predictability in mind, but rather e�ciency and statistiscal perfor-

v

mance. This thesis provides measurement procedures and a predictability study of programmable
forwarding devices. Results from this study are used to devise precise performance models of for-
warding hardware. Such models are a required step towards the design of a network providing strict
latency guarantees to its tenants. Our evaluations in several testbed setups show that the models we
propose can provide worst-case end-to-end latency guarantees to applications without sacri�cing
network utilization.

With a setup involving a centralized controller con�guring forwarding components, typical for
programmable networks, a routing procedure is responsible for �nding paths for communication
�ows. The goal of providing strict latency guarantees requires the routing procedure to consider not
only the physical links where packets are forwarded but also how packets are scheduled at each link,
e.g., at which priority level. At the same time, the procedure must ensure that resources are allocated
wisely to �ows, in order to increase the number of �ows that can be simultaneously accommodated,
and hence increase revenue for the network operator. This thesis provides the design and thorough
evaluation of a routing procedure that de�nes both the physical links packets follow and the priority
level at which these packets are queued at each link. Existing algorithms are investigated and new
algorithms are designed to improve on the runtime, optimality, and completeness of state-of-the-art
algorithms in di�erent scenarios and problem settings.

In such an online setup where �ows are embedded at runtime, the forwarding behavior of
switches has to be updated without hindering the predictability of the forwarding operation per-
formed in the data plane. Measurement campaigns in the literature have already shown that runtime
updates in programmable networks can lead to unpredictable behavior. This thesis investigates
the impact of these runtime recon�gurations on latency guarantees in the data plane. The result is
the design, implementation, and evaluation of complete systems providing latency guarantees to
online �ow embedding requests. We design two systems, namely Loko and Chameleon, respectively
focusing on small and low-capacity networks, and on data center networks. While Loko prevents
unpredictability due to recon�gurations by including these operations in the latency modeling
of the forwarding elements, Chameleon relies on end-host networking, and in particular source
routing, to circumvent the need for recon�guring networking devices.

Kurzfassung

Unsere digitale Gesellschaft baut stark auf Kommunikationsnetze, um Menschen mit Rechenzentren,
Rechenzentren miteinander, und Sensoren und Aktuatoren mit Steuerungseinheiten zu verbinden.
Diese hohe Konnektivität wird von Industrie und Behörden benutzt, um immer mehr Dienste durch
Systeme wie das Internet der Dinge, cyber-physische Systeme, Smart Cities, das Smart Grid, Cloud
Computing, und allgemeiner 5G Netze, zur Verfügung zu stellen. Seit dem Einsatz des ARPANETs und
des ersten Internet Knoten in 1969 in der University of California, Los Angeles, sind das Internet und
Technologien basierend auf Informationsaustausch stark gewachsen und entwickeln sich mit zuneh-
mender Geschwindigkeit. Heutige Kommunikationsnetze wurden entwickelt, um einen universellen
Kommunikationsdienst zu bieten, aber unsere moderne digitale Gesellschaft und die immer unter-
schiedlicheren Anwendungen zwingen der Kommunikationsinfrastruktur neue Anforderungen auf.
Die Qualität der Dienste, welche den Nutzern und Kunden angeboten wird, ist abhängig von der
Qualität der Dienste, welche die physikalische Infrastruktur bietet.

Im Allgemeinen benötigen die neue Anwendungen eine berechenbare Vorhersagbarkeit der Kom-
munikationsnetze, sowohl hinsichtlich Korrektheit als auch Leistung. Aufgrund der verteilten Natur
von Kommunikationsnetzen ist Vorhersagbarkeit sehr schwer zu garantieren. Daher wurden in den
letzten Jahren statisch kon�gurierte Netze immer mehr von sogenannten programmierbaren Netzen
ersetzt, in denen das Verhalten der Netze und insbesondere ihrer konstituierenden Knoten nicht mehr
von Kon�gurationsdateien und unveränderlicher Logik geregelt ist, sondern von Software, die unab-
hängig von der Hardware läuft. Mit derartigen neuen Konzepte wie OpenFlow und P4 können Netz-
betreiber das Verhalten ihrer Kommunikationsnetze von außen programmieren und damit die Kos-
ten reduzieren, die Flexibilität erhöhen, und am wichtigsten die stark variierenden und sich schnell
ändernden Anforderungen von heutigen Anwendungen e�zient bewältigen. In welchem Ausmaß
diese neuen Technologien und Netzkonzepte die Vorhersagbarkeit, die von neuen Anwendungen
und Diensten benötigt wird, bieten können ist eine o�ene Forschungsfrage. Diese Dissertation un-
tersucht das Potenzial von programmierbaren Netzen um vorhersagbare Latenz für Anwendungen
zu bieten. Latenz ist eine kritische Metrik für Anwendungen, da eine berechenbar vorhersagbare
Latenz es ermöglicht, den Nutzern Garantien für Bearbeitungszeiten zu bieten. Insbesondere wird
in dieser Dissertation die Unterstützung strikter pro-Paket Latenzgarantien untersucht. Vorhersag-
barkeit und strikter Determinismus in verteilten Systeme zu realisieren, wirft einige interessante
Herausforderungen und Forschungsfragen auf.

Kommunikationsnetze bestehen aus vielen verschiedenen Komponenten, um Daten von einem
Endpunkt bis zum anderem zu übermitteln. Tatsächlich sind sogar für die anscheinend einfache Auf-
gabe ein Paket von einem Port zum anderen weiterzuleiten viele verschiedene Komponenten betei-

vii

ligt; zum Beispiel Paket Pu�er, Speichereinheiten, und Warteschlangendisziplinen. Infolgedessen ist
es ein herausforderndes Problem, alle verschiedene Verzögerungsquellen, ihre Ursachen und Ein-
�ussfaktoren, zu verstehen und in Zahlen auszudrücken. Was dieses Problem weiter verkompliziert,
ist die Tatsache, dass Weiterleitungskomponenten für E�zienz und statistische Leistung entwickelt
wurden, und nicht, um deterministisch garantierte Eigenschaften bereitzustellen.

Diese Dissertation präsentiert Messmethoden und eine Vorhersagbarkeitstudie von program-
mierbaren Weiterleitungselementen in Netzen. Beobachtungen und Ergebnisse dieser Studie ermög-
lichen anschließend die Entwicklung von präzisen Leistungsmodellen für Weiterleitungselemente.
Solche Modelle bilden die Grundlage, um Netzwerke mit Latenzgarantien zu entwerfen. Unsere Eva-
luierungen und Messanalysen zeigen, dass die Modelle die wir vorschlagen, strikte Ende zu Ende
Verzögerung garantieren können, ohne die Netzauslastung zu schmälern.

Wenn ein Netz durch eine zentrale Steuerung geregelt ist, was für programmierbare Netze ty-
pisch ist, ist ein Routingalgorithmus verantwortlich für das Finden von Pfaden für die Kommuni-
kations�üsse. Das Ziel strikte Latenzgarantien zu bieten erzwingt spezielle Anforderungen an den
Routingalgorithmus, der nicht nur physische Verbindungen auswählen muss, sondern auch entschei-
den muss, wie Pakete und mit welcher Priorität sie an jedem Gerät gesteuert werden. Gleichzeitig
muss der Algorithmus sicherstellen, dass Netzressourcen den Flüssen so zugewiesen werden, dass
die Anzahl an Flüssen die gleichzeitig im Netz angenommen werden können, maximiert wird und
dadurch Einnahmen für den Netzbetreiber so viel wie möglich erhöht werden. In dieser Dissertati-
on wird ein derartiger Routingalgorithmus untersucht, und dabei der Entwurf und eine detaillierte
Evaluierung von Routingalgorithmen vorgestellt. Vorhandene Algorithmen werden untersucht und
neue Algorithmen entwickelt, um die Laufzeit, Optimalität, und Vollständigkeit vorhandener Rou-
tingalgorithmen in verschiedenen Szenarien und Situationen zu verbessern.

Um Flüsse zur Laufzeit im Netzwerk einzubetten muss das Verhalten der Weiterleitungselemente
auf einen neuen Stand gebracht werden ohne die Vorhersagbarkeit der Weiterleitungsoperationen
in der Datenebene zu behindern. Es wurde bereits in der Literatur gezeigt, dass Laufzeitaktualisie-
rungen in programmierbaren Netzen zu unvorhersagbarem Verhalten führen können. In dieser Dis-
sertation wird der Ein�uss dieser Laufzeitaktualisierungen auf Vorhersagbarkeit und Verzögerung
in der Datenebene untersucht. Basierend auf den Ergebnissen dieser Untersuchung werden Syste-
men die Latenzgarantien für Echtzeit�üsse bereitstellen entwickelt, implementiert, und evaluiert.
Zwei verschiedene Systemen werden vorgestellt: Loko, das auf kleine Netze mit geringe Kapazität
fokussiert, und Chameleon, das für Rechnerzentrumsnetze geeignet ist. Loko vermeidet Unvorher-
sagbarkeit durch eine mathematische Modellierung der Aktualisierungsoperationen und Chameleon
kon�guriert das Verhalten der Netze von den End-Hosts her, um das Bedürfnis nach eine Aktualise-
rung der Netzelemente zu vermeiden.

Contents

1 Introduction 1

1.1 Research Challenges . 3
1.2 Contributions . 4
1.3 Outline . 7

2 Architecture Design and Network Modeling for Predictable Latency 9

2.1 Related Work . 11
2.2 Modeling Background: Deterministic Network Calculus 15

2.2.1 Introduction . 16
2.2.2 Mathematical Background: Min-Plus Algebra 17
2.2.3 Data Modeling . 25
2.2.4 Arrival Curves . 28
2.2.5 Service Curves . 30
2.2.6 Bounds . 32
2.2.7 Packet-Based Systems . 35
2.2.8 Service Curves for Common Nodes . 37

2.3 DetServ: Architecture Design . 40
2.3.1 Parameter Considered: End-to-End Delay . 41
2.3.2 Problem Formulation: Online Flow Embedding 41
2.3.3 Routing Topology: Queue-Level Topology . 41
2.3.4 Architecture Components: Routing, Resource Allocation and Reservation,

Access Control and Cost Function . 42
2.3.5 Model Functions: Interface of the Network Model 43

2.4 DetServ: End-to-End Network Latency Model . 44
2.4.1 Notations . 45
2.4.2 Mathematical Formulation of Latency Requirements 46
2.4.3 Model Functions Implementation: The Threshold-based Model 46
2.4.4 Threshold-based Model: Example . 48
2.4.5 Threshold-based Model: The Blocking Problem 50
2.4.6 Computation of the Burst Increase . 51
2.4.7 Input Link Shaping . 52

2.5 DetServ: Evaluation . 54
2.5.1 Packet-level Simulation: Con�rming Correctness 54

i

ii Contents

2.5.2 Monte Carlo Simulation . 56
2.6 WDetServ: Support for Hybrid Wired/Wireless Networks 59
2.7 Summary . 61

3 Optimization of the Path Selection Strategy 63

3.1 Background: Terminology and De�nitions . 65
3.1.1 Routing Metrics . 65
3.1.2 Optimization Problems . 66
3.1.3 Mathematical Formulation . 67

3.2 Background: Shortest Path Algorithms . 67
3.3 Evaluation of the Available Routing Algorithms . 68

3.3.1 List of Available Algorithms . 69
3.3.2 Performance Evaluation . 71
3.3.3 Which Algorithm is Best? . 78
3.3.4 Summary . 79

3.4 Search Space Reduction for Expediting Shortest Path Subroutines 80
3.4.1 Related Work . 81
3.4.2 Proposed Solution: Bounded Dijkstra (BD) . 82
3.4.3 Application: BD for CSP Routing . 85
3.4.4 Evaluation . 87
3.4.5 Summary . 93

3.5 Enabling Routing through Service Function Chains 94
3.5.1 Related Work . 95
3.5.2 LARAC-SN: OSNE of the CSP Problem . 96
3.5.3 Mole in the Hole (MITH) . 99
3.5.4 Evaluation . 101
3.5.5 Summary . 102

3.6 Handling the Optimality/Completeness Loss due to DetServ 103
3.6.1 Motivation: Violation of the Optimal Substructure Property 104
3.6.2 The M= Taxonomy . 105
3.6.3 Solutions for the M= Taxonomy . 108
3.6.4 Evaluation . 111
3.6.5 Applicability of the Solutions . 114
3.6.6 Summary . 115

3.7 Summary . 115

4 Measurements and Testbed Implementation for Data Center Networks 117

4.1 Predictability Study of SDN Switches . 118
4.1.1 Related Work . 119
4.1.2 Measurement Study: Performance Predictability 120
4.1.3 Measurement Study: Management Predictability 129
4.1.4 Insights and Discussions . 136

4.2 Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 137

Contents iii

4.2.1 Motivation: Unexploited Opportunities . 138
4.2.2 Chameleon System Design . 140
4.2.3 Chameleon Implementation . 145
4.2.4 Evaluation . 149

4.3 Summary . 155

5 Measurements and Testbed Implementation for Small Networks 157

5.1 Motivation: SoA Falls Short for Low-Cost Devices . 159
5.1.1 Hardware Architecture . 160
5.1.2 Firmware Architecture . 160
5.1.3 Why Does SoA Fail? . 161

5.2 Step 1: Switch Benchmarking . 163
5.2.1 Ensuring Deterministic Performance . 163
5.2.2 Control Plane Processing Time . 164
5.2.3 Data Plane Processing Time . 166
5.2.4 Data Plane Throughput . 170
5.2.5 Bu�er Capacity . 172

5.3 Step 2: Switch Model . 173
5.4 Step 3: Network Model . 173
5.5 Loko: Evaluation . 175

5.5.1 Measurements: Proof-of-Concept Testbed Implementation 176
5.5.2 Simulations: Scalability and Utilization . 179
5.5.3 Outcomes . 180

5.6 Discussion: Generalizability . 180
5.7 Summary . 181
5.8 Appendix: Silo Guarantees for our Scenario . 182

6 Conclusions and Outlook 185

6.1 Summary . 186
6.2 Future Work . 187

Bibliography 189

Acronyms and Abbreviations 209

Chapter 1

Introduction

Communication networks lie at the heart of our digital society, connecting users, data centers, sen-
sors, actuators, and many other devices together. Originally designed for providing a best-e�ort
connectivity service, the shift from human-based communications towards automation and machine-
to-machine (M2M) communications imposes new important requirements for the underlying infras-
tructure. The ongoing fourth industrial revolution, referred to as Industry 4.0, indeed pushes towards
automation of manufacturing processes and business logic, which involves data exchange between
sensors, actuators, controllers, and other servers in systems such as the internet of things (IoT),
cyber-physical systems (CPSs), smart cities, smart grids, cloud computing, or more generally 5G
networks [Sha+17]; [ITU15]; [Agy+14]; [GH13]; [Lin+17]; [Yaq+17]; [KRR16]; [Yan+12]. Such sys-
tems o�er services to their users, customers or tenants, the quality of which depends on the quality
of service (QoS) o�ered by the underlying physical communication infrastructure. Generally, these
emerging applications require that the communication network is highly predictable, both in terms
of correctness as well as in terms of performance, so that they can in turn provide service guarantees
to their users. For example, a safety-critical control loop in a manufacturing plant can require its
data to be transmitted within a given strict latency bound in order to ensure a proper reaction is
triggered on time in case of a particular event.

Generally speaking, network performance can be quanti�ed through di�erent statistical mea-
sures (e.g., average, minimum, or maximum) of di�erent end-to-end (E2E) network properties (e.g.,
throughput, delay, jitter, packet loss or availability) [Sta15]. Di�erent applications require di�erent
performance guarantees to provide their services. For example, while a video surveillance service
might only require average performance guarantees in terms of throughput and jitter, the sensors
and actuators involved in a safety-critical control loop such as mentioned above would rather require
maximum latency and minimum availability guarantees. In this thesis, we de�ne predictability as the
ability of a network or network device to perform its operations with strict performance guarantees,
i.e., able to provide guarantees for the absolute maximum or minimum of an E2E network property.

This thesis focuses on applications that require predictable latency, i.e., that require strict E2E
latency guarantees. Industrial communications (e.g., M2M communications and networked control
loops) are an example of such applications [SJH06]; [Dec05]. Sensors send measurement signals to
a controller which is responsible for triggering appropriate and timely reactions on actuators. For
example, in an electrical grid, based on the state of the grid measured by sensors, wind turbines

1

2 Chapter 1. Introduction

sometimes have to reduce their electricity production to avoid instabilities in the electrical network.
The breaking system, i.e., actuators, in the wind turbine nacelle must then be triggered to reduce
the electricity production on time. Another example is a robot that operates in an environment with
humans on a production line and equipped with sensors that monitor its environment. A controller
must make sure that the robot does not damage equipment or injure humans while moving and must
hence timely trigger actuators based on the data received from the sensors. These communications
have strict QoS requirements, mainly in terms of E2E delay [05]. That means that packets involved in
such communications must all reach their destination within a given maximum E2E latency bound.
Violations of this bound are not acceptable, as they could lead to dramatic situations, from �nancial
penalties for the wind turbine example to physical damage and human casualties in the moving robot
scenario. Such �ows are often referred to as real-time �ows, and we interchangeably use real-time,
predictable latency, and strict or industrial-grade to refer to the level of QoS needed by such �ows.

A wide gamut of distributed proprietary solutions [Sau10] and extensions of Ethernet [Dec05];
[Li+17] have been developed for providing this strict QoS. Such solutions include Pro�net, Pro�bus,
CAN, or Modbus. However, in order to ensure predictability, these solutions typically impose re-
strictions on the topology that can be deployed, or require changes within the network protocol
stack, which leads to expensive forwarding devices. The lack of compatibility between the di�erent
industrial Ethernet protocols further leads to vendor lock-in because network operators must deploy
devices from the same manufacturer to ensure their interoperability. That slows down innovation
and increases the costs and the probability of errors, as such proprietary devices usually require
customized scripting tools and many hours of testing performed by highly specialized network en-
gineers [Viz+19].

Programmable networks, and in particular software-de�ned networking (SDN), have been seen
in the recent years as a solution to overcome such protocol openness issues and improve the automa-
tion and �exibility of network con�guration and management [Kel+19]. SDN decouples the control
plane (CP) of forwarding devices from their data plane (DP). Using standardized and open inter-
faces (e.g., OpenFlow (OF) [McK+08]), a logically centralized controller con�gures the forwarding
behavior of switches based on the global knowledge of the network state. This centralized and direct
control over network devices and the resulting management �exibilities [Kel+19] have brought the
potential to greatly improve predictability and e�ciency, at least from a CP logic point of view. In
particular, it enables faster and more �ne-grained �ow-level control and management than propri-
etary solutions like Pro�bus or CAN which rely on distributed mechanisms. Also, SDN only requires
simple commodity forwarding elements that can be changed and updated independently [HWJ16]
and hence avoids vendor lock-in and provides solutions at a cost lower than proprietary protocols
that require specialized hardware to enable deterministic guarantees [Sau10]; [GJF13b]; [Viz+19].

The goal of this thesis is the design, implementation, and evaluation of mechanisms for pre-
dictable latency in programmable networks, and in SDNs in general. In such a centrally managed
network, requests for connections with predictable latency are expected to arrive over time at the
northbound interface (NBI) of a logically centralized controller. While network programmability
and SDN are promising technologies for the design and implementation of tra�c engineering mech-
anisms, it opens many research challenges. We discuss these challenges in the next section.

1.1. Research Challenges 3

1.1 Research Challenges

The design and implementation of solutions for predictable latency in programmable networks com-
prises various challenges. This section summarizes the main research challenges tackled in this the-
sis. The next section then reports on the main contributions of the thesis.

Measurement procedures and predictability study of programmable forwarding devices.

A big challenge in the design of mechanisms for predictable latency in SDNs is to gain a deep
understanding of the behavior of programmable forwarding devices. In fact, even seemingly simple
tasks, such as forwarding, involve many complex components, such as link bu�ers, hardware mem-
ory units, switch central processing units (CPUs), queuing disciplines, etc. A deep understanding of
the behavior of all these components is necessary for guaranteeing predictable network operations.
While the proprietary solutions that exist for predictable latency modify the behavior of forwarding
devices to ensure predictability, a SDN solution based on commodity o�-the-shelf programmable
devices must build on top of hardware that was not originally designed for predictability. The �rst
research challenge is hence to gain a better understanding of the behavior of existing forwarding
devices through the design and application of measurement procedures for unveiling behavioral ar-
tifacts with respect to predictability, or to empirically con�rm the predictability of some components.

Modeling of programmable forwarding devices for worst-case performance prediction.

The main cause of delays in modern networks is the presence of microbursts [Gho+17]; [Jos+18]
that collide at the egress ports of switches, thereby generating queuing and hence delay. Providing
predictable latency requires the appropriate tra�c and switch models for predicting the worst-case
delay a packet from a microburst can experience at any hop on its path to its destination. While
proprietary solutions modify the forwarding elements to be able to model their worst-case behavior
easily, a SDN-based solution for predictable latency must design worst-case latency models for com-
modity programmable hardware. That is a challenging task as commodity SDN hardware was not
designed with predictability in mind. Models have to be designed and thoroughly veri�ed through
comprehensive benchmarking campaigns to ensure that, within a given range of scenarios and use
cases, the latency experienced by packets at a given switch can be strictly upper-bounded. Besides
providing correct models, network operators also strive for high utilization, as more accepted con-
nections means more revenue. Avoiding to be too pessimistic while still providing correct latency
guarantees is a major challenge, as less pessimistic predictions lead to more accepted �ows and hence
higher network utilization.

Fast and e�cient path �nding.

The practical implementation of a centralized controller is a challenging task. First, from an
algorithmic point of view, a routing procedure is responsible for �nding a path for arriving requests
in a reasonable amount of time. This routing procedure should interact with a network model for
E2E latency predictions. While models are expected to grasp complex queuing disciplines and �ows
multiplexing in the network, the interaction between these two components must happen fast. As the
main interface to the tenants of the network, low runtime is a key feature of the routing procedure.
At the same time, in order to increase the number of applications that can be accommodated and

4 Chapter 1. Introduction

hence increase revenue for the operator, e�cient network resources utilization is a second key asset
for the routing procedure. Understanding and designing such a routing procedure to achieve these
goals in the context of centralized management for predictable latency is an open research question.

Predictable con�guration and recon�guration of forwarding devices.

After the routing procedure �nds an embedding for a new application, this embedding has to be
programmed in the network. However, while recent e�orts have shown the numerous bene�ts, e.g.,
in terms of �exibility [Kel+19], of programmability, the con�guration of forwarding rules must be
done carefully to avoid interferences in the DP. This CP to DP potential vector of interferences is a
challenging research direction. In particular, recon�gurations, a major strategy for (re-)optimizing
path selection and hence improving network utilization, require forwarding con�gurations to be
changed perpetually and at runtime. The problem of �nding an ordered set of recon�guration com-
mands to preserve the network guarantees is a challenging algorithmic issue. Besides, each recon-
�guration operation must be performed, in practice, without interfering with the current operation
of the network. This might have as well to be included in the E2E latency modeling. The design and
implementation of such a con�guration and recon�guration strategy for programmable devices that
keeps strict guarantees in the DP is another challenging research problem.

1.2 Contributions

This section summarizes the main contributions of the thesis towards predictable latency in pro-
grammable networks. Fig. 1.1 illustrates the structure of the thesis by highlighting the three main
investigated research directions along with the used methodologies and concepts and the associated
publications from the author where these original contributions were published.

The �rst and minor contribution of this thesis is based on deterministic services (DetServ), an
architecture and an associated latency model for the provisioning of latency guarantees that was
already presented in a previous doctoral thesis from the Technical University of Munich [Guc18]. A
model of traditional forwarding mechanisms is established and extended to design an E2E network
model that supports access control and resource reservation. We additionally identify and clearly
de�ne the necessary logical components within this architecture. We perform packet-level simu-
lations that show that such an architecture and its associated network model indeed can provide
strict latency guarantees to applications. Through Monte Carlo simulations, we further show that
this architecture also provides the means of achieving low request processing time, a key feature of
a network QoS framework. An extended architecture for supporting networks with wireless hops,
wireless deterministic services (WDetServ), is also designed and presented.

The second contribution of this thesis is the algorithmic design and analysis of a routing proce-
dure for the online embedding of routing requests with strict E2E latency requirements. Working
hand in hand with a network model, the routing procedure is responsible for �nding an embedding
(consisting of a physical path and priority levels at each hop) that ful�lls the latency requirement of a
new �ow and that does not violate the guarantees provided to previously embedded �ows. By split-
ting the problem in several components, we show that the routing procedure can be boiled down
to a delay-constrained least-cost (DCLC) routing problem and the design of a corresponding per-

1.2. Contributions 5

Research Area

Predictable Latency in Programmable Networks

Investigated Fields

Routing Strat-

egy Optimization

Chapter 3

1st major contribution

−→ −→ −→ From theory to practice −→ −→ −→

[Guc+17], [Van+19c],
[Van+18b], [Van+18a]

Architecture and

Model Design

Chapter 2

SoA and minor contribution

[GVK17], [VK16], [Zop+18]

Measurements and

System Implementation

Chapters 4 and 5

2nd major contribution

[Van+19a],
[Van+20], [Van+19b]

Methodologies & Concepts

Algorithms implementation
Sec. 3.3

Network calculus
Sec. 2.2, 2.4

Hardware measurements
Sec. 4.1.2, 4.1.3, 5.2

Runtime vs. optimality
performance evaluation
Sec. 3.4.4, 3.5.4, 3.6.4

Search space reduction
Sec. 3.4

Lagrangian relaxation
Sec. 3.5.2

Graph transformation
Sec. 3.5.3, 3.6.3.3

Optimality & com-
pleteness analysis

Sec. 3.6

Conclusion and Discussion

Architecture design
Sec. 2.3, 2.6

Latency modeling
Sec. 2.4

Packet-level simulation
Sec. 2.5.1

Monte Carlo simulation
Sec. 2.5.2

Packet processing soft-
ware implementation

Sec. 4.2.3.2

Network calculus
Sec. 4.1.2.2, 5.3, 5.4

Source routing
Sec. 4.2.2.4, 4.2.3

Testbed implementa-
tion and evaluation

Sec. 4.2.4.2, 4.2.4.3, 5.1.3, 5.5

Simulations
Sec. 4.2.4.1, 5.5.2

Figure 1.1: Thesis structure. The thesis investigates three main di�erent research directions in the area of
predictable latency in programmable networks: architecture and model design, routing strategy optimization,
and measurements and system implementation. Whereas the two �rst �elds mostly focus on theoretical
concepts, the last two chapters on measurements and system implementation focus on practical aspects and
issues and aim at the design of a complete working prototype system for providing latency guarantees to
applications.

6 Chapter 1. Introduction

queue cost function. We show that many algorithms have already been proposed for this problem
and evaluate them thoroughly in many di�erent scenarios. Besides identifying a few algorithms as
among the best in most cases, we show that one cannot rely on an optimal algorithm for online route
computations and heuristics, i.e., sub-optimal algorithms, must be used. We further show that the
per-queue access control of the DetServ latency model in�uences the optimality and completeness of
these algorithms. We formalize this e�ect by proposing the M= taxonomy, a taxonomy that classi�es
routing metrics based on the number = of previously visited edges that are needed to compute the
metric value at a given edge. For = > 1, we show that the optimal substructure property (OSP) that
forms the basis of most routing algorithms is violated: algorithms then lose their properties. Whether
optimality and/or completenesss is/are lost depends on the M= classi�cation of the involved routing
metrics and on whether these metrics are used for path optimization or for constraining the set of
valid paths. We propose several solutions, namely edge-based Dijkstra (EBD) and graph transforma-
tion algorithm (GTA), for recovering these key features in certain cases, at the price of an increased
runtime. We also design Lagrange relaxation based aggregated cost for speci�ed nodes (LARAC-SN)
and mole in the hole (MITH), two routing algorithms for �nding delay-constrained paths traversing
service function chains (SFCs), and propose bounded Dijkstra (BD), a search space reduction method
for speeding up algorithms that are based on several subsequent shortest path subroutines (e.g., Di-
jkstra runs). We show that this method allows to drastically reduce the runtime of such algorithms
– for favorable cases, by 96% on average for some algorithms – without impacting their output and
hence optimality.

Finally, the third and major contribution of this thesis is the investigation of the predictability of
SDN hardware and the adaptation of the originally proposed architecture and network model for the
design, implementation, and evaluation of proof-of-concept systems providing strict latency guaran-
tees to applications. In particular, we focus on two di�erent types of network: data center networks
and small networks, which we de�ne as networks with low-cost and low-capacity forwarding de-
vices. For data center networks, through a thorough measurement campaign, we observe that exist-
ing hardware can present many di�erent sources of unpredictability, mostly in the implementation of
the control agent. To overcome these observed behavioral artifacts, we design, implement, and eval-
uate Chameleon, a demand-aware cloud network that combines adaptive source routing with priority
queuing to meet both predictable latency and resource e�ciency objectives. Chameleon dynamically
reevaluates routing decisions, performing adjustments while maintaining network calculus invari-
ants to ensure strict latency guarantees are provided and preserved. The system avoids interacting
with the forwarding devices by completely relying on end-host data plane development kit (DPDK)-
based tagging for de�ning forwarding and enqueuing decisions at each hop. Besides ensuring strict
latency predictability in the network, we show that Chameleon allows to easily incorporate route and
priority level recon�gurations and that this in turn allows to reach higher network utilization and
hence reduce the �ow rejection rate. For small networks, we observe that traditional assumptions
taken by latency models are not valid. In particular, low-capacity forwarding devices have lower
processing throughput and can generate inter-port interferences. This leads to state of the art (SoA)
systems that fail at providing their guarantees. Based on this observation, we design, implement, and
evaluate Loko, a system that provides latency guarantees with low-cost and low-capacity hardware.
The system is based on a thorough switch benchmarking, based on which a tailored per-switch la-

1.3. Outline 7

tency model is derived and used for global access control and resource reservation. Using testbed
measurements of our proof-of-concept implementation, we show that Loko indeed provides latency
guarantees in networks based on low-cost and low-capacity forwarding elements. This work opens
several interesting avenues for future research, as it shows that tailored implementations on low-
cost devices such as DPDK-based implementations of virtual network functions (VNFs) for packet
processing on multi-port network interface cards (NICs) can provide predictability and performance
guarantees.

In order to ensure reproducibility, and as a contribution to the research community, most of our
source code, con�guration �les, and data sets have been made available online [Van19c]; [Van19b];
[Van19a].

1.3 Outline

The remainder of the thesis is organized as follows.
Chapter 2 describes the related work on the provisioning of QoS in programmable networks and

establishes the DetServ architecture and E2E network latency model. The path followed towards the
de�nition of this architecture and model is clearly described. The resulting DetServ system is then
theoretically evaluated through packet-level and Monte Carlo simulations to prove its correctness
and potential for low request processing time and high network utilization. An extensive treatment
of deterministic network calculus (DNC), the mathematical concepts on which our network models
are based, is also provided.

Chapter 3 investigates in detail the routing procedure of the DetServ architecture. Existing al-
gorithms are evaluated in detail and compared in di�erent network and routing request settings.
Algorithms are proposed to improve the runtime of shortest path subroutines and to route �ows
through SFCs. A taxonomy is further proposed to formalize the impact the DetServ network model
has on the optimality and completeness of existing algorithms. All evaluations in this chapter are
conducted through simulations by evaluating the runtime, optimality gap, and completeness of al-
gorithms in di�erent network and request settings.

Chapter 4 brings the previous chapters into practice by benchmarking existing SDN hardware
and analyzing how the previously de�ned theoretical model can be applied to them. Several un-
predictability sources are identi�ed and circumvented by the design of a solution based on source
routing and perpetual route and priority recon�gurations. Chameleon, the resulting system, is de-
signed, implemented, veri�ed, and evaluated with a proof-of-concept implementation in a data center
testbed.

Chapter 5 further analyzes how the models operate in practice by investigating the deployment of
predictable latency solutions in small networks. We observe that low-cost and low-capacity hardware
do not ful�ll the traditional assumptions of SoA E2E latency models, including those de�ned in
chapter 2. A thorough benchmarking of the processing time, throughput, and bu�er capacity of
the Zodiac FX switch [Nor19] is performed. Based on the results, an adapted model is designed
and used for the design, implementation, and evaluation of access control and resource reservation
routines that enable the provisioning of latency guarantees with Zodiac FX switches. Results are
validated in a proof-of-concept testbed implementation.

8 Chapter 1. Introduction

Finally, chapter 6 concludes this thesis by summarizing the main results and messages and by
giving a brief outlook for interesting future work and research directions.

Chapter 2

Architecture Design and Network

Modeling for Predictable Latency

This chapter sets the scene for chapters 3, 4, and 5 by describing the architecture and modeling
principles on which this thesis is based. In particular, we precisely describe DetServ, an architecture
for the provisioning of deterministic services, and in particular predictable latency, in programmable
networks. This architecture relies on SDN principles, by which a centralized controller manages and
con�gures the switches in the network. This is shown in Fig. 2.1. Tenants request the embedding
of a �ow for a given application through the NBI of a centralized controller. Such an architecture is
fundamental for providing strict guarantees. Indeed, unpredicted microbursts are the main cause of
delays in modern networks [Gho+17]; [Jos+18], and having such an entry point to the network where
service level agreements (SLAs) are negotiated allows to control microbursts, predict the worst-case
delay they can generate, and hence compute worst-case latency guarantees. A routing procedure is
then responsible for �nding a path that satis�es the requirements of the application.

Guaranteeing deterministic services to applications requires the de�nition of architectural com-
ponents performing well-de�ned and particular tasks. Latency computations must be done entirely
in the CP and must not rely on DP measurements, as this leads to unprecise and potentially stale
computations [GRK15]. This is done by keeping track of the whole state of the network, i.e., of the
set of applications and their current resources usage, in the CP. The main component of the Det-
Serv architecture is the network model, responsible for the modeling of latency in the network and
for accordingly computing E2E latency guarantees. This is a challenging problem, as the switches
we consider available in programmable and SDN networks consist of simple forwarding elements
based on ternary content-addressable memory (TCAM), supporting only limited protocols and fea-
tures (e.g., Ethernet and priority queuing) and implementing limited or no control logic but rather
relying on a centralized controller for determining their forwarding behavior. One of the goal of this
modeling is also to avoid requiring additional features from the forwarding elements, as this rapidly
leads to more expensive devices. The quest for predictable latency, i.e., for latency bounds that are
deterministically guaranteed, requires us to adopt a deterministic modeling framework, in contrast
to stochastic modeling approaches like queuing theory and stochastic network calculus (SNC). Our
modeling hence relies on DNC principles, a mathematical framework and system theory for the com-
putation of worst-case performance bounds in communication networks. Our description of the Det-

9

10 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

Control plane

Data plane

Routing

flow embedding/removal request

Model

data plane configuration

Figure 2.1: Global architecture that forms the basis of this thesis. A centralized SDN controller is responsible
for handling �ow embedding requests. With this aim, a routing procedure relies on the computations of a
network model to guarantee latency bounds to applications. To avoid unprecise and stale information, the
network model keeps track of the whole state of the network (the accepted �ows and where they are embedded)
in the CP and does not rely on measurements from the DP.

Serv architecture de�nes the components needed in such a network model to achieve all these goals.
The resulting architeture is shown in Fig. 2.26. To show the generality of the DetServ architecture,
we show how it can be applied to incorporate wireless links in the network. We accordingly de�ne
WDetServ (Fig. 2.33). Through packet-level and Monte Carlo simulations, we con�rm that the Det-
Serv architecture and model indeed provide correct latency bounds and with a reasonable processing
time for online embedding scenarios (hundreds of milliseconds in the worst cases). Throughout this
thesis, we assume that a centralized controller manages DP devices through an out-of-band interface.
The consideration of a scenario where the controller is connected in-band, i.e., using links that are
used for DP communications, is left out of this thesis but has been investigated in [Sak+20].

Content and outline of this chapter. Sec. 2.1 covers the related work in the area of predictable
latency and QoS provisioning in SDN. Sec. 2.2 provides introduction material on DNC, the modeling
framework that forms the basis of this thesis. This material essentially relies on content from [VK16].
The reader familiar with these concepts can freely skip this section. The detailed architecture design
and modeling of E2E network latency are presented in Sec. 2.3 and 2.4. A proof-of-concept packet-
level simulation con�rming that the provided guarantees are indeed met is presented in Sec. 2.5.
Additional simulations assessing the network utilization achievable by the model are also presented.
Sec. 2.6 describes WDetServ, an extension of the DetServ architecture and network model for sup-
porting networks with wireless hops. The DetServ architecture and network models are the result of
a bilateral collaboration published in [GVK17]. The network model and a �rst version of the archi-
tecture are available in a previous doctoral thesis from the Technical University of Munich [Guc18].
In addition to presenting again these results, we provide an extended architecture description and
the additional packet-level simulations and Monte Carlo simulations of Sec. 2.5. The WDetServ de-
scription in Sec. 2.6 is based on condensed material from [Zop+18]. Finally, Sec. 2.7 concludes this
chapter and portrays how the next chapters build on top of it.

2.1. Related Work 11

2.1 Related Work

Industrial applications have for a long time been a major use case for predictable latency. Initially,
proprietary solutions (e.g., Pro�bus, Interbus or CAN) have been speci�cally developed for real-time
industrial communications [GJF13b]; [Sau10]. However, these solutions often come with a complete
proprietary communication stack which requires specialized and expensive hardware.

Later, Ethernet data transfer rates increased and Ethernet became ubiquitous in local area net-
works (LANs) and the Internet. Therefore, it attracted a lot of attention for industrial deployments.
However, because of its non-deterministic medium access control (MAC) scheme, Ethernet was ini-
tially not considered as a suitable solution. The usage of full duplex point-to-point links along with
Ethernet switches instead of shared buses and hubs allowed to avoid collisions and hence the negative
impact of the Ethernet MAC protocol [Dec05]. Nevertheless, this introduces bu�ering and possibly
over�ows, which were still considered to be a source of non-determinism [Dec05]. Despite this, us-
ing Ethernet has major bene�ts, including simple and cheap deployment, easy connectivity towards
o�ce networks, the Internet or more generally any Internet protocol (IP) tra�c, and usage of o�-
the-shelf communication hardware. Hence, many industrial control systems manufacturers decided
to develop proprietary extensions of Ethernet to achieve determinism [JN04]; [GJF13b]. A broad
overview of Ethernet-based real-time technologies, including deterministic Ethernet standards, was
provided by Decotignie [Dec05]. Unfortunately, these solutions require changes within the network
protocol stack or impose topology restrictions or both, which leads to more expensive forwarding
devices than with standard Ethernet.

The emergence of SDN and network programmability provided a new opportunity for tra�c
engineering in Ethernet networks, where work focusing on QoS for data center applications have
become prominent. An overview of the most important existing works and their respective features
in shown in Tab. 2.1.

Prior to the 2010s, tenants of cloud networks were o�ered the possibility of paying for compute
resources, i.e., for virtual machines (VMs). However, the network resources connecting these VMs,
which are shared among all tenants, were not included in pricing. Cloud o�ers had no abstraction or
mechanism for allocating bandwidth between VMs. This led to bad performance and unpredictability
for applications running in the cloud [Guo+10]; [Bal+11]. As a result, many e�orts have been trying
to provide bandwidth guarantees, work conservation, inter-tenant fairness, and isolation, or a combi-
nation of these, in cloud networks. SecondNet [Guo+10] and Oktopus [Bal+11], the �rst works in this
direction, proposed to add network resources into the cloud pricing and provided bandwidth guaran-
tees through tra�c shaping and rate-limiting at the end-host hypervisors. These approaches are not
work-conserving, i.e., the bandwidth reserved for a �ow is left unused if this �ow does not use it. That
leads to loss of revenue for the operator, as this bandwidth could be used to �nish �ows from other
tenants. With this aim, Seawall [Shi+11] proposed to use congestion-controlled tunnels implemented
in a shim layer that intercepts all packets entering and leaving a server. This layer, responsible for
congestion control feedback, ensures that bandwidth is used by a �ow if available. However, Sea-
wall provided no bandwidth guarantees to tenants. Gatekeeper [Rod+11] proposed an approach to
provide both bandwidth guarantees and work-conservation by using a distributed mechanism at the
virtualization layer of each server that controls the usage of the network access link of each server

12 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

Name

Guarantees Constraints

Pkt. lat. BW Burst WC Switches req. OS/App. changes Other

SoA focusing on providing bandwidth (BW) guarantees and/or being work-conserving (WC).

SecondNet [Guo+10] 7 3 7 7 PQ, MPLS - -

Oktopus [Bal+11] 7 3 7 7 PQ - -

Seawall [Shi+11] 7 7 7 3 - - -

Gatekeeper [Rod+11] 7 3 7 3 - - Non-congested core

TIVC / Proteus [Xie+12] 7 3 7 - - -

NetShare [Lam+12] 7 7 7 3 WFQ - -

FairCloud PS-L/PS-N [Pop+12] 7 7 7 3 WFQ - -

FairCloud PS-P [Pop+12] 7 3 7 3 WFQ - Tree topology

EyeQ [Jey+13] 7 3 7 3 ECN - Non-congested core

Elasticswitch [Pop+13] 7 3 7 3 - - -

Hadrian [Bal+13] 7 3 7 3 Custom protocol - -

Trinity [Hu+16] 7 3 7 3 PQ, ECN - -

HUG [Cho+16] 7 3 7 3 - - -

eBA [Liu+16] 7 3 7 3 Custom protocol - -

QShare [Liu+18] 7 3 7 3 WFQ - -

SoA optimizing the transport protocol.

DCTCP [Ali+11] 7 7 7 3 ECN OS -

D3 [Wil+11] 7 7 7 3 Custom protocol OS, App. -

PDQ [HCG12] 7 7 7 3 Custom protocol OS, App. -

D2TCP [VHV12] 7 7 7 3 ECN OS, App. -

HULL [Ali+12] 7 7 7 3 Custom feature OS -

DeTail [Zat+12] 7 7 7 3 Custom protocol OS, App. -

pFabric [Ali+13] 7 7 7 3 Custom protocol OS, App. -

NDP [Han+17] 7 7 7 3 Custom protocol OS -

Homa [Mon+18] 7 7 7 3 PQ OS -

HPCC [Li+19] 7 7 7 3 Custom protocol OS -

SoA providing per-packet latency guarantees.

TDMA Ethernet [Vat+12] 3 3 3 7 - - Millisecond timescale

Fastpass [Per+14] 3 3 3 7 - OS End-hosts synchronization

QJump [Gro+15] 3 3 7 7 - - -

Silo [Jan+15] 3 3 3 7 - - Multi-rooted tree topology

LaaS [Zah+19] 3 3 3 7 - - Tenants on di�. phys. links

Contributions in this thesis

DetServ (chapter 2) 3 3 3 7 PQ - -

Chameleon (chapter 4) 3 3 3 7 PQ, VLAN - -

Loko (chapter 5) 3 3 3 7 - - Tailored to low-cost devices

Table 2.1: Overview of the main modern solutions for the provisioning of QoS in programmable networks.
While many approaches focus on providing BW guarantees or optimize the transport protocol to reduce FCT
and/or tail latency, only a few approaches provide strict latency guarantees, the focus of this thesis. These
approaches su�er from limitations such as the need for synchronization or the support of only particular
topologies. Our contributions in this thesis provide strict latency guarantees with precise BW and burst
allowance in any general network without any particular requirements. Furthermore, while Loko (chapter 5)
is tailored to low-cost and low-capacity networks for which none of the existing solutions work, we show in
chapter 4 that DetServ and Chameleon reach higher network utilization than existing approaches.
Note that App. change does not include the usage of another transport library but only the requirement for providing more
information to this library (e.g., deadline).

2.1. Related Work 13

and accordingly provides per-virtual network interface card (vNIC) link bandwidth guarantees. Each
vNIC can exceed its guaranteed allocation when extra bandwidth is available at both transmitting and
receiving endpoints. Gatekeeper however assumes that the core of the network is not congested. In
order to achieve work-conservation, Proteus [Xie+12] proposed temporally interleaved virtual clus-
ters (TIVCs). The requirements of applications are expressed in terms of time windows of given
width (time) and height (bandwidth). An algorithm then allocates demands both spatially and tem-
porally. That allows for work-conservation, but only if the time dimension of applications is pro�led
correctly, what remains a very complicated task. NetShare [Lam+12] proposed to achieve work-
conservation by using weighted fair queuing (WFQ) for allocating bandwidth predictably across
services based on weights and automatically sharing unused bandwidth among services. Because
this does not scale to many tenants, they reduced the number of queues needed by stochastically
grouping services in the same queues, changing the grouping at each switch and periodically. Un-
fortunately, this can potentially lead to bandwidth requirements violations. FairCloud [Pop+12] then
highlighted the obvious trade-o� between bandwidth allocation and work-conservation and accord-
ingly proposed three policies based on WFQ, similarly to NetShare. Bandwidth guarantees and work-
conservation can be achieved by assuming a tree topology and allocating spare capacity on the �y.
Based on that, EyeQ [Jey+13] proposed a similar approach, but based on early congestion noti�cation
(ECN) and assuming a non-congested core, with per-destination rate limiters and feedback from re-
ceivers. Elasticswitch [Pop+13] followed by proposing a similar solution implemented in the hyper-
visor: guarantees are carefully divided among VMs and work-conservation is provided by allocating
spare capacity based on tra�c estimation. Several similar proposals then followed. Hadrian [Bal+13]
relies on a resource reservation protocol (RSVP)-like protocol to distributedly reserve bandwidth on
routers, Trinity [Hu+16] separates bandwidth guarantees and work-conservation in di�erent priority
classes, High utilization with guarantees (HUG) [Cho+16] focuses on correlated and elastic demands,
eBA [Liu+16] uses explicit bandwidth information from physical links to enforce accurate rate con-
trol, and QShare [Liu+18] uses WFQ to automatically provide work-conservation and uses dynamical
tenants-queue bindings to solve the queue scarcity problem. Other approaches not shown in the ta-
ble and focusing on data rate allocation include [Dua14]; [Sha+14]; [TPR14]; [Lee+14]; [Kum+15];
[She+16]; [Duf+17]; [MMB17]; [PBS17]. While these approaches provide the scalability and QoS
level needed for bandwidth-hungry data center applications, they do not provide strict bu�er man-
agement as necessary for providing strict latency guarantees.

Another category of works focused on data center applications tries to adapt the layer-4 (L4)
transport protocol used in order to reduce and/or minimize (tail) latency and/or �ow completion
time (FCT). Data center TCP (DCTCP) [Ali+11], one of the �rst proposals in this direction, uses ECN
marking on switches to provide feedback to end hosts and reduce bu�er usage. Deadline-driven de-
livery (D3) [Wil+11] allows �ows to ask for a given FCT and end hosts use this information to request
rate from routers along the data path. Preemptive distributive quick (PDQ) [HCG12] approximates
a range of scheduling disciplines like earliest deadline �rst (EDF) or shortest job �rst (SJF). To solve
the deadline-unawareness of DCTCP and the greediness and switch customization needed by D3,
Deadline-aware datacenter TCP (D2TCP) [VHV12] was proposed as a distributed and reactive (can
update reservations) protocol that uses a novel congestion avoidance algorithm based on ECN and
deadline information. The key idea behind the algorithm is that far-deadline �ows back o� aggres-

14 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

sively and near-deadline back o� only a little or not at all. Other proposals with the same goals
but using di�erent approaches appeared. High-bandwidth ultra-low latency (HULL) [Ali+12] marks
congestion based on utilization of links rather than on bu�ering, DeTail [Zat+12] uses a cross-layer
stack that detects congestion at lower layers to load-balance at higher layers, pFabric [Ali+13], in-
stead of using rate control, relies on end hosts setting a priority number to each packet dependent
on the �ow deadline and remaining size, NDP [Han+17] trims packets when congestion happens
to send the header to the receiver so that it is aware of the demand, Homa [Mon+18] relies on a
receiver-driven control mechanism that tells the sender when to send, and high precision conges-
tion control (HPCC) [Li+19] uses information from in-network telemetry to compute accurate �ow
rates. [Bai+16]; [ZBC19] are other similar approaches based on ECN. While these algorithms are by
de�nition work-conserving, they minimize average latency or reduce its tail based on the set of �ows
in the network, rather than providing delay or even bandwidth guarantees through appropriate ad-
mission control. These protocols also require modi�cations to the operating system (OS) running,
sometimes to the application or custom protocol or features to be implemented on the networking
hardware. Also, it has been argued that L4-based optimizations do not provide robust performance
isolation because these techniques rely on cooperation among the �ows, and there is always some-
one that can misbehave [Shi+11]. Similarly to these transport protocols which provide QoS through
feedback received from the DP, a wide range of other proposals, not shown in the table, build the net-
work state by retrieving it from the DP and accordingly provide QoS guarantees [Kim+10]; [Egi+12];
[Bar+13]; [AX14]; [Ada+15]; [An+16]; [She+16]. This step adds a non-negligible delay to the �ow
request processing time and su�ers from possible measurement errors which impedes the provi-
sioning of hard latency guarantees. On the contrary, the approach taken in this thesis is to keep a
model of the resources usage in the CP [GRK15] (see Sec. 2.3 and 2.4). The state of the network can
then be retrieved from the model itself, avoiding the request processing loop to go through the DP,
thereby reducing the request processing time. The model only has to communicate with the DP at
topology change events and must ensure to precisely compute latency bounds through appropriate
mathematical modeling (see Sec. 2.2).

Finally, a few recent e�orts attempt to provide predictable latency and delay guarantees in shared
network environments. These are the works closest to the focus of this thesis, as they can provide
predictable latency guarantees. Time-division multiple access (TDMA) Ethernet [Vat+12] relies on an
external entity to schedule transmissions (through Ethernet �ow control pause and unpause frames)
from the end hosts. Such an architecture that implements TDMA without the need for synchroniza-
tion, su�ers from low granularity (in the order of milliseconds) or imprecision that could lead to
latency violations or the inability to ful�ll latency requirements in the order of tens or hundreds of
microseconds. Fastpass [Per+14] also proposes a TDMA approach where a centralized controller as-
signs timeslots to end hosts. It however requires synchronization among hosts. [Sch+16] is another
example not shown in the table providing latency guarantees through TDMA. These solutions can
potentially lead to an optimal utilization of resources. However, because of the need for synchro-
nization, changes in the protocol stack of endpoints might be needed, thereby leading to expensive
solutions in terms of cost and e�ort and potentially to delay violations if the synchronization is not
accurate enough. Links as a service (LaaS) [Zah+19] suggests that existing network isolation solu-
tions are either impractical or cannot really guarantee performance. The authors accordingly argue

2.2. Modeling Background: Deterministic Network Calculus 15

that most demanding tenants should be provided with exclusive access to a subset of the data network
physical links. While this can provide strict latency guarantees without the need for synchroniza-
tion or OS stack changes, having only one tenant per physical link drastically reduces the number of
tenants that can be accommodated and, hence, the revenue for the operator. Also avoiding end hosts
synchronization, QJump [Gro+15] computes latency guarantees by ensuring that each �ow has at
most one packet in transit in the network at any given time. Unfortunately, this prevents applica-
tions from sending bursts of data. We will see in chapter 4 that this leads to a high rejection rate and
low network utilization. Silo [Jan+15], the closest work related to our contributions, applies DNC to
compute guarantees. Compared to Silo, our �rst contribution, DetServ (Sec. 2.3 and 2.4), introduces
priority queuing. The main bene�t is that the several queues o�er greater delay diversity, which we
show in chapter 4 greatly increases the number of �ows that can be accepted, i.e., network utiliza-
tion. Also, Silo focuses on multi-rooted tree topologies, while we introduce routing (chapter 3) to
accommodate (and leverage) any topological structure. To further increase network utilization, the
Chameleon system proposed in chapter 4 adds the possibility of recon�guring �ows at runtime. To
achieve this, source routing based on virtual local area network (VLAN) tagging is used. In chapter 5,
we focus on low-cost low-capacity networks. All these systems, including DetServ and Chameleon,
rely on assumptions that turn out to be invalid for low-cost devices and hence, as we show for Silo
and QJump in Sec. 5.1, fall short to provide latency guarantees in such scenarios. Our proposed Loko
system avoids these assumptions to provide strict latency guarantees in such networks.

Not shown in the table, several works focus on architectural issues such as interface design and
requirements analysis [Kas+12]; [Sha+13]; [OD+13]; [GHG14]. In particular, the institute of electrical
and electronics engineers (IEEE) time-sensitive networking (TSN) task group works on standardizing
approaches and concepts for providing “deterministic services through IEEE 802 networks, i.e., guar-
anteed packet transport with bounded latency, low packet delay variation, and low packet loss” [IEE].
These works mention the need for access control and resource reservation as we describe in Sec. 2.3.4
and for a path computation unit as we investigate in chapter 3.

To conclude, we also mention that several works focus on load balancing tra�c �ows on di�erent
paths to improve QoS [He+15c]; [Gen+16]; [Che+16]; [Gho+17]; [Kat+17b]; [Ara+18]. We do not
consider such an approach in this thesis but that is an interesting direction for future work.

2.2 Modeling Background: Deterministic Network Calculus

Network calculus is a system theory for communication networks. Based on the min-plus algebra,
deterministic network calculus (DNC) provides a theoretical framework for analyzing performance
guarantees in computer networks. Speci�cally, worst-case bounds on delay and bu�er requirements
in a network can be computed. Network calculus is said to be part of exotic or tropical algebras. These
are a set of mathematical results giving insight into man-made systems (such as communication
networks).

As this thesis is focused on the provisioning of strict latency guarantees, the results presented
in this section focus on the computation of deterministic bounds, i.e., this section only deals with
DNC. Another branch of DNC, namely stochastic network calculus (SNC), allows to compute worst-

16 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

case performance bounds which follow probabilistic distributions. [Cha00], [JL08], [CBL05], [Fid06],
[Jia06] and [Bac+92] are references covering this other branch of DNC.

The technical content of this section is mostly based on results from [LT12]. Additional develop-
ments and modi�cations of results for this thesis are accompanied by a [★] sign and, obviously, by a
proof or explanation.

2.2.1 Introduction

DNC is the system theory that applies to computer networks. The main di�erence with the traditional
system theory is that DNC is based on min-plus algebra, while traditional system theory is based on
classical algebra. Roughly speaking, this means that the addition becomes the computation of the
minimum and the multiplication becomes the addition.

Among the similarities between both theories is the usage of the convolution operator. In classical
system theory, the convolution of an input signal by the impulse response of a system gives the
output of the system. Also, the impulse response of the concatenation of a series of systems is given
by the convolution of the impulse responses of all the systems. Similarly, in DNC, the so-called min-
plus convolution is used to compute the output of a system or to merge nodes in series into one
single node.

Nevertheless, both theories present some di�erences. A major one is the response of a linear
system to the sum of two inputs. In classical system theory, the response to the sum of two inputs
is the sum of the individual responses to each signal. In min-plus algebra, the addition corresponds
to the multiplication in classical algebra and is therefore a non-linear operation. As a result, little is
known on the aggregation of multiplexed �ows. On the other hand, the computation of the minimum
corresponds to the addition in classical algebra. Therefore, the operation is linear and the response
to the minimum of two inputs is the minimum of the responses taken separately. Another di�erence
is how non-linear systems are handled. In classical system theory, non-linear systems are linearized
around their operating point and the input signals are restricted around this operating point. In
nework calculus, a non-linear system is replaced by a linear system that is a lower bound for the
non-linear system. This is how worst-case performance measures can be computed.

In order to provide worst-case performance bounds for �ows in a network, DNC requires a model
of these �ows and of the network. Once this modeling is done, the derivation of the bounds is an
easy task. That is the bright side of DNC. It gives easily deterministic bounds. However, the modeling
of the �ows and of the network is a complex �rst step. In particular, while we will see in Sec. 2.2.4
that modeling �ows is usually easy, the modeling of network nodes and the extension to multiples
nodes, i.e., to a network, is more complex. First, though a node is usually modeled by a simple
mathematical curve or function, ensuring that this curve is a correct model for this node is not trivial.
Second, the extension to multiple nodes requires to apply some complex min-plus algebra operations.
Third, DNC results are usually developed for bit-by-bit systems and therefore yield bounds which are
not valid for packet-based systems. The step of converting the bounds to be valid for packet-based
systems is often forgotten or neglected.

The goal of this section is to overcome these three obstacles, thereby making the remainder of
this thesis, which heavily relies on DNC principles, easy to understand and follow. In Sec. 2.2.2, we

2.2. Modeling Background: Deterministic Network Calculus 17

Mathematical background
Sec. 2.2.2

Flows and nodes modeling
Sec. 2.2.3, 2.2.4, 2.2.5

Bounds computation
Sec. 2.2.6

Packet-based systems
Sec. 2.2.7

Models of common nodes
Sec. 2.2.8

Figure 2.2: Structure of Sec. 2.2.

give a comprehensive, though classical, overview of the mathemical background. Sec. 2.2.3, 2.2.4
and 2.2.5 are then devoted to the description and explanation of how �ows and network nodes are
modeled. In Sec. 2.2.6, we then introduce how bounds can be derived from these models. Then,
while Sec. 2.2.7 explains how the transition from bit-by-bit systems to packet-based systems can be
done, Sec. 2.2.8 presents models of commonly encountered networking nodes. Thus, in combination
with Sec. 2.2.7, Sec. 2.2.8 describes how to obtain models of packet-based systems. Then, with �ows
models as described in Sec. 2.2.4, bounds on network performance, and in particular latency, can be
computed as described in Sec. 2.2.6. This structure is illustrated in Fig. 2.2.

2.2.2 Mathematical Background: Min-Plus Algebra

Before developing the results of DNC theory, we �rst introduce the important underlying mathemat-
ical concepts. DNC is built on top of both the min-plus and max-plus algebras. This section focuses
on min-plus algebra, as the developments in this thesis only rely on min-plus algebra. [Bac+92] pro-
vides a detailed treatment of both min- and max-plus algebras. [Cha00] is an additional reference.
The reader can freely skip this section and come back to it when corresponding mathematical results
are used.

In conventional algebra, one usually works with the algebraic structure (R, +,×) (or (Z, +,×)),
i.e., with the set of reals (or integers) endowed with the addition and multiplication operators. The
particular properties of the two operators make (R, +,×) a commutative �eld and (Z, +,×) a commu-
tative ring [LT12, pp. 103-104].

In min-plus algebra, the addition operator is replaced by the in�mum (or the minimum if it
exists)1 operator (∧) and the multiplication operator is replaced by the addition operator. +∞ is also
included in the set of elements on which min-plus operators can be applied. This de�nes another
algebraic structure, (R ∪ {+∞},∧, +), which veri�es the following properties [LT12, p. 105].
1The in�mum inf{S} of a set S is de�ned as the greatest lower bound of S. For example inf{]0, 5]} = 0. By convention,

inf{∅} = +∞ [LT12, pp. 103-104].
The minimum min{S} of a set S is the element of S which is smaller than all its other elements. It does not always exist. For
example,]0, 5] has no minimum [LT12, p. 103]. However, we have min{[0, 5]} = inf{[0, 5]} = 0.

18 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

◦ Closure of ∧.
∀0, 1 ∈ R ∪ {+∞}, 0 ∧ 1 ∈ R ∪ {+∞}

◦ Associativity of ∧.
∀0, 1, 2 ∈ R ∪ {+∞}, (0 ∧ 1) ∧ 2 = 0 ∧ (1 ∧ 2)

◦ Neutral element for ∧.
∃4 ∈ R ∪ {+∞} : ∀0 ∈ R ∪ {+∞}, 0 ∧ 4 = 0 (4 = +∞)

◦ Idempotency of ∧.
∀0 ∈ R ∪ {+∞}, 0 ∧ 0 = 0

◦ Commutativity of ∧.
∀0, 1 ∈ R ∪ {+∞}, 0 ∧ 1 = 1 ∧ 0

◦ Closure of +.
∀0, 1 ∈ R ∪ {+∞}, 0 + 1 ∈ R ∪ {+∞}

◦ Associativity of +.
∀0, 1, 2 ∈ R ∪ {+∞}, (0 + 1) + 2 = 0 + (1 + 2)

◦ Neutral element for +.
∃D ∈ R ∪ {+∞} : ∀0 ∈ R ∪ {+∞}, 0 + D = 0 = D + 0 (D = 0)

◦ Commutativity of +.
∀0, 1 ∈ R ∪ {+∞}, 0 + 1 = 1 + 0

◦ The neutral element for ∧ is absorbing for +.
∀0 ∈ R ∪ {+∞}, 0 + 4 = 4 = 4 + 0

◦ Distributivity of + with respect to ∧.
∀0, 1, 2 ∈ R ∪ {+∞}, (0 ∧ 1) + 2 = (0 + 2) ∧ (1 + 2) = 2 + (0 ∧ 1)

These axioms de�ne a commutative dioid2 [LT12, p. 105]. It is not a (commutative) ring because
the ∧ operator is idempotent but not cancelable [LT12, p. 105]. For example, (Z, +,×) is a (commu-
tative) ring because the + operator is cancelable. It is not a (commutative) �eld because it does not
contain a multiplicative inverse for every non-zero element. (R, +,×) is therefore a (commutative)
�eld.

2.2.2.1 Wide-Sense Increasing Functions

A function or sequence3 5 is said wide-sense increasing if and only if [LT12, p. 105]

∀B ≥ C, 5 (B) ≥ 5 (C) . (Wide-Sense Increasing Function)

We adopt the following notations [LT12, p. 105]. G is the set of non-negative wide-sense in-
creasing functions or sequences and F is the set of non-negative wide-sense increasing functions or
sequences such that 5 (C) = 0 if C < 0.
2It would have been a simple dioid if the + operator was not commutative.
3 5 (C) is called a function when its parameter C is continuous and a sequence when C is discrete.

2.2. Modeling Background: Deterministic Network Calculus 19

G

~C

G

G
D

G0

G

S

G0

GT

Figure 2.3: C ⊂ R2 is a convex set because the line connecting any two points of C is entirely in C. In contrast,
D ⊂ R2 is not a convex set. S ⊂ R2 is a star-shaped set because there exist a point G0 ∈ S such that the line
segment connecting G0 to any other point in S is entirely in S. In contrast, T ⊂ R2 is not a star-shaped set.

2.2.2.2 Concave, Convex and Star-Shaped Functions

Concave, convex and star-shaped functions are of particular interest in DNC. They are de�ned as
follows.

A function 5 : R→ R is convex if and only if [LT12, p. 109]

∀G,~ ∈ R, D ∈ [0, 1], 5 (DG + (1 − D)~) ≤ D5 (G) + (1 − D) 5 (~) . (Convex Function)

A function 5 : R→ R is concave if and only if −5 is convex or, alternatively, if and only if [LT12,
p. 109]

∀G,~ ∈ R, D ∈ [0, 1], 5 (DG + (1 − D)~) ≥ D5 (G) + (1 − D) 5 (~) . (Concave Function)

A function 5 : [0, +∞[→ R is star-shaped if and only if [BO62, pp. 1203-1204]-[MOA11, p. 650]

∀G ≥ 0, U ∈ [0, 1], 5 (UG) ≤ U 5 (G) , (Star-Shaped Function)

or, alternatively, if 5 (0) ≤ 0 and ∀G > 0, 5 (G)/G is wide-sense increasing [MOA11, p. 650]-[BO62,
p. 1205].

These mathematical de�nitions are based on the de�nition of convex and star-shaped domains.
A domain S ⊆ R= is convex if and only if [LT12, p. 109]

∀G,~ ∈ S, D ∈ [0, 1], DG + (1 − D)~ ∈ S . (Convex Set)

Intuitively, a set S is convex if the line segment connecting any two points of S is entirely in S.
A domain S ⊆ R= is star-shaped (or is a star-domain) if and only if [ST83, pp. 141-142]

∃G0 ∈ S : ∀G ∈ S, D ∈ [0, 1], DG0 + (1 − D)G ∈ S . (Star-Shaped Set)

Intuitively, a set S is star-shaped if there is a point G0 in S such that the line segment connecting G0

to any other point in S is entirely in S. The set is then also said star-shaped with respect to G0.
Examples of such domains in R2 are shown in Fig. 2.3. The set C and S are respectively convex

and star-shaped. The set D and T are respectively not convex and not star-shaped because of the

20 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

0 1 2 3 4 5 6
0

1

2

3

4

convex
concave

star-shaped

Figure 2.4: Example of concave, convex and star-shaped functions.

existence of the dashed line segment violating the de�nitions here above. Note that D and C are
also star-shaped.

From this, we can give more intuitive de�nitions of convex, concave and star-shaped functions.
A function 5 : R → R is convex if and only if its epigraph4 is a convex set [MOA11, p. 646]. A
function 5 : R → R is concave if and only if its opposite −5 is convex or, alternatively, if the set of
points lying below its graph is a convex set. A function 5 : [0, +∞[→ R is star-shaped if and only if
the set of points lying above its graph is star-shaped with respect to the origin [BO62, p. 1203]. Note
that the star-shaped property of a function is only de�ned for functions whose domain is [0, +∞[.
We will however use it for functions de�ned on the whole real line by considering only the values
of the function in [0, +∞[.

Fig. 2.4 shows examples of such functions. These functions enjoy some interesting properties.

• The maximum (resp. minimum) of any number of convex (resp. concave) functions is a convex
(resp. concave) function [LT12, p. 109].

• If 5 (0) ≤ 0 and 5 is convex, then 5 is star-shaped [MOA11, p. 650]-[BO62, p. 1207]. Similarly,
as can be seen in Fig. 2.3, a convex set is star-shaped.

• The maximum of two star-shaped functions is star-shaped [LT12, p. 110].

Note that in [LT12], the authors consider that a function 5 ∈ F is star-shaped if the set of points
lying below its graph is star-shaped with respect to the origin. As we did not �nd any naming for
such functions in the literature, we call them lower-star-shaped functions [★]. Obviously, a function
5 is lower-star-shaped if its opposite −5 is star-shaped and lower-star-shaped functions therefore
enjoy properties similar to star-shaped functions:

• if 5 (0) ≥ 0 and 5 is concave, then 5 is lower-star-shaped;

• the minimum of two lower-star-shaped functions is lower-star-shaped.

4The epigraph of a function is the set of points lying above the graph of the function.

2.2. Modeling Background: Deterministic Network Calculus 21

2.2.2.3 Min-Plus Convolution

In classical system theory using classical algebra, the convolution of functions 5 (C) and 6(C) (that are
zero for C < 0) is de�ned as

(5 ∗ 6) (C) =
∫ C

0
5 (C − B)6(B) 3B. (Convolution)

Transforming the addition into in�mum and the multiplication into addition, we obtain the de�nition
of the min-plus convolution for 5 , 6 ∈ F .

(5 ⊗ 6) (C) = inf
0≤B≤C

{5 (C − B) + 6(B)} (Min-Plus Convolution)

(If C < 0, (5 ⊗ 6) (C) = 0.)
The min-plus convolution enjoys the following properties in F [LT12, pp. 111-115].

◦ Closure.

∀5 , 6 ∈ F , 5 ⊗ 6 ∈ F

◦ Associativity.

∀5 , 6, ℎ ∈ F , (5 ⊗ 6) ⊗ ℎ = 5 ⊗ (6 ⊗ ℎ)

◦ Neutral element.

∃X0 ∈ F : ∀5 ∈ F , 5 ⊗ X0 = 5 (X0 = +∞ if C > 0, 0 otherwise)

◦ Commutativity.

∀5 , 6 ∈ F , 5 ⊗ 6 = 6 ⊗ 5

◦ Distributivity with respect to ∧.
∀5 , 6, ℎ ∈ F , (5 ∧ 6) ⊗ ℎ = (5 ⊗ ℎ) ∧ (6 ⊗ ℎ)

◦ Addition of a constant.

∀5 , 6 ∈ F , ∈ R+, (5 +) ⊗ 6 = (5 ⊗ 6) +

◦ Isotonicity.

∀5 , 6, 5 ′, ℎ′ ∈ F , 5 ≤ 6, 5 ′ ≤ 6′ ⇒ 5 ⊗ 5 ′ ≤ 6 ⊗ 6′

◦ ∀5 , 6 ∈ F , 5 (0) = 6(0) = 0 ⇒ 5 ⊗ 6 ≤ 5 ∧ 6

◦ ∀5 , 6 ∈ F , 5 (0) = 6(0) = 0 and 5 , 6 lower-star-shaped ⇒ 5 ⊗ 6 = 5 ∧ 6

◦ ∀5 , 6 ∈ F , 5 , 6 convex ⇒ 5 ⊗6 convex. In particular, if 5 and6 are convex and piecewise linear,
their convolution is obtained by putting E2E the di�erent linear pieces of 5 and 6, sorted by
increasing slopes.

Graphically, the min-plus convolution of two functions 5 (C) ∈ F and 6(C) ∈ F can be computed
as shown in Fig. 2.5. Let us �rst consider the case where 5 (0) = 6(0) = 0. In this case, the min-
plus convolution is obtained by placing 6 at each point of 5 and keeping the minimum of all these
functions and of 5 . If the functions are not zero at the origin, the Addition of a constant property
here above shows that we can apply the construction explained above on 5 (C) − 5 (0) and 6(C) −6(0)
and add 6(0) + 5 (0) to the obtained result.

22 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5 (C)

6(C)

(5 ⊗ 6) (C)

Figure 2.5: The min-plus convolution of two functions passing through the origin can be obtained by placing
one of the two functions at each point of the other function and taking the minimum of all the resulting
functions.

-3 -2 -1 0 1 2 3 4 5

1

2

3

V0.9,1.3 (C)

W0.3,11 (C)
(W0.3,11 � V0.9,1.3) (C)

Figure 2.6: Min-plus deconvolution of WA,1 by V',) .

2.2.2.4 Min-Plus Deconvolution

The dual operation of the min-plus convolution is the min-plus deconvolution de�ned as follows for
5 , 6 ∈ F 5.

(5 � 6) (C) = sup
D≥0
{5 (C + D) − 6(D)} (Min-Plus Deconvolution)

If one of the function is in�nite for some C , the min-plus deconvolution is unde�ned.
In contrast to the min-plus convolution, the min-plus deconvolution is not closed in F (the result

is not necessarily 0 for C ≤ 0), not commutative and not associative [LT12, p. 122]. The min-plus
deconvolution of WA,1 by V',) 6 is shown in Fig. 2.6.

The min-plus deconvolution enjoys the following properties [LT12, pp. 123, 129].

◦ Isotonicity.

∀5 , 6, ℎ ∈ F , 5 ≤ 6 ⇒ 5 � ℎ ≤ 6 � ℎ, ℎ � 5 ≥ ℎ � 6

◦ Composition.

∀5 , 6, ℎ ∈ F , (5 � 6) � ℎ = 5 � (6 ⊗ ℎ)

5The supremum sup{S} of a setS is de�ned as the smallest upper bound ofS. For example sup{[0, 5[} = 5. By convention,
sup{∅} = −∞. The maximum max{S} of a set S is the element of S which is bigger than all its other elements. It does not
always exist. For example, [0, 5[has no maximum. However, we have sup{[0, 5]} = max{[0, 5]} = 5.

6These functions are de�ned respectively in Sec. 2.2.4.2 and 2.2.5.2.

2.2. Modeling Background: Deterministic Network Calculus 23

-3 -2 -1 0 1 2 3 4 5

1

2

1 6(C)
6(+∞)

)0)

5 (C)

-3 -2 -1 0 1 2 3 4 5

1

2

2

6(+∞)/2

)
2

-3 -2 -1 0 1 2 3 4 5

1

2

3

-3 -2 -1 0 1 2 3 4 5

1

2

4

6(+∞)/2

)
2

6 � 5

Figure 2.7: Representation of the min-plus deconvolution 6 � 5 by time-inversion (adapted from [LT12,
p. 127]). 6 is �rst rotated around the point

(
)
2 ,
6 (+∞)

2

)
(2). Then, the result is convolved with 5 (3). Finally, the

result of the convolution is rotated back around
(
)
2 ,
6 (+∞)

2

)
to give the �nal result (4).

◦ Composition with ⊗.
∀5 , 6 ∈ F , (5 ⊗ 6) � 6 ≤ 5 ⊗ (6 � 6)

◦ Addition of a constant.

∀5 , 6 ∈ F , ∈ R+, (5 +) � 6 = (5 � 6) +

The min-plus convolution and min-plus deconvolution are said dual from each other because
they satisfy [LT12, p. 123]

5 � 6 ≤ ℎ ⇔ 5 ≤ ℎ ⊗ 6. (2.1)

The min-plus deconvolution of a function 6 ∈ G with �nite lifetime by 5 ∈ F can be easily
graphically computed. A function 6 is said to have a �nite lifetime if there exist some �nite)0 and
) such that 6(C) = 0 for C ≤)0 and 6(C) = 6()) for C ≥) . If we call Ĝ the subset of functions of G
with �nite lifetime, we can show that, for 5 ∈ F such that limC→+∞ 5 (C) = +∞ and 6 ∈ Ĝ, we can
compute 6 � 5 by rotating 6 by 180◦ around

(
)
2 ,
6 (+∞)

2

)
, computing the min-plus convolution with 5

and then rotating back again around
(
)
2 ,
6 (+∞)

2

)
[LT12, pp. 125-126]. This is called the representation

of the min-plus deconvolution by time-inversion. The process is illustrated in Fig. 2.7.

2.2.2.5 Vertical and Horizontal Deviations

The vertical deviation and horizontal deviation between two curves in F are two quantities that are
very often used in DNC. They are de�ned as follows [LT12, p. 128].

ℎ(5 , 6) = sup
C ≥0
{inf
3≥0
{3 : 5 (C) ≤ 6(C + 3)}} (Horizontal Deviation)

E (5 , 6) = sup
C ≥0
{5 (C) − 6(C)} (Vertical Deviation)

24 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

0 1 2 3 4 5

1

2

3

6(C)

5 (C)
ℎ(5 , 6)

E (5 , 6)

Figure 2.8: Horizontal and vertical deviation between two curves in F .

-3 -2 -1 0 1 2 3 4 5

1

2

3

6(C)

5 (C)
(5 � 6) (C) ℎ(5 , 6)

ℎ(5 , 6) E (5 , 6)E (5 , 6)

Figure 2.9: Relation between (5 � 6) (C) and ℎ(5 , 6) and E (5 , 6).

0 2 4 6 8 10 12 14
0

1

2

3
U (C)

Ū (C)

Figure 2.10: Example of an U curve and its sub-additive closure Ū (adapted from [LT12, p. 14]).

Both quantities are shown in Fig. 2.8. It is important to note that these quantities are not symmetric
with respect to 5 and 6. Graphically, ℎ(5 , 6) corresponds to the greatest horizontal distance between
the graphs of 5 and 6 when 5 is left to 6 and E (5 , 6) corresponds to the greatest vertical distance
between the graphs of 5 and 6 when 5 is greater than 6.

The min-plus deconvolution allows to easily express these two quantities. Indeed, we can show
that [LT12, p. 128]

E (5 , 6) = (5 � 6) (0), (2.2)

ℎ(5 , 6) = inf
3≥0
{3 : (5 � 6) (−3) ≤ 0}. (2.3)

This is illustrated in Fig. 2.9.

2.2.2.6 Sub-Additivity

Sub-additive functions are another class of functions that are important in DNC. A function 5 ∈ F
is said sub-additive if and only if [LT12, p. 116]-[Ros50, p. 227]

∀B, C ≥ 0, 5 (C + B) ≤ 5 (C) + 5 (B) . (Sub-Additivity)

The concept is illustrated in Fig. 2.10. The U curve is not sub-additive but Ū is.

2.2. Modeling Background: Deterministic Network Calculus 25

Letting C = C ′ − B , one can easily see that an equivalent de�nition is 5 ≤ 5 ⊗ 5 . If 5 (0) = 0, we
know that 5 ≥ 5 ⊗ 5 and it is hence equivalent to imposing that 5 = 5 ⊗ 5 .

It can be shown that the sum and min-plus convolution of two sub-additive functions are also
sub-additive [LT12, pp. 117-118].

A lower-star-shaped function passing through the origin is sub-additive [LT12, p. 117]. Hence,
if 5 (0) = 0, we have

5 is concave ⇒ 5 is lower-star-shaped ⇒ 5 is sub-additive, (2.4)

but none of the reverse implications holds [BO62, p. 1207].
If 5 ∈ F , 5 � 5 is a sub-additive function of F passing through the origin [LT12, p. 123].
De�ning the sub-additive closure 5̄ of a function 5 ∈ F as7 [LT12, p. 118]

5̄ = X0 ∧ 5 ∧ (5 ⊗ 5) ∧ (5 ⊗ 5 ⊗ 5) ∧ . . . , inf
=≥0
{5 (=) } , (Sub-additive Closure)

it can be shown that 5̄ is the greatest sub-additive function smaller than 5 and passing through the
origin [LT12, pp. 119-120]. From this, we can easily show that, for 5 ∈ F , [LT12, pp. 120, 125]

5 (0) = 0 and 5 is sub-additive ⇔ 5 ⊗ 5 = 5 ⇔ 5̄ = 5 ⇔ 5 � 5 = 5 . (2.5)

Fig. 2.10 shows a curve U and its sub-additive closure Ū .
The sub-additive closure also enjoys the following properties [LT12, p. 120].

◦ Isotonicity.

∀5 , 6 ∈ F , 5 ≤ 6 ⇒ 5̄ ≤ 6̄

◦ ∀5 , 6 ∈ F , 5 ∧ 6 = 5̄ ⊗ 6̄

◦ ∀5 , 6 ∈ F , 5 ⊗ 6 ≥ 5̄ ⊗ 6̄

◦ ∀5 , 6 ∈ F : 5 (0) = 6(0) = 0, 5 ⊗ 6 = 5̄ ⊗ 6̄

2.2.3 Data Modeling

2.2.3.1 Data Flow

A data �ow is represented by a cumulative function '(C) representing the number of bits seen on the
�ow during the time interval [0, C]. '(C) is wide-sense increasing and we assume that '(C) = 0 ∀C ≤
0. Hence, '(C) ∈ F .

Examples of '(C) curves are shown in Fig. 2.11. Di�erent models can be used. Both �gures
represent the same �ow arriving at a given node. The �ow is an aggregation of two �ows coming
from two di�erent input links. From the �rst link, packets of length 1 kB, 0.8 kB and 0.5 kB are sent
respectively after 0, 3.7 and 7.5 seconds. From the second link, packets of length 1 kB and 2 kB are
sent respectively after 2 and 3.5 seconds. Both links have a transmission rate of 1 kBps. In Fig. 2.11a,
7X) is de�ned on page 31.

26 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

time (s)
0 2 4 6 8

da
ta

(k
B)

0

1

2

3

4

5

(a) Fluid model.

time (s)
0 2 4 6 8

da
ta

(k
B)

0

1

2

3

4

5

(b) General continuous time model.

Figure 2.11: Example of cumulative functions '(C) representing data arriving at an aggregation node. From
a �rst link, packets of length 1 kB, 0.8 kB and 0.5 kB are sent respectively after 0, 3.7 and 7.5 seconds. From a
second link, packets of length 1 kB and 2 kB are sent respectively after 2 and 3.5 seconds. Both links have a
capacity of 1 kBps. In the �uid model, data is observed bit-by-bit. In the general continuous time model, data
is observed packet-by-packet.

S
' (C) '∗ (C)

Figure 2.12: A DNC system takes data '(C) as input and delivers the data '∗ (C) at its output.

both data and time are continuous. This is called the �uid model. Packets are transmitted bit-by-
bit. In Fig. 2.11b, time is continuous but data is discrete. Packets are considered seen only when
fully received. This is the general continuous time model. We have to take the convention that ' is
either left- or right-continuous8. Here, we represented a left-continuous function. We will keep this
convention throughout the thesis.

2.2.3.2 System

A system S (as shown in Fig. 2.12) is de�ned as blackbox taking data '(C) (the input function) as
input and delivering the data '∗(C) (the output function) at its output after a variable delay. A system
might represent a single bu�er, a complex communication node or even a complete network. The
analyzed communication network can then be represented as the interconnection of these systems,
also called network elements [Cru91, p. 115].

For a system which serves data at a rate of 1 kBps, Fig. 2.13 shows the output functions '∗(C)
corresponding to the input functions shown in Fig. 2.11. In the �uid model (Fig. 2.13a), this results
in sending bits as soon as they arrive at a rate of 1 kBps. In the general continuous time model
(Fig. 2.13b) this results in serving a packet when it has been fully received and considering it out of
the system when it has been fully sent.

8Informally, a function is left-continuous (resp. right-continuous) if no jump occurs when the limit point is approached
from the left (resp. right) [AE10, p. 79].

2.2. Modeling Background: Deterministic Network Calculus 27

time (s)
0 2 4 6 8

da
ta

(k
B)

0

1

2

3

4

5

'∗ (C)

(a) Fluid model.

time (s)
0 2 4 6 8

da
ta

(k
B)

0

1

2

3

4

5

'∗ (C)

(b) General continuous time model.

Figure 2.13: Example of input and output functions for a system serving input data at a rate of 1 kBps.

time (s)
0 2 4 6 8

da
ta

(k
B)

0

1

2

3

4

5

C1= 5.5 C1+3 (C1)= 6.3

3 (C1)
G (C1)

(a) Fluid model.

time (s)
0 2 4 6 8

da
ta

(k
B)

0

1

2

3

4

5

C1= 5.5+ C1+3 (C1)= 7.5+

3 (C1)

G (C1)

z
(b) General continuous time model.

Figure 2.14: Graphical representation of the backlog and delay experienced by the last bit of the packet sent
after 3.5 seconds. In the �uid model, the backlog and delay are smaller because the node does not have to wait
for the entire packet to be received to start sending it.

2.2.3.3 Backlog and Virtual Delay

Two interesting quantities can be derived from the input and output functions [LT12, p. 5]. The
backlog G (C) corresponds to the amount of data held inside the system at time C .

G (C) = '(C) − '∗(C) (Backlog)

The virtual delay 3 (C) corresponds to the delay that would be experienced by a bit at time C if all
bits received before it are served before it9.

3 (C) = inf
g≥0
{g : '(C) ≤ '∗(C + g)} (Virtual Delay)

Fig. 2.14 shows the graphical interpretation of these two quantities. The virtual delay (resp. the
backlog) at time C corresponds to the horizontal deviation (resp. vertical deviation) between the input
and output curves starting from the point (C, '(C)).

Interestingly, the �gure shows that the backlog and virtual delay can di�er from one model to the
other. Indeed, the delay experienced by the last bit of the 2 kB packet is di�erent. For the �uid model,
in Fig. 2.14a, the last bit of the 2 kB packet enters the system at time C1 = 5.5 and leaves it at time
9That is the reason why it is called virtual delay.

28 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

C1 + 3 (C1) = 6.3. The delay experienced by this bit10 is hence 3 (C1) = 0.8. For the general continuous
time model, in Fig. 2.14b, the last bit of the 2 kB packet enters the system at time11 C1 = 5.5+. With
similar computations, we obtain a virtual delay (equal to the delay) of 3 (C1) = 2. This is of course
in accordance with the assumptions of each model. In the general continuous time model, the node
must wait for the entire packet to be received to start sending it, which induces a delay. This can
also be seen for all other packets. This delay corresponds to the time needed to wait for the complete
packet to be fully received and fully sent.

Since most of the communication networks are nowadays packet-based, we are only interested
in working with the general continuous time model. Indeed, store-and-forward switches forward a
packet to an output link only when this packet is fully received and cut-through switches do so only
when the destination address (or the entire header) is fully received. However, it is often easier to
use the �uid model. This is not a problem. We will see in Sec. 2.2.7 how it is possible to switch from
the �uid model (bit-by-bit) to the general continuous time model (packet-by-packet).

2.2.4 Arrival Curves

In order to provide performance bounds for a �ow, we must have a lower bound of the service the
network can o�er and an upper bound of the �ow characteristics. In other words, we need to know
the minimum service a network guarantees to o�er and the maximum amount of data a �ow will
send. These are respectively given by service curves (de�ned in Sec. 2.2.5), which model the network
and its nodes, and by arrival curves (de�ned in this section), which model �ows.

2.2.4.1 De�nition

A wide-sense increasing function U is an arrival curve for a �ow ' if and only if [LT12, p. 7]-[Cru91,
p. 116]

∀B ≤ C, '(C) − '(B) ≤ U (C − B) . (Arrival Curve)

We also say that the �ow ' is U-smooth.
Fig. 2.15 illustrates the concept. The arrival curve constraint means that, during any time window

of width g , the amount of additional data sent by the �ow is limited by U (g). Graphically, if one draws
instances of the arrival curve starting at any point of the '(C) curve, '(C) must always remain smaller
than all these instances.

From the de�nition of the min-plus convolution, we can show that the de�nition of an arrival
curve is equivalent to [LT12, p. 15] ' ≤ ' ⊗ U . From this other de�nition and from the isotonicity
and associativity of ⊗, we can also show that if U1 and U2 are arrival curves for a �ow, then so is
U1 ⊗ U2 [LT12, p. 15].

It can be shown that we can always reduce an arrival curve to be left-continuous. More precisely,
an arrival curve U (C) can always be reduced to U; (C) = supB<C U (B) without changing the set of �ows
for which it is an arrival curve [LT12, p. 9]. U; (C) corresponds to the limit to the left of U (C) and is
left-continuous. Since we have U; (C) ≤ U (C), this is always a better bound for the �ow.

10The virtual delay corresponds to the delay because bits/packets leave the system in the same order as they entered it.
11C+ = infG ∈R{G > C}.

2.2. Modeling Background: Deterministic Network Calculus 29

time (s)
0 5 10 15

da
ta

(k
B)

0

1

2

3

4

5

U (C)

'(C)

Figure 2.15: Graphical illustration of the arrival curve concept (adapted from [LT12, p. 7]). If we draw
instances of the arrival curve starting at any point of the '(C) curve, '(C) must always remain smaller than all
these instances.

1 tokens

rate A

packets

: bytes
: tokens

Figure 2.16: Illustration of the token bucket algorithm. When a packet of size : has to be transmitted, it
removes : tokens from the token bucket. The packet is declared non-conformant if there are not enough
tokens in the bucket.

If two �ows '1 and '2 have respectively U1 and U2 as arrival curves, then their aggregate '1 + '2

has (U1 + U2) as arrival curve [Cru91, p. 116].

2.2.4.2 A�ne and Token Bucket Arrival Curves

A�ne arrival curves are the most commonly used arrival curves.

WA,1 (C) =

AC + 1 if C > 0
0 otherwise

(A�ne Arrival Curve)

1 is called the burst and A the rate. This kind of arrival curve allows a source to send 1 bits at once,
but not more than A bps over the long run. The arrival curve shown in Fig. 2.15 belongs to this family.

An a�ne arrival curve is closely related to the concept of token bucket, which de�nes an algorithm
for determining if some data is conformant or non-conformant to some tra�c policy. For this reason,
arrival curves belonging to this family are also sometimes called token bucket arrival curves.

The token bucket algorithm [TW11, pp. 407-411] is illustrated in Fig. 2.16. A bucket of size 1
tokens, initially full, is �lled at a rate of A tokens per second. If the bucket is full, no more tokens are
added. When a packet of size : has to be transmitted into the network, it must remove : tokens from
the bucket. If there are not enough tokens, the packet is declared non-conformant. Non-conformant

30 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

time (s)
0 5 10

da
ta

(k
B)

0

1

2

3

4

5 V' ' ⊗ V

'∗

Figure 2.17: Graphical illustration of the service curve concept (adapted from [LT12, p. 19]). The output of
the system must always be greater than the convolution of the input with the service curve of the system.

data can be either queued or dropped. If there are enough tokens, : tokens are removed and the
packet can be transmitted.

This algorithm limits the long-term rate of a �ow to A bps but allow bursts of up to 1 bits. The
analogy with a�ne arrival curves is then obvious. A token bucket with �lling rate A and bucket size
1 forces a �ow to be constrained by the arrival curve WA,1 [LT12, p. 11].

2.2.5 Service Curves

After having formalized an upper bound of the �ow characteristics in the previous section, we now
de�ne a lower bound of the service the network can o�er. The details of how packets are handled by
a node or network are abstracted using the concept of service curve, which we de�ne in the current
section. The combination of arrival and service curves will then be used in the next sections to
compute performance bounds.

The service curve concept de�ned in Sec. 2.2.5.1 is the classical service curve concept used in
DNC. Other types of service curves can be de�ned. We also introduce strict service curves in
Sec. 2.2.5.3. In case of ambiguity, the concept de�ned in Sec. 2.2.5.1 is alternatively referred to as
classical service curve. [BJT09] provides a more detailed treatment of service curves in DNC.

2.2.5.1 De�nition

A system S, with input and output functions ' and '∗, o�ers a service curve V to ' if and only if V
is wide-sense increasing, V (0) = 0 and [LT12, p. 19]

'∗ ≥ ' ⊗ V , (Service Curve)

or, alternatively,
'∗(C) ≥ inf

B≤C{'(B) + V (C − B)}. (2.6)

Fig. 2.17 illustrates this de�nition. Given ' and the service curve V o�ered by a system S, we can
compute ' ⊗ V . The output '∗ of the system S will lie in the area (shaded in the �gure) between12 '

and ' ⊗ V . An example of possible output is also shown in the �gure.
12For causality reasons, we must also have '∗ ≤ '.

2.2. Modeling Background: Deterministic Network Calculus 31

This service curve concept indeed provides a lower bound on the service a system S can o�er.
In particular, if a system S pretends to o�er a service curve V , we can be sure that, if we provide '
at the input of S, its output will be at least ' ⊗ V .

2.2.5.2 Common Service Curves

Burst-delay and rate-latency functions are the functions most commonly used as service curves. They
are de�ned as follows.

X) (C) =

+∞ if C >)
0 otherwise

(Burst-Delay Function)

) > 0 is called the delay. As convolving a function with X) shifts it by) to the right, this kind of
service curve is used to model a �rst-in �rst-out (FIFO) node imposing a delay 3 ≤) to bits passing
through it.

V',) (C) = ' [C −)]+ =

'(C −)) if C >)
0 otherwise

(Rate-Latency Function)

) ≥ 0 is called the delay and ' ≥ 0 the rate. This type of service curve is very commonly used for
modeling scheduling algorithms and will be main service curve type used in this thesis. Bits might
have to wait up to) before being served with a rate greater or equal to '. The service curve shown
in Fig. 2.17 is a rate-latency service curve.

2.2.5.3 Strict Service Curve

A system S o�ers a strict service curve V to a �ow if, during any backlogged period13 of duration g ,
the output of the system is at least equal to V (g) [LT12, p. 21]. Mathematically14 [BJT09, p. 6]

∀ backlogged period]B, C], '∗(C) − '∗(B) ≥ V (C − B) . (Strict Service Curve)

The strict service curve property allows to guarantee service during any backlogged interval,
which is not possible with the classical service curve property [LT12, p. 196]. Indeed, if for some
interval of time, a server gave a service higher than announced by its service curve, the classical
service curve property allows the server to be lazy afterwards. This is illustrated in Fig. 2.18. The
server gave a high service between times 0 and 2 and can hence be lazy (nearly delivering no service)
between times 2 and 6.5 though there is some backlogged data in the system (since ' > '∗). On the
other hand, a node o�ering a strict service curve V guarantees that, for any backlogged period of
length g , it will output at least V (g) amount of data.

As its name suggests, the strict service curve property is more strict than the service curve
property. This means that if a node o�ers V as a strict service curve to a �ow, then it also o�ers
the same curve V as a classical service curve to the �ow [LT12, p. 22].
13A backlogged period is an interval of time � (can be closed, semi-closed or open) during which the backlog is non-null,

i.e., ∀D ∈ � : '(D) − '∗ (D) > 0 [BJT09, p. 5].
14If V is assumed left-continuous, changing]B, C] to]B, C [in the de�nition does not change the meaning of it [BJT09,

pp. 6-7].

32 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

time (s)
0 5 10

da
ta

(k
B)

0

1

2

3

4

5
V' ' ⊗ V

'∗

Figure 2.18: The service curve property does not provide guarantees over any interval of time (adapted from
[LT12, p. 196]).

S

U

+
V

→
U∗

+ delay, backlog bounds

' (C) '∗ (C)

Figure 2.19: From arrival and service curves, DNC allows to compute bounds on the delay a �ow will expe-
rience, on the backlog a �ow will cause and on the new arrival curve of the �ow at the output of the system.

2.2.5.4 Concatenation

Assuming that a �ow traverses systems S1 and S2 in sequence, if the systems o�er respectively the
service curves V1 and V2 to the �ow, then the concatenation of the two systems o�ers a service curve
V1 ⊗ V2 to the �ow [LT12, p. 28]. Hence, if we note V (S) the service curve o�ered by a system S and
use ◦ to denote the concatenation of two systems, we have

V (S1 ◦ S2) = V (S1) ⊗ V (S2) . (Concatenation)

Note that if V1 and V2 are strict service curves, V1 ⊗ V2 is not necessarily strict [BJT09, pp. 13-14].
In particular, the concatenation of two rate-latency servers V'1,)1 and V'2,)2 results in a rate-

latency server Vmin{'1,'2 },)1+)2 [LT12, p. 28]. This property can easily be generalized to any number
= of rate-latency servers V'8 ,)8 : their concatenation is a rate-latency server Vmin{'1,...,'= },)1+...+)= .

2.2.6 Bounds

Armed with the concepts of arrival and service curves, we are now able to develop the main results
of DNC. After having introduced the mechanisms to compute the worst-case bounds in Sec. 2.2.6.1–
2.2.6.3, we present in Sec. 2.2.6.4 the particular values in commonly encountered cases.

From the arrival curve U of a �ow and the service curve V of a node, DNC theory allows to
compute an upper bound of the backlog generated by the �ow at this node (Sec. 2.2.6.1), the virtual
delay the �ow will experience at the node (Sec. 2.2.6.2), and the new arrival curve U∗ of the �ow at
the output of the node (Sec. 2.2.6.3). This is illustrated in Fig. 2.19.

2.2. Modeling Background: Deterministic Network Calculus 33

2.2.6.1 Backlog Bound

From the de�nitions of service and arrival curves, it can be shown that the backlog G (C) at a node
o�ering a service curve V to a �ow with arrival curve U is such that [LT12, pp. 22-23]

G (C) ≤ E (U, V) , (Backlog Bound)

i.e., is bounded by the vertical deviation between the arrival and service curves.

2.2.6.2 Delay Bound

Similarly, it can be shown that the virtual delay 3 (C) experienced by a �ow with arrival curve U at a
node o�ering a service curve V is such that [LT12, p. 23]

3 (C) ≤ ℎ(U, V) , (Delay Bound)

i.e., is bounded by the horizontal deviation between the arrival and service curves.

2.2.6.3 Output Flow Bound

After having traversed a node, a �ow ' is transformed into '∗. One might wonder then what could
be an arrival curve for '∗. As data of the �ow can be bu�ered at the node before being served, we
expect the burst of the �ow to increase when traversing a node. It can be shown that an U-smooth
�ow traversing a node with service curve V gets out of the node with an arrival curve U∗ given by
[LT12, pp. 23, 35–36]

U∗ = U � V. . (Output Flow)

Since tra�c exiting a system might be input tra�c to a second system, the knowledge of this
output bound allows to analyze this second system and hence to perform a network-wide worst-
case analysis.

U∗(0+) corresponds to the maximum amount of data of the �ow the node will output in an
in�nitely small amount of time, i.e., to the new maximum burst of the �ow. Since (U �V) (0) = E (U, V)
(see Sec. 2.2.2.5), we see that the new maximum burst of the �ow corresponds to the maximum
backlog that can be observed at the node. This is intuitive. Indeed, all data that accumulates in the
node can be released instantly as a burst if the node eventually receives an in�nite service, which
the service curve concept allows.

Recall that the min-plus deconvolution is not closed in F . Therefore U∗(C) is not necessarily in
F . However, a bound in F for the output �ow can hence be obtained by setting U∗(C) = 0 ∀C ≤ 0.

A major drawback of the output bound is that the deconvolution operation is not easy to perform
in the general case. [Cru91, p. 117] shows that an output bound U∗ can be obtained from the delay
bound �̄ at a node and is given by

U∗(C) = U (C + �̄) . (2.7)

This means that the arrival curve of a �ow after a node can be obtained by shifting to the left its
initial arrival curve by the maximum delay the �ow could experience at this node. This result is
useful when either (i) the arrival and service curves combination leads to intractable or complicated
computations, or (ii) the maximum delay is known but not the service curve.

34 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

time

data
V

∇ =
' U∗

∇ = A U

∇ = A

) + 1/'
1 + A)

1 + A)
1

)

Figure 2.20: Graphical illustration of the computation of the delay, backlog and output bounds for a token
bucket �ow traversing a rate latency server (adapted from [LT12, p. 24]).

time

data

V

∇ =
'

∇ =
?

U

∇ = A

1

"

) 1−"
?−A

Figure 2.21: Graphical illustration of the computation of the delay and backlog bounds for a variable bit rate
(VBR) �ow traversing a rate latency server (adapted from [LT12, p. 25]).

2.2.6.4 Common Bounds Results

In this section, we present the bounds values for two commonly encountered arrival-service curves
combinations.

Token bucket �ow through a rate latency server. Considering a �ow constrained by a token
bucket arrival curve WA,1 traversing a node o�ering a service curve V',) , we obtain the following
bounds (for A ≤ '), shown in Fig. 2.20 [LT12, p. 24].

G (C) ≤ 1 + A) (2.8)

3 (C) ≤) + 1
'

(2.9)

U∗(C) = WA,1+A) (2.10)

VBR Flow through rate latency server. We call a constant bit rate (CBR) connection a �ow
constrained by a token bucket arrival curve. We then call a VBR connection a �ow constrained by
two token buckets in series [LT12, p. 13], i.e., by an arrival curve of the type

U (C) = U1(C) ⊗ U2(C) = (" + ?C) ⊗ (1 + AC) = min{" + ?C, 1 + AC}. (2.11)

2.2. Modeling Background: Deterministic Network Calculus 35

time

data

V

∇ =
'

∇ =
?

U

∇ = A
1

1 + A)

U∗

∇ = A

∇ = ? ∧ '

"

) 1−"
?−A

Figure 2.22: Graphical illustration of the computation of the output bound for a VBR �ow traversing a rate
latency server.

We assume that A ≤ ', " ≤ 1 and ? ≥ A . Such an arrival curve is shown in Fig. 2.21. The Internet
integrated services (IntServ) framework [BCS94] uses this family of arrival curve. Considering such
a �ow traversing a node o�ering a service curve V',) , we obtain the following bounds, shown in
Fig. 2.21 and 2.22 [LT12, pp. 24-25].

G (C) ≤ 1 + A) +
(
1 −"
? − A −)

)+
((? − ')+ − ? + A) (2.12)

3 (C) ≤) +
" + 1−"

?−A (? − ')+
'

(2.13)

U∗(C) =


if 1−"
?−A ≤) 1 + A () + C)

otherwise min{1 + A () + C), (C +)) (? ∧ ') +" + 1−"
?−A (? − ')+}

(2.14)

From the convexity and linearity of the region between U and V , the maximum horizontal and
vertical deviations can only be reached at angular points of either U or V . From this, only two values
are possible for both the delay and backlog bounds [LT12, p. 24]. These are shown in Fig. 2.21. Some
algebra then leads to the formulas given above.

2.2.7 Packet-Based Systems

The developments so far considered continuous data �ows. However, packet-switched systems send
data per-packet, rather than bit-by-bit. We show in this section how it is possible to quantify the
irregularities introduced by packetization in order to still use the concepts introduced in the previous
sections.

2.2.7.1 The Packetizer

Let us consider !(=) (= ∈ N), the wide-sense increasing sequence of cumulative packet lengths. We
then de�ne the following building block [LT12, p. 41]

%! (G) = sup
=∈N
{!(=) : !(=) ≤ G} , (Function %!)

36 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

time (s)
0 1 2 3 4 5 6 7

da
ta

(k
B)

0

1

2

3

4

5

'∗

'′

'

Figure 2.23: Modeling of a real variable length packet trunk with constant bit rate as a V = 2 system (input
', output '∗) followed by a packetizer (input '∗, output '′) (adapted from [LT12, p. 40]).

which can be alternatively de�ned by [LT12, p. 41]

%! (G) = !(=) ⇔ !(=) ≤ G < !(= + 1), (2.15)

i.e., %! (G) is the largest cumulative packet length that is entirely contained in G . can easily be seen
that the function is right-continuous [LT12, p. 41]. An L-packetizer is de�ned as the system that
transforms '(C) into %! ('(C)) [LT12, p. 41]. A �ow ' is then said L-packetized if %! ('(C)) = '(C) ∀C
[LT12, p. 41]. The packetizer enjoys the following properties [LT12, p. 42].

◦ Isotonicity.

∀G,~ ∈ R, G ≤ ~ ⇒ %! (G) ≤ %! (~)

◦ Idempotency.

∀G ∈ R, %! (%! (G)) = %! (G)

◦ Optimality.

Among all �ows such that 
G is L-packetized
G ≤ '

%! ('(C)) is the upper-bound.

2.2.7.2 Impact of the Packetizer

Fig. 2.23 shows an example of L-packetized input �ow ' along with the corresponding bit-by-bit
output ' and L-packetized output '′ if the �ow traverses a V = 2 system. This corresponds to the
correct modeling of a real variable length packet trunk with constant bit rate. We see that the delay
and backlog bounds are bigger than those that we would have obtained considering only ' and '∗.
The following quanti�es this deviation.

Consider a bit-by-bit system with L-packetized input ', bit-by-bit output '∗ and with service
curve V . The output '∗ is then L-packetized to produce the �nal output '′. If the systems are FIFO
and lossless, we have the following results15 [LT12, pp. 42-44].
15;<0G = sup={!(= + 1) − !(=)}.

2.2. Modeling Background: Deterministic Network Calculus 37

• The per-packet delay16 for the combined system is the maximum virtual delay for the bit-by-bit
system.

• The service curve V ′ (from which the maximum backlog for the combined system can be
computed) is given by

V ′(C) = [V (C) − ;<0G]+, (2.16)

• If a �ow (has U (C) as an arrival curve, then %! (((C)) has U (C) + ;<0G1{C>0} as an arrival curve.

The second point is consistent with Fig. 2.23 while the third one is consistent with the observation
made in the introduction of this section. The �rst point can be interpreted as follows. The packetizer
waits for the last bit of a packet to consider the �rst bits transmitted. Therefore, the packet itself
is not delayed, since it is fully received at the same time. However, downstream nodes will have to
wait for the entire packet to be received before being able to process it. The processing of the packet
is then delayed. Packetizers hence do not increase the maximum delay at the node where they are
appended but they, however, generally increase the E2E delay [LT12, p. 45].

That is why, for E2E delay bound calculations, the packetizer at the last hop can be neglected.
Consider for example [LT12, p. 44] the concatenation of< generalized processor sharing (GPS) nodes
with rate ', each node being followed by an L-packetizer. Each GPS node followed by its associated
L-packetizer o�ers (from the result hereabove) a service curve V

',
;<0G
'

. The complete system hence
o�ers a service curve V

',<
;<0G
'

. However, to compute the E2E delay bound, we can neglect the last
packetizer and consider the service curve V

',(<−1) ;<0G
'

. If the �ow is originally constrained by WA,1 ,
the E2E delay bound is hence

1 + (< − 1);<0G
'

.

2.2.8 Service Curves for Common Nodes

In the previous sections, we have seen what bounds DNC allows us to compute based on arrival and
service curves. Most �ows can easily be modeled by an a�ne arrival curve. We now need to know
how to obtain the service curve corresponding to a physical node. This issue is addressed in this
section. We will then be able to model a �ow with its arrival curve, a node (and a network) with its
service curve, and hence to compute bounds in real scenarios.

2.2.8.1 Constant Delay Line

A constant delay line is a network element that outputs all data which arrives on its single input on
its single output stream exactly) seconds later [Cru91, p. 117]. This corresponds to a node with a
service curve given by X) . The maximum delay experienced at this node is given by) . The output
arrival curve U∗ is equal to the initial arrival curve U [Cru91, p. 117] and the backlog is bounded by
U ()). This is shown in Fig. 2.24.

This type of element can be used to model propagation and processing delays [Cru91, p. 117]. As
these elements do not modify the arrival curve of �ows, they can usually be omitted in the modeling.

16For a system with L-packetized input and output, the per-packet delay is sup8 {) ′8 −)8 } where) ′
8

and)8 are the arrival
and departure times for the 8th packet.

38 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

time

data

V U = U∗

)

U ())

)

Figure 2.24: Bounds at a constant delay line network element.

The E2E delay bound of a �ow can then be obtained by computing the delay bound without these
elements and adding their delay contribution to the result.

Since X) − ; = X) ∀; , this model is valid both for bit-by-bit and packet-by-packet systems [★].

2.2.8.2 First-In First-Out (FIFO)

The simplest form of packet scheduling is �rst-in �rst-out (FIFO). Packets are served in order of
arrival. The di�erent �ows are not isolated. If the node is serving the �ows at a rate A , it o�ers a
service curve V = AC to the aggregate �ow. The virtual delay and bu�er bounds are the same for all
the �ows and must be computed with the arrival curve of the aggregate �ow [LT12, pp. 67-68].

The virtual delay computed in such a way does not correspond to the real delay because a FIFO
node is not necessarily FIFO per bit. Indeed, since packets are considered only when fully received,
a bit belonging to a small packet might be sent before a bit arrived earlier but belonging to a big
packet. For the virtual delay bound to correspond to the per-packet delay bound, we must have an
L-packetized input [★]. Indeed, in such a case, bits belonging to the same packet are seen all at the
same time and both packets and bits are hence transmitted FIFO. Then, to re�ect packetization at the
output, the service curve has to be changed to V = [AC − ;<0G]+.

2.2.8.3 Priority Queuing (PQ)

Under priority queuing (PQ), packets arriving at the output link are classi�ed into priority classes.
When a packet is to be transmitted, a packet from the highest priority class with the non-empty queue
is chosen (the choice among packets in the same priority queue is generally done FIFO). Under non-
preemptive priority queuing (PQ) scheduling, the transmission of a packet is not interrupted once
it has begun. In constrast, a preemptive PQ scheduler would stop the transmission of a packet if a
packet of higher priority arrives at the node and immediately sent the latter [KR13, pp. 642-643].

Consider a non-preemptive priority scheduler serving two �ows� and !. The node o�ers a strict
service curve V to the aggregate of the two �ows. � has priority over !. If � is U� -smooth and ;!<0G
is the maximum packet size of !, the service curves guaranteed to � and ! are [LT12, p. 176]

V� = [V − ;!<0G]+ (PQ – High Priority)

and
V! = [V − U�]+ (PQ – Low Priority)

2.2. Modeling Background: Deterministic Network Calculus 39

if these are wide-sense increasing. V� is also a strict service curve [BJT09, pp. 19-20]. V! is not strict
but V ′

!
= [V − U� − ;!<0G]+ is [BJT09, pp. 19-20].

For example, if the node serves the aggregate at a rate � and if � is WA,1-smooth (A < �), then
[LT12, p. 21]

V� = V
�,
;!<0G
�

, (2.17)

V! = V�−A, 1
�−A

. (2.18)

The latency ;!<0G
�

of V� accounts for the fact that, since the scheduler is non preemptive, � might
have to wait for a complete ! packet to be sent. The latency 1

�−A of V! is the time needed to empty
the bu�er of the high priority queue. Indeed, the bu�er might be instantly containing 1 and then
�lled at rate A . If emptied at a rate � , the bu�er will �nally be empty at time C∗ : 1 + AC∗ −�C∗ = 0,
i.e., at time 1

�−A . After this time, ! can be served at a rate� − A since A is still used to serve � . In this
example, both service curves are strict [LT12, p. 22].

Generalizing to = classes, if � is the overall capacity of the server and U8 the arrival curve for
class 8 (class 1 is the highest priority) then the service curve for class 8 is [Sch+03, p. 4170]

V8 (C) =
(
�C −

8−1∑
9=1

U 9 (C) − max
8+1≤ 9≤=

{; 9<0G }
)+
. (2.19)

From the results above, taking the maximum over 8 ≤ 9 ≤ = makes it strict [BJT09, p. 20].
In the particular case where U8 = WA8 ,18 (i.e., classes are token bucket �ows) the service curve for

class 8 is given by [Sch+03, p. 4171] V8 = V'8 ,)8 where

'8 = � −
8−1∑
9=1

A 9 , (2.20)

)8 =

∑8−1
9=1 1 9 +max8+1≤ 9≤={; 9<0G }

� −∑8−1
9=1 A 9

. (2.21)

From the results of Sec. 2.2.6, the delay and backlog experienced by class 8 are then bounded by
[Sch+03, pp. 4171-4172]-[Cru91, pp. 122-123]

38 (C) ≤ 38 =
∑8
9=1 1 9 +max8+1≤ 9≤={; 9<0G }

� −∑8−1
9=1 A 9

, (2.22)

G8 (C) ≤ G8 = 18 + A8
(∑8−1

9=1 1 9 +max8+1≤ 9≤={; 9<0G }
� −∑8−1

9=1 A 9

)
, (2.23)

and the new burst of the class after having traversed the scheduler is given by

1∗8 = 18 + G8 (2.24)

while its rate is unchanged.
Note that these formulas do not consider the packetization of the output of the scheduler. To do

so, each obtained service curve V must be transformed as explained in Sec. 2.2.7.2.

40 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

2.2.8.4 Flows Aggregation With Strict Service Curve Element

In the previous section, we have shown how to compute the service curve o�ered to di�erent �ow
classes at a scheduler. However, we know that several �ows can be classi�ed into the same class.
Hence, the service curves computed might be o�ered to an aggregate of �ows. In order to be able to
obtain bounds for the individual �ows and not only for the aggregate, we try in this section to derive
the service curve o�ered to the individual �ows of an aggregate. Unfortunately, the SoA dealing with
aggregate multiplexing is not very rich [LT12, p. 175].

Without loss of generality, we only consider two �ows.
Consider two �ows being served, with some unknown arbitration between the two �ows, by a

node guaranteeing a strict service curve V . If �ow 2 is U2-smooth, then, if it is wide-sense increasing,

V1 = [V − U2]+ (Residual Service Curve – Strict Service Curve Node)

is a service curve for �ow 1 [LT12, p. 176]-[BJT09, pp. 17-18]. This is when we do not know anything
about the scheduling between �ows (also called blind multiplexing). If �ow 2 has priority over �ow
1, the service curve is strict [BJT09, pp. 17-19]. This shows that there is a di�erence between blind
multiplexing and �xed priorities, though the worst departure process for blind multiplexing is �xed
priorities. [BJT09, p. 19] provides a nice example to show how this is possible.

For example, considering a node with strict service curve V',) serving two token bucket �ows
with parameters (A8 , 18), we have that [LT12, pp. 176-177]-[Cru91, pp. 121-122]17, if A1 + A2 ≤ ', the
output of �ow 1 is a token bucket with parameters A ∗1 = A1 and

1∗1 = 11 + A1) + A1
12 + A2)

' − A2
.

2.3 DetServ: Architecture Design

In this section, we present the architecture that forms the basis of this thesis. First, in Sec. 2.3.1, we
de�ne precisely the E2E QoS metric considered: delay. Then, in Sec. 2.3.2, we de�ne the scenario
and problem we aim to solve. Sec. 2.3.3 then de�nes an augmented network topology on which
we perform path �nding and Sec. 2.3.4 de�nes the di�erent architectural components needed for
a routing algorithm to be able to solve embedding requests. Finally, Sec. 2.3.5 then accordingly
summarizes the interface that these components provide to the routing procedure.

Sec. 2.4 then describes how the interface of the network model is implemented. Sec. 2.6 brie�y
discusses how this architecture can be extended to include wireless hops. Chapter 3 deeply investi-
gates the routing procedure. The resource allocation problem, for its part, is not extensively studied
in this thesis. We will use simple algorithms. The investigation of this problem is an interesting
future research direction that we discuss.

17This reference considers) = 0 and adds an additional parameter + which is 0 in our case.

2.3. DetServ: Architecture Design 41

Figure 2.25: Example of queue-level topology for a network with 3 priority queues per link. Modeling each
individual priority queue leads to more embedding opportunities for the routing procedure.

2.3.1 Parameter Considered: End-to-End Delay

There are several E2E QoS parameters that can be considered for predictability, e.g., packet loss,
jitter, delay, throughput or availability [ÅGB11]; [Gun+11]; [KK13]; [Sta15]. As the main focus of
this thesis, this architecture considers E2E delay.

Along its path, a packet su�ers from di�erent types of delays: processing, queuing, transmission,
and propagation delays [KR13]. The propagation delay for each link is known from the characteris-
tics of the link (e.g., its length and physical medium). The processing delay depends on the properties
of the switching hardware and can usually be bounded by a constant. We will investigate this com-
ponent in chapter 4. Finally, upper bounds on the queuing and transmission delays can be computed
using DNC. The sum of all these components along the route of a �ow makes up the E2E worst-case
delay bound for the �ow. We do not consider delay introduced at end hosts.

2.3.2 Problem Formulation: Online Flow Embedding

We consider an online setting where users or applications arrive one at a time and request a path with
predictable latency. The o�ine counterpart, consisting in �nding an embedding for a set of �ows,
has been shown to be intractable [GRK15]; [GRK16]; [Guc18]. Each �ow should be embedded such
that its latency requirement is ful�lled and such that its consumption of resources is minimized, so as
to maximize the probability of acceptance of future requests. However, of course, when processing a
�ow request, the amount and characteristics of �ow requests that will follow is unknown. As such,
our problem is the following.

For a given �ow 5 , �nd a route through the topology from its source B5 to its destination 35 such
that (i) the E2E delay requirement C5 of the �ow is satis�ed, (ii) the E2E guarantees provided to previ-
ously embedded �ows are still guaranteed, and (iii) the probability of future �ow requests acceptance is
maximized.

QoS routing is initiated by a query of the DP. For example, this can be done by contacting the
NBI of the SDN controller. The query should at least contain the application characteristics (e.g.,
source, destination, burst, rate and maximum packet size) and maximum E2E delay requirement.
Based on this input and on the current state of the network, routing can then be performed. Once
an embedding is found, the corresponding forwarding rules are pushed to the DP by the controller.

2.3.3 Routing Topology: Queue-Level Topology

The queuing delay a packet experiences on its way to its destination does not only depend on the
physical path followed by the packet but also on how the packet is scheduled at each link. Because

42 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

of its simplicity and ubiquity, we assume that non-preemptive strict priority scheduling is used at
each switch.

From this, the route selection process for a �ow must consider both the physical links the �ow
will traverse and the queues at which the �ow will be bu�ered at each output link. As a consequence,
Guck et al. [GRK15]; [GRK16] introduced what we will call the queue-level topology. From the
physical network topology, each directed physical link (D, E) is replaced by&D,E queue links, whereD
and E are the source and destination nodes of the link and&D,E is the number of priority queues at the
scheduler of the link (see Fig. 2.25). Each edge in the queue-level topology hence represents a physical
link and a given queue at the ingress of this physical link, i.e., a di�erent QoS level transmission over
this physical link. Route selection on this queue-level topology thus determines both the path that
a �ow takes through the physical network as well as, for each physical link, the queue in which the
�ow will be bu�ered.

From a set of �ows and the paths they follow in the queue-level topology, the DNC results
presented in Sec. 2.2 allow to compute E2E delay bounds for each �ow.

Performing route selection on the queue-level topology allows a �ow to be assigned di�erent
priorities at each node, thereby increasing �exibility compared to legacy approaches (e.g., [05];
[Guo+10]; [Bal+11]; [AX14]; [Sha+14]; [TPR14]; [Gro+15]; [Hu+16]) which usually assign �xed
priorities to �ows along their complete path. We will detail and investigate this bene�t further in
chapter 4.

2.3.4 Architecture Components: Routing, Resource Allocation and Reservation,

Access Control and Cost Function

The embedding of a new �ow must not violate the delay guarantees provided to previously embedded
�ows. Indeed, as shown by Eqn. 2.19, embedding a new �ow at a link updates the service o�ered to
other �ows traversing that link, which in turn updates the delay bounds for these �ows and might
hence potentially cause the violation of the E2E delay guarantees provided to these �ows.

As a result, resources usage has to be taken into account while routing. The approach here is to
rely on a resource allocation algorithm that de�nes the amount of resources to allocate to the di�erent
queues at each link of the network. The routing algorithm is then responsible for �nding a path in the
queue-level topology for which the delay of the new �ow is guaranteed and that only uses resources
that are still available, thereby ensuring that the guarantees of previously embedded �ows are not
violated. The availability of resources is provided by an access control logic. This logic relies on a
resource reservation component that keeps track of the resources already used with respect to the
total resources allocated by the resource allocation algorithm. Access is rejected if the new �ow
requires more resources than what remains from the allocated resources. The three constraints of
the problem formulated in Sec. 2.3.2 are then satis�ed as follows.

(i) The routing algorithm gets the worst-case E2E delay of a route by summing up the per-queue
worst-case delay values (obtained from the resource allocation component) of the queues on
the given route.

2.3. DetServ: Architecture Design 43

DetServ network model

getCost(queue)

hasAccess(queue)reserve(path)

getDelay(queue)

free(path)

Routing

 get current usage

Cost
function

allocated resources

Resource
allocation

get current usage

Access
control

Resource
reservation

flow embedding/removal request

Figure 2.26: The DetServ CP architecture composed of a routing procedure and a network model that consists
of a cost function, an access control logic, a resource reservation component and a resource allocation algorithm.
The interface of a generic DetServ network model is shown in underlined �xed-width font. A �ow request
is handled by the routing procedure. Its task is to �nd a suitable route in the queue-level topology for the
corresponding �ow. While routing, the getDelay and hasAccess methods of the network model are used for
the computation of worst-case delays and for access control. The reserve and free functions are for their
part used to update the state of the network model to re�ect the embedding or removal of a �ow.

(ii) The access control logic ensures that, if the routing algorithm uses only queues for which ac-
cess has been granted, the worst-case delay values de�ned by the resource allocation algorithm
are not exceeded, and hence that the worst-case E2E delay computed for previous �ows is still
valid.

(iii) We introduce a cost function, the minimization of which maximizes the probability of future
request acceptance. This function is used by the routing algorithm to choose among all the
paths satisfying the E2E delay constraint of the new �ow. The cost function transforms the
network state, characterized for instance by data rates, bu�er consumption, and already em-
bedded �ows, into a cost metric for each edge. The cost metric should maximize the number
of �ows that the network can serve.

The interaction between these �ve components is illustrated in Fig. 2.26. We refer to the com-
bination of the cost function, access control, resource reservation and resource allocation components
as the network model. This constitutes the DetServ architecture for providing predictable latency in
programmable networks.

2.3.5 Model Functions: Interface of the Network Model

The components described in Sec. 2.3.4 and Fig. 2.26 highlight the interface that the network model
has to expose to the routing algorithm. This interface consists of the following �ve so-called model
functions.

• getDelay. Computes the worst-case delay of a given queue. This worst-case delay must be
valid for the whole lifetime of the network.

44 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

• hasAccess. Checks whether or not there are still enough resources available for a given �ow at
a given queue. This method ensures that the delays returned by getDelay are never violated.

• reserve. Updates the model state to re�ect the embedding of a new �ow.

• free. Updates the model state to re�ect the removal of a previously embedded �ow.

• getCost. Computes a cost value for a given queue. Queues that should preferentially be
used to maximize the probability of acceptance of future �ow requests should have lower cost
values.

The processing of a �ow request is then illustrated in Fig. 2.26. Upon receipt of a �ow embedding
request, the routing algorithm searches for a solution to the problem de�ned in Sec. 2.3.2. While
searching, the algorithm uses the getDelay and hasAccess methods to obtain the delay of an edge
and to check if enough resources are available at an edge. Once a path has been found, the reserve
method is used to update the state of the model in order to re�ect the embedding of the new �ow.
Similarly, the free method is used upon receipt of a �ow removal request in order to re�ect the
removal of the corresponding �ow.

How these methods are implemented depends on how and which resources are allocated and
managed at each queue. In Sec. 2.4, we present in detail a model implementing this interface by
allocating a maximum delay resource at each queue. Another model, presented in [GVK17]; [Guc18]
but not shown here, allocates maximum burst and maximum rate resources at each queue. [GVK17];
[Guc18] show that the latter provides less potential for reaching high network utilization. In Sec. 2.6,
we shortly discuss how the presented DetServ architecture can be used to provide predictable latency
in networks with wireless hops. We discuss the routing procedure in detail in chapter 3.

2.4 DetServ: End-to-End Network Latency Model

As elaborated in Sec. 2.3, a system for predictable latency requires a network model for the computa-
tion of worst-case delays and for access control. This network model must implement the interface
de�ned in Sec. 2.3.5. We presented two such models based on DNC theory in [GVK17], both of which
were published in a previous doctoral thesis from the Technical University of Munich [Guc18]. The
�rst model, the multi-hop model (MHM), assigns a rate and a bu�er budget to each queue in the
network. This allows to compute worst-case delays for any path in the network. We showed that
the MHM requires an a priori choice regarding the characteristics of �ows that are to be embedded
based on the trade-o� between rate, bu�er capacity, and delay. The second model, the threshold-
based model (TBM), simpli�es this trade-o� by only �xing a maximum delay for each queue in the
network, thereby avoiding the a priori assignment of rate and bu�er budgets. In this section, we
present in detail the TBM, as it showed more potential in terms of number of accepted �ows and as
it is the main part of our contribution in [GVK17]. The performance of the TBM, in terms of induced
runtime and number of accepted �ows is investigated in Sec. 2.5. We further con�rm through packet-
level simulations that the model is indeed correct: the delay guarantees it provides are never violated.
Comparable evaluations for the MHM are available in [GVK17] and the doctoral thesis [Guc18]. Ad-

2.4. DetServ: End-to-End Network Latency Model 45

ditionally to the elaborations published in this previous thesis [Guc18], we provide a detailed example
of the operations of the model.

The power of the proposed model resides in the fact that it can be used with o�-the-shelf switches
supporting PQ and any SDN protocol providing standard enqueuing and forwarding programmable
primitives, e.g., OF 1.0 [Ope09].

2.4.1 Notations

P and G respectively denote the physical and queue-level graphs (see Sec. 2.3.3). We use the indices
� and # to refer to the set of edges and nodes of these graphs. For example, P� represents the set
of edges in the physical graph. The capacity of a physical link (D, E) ∈ P� is denoted by ' (D,E) . We
assume a non-preemptive strict PQ scheduler with & (D,E) queues at the physical link (D, E) ∈ P� .
Edges in the queue-level network are denoted by (D, E, ?), where (D, E) is the corresponding physical
link and ? ∈ {1, . . . , & (D,E) } is the priority of the corresponding queue at the physical link, 1 being
the highest priority.
F denotes the set of �ows already embedded in the network. For a given embedded �ow 5 ∈ F

or for a given �ow 5 to be embedded,

• A 5 denotes the rate (as de�ned in Sec. 2.2.4.2) of the �ow,

• 1 (D,E,?)
5

denotes the burst size (as de�ned in Sec. 2.2.4.2) of the �ow at queue (D, E, ?) ∈ G� (as
we have seen in Sec. 2.2.6 that the burst of a �ow changes at each hop),

• C5 denotes the E2E latency requirement of the �ow,

• ;<0G
5

denotes the maximum packet size of the �ow, and

• %5 ⊆ G� denotes the set of queues through which the �ow is routed (empty set if the �ow is
not embedded yet).

The maximum packet size in the network is denoted by !<0G . If it is not known, the maximum
Ethernet frame size of 1542 bytes (including the preamble, a VLAN tag and the inter-frame gap).

For a given queue (D, E, ?) ∈ G� ,

• F(D,E,?) ⊆ F denotes the set of embedded �ows traversing the queue,

• U(D,E,?)A denotes the sum of the rates of the �ows traversing the queue, i.e.,

U(D,E,?)A ,
∑

5 ∈F(D,E,?)
A 5 , (2.25)

• U(D,E,?)
1

denotes the sum of the bursts of the �ows traversing the queue, i.e.,

U(D,E,?)
1

,
∑

5 ∈F(D,E,?)
1
(D,E,?)
5

, (2.26)

46 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

• ;<0G(D,E,?) denotes the maximum packet size among all the �ows traversing the queue, i.e.,

;<0G(D,E,?) , max
5 ∈F(D,E,?)

{;<0G
5
}, (2.27)

• M(D,E,?)C denotes the worst-case maximum latency of the queue,

• M(D,E,?)
1

denotes the worst-case maximum backlog at the queue, and

• � (D,E,?) denotes the bu�er capacity of the queue.

Using these notations and applying the changes described in Sec. 2.2.7 for packet-based systems,
Eqn. 2.20, 2.21, 2.22 and 2.23 can be respectively rewritten as

' (D,E,?) = ' (D,E) −
?−1∑
9=1

U(D,E,9)A , (2.28)

)(D,E,?) =

∑?−1
9=1 U

(D,E,9)
1

+ max
?+1≤ 9≤& (D,E)

{;<0G(D,E,9) } + ;<0G(D,E,?)
' (D,E) −

∑?−1
9=1 U

(D,E,9)
A

, (2.29)

M(D,E,?)C =

∑?

9=1 U
(D,E,9)
1

+ max
?+1≤ 9≤& (D,E)

{;<0G(D,E,9) } + ;<0G(D,E,?)
' (D,E) −

∑?−1
9=1 U

(D,E,9)
A

, (2.30)

and
M(D,E,?)
1

= U(D,E,?)
1

+ U(D,E,?)A)(D,E,?) , (2.31)

where V' (D,E,?) ,)(D,E,?) is the rate-latency service curve (see Sec. 2.2.5.2) o�ered by a queue (D, E, ?) ∈ G� .

2.4.2 Mathematical Formulation of Latency Requirements

First, in order to respect the latency requirements of embedded �ows, we must have,∑
(D,E,?) ∈%5

M(D,E,?)C ≤ C5 ∀5 ∈ F . (2.32)

Second, in order to avoid any bu�er over�ow (and hence any packet loss), we must have

M(D,E,?)
1

≤ � (D,E,?) ∀ (D, E, ?) ∈ G� . (2.33)

2.4.3 Model Functions Implementation: The Threshold-based Model

Both bounds in Eqn. 2.30 and 2.31 depend on U(D,E,9)
1

, U(D,E,9)A and ;<0G(D,E,9) for some 9 , i.e., on the burst
size, rate and maximum packet size of other �ows embedded on the same physical link. This means
that, if a new �ow is embedded on a link (D, E) ∈ P� , the worst-case delay (Eqn. 2.30) and bu�er
consumption (Eqn. 2.31) of some of the queues at the link will be updated, thereby possibly violating
requirements of some previously embedded �ows (Eqn. 2.32 and 2.33). As explained in Sec. 2.3.4, we
do not want to check that the latency requirements of the already embedded �ows are still satis�ed
(i.e., check Eqn. 2.32) after a new �ow embedding. That means that the worst-case bounds M(D,E,?)C

2.4. DetServ: End-to-End Network Latency Model 47

and M(D,E,?)
1

have to be bounded independently of the state of the network. In such a way, if Eqn. 2.32
for a given �ow 5 was satis�ed when the �ow was embedded, it will be kept satis�ed for the whole
lifetime of the network.

The two models we presented in [GVK17] di�er in the way they �x theM(D,E,?)C bounds. While the
MHM upper-bounds the variable parts of Eqn. 2.30 (i.e., U(D,E,?)A and U(D,E,?)

1
), the TBM �xes M(D,E,?)C

itself and lets the variables vary until the �xed threshold is reached. The MHM requires an a priori
decision on how to allocate the rate and bu�er resources at each queue. That is problematic, as the
type of future �ow requests, would it be bursty or bandwidth-hungry, is unknown. The TBM solves
this drawback by automatically chosing between bu�er capacity and data rate as �ows are added to
the network, thereby allocating the rate and bu�er capacity resources only when needed rather than
pre-allocating them without knowing future �ow requests.

After �xing the worst-case delay of each queue (Eqn. 2.30) by de�ning the thresholds T(D,E,?)C ,
�ows are accepted in a queue as long as the worst-case delay of the queues at the same link do not
exceed their respective thresholds.

This approach has two main bene�ts. First, as mentioned, the data rate and bu�er space resources
are allocated only when needed, rather than a priori, thereby leading to a better utilization of the
resources. Second, the resource allocation algorithm is now simpli�ed since it only has to optimize
with respect to one variable (the time) rather than two (bu�er space and data rate). In other words,
the TBM replaces the three data rate, bu�er space and delay resources by a single one: delay.

Unfortunately, when adding a �ow in a queue (D, E, ?), besides checking that M(D,E,?)C ≤ T(D,E,?)C

for this queue, the access control mechanism has to check that the thresholds of lower priority queues
are also not exceeded, what is not necessary for the MHM. That is, the access control mechanism
has to check that

M(D,E,9)C ≤ T(D,E,9)C ∀ 9 : ? ≤ 9 ≤ & (D,E) . (2.34)

Besides, the access control scheme has to make sure that no bu�er over�ow can be caused by the
embedding of the new �ow, i.e.,

M(D,E,9)
1

≤ � (D,E,9) ∀ 9 : ? ≤ 9 ≤ & (D,E) . (2.35)

Note that Eqn. 2.30 and 2.31 require the knowledge of the maximum packet size in lower priority
queues. This means that, strictly speaking, when embedding a �ow in a queue, higher priority queues
also have to be checked since the maximum packet size might have changed. To avoid this, we replace
this term by !<0G . From this, we have

M(D,E,?)C ≤
∑?

9=1 U
(D,E,9)
A + !<0G + ;<0G(D,E,?)

' (D,E) −
∑?−1
9=1 U

(D,E,9
A

, (2.36)

and
M(D,E,?)
1

≤ U(D,E,?)
1

+

U(D,E,?)A

∑?−1
9=1 U

(D,E,9)
1

+ !<0G + ;<0G(D,E,?)
' (D,E) −

∑?−1
9=1 U

(D,E,9)
A

, (2.37)

48 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

1: function getDelay((D, E, ?))
2: return T(D,E,?)C

3:
4: function hasAccess(5 , (D, E, ?))
5: for 9 ∈ {?, . . . , & (D,E) } do
6: M(D,E,9)C ← Eqn. 2.36 including new �ow
7: M(D,E,9)

1
← Eqn. 2.37 including new �ow

8: if M(D,E,9)C > T(D,E,9)C orM(D,E,9)
1

> � (D,E,9) then
9: return false

10: return true
11:
12: function reserve(5 , %)
13: for (D, E, ?) ∈ % do

14: U(D,E,?)
1

← U(D,E,?)
1

+ 1 (D,E,?)
5

15: U(D,E,?)A ← U(D,E,?)A + A 5
16: Update ;<0G(D,E,?)
17:
18: function free(5 , %)
19: for (D, E, ?) ∈ % do

20: U(D,E,?)
1

← U(D,E,?)
1

− 1 (D,E,?)
5

21: U(D,E,?)A ← U(D,E,?)A − A 5
22: Update ;<0G(D,E,?)

Figure 2.27: The model functions for the TBM (excluding getCost, the implementation of which is free).
The threshold for the latency of a queue is chosen by the resource allocation algorithm. Access to a queue
(D, E, ?) ∈ G� is then controlled by checking that the new worst-case bound does not exceed its threshold value.
Besides, as the state of a queue in�uences the state of lower priority queues, the access control mechanism also
has to check that the worst-case bounds of lower priority queues do not exceed their respective thresholds.
Finally, the bu�er capacity also has to be checked for the di�erent queues.

which only depend on the state of higher priority queues. As a result, it is su�cient to only check
lower priority queues when embedding a new �ow.

The pseudo-code of the TBM model functions implementation is given in Fig. 2.27. The reserva-
tion and freeing methods simply consist in updating the state variables. The delay of a queue link
edge is simply the one �xed by the resource allocation algorithm and the access control scheme ver-
i�es that Eqn. 2.34 and 2.35 are still veri�ed for the subject queue and the lower priority queues if
the �ow is embedded.

2.4.4 Threshold-based Model: Example

In this section, we present a detailed example of the operation of the TBM at a given physical link.
We consider a given physical link (D, E) ∈ P� of capacity'D,E = 1 Gbps and with three priority queues
scheduled by a non-preemptive strict PQ scheduler. The bu�er capacity at each queue is 300 KB, i.e.,
� (D,E,?) = 300 KB ∀? ∈ {1, 2, 3}. !<0G = 1530 bytes. The example is illustrated in Fig. 2.28.

Let us assume that the resource allocation algorithm assigned T(D,E,1)C = 1.74 ms, T(D,E,2)C = 6.6 ms
and T(D,E,3)C = 11.22 ms as limit worst-case delays for the three queues. Let us further consider that
the queues are in the following state. The high priority queue is traversed by an aggregate �ow with a

2.4. DetServ: End-to-End Network Latency Model 49

time

data

∇
=
'
(D
,E
,1)

)(D,E,1)

∇ =
U
(D,E
,1)

A

U(D,E,1)
1

� (D,E,1)

T(D,E,1)C

)(D,E,2)

M(D,E,1)C

M(D,E,1)
1

(a) High priority queue.

time

data
∇ =

'
(D
,E
,2)

)(D,E,2)

∇ =
U
(D,E
,2)

A

U(D,E,2)
1

� (D,E,2)

T(D,E,2)C

)(D,E,3)

M(D,E,2)C

M(D,E,2)
1

51 52

(b) Middle priority queue.

time

data

∇ =
' (D

,E
,3)

)(D,E,3)

∇ = U
(D,E,3)
A

U(D,E,3)
1

� (D,E,3)

T(D,E,3)C

M(D,E,3)C
M(D,E,3)
1

7 51

3 52

(c) Low priority queue.

Figure 2.28: Example of service and arrival curves for a non-preemptive strict PQ scheduler with three queues
using the TBM. All the queues are constrained by two parameters. The �rst one, � (D,E,?) , corresponds to the
bu�er space at the queue. The second one, M(D,E,?)C , assigned by the resource allocation algorithm, corresponds
to the maximum worst-case delay of the queue. The access control has to reject any tra�c that makes the
worst-case backlog or delay at this queue grow bigger than these bounds. If bounds are not exceeded, bounds
of lower priorities queues also have to be checked. A �ow can then be embedded only if bounds of all lower
priority queues are also not exceeded. Fig. 2.28b and 2.28c show the updated arrival and services curves if a
�ow 51 is added to the middle priority queue. From the point of view of the middle priority queue, none of
its two bounds would be violated and the �ow can be added. Nevertheless, 51 cannot be accepted because the
updated service curve of the lower priority queue would lead to the violation of its worst-case delay threshold.
In dashed lines, Fig. 2.28b and 2.28c also show the updated arrival and services curves if another �ow 52 is added
to the middle priority queue. In this case, none of the bounds in both queues will be violated and the �ow can
hence be accepted.

50 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

burst ofU(D,E,1)
1

= 186 KB, a rate ofU(D,E,1)A = 322 Mbps and a maximum packet size ;<0G(D,E,1) = 700 bytes.
The middle and low priority queues are traversed by aggregate �ows with bursts of U(D,E,2)

1
= 195 KB

and U(D,E,3)
1

= 90 KB, rates of U(D,E,2)A = 275 Mbps and U(D,E,3)A = 93 Mbps, and maximum packet sizes
of ;<0G(D,E,2) = 400 bytes and ;<0G(D,E,3) = 1200 bytes, respectively. The corresponding service and arrival
curves for the three di�erent priority queues are shown in Fig. 2.28. Note that, graphically,)(D,E,9)
corresponds to the abscissa at which the arrival and service curves at queue (D, E, 9 − 1) intersect18.
This can be intuitively understood. Indeed, a queue has to wait for the directly higher priority queue
to empty its backlog before being served. The service curve parameters for all the priority queues
are directly given by Eqn. 2.29 and 2.28. The current bu�er and delay usage M(D,E,?)

1
and M(D,E,?)C are

shown along with their limits � (D,E,?) and T(D,E,?)C .
Let us consider that the routing algorithm then requests access to the middle priority queue for a

�ow 51 with burst 1 (D,E,2)
5

= 5500 bytes and rate A 5 = 82 Mbps. We assume the maximum packet size
of the �ow is smaller than the current maximum packet size of the aggregate, thereby leaving ;<0G(D,E,2)
unchanged. The high priority queue is not concerned by this request. The updated arrival curve for
the middle priority queue is shown in Fig. 2.28b (thin full line). The delay and backlog thresholds
of this queue are not exceeded. From the point of view of the middle priority queue, the �ow can
hence be embedded. The low priority queue state also has to be checked. The updated service curve
o�ered by the low priority queue is shown in Fig. 2.28c (thin full line). Unfortunately, we can see
that the worst-case delay limit T(D,E,3)C would now be exceeded. As a result, 51 has to be rejected from
the middle priority queue because it would violate the delay threshold of the low priority queue.

The routing algorithm then requests access to the middle priority queue for a �ow 52 with burst
1 (D,E,2)
5

= 15 KB and rate A 5 = 30 Mbps. We once more assume that the maximum packet size of the
�ow is smaller than the current maximum packet size of the aggregate. The high priority queue is
still not concerned by the request. The updated arrival curve for the middle priority queue is shown
in Fig. 2.28b (thin dotted line). As for 51, we can see that the delay and backlog thresholds of this
queue are not exceeded. Before allowing the embedding of the �ow to this queue, the updated state of
the low priority queue also has to be checked. The updated service curve o�ered by the low priority
queue is shown in Fig. 2.28c (thin dotted line). We can see that the the worst-case delay limit T(D,E,3)C

would, in this case, not be exceeded. As a result, since all the worst-case limits are still respected, 52
can be embedded in the middle priority queue and the arrival and service curves can be updated to
the thin dotted lines.

2.4.5 Threshold-based Model: The Blocking Problem

The TBM presents an inherent blocking problem where the state in a queue can prevent �ows to be
added in other queues. Let us consider a low priority queue that reached its delay threshold. No �ows
can be added anymore to this queue, as that would violate its delay threshold. The problem is that
this will also block further embeddings in higher priority queues, even if these are still far from their
own delay threshold. Indeed, adding a �ow to a high priority queue will lower the service curve of
18Strictly speaking, this is only the case if we neglect the ;<0G(D,E,?) term in Eqn. 2.29, i.e., if the store-and-forward behavior

of switches is neglected. Nevertheless, this term only slightly shifts the)(D,E,?) values, so we can consider, for understanding
purposes, that the statement is true. Note that, in the �gures, the real values are shown. It can be seen that)(D,E,?) is indeed
always very close to the intersection of the two curves.

2.4. DetServ: End-to-End Network Latency Model 51

the low priority queue, thereby increasing its worst-case latency and exceeding its delay threshold.
As a result, one might think that it is wiser to �ll high priority queues �rst in order to avoid this
problem. However, let us imagine we �ll high priority queues and reach their delay threshold. Such
high usage in the high priority queues could lead to very low service o�ered to lower priority queues.
As a result of such low service curves, the lower priority queues would have a high worst-case latency
even for low tra�c, thereby potentially exceeding their delay threshold even for a single �ow and
hence preventing the usage of these low priority queues.

We observe that the usage of high priority queues blocks the usage of low priority queues, and,
more surprisingly, also vice-versa. Consequently, when �nding a route in the queue-level graph, the
routing algorithm must operate cautiously in order to avoid such blocking situations which would
inevitably cause resource waste. This problem actually corresponds to the problem of designing a
good cost function (i.e., implement the getCost method) that would avoid this problem and lead to
high network utilization and few rejections. We will see in chapter 4 that this problem of �nding a
good routing objective is very hard and we will see how we can tackle this problem to reach high
network utilization.

2.4.6 Computation of the Burst Increase

We mentioned that the burst of a �ow changes at each hop. However, we did not explain how
this change can be computed on a per-�ow basis and how this impacts delay computations. From
Sec. 2.2.6.4, we know that an aggregate �ow with arrival curve WU(D,E,?)A ,U(D,E,?)

1

traversing a queue

o�ering a service curve V' (D,E,?) ,)(D,E,?) will see its burst U(D,E,?)
1

increased by U(D,E,?)A)(D,E,?) , i.e.,

U∗(D,E,?)
1

= U(D,E,?)
1

+ U(D,E,?)A)(D,E,?) . (2.38)

U∗(D,E,?)
1

is the new burst of the entire aggregate after having traverse queue (D, E, ?). The �ows
composing this aggregate might take di�erent routes at the next hop and the individual burst in-
creases of the individual �ows composing the aggregate must be computed. From Eqn. 2.25 and 2.26,
Eqn. 2.38 can be rewritten as

U∗(D,E,?)
1

=
∑

5 ∈F(D,E,?)

(
1
(D,E,?)
5

+ A 5)(D,E,?)
)
, (2.39)

which highlights the contribution of each individual �ow to the burst increase. As a result, the burst
of a �ow 5 ∈ F(D,E,?) when entering a queue (E, C, @) ∈ G� after having traversed queue (D, E, ?) ∈ G�
is given by

1
(E,C,@)
5

= 1
(D,E,?)
5

+ A 5)(D,E,?) , (2.40)

which depends, through)(D,E,?) , on other �ows traversing the same physical link, and hence, through
1
(D,E,?)
5

on other �ows traversing other physical links. This dependency of the burst increase on
other embedded �ows is problematic. Indeed, this means that, when a �ow is embedded in a queue,
the burst increase of other �ows traversing the same link might change, possibly violating already
performed access control checks. As explained in Sec. 2.3.4, such a situation must be avoided and
the burst increase of a �ow must therefore be, as the worst-case delay of a queue, independent of the

52 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

time

data

∇ =
' (D

,E
,?
)

∇ =
'

∇ = U
(D,E,?)
A

U(D,E,?)
1

;<0G(D,E,?)

)(D,E,?)

Figure 2.29: Shaped arrival curve of an aggregate �ow traversing a queue (D, E, ?) ∈ G� coming from an input
link with rate '. The knowledge of the physical properties of the input link of the �ow allows to limit the burst
and rate of the aggregate respectively to the maximum packet size ;<0G(D,E,?) of the �ow and to the maximum rate
' of the link. Graphically, we can see that such a shaping reduces the values of the backlog and delay bounds.

network state. From Eqn. 2.29, 2.30, and 2.34, it is straightforward that

)(D,E,?) ≤ M(D,E,?)C ≤ T(D,E,?)C ∀ (D, E, ?) ∈ G� . (2.41)

Therefore, the burst increase of a �ow 5 is such that

1
(E,C,@)
5

≤ 1 (D,E,?)
5

+ A 5 T(D,E,?)C . (2.42)

The TBM can then compute 1 (E,C,@)
5

using this bound which is independent of the network state.
We note that, if the cycle time (or inter-arrival time of packets) of a �ow is greater than its latency

requirement, then the burst increase can be neglected. Indeed, in such a case, a packet is ensured to
reach its destination before the following packet is sent. As a result, packets of the same �ow will
not queue up at any queue and the burst of the �ow will never increase.

2.4.7 Input Link Shaping

So far, we considered that the arrival curve of the aggregate �ow entering a queue (D, E, ?) ∈ G� is
WU(D,E,?)A ,U(D,E,?)

1

, that is, that the burst of the aggregate �ow entering a queue is given by the sum of
all the bursts of all the �ows composing the aggregate (see Eqn. 2.26). Nevertheless, the individual
�ows come from physical links of �nite capacity. Hence, the tra�c entering a given queue is further
limited by the capacity of these links it is coming from. Considering this new bound on the tra�c
entering a queue, we can lower the corresponding arrival curves, yielding lower bound values and
thereby potentially accepting more �ows in the network.

2.4.7.1 Concept

The idea, to which we refer to as input link shaping (ILS), is illustrated in Fig. 2.29 for a given
queue (D, E, ?) traversed by a set of �ows coming from a common input link of capacity '. From
the knowledge of the physical properties of the input link, besides its traditional arrival curve, the
aggregate �ow is additionally constrained by a token bucket arrival curve with rate ' and burst
;<0G(D,E,?) . If a �ow is constrained by two di�erent token bucket arrival curves, a better arrival curve for
the �ow is the minimum of these curves (see Sec. 2.2.4.1 and 2.2.6.4). The resulting arrival curve of

2.4. DetServ: End-to-End Network Latency Model 53

time

data

∇ =
' (D
,E
,?
)

∇ = U
<→(D,E,?

)
A

+ U>
→(D,E,?)
A

∇ = ' (<,D) + ' (>,D)

∇ = ' (<,D) + U>→(D,E,?)A

U<→(D,E,?)
1

+ U>→(D,E,?)
1

;<0G
<→(D,E,?) + ;<0G>→(D,E,?)

)(D,E,?)

Figure 2.30: Example of shaped arrival curve. The aggregate �ow traversing queue (D, E, ?) comes from
two input links (<,D) and (>,D). Each input link has shaped the tra�c it carries as shown in Fig. 2.29 and the
resulting aggregate, corresponding to the sum of the two shaped arrival curves, is composed of three segments
with decreasing slopes. The backlog and delay bounds can then be reached at any angular point of both curves.
The bounds will always be lower than if shaping was not taken into account.

the aggregate �ow is of the form shown in Fig. 2.29. We can see that the backlog and delay bounds
will always be smaller than if shaping was not taken into account.

In Sec. 2.2.6, we have presented DNC results for computing the output arrival curve of a �ow after
it has traversed a network node characterized by a given service curve. Our proposal to cut o� a part
of this arrival curve, though intuitive, might seem to contradict these DNC results. The justi�cation
is the following. The DNC results presented are solely based on the basic arrival and service curve
concepts. While the service curve gives a lower bound on the service a network node will o�er
to a �ow, it does not specify anything regarding the maximum service the node could o�er, hence
potentially allowing in�nite service, i.e., in�nite rate. Taking this into account, an in�nite service
could instantly output the current backlog as a single burst. As a matter of fact, we know more than
what the basic service curve concept provides to DNC theory: the service provided by the network
node can never be higher than the link rate. The shaping we introduce is hence augmenting the
presented DNC results, rather than contradicting them. A similar idea is formalized by the concept
of maximum service curve in DNC.

2.4.7.2 Adapting the Threshold-Based Model

In order to introduce input link shaping (ILS) for the TBM, we must now keep track of the incoming
link from which each �ow arrived to a queue. To do so, we add the incoming link as parameter to the
state variables of the TBM. The variables U<→(D,E,?)A , U<→(D,E,?)

1
and ;<0G

<→(D,E,?) now respectively keep
track of the rate, burst and maximum packet size of the aggregate �ow coming from the physical
edge (<,D) and traversing the queue-link edge (D, E, ?). The arrival curve considered at a queue
(D, E, ?) can then be computed as∑

G :(G,D) ∈P�

(
min

{
W' (G,D) ,;<0GG→(D,E,?) , WUG→(D,E,?)A ,UG→(D,E,?)

1

})
, (2.43)

i.e., as the sum of the shaped arrival curves.
An example for two input links is shown in Fig. 2.30. One can see that the summed up arrival

curve can have up to = knee points, where = is the number of physical input links.

54 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

Obviously, the getDelay method in Fig. 2.27 does not change. The reserve and free methods
have to be updated to keep track of the new state variables. For its part, the hasAccess method has
to be changed at lines 6–7. Since the arrival curves are not token buckets anymore, the formulas for
computing the worst-case delay M(D,E,?)C and backlog M(D,E,?)

1
are not valid anymore. These values

have now to be computed geometrically. From the convexity of the region between the curves, the
delay (resp. backlog) bound can be computed by comparing the horizontal (resp. vertical) deviations
for all the knee points of the two curves.

The burst increase can still be computed per-�ow using Eqn. 2.42.

2.5 DetServ: Evaluation

In this section, we describe the evaluation of the TBM model and its ILS extension. The goal of this
evaluation is to answer three fundamental questions.

1. Are latency guarantees provided by the TBM and its ILS extension indeed correct?

2. Is the request processing time induced by the TBM reasonable for online �ow embedding?

3. What is the impact of ILS on the runtime and performance of the TBM in terms of number of
accepted �ows?

With this aim, the evaluation is separated in two parts. First, in Sec. 2.5.1, in order to answer the
�rst question, we run a packet-level simulation of one physical link managed by the TBM with and
without ILS and observe the delay experienced by the individual packets. We show that the TBM
and ILS indeed respect the delay guarantees provided to the di�erent �ows. Although the simulation
is performed only at a single link, this also con�rms that the models are valid E2E. Indeed, if the
worst-case delay of each queue is guaranteed, the E2E delay of each �ow, corresponding to the sum
of the individual worst-case delays of each queue visited by the �ow, is also guaranteed. Second, in
Sec. 2.5.2, in order to answer the second and third questions, we run a network-wide simulation by
generating series of �ow requests for di�erent network settings and observe the request processing
time of the TBM with and without ILS along with the amount of �ows they can accept. We show that
the runtime of the TBM is indeed reasonable. Indeed, in our simulations, the total request processing
time of the TBM with ILS remains lower than 350 ms in 99% of the cases and never exceeds 620 ms.
We further show that ILS allows the TBM to accommodate more tra�c in the network.

The intent here is not to compare the performance of the DetServ architecture and its models with
the SoA but simply to validate the correctness and usability of DetServ. A thorough comparison with
the SoA, in terms of number of �ows that can be accommodated and reachable network utilization,
is done in chapter 4.

2.5.1 Packet-level Simulation: Con�rming Correctness

We simulate the access control of a single 1 Gbps link with four priority queues and varying amount
of input links (1, 2, 3, 5 and 10). For each model and amount of input links, we generate �ow
registration and termination requests during 100 seconds. A �ow is added to a queue (reserve)

2.5. DetServ: Evaluation 55

2 4 6 8 10
860

880

900

920

940

960

number of input links

nu
m

be
ro

f�
ow

s

2 4 6 8 10
262
264
266
268
270
272
274

number of input links

TBM TBM + ILS

Figure 2.31: On the left diagram, results of the packet-level simulation when �ows are evenly distributed
among the combinations of input link and queue. ILS has no in�uence on the performance of the model. On
the right diagram, one priority queue receives more tra�c from a given input link and the tra�c is more
bursty. ILS now increases the performance of the TBM when the amount of input link is low. No packet loss
nor deadline violation was observed in both scenarios.

only if the access control (hasAccess) accepts it. We generate requests at a rate that is high enough
for saturating the link (250 requests per second) and hence for experiencing rejections of requests.

We consider a resource allocation algorithm that assigns the delays 0.487 ms (high priority),
1.437 ms, 3.035 ms, and 4.709 ms (low priority) to the di�erent queues. These delay values are chosen
so that they lead to a nice distribution of QoS levels among the queues. As we focus the simulation
on one physical link, the routing and cost function components (see Sec. 2.3.4) are not involved. Those
will be brie�y covered in Sec. 2.5.2 and chapter 3 will deeply cover the routing component.

2.5.1.1 First Con�guration: No Delay Violations

In a �rst con�guration, each request is de�ned by a data rate (between 400 Kbps and 1200 Kbps),
a burst size (between 70 bytes and 150 bytes), a maximum packet size (between 64 bytes and the
burst of the �ow) and a delay constraint (between 10 ms and 100 ms) which are uniformly ran-
domly distributed in their respective ranges. These are values in line with tra�c traces observed
in an operational industrial wind park network in the context of the VirtuWind H2020 European
Project [Mah+16]. We consider !<0G as the maximum Ethernet frame size including preamble, VLAN
tag and inter-frame gap, i.e., !<0G = 1542 bytes. Because the delay constraint is greater than the delay
of all the queues, the delay will not in�uence the rejection or acceptance of requests. This is inten-
tional. The reason for this is that we are willing to fully saturate the considered link. As a result,
having requests rejected because of their delay constraint will not a�ect the amount of �ows that
are accepted. The generated �ow requests are evenly distributed among the di�erent combinations
of input link and queue of the considered link. Flow requests are characterized by a duration which
is randomly generated from an exponential distribution with an average duration of 100 seconds,
representing the long-duration characteristic of industrial �ows.

For each run, the amount of �ows embedded at the link was sampled every second. The left
diagram of Fig. 2.31 shows, for each amount of input link, the average and the standard deviation
of these sampled values. We observe that ILS does not provide any bene�t. This could have been
expected. Indeed, as shown in Fig. 2.30, the maximum burst computation will be reduced only if one

56 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

knee point of the arrival curve is after the knee point of the service curve. In our particular setup of
requests distributed evenly among the combinations of input link and queue, the knee points of the
arrival curves are always before the knee point of the service curve, thereby explaining why ILS has
no impact in this con�guration.

During all the simulations, out of hundreds of millions of transmitted packets, no packet loss was
observed and the highest packet delay to deadline ratio was 1.07%.

2.5.1.2 Second Con�guration: ILS Increases Utilization

In a second con�guration, we change the requests generation. The data rate and burst size are now
varying between 56.688 Kbps and 64.688 Kbps and 879 bytes and 889 bytes, respectively. That is,
the tra�c is more bursty. Additionally, the requests are not anymore distributed evenly among the
combinations of input link and queue but we generate 10 times more requests from the �rst input link
for the highest priority queue than for all other combinations of input link and queue. In such a way,
because more �ows will be embedded in the high priority queue, the knee point of the corresponding
shaped arrival curve will be shifted towards the right, thereby potentially reducing the maximum
burst computation. Besides, since ILS shapes bursts, having more bursty tra�c should increase the
e�ect of ILS.

The right diagram of Fig. 2.31 shows the result of the simulation for the second con�guration. We
observe that ILS now improves the performance of the TBM when the amount of input links is low.
This is due to the fact that, when the amount of input link increases, the ratio of requests from the
�rst input link for the high priority queue to the total of requests decreases. Therefore, as increasing
the amount of input links leads to a more even distribution of requests among the combinations
of input link and queue (as in the �rst con�guration), the performance gain of ILS decreases. This
shows that ILS behaves better when the �ows at one link are not distributed evenly among the input
links. During all the simulations, out of tens of millions of transmitted packets, no packet loss was
observed and the highest packet delay to deadline ratio was 0.47%.

2.5.2 Monte Carlo Simulation

The �rst part of our evaluation con�rmed that the TBM and its ILS extension are correct. Further,
it has shown that the bene�t of ILS grows when the tra�c entering a link is not distributed evenly
among the incoming links. However, we only observed the impact of ILS on the allowed bursts.
In order to observe the impact of ILS on both the allowed bursts and the delay computation, a
global network simulation is required. As part of the complete DetServ architecture (Sec. 2.3.4, the
performance of the network model depends on the associated components (resource allocation, cost
function and routing algorithm) and on the scenario (topology and type of �ow requests). As such,
with the aim of observing the in�uence of the network model only, we run a Monte Carlo simulation
varying the di�erent components (de�ned in Sec. 2.5.2.1) and scenarios (de�ned in Sec. 2.5.2.2) used
next to the TBM and its ILS extension. In other words, we randomly vary the context in which the
model is used in order to isolate their impact on the overall performance of the DetServ architecture.

2.5. DetServ: Evaluation 57

2.5.2.1 Other Components: Resource Allocation, Routing Algorithm and Cost Function

Resource allocation algorithm. We allocate resources among the queues identically for each
link and following the resource allocation algorithm used in the �rst evaluation (Sec. 2.5.1). That is,
we assign the delays 0.487 ms (high priority), 1.437 ms, 3.035 ms, and 4.709 ms (low priority) to the
di�erent queues.

Routing algorithms and cost functions. As we will show in chapter 3, we can use existing
DCLC routing algorithms for �nding a delay-constrained path in the queue-level topology while
minimizing a given cost function. Among the plethora of such algorithms available in the literature,
we consider CBF [Wid94] for its optimality, LARAC [Jüt+01] for its good average performance and
Dijkstra computing the least-delay (LD) path for its simplicity (we will show the performance of
these algorithms in chapter 3). We use di�erent cost functions based on the priority of a queue link,
the amount of average �ows that can still be embedded in it or a combination of those.

2.5.2.2 Scenario

Topologies. We de�ne two network topologies based on lines and rings, which are typical struc-
tures for industrial networks. The two topologies are shown in Fig. 3.1 (the two leftmost topologies).
The �rst topology consists of a ring of size< + 1 to which one programmable logic controller (PLC)
and< lines composed of = remote input/outputs (I/Os) are attached. The second topology extends
the �rst one by connecting another ring of size < + 1 to the former loose ends of the remote I/Os
lines. The (< + 1)th switch not connected to the lines is then connected to the PLC. Communication
is only considered from the remote I/Os to the PLC. Both topologies can be scaled along the two =
and< dimensions (4 ≤ = ≤ 10, 4 ≤ < ≤ 10).

Flow requests. In order to generate a request for a given topology, a random remote I/O is selected
to communicate with the PLC. Requests are de�ned as in Sec. 2.5.1.1.

2.5.2.3 Evaluation Metrics

For a given iteration of the Monte Carlo simulation, i.e., for a given network model (and associated
resource allocation algorithm), cost function, routing algorithm and topology, a binary search is
started in order to �nd, for this scenario, the greatest tra�c intensity for which every request can be
embedded. Tra�c intensity is de�ned as the arrival rate of �ows multiplied by their average duration
(100 seconds, see Sec. 2.5.1.1), which also corresponds to the amount of active �ows in the network
(when the system converges). The tra�c intensity associated to an iteration then corresponds to the
maximum tra�c intensity that could be reached. The runtime associated to an iteration corresponds
to the average runtime of a request routing plus the average runtime of a path registration plus
the average runtime of a path deregistration, i.e., to the average runtime of a request processing life
cycle that was observed during the complete binary search. The runtime was measured on a machine
equipped with an Intel Xeon E5 2690v2 CPU @ 3.00 GHz.

58 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

runtime [x in s]

EC
D

F(
x)

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

tra�c intensity [x]

TBM TBM + ILS

Figure 2.32: Results of the evaluation. The left plot shows the ECDF of the average runtime of one complete
request life cycle (routing, embedding, deregistration) for the di�erent models and their corresponding vari-
ations with ILS. The right plot shows the ECDF of the tra�c intensity that the di�erent models were able to
reach. As expected, ILS has a greater impact on the TBM, both in terms of runtime and tra�c intensity. We
can observe that the TBM with ILS has the potential of reaching a high tra�c intensity, but at the cost of a
higher runtime.

2.5.2.4 Results

Fig. 2.32 shows the results of the Monte Carlo simulation. The left and right plot show the empirical
cumulative distribution function (ECDF) of, respectively, the runtime and the tra�c intensity for the
MHM with and without ILS.

Runtime. The runtime of the TBM is highly a�ected by the introduction of ILS (slowed down
by a factor of around 2). This was expected and is due to the increased complexity for computing
horizontal and vertical deviations when introducing ILS to the TBM. However, the runtime stays
lower than 350 ms in 99% of the cases and never exceeds 620 ms, which corresponds to a single-
threaded worst-case performance of 1.6 requests per second, which is a reasonable performance for
industrial applications.

Furthermore, because the runtime shift between the two versions of the TBM stays roughly equal,
Fig. 2.32 clearly shows that the network model is the main driver for the runtime of the complete
DetServ system.

Tra�c intensity. We observe that the introduction of ILS brings a performance increase to the
TBM. While we have seen that the runtime is mostly in�uenced by the network model, we observe
that this is not true for the tra�c intensity. Indeed, the slope of the tra�c intensity ECDFs vary dif-
ferently, which means that other components used in the Monte Carlo simulation have a signi�cant
impact on the performance of the model. For example, though ILS improves on the performance of
the TBM, the minimum and maximum achieved tra�c intensities are equal. Generally, we observe
that there is a trade-o� between low runtime and high tra�c intensity. This was expected, as more
precise models require more complex computations.

2.6. WDetServ: Support for Hybrid Wired/Wireless Networks 59

2.6 WDetServ: Support for Hybrid Wired/Wireless Networks

Based on the DetServ architecture described in the previous sections and in [GVK17]; [Guc18], we
presented wireless deterministic services (WDetServ) in [Zop+18], a system for additionally sup-
porting wireless hops. This constitutes the �rst framework for seamless provisioning of predictable
latency in arbitrary hybrid wired/wireless networks. In this section, we brie�y describe how this can
be achieved.

Industrial control systems are foreseen to operate over hybrid wired/wireless networks. While
controllers responsible for automation process control decisions will be deployed in the wired net-
work, sensors and actuators will be deployed in a wireless sensor network (WSN). To support the
QoS level needed for control systems, an E2E delay bound and a target reliability must be provided
in both wireless and wired domains. The target reliability de�nes the percentage of sent packets that
have to reach the destination within the delay bound. Indeed, unlike wired links which are assumed
to be 100% reliable, wireless links are naturally subject to packet loss and an additional reliability
metric must be introduced.

The model in the DetServ architecture described in Sec. 2.3.4 is responsible for ensuring that, if
the routing procedure appropriately uses its interface, the requirements of all applications will be
met at any time. Besides the �ve model functions described in Sec. 2.3.5, the network model must
additionally provide the routing procedure a topology on which to perform path �nding. In order to
provide support hybrid wired/wireless networks, it is su�cient to provide a network model for the
wireless domain that satis�es these requirements.

We accordingly propose a WDetServ model, a network model for TDMA-based wireless com-
munications. We consider a setup in which WSN nodes are connected to the wired infrastructure
via wireless gateways (WGs) in a star topology fashion, setup particularly common in dense in-
dustrial scenarios [Zop+18]. We assume that a WDetServ model operates independently for each
WG in the network. This can be provided by ensuring that motes connected to di�erent WGs do
not interfere with each other, what can be provided through appropriate planning or coordinated
scheduling [Zop+18]. As a result, while the wired part of the network, including the WGs, is mod-
eled by a unique DetServ model, the di�erent wireless sub-networks are modeled by independent
WDetServ models.

Analogously to the queue-level topology exposed by a DetServ model (Sec. 2.3.3), a WDetServ
model exposes a so-called frame size link topology to the routing procedure. Every TDMA wireless
link is modeled as a set of directed edges de�ning the di�erent TDMA sub-frame sizes that can be
used. The size of every sub-frame de�nes the maximum delay and reliability that can be achieved
using this sub-frame. Indeed, since a smaller sub-frame size reduces the number of transmission
opportunities, it ensures a smaller delay at a price of a reduced reliability. The �ve model functions
de�ned in Sec. 2.3.5 can then be implemented as follows.

• getDelay. The deterministic worst-case delay of a packet transmission using a given sub-
frame size can be easily computed based on the sub-frame duration 3 and the maximum num-
ber � of packets to be sent at once as (� + 1)3 [Zop+18].

60 Chapter 2. Architecture Design and Network Modeling for Predictable Latency

WDetServ network model

getCost

getDelayreserve hasAccessfree

Routing

update schedule

Reliability-based
scheduler

Frame size link
topology manager

flow embedding/removal request

ch
an

ne
l s

ta
ts

Wireless gateway

schedule

channel stats

unschedule

reschedule

trigger reroute

Figure 2.33: The WDetServ CP architecture. WDetServ full�ls the DetServ interface de�ned in Sec. 2.3.5.

• hasAccess. A wireless scheduler checks that a schedule providing the target reliability with
the given sub-frame size is available, that enough data rate is available (i.e., that the rate of
the application is lower than its minimum packet size divided by the sub-frame duration 3),
and that the packet size of the application is smaller than the maximum packet size that can
be sent in a single TDMA slot. As wired links are assumed to provide 100% reliability, the E2E
reliability of a path corresponds to the reliability of its wireless hop and this check is su�cient
for providing E2E reliability.

• reserve (resp. free). The wireless scheduler schedules (resp. unschedules) the given applica-
tion according to its reliability level to the sub-frame corresponding the given edge (schedule
(resp. unschedule) arrows in Fig. 2.33). The result is then forwarded to the WG in order to
notify the involved wireless devices (update schedule arrows in Fig. 2.33). In order to evaluate
the reliability of a given schedule, channel statistics must be gathered. This information is ob-
tained by the WG and forwarded to the scheduler (channel stats arrows in Fig. 2.33). Upon any
channel statistics change, applications reliability requirements can get violated. In this case,
the scheduler tries to reschedule the applications such that their respective target reliability
values are met again (reschedule arrow in Fig. 2.33). If the rescheduling succeeds, the WG re-
ceives and forwards the new schedules to the devices. If the rescheduling fails, E2E rerouting
is necessary (trigger reroute arrow in Fig. 2.33). Indeed, changing the paths taken in the wired
infrastructure will potentially allow to use other sub-frame sizes on the wireless link, thereby
potentially making the application schedulable again. The design and evaluation of such a
scheduler is part of the contributions of [Zop+18] but is omitted in this thesis.

• getCost. The implementation can depend on any parameters such as channel statistics and
number of connected devices.

In order for the routing procedure to operate on a single topology, the topologies provided by
both the DetServ and WDetServ models have to be merged. As each WG appears once in the DetServ
queue-level topology and in the WDetServ frame size link topologies, the �nal topology is simply
obtained by merging the individual topologies at the di�erent WGs. While embedding �ow requests,

2.7. Summary 61

the routing procedure uses the DetServ or WDetServ model depending on whether the edge it visits
is a queue-level topology edge or a frame size link topology edge.

2.7 Summary

In this chapter, we provided a detailed description of DetServ, an SDN-based architecture and an
accompanying network model for the provisioning of real-time QoS in programmable networks.

The architecture is based on a centralized controller receiving �ow embedding requests from
applications. A routing procedure is then responsible for �nding a path satisfying the delay require-
ment of the request. For doing so, the routing procedure relies on a network model responsible for
providing latency values at each hop and for performing access control. The network model itself
relies on a resource allocation module that allocates resources to individual queues in the network, an
access control module that ensures no more than the available resources are used, a resource reserva-
tion module that keeps track of the per-queue resources usage, and a cost function that is responsible
for driving the routing procedure towards paths where the application will consume less resources.

The presented TBM �xes a maximum delay for each queue and ensures that the worst-case delay
bound for traversing a queue always remains lower than the assigned maximum delay. Through
packet-level simulations, we con�rmed that the guarantees provided by the model are indeed never
violated. Our evaluations have additionally shown that the runtime cost of the DetServ architecture
and its TBM model is reasonable for industrial scenarios: the total request processing time never
exceeds 620 ms.

One major bene�t of the proposed model is that it can be used with simple commodity switches
supporting priority scheduling and any SDN protocol providing standard enqueuing and forwarding
primitives, e.g., OF 1.0 [Ope09].

This chapter further layed the ground for the remainder of this thesis. In chapter 3, we investigate
in detail the routing procedure of the DetServ architecture. In partcular, we investigate how it
can operate in coordination with the interface provided by the DetServ network model and what
in�uence the latter has on the optimality and completeness of existing SoA routing algorithms.
In chapters 4 and 5, we conduct detailed SDN forwarding hardware measurement campaigns and
observe that both the architecture and model cannot be used directly as is with existing forwarding
hardware. In both chapters, we then investigate what are necessary and possible amendments to
the architecture and model so that predictable latency can practically be provisioned in data center
networks (chapter 4) and in small networks (chapter 5), i.e., networks with low-bandwidth low-
capacity forwarding elements.

Chapter 3

Optimization of the Path Selection

Strategy

The previous chapter described an architecture and a network model for the provisioning of pre-
dictable latency in programmable networks. As part of this architecture, a routing procedure is re-
sponsible for path �nding. Using the interface provided by the network model (Sec. 2.3.5), the routing
procedure is responsible for embedding online �ow requests by �nding paths in the network that
satisfy the individual latency requirements of the applications.

The routing procedure has to provide a minimum set of features. First, the algorithm should
only return correct paths, i.e., paths with a delay lower or equal to the latency requirement of the
�ow to be embedded. Second, the algorithm should be able to provide a solution of su�cient quality.
Quality is here measured in terms of resources utilization: the �ow should be embedded in a way that
leaves the most amount of resources available for subsequent �ows. In order to measure quality, the
routing procedure relies on the cost function of the network model. This cost function is supposed
to transform the network state (e.g., data rates usage, bu�er consumption, already embedded �ows)
into a cost metric for each queue, the minimization of which maximizes the total number of �ows
that the network can accept. On the queue-level topology (see Sec. 2.3.3) of the network, the routing
algorithm must hence �nd a delay-constrained least-cost (LC) path using the getCost and getDelay
methods of the network model. Algorithms that solve this problem are called delay-constrained least-
cost (DCLC), or more generally constrained shortest path (CSP), algorithms. At the same time, in
order to serve requests as fast as possible, the algorithm should achieve a short runtime. Finally, the
algorithm should ideally be complete. Indeed, connection requests should not be rejected if they can
actually be accommodated.

The main contribution of this chapter is the in-depth study of this routing procedure, including
the design of new algorithms and the performance evaluation of SoA and new routing procedures.
First, we conduct a performance evaluation of available algorithms that satisfy the above-mentioned
requirements. We evaluate the performance of 26 SoA algorithms and provide insights into their
behavior in di�erent scenarios. This analysis has been done as part of a bilateral collaboration, the
results of which have already been published in a more extended version in a previous doctoral
thesis [Guc18]. We here present only the main �ndings of the study. Our results show that the
performance of algorithms greatly varies based on the network setup and speci�c routing request

63

64 Chapter 3. Optimization of the Path Selection Strategy

but we identify a small set of algorithms as best-�t for most scenarios: LARAC and H_MCOP. These
algorithms are based on the Lagrangian relaxation mathematical method and rely on multiple runs
of a Dijkstra [Dij59] shortest path (SP) subroutine. Second, based on this observation that Dijkstra
forms the basis of many more complex routing algorithms, we investigate how such subsequent Di-
jkstra runs relate to each other. We observe that additional information can be provided to these
SP subroutines to reduce their runtime while not impacting the result of the routing algorithm. We
accordingly propose BD, a search space reduction technique for the SP subroutines. BD allows the
Dijkstra runs to terminate earlier, when it is known that further exploration results will not be used
by the main CSP routing algorithm. Through comprehensive performance evaluations, we show that
BD allows, in favorable cases, to reduce the runtime of some algorithms by 96% on average, without
impacting their output. Third, based on the observation that the best algorithms are based on the
Lagrangian relaxation, we apply this method to design Lagrange relaxation based aggregated cost
for speci�ed nodes (LARAC-SN), an extension of LARAC that is able to solve routing requests that, in
additional to their delay requirement, specify intermediate nodes that must be visited. That scenario
is of major importance in SFC environments, where a �ow has to traverse a set of service functions,
or VNFs, that perform some intermediate processing (e.g., security functions). We further propose
mole in the hole (MITH), a graph transformation algorithm that enables any routing algorithm to be
forced to visit intermediate nodes. While LARAC-SN is sub-optimal, we show that MITH, in com-
bination with an optimal CSP algorithm, can ensure optimality but at the cost of a higher runtime.
Last but not least, we observe that the DetServ interface used by the routing procedure leads to link
metrics that violate the optimal substructure property (OSP) on which SoA algorithms rely to ensure
their completeness and/or optimality properties. We investigate how algorithms can be adapted to
circumvent this issue and propose solutions, namely edge-based Dijkstra (EBD) and graph transfor-
mation algorithm (GTA), to restore the completeness and/or optimality of SoA routing algorithms
when used as part of the DetServ architecture.

Content and outline of this chapter. Sec. 3.1 provides a short introduction on routing terminol-
ogy. Sec. 3.2 presents the Dijkstra, Bellman-Ford (BF), Yen’s, and Chong’s algorithms, SoA algorithms
for computing SPs in a graph that are used extensively throughout this chapter. Sec. 3.3 investi-
gates the performance of SoA CSP routing algorithms for providing predictable latency within the
DetServ architecture and is based on content from [Guc+17]. Then, Sec. 3.4 proposes BD, an opti-
mization of the Dijkstra algorithm when it is run as a subroutine of an overlay routing algorithm
such as those evaluated in Sec. 3.3. This section relies on content from [Van+19c]. Sec. 3.5 proposes
the LARAC-SN and MITH algorithms, adaptations of SoA algorithms to route requests with delay
requirements through VNF chains. Finally, Sec. 3.6 investigates the completeness and/or optimality
loss of SoA routing algorithms when used with metrics such as those de�ned by the TBM DetServ
network model and proposes the EBD and GTA algorithms to recover these properties in some cases.
These last two sections are respectively based on [Van+18b] and [Van+18a].

3.1. Background: Terminology and De�nitions 65

3.1 Background: Terminology and De�nitions

In this section, we introduce the general routing terminology and de�nitions used throughout this
chapter. First, in Sec. 3.1.1, we de�ne routing metrics and in particular constraint and optimization
metrics and additive, multiplicative and concave metrics. Based on these de�nitions, we de�ne
the completeness and optimality properties of routing algorithms. Second, in Sec. 3.1.2, we de�ne
di�erent routing optimization problems based on the number of constraint and optimization metrics
considered. Finally, Sec. 3.1.3 mathematically formalizes the previous problems.

3.1.1 Routing Metrics

Independently of the type of route (e.g., a single path, several disjoint paths, or a tree) that a routing
algorithm has to �nd, there is usually more than one possible solution to a given problem. In order to
prefer one solution over another, or to provide additional requirements regarding the solutions to be
accepted, so-called routing metrics are introduced. Each metric de�nes a value, referred to as a metric
value, for each edge of the subject graph. These values can be updated for each routing request. The
metrics can then be used in three di�erent ways for selecting one or several of the available solutions.

Local constraint metrics. First, the edges that can be used by the solutions can be restricted to
those satisfying a given condition based on a metric value. We refer to such metrics as local constraint
metrics. For example, in order to ensure enough bandwidth is available for a given video stream, one
might want to use only links whose bandwidth is greater than the bit rate of the video stream.

Global constraint metrics. Secondly, in order to further restrict the set of solutions that can be
returned, the values of a metric at each edge of a solution can be combined using a so-called link
combination operator [Bau+07], e.g., the sum or the multiplication, the result of which must satisfy
a given constraint. We refer to such metrics as global constraint metrics. For example, in order to
ensure that the packets of a unicast �ow with strict latency requirements arrive on time, one might
want to �nd a path for which the sum of the delays of each of its constituting edges is lower than
the requirement of the �ow.

Global optimization metrics. Finally, in order to rank solutions and search for the preferred
one(s), the values of a metric at each edge of a solution can be combined using a given link combi-
nation operator whose result is used for ordering the solutions. We refer to such metrics as global
optimization metrics, or simply optimization metrics. For example, in order to ensure that data from a
unicast request is transferred as fast as possible, one might want to �nd the path for which the sum
of the delays of each of its constituting links is minimal.

Based on these de�nitions, an algorithm is said complete if it always �nds a solution, if one
exists, satisfying both the local and global constraints. In case of a single global optimization metric,
an algorithm is said optimal if the solution it �nds is always the optimal one. Completeness does not
imply optimality.

Depending on the link combination operator used by a global metric, three di�erent categories
of metrics can be de�ned: additive, multiplicative, and concave metrics. The E2E values of these three

66 Chapter 3. Optimization of the Path Selection Strategy

metric categories are, respectively, the sum, the product, and the minimum (or the maximum) of the
metric values for the individual links. Delay, packet loss probability, and bandwidth are examples of
additive, multiplicative and concave metrics, respectively.

3.1.2 Optimization Problems

For presentation reasons, we now focus on the problem of �nding a single path between a single
source and a single destination. That corresponds to the problem of routing a unicast �ow. The
concepts and de�nitions can however be anagolously applied to any other type of route (e.g., a tree).

Problem type (acronym) Nb. of glob. opt. metrics Nb. of glob. const. metrics

shortest path (SP) 1 0
constrained shortest path (CSP) 1 1

multi-constrained shortest path (MCSP) 1 "

multi-constrained path (MCP) 0 "

Table 3.1: Conceptual comparison of routing problem types based on the number and type of routing metrics
involved.

Depending on the number and type of global constraint metrics, di�erent algorithmic problems
can be de�ned1. The most commonly encountered problems are de�ned as follows and listed in
Tab. 3.1.

• shortest path (SP): The path has to minimize a unique global optimization metric.

• constrained shortest path (CSP): The path has to minimize a global optimization metric while
keeping a global constraint metric below a prescribed bound.

• multi-constrained shortest path (MCSP): The path has to minimize a global optimization metric
while keeping multiple global constraint metrics below individual bounds.

• multi-constrained path (MCP): MCSP problem without optimization metric, i.e., the path only
has to keep multiple global constraint metrics below prescribed bounds.

These problems can be extended to : path versions that �nd : distinct paths. These are the
: shortest paths (:SP), : constrained shortest paths (:CSP), : multi-constrained shortest paths
(:MCSP), and : multi-constrained paths (:MCP) problems. For the :SP, :CSP and :MCSP problems,
the problem is to �nd the : best paths according to the optimization metric. For the :MCP problem,
the problem is to �nd any : paths satisfying the global constraint metrics.

It is also possible to de�ne multi-objective problems that consider several global optimization
metrics [Deb01]; [GGT10]; [MA04]. These multi-objective problems are however out of the scope of
this thesis. We focus on single-objective problems. The optimization metric is often referred to as
the cost metric.

1The number of local constraint metrics can vary because it does not impact the algorithmic problem to solve. Indeed, a
local constraint metric can simply be handled by, before routing, removing from the graph the edges not satisfying the constraint.

3.2. Background: Shortest Path Algorithms 67

3.1.3 Mathematical Formulation

Consider routing to be performed on a network graph � = {+ , �}, whereby + is the set of vertices
(network nodes) and � is the set of directed edges (with |� | denoting the number of edges in the
network). The vector of costs of the edges is denoted by c, c ∈ R |� |+ . Let d, d ∈ R"+ , denote a vector
with " elements that represent the bounds for the global constraint metrics. Let D, D ∈ R"×|� |+ ,
denote a matrix of the global constraint metrics values for the individual edges. Let %B3 , %B3 ⊆
{0, 1} |� | , denote the set of paths from source node B to destination node 3 (whereby a value of 1
for an edge means that the edge belongs to the path). For additive metrics, the SP, CSP, and MCSP
problems can be mathematically formulated as:

Iopt = min
x∈%B3

cTx (3.1)

s.t. Dx ≤ d. (3.2)

The SP, CSP, and MCSP problems correspond to the cases " = 0, " = 1, and " > 1, respectively.
An optimal algorithm always �nds the optimal path with cost Iopt. A heuristic is an algorithm

that �nds a possibly sub-optimal path, i.e., a path with cost I ′ ≥ Iopt. The optimality gap (OG) of an
algorithm, measured in %, is de�ned as

OG =
I ′ − Iopt

Iopt
× 100. (3.3)

An optimal algorithm therefore always has an OG of 0 %.

3.2 Background: Shortest Path Algorithms

In this section, we provide background material on basic routing algorithms that are often used and
referred to throughout this chapter.

The Dijkstra algorithm [Dij59] computes the SP from a single source node to all other nodes (i.e.,
a shortest path tree (SPT)) in a graph with non-negative edge costs by performing a breadth-�rst
search (BFS) starting from the source node. The algorithm maintains a priority queue containing a
set of partial paths, i.e., paths starting from the source node and reaching an intermediate destination
node which is not the ultimate destination. At each iteration, it takes the LC path among the paths
in the queue and generates = new paths by extending this partial path with the = outgoing edges of
the node at which the given path terminates. Among those paths, only paths with lower cost than
the current LC path in the queue towards the same destination are added back to the queue. That
is, the Dijkstra algorithm relaxes based on the cost values. Doing so, the algorithm keeps track of
the best path found to each node. Nodes with LC distance from the source node are expanded �rst,
thereby ensuring that any node has to be visited only once. The SP to a node is found as soon as the
algorithm pops this node from the priority queue.

The BF algorithm [Bel58]; [For56]; [Moo59]; [Shi54] also computes the SPT in a graph, including
graphs with negative edge costs. The algorithm maintains the current best path found to each node
and runs |+ | −1 (where |+ | is the number of nodes in the network) iterations updating, for each node,
the current best path to all neighbor nodes based on the current best path to the presently considered

68 Chapter 3. Optimization of the Path Selection Strategy

node. Since the path to any node is at most |+ | − 1 hops long, all SPs will eventually be found. If
an iteration yields no update, the algorithm can be immediately terminated, as subsequent iterations
will not lead to any change. Also, if the cost of the current best path to a node has not changed since
the last iteration, then the outgoing edges of this node can be skipped since they will not lead to any
new changes.

Both algorithms can be adapted to compute the SP from any node to a single destination. These
versions are called the reverse Dijkstra and reverse BF algorithms, respectively, and are simply ob-
tained by considering incoming edges rather than outgoing edges when going from one node to the
next node(s).

The A* algorithm [HNR68] is an improvement to the Dijkstra algorithm for �nding a single-
destination SP. It introduces a so-called guess function. At each node, this guess function provides a
guess for the cost of the SP from this node to the destination node. Paths out of the priority queue
with least projected cost (i.e., sum of the current cost to the last node of the path and of the guess value
at this node) are expanded �rst. To ensure the correctness and optimality of the A* algorithm, the
guess values have to be lower than the real values. The closer the guess values are to the real values,
the faster the A* algorithm will reach the destination. At one extreme, the A* algorithm with an exact
guess function will directly traverse the SP to the destination. At the other extreme, the A* algorithm
with a guess function of zero corresponds to the original Dijkstra algorithm. A straightforward guess
function corresponds to the least-hop count multiplied by the cost of the LC edge in the graph. Such
a guess function has to be recomputed upon any topology change but can be precomputed o�ine if
the topology does not change.

We will consider the Dijkstra algorithm for �nding an SPT and the A* algorithm for �nding
an SP as underlying algorithms for the di�erent CSP algorithms. Indeed, they perform generally
better [CGR96].

Yen’s algorithm [Yen71] solves the :SP problem. First, the SP is found using a traditional SP
algorithm. Then, subsequent SPs are found based on the knowledge of this initial path. The (: + 1)th
SP is found by starting at intermediate nodes of previously found paths, blocking the next edge in
the path to force the algorithm to �nd another path, and running an SP algorithm from there. The
LC path out of all these new paths is the (: + 1)th SP.

Yen’s algorithm does not need to know the value of : when starting, i.e., it is an iterative :
shortest paths (i:SP) algorithm [Guc+17]. In contrast, Chong’s algorithm [Cho95] requires : to be
known in advance, i.e., it is a static : shortest paths (s:SP) algorithm [Guc+17]. The algorithm is
then identical to the Dijkstra (or A* in our case) algorithm, but keeps track, for each node, of the
current : best paths found. Once the destination(s) has (have) been visited : times, the algorithm
can stop.

3.3 Evaluation of the Available Routing Algorithms

Generally speaking, the routing procedure of the DetServ architecture has to �nd a path that

• minimizes the sum of the getCost values obtained from the network model,

3.3. Evaluation of the Available Routing Algorithms 69

• keeps the sum of the getDelay values obtained from the network model lower than the E2E
latency requirement of the request, and

• only uses queues for which the hasAccess model function returned true.

That means that the getCost function is an additive global optimization metric, the getDelay
method is an additive global constraint metric, and the hasAccess function is a local constraint
metric (as de�ned in Sec. 3.1.1). This corresponds to a CSP problem. With such additive metrics, this
problem is also commonly referred to as delay-constrained least-cost (DCLC) routing problem.

Generally, the CSP problem is NP-complete [AMO93]. Therefore, there is a fundamental trade-o�
between OG and low runtime and, given the importance of routing for communication networks,
many routing algorithms and heuristics have been speci�cally designed for particular network set-
tings or applications. However, these algorithms have been evaluated separately in individual stud-
ies, making it di�cult to select the most appropriate algorithm for the routing procedure of the
DetServ architecture. This is the gap we �ll in this section. First, in Sec. 3.3.1, we brie�y list the
26 SoA CSP algorithms surveyed in [Guc+17]. Second, in Sec. 3.3.2, we evaluate these algorithms
in di�erent settings. Third, in Sec. 3.3.3, we interpret the results from Sec. 3.3.2 to identify the best
algorithm to use for the DetServ architecture. While the best performing algorithm depends on the
desired optimality/runtime trade-o� and on the speci�c network and routing request, we identify
the LARAC, H_MCOP, SSR+DCCR algorithms and their variants as the best performing algorithms
on average. Finally, Sec. 3.3.4 summarizes the results of this section.

3.3.1 List of Available Algorithms

We list the 26 SoA CSP algorithms2 extensively surveyed in [Guc+17]. Note that we focus on algo-
rithms that are able to accommodate real values for the metrics and that can run with any arbitrary
cost function as returned by the DetServ network model. We classify the algorithms into the �ve
categories described below based on their underlying routing strategy.

• Elementary algorithms. Very simple algorithms based on simple procedures that accordingly
achieve either high runtime or high OG.

• Algorithms based on a priority queue. Like the Dijkstra algorithm (see Sec. 3.2), algorithms that
are based on a priority queue that stores intermediate or partial paths during the search.

• Algorithms based on the Bellman-Ford (BF) SP algorithm.

• Algorithms based on the Lagrange relaxation. In order to solve a constrained optimization prob-
lem, the Lagrange relaxation technique removes some constraints of the original problem and
introduces them in the optimization objective. Many algorithms are based on this technique
to solve the CSP problem with a series of SP runs.

• Algorithms that follow the LC and LD paths in the network. Algorithms that build the LC and
LD trees from all nodes to the destination and use a combination of the resulting paths to build
a solution to the CSP problem.

70 Chapter 3. Optimization of the Path Selection Strategy

Algorithm

Number of runs of underlying algorithms

Optimal Complete Param.

i:SP s:SPT s:SP SPT SP

Elementary algorithms

LDP [Guc+17] 1 X

FB [LHH95] (1→ 2) X

:SPMC [Guc+17] 1 X X

Algorithms based on a priority queue

CBF [Wid94] X X

A*Prune [LR01] X X

Algorithms based on Bellman-Ford (BF)

DCBF [JV01] 1 X

:DCBF [JV01] 1 X :3 , :2

DEB [CA03] X

Algorithms based on the Lagrange relaxation

LARAC [AN78]; [HZ80]; [BG96]; [Jüt+01] ≥ 1 X "�

LARACGC [HZ80] (0, 1) ≥ 1 if X = 0 X X

SCRC [SCC07] (0, 1) (1, 2) X X

:LARAC [JV01] ≥ 1 X :

H_MCOP [KK01] 1 (0, 1) X

:H_MCOP [KK01] (0, 1) 1 X :

NR_DCLC [Fen+02a] ≥ 0 ≥ 1 X

MH_MCOP [Fen+02b] ≥ 1 ≥ 0 X

E_MCOP [Fen+02b] (0→ 2) (1→ 2) X X

DCCR [GM03] (0, 1) (1, 2) X :

SSR+DCCR [GM03] (0, 1) (1→ ! + 2) X !, :

Algorithms based on LC and LD paths

DCUR [SRV97]; [RS00] (1, 2) X

DCR [SL98] (0, 1) 1 X

IAK [IAK98] 1 (0, 1) X

SMS-RDM [SMM98] 1 if ? ≥ Δ(�) ?

SMS-CDP [SMM98] 2 if ? ≥ Δ(�) ?

SMS-PBO [SMM98] if ? ≥ Δ(�) ?

SF-DCLC [LLF05] (1, 2) X

Table 3.2: Comprehensive list of CSP and MCSP algorithms that can be used as part of the DetServ architec-
ture. The algorithms are categorized according to the underlying algorithmic strategy into algorithms based
on priority queues, Bellman-Ford, Lagrange relaxation, as well as LC and LD paths. For each algorithm, we
indicate key characteristics, including optimality property and the accepted parameters, as well as the number
of underlying algorithm runs, e.g., SP runs. When the exact number of runs depends on the speci�c scenario,
the possible numbers of runs are indicated through a comma-separated list or a range (with the arrow (→)
symbol) within parentheses. Unbounded numbers of runs are indicated with the greater or equal (≥) sign.
Δ(�) indicates the maximum node degree in the graph � .

3.3. Evaluation of the Available Routing Algorithms 71

The list of the algorithms is given in Tab. 3.2. While most algorithms are complete, only a few
algorithms are optimal. We will see in Sec. 3.3.2 that optimal algorithms exhibit a very high runtime.
We will also see that the main driving factor for the performance of the algorithms is the number
and type of runs of underlying algorithms. This information is given in the table for each algorithm.
For example, the LDP algorithm runs a single SP search, the LARAC algorithms runs a series of
SP searches, and the :H_MCOP runs a single SPT search and none or one s:SP search. A detailed
description of the algorithms can be found in [Guc+17] or in the original publications referenced in
the table.

3.3.2 Performance Evaluation

Generally, the performance of an algorithm depends on the speci�c scenario in which it is executed.
In order to evaluate the behaviors of the di�erent algorithms across a wide set of scenarios, we in-
troduce four critical dimensions. First, we de�ne four topologies which we describe in Sec. 3.3.2.1.
A topology describes both the underlying structure of the network and the nodes that communi-
cate with each other in the network. Second and third, we scale these topologies in two directions.
Fourth, we distinguish requests based on the level of strictness of the delay constraint, see Sec. 3.3.2.2.
Sec. 3.3.2.3 presents the evaluation procedure and the metrics used. Sec. 3.3.2.4 presents the evalua-
tion results for the fourth dimension, i.e., the behavior of the algorithms for di�erent tightness levels
of the delay constraint. Sec. 3.3.2.5 then focuses on the three �rst dimensions. Sec. 3.3.2.6 then in-
vestigates the average behavior of the algorithms across all the dimensions. We here present only
very condensed results. Finally, Sec. 3.3.2.7 discusses the absolute runtime (in ms) of the algorithms
on a particular hardware architecture. Further results and more detailed explanations are available
in [Guc+17]. Besides, we have made the entire set of raw results and graphs for all the algorithms
available online at [Van19c].

We implemented all the 26 algorithms from Tab. 3.2 in Java 8 and, for each of them, ran our
evaluation procedure3. We will identify parameterized algorithms by the name of the original algo-
rithm to which we append the dash-separated parameter values in the same order as in Tab. 3.2. For
example, LARACGC with X = 25% will be referred to as LARACGC-25.

3.3.2.1 Topology and Scaling

As �rst dimension for our evaluation, we de�ne four topologies (shown in Fig. 3.1) based on three
di�erent base topologies. We focus on industrial topologies, where �ows with predictable latency
requirements are common. Nevertheless, the topologies we de�ne are also common in and represen-
tative of data center, metro, grid, and enterprise networks. All topologies can be scaled according to
two scale parameters< and = that represent the size of the topology layout, as illustrated in Fig. 3.1
and de�ned in detail in the following for the four di�erent topologies. The second and third dimen-
sions of our evaluation correspond to varying the two scale parameters< and = from 4 to 13, thereby
de�ning 100 di�erent scalability levels. The four topologies are described below.

2This includes MCSP algorithms since these algorithms are a subset of the CSP algorithms.
3We acknowledge that the results may be subject to our speci�c implementations; however, we tried to be fair and optimize

all implementations equally and as much as we could.

72 Chapter 3. Optimization of the Path Selection Strategy

Switch

Remote I/O

PLC}

}

n

m

ORB
remote I/O to PLC

TRB
remote I/O to PLC

ORB
I/O to I/O

GR
any to any

}

}

n

m

}

}

n

m

Figure 3.1: The four topologies considered in the evaluation are based on three di�erent base topologies
which can be scaled in two di�erent directions. The topologies also di�er in terms of allowed communications
patterns: remote I/O to PLC, remote I/O to remote I/O, or any to any.

• One ring bottleneck (ORB): The ORB topology consists of a base ring of< + 1 switches. A PLC
is connected to one switch of this ring. A branch composed of a series of = remote I/O nodes,
e.g., sensors, is connected to each of the other< switches of the ring. Thus, there are a total
of <= I/Os. Remote I/Os have an internal switch allowing tra�c to �ow along the branches.
Thus, remote I/Os act as tra�c sources as well as tra�c forwarders, which is common in
sensor networks and industrial networks [KOK14]; [GH13]; [GJF13a]; [STV12]. Tra�c is only
considered from the remote I/Os to the PLC.

• Two rings bottleneck (TRB): The TRB topology extends the ORB topology with an additional
ring consisting of< + 1 switches. The< + 1 switches connect the loose (bottom) ends of the<
branches of remote I/Os (of the ORB topology) to the PLC. Tra�c is still considered only from
the remote I/Os to the PLC.

• Two rings random (TRR): The TRR topology is the same as the TRB topology, but tra�c is now
considered between any pair of remote I/Os. As the remote I/Os, the PLC is able to forward
tra�c not destined for it.

• Grid random (GR): The GR topology is a grid of width < and height =. In the GR topology,
tra�c is considered between any pair of nodes.

We do not consider random topologies generated based on models, such as the Waxman
model [Wax88]. Instead, striving for a fair and reproducible evaluation, we only use deterministic
topologies.

Each directed link is considered to have four output priority queues and routing is then performed
on the corresponding queue-level topologies (see de�nition in Sec. 2.3.3). The costs and delays of the
four queue-link edges are respectively set to 2 and 0.48 ms, 1.5 and 1.26 ms, 1.33 and 2.83 ms, and
1.25 and 7.55 ms.

3.3. Evaluation of the Available Routing Algorithms 73

3.3.2.2 Delay Constraint Tightness

The delay constraint of routing requests can range from loose values for which the LC path is feasible
to tight values for which no feasible path exist. Within this range, we de�ne seven subranges of equal
size, which we refer to as delay levels.

3.3.2.3 Evaluation Procedure and Metrics

We evaluate each algorithm along the four dimensions de�ned above. For each particular topology
and combination of the scale parameters< and =, we sequentially simulate 20,000 routing requests.
The �rst 1000 requests are used as warm-up for the Java HotSpot optimizer and their results are not
considered. For each request, the source and destination are generated uniformly randomly from the
possible set of combinations de�ned by the topology and scale parameters. The delay constraint is
distributed uniformly randomly among the seven delay levels and then uniformly randomly within
the selected delay level.

For a given algorithm under test (AUT) and request, we run three algorithms. First, we run CBF
in order to obtain the cost Iopt of the optimal solution. Second, we run the AUT. The OG of the AUT
is then evaluated according to Eqn. 3.3. Third, we run a LD search using A* (which is then equivalent
to a run of the LDP algorithm, as the latter always returns the LD path). We de�ne the runtime of the
AUT divided by the runtime of the LD search as the runtime ratio of the AUT. This normalization
allows to �lter out runtime variations due to the varying runtime behaviors of the testing machines
(caused by OS tasks or the Java garbage collector execution). Indeed, both algorithms are run one
after the other, i.e., within a short time window during which the runtime behavior of the testing
machine can be assumed to be constant.

We found that :SPMC, A*Prune, LARACGC, SCRC, E_MCOP, and the three SMS variants were
not able to complete the evaluation in a reasonable amount of time compared to CBF. This leads
to our �rst observation that algorithms using an i:SP algorithm to reach optimality have a very
long runtime. Indeed, the considered queue-level topologies are dense with high numbers of pos-
sible paths. Thus, the number of paths to discover until reaching optimality is also high, yielding
intractable runtimes. A*Prune, and the three SMS variants are not based on an i:SP algorithm but
their structure is such that, if their initial search direction is not the correct one, they have to explore
a high number of paths to reach the destination.

3.3.2.4 Fingerprints: In�uence of the Delay Constraint Tightness

We analyze the fourth dimension using so-called �ngerprint graphs (Fig. 3.2). The �ngerprint graph
for a given combination of topological and scale parameters< and =, shows the distribution of the
runtime ratio (left, in red) and OG (right, in yellow) of an algorithm for the seven di�erent delay levels
(loose levels on the right and tight levels on the left). Since we have four di�erent topologies with
100 di�erent scalability levels (combinations of< and = values), each algorithm has 400 �ngerprint
graphs. Nevertheless, we observed that the shapes of all �ngerprint graphs for a given algorithm are
similar; Fig. 3.2 shows �ngerprints for the GR topology with scale parameters< = = = 10. That is
why we refer to these graphs as �ngerprints: they nearly uniquely identify an algorithm based on
its behavior and are (nearly) always the same for a given algorithm. Only the absolute values vary

74 Chapter 3. Optimization of the Path Selection Strategy

infeas. LC feas.
delay level

0.0

0.5

1.0

1.5
ru

nt
im

e
ra

ti
o

0

20

40

60

op
ti

m
al

it
y

ga
p

[%
]

(a) LDP.

infeas. LC feas.
delay level

0

2

4

ru
nt

im
e

ra
ti

o

0

10

20

30

op
ti

m
al

it
y

ga
p

[%
]

(b) LARAC.

infeas. LC feas.
delay level

0

5

10

15

ru
nt

im
e

ra
ti

o

0

10

20

30

op
ti

m
al

it
y

ga
p

[%
]

(c) LARACGC-25.

infeas. LC feas.
delay level

0

20

40

ru
nt

im
e

ra
ti

o
0

10

20

30

op
ti

m
al

it
y

ga
p

[%
]

(d) H_MCOP.

Figure 3.2: Fingerprints for selected CSP algorithms. These graphs show, for the GR topology with< = = = 10,
the runtime ratio (plotted in red on the left) and OG (in yellow on the right) of selected algorithms for the seven
di�erent delay levels (where loose delay constraints are on the right and tight delay constraints are on the left).
Since the leftmost delay level corresponds to an infeasible problem, no OG value is shown and the runtime
then corresponds to the time required to detect that the problem is infeasible. The lower and upper whiskers
of the boxplots, respectively, correspond to the 0.5% and 99.5% percentiles. Crosses identify all the outliers.

depending on the topology and its scaling. These variations will be discussed in Sec. 3.3.2.5. We
discuss only a selection of the most representative algorithms.

The elementary LDP algorithm simply returns the LD path. As expected, the OG of LDP gets
better for tighter constraints since the LD path becomes closer to the optimal solution. In terms of
runtime, as LDP is compared with itself, the LDP �ngerprint shows that the accuracy of our runtime
metric is good (the 0.5 and 99.5 percentiles are very close to 1 and the median is approximately 1).

LARAC (Fig. 3.2b) can �nd the optimal solution with one LC search when the LC path is feasible.
Fig. 3.2b (for the rightmost, i.e., loosest delay constraint) shows that this run is roughly two times
faster than an LD search. This is due to the fact that the delay and cost values have ranges of dif-
ferent absolute sizes and the guess function of A* is better for the cost metric. When the problem is
infeasible, LARAC notices the infeasibility with an additional LD search, hence one additional run-
time ratio unit compared to the case for which the LC path is feasible. For intermediate delay levels,
LARAC requires a few additional SP runs, hence leading to slightly higher runtimes. Nevertheless,
these additional runs are worth it as we can observe that the OG of LARAC stays then much lower
than 10 % in most cases.

While LARACGC did not complete the evaluation within a reasonable amount of time, LARACGC
with X = 25 % (Fig. 3.2c) did. With a given X , the LARACGC algorithm improves on the solution of
LARAC with an i:SP algorithm if the OG is greater than X . As LARAC has a OG higher than 25%
only for the tightest feasible delay level (see Fig. 3.2b), LARACGC-25 only behaves di�erently than

3.3. Evaluation of the Available Routing Algorithms 75

LARAC for this delay level. As expected, LARACGC-25 then brings the OG to less than 25% but at
a high runtime cost even for such a small gap closing: LARACGC closes a gap of at most 5% (as the
OG of LARAC is at most 30%) but the algorithm can be more than 3 times slower (from a runtime
ratio of less than 5 to more than 15). That con�rms that algorithms based on an i:SP algorithm are
too slow compared to their bene�t for our dense queue-link network topologies.

The �ngerprint of H_MCOP (Fig. 3.2d) shows the runtime di�erence between SP and SPT
searches. Indeed, for detecting an infeasible problem, H_MCOP �rst computes a reverse SPT. As
can be seen (leftmost delay level in Fig. 3.2d), this has a much longer runtime than the single LD
search of LDP. More precisely, the H_MCOP median runtime is only slightly greater, but the 99.5%
percentile of the runtime is much higher than for LDP: around one order of magnitude greater. For
all other cases, H_MCOP requires an additional forward SP search. The H_MCOP runtime for these
delay levels is hence always slightly higher (by 0.5 since it is an LC search) than for the infeasible
delay level. In terms of OG, H_MCOP interestingly presents a �ngerprint of di�erent shape than
LARAC and LARAGC-25. In terms of absolute values, the OGs of H_MCOP are usually slightly
worse than for the di�erent LARAC versions, except when the delay constraint is either very loose
or very tight, where H_MCOP and LARAC perform similarly.

Summary. In general, we observe that the algorithms exhibit a very di�erent performance for
each delay level and that these behaviors are also dependent on the algorithms. There is accordingly
no clear best algorithm for all cases. While the LDP algorithm is the best choice if the problem is
infeasible or if low runtime is critical, the LARAC algorithm is a better choice if the OG has a higher
importance. If the OG is very critical and the runtime not critical, LARACGC is even a better choice
(among the algorithms discussed in this section). In terms of underlying algorithms, we observed the
high runtime cost of an underlying SPT run (up to 10 runtime ratio units) compared to a normal SP
search (around 1 runtime ratio unit). We also observed the high runtime cost of an i:SP algorithm
compared to the OG improvement it can bring. Finally, we con�rmed the accuracy of our runtime
ratio metric.

3.3.2.5 Heatmaps: Impact of Network Topology and Scale

In order to observe the behaviors of the algorithms for the di�erent topologies and scalability levels,
we collapse the fourth dimension (delay constraint tightness) of our evaluation by retaining only the
average runtime ratio and OG over all delay constraint levels. This yields, for a selection of algo-
rithms, the heatmaps shown in Fig. 3.3. While observing the scalability of the di�erent algorithms
with these heatmaps, the reader should pay attention that the scalability of the algorithm is com-
pared to an LD search. That is, if an algorithm presents the same runtime ratio for all the scalability
levels of a topology, that does not mean that its runtime is always the same but rather that the con-
sidered algorithm has a similar scaling behavior as an LD search. Due to the vastly di�erent OGs and
runtime ratios of the di�erent algorithms, Fig. 3.3 has di�erent scales for the di�erent algorithms.
An absolute comparison of the di�erent algorithms is provided in Sec. 3.3.2.6.

The heatmaps of CBF (Fig. 3.3a) illustrate the limitation of CBF: the CBF runtime grows expo-
nentially with the size of the network. That is consistent with the observations in [Wid94].

76 Chapter 3. Optimization of the Path Selection Strategy

4 8 12
4
6
8

10
12

op
ti

m
al

it
y

ga
p

[%
]

m

ORB

4 8 12
4
6
8

10
12

TRB

4 8 12
4
6
8

10
12

TRR

4 8 12
4
6
8

10
12

GR

0.0
0.2
0.4
0.6
0.8
1.0

4 8 12
n

4
6
8

10
12

ru
nt

im
e

ra
ti

o
m

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

20
40
60
80
100
120

(a) CBF.

4 8 12
4
6
8

10
12

op
ti

m
al

it
y

ga
p

[%
]

m

ORB

4 8 12
4
6
8

10
12

TRB

4 8 12
4
6
8

10
12

TRR

4 8 12
4
6
8

10
12

GR

2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

4 8 12
n

4
6
8

10
12

ru
nt

im
e

ra
ti

o
m

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

1.6
1.8
2.0
2.2
2.4
2.6
2.8

(b) LARAC.

4 8 12
4
6
8

10
12

op
ti

m
al

it
y

ga
p

[%
]

m

ORB

4 8 12
4
6
8

10
12

TRB

4 8 12
4
6
8

10
12

TRR

4 8 12
4
6
8

10
12

GR

1
2
3
4
5
6

4 8 12
n

4
6
8

10
12

ru
nt

im
e

ra
ti

o
m

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00

(c) kH_MCOP-10.

4 8 12
4
6
8

10
12

op
ti

m
al

it
y

ga
p

[%
]

m

ORB

4 8 12
4
6
8

10
12

TRB

4 8 12
4
6
8

10
12

TRR

4 8 12
4
6
8

10
12

GR

19
20
21
22
23
24

4 8 12
n

4
6
8

10
12

ru
nt

im
e

ra
ti

o
m

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

4 8 12
n

4
6
8

10
12

2.5
3.0
3.5
4.0
4.5
5.0

(d) DCR.

Figure 3.3: Heatmaps showing the behaviors of selected CSP algorithms for di�erent topologies and scalability
levels. For a given algorithm, the four upper heatmaps show the OG for the four di�erent topologies, and the
four lower heatmaps show the runtime ratio. A given heatmap shows the OG or runtime ratio as a function
of the scale parameters = = 4, 5, . . . , 13, and< = 4, 5, . . . , 13, i.e., for a total of 100 di�erent scalability levels.
Each cell corresponds to the average results of 20,000 requests (with randomly drawn delay constraints from
across the seven considered delay constraint levels and corresponding subranges) simulated for this speci�c
= and < combination. Unfortunately, because of the high variability between the algorithms, the scales are
di�erent for each algorithm.

Fig. 3.3b shows an interesting property of the LARAC algorithm: in terms of runtime, it scales
better than an LD search, but only in the< scale direction; the = scale dimension a�ects it roughly as
it a�ects an LD search. We observe that other selected algorithms scale worse than an LD search. In
terms of OG, we see that LARAC is relatively stable over the di�erent scalability levels. Not shown
in the plots, SSR+DCCR scales similarly to the LARAC algorithm, as it is based on it.

The :H_MCOP-10 runtime (Fig. 3.3c) scales worse than an LD search in both directions (< and =)
for the ORB, TRB, and GR topologies but exhibits much better scaling behavior for the TRR topology.
While :H_MCOP-10 reaches low OG for small topologies, we observe that its OG grows quickly for
larger topologies, especially for ORB and TRR topologies, for which its scalability is worse.

DCR (Fig. 3.3d) presents a similar scaling behavior, in terms of runtime, as H_MCOP. Compared
to LARAC, this indicates the poor runtime scaling behavior of an SPT search compared to a SP search.
DCR exhibits the interesting behavior that its OG improves as the topology scales up. Although not
shown, this is also the case for DCUR and IAK.

3.3. Evaluation of the Available Routing Algorithms 77

LD
P FB

C
B

F

D
C

B
F

k
D

C
B

F-
2-

2

k
D

C
B

F-
5-

5

D
EB

LA
R

A
C

LA
R

A
C

-5
0

LA
R

A
C

G
C

-2
5

k
LA

R
A

C
-2

k
LA

R
A

C
-1

0

H
M

C
O

P

k
H

M
C

O
P-

5

k
H

M
C

O
P-

10

k
H

M
C

O
P-

30

N
R

D
C

LC

M
H

M
C

O
P

D
C

C
R

-3

SS
R

+D
C

C
R

-2
-5

SS
R

+D
C

C
R

-4
-1

0

D
C

U
R

D
C

R

IA
K

SF
-D

C
LC

0

5

10

15
ru

nt
im

e
ra

ti
o

0

10

20

30

40

op
ti

m
al

it
y

ga
p

[%
]

Figure 3.4: Boxplots of the runtime ratios and OGs (for all the runs of our evaluation) of the di�erent inves-
tigated algorithms. The whiskers show the 0.5% and 99.5% percentiles, outliers are not shown.

Summary. Generally, we observe that the di�erent algorithms have very di�erent scaling behav-
iors. For example, the OG of some algorithms improves with the topology size, degrades for some
and is relatively stable for others. Further, the scaling behavior of a particular algorithm (both in
terms of runtime and OG) appears to heavily depend both on the topology and speci�c scaling di-
rection. In terms of runtime, we observed that CBF scales very poorly and algorithms based on SPT
searches scale worse than algorithms based on SP runs solely.

3.3.2.6 Average Performance Comparison

Our analysis of our four selected dimensions showed that the algorithms behave very di�erently
depending on the speci�c request type and topology setup. In this section, we investigate the av-
erage performance of the di�erent algorithms (for the algorithms that accept parameters, particular
parameters values have been chosen). In order to facilitate comparisons among algorithms, we show
the performance of the di�erent algorithms on a common scale.

Fig. 3.4 shows the distribution of runtime ratio and OG values observed for the di�erent algo-
rithms during the complete evaluation, i.e., including all topologies, scaling sizes, and delay levels.
We can again con�rm the accuracy of our runtime metric: the runtime ratio of LDP is around 1 across
all the evaluated dimensions. Besides the poor runtime behavior of algorithms based on i:SP searches
already evidenced in the previous sections, we observe that algorithms based on s:SP/static: shortest
paths tree (s:SPT) runs have a higher runtime than algorithms based on SP/SPT runs and that algo-
rithms based on SP searches are much faster than algorithms based on SPT searches. In particular, be-
sides CBF and DEB, the worst runtime performance belongs to :DCBF, :LARAC, and :MH_MCOP,
which are based on s:SP/s:SPT runs. Then come, among others, NR_DCLC, MH_MCOP, DCUR,
DCR, IAK, and SF-DCLC which are all based on SPT runs. Finally, the fastest algorithms are LDP,
FB, and LARAC which are solely based on SP runs. The OG distributions show that high runtime
does not always imply low OG. For example, DCUR, DCR, IAK, and SF-DCLC exhibit both a high
runtime and a high OG.

In order to quantify the relationship between runtime ratio and OG, Fig. 3.5 shows the average
runtime ratio and OG values of Fig. 3.4 in the runtime ratio–OG plane. It is interesting to identify the

78 Chapter 3. Optimization of the Path Selection Strategy

0 1 2 3 4 5 6 7 8 9
runtime ratio

0

10

20

30

40

50

op
ti

m
al

it
y

ga
p

[%
]

LDP
FB
DCBF
LARAC
LARAC-50

LARACGC-25
kLARAC-2
H MCOP
kH MCOP-5
kH MCOP-10

kH MCOP-30
NR DCLC
MH MCOP
DCCR-3
SSR+DCCR-2-5

SSR+DCCR-4-10
DCUR
DCR
IAK
SF-DCLC

Figure 3.5: Average runtime ratio and OG of the di�erent CSP algorithms over our entire evaluation space.
Compared to Fig. 3.4, CBF, :DCBF-2-2, :DCBF-5-5, DEB, and :LARAC-10 are not shown because of their high
runtime.

algorithms on the pareto frontier, i.e., the algorithms that, on average, are not outperformed by any
other algorithm both in terms of runtime and OG. We observe that, besides CBF (not shown), LDP and
FB, the algorithms making the pareto frontier are variants of the LARAC, SSR+DCCR, and H_MCOP
algorithms. Considering only average behavior, these are hence the best performing algorithms,
the choice among them depending on the relative importance of runtime and OG. If we look at the
algorithms with the best balance between runtime and OG, i.e., the algorithm on the lower left part
of the pareto frontier, we observe that they all are LARAC variants. LARAC accordingly appears to
be, on average, the best choice.

Summary. On average, the best performing algorithms are LDP, FB, CBF, and the variants of
LARAC, H_MCOP, and SSR+DCCR. The relative importance of runtime and optimality then dictates
the best performing algorithm, on average. However, we observed that the LARAC algorithm is the
one with the most potential.

3.3.2.7 Absolute Runtime Performance

While the runtime ratio facilitates the relative comparison of the algorithms in di�erent setups, the
absolute runtime is also a relevant metric for the practical deployment of the DetServ architecture.
Runtime measurements performed on an Intel Core i7-3770 CPU @ 3.40 GHz showed that the run-
times of a LD search is mainly in the order of milliseconds and scales up to around 10 ms [Guc+17].
Hence, most algorithms of Fig. 3.4 have average absolute runtimes on the order of tens of millisec-
onds. On the other hand, CBF can reach average runtimes of up to 500 ms, which justi�es the need
for faster algorithms, i.e., heuristics, for online embedding of �ow requests [Guc+17].

3.3.3 Which Algorithm is Best?

After analyzing the behaviors of all the algorithms, we are in a position to address the question:
which algorithm is the best? From our observations, the answer is: it depends. Indeed, none of the

3.3. Evaluation of the Available Routing Algorithms 79

algorithms is better than all others in terms of both runtime and OG for all topologies, scalability
levels, and delay levels.

Accordingly, the selection of the best routing algorithm depends on the speci�c region in four
dimension evaluation space where the algorithm is supposed to operate and on the relative impor-
tance of runtime and optiamlity. For example, we have seen that for small topologies and/or tight
delay constraints, CBF remains a very good candidate. As the topology grows, algorithms with
better scalability are needed. In terms of cost, DCR, DCUR, and IAK are the only algorithms with
decreasing OG values for large topologies and these algorithms are therefore good choices for very
large topologies. In terms of runtime, only the di�erent LARAC and SSR+DCCR variations scale
better than an LD search and are therefore also good candidates for large topologies. Further, While
kLARAC, kH_MCOP, and all optimal algorithms are good solutions if the cost is the most important
criterion, algorithms such as LDP or FB should be preferred if a very short runtime is critical.

Nevertheless, we can identify the LARAC, SSR+DCCR, and the H_MCOP variants as being among
the best routing algorithms, on average. Indeed, for example, on average, for the simulated topologies
and network scales, both LARAC and SSR+DCCR keep their runtime ratio lower than 4 and their OG
lower than 4 %. Moreover, their behavior on the fourth dimension, i.e., for the di�erent delay levels,
is quite stable. Last but not least, the LARAC, SSR+DCCR, and H_MCOP algorithms accept several
parameters that allow to tailor them to speci�c usage scenarios.

3.3.4 Summary

In order to select an appropriate algorithm for the routing procedure DetServ architecture, this sec-
tion provided a detailed performance evaluation of CSP algorithms. We observed that the perfor-
mance of the di�erent algorithms is highly dependent on the speci�c scenario and that there is no
one universal best CSP algorithm for all scenarios. However, we observed some general trends. First,
algorithms using an i:SP algorithm to reach optimality or a given optimality level, have a very long
runtime. Algorithms making SPT computations have much shorter runtimes, but are outperformed
by algorithms that use only the results of single-source single-destination SP runs. Second, we iden-
tify the variants of LARAC, SSR+DCCR, and H_MCOP as achieving relatively good performance in
most of our evaluation space.

Our analysis focused on algorithm �nding single-source single-destination paths. In order to
enable the routing procedure to embed multicast �ows, �ows with a 1+1 resilience scheme require-
ment, or �ows that traverse intermediate VNFs, future work should investigate multicast [Ram00];
[Hos+07]; [WH00], multipath [SDJ15], and SFC routing algorithms for the CSP problem. The latter,
by far the least explored, is the problem we tackle in Sec. 3.5. Before that, in Sec. 3.4, we discuss
a runtime optimization strategy that can be applied to many of the algorithms presented in this
section.

80 Chapter 3. Optimization of the Path Selection Strategy

% = Dijkstra(� , BA2 , 3BC)

...

% .cost > 1>D=3
No Yes

...
...

⇒

% = boundedDijkstra(� , BA2 , 3BC , 1>D=3)

...

% is null?
No Yes

...
...

Figure 3.6: When using a SP subroutine, algorithms often do not use the paths returned by Dijkstra if they
are more costly than a given bound. The usage of BD consists in incorporating this decision in the Dijkstra
subroutine in order to avoid exploring these useless paths, thereby reducing the search space of Dijkstra. The
input and output of the overlay algorithm are left unchanged, only its runtime is a�ected.

3.4 Search Space Reduction for Expediting Shortest Path

Subroutines

We have seen in Sec. 3.3 that SP and SPT algorithms are used by many CSP and MCSP routing
algorithms for solving subroutines (see Tab. 3.2). Besides algorithms for solving the CSP and MCSP,
other types of more complex overlay algorithms, e.g., MCP [KK01] and constrained minimum Steiner
tree (CMST) [ZPG95] algorithms, make use of SP and SPT algorithms as subroutines. For SP/SPT
problems, the Dijkstra algorithm [Dij59] is commonly acknowledged as the fastest optimal algorithm
for centralized implementations [CGR96]. Often, such overlay algorithms do not use the result of
an SP (or SPT) subroutine if its total cost is greater than a given bound. For example, for delay-
constrained problems, paths resulting from a LD SP run and the delay of which is greater than
the delay constraint of the original problem are not used by the overlay algorithm to construct its
solution [Guc+17]. As a result of the existence of these bounds, and because the Dijkstra SP algorithm
discovers paths in increasing order of cost (see Sec. 3.2), we can terminate the SP search earlier, i.e.,
once it is known that paths with a greater total cost will not be considered by the overlay algorithm.
This early termination allows to reduce the runtime of the SP subroutine, thereby reducing the
runtime of the overlay algorithm without impacting its �nal result. We refer to this adaptation
of Dijkstra for centralized implementations as bounded Dijkstra (BD). This constitutes the main
contribution of this section. BD can be used by any routing algorithm making use of one or several
SP/SPT search(es) and able to provide a bound to these subroutines (Fig. 3.6) above which results are
unnecessary. On the example of CSP algorithms, we con�rm the usefulness of BD by showing that
it can reduce the runtime of some algorithms by 75% on average.

First, in Sec. 3.4.1, we present related work aiming at optimizing the runtime of SP/SPT searches.
Second, after presenting the simple functioning and the bene�ts of BD in Sec. 3.4.2, we show how
BD can be used, i.e., how a bound can be provided to the SP/SPT subroutines, in the particular case
of centralized CSP algorithms (Sec. 3.4.3), the focus of this thesis. We show that BD can be used by
a wide range of algorithms. Indeed, 20 out of the 26 CSP algorithms listed in Sec. 3.3.1 can make
use of BD to improve their runtime. For each of them, we detail how bounds can be provided to
the SP/SPT subroutines. Finally, in Sec. 3.4.4, we evaluate the impact of BD on the performance of
these CSP algorithms. We observe that BD can reduce the runtime of some CSP algorithms by 75%

3.4. Search Space Reduction for Expediting Shortest Path Subroutines 81

on average. For favorable cases, BD reduces the runtime of several algorithms by 96% on average.
We further con�rm that using BD does not change the �nal solution found by the algorithms. These
algorithms hence have only bene�ts in using BD: reduced runtime at no cost. Due to the high number
of algorithms, we only present the most interesting and insightful results and conclusions. The entire
set of raw results and graphs is available online at [Van19c].

3.4.1 Related Work

The SP/SPT problem has been thoroughly investigated in the literature. In this section, we classify
the attempts at making SP/SPT routines faster in six categories for which we list representative
examples and with respect to which we highlight our contribution.

Heuristics. Some approaches improve the runtime of SP/SPT searches by accepting to �nd sub-
optimal solutions [FSR06]. In contrast, for positive metrics, BD guarantees to �nd the optimal result.

Hierarchical routing. A way of reducing the complexity of SP/SPT routing is to apply hierarchical
routing, thereby running SP/SPT algorithms on smaller graphs [KK77]; [JSQ02]. As it does not
modify the subject graph, BD can be used as part of any such hierarchical routing scheme.

Data structure optimizations. Several studies propose optimized data structures for the imple-
mentation of Dijkstra [FT87]; [CGS99]; [Tho03]. BD is independent of the data structure used and
can hence be used with any of these data structures.

Improvements of existing algorithms. Several proposals introduce extensions to the well-
known Dijkstra [HNR68]; [GH05] and BF [Yen70]; [BE12] algorithms. BD falls into this category
but can be used in parallel with these improvements.

Bi-directional searches. Dijkstra explores the graph from the source towards the destination(s).
For SP problems, bi-directional searches, starting from both the source and the destination simulta-
neously, have been proposed [Kwa89]; [Ike+94]; [RT12], potentially pruning parts of the individual
searches when possible [Kwa89]. While bi-directional searches can only be used for SP problems,
BD can be used for both SP and SPT problems.

Preprocessing. In the context of very large graphs such as road networks, a plethora of
work [Bas+16] proposes to perform a preprocessing step computing intermediate information
by, e.g., clustering nodes [HS09], de�ning overlay graphs [HSW09], de�ning important transit
nodes [AIY13], or computing virtual links [Abr+12]. This preprocessed information is later used
to solve routing requests faster. The precomputation step being costly, these approaches are only
suitable for solving a batch of requests on the same static topology. Besides, these algorithms
work well for large topologies but hardly outperform Dijkstra for general topologies [Bas+16].
On the other hand, BD can provide signi�cant bene�t on general and dynamic topologies. Some
preprocessing algorithms involve SPT subroutines [AIY13] and expedite these subroutines by
pruning parts of the network because the corresponding information was already obtained from

82 Chapter 3. Optimization of the Path Selection Strategy

previous SPT runs. In contrast, BD does not exploit previous searches in order to improve runtime
but rather information provided by an overlay algorithm. Further, these proposals simply prune
parts of the network when a given condition is met, while BD completely terminates.

We note that bounded Dijkstra runs were already used in the literature [Bos+08]; [LL09]; [BM12];
[RT13]; [Var14]; [VJ14]; [SPD14], but only as part of the design of new speci�c algorithms. Our
contribution consists in the formalization and generalization of such an approach for any generic
algorithm using SP/SPT subroutines, and in the quanti�cation of its bene�ts for these algorithms.

3.4.2 Proposed Solution: Bounded Dijkstra (BD)

In this section, we present the bounded Dijkstra (BD) algorithm. After presenting the context in
which BD can be used (Sec. 3.4.2.1), we describe the simple idea of the algorithm (Sec. 3.4.2.2) and
detail the impact it can have on SP (Sec. 3.4.2.3) and SPT (Sec. 3.4.2.4) searches. Then, we show that
the same idea can also be applied to the BF and Chong algorithms (Sec. 3.4.2.5 and 3.4.2.6) presented
in Sec. 3.2.

3.4.2.1 Context: Centralized Bounded Shortest Path (Tree) Subroutines

The SP and SPT problems are core networking problems. Besides in their direct applications, these
problems are often encountered as subproblems of other more complex centralized problem settings.
For example, as observed in Sec. 3.3, many CSP and MCSP algorithms use results of SP/SPT searches
to determine a solution to their problem. Similarly, MCP algorithms such as H_MCP [KK01] or CMST
algorithms such as BSMA [ZPG95] make use of an underlying SPT algorithm to construct a solution
to their problem. When an SP/SPT algorithm is used as such a subroutine of a centralized algorithm,
it often happens that paths with a total cost greater than a given bound are not used. For an SP search,
this means that the result itself is not used. For an SPT search, this means that the paths to some
destinations (too costly) are not considered, while others are. For example, for delay-constrained
problems, paths resulting from a LD SP/SPT run which have a delay higher than the delay constraint
are not considered. Similarly, for DCLC, or CSP, problems, paths resulting from a LC SPT run which
have a cost higher than the cost of the LD path will not be used, as these paths have a higher delay
and cost than the LD path.

3.4.2.2 Idea: Early Termination for Search Space Reduction

As a result of the existence of these bounds, and because the Dijkstra algorithm discovers paths
in increasing order of cost (see Sec. 3.2), the SP/SPT searches can be stopped earlier, i.e., once it is
known that paths with a greater total cost will not be considered by the overlay algorithm, thereby
reducing the search space of Dijsktra and hence the runtime of the overlay algorithm. We refer
to such a modi�ed version of Dijkstra as BD. The pseudo-code of BD is shown in Fig. 3.7 and the
required modi�cation in the overlay algorithm is shown in Fig. 3.6. For positive metrics, BD does not
in�uence the result of the overlay algorithm, as the latter considers having no path and having a too
costly path identically. In order to use BD, an algorithm must of course be able to provide a bound
value above which results are unnecessary. We detail in Sec. 3.4.3, on the example of CSP algorithms,
how overlay algorithms can provide such bounds.

3.4. Search Space Reduction for Expediting Shortest Path Subroutines 83

1: function boundedDijkstra(� , BA2 , 3BC , 1>D=3)
2: Create empty priority queue &
3: for each =>34 ∈ � do

4: =>34 .cost← +∞
5: BA2 .cost← 0
6: & .add(BA2)
7: while not & .empty do

8: =>34 ← & .popLeastCostNode()
9: if =>34 is 3BC then return getPredecessors(3BC)

10: if =>34 .visited then continue

11: =>34 .visited← true
12: for each outgoing edge of =>34 as 4364 do
13: =4F�>BC ← =>34 .cost + 4364.cost
14: if =4F�>BC < 1>D=3 then

15: if =4F�>BC < 4364 .dst.cost then
16: 4364 .dst.cost← =4F�>BC
17: 4364 .dst.predecessor← =>34
18: & .add(4364 .dst)
19: return null

Figure 3.7: Pseudo-code of the Dijkstra algorithm and the BD adaptation (shown in light red). Note that,
depending on the data structure in use for the priority queue (&), the pseudo-code may vary slightly. We
show here the most common pseudo-code using a heap, which we used for our implementation and which
performs best among the available data structures [CGR96].

3

BD bound

Graph boundary

B

Figure 3.8: Dijkstra discovers paths in increasing order of cost (as illustrated by the ellipses representing
nodes which are equidistant from the source node) and stops once the destination (3) is reached. BD (dashed
ellipse) terminates the search at a given cost from the source node, once it is known that longer paths will not
be considered by the overlay algorithm.

3.4.2.3 Impact on an SP Search

For an SP search, the Dijkstra algorithm discovers paths in increasing order of cost from the source
node and stops once the destination is reached. The pseudo-code is shown in Fig. 3.7. When a bound
is provided to Dijkstra (or BD), two di�erent cases can happen.

BD: the destination is further than the bound. First, the provided bound can be lower than the
cost of the SP to the destination. In this case, BD avoids exploring unnecessary parts of the network
(Fig. 3.8) by preventing Dijkstra from considering paths with a cost greater than the provided bound
and hence terminating before reaching the destination, i.e., before Dijkstra would have terminated.
The path returned is then “NULL”, which is considered by the overlay algorithm in the same way as
a path which is too costly: it does not use it.

84 Chapter 3. Optimization of the Path Selection Strategy

BD: the destination is closer than the bound. Second, the provided bound can be greater than
the cost of the SP to the destination. In this case, BD might appear useless, as it will, like Dijkstra,
terminate when reaching the destination. However, BD can also have a bene�t in this case. Indeed,
BD can avoid putting an element in the queue whose associated cost is greater than the provided
bound (line 14 in Fig. 3.7). Because such elements can be reached before the destination, this allows
BD to avoid unnecessary operations (lines 15–18) and to reduce the size of its priority queue, thereby
increasing the speed of the upcoming popping operations (line 8). Let us consider an example where
the cost of the SP to the destination is 16 and the BD bound is 18. BD pops an element with an
associated cost value of 15 out of its queue (line 8) and expands it. This expansion leads to elements
with associated costs 20, 22 and 24. While the traditional Dijkstra would execute lines 15–18, BD
knows that these elements will never be used. Hence, BD can directly discard these elements (line 14),
thereby preventing executing lines 15–18. As a result, even when the bound provided to BD is greater
than the cost of the SP to the destination, BD can be bene�cial. We will con�rm this in our evaluations
(Sec. 3.4.4.2). However, the bene�t is expected to decrease as the bound gets greater. Indeed, the
number of elements that can be discarded will decrease. In the example above, a higher BD bound of
23 would for example allow to discard only one of the elements, rather than the three of them with
a BD bound 18. Note that this phenomenon also happens when the destination is further than the
provided bound.

3.4.2.4 Impact on an SPT Search

For an SPT search, Dijkstra behaves as in the SP case (Fig. 3.7) but instead of stopping when reaching
a given node (line 9 of Fig. 3.7), the algorithm stops when its priority queue is empty, i.e., when it
has reached all the nodes.

When provided with a bound, BD can potentially stop the SPT expansion before exploring the
whole graph. That is, BD can avoid waiting for reaching some nodes which are too far away. As
for the single-destination case, this allows to reduce the runtime by preventing the exploration
of unnecessary parts of the network and by avoiding unnecessary operations and the addition of
unnecessary elements to the priority queue (see Sec. 3.4.2.3).

3.4.2.5 BD Idea for Bellman-Ford

The BF algorithm (presented in Sec. 3.2) is another algorithm for solving SP/SPT problems. Because
of its structure, the algorithm is more often used in distributed implementations. However, it is
also used as a subroutine of other complex algorithms where Dijkstra cannot be used (e.g., DEB, see
Sec. 3.4.3.4). While the structure of the BF algorithm is very di�erent from the structure of Dijkstra,
it also discovers paths in increasing order of cost. Hence, the BD idea can also be applied to BF by
simply discarding paths more costly than the given bound. As a result, algorithms making use of the
BF algorithm as a subroutine can also apply the BD principle.

3.4.2.6 BD Idea for Chong’s Algorithm

The problem of �nding the:SP between two nodes (or the: shortest paths tree (:SPT) from one node
to several destinations) also arises often as a subroutine of more complex algorithms (e.g., :DCBF

3.4. Search Space Reduction for Expediting Shortest Path Subroutines 85

and :H_MCOP, see Sec. 3.4.3.3). Chong’s algorithm (presented in Sec. 3.2) solves this problem by
assuming that the : value is known a priori. The algorithm is identical to the Dijkstra algorithm but
keeps track, at each node, instead of one single path, of the current : best paths found. Hence, the
BD idea can be applied to Chong’s algorithm in the same way as it is applied to Dijkstra. As a result,
algorithms making use of Chong’s algorithm as a subroutine can also apply the BD principle.

3.4.3 Application: BD for CSP Routing

In this section, we show that BD can be used by a wide range of algorithms by showing (i) how the
CSP algorithms listed in Sec. 3.3.1 can replace their SP and SPT subroutines with BD, and (ii) how
bounds can be provided to these BD runs.

Tab. 3.3 shows, for each algorithm of Tab. 3.2, how many times it can replace a SP/SPT run with
a BD run. The cases for which BD can be used are separated based on the metric (cost, delay or a
combination) and on the algorithm on which the BD principle is applied (SP/SPT refers to Dijkstra,
:SPT to Chong and BF to BF for SP). Out of the 26 algorithms, only 6 cannot make use of BD.
A detailed description of the algorithms can be found in [Guc+17] or in the original publications
referenced in the table.

3.4.3.1 Algorithms that Cannot Use BD

First, CBF, A*Prune, and SMS-PBO have a speci�c structure making use of no underlying
SP/:SP/SPT/:SPT algorithm and can hence not make use of BD. Second, :SPMC, E_MCOP, and
:LARAC exclusively make use of :SP and SP algorithms to which no bound can be provided. They
can hence also not make use of BD.

3.4.3.2 Algorithms that Can Use BD for SP Only

The LDP, FB, LARAC, LARACGC, SCRC, DCCR, and SSR+DCCR algorithms run a LD SP procedure
(i.e., optimizing the delay metric) which can make use of BD by using the bound of the original
problem. After this LD SP run, the LARAC, LARACGC, SCRC, DCCR, and SSR+DCCR algorithms
run one or several LC SP runs (i.e., optimizing the cost metric). These runs could be provided with
the cost of the LD path as bound. However, if provided with this bound, this BD run will always
be in the case where the provided bound is greater than the cost of the SP to the destination (see
Sec. 3.4.2.3). As we will see in Sec. 3.4.4.2, on average, the usage of BD in such a case increases the
runtime of the SP run. As a result, we do not consider the LC run as a BD run. The LARACGC, SCRC,
DCCR, and SSR+DCCR further execute a :SP run to which no bound can be provided.

3.4.3.3 Algorithms that Can Use BD for SPT

The DCUR, SF-DCLC, SMS-CDP, SMS-RDM, IAK, DCR, H_MCOP, :H_MCOP, DCBF, and :DCBF
algorithms run a LD search to which the delay bound of the CSP problem can be provided as a
bound. While DCR runs a LD SP search and :DCBF a LD :SPT (Chong) search, all the others run a
LD SPT search. DCUR, SF-DCLC, SMS-CDP and DCR then possibly execute a LC SPT run to which
the cost of the LD path from the source to the destination can be provided as a bound. Indeed, any

86 Chapter 3. Optimization of the Path Selection Strategy

Number of BD usages

Algorithm

Delay Cost Comb.

BF SP SPT :SPT SPT SPT

Algorithms that cannot use BD (Sec. 3.4.3.1)

CBF [Wid94]
A*Prune [LR01]

kSPMC [Guc+17]
E_MCOP [Fen+02b]
SMS-PBO [SMM98]

kLARAC [JV01]

Algorithms that can use BD for SP only (Sec. 3.4.3.2)

LDP [Guc+17] 1
FB [LHH95] (0, 1)

LARAC [AN78]; [HZ80]; [BG96]; [Jüt+01] 1
LARACGC [HZ80] 1

SCRC [SCC07] 1
DCCR [GM03] 1

SSR+DCCR [GM03] 1

Algorithms that can use BD for SPT (Sec. 3.4.3.3)

DCUR [SRV97]; [RS00] 1 (0, 1)
SF-DCLC [LLF05] 1 (0, 1)

SMS-CDP [SMM98] 1 (0, 1)
SMS-RDM [SMM98] 1

IAK [IAK98] 1
DCR [SL98] 1 (0, 1)

H_MCOP [KK01] 1
kH_MCOP [KK01] 1

NR_DCLC [Fen+02a] (0, 1) ≥ 0
MH_MCOP [Fen+02b] 1 ≥ 0

DCBF [JV01] 1
:DCBF [JV01] 1

Algorithm that can use BD for BF (Sec. 3.4.3.4)

DEB [CA03] 1

Table 3.3: Number of times the CSP algorithms of Tab. 3.2 can make use of BD based on the metric (cost,
delay or a combination) and algorithm on which BD can be applied (SP/SPT refers to Dijkstra, :SPT to Chong
and BF to BF for SP). When the number of times BD can be used depends on the routing request, the set of
possible values is given between parentheses and unbounded values are given using the ≥ symbol. Underlined
algorithms are optimal.

3.4. Search Space Reduction for Expediting Shortest Path Subroutines 87

path with a cost higher than the LD path will never be used by the algorithms, as they would then
rather choose to follow the LD path, which has both a lower cost and delay. The IAK, H_MCOP,
:H_MCOP, DCBF and :DCBF algorithms further execute a LC :SP/SP search. As for the algorithms
in Sec. 3.4.3.2, a bound could be provided to this LC run but, for the same reason, we do not consider
it.

The NR_DCLC algorithm starts like FB and can hence make use of BD in the same way. Then,
if the problem is feasible, it runs several times H_MCP [KK01]; [Fen+02b] (an MCP algorithm), a
modi�ed version of H_MCOP, to improve on the LD path result. H_MCP uses a metric combining
the cost and delay metrics for its SPT search. Since bounds on both the delay (the bound of the CSP
problem) and on the cost (the cost of the best path found so far) are known, the �rst step of H_MCP
can also make use of BD. Hence, NR_DCLC can further make use of BD by using H_MCP with BD.

The MH_MCOP algorithm is similar to NR_DCLC but, instead of using H_MCP to improve on
the LD path result, H_MCP is used to improve on the path found by H_MCOP. Hence, MH_MCOP
can make use of BD by using both H_MCOP and H_MCP with BD.

3.4.3.4 Algorithm that Can Use BD for BF

The DEB algorithm runs a LC and a LD SP search using BF. As for LARAC, a bound can be provided
to both the LD and LC searches but we only consider the LD search as a BD run.

3.4.4 Evaluation

The goal of our evaluation is twofold. First, in order to con�rm our expectations of Sec. 3.4.2.3 and
3.4.2.4, we quantify the impact of BD on an SP and an SPT run. To do so, we observe the behavior of
the LDP (Sec. 3.4.4.2) and IAK (Sec. 3.4.4.3) algorithms, which are using BD respectively for a single
SP and a single SPT run based on the delay metric. Second, in order to con�rm the applicability of
BD, in Sec. 3.4.4.4, we observe its impact on the performance of the CSP algorithms presented in
Sec. 3.4.3. Because of the big amount of resulting data, we only present here the most insightful and
representative results. The complete data and set of graphs is available online at [Van19c].

Among all the runs performed during the evaluation, the paths returned by the algorithms with
and without BD were always identical, thereby con�rming that BD does not impact the output of
the algorithms. Hence, in the following, we only discuss the runtime of the algorithms.

The algorithms have been implemented using Java 8 and evaluated on an Ubuntu 16.04 PC
equipped with an Intel Core i7-4790 CPU @ 3.60GHz.

3.4.4.1 Setup

In this section, we de�ne the three dimensions along which we run our evaluation and describe how
our plots and routing requests are generated.

First dimension: distance between nodes. From Fig. 3.8, we can expect that, if the source and
destination nodes are far apart from each other, the impact of BD will be lower. Indeed, in most
directions, the graph boundary itself will be expected to stop the expansion of Dijkstra before BD

88 Chapter 3. Optimization of the Path Selection Strategy

does it. If the source and destination nodes are closer to each other compared to the graph size
(alternatively, if the graph boundary rectangle in Fig. 3.8 gets bigger), we can expect that the BD
bound will be reached more often before the boundary of the network and hence BD will provide
more bene�t. That is, the impact of BD potentially depends on the relative distance (in terms of
cost) between the source and destination nodes compared to the size of the topology. To ease the
de�nition of this dimension, we only consider a grid topology of size # × # . For a given grid size,
we de�ne 10 di�erent so-called distance buckets. These buckets correspond to source and destination
nodes pairs whose least-hop distance in the grid is between 0 and 10%, 10% and 20%, ..., 90% and 100%
of the longest path in the grid (i.e., of 2 × (# − 1)).

Second dimension: tightness of the constraint. We also observed in Sec. 3.4.2 that the impact
of BD potentially di�ers based on the tightness of the constraint of the overlay problem (CSP problem
in our case). The delay constraint can range from a loose value for which the LC path is feasible to
tight values for which the problem is infeasible. Within this range, we de�ne 7 ranges of equal sizes.
We refer to these ranges as delay levels.

Third dimension: grid size. We further consider the grid size # as an evaluation dimension. We
vary # from 6 to 20. We observed that the grid size does not in�uence the impact of BD. Hence, we
here ignore this dimension (we always aggregate all the results for all the sizes) but the corresponding
graphs are available online [Van19c].

Plots generation. For each algorithm, we generate plots showing the distribution4 of the runtime
ratios observed for the di�erent values of a given dimension (i.e., node distance, delay level or grid
size). For a given request, the runtime ratio is de�ned as the runtime of the algorithm without
BD divided by the runtime of the algorithm with BD. Hence, values greater than 1 corresponds to
a situation in which BD reduces the runtime of the algorithm. The hidden dimensions are either
aggregated (i.e., the runtime ratios for all their values are incorporated in the distributions) or only
a speci�c value of these dimensions is incorporated in the distributions.

Requests generation. For each algorithm and for each combination of distance bucket, delay
level and grid size, we generate random cost and delay values between 1 and 2 for each link and
we randomly generate 5000 requests (within the corresponding distance bucket and delay level).
The 5000 requests are then solved by the considered algorithm and its corresponding version with
BD. The �rst 500 runs are used as warm-up for the Java HotSpot optimizer and their results are not
considered. The order in which the algorithm and its BD version are run is alternating. This prevents
the Java HotSpot optimizer from optimizing one of the run over the other. The distance bucket
dimension cannot be aggregated simply by considering all the runtime ratios for all the di�erent
buckets. Indeed, considering random source-destination pairs, small distances are more probable
than long distances. Hence, for plots aggregating the distance bucket dimension, for each algorithm

4After removing the values below the 1% percentile and above the 99% percentile, the distributions are shown as boxplots
showing the 10%, 25%, 50%, 75% and 90% percentiles. A red square identi�es the average. Versions of the plots also showing the
outliers are available on the accompanying web interface [Van19c].

3.4. Search Space Reduction for Expediting Shortest Path Subroutines 89

infeas. LC feas.
delay level

0 0

5 5

10 10

15 15

ru
nt

im
e

ra
ti

o

Figure 3.9: Runtime ratios of LDP for di�erent delay levels. On average, for single-destination SP searches,
BD is only useful when the provided bound is lower than the cost of the SP to the destination.

and combination of delay level and grid size, we generate 50,000 (out of which 5000 are used as
warm-up) requests by randomly selecting a source and a destination node5.

3.4.4.2 LDP: In�uence of BD on an SP Search

We �rst observe the impact of BD on the runtime of LDP. This allows us to gain insight into the
behavior of BD for SP runs (see Sec. 3.4.2.3).

Fig. 3.9 shows the impact of BD on the runtime of LDP for the di�erent delay levels, all the other
dimensions being aggregated. As expected, we observe that BD allows to dramatically reduce (more
than 6 times faster on average) the runtime of an SP search when the bound is lower than the cost
of the SP to the destination (infeasible delay level). For all the other cases (the delay bound is greater
than the cost of the SP to the destination – see Sec. 3.4.2.3), we however observe that, on average,
the additional runtime induced by BD for checking if the bound is violated (line 14 in Fig. 3.7) is
not compensated by its bene�t. Indeed, we observe that the runtime ratios are, on average, slightly
lower than 1.

However, interestingly, even if the provided bound is greater than the cost of the SP to the
destination, there are cases for which BD reduces runtime (this is due to the fact that BD then avoids
to place unnecessary elements in the priority queue – see. Sec. 3.4.2.3). Fig. 3.10 shows the impact of
BD on the runtime of LDP for the di�erent distance buckets, the grid size dimension being aggregated
and for the �rst feasible delay level. The �gure con�rms that BD can also improve the runtime of an
SP search when the provided bound is greater than the SP to the destination (see Sec. 3.4.2.3) but that
the bene�t of BD only balances its additional overhead for low distances and tight bounds. Fig. 3.9
however shows that, on average, BD is only bene�cial when the provided bound is lower than the
cost of the SP to the destination.

Fig. 3.10 also shows that, when the provided bound is greater than the SP to the destination, the
impact of BD decreases as the distance between the nodes compared to the topology size increases.
When the provided bound is lower than the SP to the destination, this e�ect is compensated by the
fact that, when the distance is low, Dijkstra will anyway terminate before BD can stop it, thereby
preventing BD from signi�cantly reducing the search space. Hence, in this case, the impact of BD

510 times more than for each distance bucket since there are 10 di�erent distance buckets.

90 Chapter 3. Optimization of the Path Selection Strategy

0-
10

%

10
-2

0%

20
-3

0%

30
-4

0%

40
-5

0%

50
-6

0%

60
-7

0%

70
-8

0%

80
-9

0%

90
-1

00
%

relative nodes distance

1.00 1.00

1.25 1.25

ru
nt

im
e

ra
ti

o

Figure 3.10: Runtime ratios of LDP for the di�erent distance buckets and for the �rst delay level that is feasible.
For SP searches, in some favorable cases (short distances), BD can still be bene�cial even if the provided bound
is greater than the cost of the SP to the destination.

infeas. LC feas.
delay level

0 0

20 20

40 40

ru
nt

im
e

ra
ti

o

Figure 3.11: Runtime ratios of IAK for di�erent delay levels. For SPT searches, BD is bene�cial in any case
but better when the provided bound is lower.

is relatively stable along the di�erent distance buckets. This can be seen on the additional graphs
available online [Van19c].

3.4.4.3 IAK: In�uence of BD on an SPT Search

We observe the impact of BD on the runtime of IAK. As IAK simply runs a LC SP search (without
BD) and a LD SPT search with BD, this allows us to gain insight into the behavior of BD for SPT
runs.

Fig. 3.11 shows the impact of BD on the runtime of IAK for the di�erent delay levels, the other
dimensions being aggregated. In comparison to Fig. 3.9, this shows that BD has a much higher
impact for SPT runs (up to 15 times faster on average for infeasible cases, against 6 times faster for
SP searches). Further, we observe that, even when the problem is feasible, BD still provides bene�t.
This is because, even if the destination is closer than the provided bound, other nodes further away
may be neglected by BD. Hence, this shows that, on average, BD is useful in any case for SPT searches.
As expected, we observe that the impact of BD decreases as the delay bound gets looser.

Fig. 3.12 shows the impact of BD on the runtime of IAK for the di�erent distance buckets, the
other dimensions being aggregated. We observe that BD has less impact when the source and des-
tination nodes of the CSP problem are further away from each other. This was expected. Indeed, as
nodes get further away from each other, the SPT search is more often blocked by the graph boundary

3.4. Search Space Reduction for Expediting Shortest Path Subroutines 91

0-
10

%

10
-2

0%

20
-3

0%

30
-4

0%

40
-5

0%

50
-6

0%

60
-7

0%

70
-8

0%

80
-9

0%

90
-1

00
%

relative nodes distance

0 0

10 10

20 20

ru
nt

im
e

ra
ti

o

Figure 3.12: Runtime ratios of IAK for the di�erent distance buckets. This shows that, for SPT searches, BD
is bene�cial in any case but better when the source and destination of the CSP problem are close to each other.

LD
P FB

LA
R

A
C

D
C

C
R

-3
SS

R
+D

C
C

R
-4

-1
0

SS
R

+D
C

C
R

-2
-5

D
C

U
R

SF
-D

C
LC IA

K
D

C
R

H
M

C
O

P
k

H
M

C
O

P-
5

N
R

D
C

LC
M

H
M

C
O

P
D

C
B

F
k

D
C

B
F-

2-
2

k
D

C
B

F-
3-

3
k

D
C

B
F-

5-
5

k
D

C
B

F-
10

-1
0

algorithms

2.5 2.5

5.0 5.0

7.5 7.5

10.0 10.0

ru
nt

im
e

ra
ti

o

Figure 3.13: Distributions of the runtime ratios of the di�erent algorithms, all the dimensions being aggre-
gated. We observe that BD can greatly reduce the runtime of some algorithms (up to 4 times faster, i.e., runtime
reduced by up to 75% on average for some algorithms).

itself rather than by the BD bound. As Fig. 3.11, Fig. 3.12 also con�rms that BD is more e�cient for
SPT runs than for single-destination SP runs and that it is, on average, bene�cial.

3.4.4.4 BD Impact on All CSP Algorithms

In this section, we observe the impact of BD on all the CSP algorithms presented in Sec. 3.4.3.
Algorithms requiring parameters have been con�gured as in [Guc+17]. In the plots, the parameters
values are appended to the algorithm names.

Because too slow, SCRC, LARACGC, SMS-CDP, SMS-RDM, SMS-PBO and DEB were not able to
run the evaluation in a reasonable amount of time. However, because of their similarity with LARAC,
the impact of BD on LARACGC and SCRC is supposed to be similar to the impact on LARAC.

Fig. 3.13 shows the runtime ratios of all the algorithms, all the dimensions being aggregated. As
can be seen, BD is, on average, bene�cial for all the algorithms. However, we can see that algorithms
which can only use BD for SP runs (LDP, FB, LARAC, DCCR and SSR+DCCR – Sec. 3.4.3.2) are only
slightly improved. This was expected based on our observations of Sec. 3.4.4.2. Indeed, the average

92 Chapter 3. Optimization of the Path Selection Strategy

LD
P FB

LA
R

A
C

D
C

C
R

-3
SS

R
+D

C
C

R
-4

-1
0

SS
R

+D
C

C
R

-2
-5

D
C

U
R

SF
-D

C
LC IA

K
D

C
R

H
M

C
O

P
k

H
M

C
O

P-
5

N
R

D
C

LC
M

H
M

C
O

P
D

C
B

F
k

D
C

B
F-

2-
2

k
D

C
B

F-
3-

3
k

D
C

B
F-

5-
5

k
D

C
B

F-
10

-1
0

algorithms

2 2

4 4

6 6

ru
nt

im
e

ra
ti

o

Figure 3.14: Distributions of the runtime ratios of the di�erent algorithms for the �rst feasible delay level,
the other dimensions being aggregated. We observe that, even outside of the infeasible case, BD can provide
signi�cant bene�t to some algorithms (around 3 times faster, i.e., runtime reduced by up to 66% on average
for some algorithms).

impact of BD on SP runs is marginal. On the other hand, we can see that the runtime of algorithms
which can use BD for SPT runs (DCUR, SF-DCLC, IAK, DCR, H_MCOP, kH_MCOP, NR_DCLC,
MH_MCOP, DCBF and :DCBF – Sec. 3.4.3.3) can be dramatically improved by BD. For example, on
average, DCUR, SF-DCLC and MH_MCOP are 4 times faster with BD, i.e., their runtime is reduced by
75% with BD. Also, most algorithms see their runtime improved by at least 20% in 50% of the cases.
DCUR, SF-DCLC, IAK and DCR present an interesting behavior. The two algorithms bene�ting the
most from BD are DCUR and SF-DCLC, because both their LC and LD SPT runs can use BD. Then,
IAK bene�ts less because its LC SP run cannot bene�t from BD. Finally, DCR bene�ts less than IAK
even though its LD SP run and its LC SPT run can both bene�t from BD. This shows that, while
SPT runs bene�t more from BD than SP runs, LD SPT runs bene�t more from BD than LC SPT runs.
MH_MCOP further shows that using BD for SPT runs based on a combination of the cost and delay
metrics can provide as much bene�t as for SPT runs based on the delay metric solely.

In order to highlight that BD can also provide signi�cant bene�t for feasible delay bounds,
Fig. 3.14 shows the distributions of the runtime ratios of the di�erent algorithms for the �rst fea-
sible delay level, the other dimensions being aggregated. We can see that BD can still drastically
reduce the runtime of some algorithms when the delay bound is feasible. For example, DCUR, SF-
DCLC, H_MCOP, MH_MCOP and :DCBF-10-10 are, in this case, on average around 3 times faster
with BD, i.e., their runtime is reduced by 66%. In further evaluations available online [Van19c], by
aggregating all dimensions except the distance between the source and destination nodes, we have
observed that, when the problem is not infeasible, BD is bene�cial to the algorithms as long as the
relative distance stays below 40-50% of the topology size. When the nodes are further apart from
each other, the graph boundary stops the expansion of Dijkstra before BD can have any signi�cant
impact.

We have seen that BD has potentially more impact when the delay constraint is tighter and the
distance between the source and destination nodes is smaller. Fig. 3.15 shows the runtime ratios

3.4. Search Space Reduction for Expediting Shortest Path Subroutines 93

LD
P FB

LA
R

A
C

D
C

C
R

-3
SS

R
+D

C
C

R
-4

-1
0

SS
R

+D
C

C
R

-2
-5

D
C

U
R

SF
-D

C
LC IA

K
D

C
R

H
M

C
O

P
k

H
M

C
O

P-
5

N
R

D
C

LC
M

H
M

C
O

P
D

C
B

F
k

D
C

B
F-

2-
2

k
D

C
B

F-
3-

3
k

D
C

B
F-

5-
5

k
D

C
B

F-
10

-1
0

algorithms

0 0

20 20

40 40

60 60

ru
nt

im
e

ra
ti

o

Figure 3.15: Distributions of the runtime ratios of the di�erent algorithms for favorable cases (infeasible delay
constraint and the 0-10% distance bucket). We observe that, in these favorable cases, BD can drastically reduce
the runtime of some algorithms (more than 25 times faster, i.e., runtime reduced by at least 96% on average
for some algorithms).

of all the algorithms for the infeasible delay level and for the 0-10% distance bucket, the grid size
dimension being aggregated. We observe that, in this favorable case, BD allows to drastically reduce
the runtime of all the algorithms, including those only using BD for SP runs. For example, SF-DCLC,
IAK, DCUR, H_MCOP, kH_MCOP and MH_MCOP are more than 25 times faster with BD, i.e., they
see their runtime reduced by more than 96% on average. Interestingly, DCR and NR_DCLC, which
have a good average runtime improvement (see Fig. 3.13), do not bene�t much in this favorable case.
This is because, in the infeasible case, both algorithms only run SP searches, thereby having a bene�t
similar to the algorithms only using BD for SP searches (e.g., LDP and LARAC).

3.4.5 Summary

SP and SPT algorithms are often used as subroutine of overlay algorithms solving more complex
problems, e.g., the CSP problem encountered by the routing procedure of the DetServ architecture.
In such a situation, it often happens that the result of an SP subroutine is not used if its total cost
is greater than a given bound. Because Dijkstra discovers path in increasing order of cost, we can
terminate the execution of Dijkstra as soon as it reaches paths which have a cost greater than the
known bound. We refer to this adaptation of Dijkstra as BD. By terminating Dijkstra earlier, its search
space is reduced, thereby reducing its runtime and hence the runtime of the overlay algorithm using
it. BD can be used by any routing algorithm making use of an underlying SP/SPT algorithm and
that can provide a bound to this algorithm. We evaluated the impact of BD on the speci�c example
of CSP algorithms. We have shown that BD does not impact the output of the algorithms but can
dramatically decrease their runtime. While BD can be bene�cial for both SP and SPT searches, we
showed that its bene�t is greater for SPT runs. The runtime of some algorithms is reduced by 75%
on average. We further showed that BD is more e�cient for tight delay constraints and when the
source and destination nodes of the CSP problem are close to each other compared to the size of the

94 Chapter 3. Optimization of the Path Selection Strategy

A
B

C

#11

D

E

#2

F

G

#01

H

4/5

1/3 2/6

2/1 5/3

7/3

2/13/1

4/4 1/3

2/
2 5/2

4/
1

Figure 3.16: Illustration of the ordered speci�ed nodes extension (OSNE) of the unicast CSP problem. The
solution of the CSP problem is shown in red. Edges are labeled with their cost/constraint values. The solution
to the OSNE of the CSP problem that has to visit either #0

1 or #11 and then #2 is shown in green.

topology. For these favorable cases, several algorithms see their runtime reduced by 96% on average
(i.e., BD allows them to be more than 25 times faster).

3.5 Enabling Routing through Service Function Chains

So far, we focused on the problem of routing �ows from a single source node to a single destination
node. However, with the emergence of network function virtualization (NFV), the problem of routing
through intermediate speci�ed nodes has become an important issue. The NFV paradigm consists
in virtualizing network functions in order to, e.g., deploy and migrate them at runtime where nec-
essary [Mij+15]. In such a scenario, applications can de�ne a set of VNFs that have to be traversed
(e.g., security functions). This is referred to as service function chain (SFC). Besides, as part of NFV,
the function placement problem (FPP) [Bas+14] consists in �nding the optimal locations for hosting
the VNFs. The routing of a request through a SFC corresponds to the problem of routing through
speci�ed nodes. The FPP corresponds to having several candidate nodes as potential locations for
each VNF. At the same time, the latency requirements of the applications still have to be met. Ac-
cordingly, routing problems can be extended by requiring the solution to traverse a given set of =
so-called speci�ed nodes (denoted by {#1, . . . , #=}). We de�ne such an extension as a speci�ed nodes
extension (SNE) or as an ordered speci�ed nodes extension (OSNE) if the set of speci�ed nodes has
to be visited in a speci�c order. In this section, we focus on OSNE. For a given speci�ed node #8 , a
set of up to 2 so-called candidate nodes (denoted by {#0

8 , #
1
8 , . . .}) can be given, one of them at least

having to be visited. If only one candidate is de�ned for a given speci�ed node #8 , we simply refer to
it as #8 . An example of this problem is depicted in Fig. 3.16. Let us consider a CSP problem from A to
F that has to visit two ordered speci�ed nodes #1 and #2 with a maximum constraint value of 15. #1

has two candidates G and C and #2 only has one candidate E. For example, in Fig. 3.16, if #0
1 and #11

correspond to two nodes at which a �rewall VNF can be deployed, and #2 to a node hosting a deep
packet inspection (DPI) VNF, the illustrated request corresponds to routing a �ow through a SFC
consisting of a �rewall and a DPI and placing the �rewall VNF at one out of two possible locations
(i.e., solving the FPP). In Fig. 3.16, each edge is labeled with its cost and constraint metric values
separated by a slash. Without considering the speci�ed nodes, the optimal CSP (highlighted in red)

3.5. Enabling Routing through Service Function Chains 95

is A-B-D-F with a cost of 6. This path can be found by traditional optimal CSP algorithms, e.g., CBF
(see Tab. 3.2). Considering the speci�ed nodes, the optimal CSP (shown in green) is A-B-C-E-F with
a cost of 10. Traditional CSP algorithms as those listed in Tab. 3.2 are not able to solve this problem
and alternative solutions are hence needed. Indeed, the routing procedure of the DetServ architec-
ture has to be able to e�ciently solve this problem in order to achieve the online provisioning of
routing requests that have to traverse a series of VNFs.

In this section, we propose two algorithms for solving this problem. First, we propose Lagrange
relaxation based aggregated cost for speci�ed nodes (LARAC-SN), a fast and close to optimal algo-
rithm (in our evaluations, its OG remains lower than 1.62% on average) for solving the OSNE of
the unicast CSP problem based on the SoA LARAC algorithm [AN78]; [HZ80]; [BG96]; [Jüt+01].
However, LARAC-SN can only handle one candidate per speci�ed node (2 = 1) and is relevant only
for unicast CSP problems. Second, for problems di�erent than the unicast CSP problem and/or for
problems considering several candidates per speci�ed node (2 > 1), we propose mole in the hole
(MITH), a graph transformation algorithm that allows any routing algorithm to be able to solve the
OSNE of the routing problem it is originally solving. The power of MITH resides in the fact that it is
algorithm-agnostic and can hence be used by any routing algorithm. Through graph transformation,
the algorithm forces any SoA algorithm to visit an ordered set of speci�ed nodes. While LARAC-
SN is bounded to the speci�c CSP problem and can only handle one candidate per speci�ed node,
MITH can be used for any routing problem and can deal with several candidates per speci�ed node
by automatically choosing the most appropriate one. For the speci�c case of the CSP problem with a
single candidate per speci�ed node, we show that LARAC-SN presents a much better runtime than
algorithms extended with MITH (at least around 10 times faster in our simulations). However, while
LARAC-SN is slightly sub-optimal, MITH has the potential of reaching optimality for any problem,
but at the cost of a higher runtime. We further observe that the runtime of both LARAC-SN and
MITH increases with the number of speci�ed nodes.

After reviewing related work in Sec. 3.5.1, Sec. 3.5.2 and 3.5.3 respectively present the LARAC-SN
and MITH algorithms. Sec. 3.5.4 reports on our performance evaluation and Sec. 3.5.5 summarizes
the results.

3.5.1 Related Work

Since the emergence of the SDN and NFV technologies, a wide range of work has been addressing the
algorithmic problem of routing �ows through speci�ed nodes. We classify the existing approaches
in six overlapping categories for which we list the most representative examples and with respect to
which we highlight the contributions of the work in the present section.

Unordered speci�ed nodes. The original literature on routing through speci�ed nodes consid-
ered the problem of routing through an unordered set of nodes [SK66]; [Dre69]; [Iba73]. That is, the
set of speci�ed nodes can be visited in any order. Recent work also studied this problem [Gom+15];
[And16]; [MGT16]; [Gom+17]. In this section, we consider that the order in which the nodes have to
be visited is �xed. Further, these proposals do not consider several candidate nodes for the speci�ed
nodes, which our MITH proposal does.

96 Chapter 3. Optimization of the Path Selection Strategy

O�line solutions. Several o�ine algorithms have been proposed [Add+15]; [RS16]; [Gha+16];
[Viz+17]. These algorithms tackle the problem globally, i.e., optimize the solution for a set of routing
requests. In Sec. 2.3.2, we have seen that the routing procedure of the DetServ architecture must
solve requests online. Hence, in the context of this thesis, we consider the online problem, i.e., we
aim at solving the problem independently for each routing request.

Solutions based on integer linear programming. Some proposals model the problem as an
integer linear program (ILP) and obtain a solution using an ILP solver [Bas+14]; [Add+15]; [RS16];
[MGT16]. In this section, we avoid formulating the problem as an ILP. Indeed, this often leads to
high runtime and requires a new ILP formulation for every di�erent type of routing problem.

Special purpose algorithms. Several papers propose a special-purpose algorithm for deal-
ing with the SNE of speci�c problems [SK66]; [Dre69]; [Iba73]; [Gom+15]; [And16]; [MGT16];
[Gom+17]; [MMP15]; [Kuo+16]; [Gha+16]; [Viz+17]. Our proposed LARAC-SN algorithm falls into
this category for the CSP problem. On the contrary, our MITH approach is independent of the
routing problem and can be used along with any SoA routing algorithm.

Solutions based on layering. A couple of solutions duplicate the subject graph into di�erent
layers, the interconnections of which represent the di�erent functions [Bar+15]; [RS16]; [Gha+16].
Our MITH algorithm belongs to this category. Existing proposals based on layering however then
run a special-purpose algorithm for the speci�c problem the authors are dealing with. In contrast,
our proposed MITH algorithm runs any SoA algorithm on the layered graph. As such, any routing
algorithm can use MITH to deal with the OSNE of an existing problem, making our proposal more
general.

Loop-free solutions. Some proposals require the solution to be loop-free [Gom+15]; [And16];
[Gom+17]; [MGT16]; [Add+15]. A reason for doing this is the resulting complex con�guration of
forwarding devices, as they need a mechanism to forward the same packet di�erently based on
whether it traversed the device already or not. A way of solving this issue is to rely on source
routing. This is the approach we take in chapter 4. As a result, like other works [SK66]; [Kuo+16],
we do not de�ne such a constraint and we consider that paths can contain loops.

3.5.2 LARAC-SN: OSNE of the CSP Problem

In this section, we consider the speci�c unicast CSP problem and its OSNE with a single candidate per
speci�ed node (2 = 1). We propose Lagrange relaxation based aggregated cost for speci�ed nodes
(LARAC-SN), a heuristic for this problem. After mathematically de�ning the OSNE of the SP and
CSP problems (Sec. 3.5.2.1), we �rst consider the OSNE of the SP problem (Sec. 3.5.2.2). Indeed, our
proposed LARAC-SN heuristic is based on this problem. Then, we present the LARAC-SN heuristic
in Sec. 3.5.2.3.

3.5. Enabling Routing through Service Function Chains 97

A
B

C

D

E

#2

F

G

#1

H

4

1

2

2 5

7

23

4 1

2 5

4

Figure 3.17: Illustration of the OSNE of the SP problem with one candidate per speci�ed node. The solution
of the SP problem is shown in red (A-B-D-F). The solution of the OSNE of the SP problem corresponds to
the concatenation of the SPs (green (A-B-G), yellow (G-B-C-E), purple (E-F)) between the successive pairs of
speci�ed nodes.

3.5.2.1 Mathematical Formulation

From the mathematical formulation of the CSP problem in Sec. 3.1.3, the formulation of its OSNE
with one candidate per speci�ed node is straightforward. The solution x further has to belong to the
set of paths that traverse nodes #1, . . . , #= . Let %#1,...,#=

B3
denote the intersection of this set of paths

and %B3 . The OSNE of the CSP problem with one candidate per speci�ed node can then be formulated
as

Iopt = min
x∈%#1,...,#=

B3

cTx (3.4)

s.t. dTx ≤ 3. (3.5)

The OSNE extension of the SP problem with one candidate per speci�ed node then corresponds to
Eqn. 3.4 only.

3.5.2.2 Solving the OSNE of the SP Problem

The adaptation of any SP algorithm to the OSNE of the SP problem with one candidate per speci�ed
node is straightforward. The solution corresponds to the concatenation of the SPs between the
successive pairs of speci�ed nodes (Fig. 3.17). We refer to such an algorithm as a shortest path
with speci�ed nodes (SP-SN) algorithm, which can be implemented using any SP algorithm (e.g., the
Dijkstra algorithm [Dij59]).

3.5.2.3 Description of LARAC-SN

As we have seen in Sec. 3.3, the CSP problem has been thoroughly investigated in the literature
and a wide range of algorithms have been proposed [Guc+17]; [PR02]. Among others, the CBF
algorithm [Wid94] is often considered as the reference optimal algorithm. However, unlike for the
SP problem, the adaptation of CSP algorithms for visiting a set of ordered speci�ed nodes is not
straightforward. Indeed, because of the constraint metric, the search cannot be split as for the SP
problem, as this would require to determine the distribution of the constraint among the di�erent

98 Chapter 3. Optimization of the Path Selection Strategy

segments, which is not straightforward. This is illustrated in Fig. 3.16. With a constraint bound of 15,
CBF �nds the path A-B-D-F (highlighted in red) as the optimal CSP from A to F. If nodes G and E have
to be visited, the found path is not valid anymore. Because of the constraint, a valid path cannot be
found by splitting the search among di�erent segments, as it can be done for the SP problem. Indeed,
what constraint bound should be chosen for the A-G segment? For example, the strategy of equally
distributing the constraint would fail in the example of Fig. 3.16. Indeed, the optimal path visiting
the speci�ed nodes being A-B-G-D-E-F (shown in green), equally dividing the constraint among the
di�erent segments would allocate a bound of 5 to all the segments, thereby preventing the algorithm
from �nding the A-B-G segment (which has a constraint metric of 7) belonging to the optimal solution.

The state-of-the-art LARAC algorithm. As observed in Sec. 3.3.3, the LARAC algorithm gener-
ally achieves one of the best performance among the existing CSP algorithm. The algorithm is based
on the Lagrange relaxation technique, a mathematical optimization technique that allows to solve
a constrained problem by removing some of the constraints and by introducing them in the opti-
mization objective [BV04]. For example, the Lagrange relaxation of the CSP problem (Eqn. 3.1–3.2)
is

!(_) = min
x∈%B3

cTx + _(dTx − 3) . (3.6)

It can be shown that, if the original problem is feasible, then there is an optimal solution to

I! = max
_∈R+

!(_), (3.7)

that is a feasible solution of the original problem. The idea of the Lagrange relaxation technique is
then to obtain a solution to the primal problem (3.1)–(3.2) by solving the dual problem (3.7), which is
potentially easier. Solving problem (3.7) requires to solve the relaxed problem (3.6) several times in
order to �nd the _ maximizing !(_). For the CSP problem, the relaxed problem corresponds to a SP
problem with a modi�ed cost function 2 ′8 (_) = 28 +_38 . This means that, for solving the CSP problem,
the LARAC algorithm subsequently runs several SP searches optimizing the combined metric 2 ′8 (_)
with di�erent _ values. The computation of the _ values and the terminating condition can be found
in the original references of the LARAC algorithm [AN78]; [HZ80]; [BG96]; [Jüt+01] and in [Guc+17].
The algorithm always �nds a solution if one exists (i.e., it is complete) but is, by the properties of the
Lagrange relaxation technique [BV04], not optimal.

Adaptation of the LARAC algorithm. We propose to also use the Lagrange relaxation technique
for the OSNE of the CSP problem with one candidate per speci�ed node. The Lagrange relaxation of
problem (3.4)–(3.5) is

!(_) = min
x∈%#1,...,#=

B3

cTx + _(dTx − 3), (3.8)

which corresponds to the OSNE of the SP problem with the combined metric 2 ′(_). As such, the
LARAC algorithm can simply be adapted by running an SP-SN (see 3.5.2.2) algorithm at each itera-
tion instead of a simple SP algorithm. The computation of the _ values and the terminating condition
are identical to the original LARAC algorithm. We refer to this algorithm as Lagrange relaxation

3.5. Enabling Routing through Service Function Chains 99

based aggregated cost for speci�ed nodes (LARAC-SN). By the properties of the original LARAC al-
gorithm, LARAC-SN is complete but not optimal. By including the constraint metric in the combined
optimization metric 2 ′(_) of the SP-SN runs, the LARAC-SN algorithm automatically distributes the
usage of the constraint metric budget along the di�erent segments between the di�erent speci�ed
nodes.

3.5.3 Mole in the Hole (MITH)

While LARAC-SN is an interesting solution for the OSNE of the CSP problem with one candidate
per speci�ed node, it presents several drawbacks: (i) it is not optimal (though close to optimal – see
Sec. 3.5.4.2), (ii) it cannot deal with several candidates per speci�ed node and (iii) it is tailored to the
unicast CSP problem. In this section, we present mole in the hole (MITH), our solution to overcome
the limitations of LARAC-SN. First, MITH allows to obtain an optimal solution for the OSNE of any
routing problem, overcoming limitations (i) and (iii) of LARAC-SN. Second, MITH allows to deal with
any number of candidate nodes per speci�ed node, thereby overcoming limitation (ii) of LARAC-SN.

MITH is a graph transformation algorithm based on layering. The introduced layers correspond
to copies of the original graph for routing before, between and after the speci�ed nodes. The trans-
formed graph enables SoA algorithms to solve the OSNE of their original problem. We detail the
graph transformation procedure in Sec. 3.5.3.1. Because routing is then performed on the trans-
formed graph, the original routing request has to be mapped to the transformed graph and the ob-
tained solution has to be transformed back to the original graph. These two procedures are described
in Sec. 3.5.3.2 and 3.5.3.3, respectively. The section is concluded by a discussion of the limitations of
MITH (Sec. 3.5.3.4).

3.5.3.1 Graph Transformation

MITH de�nes a new graph consisting of several layers. Each layer corresponds to an exact copy of
the original graph, including the metrics associated to the di�erent edges. The di�erent layers are
ordered and correspond to the routing before, between and after the di�erent speci�ed nodes. That
is, if there are = speci�ed nodes, = + 1 layers are de�ned. Subsequent layers are interconnected by
connecting pairs of nodes corresponding to the same original node. An interconnecting edge corre-
sponds to the visit of the original node corresponding to the nodes used for the interconnection. That
is, the interconnections between the layers correspond to the visit of the di�erent speci�ed nodes.
For a speci�ed node with several candidates, the corresponding layers are simply interconnected
several times through the corresponding nodes. The edge(s) created for interconnecting the layers
can be assigned metric values quantifying the visit of this node.

The procedure is illustrated in Fig. 3.18. Let us consider a request with two speci�ed nodes
(= = 2), the �rst one having two candidates (#0

1 = =1 and #11 = =3) and the second one having only
a single candidate (#2 = =4). As there are two speci�ed nodes, three layers are de�ned. The �rst
two layers are interconnected via nodes =1 and =3, corresponding to the two candidates of the �rst
speci�ed node (#0

1 and #11), and the last two layers are interconnected via node =4, corresponding
to the single candidate of the second speci�ed node (#2).

100 Chapter 3. Optimization of the Path Selection Strategy

=1

=2 =3

=4

=5

=6

#11

#01 #2
=1

=2 =3

=4

=5

=6

=1

=2 =3

=4

=5

=6

=1

=2 =3

=4

=5

=6

0
1

#1
1

#2

Figure 3.18: On the left, example graph for the illustration of the MITH graph transformation algorithm.
On the right, obtained transformed graph for a request with two speci�ed nodes, the �rst one having two
candidates (=1 and =3) and the second one having only one candidate (=4).

3.5.3.2 Request Transformation

The original request has to be mapped to the transformed graph. From a graph point of view, any
routing request without speci�ed intermediate nodes can be represented by a set of source nodes and
a set of destination nodes. The transformation is then straightforward. As the source nodes have to
be visited before the �rst speci�ed node, the source nodes in the transformed graph correspond to
the copy of the source nodes of the original request in the �rst layer. Similarly, as the destination
nodes have to be visited after the last speci�ed node, the destination nodes in the transformed graph
correspond to the copy of the destination nodes of the original request in the last layer.

3.5.3.3 Solution Transformation

Once the SoA algorithm returns a solution on the transformed graph, the latter has to be mapped
back to the original graph. The solution in the original graph corresponds to the concatenation of all
the original edges corresponding to the edges used in the di�erent layers, except the interconnecting
edges (which do not have any corresponding edge in the original graph).

3.5.3.4 Limitations of MITH

While MITH presents itself as a general algorithm for enabling routing through speci�ed nodes for
any routing algorithm, it has some limitations. First, if the original graph includes local constraint
metrics (as de�ned in Sec. 3.1, e.g., �nite bandwidth usage capacity), the routing algorithm extended
with MITH could lose its completeness or optimality. Indeed, using the M= taxonomy de�ned in
Sec. 3.6, such a constraint on the layered graph is an M∞ local constraint metric, which, as we show
in Sec. 3.6, results in the loss of the completeness and optimality of routing algorithms. Note that
this observation is also valid for LARAC-SN. Second, node- or edge-disjointness on the transformed
graph does not ensure node- or edge-disjointness on the original graph. That is, using MITH, a
multipath routing algorithm can potentially lose its main property of �nding disjoint paths. Hence,
MITH does not support multipath routing. Third, as mentioned, MITH can only deal with an ordered
set of speci�ed nodes.

3.5. Enabling Routing through Service Function Chains 101

0 1 2 3 4 5
1

2

3

4

5

number of
speci�ed nodes

nu
m

be
ro

fc
an

di
da

te
s

CBF-MITH

0 1 2 3 4 5
1

2

3

4

5

number of
speci�ed nodes

nu
m

be
ro

fc
an

di
da

te
s

LARAC-MITH

2

4

6

8

runtim
e

[m
s]

0 1 2 3 4 5
1

2

3

4

5

number of
speci�ed nodes

nu
m

be
ro

fc
an

di
da

te
s

LARAC-MITH

1

2

3 optim
ality

gap
[%]

Figure 3.19: Runtime and OG of CBF with MITH (CBF-MITH) and LARAC with MITH (LARAC-MITH) for
di�erent numbers of speci�ed nodes and candidates per speci�ed node. Since CBF-MITH is optimal, its OG is
omitted. Each point corresponds to the average of 10,000 runs.

3.5.4 Evaluation

The goal of our evaluation is twofold. First, in Sec. 3.5.4.1, we give an insight on the impact of MITH
on the performance of SoA routing algorithms. Second, in Sec. 3.5.4.2, as LARAC-SN and MITH can
both solve the OSNE of the unicast CSP problem with one candidate per speci�ed node, we compare
the performance of both algorithms for this speci�c problem.

We perform both evaluations on the example of the unicast CSP problem. We use the topologies
of the Topology Zoo [Kni+11] which are connected, have between 10 and 100 vertices and less than
200 edges. The delay 38 of an edge is de�ned as the propagation delay and its cost 28 is de�ned as
1 + 1/38 . This ensures that LC and LD paths are not identical. For each combination of topology,
number of speci�ed nodes and number of candidate nodes per speci�ed node, we generate 100
random sets of candidate nodes. For each of these, we generate 100 random unicast requests (random
source and destination) with a delay bound randomly uniformly distributed between the minimum
(delay of the LD path) and maximum possible values (delay of the LC path). This setup leads, for
each scenario, to 10,000 requests per combination of topology and number of speci�ed and candidate
nodes. The evaluations were ran on an Ubuntu 16.04 PC equipped with an Intel Core i7-4790 CPU
@ 3.60GHz.

3.5.4.1 In�uence of MITH on the Performance of Algorithms

We observe the runtime and OG of CBF and LARAC [AN78]; [Jüt+01] when used with MITH for
di�erent numbers of speci�ed nodes (from 0, i.e., without MITH, to 5) and for di�erent numbers
of candidate nodes per speci�ed node (from 1 to 5). The results are shown in Fig. 3.19. Each cell
represents the average runtime or OG observed for 10,000 runs.

Runtime. We observe that the impact of MITH on the runtime of the algorithms increases with the
number of speci�ed nodes. However, surprisingly, the runtime of the algorithms decreases with the
number of candidate nodes. This is due to the fact that, because of the randomness of our evaluation,
adding candidates potentially allows the algorithms to reach the last layer with shorter paths (i.e.,
faster). A thorough evaluation of the impact of MITH depending on the algorithm in use, on the
location of the candidates in the graph and on the tightness of the delay constraint is out of the
scope of this section and is left for future work.

102 Chapter 3. Optimization of the Path Selection Strategy

0 2 4 6 8
0

10

20

number of speci�ed nodes

ru
nt

im
e

[m
s]

0

0.5

1

1.5

op
tim

al
ity

ga
p

[%
]

CBF-MITH
LARAC-MITH

LARAC-SN

Figure 3.20: Runtime and OG of LARAC-SN, CBF with MITH (CBF-MITH) and LARAC with MITH (LARAC-
MITH) for di�erent numbers of speci�ed nodes and one candidate per speci�ed node. Each point in the graph
corresponds to the average of the values observed for the 10,000 runs corresponding to this point.

Optimality gap. In terms of OG, with CBF as optimal benchmark, we observe that both increasing
the number of speci�ed nodes and increasing the number of candidate nodes per speci�ed node
increases the OG of LARAC. However, the OG remains low: on average, it never exceeds 2.6% in our
evaluations.

3.5.4.2 LARAC-SN vs. LARAC with MITH

Fig. 3.20 shows the runtime and OG of LARAC-SN and LARAC and CBF extended with MITH for
di�erent numbers of speci�ed nodes (from 0 to 8). Each point in the graph corresponds to the average
of the values observed for the 10,000 runs corresponding to this point.

Runtime. As expected, since increasing the number of speci�ed nodes increases the size of the
graph on which path �nding is performed, the runtime of CBF and LARAC with MITH increases
exponentially with the number of speci�ed nodes. As already observed in Sec. 3.3.2, LARAC scales
better than CBF. We observe that LARAC-SN presents a much better runtime behavior. Indeed, the
runtime of LARAC-SN is around 10% of the runtime of LARAC with MITH.

Optimality gap. At the cost of its high runtime, CBF with MITH is optimal. On the contrary,
LARAC-SN and LARAC with MITH are both sub-optimal but their OG stays lower than 1.62% on
average. They both exhibit the exact same OG behavior, as they are actually always returning the
same paths. Interestingly, while the OG increases with the number of speci�ed nodes, the increase
seems to saturate.

3.5.5 Summary

The problem of routing through intermediate speci�ed nodes has become more and more an impor-
tant issue. Indeed, the problem �nds applications in new emerging �elds such as NFV and SFC, in
which applications can also have predictable latency requirements. In this section, we proposed two
algorithms for this problem. First, we proposed LARAC-SN, an extension of the SoA LARAC CSP
algorithm which allows to �nd a CSP visiting speci�ed intermediate nodes. While sub-optimal, we

3.6. Handling the Optimality/Completeness Loss due to DetServ 103

showed that LARAC-SN exhibits a small OG at a low runtime cost. Second, we proposed MITH, a
graph transformation algorithm forcing any SoA algorithm to visit an ordered set of speci�ed nodes.
MITH further allows to de�ne a set of candidate nodes per speci�ed node such that the SoA routing
algorithm used automatically selects the best candidate in the sense of the routing problem consid-
ered (e.g., least-hop, LC delay-constrained, etc.). We showed that MITH has the potential of �nding
the optimal solution to any problem, however at the cost of an increased runtime. We further showed
that the performance of both LARAC-SN and MITH degrades as the number of speci�ed nodes in-
creases.

3.6 Handling the Optimality/Completeness Loss due to DetServ

The routing algorithms discussed in this chapter aim at coping with the demanded latency require-
ments of applications while optimizing the use of network resources. These algorithms rely on the
optimal substructure property (OSP), which states that an optimal path contains other optimal paths
within it. However, in this section, we show that QoS metrics such as those de�ned by the DetServ
latency model, e.g., queuing delay and bu�er consumption, do not satisfy this property, which im-
plies that the used algorithms lose their optimality and/or completeness properties. As a result, to
prevent the violation of the latency guarantees of applications and to ensure optimal use of network
resources, we need new solutions for the DetServ architecture. In this section, we tackle this prob-
lem by �rst proposing a new so-called M= taxonomy de�ning new metric classes. The taxonomy
de�nes an M= metric as a metric which requires the knowledge of the = previously traversed edges
to compute its value at a given edge. We will see that this taxonomy allows to determine when SoA
algorithms based on the OSP lose their optimality and/or completeness properties (see Tab. 3.4). For
these new classes of metrics introduced by the taxonomy, new optimal and complete algorithms are
needed. We then present three solutions: A*Prune, edge-based Dijkstra (EBD) and a graph trans-
formation algorithm (GTA). On the one hand, A*Prune [LR01], a SoA algorithm, and EBD, a newly
proposed extension of the Dijkstra algorithm [Dij59], are algorithms for the speci�c, respectively,
MCSP and SP problems, which keep their optimality and completeness properties for the new de-
�ned classes of metrics. On the other hand, GTA is an extension that can be applied to any SoA
algorithm for recovering its optimality and completeness properties. Through evaluations, we show
that SoA algorithms based on the OSP indeed lose their optimality and/or completeness properties
depending on the M= classi�cation of the considered metric(s). Further, we show that our proposed
solutions are indeed complete and optimal for their respective problems but that this unfortunately
comes at the price of an increased runtime.

After empirically evidencing in Sec. 3.6.1 that SoA algorithms can lose their optimality properties
for metrics resulting from the DetServ architecture, Sec. 3.6.2 introduces the newly proposed M=
taxonomy for classifying routing metrics. In Sec. 3.6.3, we presentA*Prune, EBD and GTA for keeping
and recovering the completeness and optimality properties. Sec. 3.6.4 reports on the evaluation of
our solutions, Sec. 3.6.5 analyzes when our solutions can be applied and Sec. 3.6.6 summarizes the
contributions of this section.

104 Chapter 3. Optimization of the Path Selection Strategy

A
B

C

D

E
F

Existing �ow
New �ow (option #1)
New �ow (option #2)

⇓

A
B

C

D

E
F1

1

1
1

A-C: 5
B-C: 1
-: 5

1

1
Existing �ow
New �ow (Option #1)Dijkstra’s path
Optimal path

Figure 3.21: Example scenario involving an M1 metric. As elaborated in Sec. 3.6.1, we observe that, in such a
situation, Dijkstra �nds a sub-optimal path.

3.6.1 Motivation: Violation of the Optimal Substructure Property

SoA routing algorithms rely on the fact that the metric values associated to the edges of the graph
are static (i.e., constant) for a given routing request [AMO93]; [GY05]. However, this is not always
the case.

Let us examine the example depicted in Fig. 3.21, which considers as metric the queuing delay
experienced at the ingress of each link (referred to as delay in this section). Let us assume that the
network carries a �ow on path A-B-C-E (continuous red arrows in Fig. 3.21). Because there is only
one �ow in the network, no queuing occurs at any link and all the links have the same delay metric
value (e.g., 1 in this example). A new �ow has to be routed from A to E. In order to reach C, the
�ow can either be routed through A-C or A-B-C. If it is routed through A-C, the �ow may generate
queuing at the egress of C, i.e., at link C-E, because of potential collisions of packets of the two �ows
coming from the two di�erent ingress links of C. This implies that the delay metric value of C-E
should be greater than without collisions (e.g., 5 in this example). On the other hand, if the new �ow
is routed through A-B-C, it will follow the same path as the original �ow, thereby generating no
queuing delay at any link6. Hence, all links keep the same original delay metric value (1 in our case).
We observe that the delay metric value associated to C-E depends on the previous edge traversed by
the new �ow. This is shown in the lower diagram of Fig. 3.21. This scenario corresponds to the ILS
concept of the DetServ TBM described in Sec. 2.4.7. Indeed, using ILS results in bu�er consumption
and delay values which depend on the previously visited physical link (Fig. 2.30).

In such a setting, the LD path from A to E is A-B-C-E, with a delay of 3. However, the Dijkstra
algorithm (see Sec. 3.2), supposedly optimal, �nds the path A-C-D-F-E, with a delay of 4. Indeed,
Dijkstra performs a BFS and keeps only track of the best path to reach each node. While �nding a
path from A to E, Dijkstra will store A-C as the best path to reach C because it has a total delay of 1,

6We assume that the �ows arrived in A via the same link and with the same total delay, thereby generating no queuing
delay at the ingress of A-B.

3.6. Handling the Optimality/Completeness Loss due to DetServ 105

Constraint type (Sec. 3.1) M0 M1 · · · M= · · · M∞
Local constraint C O C O C O C O

Global constraint C O C O C O C O

Global optimization C O C O C O C O

Table 3.4: Impact of M= metrics on the completeness (C) and optimality (O) of SoA algorithms based on the
OSP.

which is lower than 2, the delay of A-B-C, the only other path to reach C. Then, Dijkstra will have
two possibilities to reach the destination. Either using C-E with a delay of 5, or following C-D-F-E
with a delay of 3. Since C-D-F-E has a lower delay, Dijkstra will choose it and return A-C-D-F-E,
with a total delay of 4, as �nal solution. We observe that, in this situation, Dijkstra is not able to �nd
the optimal path. We will show in Sec. 3.6.2.2 that this is due to the fact that the OSP, stating that an
optimal path contains other optimal paths within it, is not satis�ed.

Sec. 3.6.2.3 presents other scenarios for which SoA algorithms based on the OSP (i.e., nearly
all SoA routing algorithms) lose either their optimality or their completeness property, or both.
Currently, operators solve this problem by allowing sub-optimality or by having a looser modeling of
QoS parameters, thereby wasting network resources, or, in the worst case, by having a too optimistic
modeling of QoS parameters, thereby potentially leading to violations of SLAs. As a result, new
optimal and complete algorithms for dealing with this type of metrics are needed.

3.6.2 The M= Taxonomy

In this section, we present our novel routing metric taxonomy, the M= taxonomy, classifying metrics
into classes based on the amount of previous edges needed for computing their value at a given edge.
We refer to a metric requiring the knowledge of the = previously traversed edges as an M= metric.

3.6.2.1 M0 Metrics: No Additional Information Required

M0 metrics correspond to the traditional metrics considered in the SoA. The metric value associated
to an edge depends only on the edge itself and requires no information on the other edges previously
traversed. Examples of M0 metrics are the propagation delay and the total capacity of a link.

3.6.2.2 M1 Metrics: Values Depending on the Previous Edge

De�nition. M1 metrics correspond to metrics whose value at a given edge depends on the previous
edge used to reach the given edge.

Motivation: queuing delay. The example developed in Sec. 3.6.1, based on the ILS concept of
DetServ, corresponds to an M1 metric. Indeed, depending on which ingress link to C is used, the
queuing delay at the egress of C is di�erent. As a result, the metric value of C-E depends on the
previously traversed edge and the metric is an M1 metric.

Impact as global optimization metric. The example developed in Sec. 3.6.1 (and illustrated in
Fig. 3.21) corresponds to an M1 metric used as global optimization metric for a SP problem. We have

106 Chapter 3. Optimization of the Path Selection Strategy

seen that the Dijkstra algorithm loses its optimality. The reason for this is that Dijkstra relies on
the OSP, which states that sub-paths of optimal paths are also optimal [Cor+09]. While the OSP
is satis�ed for M0 metrics, it is not necessarily satis�ed anymore for M1 metrics. Other routing
algorithms typically also rely on the OSP, either because they are based on Dijkstra itself, or because
they are based on dynamic programming or greedy approaches which are themselves based on the
OSP [Cor+09]. Consequently, other optimal SP algorithms such as BF and A* (see Sec. 3.2 are also
a�ected. Hence, when an M1 metric is used as optimization metric, SoA algorithms based on the OSP
lose their optimality property. Note that, as the metric is only used for optimization, completeness is
not impacted. This is summarized in Tab. 3.4 and will be con�rmed in our evaluations (Sec. 3.6.4.3).

Impact as global constraintmetric. Let us consider the M1 metric in Fig. 3.21 as global constraint
metric (with a bound of 3.5) and further de�ne the hop count (an M0 metric) as global optimization
metric. This corresponds to a CSP problem. CBF [Wid94], an optimal CSP algorithm, is similar to
Dijkstra. It performs a BFS and keeps only track of the best path at each node. However, it discovers
paths in order of the constraint metric and stops once the bound is reached. In our example, CBF
would hence also �nd A-C as the best path to reach C. From this path, the destination E cannot be
reached within the deadline. Hence, CBF will conclude that no path is available. However, A-B-C-E,
with a delay of 3, is a valid solution. As a result, CBF is incomplete. It can easily be shown that, with
a bound of 4.5, CBF would �nd A-C-D-F-E, with a delay of 4, which is sub-optimal (A-B-C-E, with
a delay of 3, still being the optimal path). As for Dijkstra, this is due to the fact that the OSP is not
satis�ed anymore. Hence, other optimal CSP algorithms, which are all based on Dijkstra and hence
on the OSP, are also a�ected. Consequently, when an M1 metric is used as a global constraint metric,
SoA algorithms based on the OSP lose both their completeness and optimality properties. This is
shown in Tab. 3.4 and will be con�rmed in our evaluations (Sec. 3.6.4.4).

Impact as local constraint metric. It can also be easily shown that M1 local constraint metrics
also lead to the sub-optimality and incompleteness of SoA algorithms based on the OSP (see Tab. 3.4).
Indeed, the OSP is also not necessarily satis�ed. In the DetServ architecture, this corresponds to the
hasAccess method of the TBM when it uses ILS. Indeed, in this situation, the access control is based
on the bu�er consumption of �ows, which, because of ILS, depends on the previously traversed
physical link.

3.6.2.3 M∞: Values Depending on the Complete Path

De�nition. M∞ metrics correspond to metrics whose value at a given edge depends on the com-
plete path traversed to reach the current edge.

Motivation: bu�er management. Let us consider a metric representing the bu�er consumption
of a �ow. As we have seen in Sec. 2.2.6, per DNC, while traversing a given path, the burstiness of a
�ow is increased at each hop by an amount depending on the �ow and on the hop characteristics.
The bu�er consumption of a �ow at a given node depends, among other things, on the burstiness
of this �ow. Hence, the bu�er consumption of a �ow at a given hop depends on all the previously
traversed links. As a result, in the DetServ architecture, any metric that requires the computation of

3.6. Handling the Optimality/Completeness Loss due to DetServ 107

A
B

C

D

E
F5

1

1

1

1
1

1

7

Figure 3.22: Example scenario involving an M∞ metric. We observe that the new �ow will be rejected or
accepted at C-E depending on where it is coming from.

A

B

C
E

G

D

F

VNF 1
VNF 2

1

2

3

4 7
5

4

5
6

7

1

2

3

4

5
6

Figure 3.23: Example scenario involving an M∞ metric. The bandwidth consumption of the new �ow at a
link depends on whether or not it visited this link before. Hence, acceptance of the new �ow at a link depends
on all the previously visited links.

the bu�er consumption of a �ow is an M∞ metric. Indeed, we have seen in Sec. 2.4.6 that the burst
of a �ow depends on the delay of all the previously traversed queues. As the hasAccess method of
the TBM is based on the burst of a �ow, it is a M∞ local constraint metric. To avoid that, the bu�er
consumption of a �ow at a hop can be computed based on the latency requirement of the �ow, as
this value is for sure greater than the delay of all the previously traversed queues (otherwise the path
does not satisfy the requirements of the �ow). In this case, the metric is not anymore an M∞metric.
However, as elaborated above, if ILS is used, the metric remains an M1 metric.

Motivation: routing through service function chains. Let us consider a metric representing
the total bandwidth consumption of a �ow at each link. While routing through SFCs, loops can
be introduced. Hence, the total bandwidth consumption of a �ow at a given link depends on how
many times the �ow already visited the given link. As a result, all the previously visited links have
to be known and this corresponds to an M∞ metric. This corresponds to the situation described in
Sec. 3.5.3.4 for MITH and LARAC-SN.

Impact as local constraint metric. Let us consider the bu�er management scenario elaborated
above and illustrated in Fig. 3.22. We consider the problem of routing a �ow from A to E (Fig. 3.22)
through the least-hop path (M0 metric). Analogously to the DetServ hasAccess method, We consider
a local constraint metric rejecting �ows consuming too much bu�er space. In Fig. 3.22, each link is
labeled with its queuing delay (generated by already embedded �ows). Note that this queuing delay is
not used as a metric. As per DNC (see Sec. 2.2.6, the burstiness of the �ow, i.e., its bu�er consumption,
will increase approximately proportionally to the delay it experiences along its path. Fig. 3.22 shows

108 Chapter 3. Optimization of the Path Selection Strategy

the two options for routing the new �ow. The width of the arrows represent the bu�er consumption
of the �ow. While routing, Dijkstra will save the path A-C, with a hop count of 1, as the best path
towards C. However, because the queuing delay experienced at A-C is 5, the burstiness of the �ow
greatly increased and it cannot be accepted at link C-E. As a result, Dijkstra would either �nd no
solution (thereby losing completeness) or �nd A-C-D-F-E, with a hop count of 4, if the latter has
enough bu�er space available. However, A-B-C-E, with a hop count of 3, has a low delay, thereby
only slightly increasing the burstiness of the �ow and hence allowing it to use C-E. In this case,
Dijkstra is hence sub-optimal. This is again due to the fact that the OSP is not satis�ed.

Let us further consider the SFC routing example developed above (illustrated in Fig. 3.23) and the
problem of routing a �ow on the least-hop path (M0 metric) from A to G (Fig. 3.23) visiting the two
VNFs E and F in the speci�ed order. The �ow consumes 700 Mbps and each link has 1 Gbps available
bandwidth. Hence, the �ow can only visit each link once. A least-hop algorithm would �rst reach
the �rst VNF, i.e., E, through the least-hop path, i.e., A-C-E. Then, it would visit the second VNF, i.e.,
C, through the least-hop path from E, i.e., E-C. Finally, it would try to reach the destination with the
least-hop path from C, i.e., C-E-G. However, this would imply visiting a second time C-E, which is
not allowed. If the algorithm does not notice that the access to C-E is refused (e.g., if it cached the
result of the access control when it �rst traversed the link), it will return an invalid path and hence
be incomplete. If the algorithm notices that the access to C-E is refused, it would follow the second
least-hop path, i.e., C-B-D-F-E, thereby �nding A-C-E-C-B-D-F-E, with a hop count of 7, as �nal
solution. However, A-B-D-E-C-E-G is a valid path with a hop count of 6. Hence, the algorithm loses
its optimality. This is why LARAC-SN and MITH can lose their optimality if a local constraint metric
is involved (see Sec. 3.5.3.4).

As a result, when an M∞metric is used as a local constraint metric, SoA algorithms based on the
OSP lose both their completeness and optimality properties (Tab. 3.4).

Impact as global optimization or constraint metric. As an M1 metric is also an M∞ metric,
it can easily be shown that the impact as global optimization and constraint metric is the same for
both M1 and M∞ metrics (Tab. 3.4).

3.6.2.4 M=: Values Depending on the = Previous Edges

As a generalization, we further introduce the class of M= metrics. M= metrics correspond to metrics
whose value at a given edge depend on the = previous edges used to reach the current edge. Obvi-
ously, for the same reasons as for M∞metrics, the impact of SoA algorithms based on the OSP is the
same as for M1 metrics. This is shown in Tab. 3.4.

3.6.3 Solutions for the M= Taxonomy

In this section, we present three opportunities (Sec. 3.6.3.1, 3.6.3.2 and 3.6.3.3) to optimally and
completely solve problems with M= metrics, = > 0.

3.6. Handling the Optimality/Completeness Loss due to DetServ 109

3.6.3.1 Existing Solution: A*Prune

A*Prune [LR01] is a complete and optimal SoA algorithm able to solve the SP and MCSP problems.
Although similar to Dijkstra, A*Prune does not rely on the OSP but is only faster when it is satis�ed.
Hence, it keeps its optimality and completeness properties for both M= and M∞metrics. The reason
for this is that it does not keep track of only one best path to reach each node. Instead, all feasible
paths are kept in memory and the best ones are extended �rst. Path extension is stopped only once
the next path to extend has an optimization metric value higher than the current best path for the
destination.

In the example of Fig. 3.21, as Dijkstra, A*Prune will �rst �nd the path A-B-C-E with a total
metric value of 7. However, the next path to extend, namely A-C, has a total metric value of 4, which
is lower than the current best path to the destination. Hence, A*Prune will further extend A-C and
thereby �nd A-C-E, which is optimal.

Unfortunately, as already observed in Sec. 3.3.2, this optimality for any type of M= and M∞metric
comes at the price of a poor scalability behavior. This will be further shown in our evaluations in
Sec. 3.6.4.

3.6.3.2 New Solution: Edge-based Dijkstra (EBD)

In the particular case of the SP problem with an M1 optimization metric, Dijkstra can be slightly
adapted. Instead of keeping track of the best path towards each node, our proposed adaptation keeps
track of the best path towards each edge. We refer to this algorithm as edge-based Dijkstra (EBD).

In the example of Fig. 3.21, instead of keeping track of the best path towards node C, EBD will
keep track of the best path towards A-C (which is A-C itself) and towards B-C (which is A-B-C). Then,
when extending these paths to obtain the best path towards C-E, both paths will be considered and
the path A-C-E, missed by the normal Dijkstra, will be found. Once EBD stops, the �nal solution
then corresponds to the best path among those stored at all the ingress links to the destination node.

Because the amount of edges in a graph is usually higher than the amount of nodes, EBD keeps
track and extends more paths than the traditional Dijkstra and the usage of EBD for M1 metrics
hence results in a runtime increase compared to a normal Dijkstra run. This will be con�rmed in
Sec. 3.6.4.3.

3.6.3.3 New Solution: Graph Transformation Algorithm (GTA)

In this section, we propose a graph transformation algorithm (GTA) which transforms a graph with
M= metrics to an equivalent graph with M0 metrics such that any routing problem with M= metrics
can be solved with a SoA algorithm for the given routing problem with traditional M0 metrics.

Reasoning. For M1 metrics, edges can have as many di�erent metric values as ingress links (plus
one for the “null” ingress link when the �ow starts at the given edge). This is shown in Fig. 3.21.
The idea of GTA is to duplicate links as many times as they have di�erent metric values such that
each new edge has a static M0 metric value. Let us refer to the original graph with M= metrics as
the M= graph and to the transformed graph with only M0 metrics as the M0 graph. Each edge in the

110 Chapter 3. Optimization of the Path Selection Strategy

"1 graph

"0 graph
Sinks

Figure 3.24: Illustration of the GTA procedure for M1 metrics. From the original graph with M1 metrics (the
M1 graph), the algorithm creates a new graph (the M0 graph) with M0 metrics on which any SoA algorithm
can run to solve the original M1 problem.

M0 graph then corresponds to (i) an edge of the original M= graph, and (ii) a set of = previous edges.
In this way, edges in the M0 graph have only one metric value (i.e., the metric is now an M0 metric)
and SoA algorithms based on the OSP can operate properly.

Algorithm description for M1 metrics. The GTA algorithm for M1 metrics is illustrated in
Fig. 3.24. The blue circle nodes correspond to the original M1 graph. From this graph, each node is
copied and then duplicated as many times as it has ingress links. Each M0 node (green square nodes
in Fig. 3.24) then corresponds to an original M1 node and to one ingress link of this node (including
the “null” ingress link). Then, M0 edges are obtained by creating edges towards the created M0 nodes
from all the M0 nodes corresponding to the source of the original edge to which the destination M0
node corresponds. Each M0 edge then corresponds to (i) an edge of the M1 graph, and (ii) an ingress
link to this edge. Hence, each M0 edge can be assigned a static M0 metric value corresponding to
the metric value of the original edge when the given ingress edge is used to reach it. We refer to this
procedure as GTA().

Request and result transformation. In order for the original algorithm to run on the trans-
formed graph, the original request has to be mapped. First, the source nodes now correspond to
their M0 equivalent which have no ingress link. Secondly, the destination nodes have now several
M0 equivalents. To overcome this problem, so-called sink nodes have to be created. All the M0 nodes
corresponding to the same original M1 node have to be connected to the same sink node with edges
whose metric value does not change the metric value of the overall solution (that is, e.g., 0 for an
additive metric). The destination(s) of the original request then become(s) the corresponding sink
node(s). We refer to the procedure of creating the sink nodes as AddSinks(). Once the algorithm
found a solution on the M0 graph, the solution on the M1 graph can be recovered by taking all the
M1 equivalents of the elements of the M0 solution returned by the algorithm.

Algorithm description for M= metrics. In order to transform a graph with M= metrics, the
GTA() procedure simply has to be applied = times and followed by the addition of sink nodes
(Fig. 3.25). Indeed, as GTA() duplicates edges for each ingress link, applying it = times will duplicate
edges for each possible set of = ingress links and hence lead to an M0 graph.

3.6. Handling the Optimality/Completeness Loss due to DetServ 111

M=

M(= − 1)
M(= − 2)

... ...
M0

Sinks

GTA(M=)

GTA(M(= − 1))

AddSinks(M0)

Figure 3.25: Illustration of the GTA procedure for M= metrics. The procedure described in Fig. 3.24 simply
has to be applied = times, provided that the sinks are only added at the end.

100 101 102 103 104

0

0.2

0.4

0.6

0.8

1 "0 "1 "2 "3 "4

ratio [x]

EC
D

F(
x)

nodes
edges

Figure 3.26: Evolution of the number of nodes and edges for the Internet Topology Zoo [Kni+11] topologies
for di�erent amount of executions of GTA (including the sinks creation).

Cost of the transformation. The size of the M0 graph increases with=. Fig. 3.26 shows the evolu-
tion of the amount of nodes and edges for all the topologies from the Internet Topology Zoo [Kni+11].
We can observe that the amount of nodes and edges increases by up to one order of magnitude for
each application of the GTA() procedure. That is, while GTA allows to optimally solve any problem
with M= metrics using algorithms for M0 metrics, this comes at the price of a huge increase in the
graph size. An insight on the runtime impact will be given in Sec. 3.6.4.

3.6.4 Evaluation

The goal of the evaluation is to observe the impact of M1 and M∞ metrics on the optimality and
completeness of SoA algorithms based on the OSP and to show that our proposed solutions are
correct. In particular, we show the in�uence of M1 and M∞ metrics on one SP (A*) and one CSP
(LARAC) algorithm both with and without GTA. Algorithms are compared to A*Prune, which pro-
vides a benchmark for both completeness and optimality.

3.6.4.1 Setup

Topologies. We use the topologies from the Internet Topology Zoo [Kni+11] which are connected
and have more than 10 nodes. Further, because A*Prune poorly scales both in terms of memory
consumption and runtime (see Sec. 3.3.2), we �lter out topologies with more than 100 nodes or 200
edges.

112 Chapter 3. Optimization of the Path Selection Strategy

10−6 10−5 10−4 10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

runtime [x in s]

EC
D

F(
x)

0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

optimality ratio [x]

A* A*-GTA A*Prune

"0 "1 "∞

Figure 3.27: Runtime and optimality ratio of A*, A* with one GTA transformation (A*-GTA) and A*Prune for
the SP problem with M0, M1 and M∞ optimization metrics.

Requests. For a given topology, source and destination nodes for requests are randomly selected
from the whole set of nodes of the topology.

Metrics. We de�ne one M0, one M1 and one M∞ metric. The metric values are random values
between 1 and 2. For the M0 metric, the values are de�ned for each edge. For the M1 metric, the
values are de�ned for each combination of edge and previous edge. For the M∞ metric, the values
are de�ned for each path.

3.6.4.2 Measurement Environment

In both SP and CSP scenarios, each algorithm is ran 20,000 times for each topology and metric type.
Prior to these 20,000 runs, 1.000 warm-up runs are used to prevent the Java Hotspot optimizer from
in�uencing the runtime measurements. The evaluation ran on an Intel Core i7-4790 CPU @ 3.60GHz.

3.6.4.3 Shortest Path: Optimality In�uence

Setup. We observe the runtime and optimality of A* (described in Sec. 3.2 and A* with GTA applied
once (referred to as A*-GTA) for M0, M1 and M∞metrics using A*Prune as a benchmark. The guess
values for both A*Prune and A* correspond to the hop count.

Runtime results. The left plot of Fig. 3.27 shows the ECDF of the observed running times during
the simulation7. We can observe that the GTA transformation for A* leads to an increase in runtime
of around half an order of magnitude. Even though big topologies were not used, the �gure also
illustrates the poor scalability of A*Prune. Indeed, while A*Prune is sometimes signi�cantly faster
than A*-GTA (around 40% of the cases for the M0 metric, around 30% of the cases for the M1 metric
and around 20% of the cases for the M∞metric) its runtime becomes very high for bigger topologies.

7Note that, for GTA, the graph creation is not taken into account. Indeed, it can be done once for all the requests.

3.6. Handling the Optimality/Completeness Loss due to DetServ 113

0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.2

0.4

0.6

0.8

1

optimality ratio [x]
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0

0.2

0.4

0.6

0.8

1

completeness ratio [x]

LARAC LARAC-GTA A*Prune

"0 "1 "∞

Figure 3.28: Optimality and completeness ratios of LARAC, LARAC with one GTA transformation (LARAC-
GTA) and A*Prune for the CSP problem with M0, M1 and M∞ global constraint metrics and an M0 optimization
metric.

Note that the runtime increase for each algorithm for the M1 and M∞ metrics is mostly due to the
increased complexity of the metric values computation.

Optimality ratio results. The right plot of Fig. 3.27 shows the ECDF of the optimality ratio ob-
served for each algorithm and metric types. The optimality ratio is de�ned per topology as the
percentage of requests that the algorithm was able to solve optimally. As expected, both A* and A*-
GTA are always optimal for M0 metrics and show a sub-optimal behavior for M∞metrics. However,
while A* presents a sub-optimal behavior for M1 metrics, A*-GTA does not. The sub-optimality of A*
for M1 metrics corresponds to the behavior described in Sec. 3.6.1 and Fig. 3.21. This con�rms that
GTA allows SoA algorithms based on the OSP to keep their original properties for M1 metrics. For
M∞ metrics, though GTA does not guarantee optimality for A*, we can observe that it improves its
optimality ratio. All algorithms were complete, con�rming that an M1 or M∞ global optimization
metric does not impact the completeness of algorithms (see Tab. 3.4).

Conclusions. M1 and M∞ global optimization metrics indeed lead to the sub-optimality of A*.
While A*Prune provides optimality for any type of metric, it presents a problematic scalability be-
havior. For its part, GTA allows A* to optimally solve problems for M1 metrics and improves its
optimality ratio for M∞ metric, at the price of a reasonable increased runtime. Note that EBD led to
an identical optimality behavior and a similar runtime behavior as A*-GTA.

3.6.4.4 Constrained Shortest Path: Completeness In�uence

Setup. Because CBF, the optimal CSP algorithm, presents an exponential runtime behav-
ior [Wid94], we use LARAC as sub-optimal but fast and complete CSP algorithm (see Tab. 3.2).
We then observe the optimality and completeness of LARAC and LARAC with GTA applied once
(referred to as LARAC-GTA) for M0, M1 and M∞ metrics, using A*Prune as benchmark. Note

114 Chapter 3. Optimization of the Path Selection Strategy

that, because of the poor scalability of A*Prune and the higher runtime required by a CSP search
compared to an SP search, we further reduced the topologies to those with less than 50 nodes and
100 edges.

Metrics and constraint bounds. For the optimization metric, we use an M0 metric. The con-
straint metric upper bound is randomly distributed among all the possible values (between the min-
imum and the maximum values).

Runtime results. Because of space constraints and because the runtime impact of GTA appeared
to be the same as for the SP problem, we omit the runtime values for the CSP problem.

Optimality ratio results. The left plot of Fig. 3.28 shows the ECDF of the optimality observed
for each algorithm. LARAC and LARAC-GTA present exactly the same behavior for the M0 metric
(the yellow curve being hidden in Fig. 3.28). As expected, LARAC is not optimal for the M0 metric.
For LARAC, the M1 metric reduces its optimality ratio. However, the M∞ metric does not appear to
further reduce this optimality ratio. For LARAC-GTA, the M1 metric does not have a big in�uence
on its optimality. However, the M∞ metric appears to further reduce this optimality ratio. It is
interesting to notice that this behavior is di�erent for LARAC and LARAC-GTA.

Completeness ratio results. The right plot of Fig. 3.28 shows the ECDF of the completeness ratio
observed for each algorithm. The completeness ratio is de�ned per topology as the percentage
of requests for which the algorithm was able to �nd a solution. The same conclusions as for the
optimality ratio of the SP simulations can be drawn. Indeed, GTA allows LARAC to be complete for
the M1 metric and improves on its completeness ratio for the M∞ metric.

Conclusions. The M1 and M∞ global constraint metrics indeed lead to the incompleteness of
LARAC. GTA allows LARAC to completely solve problems for the M1 metric and improves its com-
pleteness ratio for the M∞ metric.

3.6.5 Applicability of the Solutions

A*Prune and EBD can only be used for the SP/MCSP and SP problems, respectively. On the other
hand, GTA can be applied to any routing algorithm. That is, GTA can be used for any routing problem
(unicast, multicast, multipath, etc.) and amount of optimization and constraint metrics as long as a
SoA algorithm for the corresponding problem with M0 metrics exists. However, we identify that
multipath routing requires small adaptations. Indeed, after a GTA transformation, disjointness on
the transformed graph does not guarantee disjointness of the corresponding elements on the original
graph and multipath routing algorithms might hence return disjoint paths on the transformed graph
which are not disjoint on the original graph. To circumvent this problem, the GTA transformation
can be adapted by adding an intermediate sink edge to which all the transformed edges corresponding
to an identical original edge connect. In this way, if the algorithm �nds two paths that use di�erent
edges corresponding to the same original edge, it will have to use the same sink edge and will hence

3.7. Summary 115

conclude that these paths are not disjoint. This additional procedure however again comes at the
price of an increased amount of nodes and edges in the transformed graph.

3.6.6 Summary

SoA routing algorithms are optimal and complete when using metrics that satisfy the OSP. However,
we have shown that relevant QoS metrics such as delay or bu�er consumption do not satisfy this
property. Hence, the algorithms lose their optimality and/or completeness. This causes the DetServ
architecture to violate latency guarantees as well as to ine�ciently use network resources.

In order to still guarantee optimal and complete results, we �rst proposed a new M= metric
taxonomy for classifying routing metrics based on the amount= of previously traversed edges needed
to compute their value at a given edge. Based on this taxonomy, we presented solutions guaranteeing
optimality and completeness. First, we presented A*Prune [LR01], a SoA algorithm that can deal with
any type of M= and M∞metric for solving the SP and MCSP problems. Second, we proposed EBD, a
newly proposed modi�cation of Dijkstra for solving SP problems with M1 metrics. Finally, because
A*Prune and EBD can only be used for particular problems and metric types, we proposed a GTA
that allows any SoA algorithm for any routing problem (e.g., unicast, multicast, multi-constrained,
etc.) to solve problems with M= metrics. While A*Prune is the only opportunity for optimally solving
a problem with M∞ metric, we have shown that it presents a poor scalability behavior. Besides, on
the example of the A* and LARAC SoA algorithms, we have shown that GTA indeed recovers their
properties for M= metrics, at the cost of an increased running time.

3.7 Summary

This chapter provided an in-depth analysis of the routing procedure of a centralized architecture for
the provisioning of real-time latency guarantees. Four main contributions were made. First, we com-
prehensively evaluated available algorithms and identi�ed a small subset of algorithms as the best
performing ones in most cases. The identi�ed subset of algorithms shares a common particularity:
they all rely on subsequent runs of a SP subroutine. Based on this observation, our second contribu-
tion consists in the design of an optimization of these subsequent runs by sharing information from
one run to the next one. We showed that algorithms can bene�t from this change without impacting
the result of the routing procedure. Our third contribution extends the investigated algorithms to
visit intermediate nodes while still providing latency guarantees. This routing problem is of particu-
lar interest in SFC environments. Our fourth and �nal contribution of this chapter unveiled a major
impact the DetServ architecture and model has on the routing procedure: because link metrics pro-
vided by the TBM do not satisfy the OSP, SoA algorithms lose their completeness and/or optimality
property. We investigated in which exact cases this happens and proposed solutions for recovering
these two critical features of routing algorithms.

We have now a clear logic for all the components of the architecture de�ned in chapter 2. In
the next two chapters, we �ll the gap from theory to practice by deploying the DetServ architecture
and logic on real hardware. We will see that, both for data center (chapter 4) and small networks
(chapter 5), existing hardware requires the logic to be adapted. In particular, small networks require
a redesign of the network models to accommodate the lower processing speed and throughput of

116 Chapter 3. Optimization of the Path Selection Strategy

forwarding devices and data center networks require a rethinking of the architecture for the con�g-
uration of the forwarding behavior of switches.

Chapter 4

Measurements and Testbed

Implementation for Data Center

Networks

Datacenter networks have become a critical infrastructure of our digital society. With the popularity
of data-centric applications (e.g., related to business, health, entertainment and social networking)
and machine learning, the importance of realizing communication networks that meet stringent de-
pendability requirements will likely increase further in the next years. Already today, the usefulness
of many distributed cloud applications, such as web search and online retail [Jal+13]; [DeC+07], crit-
ically depends on the performance of the underlying network [MP12], i.e., these applications are
sensitive to both packet delay and available network bandwidth [Jan+15].

However, providing predictable network latency and throughput to cloud applications is chal-
lenging, especially in multi-tenant datacenters and under dynamic demands that come with uncer-
tainty. In many scenarios, the predictability objective even seems to con�ict with e�ciency require-
ments, as the latter forbids conservative resource provisioning.

Previous chapters have described an architecture and optimization strategies for the provision-
ing of predictable latency in programmable networks. However, while these solutions are promising,
the predictability of a network, whether software-de�ned or not, is at most as good as the pre-
dictability of its data plane. In fact, even seemingly simple tasks, such as forwarding, involve many
complex components, such as link bu�ers, hardware memory units, switch CPUs, queuing disci-
plines, etc. A deep understanding of the behavior of all these components is necessary for guaran-
teeing predictable network operations. Existing mathematical models for per-packet latency guar-
antees [Jan+15]; [Gro+15]; [KCL14] and the developments of previous chapters rely on an expected
standard behavior, i.e., model, of forwarding hardware, the correctness of which cannot be veri�ed
by packet-level simulations or E2E measurements.

The �rst contribution of this chapter is motivated by the following fact: the predictability of
communication networks, both in terms of correctness and performance, critically depends on the
underlying hardware, and especially the network devices used to process and forward packets. In
order to shed light on the predictability of these network devices, we present an extensive measure-
ment study of the behavior of SDN switches. In particular, we systematically benchmark seven SoA

117

118 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

SDN switches from four vendors in order to analyze the predictability of their behavior with respect
to important metrics such as processing time and throughput, as well as with respect to the mecha-
nisms used to ensure QoS (such as PQ). We also examine management aspects, e.g., related to �ow
tables and queues (packet bu�ers). Our �ndings are rather negative: none of the examined switches
can directly be used with the aforementioned models in order to provide predictable latency. We
�nd that not all switches support line rate forwarding as promised, we identify aging e�ects (some
switches su�er from reduced table size over time), we observe that some switches blindly drop for-
warding rules, that PQ comes with a processing time overhead neglected so far, or that packet bu�ers
are not isolated per port or per queue, as assumed by traditional mathematical models (e.g., DNC)
for bu�er dimensioning. We also contribute a new measurement methodology for determining the
throughput of programmable devices.

Based on our insights, the second part of this chapter investigates solutions to overcome the ob-
served predictability limitations of existing hardware. The second contribution of this chapter is the
design, implementation, and evaluation of Chameleon, a cloud network providing both predictable
latency and high network utilization, typically two con�icting goals, especially in multi-tenant dat-
acenters. The approach is based on end-host networking and source routing to circumvent the un-
predictability issues revealed in the �rst part of the chapter. Chameleon can be deployed at the edge
only; it does not require any modi�cations of network devices. High utilization is reached by further
leveraging source routing to easily recon�gure �ow priorities and path at runtime. We implement
and extensively evaluate Chameleon in simulations and a real testbed. Compared to the SoA, we �nd
that Chameleon can admit and embed signi�cantly, i.e., up to 7 times more �ows, improving network
utilization while meeting strict latency guarantees.

Content and outline of this chapter. Sec. 4.1, based on content from [Van+19a], presents an em-
pirical study of the predictability of SDN switches and discusses the impact on existing predictable
latency solutions. Sec. 4.2, based on content from [Van+20], then describes the design, implementa-
tion, and evaluation of a complete proof-of-concept implementation of a data center network provid-
ing predictable latency to applications and overcoming the revealed unpredictability issues. Finally,
Sec. 4.3 concludes and summarizes the contributions of the chapter.

4.1 Predictability Study of SDN Switches

This section presents an empirical study of the predictability of SDN switches. Our extensive bench-
marking of seven hardware OF switches from four di�erent manufacturers raises several concerns
regarding the dependability of these switches. We uncover several incorrect and unpredictable be-
haviors and performance issues. In particular, we identify unpredictable behaviors related to the
management of �ows and bu�ers, and observe that existing QoS mechanisms, such as PQ, introduce
unexpected overheads. The latter, in turn, can lead to violations of latency guarantees.

As a contribution to the research community and to ensure reproducibility, all the data sets,
source code, and con�guration �les associated to the results presented in this section are publicly
available online [Van19b].

4.1. Predictability Study of SDN Switches 119

Switch PT 4.1.2.1 PQ 4.1.2.2 TP 4.1.2.3 FM 4.1.3.1 BM 4.1.3.2

HP E3800 + - - -
HP 2920 + - - -

Dell S3048-ON + ∼ + - -
Dell S4048-ON + ∼ + - -
Pica8 P3290 + ∼ + - -
Pica8 P3297 + ∼ + - -
NEC PF5240 + ∼ + - ∼

Table 4.1: Five predictability dimensions (here: regarding latency) of forwarding devices and whether they
are veri�ed for the seven switches. Green (+) means a switch behaves as expected/predicted, orange (∼) means
a switch partially behaves as expected, red (-) means a switch does not behave as expected and gray means
that it is not applicable because of another unmet requirement. None of the switches are predictable along all
the �ve selected metrics.

This section is organized as follows. We present the related work in Sec. 4.1.1. The performance
and management predictability measurements and results are presented in Sec. 4.1.2 and Sec. 4.1.3,
respectively. We give some insights and discussions over these results in Sec. 4.1.4.

4.1.1 Related Work

Our work builds on a rich literature on switch performance measurements.
From the management and control plane point of view, studies in the recent years [KPK14];

[KPK15]; [Kuź+18]; [He+15a]; [BR13]; [Laz+14]; [HYS13]; [Rot+12]; [He+15b] have already shown
that the states of control and data plane of certain switches can diverge. For instance, inserting a
rule is not atomic, i.e., it might still take time for a rule to be inserted in hardware, even after having
received a con�rmation of the insertion from the switch. Other studies have shown that the �ow table
capacity of switches varies drastically among vendors [Bau+18]. Although we also cover similar �ow
management aspects, we provide new insights with a focus on predictability. For instance we show
that besides not being atomic, rule insertion can even be ignored by some switches, thereby leaving
the data plane con�guration permanently inconsistent with the control plane. We further show
that certain switches exhibit aging e�ects reducing their table size over time and thereby making it
unpredictable. Similarly, while some studies have measured switch bu�er sizes [Bau+18] or revealed
the importance of bu�er management strategies for latency-sensitive applications, our work sheds
light on how switches actually manage their bu�er: most architectures are based on a shared bu�er
dynamically allocated to queues or ports.

Numerous works have also provided insights into the data plane performance of programmable
switches [HYS13]; [PMK13]; [Bia+10]; [Jar+11]; [Nao+08]; [Emm+14]; [GYG13]; [Lin+18]; [Bau+18];
[Van+19b]. For instance, [HYS13]; [Bau+18]; [Lin+18] revealed important latency, throughput and
bu�er size metrics in particular scenarios. Our work focuses more on predictability by investigat-
ing the same metrics but evaluating them in variable scenarios. Loko [Van+19b] also focuses on
predictability but derives a completely new model for a low-cost switch for which the SoA models
investigated here are not valid [Jan+15]; [Gro+15]; [KCL14]; [GVK17]. Software implementations

120 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

Switch ASIC CPU Firmware (release date) Ports

HP E3800 HPE ProVision Freescale P2020 KA.16.04.0016 (2018-06-22) 48×1G-RJ45 + 4×10G-SFP+
HP 2920 HPE ProVision Tri Core ARM1176 WB.16.08.0001 (2018-11-28) 24×1G-RJ45

Dell S3048-ON Broadcom StrataXGS undisclosed DellOS 9.14 (2018-07-13) 48×1G-RJ45 + 4×10G-SFP+
Dell S4048-ON undisclosed undisclosed DellOS 9.14 (2018-07-13) 48×10G-SFP+ + 6×40G-QSFP+
Pica8 P3290 Broadcom Firebolt 3 Freescale MPC8541CDS PicOS 2.10.2 (2018-01-19) 48×1G-RJ45 + 4×10G-SFP+
Pica8 P3297 Broadcom Triumph 2 Freescale P2020 PicOS 2.11.19 (2019-02-27) 48×1G-RJ45 + 4×10G-SFP+
NEC PF5240 undisclosed undisclosed OS-F3PA 6.0.0.0 (2014-06) 48×1G-RJ45 + 4×10G-SFP+

Table 4.2: Speci�cations of the investigated switches: names, application-speci�c integrated circuit (ASIC),
CPU, �rmware and ports.

have also been investigated [DDC18]; [MP18]; [Laz+14]; [Rah+16]; [Gal+15]. However, as suggested
by these works, our measurements con�rm that OS-based software processing in the CPU is not a
viable solution for predictable performance.

Regarding PQ, Durner et al. [DBK15] conducted an interesting measurement study on its impact
on network performance, however, with a focus on �ow-level aspects while our analysis focuses on
per-packet delays for assessing the predictability of priority schedulers with respect to the latency of
individual data plane packets. Some of our presented results also show that previous studies [Bau+18]
contain even incorrect data, mostly due to device miscon�guration.

4.1.2 Measurement Study: Performance Predictability

This section (Sec. 4.1.2) and the next section (Sec. 4.1.3) report on our predictability analysis of
di�erent switches. Whereas this section focuses on forwarding performance, the correctness of
assumptions with respect to management tasks is analyzed in Sec. 4.1.3.

Tab. 4.2 lists the seven investigated switches, representing a wide range of devices: 4 di�er-
ent vendors, di�erent switches per vendors; both SDN-tailored (e.g., Pica8) and general (e.g., HP)
switches; both 1G and 10G devices and both high-end (e.g., Dell) and lower-end switches (e.g., NEC
and Pica8). The challenge in benchmarking switches is that information about their internal func-
tioning, i.e., what exact components are traversed by packets when they are forwarded, is not publicly
available. Manufacturers are reluctant to open their architecture, as illustrated by the fact that we
sometimes do not even know the ASIC or CPU model of a switch (Tab. 4.2). Besides, when manufac-
turers actually describe internals, we will see that such documentation can be erroneous or outdated
(Sec. 4.1.3.2). This suggests that switches have to be considered blackboxes for our study.

The results of the empirical predictability study of this section are summarized in Tab. 4.1, struc-
tured into the di�erent requirements and assumptions made: whereas some switches like the NEC
support more assumptions, none of the investigated switches exhibit predictable behavior along all the
investigated dimensions. The requirements, discussed and justi�ed in separate subsections within
this (Sec. 4.1.2) and the next section (Sec. 4.1.3), are selected based on the assumptions made by SoA
E2E strict latency models regarding the behavior of forwarding devices [Jan+15]; [Gro+15]; [KCL14];
[GVK17].

4.1. Predictability Study of SDN Switches 121

DAG
2 31 4

Switch
2M 1

Ryu MoonGen
2 1

Tap Tap

(a) Processing time measurement setup.

→ →

→ →

MG1 DAG Switch DAG MG2

"DP ?p
CP+SFD

Cp

(b) Processing time sequence diagram.

Figure 4.1: (a) Switch processing time measurement setup and (b) corresponding sequence diagram.

Throughout the section, we use OF v1.0 for con�guring the switches because it supports all the
features required to deploy the SoA latency models [Jan+15]; [Gro+15]; [KCL14]; [GVK17], including
those described in chapter 2.

4.1.2.1 PT — Processing Time

End-to-end delay is the sum of propagation, transmission, processing, and queuing delay. The propa-
gation and transmission delays are physical values directly computed from the physical link proper-
ties. The processing and queuing delays are the critical components: they are determined by switch-
internal functions. While queuing delay is computed using mathematical models (see Sec. 4.1.2.2),
SoA approaches assume that the processing time of the switches is deterministically bounded by a
constant value [Gro+15]; [GVK17].

We evaluate the processing time of our switches in di�erent settings to assess whether it is indeed
bounded by a predictable value for di�erent modes of operation. We vary the matching and actions
properties of rules, their number, their priority, the matching rule, the rate of (data plane) packets and
the packet size. These considered dimensions and their respective values are shown in Tab. 4.3. For
the matching values, combination of �elds are also considered: �ve-tuple includes layer-3 (L3)/L4
source/destination and L3 protocol; all includes layer-2 (L2)/L3/L4 source/destination, L3 type of
service (ToS) and L3 protocol. For each action type, an additional output action is included. The
all action consists of output, set-dl-src, push-vlan, set-vlan-id, set-vlan-pcp, and set-nw-tos (as shown
later, L3/L4 modi�cations are never realized in hardware).

Measurement setup. A Ryu-based [Ryu17] controller generates a �ow table according to the se-
lected dimension values (Fig. 4.1). The matching �ow entry is con�gured to be forwarded to port 2
of the switch. We use MoonGen [Emm+15] to generate packets with the appropriate header �elds,
packet size and rate. Packets arriving (port 1) and leaving (port 2) the switch are mirrored using net-
work taps to a nanosecond-precise Endace data acquisition and generation (DAG) 7.5G4 measure-
ment card. The card timestamps packets upon arrival of the start frame delimiter (SFD) [Don02].
The processing time ?p of a packet ? can be obtained by

?p = "DP − C? − CP+SFD, (4.1)

where "DP is the measured latency, C? is the computed packet transmission time, and CP+SFD is the
computed transmission time of the Ethernet preamble and SFD (8 bytes) (Fig. 4.1b).

122 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

(a) Matching. (b) Actions.

(c) Number of rules.

(d) Priorities and matching rule.

(e) Packet size [bytes]. (f) Rate [Mbps].

Figure 4.2: Impact of the di�erent considered dimensions on the hardware processing time of the di�erent
switches. The number of rules, their priority, the matching rule and its matching structure do not impact the
processing time. The packet size is the main in�uential factor, while rate and action type impact only a subset of
the investigated switches. Overall, the processing time of switches is predictable and can be deterministically
bounded by a constant.

Results. While investigating a speci�c dimension, the other dimensions are kept constant with
the default values in Tab. 4.3. The boxplots in Fig. 4.2 show the measured processing times ?p for
100,000 packets per scenario. Note that, because of its lower processing time, a di�erent scale is used
for the Dell S4048-ON switch. We �rst consider only hardware rules and cover software rules later.

General. Fig. 4.2 shows that switches have similar processing times (around 4 `s), except the Dell
S4048-ON (around 2 `s). Also, for a given case, the variance in processing time exhibited by the
switches is always the same (around 0.2 `s for the Dell S4048-ON and 0.6 `s for the others).

Matching. In Fig. 4.2a, it can be seen that the complexity of the matching structure does not a�ect
the processing time of the switches. The HP 2920 does not support matching in hardware for all and

4.1. Predictability Study of SDN Switches 123

Dimension Values

num. of entries 1, 100, 200, 300, 400, 500
match type port, dl-dst, dl-vlan, dl-vlan-pcp, masked-nw-dst, tp-dst, �ve-tuple, all

action output, enqueue, set-dl-src, set-vlan-id, set-vlan-pcp, strip-vlan, push-vlan, set-nw-src, set-nw-tos, set-tp-src, all
matching rule �rst, last

priorities increasing, decreasing, same

packet size [bytes] 64, 306, 548, 790, 1032, 1274, 1516
rate [Mbps] 5, 100, 500, 750, 900, 950, 1000

Table 4.3: Dimensions (and their values) considered for the processing time measurements. Bold values
correspond to the default values.

dl-dst. Also, the HP E3800 does not support dl-dst in hardware, and interestingly, does not support
dl-vlan-pcp and dl-vlan matchings at all1.

Actions. Similar to the matching, the action types do not a�ect the processing time of the switches
(see Fig. 4.2b). This behavior remains true, even when packet rewriting and checksum recomputa-
tions are involved. Again, we omit the unsupported actions (i.e., strip-vlan, set-vlan-pcp and set-
vlan-id for the HP E3800 and set-nw-src and set-tp-src for all switches). For the push-vlan action
case, though the processing time minimum, average and median values are the same as for the other
actions, we observe that its maximum processing time is slightly higher. Similarly, this behavior is
observed for the all action (as it includes push-vlan).

Number, priority, and order of rules. Fig. 4.2c and 4.2d show that the number, priority and order
of rules do not impact the switch processing time.

Packet size. As can be seen in Fig. 4.2e, the Pica8 P3290, Pica8 P3297, Dell S3048-ON, and NEC
PF5240 switches show almost the same behavior: the switch processing time increases with the
packet size up to a certain threshold (e.g., 790 bytes for the Dell S3048-ON), thereafter, it starts to
decrease (e.g., from 1032–1516 for the Dell S3048-ON). This is surprising when compared to existing
literature results, that additionally consider transmission latency [Bau+18] when measuring process-
ing time. Due to missing insights on the exact details of the switch architecture and its ASIC, we
can only speculate on the reasons which looked most reasonable to us. As these switches mainly
use Broadcom chips, we guess that this is indeed an ASIC-dependent behavior2. Such a behavior
can be due to the tra�c manager implementation, since this ASIC module is usually responsible for
bu�ering packets before sending them. Speci�cally, to achieve high utilization and e�ciency, the
tra�c manager typically waits until a certain number of cells of data are �lled to continue process-
ing. While this can present some explanations for the increasing trend, the decreasing trend remains
unclear. The two HP switches show a mostly (actually piecewise) linear behavior. We suspect this is
because of the speci�c way bytes are bu�ered in the HPE ASIC. In contrast, the processing time of
the Dell S4048-ON is mostly constant except for smaller packets, where it is lower.

1We note that the HP E3800 documentation states that dl-vlan and dl-vlan-pcp matchings are supported. However, with a
con�guration identical to the one used for HP 2920, the switch never successfully matched on these �elds. We tried to contact
the HP support but unfortunately did not receive any reply. Thus, we consider these �elds as not supported.

2We have tried to contact Broadcom to obtain explanations on this behavior, however without any success.

124 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

103 104 105

delay [µs]

0.0 0.0

0.5 0.5

1.0 1.0

EC
D

F

HP-2920 all
HP-2920 dl-dst
HP-2920 64
HP-2920 set-nw-src
HP-2920 set-tp-src

HP-E3800 dl-dst
HP-E3800 64
HP-E3800 set-nw-src
HP-E3800 set-tp-src

(a) HP.

103

delay [µs]

0.0 0.0

0.5 0.5

1.0 1.0

EC
D

F

PICA8-P3297 set-nw-src
PICA8-P3297 set-tp-src

PICA8-P3290 set-nw-src
PICA8-P3290 set-tp-src

(b) Pica8.

103 104

delay [µs]

0.0 0.0

0.5 0.5

1.0 1.0

EC
D

F

NEC-PF5240 set-nw-src NEC-PF5240 set-tp-src

(c) NEC.

Figure 4.3: Processing time of software rules for di�erent vendors. Note that Dell does not support any
software rules. We observe that software processing is much less predictable than hardware processing.
Software processing is also orders of magnitude slower.

Rate. Fig. 4.2f indicates that the rate also does not in�uence processing time of the switches, except
for very high rates. In these cases, both HP switches see their overall processing time increasing,
while other switches only see their minimum processing time increased.

Software rules. In this part, we present the results of measuring the processing time of software
rules (excluding Dell, because they do not support any software processing capabilities). Because
packet loss is observed for higher rates, we use a rate of 0.1 Mbps for this experiment. We point out
three main observations (Fig. 4.3). First, none of the switches support L3/L4 rewriting in hardware.
The HP switches additionally do not support L2 matching in hardware. More surprisingly, the HP
switches cannot forward 64-byte packets in hardware: even if the rule is stored in hardware and
operates properly for bigger packets, we observed that 64- and 65-byte packets are always processed
in software. Interestingly, this does not happen when the switch runs in legacy mode or with OF
rules matching on the physical input port. We suspect that this is due to the fact that the HP switches
use a di�erent TCAM table for OF processing with complex matching, which might not be able to
process packets of these sizes. Second, software processing time is up to 5 orders of magnitude higher
than in hardware. Third, processing time in software is much less predictable: it varies by nearly
two orders of magnitude compared to the hardware case (see Fig. 4.2). This is due to the fact that the
switch CPU is also performing other interfering tasks (e.g., running its OS and the OF agent).

Outcomes. The processing time of switches mostly depends on packet size. Moreover, the action,
matching, priorities, and the number of rules do not in�uence processing time. The processing time
of switches can be considered predictable and bounded only for hardware rules.

4.1.2.2 PQ — Priority Queuing Overhead

Predictable latency works consider the availability of PQ [Jan+15]; [Gro+15]; [KCL14]; [GVK17].
Queuing delay is then computed using mathematical models, e.g., DNC [LT12]; [VK16].

We explore whether our switches support PQ and if their behavior can be veri�ed by DNC
models. Regarding the �rst question, we found that only the two HP switches do not support PQ in
OF mode (i.e., the enqueue action).

4.1. Predictability Study of SDN Switches 125

DAG
2 31 4

Switch
3 2M 1

Ryu

MoonGen
2 1

Tap TapMoonGen
1

Figure 4.4: Measurement setup for PQ investigation.

Measurement setup. Two MoonGen instances send low and high priority �ows to the switch
through ports 1 and 3, respectively (Fig. 4.4). The �ows are forwarded to port 2. We start a high
priority �ow sending bursts of 100-byte packets. Then, in order to quantify the overhead of PQ, we
subsequently send three low priority �ows with di�erent packet sizes (1000, 500, and 100 bytes) also
at line rate. The switch processing time is then measured using the measurement card and a setup
identical to Sec. 4.1.2.1.

Deterministic network calculus prediction. DNC states that processing of a high priority (H)
packet can be delayed by a lower priority (L) packet by at most the transmission time of the largest
packet in lower priority queues (thereby considering the non-preemptive property of priority sched-
ulers). Therefore, DNC calculates the worst-case delay bound�H experienced by a high priority �ow
as

�H = ?p + Δ;L = ?p + ;L/', (4.2)

where ?p is the pure processing time of packet ? (as measured in Sec. 4.1.2.1), the parameter Δ;L is the
transmission time of the largest packet in lower priority queues, ;L is the size of this packet, and ' is
the link rate [LT12]; [VK16]. In the following, we will show that surprisingly, in practice, processing
time can be higher than this mathematical prediction.

Results. In the worst case, we observe a total delay increase of Δ;L + n (Fig. 4.5). That is, there
is a delay increase of n in addition to the increase predicted by DNC, independent of the size of
the interfering packets. In fact, n is the overhead of the PQ implementation. The reason is that the
switch is not able to determine the next queue without spending a minor processing overhead. We
con�rmed this observation by reducing the rate of the interfering �ows. In this case (not shown),
the maximum processing time of the high priority �ow looks exactly the same but we observe all the
intermediate values. This is because, when the rate is lower, it can happen that a high priority packet
arrives just before the next check of the switch, hence not having to wait. In our plots, these values
are not visible because cross-tra�c is sent at line rate; hence, the scheduler always switches back to
low priority �ows. All switches exhibit this behavior. Further measurements, not shown here, show
that the n value depends on the switch model but stays constant for di�erent scenarios (di�erent
high priority packet sizes, additional concurrent lower priority �ows). From our measurements, we
have 9 `s for both Pica8 switches and the NEC PF5240, 6 `s for the Dell S3048-ON, and 27 `s for the
Dell S4048-ON. The relatively low overhead and its stability tells us that the scheduling operation
is not performed by the central CPU of the switch but by a speci�c component responsible for this,
e.g., a micro-controller.

126 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

0 20 40
time [s]

5

10

15

20

pr
oc

.t
im

e
[µ

s]

≈ ∆1000

ϵ

≈ ∆500

ϵ

≈ ∆100

ϵ

(a) Dell S3048-ON.

0 20 40
time [s]

5
10
15
20
25
30
35
40

pr
oc

.t
im

e
[µ

s] ≈ ∆1000

ϵ

≈ ∆500

ϵ

≈ ∆100

ϵ

(b) Dell S4048-ON.

0 20 40
time [s]

5
10
15
20
25

pr
oc

.t
im

e
[µ

s]

≈ ∆1000

ϵ

≈ ∆500

ϵ

≈ ∆100

ϵ

(c) NEC PF5240.

0 20 40
time [s]

5
10
15
20
25

pr
oc

.t
im

e
[µ

s]

≈ ∆1000

ϵ

≈ ∆500

ϵ

≈ ∆100

ϵ

(d) Pica8 P3290.

Figure 4.5: Processing time of a high priority �ow (bursts of 100-byte packets) with 3 subsequent interfering
low priority �ows of, respectively, 1000, 500 and 100-byte packets. DNC predicts an increase of Δ;L in process-
ing delay. We observe that the processing time increases more (by n) than what DNC predicts. We note that
the behavior of the Pica8 P3297 switch is very similar to the Pica8 P3290 and hence not shown.

Outcomes. While the two HP switches do not support PQ, all the other switches implement PQ
by updating the queue to send from only every n microseconds. This invalidates DNC predictions
(Eqn. 4.2). However, once the modeling correction is done, the performance of the switches is stable
and predictable.

4.1.2.3 TP — Line Rate Throughput

Queuing models used by SoA approaches [Jan+15]; [Gro+15]; [KCL14]; [GVK17] assume that queu-
ing does not happen at the ingress of switches but at their egress. Accordingly, switches need to be
fast enough to process packets at line rate on all ports simultaneously in both directions.

We verify that switches indeed can process packets at line rate in both directions on all their ports
simultaneously without any loss. Interestingly, most existing works measure only the throughput of
a single port of a switch [Bau+18]; [PMK13]; [Bia+10]; [Emm+14]; [Rau+16]; the complete saturation
of a switch backplane has not yet been targeted in the literature.

Setup: the shoelace measurement. The traditional approach to measure throughput is quite
simple: send a high load to a switch and measure the output load from it. In practice, however,
to saturate the switch is a challenging task: a 48-port switch demands producing a rate of up to
48 Gbps, which, with a simple approach of connecting each port to a tra�c source, would require
48 servers or networking cards. As a result, researchers then simply fallback to measuring the
throughput of a single pair of ports [Bau+18]; [PMK13]; [Bia+10]; [Emm+14]; [Rau+16]. However,
such a measurement does not verify that a switch is able to process packets at line rate if several
ports are used simultaneously, hence not guaranteeing predictability.

4.1. Predictability Study of SDN Switches 127

'tx
1

'rx
1

'tx
2

'rx
2

Figure 4.6: The shoelace measurement setup for the measurement of the throughput of a programmable
switch. Black thick lines represent cables and red thick dashed lines represent internal forwarding rules. This
setup allows to saturate all the ports of a switch with only two tra�c sources.

To circumvent this issue, we propose the shoelace measurement3 setup (Fig. 4.6), a methodology
that makes use of the programmability of switches to saturate a switch with only two tra�c sources
— only two physical network connections instead of, e.g., 48, are needed.

The �rst source saturates the �rst port of the switch. The switch is con�gured to forward all
tra�c entering this �rst port to its second one. The second port of the switch is then connected back
to its third port. This port con�guration and connection then goes on until it reaches the last port
of the switch. In this way, all the tra�c sent to the �rst port has to be processed = times, where = is
the number of ports of the switch. Further, by having the second source sending tra�c to the last
port of the switch, and con�guring backward forwarding rules, we e�ectively saturate the = ports
of the switch in both directions. We then can compute the (minimum) throughput of the switch as
= × ('rx

1 + 'rx
2), where 'rx

1 and 'rx
2 are the rates received at the �rst and last ports, respectively. If

these values are equal to 'tx
2 and 'tx

1 , we could not reach the throughput limit of the switch and the
switch is able to process bi-directional line rate on all its ports simultaneously. For a given input rate
'tx

1 = 'tx
2 , we run the experiment �ve seconds and consider that a switch is able to handle a given

rate only if no single packet is lost.
We use the shoelace measurement setup to investigate the throughput of all our switches for all

the packet sizes in Tab. 4.3. Using MoonGen [Emm+15], we generate line rate tra�c on both the �rst
and last ports of the switch. We use the statistics of the two interfaces to detect packet loss. We
consider rates from 8 to 1000 Mbps by steps of 32 Mbps. For the Dell S4048-ON, we also run the
experiment with 10 Gbps links, ranging from 80 Mbps to 10 Gbps by steps of 320 Mbps.

Results. Among all the switches, only the HP switches lost packets. For the smallest packet size
(64 bytes), sending 1 Gbps (resp. 10 Gbps) corresponds to 1.5 Mpps (resp. 15 Mpps). That is, for our
48-port switches, all but the HP switches can process at least 48 × 1.5 = 72 Mpps (resp. 720 Mpps)
simultaneously. This is con�rmed by the datasheets of the switches, which all announce values
higher than this.

For the HP switches, the datasheets also announce that the switches can process line rate on all
their ports. However, this is not the case (see Fig. 4.7). We observe that, independently of the packet
size, the switches can process up to 2.32 Mpps and 7.91 Mpps. Depending on the packet size, this
leads to di�erent data rates. The HP 2920 can process line rate for packets of at least 1274 bytes
and the HP 3800 for packets of at least 790 bytes. This stands in contradiction to the datasheets of
the switches. In order to investigate this further, we conduct a measurement run with the HP E3800
in legacy mode. As the shoelace measurement setup cannot be used for legacy switches, we only

3Taking its name from how the cabling of the switch looks like in this setup.

128 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

0.0 0.5 1.0 1.5
sent rate [Mpps]

0.00

0.02

0.04

0.06

0.08

0.10

re
ce

iv
ed

ra
te

[M
pp

s]

1516
1274
1032
790
548
306
64

0.00

0.48

0.96

1.44

1.92

2.40

pr
oc

es
se

d
ra

te
[M

pp
s]

0 12 24 36
o�ered rate [Mpps]

(a) HP 2920 (packets).

0 250 500 750 1000
sent rate [Mbps]

0

200

400

600

800

1000

re
ce

iv
ed

ra
te

[M
bp

s] 1516
1274
1032
790
548
306
64

0.0

4.8

9.6

14.4

19.2

24.0

pr
oc

es
se

d
ra

te
[G

bp
s]

0 6 12 18 24
o�ered rate [Gbps]

(b) HP 2920 (bytes).

0.0 0.5 1.0 1.5
sent rate [Mpps]

0.00

0.05

0.10

0.15

0.20

re
ce

iv
ed

ra
te

[M
pp

s]

1516
1274
1032
790
548
306
64

0.0

2.4

4.8

7.2

9.6

pr
oc

es
se

d
ra

te
[M

pp
s]

0 24 48 72
o�ered rate [Mpps]

(c) HP E3800 (packets).

0 250 500 750 1000
sent rate [Mbps]

0

200

400

600

800

1000

re
ce

iv
ed

ra
te

[M
bp

s] 1516
1274
1032
790
548
306
64

0.0

9.6

19.2

28.8

38.4

48.0

pr
oc

es
se

d
ra

te
[G

bp
s]

0 12 24 36 48
o�ered rate [Gbps]

(d) HP E3800 (bytes).

Figure 4.7: Throughput of the HP switches. Lower (resp. left) axes correspond to the tra�c sent (resp.
received) on the �rst and last ports, i.e., 'tx

1 and 'tx
2 (resp. 'rx

1 and 'rx
2). The upper (resp. right) axes correspond

to the values scaled by the number = of ports to represent the total data rate actually processed by the switch.

measure the throughput on two ports. We use the 10G SFP+ ports to be able to reach more than 7.91
Mpps. In such a setup, the HP E3800 switch processes correctly 10 Gbps at line rate, i.e., from 0.8
Mpps to 14.8 Mpps depending on the packet size. Using a bidirectional measurement, the switch is
also able to process all packets, but the network card (Intel 82599ES) used was only able to generate
up to 9.2 × 2 = 18.4 Mpps for 64-byte packets. We conclude that the throughput that the switch can
handle depends on whether it operates in OF or legacy mode.

Our explanation here is as follows: the L2/L3 TCAM tables used for legacy switching/routing
cannot store arbitrary matching �elds, which means they cannot support the OF features. To support
OF, the HP switches use their traditional so-called “access control list (ACL)” TCAM tables, which
provide higher �exibility. Hence, in OF mode, we measure the throughput of the “ACL” table, while
in legacy mode we measure the throughput of the L2/L3 tables. It turns out that the “ACL” table of
the switches was not dimensioned for handling line rate, which hence impacts the performance of
the switch when used in OF mode4.

Note that we also investigate unidirectional throughput by sending data only on the �rst port
of the switch. The obtained values were exactly the half of those obtained for bidirectional testing,
showing that using ports in a single direction or in both does not impact the achievable throughput.

Outcomes. Using our proposed shoelace setup, we observed that only the HP switches do not
behave as expected and are hence not predictable, as they occasionally can lose packets. They cannot
process packets at line rate (Tab. 4.4), even though they can in legacy mode: the TCAM table used
for OF and legacy modes are di�erent and exhibit di�erent throughputs.

4Note that, here, 64-byte packets are still processed in hardware, while they were processed in software in Sec. 4.1.2.1.
This is because we are here matching on physical port while we used �ve-tuple matching in Sec. 4.1.2.1.

4.1. Predictability Study of SDN Switches 129

Switch [pps] [bps] (64 – 1516 bytes)

HP E3800 7.91 Mpps 5.31 Gbps – line rate

HP 2920 2.32 Mpps 1.56 Gbps – line rate

Dell S3048-ON ≥ 72 Mpps line rate – line rate

Dell S4048-ON ∗ ≥ 720 Mpps line rate – line rate

Pica8 P3290 ≥ 72 Mpps line rate – line rate

Pica8 P3297 ≥ 72 Mpps line rate – line rate

NEC PF5240 ≥ 72 Mpps line rate – line rate

Table 4.4: Measured throughput for the di�erent switches. Values in bps are given for the smallest and biggest
packets. line rate means that the switch handles line rate on all its ports simultaneously.
∗measured at 10 Gbps.

4.1.3 Measurement Study: Management Predictability

Next, we consider the management predictability. We analyze two aspects which are relevant for
SoA approaches concerning predictable latency: the �ow management, in Sec. 4.1.3.1, and the bu�er
management, in Sec. 4.1.3.2, of switches.

4.1.3.1 FM — Flow Management

SoA approaches rely on �ne-grained tra�c engineering (one rule per single �ow) in order to provide
their strict guarantees, e.g., deterministic latency [KCL14]; [GVK17].

Therefore, the number of �ow rules on a single switch in a network can grow up to several
thousands of �ows [GVK17]. Hence, the �rst requirement is a su�cient �ow table capacity. As �ow
requests arrive during runtime, they have to be inserted live in the corresponding hardware tables
by the controller. Hence, each switch should have synchronized data and control planes, e.g., it
should not state that certain �ow rules are embedded if they are actually not. Note that it is known
that adding a rule into the hardware table of a switch can cause a wide variety of issues [KPK14];
[KPK15]. For instance, the state of the data plane can lag behind the state of the control plane for
a certain amount of time [KPK15]. However, we here only require the switch to add the rule in its
hardware table at some moment, and we do not consider delay as an issue.

Note that in this section, the OF version in use may have an impact. We, however, stick to OF 1.0
as it provides the necessary features for the SoA E2E latency models and it is fully supported by all
switches.

Measurement setup. We connect the target switch to a Ryu-based controller and connect a dual-
port data plane host running MoonGen [Emm+15] to the switch. First, we install rules at a given
rate on the switch until the latter returns an OF Error message indicating that its �ow table is full.
We consider the same match and action parameters as listed in Tab. 4.3. The rules’ output actions
direct to the second MoonGen interface. Second, the controller queries the state of the switch with
TableStatsRequest/FlowStatsRequest messages. Finally, the MoonGen host generates one packet per
rule on its �rst interface and checks if it is received on the second interface, i.e., if it is correctly
forwarded.

130 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

94 46 23 15 8 4 2
FlowMod rate [1/s]

0

10

20

se
nt

ru
le

id
[1

03] ignored rules
only in FlowStats
in HW and FlowStats

(a) Pica8 P3290.

94 46 23 15 8 4 2
FlowMod rate [1/s]

0

20

40

se
nt

ru
le

id
[1

03] ignored rules
only in FlowStats
in HW and FlowStats

(b) Pica8 P3297.

Figure 4.8: Divergence of the �ow table state of the Pica8 (a) P3290 and (b) P3297 switches for di�erent
FlowModAdd rates. For each rate, each stacked bar corresponds to a distinct run. Rules that are only in the
FlowStats response of the switch are critical: while the controller thinks the packets will be forwarded, they
will actually not be. The switch is then unpredictable.

Results. Generally, the results per switch vary; hence, we report on each manufacturer separately.

Pica8 switches. We consider �ve-tuple/output �ow rules. The following behavior is the same for
other combinations of matching and actions. Fig. 4.8 shows the total number of sent rules before
receiving the �rst Error message for di�erent FlowModAdd rates and di�erent runs per rate (one bar
corresponds to one run). The di�erent colors identify rules that were correctly added in the hardware
table, those that were only in the stats reply of the switch (and hence are reported to be added but are
actually not) and those that were simply ignored. The total number of rules in hardware is always
the same: the Pica8 P3290 stores 2046 rules and the P3297 stores 4094. However, for increasing
FlowModAdd rates, we observe that the number of ignored and incorrectly added rules increase.
While ignored rules are not too problematic, as the controller can react to it, rules that are reported
to be added but are not are critical: the controller assumes that packets will be forwarded, while they
will not be.

Although both switches can store enough rules, they fail to report a correct state to the con-
troller, which can be dramatic for predictability: packets of a theoretically accepted �ow can never
be forwarded. We believe that the reason for this is synchronization issues between the open vswitch
(OVS) [Pfa+15] instance, which realizes OF on both switches, and the ASIC managing the hardware
table. OVS might not be fast enough to insert all the rules, although it previously con�rmed them
to the controller. This leads to an inconsistency between OVS and what is actually inserted into the
hardware table. It is important here to make sense of two aspects. First, the considered rates: in-
consistencies appear already for as low as four new �ows per second. Second, the correctly installed
rules are not the �rst ones and vary depending on the run. That means that the switches show here a
completely unpredictable behavior: we cannot know in advance which rules will be correctly added,
except if we reduce the addition rate to a single �ow per second, which is not feasible. We believe
that such observations are not only relevant for operators, but also researchers when experimenting
with these switches.

HP switches. Fig. 4.10a shows the hardware table size of the HP E3800 switch for the di�erent
match/action combinations. A size of zero (white) indicates that a certain match and action combi-
nation is not supported. Depending on the match and action type of the embedded rules, the table

4.1. Predictability Study of SDN Switches 131

1 2 3 4 5
run num.

0

1

2

3
in

se
rt

ed
nu

m
.r

ul
es

[1
03]

in hardware, wait=0s
in logical, wait=0s
in hardware, wait=120s
in logical, wait=120s

(a) HP E3800.

0 50 100
run num.

0.6

0.8

1.0

in
se

rt
ed

nu
m

.r
ul

es
[1

03]

set-dl-dst
set-dl-src

(b) Dell S3048-ON.

0 2000 4000 6000 8000
time [s]

0

1

2

in
se

rt
ed

nu
m

.r
ul

es
[1

03]

16.66 min.

66.14 min.

(c) NEC PF5240.

Figure 4.9: (a) HP E3800 switch, �ve-tuple-output as the match-action, with rate of 85 messages per second.
(b) Aging of the Dell switches. The measurement procedure is as follows, we use �ve-tuple matching and
we perform 200 runs, 100 runs with set-dl-src and 100 runs with set-dl-dst actions. The runs are performed
consecutively, �rst one runs with set-dl-src and then with set-dl-dst. We notice that the maximum number of
rules for set-dl-dst reduces at each iteration. (c) The addition of rules to the NEC PF5240 switch takes a big
amount of time.

size varies from 372 to 4085. Due to space reasons, we omit showing the detailed results for the HP
2920; however, it exhibits a similar trend as the HP E3800 but supports only around 100 to 500 �ows.

We additionally observed a remarkable behavior: the switches showed aging e�ects during our
measurements. Fig. 4.9a shows the total number of rules in the FlowStats answer of the HP E3800
switch and its hardware table over �ve consecutive runs with 85 FlowModAdd messages per second
(�ve-tuple/output �ow rules). For the �rst set (red lines) of runs, the data plane test is done directly
after receiving the FlowStats response. For the second set (blue lines), we introduce an additional
waiting time of 120 seconds before the start of the date plane test. We notice that sending the
FlowModAdd messages with a high rate triggers the switch to send the Error message earlier, i.e.,
before the hardware table is actually full. Indeed, the table size for �ve-tuple/output with lower rate
was 4085 (see Fig. 4.10a) while it is now around 3000 (run 1 in Fig. 4.9a). Furthermore, we observe
that the amount of forwarded packets is lower (around 2100 packets) than the number of rules in the
logical table. Doing other consecutive runs without waiting, we observe that the switch then rejects
any new rule. On the other hand, we observe that, if we wait 120 seconds before the data plane
tests, the switch does not show some aging e�ects (blue lines). This aging leads to an unpredictable
behavior from the switch: the controller can never be sure whether it is able to use the complete
hardware table space.

Dell switches. Similar to the HP switches, the number of rules which can be stored in the hardware
�ow table of the Dell switches varies based on the match/action combination: from 510 rules to the
maximum of 1000 rules. Fig. 4.10b shows this for the Dell S4048-ON, the Dell S3048-ON behaving
exactly the same. While the Dell devices are able to handle higher FlowModAdd rates (e.g., more
than 85 FlowModAdd messages per second) than the other switches, their hardware tables are the
smallest.

However, we noticed again �ow table aging e�ects (shown for the Dell S3048-ON in Fig. 4.9b).
We perform 140 consecutive runs measuring the available �ow table size. All even runs have �ve-
tuple matchings and set-dl-src actions, while the odd runs have �ve-tuple matchings and set-dl-dst
actions. We observe that, for each new iteration, the number of �ows that can be added with �ve-
tuple/set-dl-src combinations stays the same, while it reduces for the runs with �ve-tuple/set-dl-dst

132 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

ou
tp

ut
en

qu
eu

e
se

t-
dl

-s
rc

st
ri

p-
vl

an
pu

sh
-v

la
n

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

nw
-s

rc
se

t-
nw

-t
os

se
t-

tp
-s

rc

all
five-tuple

dl-dst
tp-dst

m.-nw-dst
dl-vlan-pcp

dl-vlan

0
500
1000
1500
2000
2500
3000
3500
4000

(a) HP E3800.

ou
tp

ut
en

qu
eu

e
se

t-
dl

-s
rc

st
ri

p-
vl

an
pu

sh
-v

la
n

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

nw
-s

rc
se

t-
nw

-t
os

se
t-

tp
-s

rc

all
five-tuple

dl-dst
tp-dst

m.-nw-dst
dl-vlan-pcp

dl-vlan

0

200

400

600

800

1000

(b) Dell S4048-ON.

Figure 4.10: Flow table size of the (a) HP E3800 and (b) Dell S4048-ON switches for the di�erent match/action
combinations. A size of 0 identi�es a combination not supported in hardware. We observe that the table size
depends on both the matching type and the action and can heavily in�uence the number of rules that can be
inserted.

combinations. The reduction is non-negligible, as the capacity of the �ow table reduces from 1000
to 739 rules.

NEC PF5240. The NEC PF5240 switch is the only switch that controls the control plane message
rate by throttling the transmission control protocol (TCP) connection. As we cannot control the TCP
behavior with Ryu, we modify our procedure. Instead of sending FlowModAdd messages with a cer-
tain rate, we now send a BarrierRequest message after each FlowModAdd and wait for the response
from the switch. Upon reception of the BarrierResponse, a new FlowModAdd message is dispatched
after 10 milliseconds. Fig. 4.9c shows the number of inserted rules by the switch during one mea-
surement run. By using the modi�ed procedure, adding the rules to NEC PF5240 switch takes a very
large amount of time. For instance, adding 1000 rules takes around 16 minutes, and adding 2000 rules
takes more than one hour. In total, the switch accepts 2809 rules. Although the size of the table is
acceptable, the rules are not inserted in a timely manner.

Outcomes. Unfortunately, based on our analysis, none of the switches exhibit a predictable behav-
ior with a su�ciently-sized hardware �ow table. Both Dell and HP switches su�er from unpredictable
aging, i.e., the �ow table size can reduce with each consecutive run. The Pica8 switches can unpre-
dictably and silently ignore rules. For the NEC switch, reaching a high number of rules requires too
much time.

4.1.3.2 BM — Bu�er Management

In order to ensure no packet loss, SoA approaches for predictable latency rely on mathematical
models, e.g., DNC, to bound the amount of backlog �ows generate at each individual queue on the
way to their destination [Gro+15]; [Jan+15]; [KCL14]; [GVK17]. To this end, all these approaches
assume that each queue of each port of each switch is equipped with its own physical bu�er, and that
these bu�ers are managed independently. To which extent this assumption is true is still an open
question. More precisely, there are several challenges still to be tackled: i) how do existing switches
actually manage their bu�ers? and ii) are these bu�ers actually isolated? In this part, we intend to

4.1. Predictability Study of SDN Switches 133

study these questions in detail by measuring the bu�er capacity of a particular queue in di�erent
overload scenarios and assess whether the way the switches manage their bu�er is predictable, and,
more importantly, as predicted by SoA models.

Measurement setup. We have already seen that the output of switches is not always trustworthy
(Sec. 4.1.3.1). Therefore, we design a setup relying only on data plane measurements to measure
bu�er capacities. Similar to [Bau+18], we infer the bu�er size # of a particular queue based on
observed packet delays. The total delay observed (through a measurement setup identical to Fig. 4.1a)
by a packet from a high priority queue is given by

�H = ?p + n + @p, (4.3)

where, in addition to the processing time ?p (measured in Sec. 4.1.2.1), n corresponds to the PQ
overhead (measured in Sec. 4.1.2.2), and @p corresponds to queuing delay. We note that both the
n and @p parameters were not present in Sec. 4.1.2.1. This is because these parameters are larger
than zero only when queuing happens, which we made sure is not the case for our measurements
in Sec. 4.1.2.1. The values of ?p and n in Eqn. 4.3 are known from previous sections. The queuing
delay @p can then be obtained by measuring the total delay �H and used to calculate # . Indeed, the
queuing delay @p of a given high priority packet can be decomposed as

@p =
∑
8∈%

;i/', (4.4)

where % is the set of packets scheduled before the considered packet and ' is the link rate. If all
packets have the same size ; , we have

@p = |% |;/', (4.5)

where |% | is the number of packets in the high priority queue when the considered packet arrived.
If a port or queue is overloaded5, it will start queuing packets and eventually drop some of them.
When we observe packet loss, we can compute the queuing delay 3p of the previous non-dropped
packet, from which we can obtain |% |. As this packet was the last one to be bu�ered before dropping
packets, we have # = |% | + 1, i.e., the bu�er capacity corresponds to the number of packets queued
before ? plus one for ? itself. This measurement procedure allows us to monitor only the bu�er size
available to high priority queues.

We use up to six di�erent ports sending �ows to each other at line rate. Each port sends and
receives one �ow. These �ows are forwarded to the highest priority queues. We then use an ad-
ditional port to send “overload” tra�c. For each sending port, the overload port sends additional
packets with the same headers, hence overloading the corresponding receiving queue. In order to
overload low priority queues, the overload port simply sends additional �ows which are forwarded
to the corresponding low priority queues. This is su�cient to overload them, as they will never be
served, since we send line rate of high priority �ows at the same time. We use this setup to overload
from 1 to 6 ports and from 1 to 4 or 8 priority queues per port (depending on how many queues the
switch under test supports). An example setup to congest 2 ports and 2 queues per port is shown

5overloaded and congested terms are used interchangeably.

134 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

DAG
2 31 4

Switch
3 2M 1

Ryu

ATap B Tap

⊗⊗

C

(a) Physical setup.

From To Priority

A B High
B A High
C B High
C A High
C B Low
C A Low

(b) Flows sent.

Figure 4.11: Setup for evaluating bu�er size with 2 congested ports and 2 congested queues per port. The
congested ports are marked with a red cross.

2
po

rt
s

–
3

pr
io

.
2

po
rt

s
–

2
pr

io
.

1
po

rt
–

1
pr

io
.

3
po

rt
s

–
1

pr
io

.

3
po

rt
s

–
4

pr
io

.

6
po

rt
s

–
4

pr
io

.

6
po

rt
s

–
2

pr
io

.

2
po

rt
s

–
1

pr
io

.

2
po

rt
s

–
4

pr
io

.

4
po

rt
s

–
3

pr
io

.
4

po
rt

s
–

2
pr

io
.

1
po

rt
–

2
pr

io
.

5
po

rt
s

–
3

pr
io

.

1
po

rt
–

3
pr

io
.

6
po

rt
s

–
1

pr
io

.

3
po

rt
s

–
3

pr
io

.

4
po

rt
s

–
4

pr
io

.

4
po

rt
s

–
1

pr
io

.

6
po

rt
s

–
3

pr
io

.

3
po

rt
s

–
2

pr
io

.

1
po

rt
–

4
pr

io
.

5
po

rt
s

–
1

pr
io

.
5

po
rt

s
–

2
pr

io
.

5
po

rt
s

–
4

pr
io

.

100

200

300

400

pa
ck

et
s

qu
eu

ed

Figure 4.12: Bu�er capacity made available to a given queue of the Dell S3048-ON switch for di�erent numbers
of congested ports and queues (1516-byte packets): the more ports and queues are overloaded, the less bu�er
is made available to a given queue.

in Fig. 4.11. We monitor packet loss and packet delays of one of the high priority �ows using our
measurement card. We con�gure forwarding rules on the switch matching on IP destination and
enqueuing in a speci�c queue. Further, we use di�erent source MAC addresses for each packet to
uniquely identify them and easily detect packet loss and compute @p.

We detail our results for the di�erent manufacturers separately.

HP switches. As the two HP switches do not support PQ (no separate queues), this measurement
does not apply to them.

Dell switches. The Dell S3048-ON and S4048-ON switches support up to 4 priority queues.
Fig. 4.12 shows the inferred bu�er sizes over runs of at least three seconds with 1516-byte packets
with the Dell S3048-ON switch, for di�erent numbers of congested ports and priorities. In contrast
to what other related works such as QJump [Gro+15], Silo [Jan+15] and DetServ [GVK17] assume,
we observe that the bu�er made available to our monitored �ow depends on the bu�er needed by
other ports and queues. More speci�cally, the more ports and queues are congested, the less bu�er
is made available to our monitored �ow. We note that the available bu�er size ranges from around
420 packets to around 50 packets.

Fig. 4.12 shows that for each run, the inferred bu�er size (one value per packet lost) is stable.
Hence, in Fig. 4.13, we plot heatmaps of the observed median values for the Dell S4048-ON switch.
The results indicate that the available bu�er for the S3048-ON switch is bigger than for the S4048-ON
switch: from around 10 times bigger for a single congested queue to around 5 times bigger for 6 ports

4.1. Predictability Study of SDN Switches 135

1 2 3 4
congested priorities

1

2

3

4

5

6

#
co

ng
es

te
d

po
rt

s

measured bu�er size N [packets]

(a) 1516-byte packets.

1 2 3 4
congested priorities

1

2

3

4

5

6

#
co

ng
es

te
d

po
rt

s

measured bu�er size N [packets]

(b) 790-byte packets.

Figure 4.13: Median bu�er capacity made available to a given queue of the Dell S4048-ON switch for di�erent
numbers of congested ports and queues for di�erent packet sizes. The Dell S4048-ON can store more packets
than the Dell S3048-ON and the number of packets that can be bu�ered, as expected, increases with smaller
packets.

1 2 3 4 5 6 7 8
congested priorities

1

2

3

4

5

6

#
co

ng
es

te
d

po
rt

s

measured bu�er size N [packets]

(a) Pica8 P3297 (the P3290 behaves ex-
actly the same).

1 2
congested priorities

1

2

3

4

5

6

#
co

ng
es

te
d

po
rt

s

measured bu�er size N [packets]

(b) NEC PF5240.

Figure 4.14: Pica8 and NEC behave similarly to the Dell switches: bu�ers are not isolated per-queue (1516-
byte packets).

with 4 congested queues. Fig. 4.13b shows that, as expected, reducing the size of transferred packets
allows to increase the total number of packets in the queue. The overall behavior however stays the
same.

Pica8 switches. Both Pica8 switches presented the exact same behavior, we here show only results
for the Pica8 P3297 switch. Fig. 4.14a shows that the behavior is comparable to the Dell switches:
the more queues and ports are congested, the less bu�er becomes available to the monitored queue.
Interestingly, our results invalidate the Pica8 documentation regarding bu�er management. Indeed,
while they indeed say the queues are based on a shared bu�er, the numbers they provide do not
correspond to our results.

NEC PF5240. The NEC switch supports up to 8 priority queues. The same experiment with the
NEC PF5240 switch exhibits a constant bu�er size for each scenario: 63 packets. Hence, the NEC
switch seems to have isolated bu�ers for each queue. However, the NEC switch provides a global
limit-queue-length option, 64 by default, that limits the maximum packets a queue can bu�er. We
set this option to its maximum value and rerun the experiment. Unfortunately, this option applies
only to the two lower priority queues. As our setup can only measure the bu�er size available for

136 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

Figure 4.15: Processing time of the di�erent switches for matching on the outermost VLAN tag, popping it
and forwarding to a particular queue based on di�erent VLAN tag stacks heights. We observe that the switches
can predictably support source routing solutions based on VLAN tags.

the highest priority, we reduce the maximum number of priority levels that can be congested to 2,
the two lowest priority queues. Fig. 4.14b shows that the bu�er size made available to a queue then
depends on the number of congested ports. On the contrary to the Dell and Pica8 switches, it does
not seem to depend on the number of congested priorities. Note however that the results here are
much less stable than those from Dell in Fig. 4.12. Hence, the numbers should not be taken as exact,
but as insights on the bu�er management strategy of the switch.

Outcomes. We observe that, while predictable latency solutions do assume that switches provide
isolated per-queue bu�ers, the reality is the opposite: all our switches are based on shared memory
for implementing queue bu�ers. This does actually make sense: sharing bu�ers among all queues
and ports enable work-conservation: if a queue does not use its space, it can be used by another one.
However, from a predictability point of view, there is a major issue: a burst in a low priority queue,
or even on another port, can suddenly reduce the bu�er space available to a given queue and hence
potentially lead to unpredictable packet loss.

4.1.4 Insights and Discussions

Let us recap some of our insights on the predictability of SDN switches. On the bright side, the
observed processing times of the switches, at least when done in hardware, is fairly predictable. We
also observed that most switches successfully process packets at line rate.

On the dark side, we identi�ed several challenges. First, we found that PQ adds non-negligible
overhead to processing time. While this is not what is predicted by SoA models (e.g., DNC), we
observe that this overhead is actually predictable: the observed n values, which are static values
for each switch, can simply be added as constants to the modeling formulas of DNC. Second, we
observed that switches have some very unpredictable behavior regarding their �ow management.
For example, the Pica8 switches can unpredictably drop rules without leaving any means to the
controller to be aware of it. Would there be a way to avoid sending new rules to the switches at
runtime? That would prevent such unpredictable artifacts to happen.

A potential solution is to use source routing, e.g., based on a stack of VLAN tags. This way,
the forwarding table of the switches has to be programmed only once and embedding additional

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 137

�ows does not require to interact with the �ow table of switches but only requires to implement the
tagging on the source end host. As a small prototype, Fig. 4.15 shows that all our switches (but the
HP switches) indeed support such as setup: forwarding to a particular queue based on the outermost
VLAN tag and pop it.

Finally, we observe that the switches are based on a shared bu�er infrastructure, in opposition to
what traditional latency models assume [Gro+15]; [KCL14]; [GVK17]; [Jan+15]. We indeed observe
that a given queue gets a di�erent bu�er capacity based on the current congestion state of the switch.
While it may seem that the bu�er capacity made available to a queue is unpredictable, thereby making
packet loss prevention complicated, our measurements give some hope. Indeed, we observe that the
bu�er capacity of a port, though variable, depends only on the number of congested ports and queues.
Usually, one does not use all the ports of a switch: for example, in a : = 4 fat-tree topology, one only
needs 4 ports. We can then use the values resulting from our measurements as worst-case bu�er
capacity, instead of the very pessimistic strategy of dividing the total bu�er memory by the total
number of queues (number of priority queues times the number of ports).

Generally, while our results refer to the investigated speci�c SDN switches, we expect many of
our results to also be valid for P4 programmable devices [Bos+14]. Indeed, in both cases, forwarding is
done by TCAM tables and a �rmware (independent of the P4 code) which implements bu�er and �ow
management. The need for predictability for P4 devices might, however, be even more stringent, as
a P4 programmer expects to have full control over its device, and hence expects a strictly predictable
behavior based on its implemented logic.

4.2 Chameleon: High Utilization with Queue-Aware and Adaptive

Source Routing

The previous section was motivated by the observation that a predictable network behavior critically
depends on the underlying hardware. We presented a methodology and reported on our measure-
ment study using di�erent switches from di�erent vendors, and identi�ed several shortcomings, in
terms of performance but also in terms of correctness. We understand this work as a �rst step and
believe that it opens several interesting avenues for future research. In particular, more research is
needed on how to design and model network systems toward more predictable and deterministic
network architectures meeting the requirements of future applications. This is the gap we �ll in this
section.

This section is further motivated by the unprecedented routing �exibilities provided in modern
networks, which in principle allow networks to autonomously and dynamically re-evaluate resource
allocation decisions, and hence enable novel opportunities navigate the tradeo� between predictabil-
ity, performance, and resource e�ciency. In particular, these routing �exibilities enable networks to
become demand-aware: network con�gurations can be adapted toward the workload they serve, po-
tentially accounting for current delays along speci�c paths and exploiting currently underutilized
links. The challenge, however, remains how to account for such information, and how to exploit
routing �exibilities while maintaining predictability.

138 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

3 4 5 6 87 9 10 1211 13 14 16151 2

Figure 4.16: The blue (between VMs 1 and 10), purple (between VMs 7 and 13) and green (between VMs 11
and 15) �ows are already embedded. In this situation, the red �ow (between VMs 5 and 9) cannot be embedded
by Silo. Rerouting (which Silo does not do) the blue �ow on the dashed path would however make space for
the new �ow and allow to embed it.

A key observation of this section is that rendering networks more dynamic and adaptable does
not have to contradict predictability. In particular, if done right, principles of network calculus can
still be employed and the resulting performance guarantees along routing paths maintained. That
is, networks can be adapted to �ows arriving over time while still providing hard guarantees at all
times.

4.2.1 Motivation: Unexploited Opportunities

A main motivation for our work are the unexploited optimization opportunities available in current
networks: SoA networks are operated in a fairly in�exible and demand-oblivious manner. We argue
that this can lead to both suboptimal network performance and low predictability of performance (in
terms of latency and throughput), which leads to unnecessarily low utilization. In the following, we
identify and discuss such missed optimization opportunities. Later in this section, we will show that
it is indeed possible to exploit these opportunities and operate networks in a dynamic and demand-
aware manner, without sacri�cing predictability.

4.2.1.1 The Price of Static Allocation

State-of-the-art approaches for providing predictable network performance have the common feature
that they are fairly static: embedding decisions (e.g., related to the route or per-�ow rate), once taken,
are usually not reevaluated nor adapted later: SoA solutions are not designed for reacting to �ows
arriving over time. In environments where networks need to provide guarantees and, hence, perform
admission control, this can lead to unnecessarily high network �ow rejection rates. For example, if
the network con�guration chosen earlier does not �t the characteristics of arriving �ows, these �ows
need to be rejected. In contrast, in a dynamic and demand-aware network, it may still be possible
to accept these �ows, using recon�gurations. To be more concrete, let us consider the two main
solutions providing predictable latency in the cloud: Silo [Jan+15] and QJump [Gro+15].

QJump. QJump [Gro+15] relies on information about application performance requirements, re-
lated to latency, rate and packet size, at network initialization time. This information is then used to
compute the QJump formula: a maximum latency of 2=%/'+n . Here, = is the number of applications
using the system, % the packet size, ' the links rate, and n the cumulative processing time, which is

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 139

guaranteed to all applications, assuming that they transmit at most one packet per each of these time
periods, i.e., at a rate of at most %/(2=%/' + n) [Gro+15]. While the n and ' parameters are constant
and dependent on the physical topology only, the = and % parameters must be de�ned upfront, at
network initialization time; this is necessary to be able to compute the maximum latency guarantee
that the system will provide to �ows.

Let us consider a: = 4 fat-tree topology with 10 Gbps links and with a cumulative E2E processing
time of 4 `s. Here we have ' = 10 Gbps and n = 4 `s. If the network operator decides to authorize
10 VMs per server and packets of at most 300 bytes, we have = = 16 × 10 = 160 applications and
% = 300 bytes. As a result, the QJump system guarantees a maximum latency of 80.8 `s at a rate of
at most 29.7 Mbps for each VM.

While providing predictable performance, these static allocations can lead to unnecessary request
rejections and as a result low utilization. For example, even if the network is unused, QJump would
in this situation not admit a tenant request for a �ow with a latency requirement of 50 `s. Similarly,
a request for a 50 Mbps �ow would be rejected unnecessarily. If an applications needs much less
bandwidth than 29.7 Mbps, say 3.11 Mbps, and tolerates a higher latency guarantee than 80.8 `s, say
772 `s, the system will accept only 160 �ows, while 1600 of these �ows could have been accepted
if the network operator initially decided to de�ne = = 1600. Similar observations can be made for
applications that send packets smaller or greater than 300 bytes.

This is a real concern, especially in cloud environments where tenant applications are typically
unknown, requirements are hard to estimate, and elasticity (pay as you grow) is a key advantage.

In conclusion, a greedy and in�exible parameter selection at network startup time can lead to
unnecessary �ow rejections and low network utilization.

Silo. Silo [Jan+15] also provides latency guarantees by leveraging admission control and relying
on DNC modeling. At network startup, Silo assigns a delay �8 to each link in the network. Then,
upon a new �ow request, the admission control logic of Silo uses DNC to calculate the worst-case
delays 38 of each link if the �ow was to be accepted. The �ow is rejected if 38 > �8 for a link 8 .
If a �ow can be accepted, its latency guarantee is

∑
8 �8 for all links 8 traversed by the �ow. As a

result, the number of possible delay guarantees for a given application corresponds to the number of
di�erent paths between the two VMs of the �ow, i.e., (:/2)2 = 4 for a fat-tree topology with : = 4.

To give an example, we consider a fat-tree topology with : = 4. We allocate a delay �8 of
�' = 20 `s to rack links, �% = 50 `s to intra-pod links and �� = 80 `s to aggregation links.
Without taking detours, there is only one possible delay between any pair of VMs. Between VMs
in the same rack, the delay is 2�' = 40 `s. Between VMs in di�erent racks but the same pod,
the delay is 2(�' + �%) = 140 `s. Between VMs in di�erent racks and di�erent pods, the delay is
2(�'+�%+��) = 300 `s. The situation is then similar to QJump: if a tenant needs a latency guarantee
lower than these values, say 30 `s, the �ow will have to be rejected unnecessarily. Similarly, if tenant
applications tolerate higher latency guarantees, say 10 ms, the admission control logic of Silo will
start blocking �ows to avoid reaching the prede�ned limits, even though guarantees would still be
ful�lled. By increasing the allocated delays at each link, more �ows could have been accepted.

Once Silo embeds a �ow, there is no reevaluation of its decision. This is illustrated in Fig. 4.16.
Let us assume that the blue path (between VMs 1 and 10), the purple path (between VMs 7 and 13)

140 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

and the green path (between VMs 11 and 15) are already embedded. Furthermore, let us assume,
for simplicity of the example, that these �ows consume the entire capacity on their links. In this
situation, the red �ow (between VMs 5 and 9) cannot be embedded: it is blocked by all the other �ows.
However, rerouting the blue �ow on the dashed path, i.e., reevaluating a decision taken previously,
would make space for the new �ow and would actually make it possible to admit and embed it.

In conclusion, similarly to QJump, Silo’s predictability guarantees can come at the price of low
utilization: resource allocation decisions related to link delays and �ow embeddings are performed
greedily, and never reevaluated again. If applications have requirements that do not match the
de�ned link delays, Silo will reject them while they actually could have been accepted, as we will
show. As a result, Silo’s resource allocation and embedding approach leads to a bias in terms of the
types of �ows that can be accepted — and to unnecessary rejections and hence low utilization.

4.2.1.2 Unexploited Path Diversity

We see a great potential to exploit path diversity and more �ne-granular routing to improve the
e�ciency and performance predictability of networks. In fact, even for the same physical path,
multiple performance characteristics may be experienced: as the switches and routers along the
physical route typically have multiple queues, the delay often depends not only on the speci�c router
but also on the speci�c queue that is traversed. This motivates us to consider a �ner granularity of
routing: based on a “queue-level topology” (as de�ned in Sec. 2.3.3) rather than just a “router-level
topology”.

Surprisingly, SoA solutions do not exploit physical path diversity. For example, QJump’s admis-
sion control algorithm does not account at all for the speci�c paths on which �ows can be routed. As
a consequence, QJump does not reserve network resources per switch or per link, but for the whole
network, which can be ine�cient. It implies that QJump assumes that two �ows, even if they are
disjoint, consume the same resources.

Let us illustrate the problem again with a fat-tree topology with : = 4 as in Fig. 4.16. Taking
the parameters as in Sec. 4.2.1.1, QJump will accept up to 160 �ows with delay requirements of
at most 80.8 `s and a rate of at most 29.7 Mbps. Let us consider that the 160 �ows accepted by
QJump are located in the two leftmost pods, which is possible with a simple �rst-come �rst-serve
VM allocation algorithm. In this case, QJump will reject any new �ow request because it reached the
maximum of = resources. At the same time, half of the network is unused although it could actually
accommodate more �ows: the lack of routing knowledge leads to unnecessarily rejections. Similarly,
while Silo reserves resources per link, there is no optimization of routes nor of priorities assignment
in the network. By not optimizing nor accounting for the routes where �ows are embedded, such
approaches are not demand-aware, as the network state and performance characteristics depend on
the speci�c route taken.

4.2.2 Chameleon System Design

Motivated by the above shortcomings and opportunities, we now describe the design of Chameleon,
which combines adaptive source routing and priority queuing. The latency modeling of QJump is
topology-agnostic and assumes the same tra�c envelope for all the �ows with deterministic require-

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 141

time

data

∇ =
' 8

∇ = A
8

38

�8

18

(a) Silo: per link.

LP
�LP8

3LP8

MP
�MP83MP8

HP
�HP8

3HP8

(b) Chameleon: per queue.

Figure 4.17: Silo and Chameleon modeling for access control. Silo models links while Chameleon goes one
level lower and de�nes one model per priority queue. This o�ers higher delay diversity to applications.

ments. These fundamental assumptions prevent it from being adapted to solve the above-mentioned
shortcomings without a complete redesign of the system. As a result, we choose to build upon Silo.
Chameleon is based on four building blocks: it builds upon Silo, leverages priority queuing, and ap-
plies �ne-grained source routing and adaptive recon�gurations. We discuss these building blocks in
turn. These correspond to the architecture de�ned in chapter 2. The routing procedure just has the
additional task of performing adaptive recon�gurations.

4.2.2.1 Building Block 1: Silo

Like Silo, Chameleon leverages three basic components: the resource allocation that is run at network
startup (Sec. 4.2.2.1), the access control logic that ensures that �ows are embedded only if all delay
requirements are satis�ed (Sec. 4.2.2.1) and the resource reservation (Sec. 4.2.2.1) responsible for
keeping track of resources usage at runtime.

Resource allocation. Silo keeps track of resource consumption and per-link worst-case delays
using DNC. Each link 8 is assigned a maximum delay �8 . We call this the resource allocation, as each
link is allocated a delay budget. Then, Silo always makes sure that the DNC worst-case delay 38
of each link remains lower than its maximum budget �8 , i.e., the admission control of Silo ensures
that 38 ≤ �8 ∀8 ∈ G, where G represents the set of links in the network. This is illustrated in
Fig. 4.17a for a particular link. Based on the token-bucket burst and rate parameters of each �ow,
Silo keeps track of the total burst 18 and rate A8 consumed at each link, forming the DNC arrival curve
for this link. The DNC service curve of the link corresponds to the rate '8 of the link. The horizontal
deviation 38 = 18/'8 between these two curves represents the worst-case delay at this link.

Access control. A new �ow request 5 consists of token-bucket parameters 1 5 and A 5 , and of a
maximum delay requirement3 5 . At each link where the �ow shall be embedded, Silo checks whether
adding the token-bucket parameters 1 5 and A 5 to the already used resources 18 and A8 would result
in 38 > �8 . If this does not happen for any of the links supposed to be traversed by the �ow and if
the sum of all the delays �8 of these links is lower or equal to the delay requirement 3 5 of the �ow,
the �ow is accepted. Otherwise, it is rejected.

142 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

Resource reservation. When a �ow is accepted, its token-bucket parameters are simply added to
the 18 and A8 parameters of each link it traverses. Note that, per DNC, the burst 1 5 requirement of a
�ow increases at each hop. Indeed, at a switch, the burst of a �ow increases for each new packet that
arrives while previous packets are still queued. Formally, the burst increases by A 5 �8 at each hop; the
maximum amount of data that can accumulate while packets are queued. This is taken into account
by Silo when checking resource consumption at each link, as well as when reserving resources to
account for the embedding of a new �ow.

We note that Silo also incorporates a VM placement algorithm. In this thesis, we focus on the
embedding task and hence assume that a �ow already has a source and destination server assigned.

4.2.2.2 Building Block 2: Priority Queuing

In order to increase the delay diversity o�ered to applications, i.e., to o�er di�erent service levels,
Chameleon uses priority queuing. Each output link 8 now corresponds to =8 priority queues. In order
to ease the parallelism with Silo, we present subsequently how the resource allocation, access control
and resource reservation mechanisms are changed. These mechanisms strictly correspond to those
of the TBM described in Sec. 2.4.

Resource allocation. Delays �@ are assigned by a resource allocation algorithm to each queue
@. The set of di�erent delays that a physical path can o�er is now multiplied by the number of
combinations of priority levels at each hop.

Access control. The process is illustrated in Fig. 4.17b for =8 = 3 priority queues. Chameleon keeps
track of token-bucket resource consumption parameters for each individual priority queue. The
service curves o�ered to each queue are governed by DNC. Non-preemptive priority queuing scheme
requires high priorities to wait for at most one packet of a lower priority before being transmitted.
As a result, the highest priority queue service curve is identical to the Silo case (i.e., it is the link
rate) but is shifted towards the right by ;<0G/' +q , where ;<0G is the maximum packet size in lower
priority queues, ' is the link rate and q is a parameter for accounting for the overhead of the priority
queuing implementation in the switch6. As measured in Sec. 4.1.2.2), q is typically in the order of
microseconds. The service curve of a low priority queue then corresponds to the di�erence between
the service curve of the higher priority queue and the arrival curve of the tra�c traversing the latter.
This is shown in Fig. 4.17b.

When trying to embed a �ow on a path (of queues), the access control must be slightly adapted
to account for the presence of lower priority queues. Indeed, adding a �ow to a queue modi�es the
service curve o�ered to lower priority queues, and could hence violate the 3@ ≤ �@ constraint for
these queues and hence lead to the violation of the guarantees provided to already embedded �ows.
When checking if a �ow can be added to a particular queue, the delay of lower priority queues also
has to be checked. Additionally, the access control must check that the bu�er capacity of each queue
at the link is not violated. DNC provides a bound on the worst-case bu�er occupancy at a system:

6Note that, for computing per-packet delays, DNC requires service curves to be shifted down by the maximum packet size
of the �ow [VK16]; [LT12]. While our implementation takes this into account, for simplicity, and because this is a very small
value, we omit this in our description.

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 143

it corresponds to the vertical deviation between the arrival and service curves. The access control
simply checks that this deviation stays lower than the bu�er capacity of each queue. In order to
reduce the computed bounds, arrival curves are shaped by the rate of the input link where they are
coming from.

Resource reservation. When a �ow is accepted, its token bucket parameters are simply added
to the 1@ and A@ parameters of each queue it traverses. Additionally, the service curves of the lower
priority queues also have to be updated (as described in Sec. 4.2.2.2) to re�ect the change in the arrival
curve of a higher priority queue. The burst increase of �ows is of course handled in the same way
as for Silo.

4.2.2.3 Building Block 3: Routing

The introduction of priority queuing changes the path �nding problem. Besides the physical path,
also priority queues have to be selected. This corresponds to �nding a path in the queue-level topol-
ogy de�ned in Sec. 2.3.3. In this queue-level topology, each queue/edge @ has been allocated a delay
�@ by the resource allocation algorithm. Finding a path for a �ow request then consists in �nding
a path P such that

∑
@∈P �@ ≤ 3 5 , and for which the access control allowed access to the �ow. If

we introduce a cost function that de�nes a metric value for each queue in the network, this corre-
sponds to a DCLC routing problem, the problem we investigated in chapter 3. The cost function
must be de�ned in a way that makes the routing algorithm consume the least amount of resources
for each �ow and hence maximizes the probability of accepting future demands. We will come back
to this in Sec. 4.2.2.4. As we have seen in chapter 3, the DCLC routing problem is NP-complete and
optimal routing algorithms exhibit too high memory consumption and runtime to be used as on-
line routing algorithms. Hence, a sub-optimal, yet fast and complete algorithm has to be used, e.g.,
LARAC [Jüt+01]. As we have seen in Sec. 3.6, the access control, because it depends on the burst
of a �ow, is an M∞ metric and impacts the completeness of the routing algorithm. In particular, as
shown in Tab. 3.4, this makes the routing procedure both sub-optimal and incomplete. We discuss
the impact of this and how we cope with it in the next section.

4.2.2.4 Building Block 4: Recon�gurations

When a �ow is routed, it is the role of the cost function to direct the routing algorithm such that the
least amount of resources is consumed. However, the cost function is not aware of upcoming requests
and, as we highlighted in Sec. 4.2.1.1, a low-cost path for routing a �ow 5 might happen to block a
later �ow 6. Finding a cost function that is good for any network scenario is a challenging problem,
as whether a choice now is good for later is only de�ned by the upcoming �ows, which are unknown
to the cost function. As we leave a more detailed study of cost functions for future work, we instead
use a dummy cost function (e.g., least-delay) and when the routing procedure fails at embedding a
new routing request, it can analyze the current network state, reroute already embedded �ows to
make space for the new �ow and then embed the original �ow.

However, recon�guring running �ows constitutes a big challenge. Algorithmically, consistent
network updates is a complex task, especially in the presence of strict latency guarantees [FSV18].

144 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

VM1 VM2 VM3 VMn

virtual switch NIC

NBI
Controller

...

Tagging
(re)configuration

 |
-----|----------------------
101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
... |
4803 | pop, port 48, prio. 3

 TAG ACTION

 |
-----|----------------------
 101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
 ... |
4803 | pop, port 48, prio. 3

 TAG ACTION

 |
-----|----------------------
 101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
 ... |
4803 | pop, port 48, prio. 3

 TAG ACTION

 |
-----|----------------------
 101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
 ... |
4803 | pop, port 48, prio. 3

 TAG ACTION

502 102 101 2
502 102 101 2

102 101 2

101 2
2

SBI

SBI

packet

Figure 4.18: Example of Chameleon in operation: VM 3 on the �rst server sends a packet to VM 2 on the
fourth server. Hypervisors in servers tag packets of the di�erent VMs to de�ne the path they take and their
priority level at each hop. This enables easy recon�gurations and circumvents traditional issues in distributed
network recon�gurations.

Additionally, we have shown in Sec. 4.1.3.1 that the management interface exposed by existing pro-
grammable devices is not always predictable, the controller hence being unsure whether its desired
con�guration update is indeed implemented in the data plane. Furthermore, other measurement
studies have shown that updating forwarding rules on programmable devices can lead to transient
phases during which packets are forwarded on both paths [KPK14], an unacceptable situation for
predictability.

To circumvent these issues, we propose to use source routing for con�guring forwarding de-
cisions, similarly to what Microsoft uses in their datacenters [Fir17]; [Fir+18]. This is illustrated
in Fig. 4.18. Instead of forwarding based on a �ve-tuple matching, the forwarding elements in the
network use a tag in the packet to de�ne their behavior. Each tag corresponds to a port-queue com-
bination. When sending packets from VMs, hypervisors push a stack of tags corresponding to the
path the packet has to follow and the priority levels at which it should be enqueued. For example, if a
priority level ? and output link ; correspond to tag C = 100; +? , a stack of tags 101, 503 means that the
packet should be forwarded to port 1 of the �rst switch and with priority 1 and then to port 5 of the
second switch with priority 3. The switches simply match on the tag to perform the corresponding
action and then pop the outermost tag out of the stack to permit the next-hop switch to read the next
tag.

This approach solves the above-mentioned issues. Indeed, the forwarding behavior of switches is
con�gured once at startup and never has to be updated. This eliminates the unpredictability problem
of the management interface of switches and the transient phase issue when updating �ow tables.
Further, routes are con�gured on end-hosts, which eliminates the problem of consistently updating
the network con�guration, as the network is con�gured centrally.

This however brings another important challenge. The tagging in the hypervisor virtual switch,
and the updates of its tagging rules must be predictable, as this new component adds an additional

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 145

delay to the packets. However, in contrast to blackbox forwarding devices based on closed imple-
mentation, the virtual switch is under our complete control. That allows us to speci�cally design it
for satisfying these requirements. In particular, several recent technologies such as P4 and DPDK
o�er the potential for achieving this predictability. We describe in detail in Sec. 4.2.3.2 how we im-
plement the tagging component and con�rm in Sec. 4.2.4.2 that this implementation is predictable
and fast enough for predictable latency use cases.

4.2.3 Chameleon Implementation

We separate our description of the implementation of Chameleon into the control plane and the data
plane parts.

4.2.3.1 Control Plane

The control plane is implemented as a multi-threaded set of Java 8 libraries implementing all the
controller functionalities. The code consists of around 30k lines of code.

Interfaces. The controller implements a NBI that exposes a representational state transfer (REST)
application program interface (API) to users (Fig. 4.18). This API allows tenants, VMs, and �ows
to be created and deleted through hypertext transfer protocol (HTTP) POST requests. A tenant is a
logical abstraction that supports users to create �ows between VMs that they created, i.e., VMs of the
same tenant. All created VMs are identical and allocated to a randomly selected physical server. VM
placement is outside the scope of this work. The creation of a �ow requires the speci�cation of source
and destination VMs, of burst, rate, and latency requirements, and of a �ve-tuple matching structure.
A counterpart southbound interface (SBI) module implements the OF 1.0 protocol (Fig. 4.18). The
module discovers the network topology at startup using link-layer discovery protocol (LLDP) packets
and con�gures the static forwarding rules on switches (see Sec. 4.2.3.2). Upon a VM creation request,
the SBI module triggers the actual creation on the chosen server via secure shell (SSH). Upon a �ow
embedding request, the NBI module forwards the request to the routing procedure. If the routing
procedure returns an embedding, or if it requests the recon�guration of a previous embedding, the
SBI con�gures the corresponding tagging rules on the source server via SSH (Sec. 4.2.3.2). We do
not aim at providing strict guarantees for request processing times. As a result, the communication
between the SBI and the servers does not need latency guarantees and can happen over a traditional
control network.

Resource allocation and reservation, and access control. The resource allocation simply as-
signs a maximum delay to each queue upon discovery of a new link (as described in 4.2.2.2). For
8-queue ports, it assigns the following delays: 0.1 ms, 0.5 ms, 1 ms, 1.5 ms, 3 ms, 6 ms, 12 ms, and
24 ms. For 4-queue ports, it assigns 0.1 ms, 1 ms, 6 ms, and 24 ms. Host ports towards their ac-
cess switches are assigned 0.5 ms. This somewhat arbitrary delay assignment is chosen to be able
to span delay requirements from sub-milliseconds to hundreds of milliseconds. The optimization of
the maximum delays assignment is left for future work. Access control and resource reservation are
implemented as described in Sec. 4.2.2.2.

146 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

1: function embeddingStrategy(request)
2: response← route(request)
3: if response ≠ null then
4: reserve(response), return response
5: for each �owToReroute in sort(getFlowsToReroute(request)) do
6: increaseGraphCosts(�owToReroute, request)
7: reroutingResponse← route(�owToReroute)
8: if reroutingResponse ≠ null then
9: reserve(reroutingResponse)

10: free(�owToReroute.originalPath)
11: response← route(request)
12: if response ≠ null then
13: reserve(response), return response
14: return null

Figure 4.19: Pseudo code of the �ow embedding and recon�guration.

Routing and rerouting strategies. The routing procedure for �nding a DCLC embedding is im-
plemented using the LARAC algorithm [Jüt+01] as described in Sec. 4.2.2.3. The complete routing
and rerouting logic is shown in Fig. 4.19. First, the procedure tries to �nd a path for the �ow request
using a least-delay search (line 2). If it fails at �nding a valid embedding (either because of its incom-
pleteness – Sec. 4.2.2.3 – or because of previous �ows poorly embedded – Sec. 4.2.1.1), the procedure
tries to reroute already embedded �ows to make space for the new one. First, in line 5, it selects a set
of sorted candidate �ows to be rerouted and iterates through them. In our implementation, it selects
all the �ows traversing at least one edge of any of the equal-length SPs in the physical topology from
the source server to the destination server of the new �ow to embed. Those paths are found using
Yen’s algorithm [Yen71]. Other �ows not traversing these SPs are indeed not expected to prevent the
new �ow from being embedded. In our implementation, we sort �ows according to the number of
physical links they share with the SPs of equal length in the physical topology between the source
and destination servers of the new �ow to embed. Then, for a given candidate �ow to reroute, based
on the current state of the network, the procedure tries to re-embed the selected �ow. In line 6, to
direct the routing procedure toward a path that potentially allows the new �ow to be embedded,
we increase the cost (see Sec. 4.2.3.1) of the previous queues in which the �ow was embedded (to
move it somewhere else) and of all the queues of all the equal-length SPs between the source and
destination servers of the new �ow to embed (to prevent the rerouted �ow to interfere with the new
�ow). The cost is increased by multiplying the original cost value by an arbitrary high value (30 000
in our implementation). If the �ow cannot be re-embedded, the procedure continues to the next
candidate �ow. If the �ow can be re-embedded, the procedure noti�es the SBI to reserve the new
embedding (line 9) and then to free the resources reserved for the previous embedding (line 10), and
then retries to add the new �ow. If that fails, the procedure continues to the next candidate �ow
to reroute. If that succeeds, the new �ow is successfully embedded thanks to the recon�guration of
previous �ows. If the list of candidate �ows is exhausted without any success, embedding failed and
the new �ow is rejected (line 14).

Cost function. As described in Sec. 4.2.2.4, the design of a good cost function is a very challenging
task. In some sense, the proposed rerouting strategy is a way of adapting the cost function to

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 147

Controller

tagging & shaping

control
channel

vhost-net

VM 1VM n VM 2 VM 0

Management
network

Data center
network

(a) Server.

control channel

R
X

 q
ue

ue
 n

T
X

 q
ue

ue
 n

R
X

 q
ue

ue
 1

T
X

 q
ue

ue
 1

T
X

qu
eu

e
0

tag & shape

VM 0VM 1VM n

VMDq

(b) DPDK application.

Figure 4.20: Chameleon’s end-host implementation (a) and zoom in the DPDK application. QEMU VMs are
connected to the DPDK application using a vhost-net/virtio-net architecture and communicate through distinct
receive and transmit queues. A control VM allows the con�guration of the tagging/shaping rules.

future requests, as we reroute an old �ow with the knowledge of the �ows that were accepted later.
Unfortunately, also the rerouting procedure needs a cost function. We decide to simply use the delay
as cost, thereby e�ectively degenerating the DCLC problem into a simple least-delay routing problem
solved by Dijkstra’s algorithm [Dij59]. The rationale behind this decision is that the burst increase
of a �ow at each hop is proportional to the delay of this hop (see Sec. 4.2.2.1). This cost function
hence minimizes the resource (burst) consumption of �ows.

4.2.3.2 Data Plane

We consider 1 Gbps OF 1.0 devices: Dell S3048-ON and S4048-ON (four priority levels per port), and
Pica P3297 (eight priority levels) switches. We use servers running Ubuntu 18.04 (4.15.0-66-generic
kernel) with 64 (Dell servers) or 128 GB (Dell and Supermicro servers) of random access memory
(RAM), an Intel Xeon Silver 4114 @ 2.2 GHz (20 cores, Supermicro servers) or an Intel Xeon E5-2650
v4 @ 2.2 GHz (24 cores, Dell servers) as CPU, and an Intel X550 (Supermicro servers) or X540 (Dell
servers) NIC towards the data network. We use VLAN tags to implement the tag stacks. While any
other stackable tagging mechanism can be used (e.g., multi-protocol label switching (MPLS)), we use
VLAN tags because of its low header overhead and its more widespread support. Furthermore, we
have shown in Sec. 4.1.4 that matching on VLAN tags to output to a particular port and queue and
popping the outermost VLAN tag can be done at line rate and with a predictable performance by
simple OF 1.0 devices.

In the following, we describe the end-host implementation (Fig. 4.20), the cornerstone of our
solution. This consists of a tagging part, responsible for pushing tag stacks to packets, and of a
shaping module, responsible for ensuring that applications do not exceed their negotiated 1 5 and
A 5 token-bucket parameters. We implement the virtual switch of the VMs hypervisor as a DPDK
19.08 application running in a privileged docker container. The general architecture of the virtual
switch is shown in Fig. 4.20a. The di�erent VMs run in QEMU 2.11.1 with KVM. The VMs and
the DPDK application are connected through virtio using a vhost-net/virtio-net para-virtualization
architecture [AIN].

148 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

How to ensure predictability? The processing of the virtual switch has to be predictable, in terms
of latency. To do so, the DPDK application is pinned to speci�c cores of the server and we prevent the
kernel of the server to use these cores using the kernel isolcpus parameter. To avoid unpredictable
performance variations, we further disable hyper-threading, turbo-boost, and power saving features
of the CPU. This ensures that the DPDK application runs isolated on dedicated CPU cores that operate
at a constant and stable speed. We use Intel’s cache allocation technology (CAT) to allocate a speci�c
portion of the CPU last level cache (LLC) to the cores used by the DPDK application. As level-one and
level-two caches are per core, this prevents other applications from interfering with DPDK through
the memory caches. We use three cores for the application: one sending core, one receiving core,
and one master core for the DPDK master process. Both sending and receiving cores process batches
of packets for the di�erent VMs in a round-robin fashion. Each VM is assigned a sending and a
receiving queue (see Fig. 4.20b). The sending queues are �lled by the VM virtio drivers and emptied
by the sending core, which is then responsible for tagging and shaping before sending out the packets
to the NIC. The receiving queues are �lled by the receiving core. The destination VM of a packet is
identi�ed by its MAC destination address and VLAN tag. Doing this separation in software would
prevent batch processing, a major enabler of the fast software processing performance of DPDK.
Indeed, a series of packets received from the NIC is not necessarily entirely destined for the same
VM. Hence, we use the virtual machine device queues (VMDQ) technology of Intel NICs. Packet
separation is done in hardware and packets for the di�erent VMs are automatically stored in separate
physical queues that are then simply pulled by the receiving core and sent to the di�erent VMs virtio
drivers.

Tagging. The sending core, after pulling a batch from a VM sending queue, is responsible for
tagging the packets. The program maintains tagging rules with the following �elds: protocol, source
IP, destination IP, source port, destination port, number of tags to push, tags to push. The entries
are stored in a two-dimensional array indexed by the VM ID and the rule ID for a given VM. The
maximum number of VMs (64 in our implementation) and of rules per VM (3 in our implementation)
is �xed and the array hence does not require dynamic memory allocation. Within a processed batch,
for each packet, the core traverses the 3 rules of the VM it is currently serving. If a �ve-tuple match
is found, the tags stored in the corresponding entry are directly copied between the Ethernet and IP
headers of the packet. If no match is found, the packet is dropped. Once all packets of a batch are
processed, the program sends the batch of tagged packets to the NIC.

Shaping. The sending core must ensure that �ows do not exceed the token-bucket parameters
that have been reserved for them. Indeed, a violation of these parameters invalidates all the DNC
computations and can hence lead to delay guarantees violations. We add four �elds to the tagging
rules: rate, burst, number of tokens, and last timestamp. The two �rst �elds store the token-bucket
parameters of the entry, the third and fourth �elds store the number of tokens in the token bucket
when they were last computed and the corresponding timestamp. For each packet within a processed
batch, the sending core computes the updated number of tokens based on the current timestamp and
the rate parameter of the token bucket. The packet is dropped if there are not enough tokens for
sending the packet. Otherwise, the number of tokens corresponding to the packet size are removed,

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 149

1 2 3 4 5 6 7 8
scenario ID

0

0.5

1.0

1.5

#
ac

ce
pt

ed
fl

ow
s

[1
03]

QJump
Silo
Chameleon w/o reconf.
Chameleon with reconf.

(a) Num. accepted �ows.

100 101 102

num. reconfigured flows

0.25

0.50

0.75

1.00

EC
D

F

BH flows
CS flows
CPS flows
IA flows

(b) Num. recon�gured �ows.

Figure 4.21: Simulation results. (a) indicates the increased number of accepted �ows in Chameleon compared
to the SoA systems and (b) shows the number of recon�gured �ows per �ow type and the e�ect of the
characteristics of �ows on their recon�gurability.

the timestamp is updated and the packet is kept. Timestamps are obtained using the timestamp
counter (TSC) register of the CPU. Having disabled the turbo-boost and power-saving features of
the CPU ensures that this counter measures real time and not simply the number of instructions.

Con�guration of tagging/shaping rules. In order to communicate with the virtual switch with-
out creating unpredictability and synchronization issues, we use an additional VM, the control VM
(with ID 0). This VM is not allocated a receiving queue (see Fig. 4.20b). The packets sent by this VM
are used to con�gure the rules stored in the sending core. When the sending core receives a control
packet, the �rst two bytes of the packets are used to index the table – they correspond to the VM ID
and rule ID to update. The next bytes in the packet are simply copied in the entry. The Chameleon
controller connects to this control VM to update tagging/shaping entries and is hence responsible
for sending the appropriate values in the correct order and endianness. The DPDK application then
simply reinitializes the number of tokens and last timestamp �elds of the modi�ed entry.

4.2.4 Evaluation

The goal of our evaluation is to show that Chameleon successfully provides latency guarantees and
can reach higher network utilization than existing approaches. First, Sec. 4.2.4.1 evaluates the uti-
lization and number of �ows our system can accommodate by running simulations of its admission
control. For di�erent types of tra�c distributions, we show that Chameleon reaches higher network
utilization and number of accepted �ows than the SoA QJump [Gro+15] and Silo [Jan+15] systems.
Second, in Sec. 4.2.4.2, we perform a microbenchmark of our end-host tagging and shaping imple-
mentation. We show that our implementation is accurate in shaping �ows and can tag packets at
high rates. Finally, in Sec. 4.2.4.3, we deploy the Chameleon system in a testbed composed of ten
switches and eight servers. We show that Chameleon can improve the performance of applications
that run on a shared network infrastructure and that the packet delays guaranteed by the system are
indeed not violated.

150 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

Flow description Rate Burst Deadline

Category 1: Industrial applications (IA) [Kat+17a]; [Vir17]

Database operations [300, 550] Kbps [100, 400] byte [80, 120] ms
SCADA operations [150, 550] Kbps [100, 400] byte [150, 200] ms
Production control [100, 500] Kbps [100, 400] byte [10, 20] ms
Control and NTP [1, 100] Kbps [80, 120] byte [10, 20] ms

Category 2: Clock synchronization (CS) [Pop19]

PTP [1, 220] Kbps [80, 300] byte [2, 4] ms

Category 3: Control plane synchronization (CPS) [SK18]; [IEC18]

Eventual consistency [2, 4] Mbps [80, 140] byte [50, 200] ms
Strict consistency [5, 8] Mbps [1000, 3000] byte [50, 200] ms

Adaptive consistency [2, 4] Mbps [80, 120] byte [50, 200] ms

Category 4: Bandwidth-hungry applications (BH) [Mel+19]; [Ali+11]; [WMZ19]; [Ali+12]

Hadoop, data-mining [100, 150] Mbps [1000, 5000] byte [10, 100] ms
Hadoop, data-mining [100, 200] Mbps [1000, 3000] byte [10, 100] ms
Hadoop, data-mining [80, 200] Mbps [1000, 3000] byte [50, 100] ms

Table 4.5: Considered �ow types and their characteristics.

Scenario Distribution Scenario Distribution

ID (IA, CS, CPS, BH) ID (IA, CS, CPS, BH)

1 (0.25, 0.25, 0.25, 0.25) 2 (0.2, 0.2, 0.5, 0.1)
3 (0.2, 0.5, 0.2, 0.1) 4 (0.5, 0.2, 0.2, 0.1)
5 (0.1, 0.4, 0.4, 0.1) 6 (0.4, 0.1, 0.4, 0.1)
7 (0.4, 0.4, 0.1, 0.1) 8 (0.33, 0.33, 0.33, 0.01)

Table 4.6: Flow request distributions used in the simulation.0.0 0.5 1.0

0.0

0.5

1.0

QJump
Silo

Chameleon w/o reconfiguration
Chameleon with reconfiguration

0.00 0.25 0.50 0.75 1.00
network utilization

0.00

0.25

0.50

0.75

1.00

EC
D

F

(a) Network utilization.

100 102 104

runtime [ms]

0.00

0.25

0.50

0.75

1.00

EC
D

F

(b) Runtime.

Figure 4.22: (a) Improved network utilization achieved by Chameleon compared to QJump and Silo. (b)
Runtime of embedding one �ow in the network.

4.2.4.1 Network Utilization

We conduct a comprehensive simulation study comparing Chameleon with the two main SoA ap-
proaches for predictable latency: QJump [Gro+15] and Silo [Jan+15]. We consider a : = 4 fat-tree
topology with 1 Gbps physical links and 16 servers.

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 151

Con�guration of the systems. For Chameleon, at each physical port, we consider 8 queues each
with 97 KB bu�er size, according to our results from Sec. 4.1.3.2 for Pica8 P3290 and P3297 switches.
For Silo, because it does not use priority queuing, we set a single queue with 590 KB of bu�er size,
still according to our results from Sec. 4.1.3.2 (Fig. 4.14a). We set the Silo per-link delay to 0.1 ms7. For
QJump, we have ' = 1 Gbps, n = 4 `s [Gro+15], we consider the maximum packet size % = 1500 byte,
and we set = = 328.

Simulation setup. We de�ne a set of �ow requests as an input to evaluate the performance of
the di�erent systems. A �ow request is de�ned by its source and destination nodes, and requested
rate, burst, and deadline. We choose the source and destination of each �ow request randomly
from the hosts in the network. To specify the rate, burst, and deadline values, we de�ne di�erent
types of application categories: industrial applications (IA), clock synchronization (CS), control plane
synchronization (CPS), and bandwidth-hungry (BH) applications (see Tab. 4.5). Each category of
application is de�ned by a set of distributions for rate, burst, and deadline values according to SoA
references as reported in Tab. 4.5. This allows us to de�ne a wide range of di�erent scenarios and
con�rm that Chameleon performs well under any scenario. To randomly sample �ow requests, we
use a �ow request distribution (0, 1, 2, 3), where 0, 1, 2 , and 3 are the probabilities of a �ow to belong
to the IA, CS, CPS, and BH categories. For example, the �ow distribution of scenario 1 in the Tab. 4.6
indicates that the probability of having a �ow request from each category is the same and is equal
to 0.25. After that, for a given �ow category, we randomly select one of the distributions of this
category and then randomly sample the rate, burst, and deadline values uniformly within the ranges
de�ned in Tab. 4.5. We de�ne eight di�erent scenarios as shown in Tab. 4.5. For each scenario and
system, we perform 100 runs for which we add �ows until a rejection happens. The simulation was
performed on a machine equipped with Intel Core i7-6700 CPU @ 3.40 GHz, 16 GB of RAM, running
Arch Linux x64 with kernel version 5.4.15-arch1-1.

Results: number of accepted �ows. The comparison of number of accepted �ows is shown in
Fig. 4.21a for all the scenarios described in Tab. 4.6. We consider two cases for the Chameleon ad-
mission control system, with and without recon�guring previously embedded �ows. Yet, in the case
without recon�gurations, Chameleon is able to accept between 2× and 10×more �ow requests com-
pared to the two SoA approaches. Additionally enabling recon�gurations allows to accept even more
�ow requests. The big performance di�erence between the SoA and Chameleon is due to the �exible
and demand-awareness design of Chameleon, while SoA relies on static and greedy decisions (see
Sec. 4.2.1). In particular, QJump is blocked to a maximum of = = 32 �ows because of the necessity to
de�ne = beforehand.

We observe that the bene�t provided by recon�gurations depends on the input tra�c distribu-
tion. For instance, scenario 8 in Fig. 4.21a bene�ts more from recon�guration than scenario 1. In
fact, as it is depicted in Fig. 4.21b, �ow types appear to exhibit di�erent levels of recon�gurability.
In particular, Fig. 4.21b shows that �ows from the BH category are recon�gured less than the other
�ow types. This is due to the fact that the rate and burst of BH �ows are signi�cantly higher than
7We compared the performance of Silo with each of the delays we used for Chameleon (see Sec. 4.2.3.1) and selected the

best performing value.
8Again, we evaluated QJump with di�erent = values and we chose the best performing one.

152 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

other types, hence having less chance to be recon�gured (especially in a highly utilized network,
see Fig. 4.22a). However, in addition to rate and burst, �ow deadline plays an important role in the
recon�gurability of the �ows. For example, in Fig. 4.21b, it can be seen that CS �ows have been
recon�gured less than IA and CPS, mostly due to their tight latency requirements.

It is worth to note that according to Fig. 4.21b, although the recon�guration operations bring a
great bene�t in terms of number of accepted �ows, we only recon�gure a few percent of the accepted
�ows (less than 100 �ows on average).

Results: network utilization. Fig. 4.22a shows the ECDF of the network link utilizations
achieved by the di�erent systems for all the considered scenarios. Note that we excluded the host
to top-of-rack switch links from the �gure. It can be seen that Chameleon is able to signi�cantly
increase the network utilization compared to other approaches, to reach close to line rate utilization
for some links. High utilization and predictable latency are hence not anymore exclusive objectives.
For network operators, that means Chameleon has the potential of achieving greater revenue.

Results: runtime. Fig. 4.22b depicts the comparison of runtime for embedding one �ow request in
the network for the di�erent systems. We measure the time between a �ow request and the reception
of a response (whether positive or not). For Chameleon, this includes routing and recon�guration
operations. We observe that, despite the greater complexity in Chameleon’s logic, it achieves better
runtime performance than Silo at the median. This is due to the fact that Silo runs a DCLC algorithm
for �nding the SP satisfying the delay requirement while Chameleon simply runs a Dijkstra least-
delay search. However, at the tail, Chameleon exhibits higher runtimes, due to the recon�guration
computations. Around a dozen of seconds are reached for the considered scenario. While this is
unacceptable, it can be easily avoided by stopping the embedding procedure if no response is received
after a pre-de�ned processing time threshold. Moreover, Fig. 4.22b shows that the recon�guration
has a low runtime impact, adding a few miliseconds to the runtime.

4.2.4.2 Tagger/Shaper Microbenchmark

Tagger. We connect two Dell servers (for speci�cations, see Sec. 4.2.3.2) directly using 10 Gbps
interfaces. In the source server, we deploy a VM generating tra�c using the MoonGen [Emm+15]
tra�c generator. This generated tra�c is pulled in batches through the virtio virtual interface by
the DPDK application. The combination of parameters outlined in Tab. 4.7 is used to create the
evaluation scenarios. We measure the rate of tra�c generated by the VM/MoonGen, pulled by the
tagger, tagged and forwarded to the NIC. These values are obtained through simple packet counters
in the DPDK application. The number of packets is converted into rate using the rate measured at
the destination interface (not connected to DPDK) using tcpdump. Fig. 4.23a shows the generation,
tagging and line rate for the di�erent scenarios, ordered by packet size. We observe that the DPDK
application is fast enough to tag every pulled packet from the VM, reaching up to 40 Gbps in some
cases. All the tagged packets are successfully sent to the NIC. We see that the tagging rate is either
bounded by the physical link rate (10 Gbps) or by the rate achieved by the tra�c generator. Hence,
the tagging implementation is never the bottleneck.

4.2. Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing 153

0 50 100
measurement cases

100

101

ra
te

[G
bp

s]

64 bytes 776 bytes 1478 bytes

tagging rate
MoonGen rate
line rate

(a) Tagging performance.

−2 −1 0 1 2
relative deviation [%]

0.0

0.5

1.0

EC
D

F

rate dev.
burst dev.

(b) Shaping precision.

Figure 4.23: Performance evaluation of the tagger and shaper implementation of Chameleon.

Shaper. We connect a Dell server directly to an Endace DAG 7.5G4 measurement card [End16]
through a 1 Gbps connection. We con�gure our DPDK application to pull packets one-by-one (batch
size of one) and to add 6 tags to them. Using the parameters in Tab. 4.8, we deploy a number of
VMs running MoonGen and generate tra�c towards the DPDK application with the corresponding
packet size. Based on the traces obtained by the measurement card, the actual shaped rate and token
bucket size are determined. We calculate the rate (resp. burst) deviation as the relative deviation of
the observed shaped rate (resp. burst) compared to the value de�ned in the shaping rule. As can
be observed in Fig. 4.23b, Chameleon’s shaper implementation exhibits a precise performance, pro-
ducing a maximum relative error of around 2%. Also, although not shown in the �gure, we observe
that shaping is more precise for a lower number of VMs. This is because the DPDK application pulls
packets in a round-robin fashion from VMs: having less VMs leads to shorter pulling intervals.

Parameter Values Parameter Values

Packet size [byte] 64, 776, 1478 Batch size 1, 16, 32
Num. �ows 1, 2, 3 Num. tags 2, 4, 6, 8, 10

Table 4.7: Considered parameters for the tagger evaluation.

VMs # Flows Packet size [byte] Rate [bps] Burst [bits]

10 3 78 105 105

10 1 800 107 104, 105, 106

5 3 800, 1522 107 105

5 1 78 103, 107 103, 104, 105

1 3 800 105, 107 105

1 1 78, 800, 1522 107 106

Table 4.8: Measurement scenarios for the shaper evaluation.

4.2.4.3 Testbed Measurements

We verify the Chameleon system in a real : = 4 fat-tree testbed as shown in Fig. 4.24. The Chameleon
controller connects to all the servers and switches through an out-of-band management network
not shown in the �gure. In the �rst experiment (Sec. 4.2.4.3), we con�rm that the delays guaranteed
by Chameleon are indeed not violated throughout the whole lifetime of �ows, even when �ows

154 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

Dell S4048-ON
toenham

Pica8 P3297
koeln

Dell S3048-ON
newcastle

Dell S3048-ON
watford

Dell S3048-ON
westham

Pica8 P3297
fulham

Dell S3048-ON
leeds

Dell S3048-ON
leicester

Dell S3048-ON
liverpool

Dell S3048-ON
mancity

Dell
hazard

Dell
rooney

Dell
kane

Dell
gerrard

Supermicro
daei

Supermicro
klinsmann

Supermicro
kahn

Supermicro
ballack

1 2

1

1 2 1 2

1 1 1

2 1

2 2 2 2

2 1 2 1

3 3 3 3

3 3 3 34 4 4 4

Figure 4.24: Testbed for our experiments.

1 2 3 4 5
flow [num]

0

50

100

la
te

nc
y

[µ
s]

0

5

10

pa
ck

et
lo

ss
[%

]delay requirements [ms]
2.67 82.79 2.85 2.85 145.4

(a) 4-server experiment.

1 2 3 4 5
flow [num]

0

50

100

la
te

nc
y

[µ
s]

0

5

10

pa
ck

et
lo

ss
[%

]delay requirements [ms]
184.97 3.16 100.34 3.68 199.21

(b) 8-server experiment.

Figure 4.25: End-to-end latency measured for 5 di�erent �ows. The crosses depict the maximum observed
latencies. Whiskers of the boxplots show the 10% and 90% percentiles.

are rerouted or new �ows are embedded in the network. In the second experiment (Sec. 4.2.4.3),
we illustrate that Chameleon helps resolving network interference and can provide guarantees to
applications even in presence of bandwidth-hungry adversarial tra�c. The bu�er capacities of the
switches are de�ned as measured in Sec. 4.1.3.2.

Veri�cation of E2E latency guarantees. In this part of our evaluation, we run the complete
Chameleon system in the testbed depicted in Fig. 4.24. We consider two scenarios, in the �rst one
we use the full testbed (with 8 servers), while in the second one, we use only the left pod of our
topology (4 servers). To perform our experiments, we consider 31%, 31%, 31%, and 11% of, IA, CS,
CPS, and BH applications and generate �ow requests as in Sec. 4.2.4.1. These particular scenarios
accepted a total of 298 and 218 �ow requests. Using two network taps mirroring tra�c to an Endace
DAG 7.5G4 measurement card [End16], we measure the packet delay experienced by �ve random
accepted �ows, while ensuring that at least one of these �ows was recon�gured. Fig. 4.25 presents
the observed E2E packet delay of the selected �ows in both scenarios. It can be seen that the delay
requirements of �ows are met and there is no packet loss occurring in the system. It is interesting to
notice that there is very little queuing happening: most packets experience the same delay (only due
to processing in the switches) and only a few packets are delayed due to queuing. This shows that,
to keep queues nearly empty, a drastic and very conservative approach like QJump (which allows to
send at most one packet at the same time in the network) is not necessary and that a precise DNC
modeling can achieve low and predictable latency while still achieving high utilization.

Resolving network interference. Precise clock synchronization is often a requirement of dis-
tributed systems [Cor+13]. In LANs, the precision time protocol (PTP) is a master–slave protocol

4.3. Summary 155

0 100 200 300
time [s]

0

250

500

750

1000

ab
s.

cl
oc

k
dr

i�
[µ

s] ptpd + cross-tr.
ptpd
ptpd + cross-tr. + Chameleon

Figure 4.26: ptpd experiment. Chameleon resolves the interference introduced by sharing the network with
bandwidth-hungry applications like Hadoop.

that is widely used for clock synchronization. It o�ers microsecond-granularity from a master server
to other slave machines. In Fig. 4.26, we show the clock o�set between a slave VM on the server kane
and a master VM on the server gerrard in our testbed when both are running ptpd (version 2.3.1), an
open-source implementation of PTP. The PTP application shares the network with two �ows (one
from a VM on server rooney and one from a VM on kane) that send Hadoop-like tra�c to the VM on
gerrard that runs ptpd: the tra�c �ows are competing for bandwidth with the PTP �ows. The tra�c
is generated using MoonGen [Emm+15] on both VMs and emulates Hadoop tra�c by sending bursts
of line rate tra�c, at an average rate of around 480 Mbps. We observe in Fig. 4.26 that this cross-tra�c
causes ptpd to fall out of synchronization in the order of hundreds of microseconds, while the clock
o�set of ptpd on the same idle network remains in the order of dozens of microseconds. When we
introduce Chameleon to reserve network resources and route �ows on appropriate queues through
VLAN-based source routing, the interference is resolved and the ptpd synchronization o�set remains
as in the idle network scenario.

4.3 Summary

The main contribution of this chapter is Chameleon, a demand-aware cloud network that combines
adaptive source routing with priority queuing to meet both performance and resource e�ciency ob-
jectives. Chameleon dynamically reevaluates routing decisions, performing adjustments while main-
taining network calculus invariants to ensure strict latency guarantees are provided and preserved.
In extensive experiments conducted in a testbed based on real data center topologies and using large-
scale simulations, we found that Chameleon can signi�cantly outperform the SoA: Chameleon is able
to admit signi�cantly more �ows, and hence increase network utilization and operator revenue,
without sacri�cing performance guarantees.

This chapter has shown that demand-aware and adaptive networks, leveraging source-routing
and queuing �exibilities, introduce an opportunity to improve cloud network utilization while pro-
viding a predictable performance, in particular, latency. Our approach buils upon network calculus
concepts while accounting for such �exibilities.

We understand our work as a �rst step and believe that our approach introduces several inter-
esting avenues for future research. In particular, our algorithms are currently fairly simple, and we
expect further utilization gains with improved algorithms. More generally, while we have focused on

156 Chapter 4. Measurements and Testbed Implementation for Data Center Networks

datacenters, it will be interesting to explore opportunities of self-adapting networks, based on pri-
ority recon�gurations, in wide-area networks as well. We believe that the self-adapting approaches
considered in this chapter can also serve as a stepping stone toward the self-driving networks [FR17]
envisioned by the networking community.

Chapter 5

Measurements and Testbed

Implementation for Small Networks

Communication networks do not only form the backbone of our digital society, connecting users
to the world’s datacenters as well as datacenters to each other, but also are becoming ubiquitous
in “small scale” environments, such as airplanes [SV08], cars [Som+10] and industrial production
sites [GJF13b]. These environments often come with particular constraints: such networks have to
provide stringent latency guarantees to operate properly (e.g., time-critical control loops) and their
workload often has speci�c characteristics (e.g., related to the rate and burstiness of the arriving de-
mands). In general, such networks rely on signi�cantly smaller and more lightweight equipment than
other networks [Tri11]; [SV08]. At the same time, small networks can still bene�t from emerging
�exible communication technologies, and in particular programmability. We de�ne “small networks”
as networks of low capacity that connect small, lightweight, and low-cost equipment. We observe
that such networks have received little attention in the literature. In particular, while there exist
various low-cost programmable switches based on simple hardware, such as the Zodiac FX [Nor19]
or the Banana Pi R1 [Sin18a] and R2 [Sin18b], it is unexplored today to which extent such hardware
can be used to provide predictable performance, and in particular latency. At �rst sight, it may seem
challenging to provide deterministic latency guarantees with low-cost and hence low-performance
and less reliable devices.

This chapter is motivated by the observation that we lack performance models for low-cost
programmable switches used in small networks – a prerequisite for predictability. Indeed, as we
show in this chapter, the few SoA models for predictable latency which do exist today, such as
QJump [Gro+15] and Silo [Jan+15], are a poor match for such switches. Our analysis of the reasons
behind this mismatch shows that existing models rely on architectural and performance assumptions
that turn out to be invalid in this context. In particular, processing time on low-cost programmable
devices is not negligible and can create interferences among the di�erent, and up to now considered
independent, switch ports. This analysis is also valid for our TBM and Chameleon models described
in chapters 2 and 4. Indeed, as extensions of Silo, they su�er from the same invalid assumptions for
small networks.

In this chapter, we observe that low-cost programmable devices also provide great opportu-
nities for predictable performance, because they are simple. For example, the Zodiac FX runs a

157

158 Chapter 5. Measurements and Testbed Implementation for Small Networks

single-threaded OS-free packet processing loop. More expensive devices, such as carrier-grade
switches, typically rely on multi-core architectures and OSs with complex schedulers and opti-
mizations [KPK14]; [KPK15]; [Kuź+18], making it di�cult to devise models: a prerequisite for
predictability. Another opportunity, besides architectural simplicity, comes from the fact that
low-cost programmable switches are often based on open architectures, in contrast to high-end
switches that have black-box architectures. As we show, this allows us to derive fundamental
benchmarking dimensions. Besides, industrial applications that demand predictability typically
impose relaxed bandwidth (up to hundreds of kilobits per second) and latency guarantees on the
order of milliseconds [Kat+17a], which can potentially be achieved by low-capacity hardware.

The main contribution of this chapter is the design, implementation, and evaluation of Loko, a
system providing E2E latency guarantees for networks based on low-cost programmable switches
serving token-bucket tra�c patterns. Loko relies on a measurement-based approach to derive ac-
curate performance models for such switches, and manages the network accordingly in order to
ensure deterministic latency. Our approach to design Loko leverages principles of DNC, and pro-
ceeds in three steps: First, through a profound measurement campaign, we derive the necessary
parameters for modeling switching performance, leveraging knowledge of the (open) architecture
of low-cost devices. Second, based on these measurement inputs, we construct a switch model that
avoids traditional assumptions that are invalid for low-cost devices. Third, we extend the switch
model to a network model, which forms the basis for the design of admission control and resource
allocation strategies enabling Loko to provide latency guarantees. This model can be used as part
of the DetServ architecture de�ned in chapter 2 to replace the TBM, invalid for small networks. We
evaluate Loko in a real testbed using a proof-of-concept implementation with Zodiac FX switches.
Our experiments con�rm the correctness and applicability of our approach and its underlying mod-
els: our testbed measurements show that the guarantees provided by Loko are indeed not violated.
We observe predictable E2E latencies, including guaranteed throughput, guaranteed packet delivery
and burst allowance.

This chapter tackles the challenge of providing predictable latency guarantees for token-bucket
tra�c patterns with low-cost and hence low-performance (and presumably less reliable) devices.
Succinctly, the contributions of this chapter are:

• We demonstrate the limitations of existing performance models in the context of low-cost and
low-capacity programmable switches. To this end, we pinpoint the assumptions taken by SoA
approaches, including the TBM of chapter 2, which are invalid in this context.

• We present the �rst measurement-based methodology to realize networks providing deter-
ministic QoS guarantees. Our approach relies on DNC principles. We also give insights on the
performance of low-cost programmable switches.

• We design, implement, and evaluate Loko, a system based on the derived models and resource
allocation algorithms which provides latency guarantees for small-scale programmable de-
vices serving token-bucket tra�c patterns and that follows the DetServ architecture de�ned
in chapter 2.

5.1. Motivation: SoA Falls Short for Low-Cost Devices 159

IS Microchip KSZ8795CLX

1× 1000 Mbps data port (to CPU)
4× 100 Mbps data ports

CPU Atmel SAM4E8CA

1× 100 Mbps port (to IS)
120 MHz single-core

128 KB of RAM
512 KB of prog. �ash memory

Figure 5.1: Physical layout of the Zodiac FX and main speci�cations of its integrated switch (IS) and CPU.

• Using operational traces from a world-leading industrial network operator, we con�rm the
practical value of Loko: it can satisfy delay and bandwidth requirements of existing industrial
applications using low-cost hardware.

In order to ensure reproducibility, we have released our research artifacts (data sets, traces,
con�guration �les and source code) at [Van19a].

Content and outline of this chapter. We present an empirical motivation for our work in Sec. 5.1.
We then introduce our measurement-based methodology (Sec. 5.2) and derive a switch performance
model accordingly (Sec. 5.3). In Sec. 5.4, we describe the Loko system, its network model and how
it �ts in the DetServ architecture, and we report on results of our proof-of-concept measurements
in Sec. 5.5. We discuss the generality of our solution and its applicability in Sec. 5.6. Finally, we
summarize and conclude the chapter in Sec. 5.7. This chapter relies on the content of [Van+19b].

5.1 Motivation: SoA Falls Short for Low-Cost Devices

We start with an empirical motivation showing the shortcomings of SoA performance models when
applied to networks based on low-cost and hence low-capacity programmable switches. As a case
study throughout the chapter, we will consider the $70 Zodiac FX switch, which is archetypical for
switches used in such networks, e.g., the Banana Pi R1 and R2 [Sin18a]; [Sin18b].

The Zodiac FX relies on a CPU for packet processing. Such kind of architecture, also used by
the $90 and $125 Banana Pi R1 and R2, is typical for low-cost programmable devices. Indeed, such
devices do not have the ability to build a programmable processing into the switch chip, as can easily
be done for switches implementing only a static behavior, e.g., L2 switching. As a result, the only
option is to use a CPU for processing.

We will then show that SoA systems [Gro+15]; [Jan+15] (see Sec. 2.1) providing latency guar-
antees are a poor match for such architectures, and provide an analysis for the underlying reasons.
We �nd that such architectures invalidate several assumptions, as (a) in contrast to high-end de-
vices, packets cannot be processed at line rate; and (b) the switching capacity is shared among ports,
thereby leading to inter-port interferences which are ignored for high-end devices.

160 Chapter 5. Measurements and Testbed Implementation for Small Networks

1: while true do

2: processFrame()
3: processCLI()
4: protocolTimers()
5: checkOFConnection()
6: if +500 ms since last OFChecks() then OFChecks()
7: function processFrame()
8: if packet from native port then
9: if HTTP packet then sendToHttpServer()

10: if OF packet then sendToOFAgent()
11: if packet from OF port then sendToOFPipeline()

Figure 5.2: Main loop of the Zodiac FX �rmware.

5.1.1 Hardware Architecture

The Zodiac FX is equipped with four 100 Mbps Ethernet ports connected to an integrated 5-port L2
switch (Fig. 5.1) with a 64 KB internal frame bu�er (composed of 512 bu�ers of 128 bytes) shared
among all ports. The �fth port of this IS is connected through a 100 Mbps link to an ARM Cortex-M4
single-core 120 MHz micro-controller (CPU) with 128 KB of RAM. The IS and the CPU are further
connected through an out-of-band universal synchronous/asynchronous receiver/transmitter (US-
ART) interface (not shown in Fig. 5.1) to allow the CPU to con�gure the forwarding behavior of the
IS (Sec. 5.1.2.1) and to fetch status/statistics information (Sec. 5.1.2.2). The �ash memory of the CPU,
storing the �rmware, can be programmed through a universal serial bus (USB) connector which
also serves as a power input. The switch consumes up to 200 mA, making it perfect for small-scale,
low-energy environments.

5.1.2 Firmware Architecture

The Zodiac FX ships with an open-source �rmware supporting OF versions 1.0 and 1.3 [Nor18]. We
focus on OF version 1.0 and on version 0.84 of the �rmware.

5.1.2.1 Behavior of the Integrated Switch (IS)

Through the USART interface, the CPU con�gures the IS during boot-up based on a con�guration
stored in electrically erasable programmable read-only memory (EEPROM). The �rmware distin-
guishes native and OF ports — native ports are (management and) CP ports and OF ports are DP
ports. If a port is con�gured as a native port, the IS processes the packets using its internal L2
switching engine. If a port is con�gured as an OF port, the IS directly sends the packets to the CPU
with a 1-byte tail tag identifying the port where the packet came from. By default, ports 1–3 (the
three leftmost ports in Fig. 5.1) are OF ports and port 4 is a native port. The �fth port (towards the
CPU) is always con�gured as native.

5.1.2.2 Behavior of the CPU

After con�guring the IS, the CPU runs the single-threaded in�nite loop shown in Fig. 5.2. The
processFrame() function (line 2) processes, if present, one Ethernet frame. If the frame comes from

5.1. Motivation: SoA Falls Short for Low-Cost Devices 161

an OF port, it is forwarded to the OF pipeline. If the frame comes from a native port, it is forwarded,
based on the L4 destination port, either to theOF agent, or to an HTTP server hosting a user interface.
If the CPU sends a packet coming from theOF agent or the HTTP server, it is sent through the normal
L2 switching engine of the IS. If the packet comes from the OF pipeline, the output port is de�ned
by the OF pipeline through a 1-byte tail tag appended to the packet. The processCLI() function
(line 3) processes, if present, a command sent via USB on the command line interface (CLI). Both
processFrame() and processCLI() functions are non-blocking and return only when processing is
completed. The protocolTimers() function (line 4) handles the timers of the TCP/IP stack and
the checkOFConnection() function (line 5) handles the OF connection. Finally, the OFChecks()
function (line 6) alternates between updating the port statistics, updating the status (up/down) of
ports (both through the out-of-band connection) and checking entries timeouts (each one executed
at most every 1500 ms).

OpenFlow agent. We detail here the �ow table management behavior of the OF agent (line 10).
The table is stored as an ordered list of up to 128 entries. Upon receipt of a FlowMod Add message, the
new �ow entry is stored directly at the end of the table. Upon receipt of a FlowMod Delete message,
the agent goes through all entries one by one. If an entry matches the �ow deletion request, it is
deleted and the table is consolidated by replacing the removed entry with the last entry in the table.
The process upon receipt of a FlowMod Modify message is similar, except that matching �ow entries
are overwritten with the new received �ow.

OpenFlow pipeline. The DP processing logic (line 11) goes through the �ow entries one by one.
If a �ow entry matches, only subsequent entries with higher or equal priority are checked. While
checking if an entry matches the incoming packet, all �elds belonging to the match structure are
considered, independently of whether another �eld in this match structure matched or not. If no
�ow entry matches, a PacketIn message is sent to the controller. Otherwise, the counters of the
highest priority matching entry are updated and the corresponding action(s) is (are) performed.

5.1.3 Why Does SoA Fail?

We demonstrate the need for a system able to provide guarantees for low-cost programmable
switches by deploying two SoA systems for guaranteed latency, QJump [Gro+15] and Silo [Jan+15],
on the Zodiac FX and Banana Pi R1 switches and by showing that these systems fail to provide
their latency guarantees. We choose these two solutions as the two only existing SoA systems for
strict latency guarantees without hardware modi�cations (see Sec. 2.1). We consider a topology of
two switches, both of which have two hosts attached. Each host sends tra�c to its symmetrical
counterpart on the other switch. For making the experiment comparable to the �nal evaluation
of Loko (Sec. 5.5), we consider 306-byte packets and con�gure 17 �ow entries on the switches (4
used ones and 13 dummy ones). For tra�c shaping, we use the tc Linux utility with its tbf queuing
discipline [Lin]. We observe the packet delays of two of the four �ows for 20 runs of 10 seconds
using an Endace DAG 7.5G4 card [End16].

162 Chapter 5. Measurements and Testbed Implementation for Small Networks

0.1 1 10
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F
(a) Silo with Zodiac FX.

0.1 1 10 50
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F

(b) Silo with Banana Pi R1.

0.1 1 5
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F

(c) QJump with Zodiac FX.

0.1 1 10 50
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F

(d) QJump with Banana Pi R1.

Figure 5.3: State-of-the-art approaches fail at providing their guarantees for low-cost devices. The vertical
red line corresponds to the guaranteed latency, zero delay corresponds to packet loss.

Silo. The guarantees provided by Silo [Jan+15] are based on an admission control scheme. In our
scenario, with Zodiac FX switches, Silo would, for example, allow each host to send tra�c at a rate
of 45 Mbps, with a maximum burst of 306 bytes and would provide a 146.9 `s latency guarantee for
these �ows. We describe how we compute these values in appendix Sec. 5.8. Fig. 5.3a shows that
Silo fails at providing its guarantees for the Zodiac FX: for this amount of tra�c, the switches drop
92.4% of the packets and 7.6% of the packets arrive delayed. For the Banana Pi R1, we show in the
appendix that Silo would allow each host to send tra�c at a rate of 450 Mbps, with a maximum
burst of 306 bytes and would provide a latency guarantee of 14.7 `s. Fig. 5.3b shows that sending
this amount of tra�c leads to 87.5% of lost packets and 12.5% of delayed packets: Silo also fails at
providing its guarantees for the Banana Pi R1.

QJump. QJump [Gro+15] guarantees a maximum latency of 2=%/' + n – where = is the number of
hosts, % denotes the packet size, ' represents the link rate, and n refers to the cumulated processing
time – if all hosts send at most one packet during this time period, i.e., at a rate of at most %/(2=%/'+
n). We have = =4 and % =306 bytes. For the Banana Pi R1, ' =1 Gbps. The n parameter is not known.
If we use the value in [Gro+15], i.e., 4 `s, Fig. 5.3d shows that QJump fails at providing its guarantees:
36.3% of the packets are lost and 63.7% are late. This shows that a proper modeling of the processing
time of the switches is needed in order to determine n . This is the gap we address in this chapter
(Sec. 5.2) for the Zodiac FX. For the speci�c case considered (packet size, number of entries) and with
at most two switches between any pair of hosts, we have n = 2 × ?FX = 257 `s. Fig. 5.3c shows that,
even with this n modeling, QJump fails: 6.5% of packets are lost and 49.9% are late.

Failure reasons. With the previously described hardware architecture in mind, we advocate
the following explanations for the failure of Silo and QJump. First, both approaches assume that
switches can process packets at line rate. For carrier-grade switches, that is usually correct. For
example, the Dell S4048-ON switch provides a 1080 Mpps throughput [Del] and at most 48 ports
×10 Gbps/64 bytes =938 Mpps can be sent on its input ports. With four 100 Mbps ports, the Zodiac
FX can receive up to 0.781 Mpps but its throughput can go down to 0.3 Mbps (Sec. 5.2.4), i.e., as
low as 586 pps. Similarly, with four 1 Gbps ports, the Banana Pi R1 can receive up to 7.81 Mpps

5.2. Step 1: Switch Benchmarking 163

‒ Identification of delay
 sources
‒ Identification of strictly
 independent services

Benchmarking of subject
switch (processing time,
throughput, buffer capacity)

Translation of measurements
to (a) performance model(s)

‒ Switch models → network
 model
‒ Admission control
‒ Resource allocation

Step 0: Architectural
Analysis (Sec. 5.2)

Step 1: Model Inputs
(Sec. 5.3)

Step 2: Switch Model
(Sec. 5.4)

Step 3: Loko Design
(Sec. 5.5)

Figure 5.4: Our approach for the design of Loko.

but, through a setup similar to Sec. 5.2.4, we evaluated its throughput at around 645 Mbps for
1470-byte packets, i.e., as low as 59 kpps. Hence, the Zodiac FX and the Banana Pi R1 cannot always
process packets at line rate and must bu�er at the ingress. Second, because of the centralized CPU
of small-scale programmable switches, the processing of packets from a given port can interfere
with other ports. Because carrier-grade switches can process packets at line rate, Silo and QJump
assume independent services for each port, while, seemingly, a shared per-switch service de�nition
is required for low-cost programmable switches.

To summarize, the assumptions of existing approaches that turn out to be erroneous for low-cost
programmable switches are:

• Assumption 1. Switches can process packets at line rate and hence queuing happens mostly at
the egress.

• Assumption 2. Ports do not interfere with each other.

Therefore, our approach for Loko proceeds in three steps (cf. Fig. 5.4). First (Sec. 5.2), to avoid
Assumption 1, we comprehensively evaluate the performance of a given low-cost programmable
switch. Second (Sec. 5.3), we use our measurements results to derive a shared per-switch forwarding
performance model based on DNC, thereby avoiding Assumptions 1 and 2. Finally, in Sec. 5.4, we
describe the overall Loko system using the switch performance model to design a network-wide
model for predictable latency with resource allocation and admission control that �ts within the
DetServ architecture described in Sec. 2.3.

5.2 Step 1: Switch Benchmarking

To realize predictable performance, Loko leverages DNC concepts. DNC modeling requires the de-
termination of the worst-case processing time and throughput, for delay computation, and of the
bu�er size for packet loss prevention (see Sec. 2.2). In this section we present a measurement-based
methodology, along with its results, to determine these switch performance parameters.

5.2.1 Ensuring Deterministic Performance

First, we must ensure that all in�uential factors can be gathered as benchmarking dimensions. In
this section, we cover the in�uencing factors that cannot be controlled and must be deactivated. As

164 Chapter 5. Measurements and Testbed Implementation for Small Networks

Controller

Tap

Zodiac FX
3 24 1

DAG
1 2 3 4

(a) CP setup.

→ →

← ←

DAGController Zodiac FX

"CP ?FX
CP+SFD

Creq

(b) With reply.

→ →

→ →

← ←

DAGController Zodiac FX

"CP2
"CP1 ?FX

?BR

Creq

CBR

CP+SFD

(c) No reply.

Figure 5.5: (a) CP processing time measurement setup and corresponding sequence diagrams for CP messages
(b) with reply and (c) without reply.

a single CPU processes all received packets, for CP (resp. DP) processing, we make sure that no DP
(resp. CP) packets are sent and that the CLI and HTTP server are not used.

The checkOFConnection() function (line 5) sends EchoRequest messages if no CP messages
were exchanged for= seconds. We set= to in�nity and consider that the controller checks the liveness
of the OF connection.

The OFChecks() function (line 6) performs three di�erent operations every 500 ms (Sec. 5.1.2.2).
Fig. 5.6a shows the processing time of an EchoRequest over time. We observe spikes every 1.5 s,
corresponding to the time needed for the IS to return port statistics updates to the CPU. Port status
updates are also fetched from the IS, thus are costly as well. In order to prevent these interferences,
we completely disable the OFChecks() function. First, port statistics are not needed, as our archi-
tecture is solely based on a centralized admission control strategy that keeps the network state in
the CP (see Sec. 2.3). Second, we assume a static network topology, thereby not needing port status
updates. Finally, �ow timeout management is also not needed. Indeed, �ow entries are proactively
and completely managed by a controller.

The protocolTimers() function (line 4) hence remains the only source of interference. Its impact
will be considered by taking the worst-case value among our samples.

5.2.2 Control Plane Processing Time

The architecture of low-cost programmable switches (Sec. 5.1.3) leads to interferences between the
processing of CP and DP packets. We �rst consider the CP, an essential component of any pro-
grammable network. We describe in this section our measurement-based methodology for deter-
mining CP processing times and report on its results for our case study.

5.2.2.1 Setup

A Ryu-based [Ryu17] controller is connected to the Zodiac FX and a network tap mirrors the frames
of this connection to an Endace DAG 7.5G4 measurement card [End16] which timestamps packets
upon arrival of the SFD [Don02] (Fig. 5.5a). We construct two measurement procedures: for CP
messages with reply (e.g., EchoRequest) and for CP messages without reply (e.g., FlowMod Add).

5.2. Step 1: Switch Benchmarking 165

0 1 2.5 4 5.5
time [s]

102

103

104

pr
oc

es
si

ng
ti

m
e

[µ
s]

(a) Native code impact.

OF 1.0 Message avg. ± std. dev. [`B]
EchoRequest 90.91 ± 1.71
BarrierRequest 91.27 ± 1.74
FeatureRequest 295.55 ± 1.76
DescStatsRequest 187.64 ± 1.98
GetCon�gRequest 91.92 ± 1.60
PortStatsRequest 125.70 ± 1.93
AllPortStatsRequest 173.93 ± 1.94
FlowStatsRequest* 297.80 ± 65.20

(b) CP processing times.

Figure 5.6: (a) EchoRequest processing time with native code and (b) processing time of CP messages except
FlowMod.
* indicates dependency on the number of �ow entries and actions.

CPmessages with reply. Here, the controller simply sends a CP message and its processing time
?FX can be obtained from "CP, the time di�erence between the DAG timestamps (see Fig. 5.5b), as

?FX = "CP − Creq − CP+SFD, (5.1)

where Creq is the computed transmission time of the request and CP+SFD is the computed transmission
time of the Ethernet preamble and SFD (8 bytes) sent before the response.

CPmessages without reply. Here, we send an additional BarrierRequest directly after the subject
CP message (see Fig. 5.5c). This way, the processing time ?FX of the subject CP message can be
obtained from the measured delay "CP2 until the BarrierReply is received as

?FX = "CP2 − Creq − ?BR − CP+SFD, (5.2)

where Creq and CP+SFD are computed and ?BR corresponds to the measured processing time of a Bar-
rierRequest. This is only valid if the BarrierRequest is received by the Zodiac FX before it �nished
processing the subject CP message, i.e.,

"CP1 + CBR < "CP2 − ?BR − CP+SFD. (5.3)

To ensure this, we implement a Linux tc queuing discipline that delays OF CP messages without
reply (e.g., FlowMod) until a subsequent BarrierRequest is sent.

5.2.2.2 Scenario

For the FlowMod and FlowStatsRequest messages, we consider �ow tables with 1 to 128 entries and
0 to 4 actions per entry. For other messages, based on our analysis of the OF agent implementation,
we consider an empty �ow table because the processing time is independent of the switch state. We
gather 100 samples for each CP message. For FlowMod and FlowStatsRequest, we gather 100 samples
for each combination of the numbers of entries and actions.

5.2.2.3 Results

Fig. 5.6b shows that the processing time of the Zodiac FX for CP packets is very stable: less than 2 `s
of standard deviation. The higher variation for the FlowStatsRequest message is due to its depen-
dency on the numbers of �ow entries and actions considered. Surprisingly, the Zodiac FX actually

166 Chapter 5. Measurements and Testbed Implementation for Small Networks

0 16 32 48 64 80 96 112 128
number of flow entries

70

80

90

pr
oc

es
si

ng
ti

m
e

[µ
s]

0 action

1
2

3
4

(a) FlowMod Add.

0 16 32 48 64 80 96 112 128
number of flow entries

0

0.5

1.0

1.5

2.0

pr
oc

es
si

ng
ti

m
e

[m
s]

Delete
Modify
Strict
None

(b) FlowMod Delete/Modify.

Figure 5.7: Average (100 samples per point) processing time of FlowMod Add/Delete/Modify messages.

outperforms carrier-grade devices in some cases. For instance, it needs around 92 `s to process a
BarrierRequest message, while the Pica8 P-3290 and Dell 8132F switches need 100–700 `s [KPK14].

FlowMod Add/Delete/Modify. Fig. 5.7a shows that the number of �ow entries has no signi�cant
impact on the average processing time of FlowMod Add messages: the Zodiac FX always directly adds
new entries at the end of the table. The processing time is only in�uenced by the number of actions,
as a higher number of actions requires copying more data into memory. For FlowMod Delete/Modify
messages, we consider several cases: with or without the strict option and deleting/modifying all
(lines without markers) or none (lines with markers). Fig. 5.7b shows that, in general, the average
processing time increases linearly with the number of entries, reaching up to 2.3 ms for deletion. We
further observe that requests with the strict option are processed faster than without. This is due
to the fact that, for strict deletion/modi�cation, matches only have to be compared bitwise, while
without the strict option, more costly masking operations are required. Further, deleting/modifying
all �ow entries requires more time than none, as the switch additionally has to perform the deletion
(i.e., consolidate the table) or modi�cation for each �ow entry. The consolidation operation appears
more costly than the modi�cation, as for this case, processing a Delete request takes more time than
a Modify request. However, when none of the entries match, the FlowMod Modify message requires
the switch to add the entry, which in this case, leads to a slightly higher processing time for Modify
requests.

Outcomes. Given the knowledge of the Zodiac FX state, the processing time of CP messages is
highly predictable, allowing us to deterministically model it and include it in our shared per-switch
model.

5.2.3 Data Plane Processing Time

As processing time is not negligible for small-scale programmable switches (Sec. 5.1.3), an important
step towards the computation of worst-case switch traversal times is to precisely quantify the pro-
cessing time of DP packets. We present our detailed and comprehensive measurement methodology
and report on its results and insights.

5.2. Step 1: Switch Benchmarking 167

Dimension Values

nb. of entries 1, 17, 33, 49, 65, 81, 97, 113, 128
match type port, tp-dst, dl-dst, masked-nw-dst, �ve-tuple, all

action output, set-vlan-id, set-vlan-pcp, strip-vlan, set-dl-src, set-nw-src, set-nw-tos, set-tp-src
used entry �rst, last
priorities increasing, decreasing
packet size 64, 306, 548, 790, 1032, 1274, 1516

Table 5.1: Considered dimensions for the DP processing time.

5.2.3.1 Evaluation Dimensions

Based on the knowledge of the OF pipeline implementation (Sec. 5.1.2.2), we identify all the parame-
ters in�uencing the processing time of the Zodiac FX. We de�ne them below, with Tab. 5.1 reporting
the full lists of considered values.

- number of entries. More entries means more comparisons. The maximum number of entries is
128 (see Sec. 5.1.2), so we explore values from 1 to 128 by steps of 16.

- match type. Since only �elds belonging to the match structure are checked, the number and
type of �elds in the match structure impact the processing time of the Zodiac FX. In addition to the
port, tp-dst, dl-dst and masked-nw-dst match types, we consider the �ve-tuple (ip-src, ip-dst, tp-src,
tp-dst, nw-proto) and all (�ve-tuple, in-port, nw-tos, dl-src, dl-dst) combinations. Because all �elds of
the match are always checked, the way in which an entry does or does not match (e.g., how many
�elds fail) has no in�uence.

- action. Besides the single output action, we consider di�erent modi�cation actions followed by
the output action.

- used entry. Because the switch can avoid checking �ow entries if a match was already found,
the position of the matching entry can have an impact. We consider cases with only one matching
entry: the �rst or the last one.

- priorities. We consider two di�erent orderings of �ow entries: increasing and decreasing prior-
ities. In the former case, all �ow entries will be checked, while in the latter, entries are not checked
anymore as soon as an entry matches.

- packet size. Many components of delay in a switch are likely to be proportional to packet
size [KS98].

Because of the centralized CPU architecture, the simultaneous usage of several ports (including
the CP port) also impacts processing time. This will be taken into account in our model by de�ning a
shared per-switch service (Sec. 5.3). We hence do not include it in our processing time measurements.

5.2.3.2 Setup

A Ryu-based [Ryu17] controller generates a �ow table according to the selected values of the dimen-
sions. The matching �ow entry is con�gured to forward to port 2. Using scapy [BS18], Host 1 (H1)
sends packets with the appropriate header �elds and packet size. Packets coming in (port 1) and out
(port 2) of the Zodiac FX are then mirrored using two network taps to the Endace DAG 7.5G4 mea-
surement card (Fig. 5.8a). The processing time ?FX of the switch can be obtained from the measured

168 Chapter 5. Measurements and Testbed Implementation for Small Networks

DAG
2 31 4

Zodiac FX
3 24 1

Controller H2Tap H1Tap

(a) DP setup.

→ →

→ →

DAG DAGH1 Zodiac FX H2

"DP ?FX
CP+SFD

C?

(b) DP sequence diagram.

Figure 5.8: (a) DP processing time measurement setup and (b) corresponding sequence diagram.

1 17 33 49 65 81 97 113128
number of flow entries

0

1

2

pr
oc

es
si

ng
ti

m
e

[m
s]

0

50

100

th
ro

ug
hp

ut
[M

bp
s]

(a) Number of �ow entries

64 306 548 790 103212741516
packet size [bytes]

0

1

2

pr
oc

es
si

ng
ti

m
e

[m
s]

0

50

100

th
ro

ug
hp

ut
[M

bp
s]

(b) Packet size

Figure 5.9: Processing time and throughput of the Zodiac FX based on the number of entries (left) and packet
sizes (right).

"DP by subtracting the computed transmission time C? of the packet (Fig. 5.8b), i.e.,

?FX = "DP − C? − CP+SFD. (5.4)

For each possible combination of the di�erent dimensions in Tab. 5.1, we measure the processing
time of 100 packets in order to reach su�cient statistical signi�cance.

5.2.3.3 Results

The results are represented as boxplots in Figs. 5.9 and 5.10. Whiskers show the 5% and 95% per-
centiles and the minimum and maximum values are shown as crosses. The �gures also show the
throughput values covered in Sec. 5.2.4.

Number of entries. Fig. 5.9 shows that the processing time increases linearly with the number of
entries. In order to show the whole range of processing time values achieved by the switch, all the
other dimensions are aggregated in the boxplots. We see that the processing time of the Zodiac FX
ranges from around 50 `s to 2.1 ms.

Packet size. Similarly, because of memory copy operations, the measured processing time in-
creases linearly with the packet size (Fig. 5.9). We observe that the increase is smaller than for
the number of entries, i.e., the latter has a higher impact. For a similar packet size range, the Pica8
P-3297, Dell S4048-ON and NEC PF-5240 carrier-grade switches have a processing time of around
3–5 `s (see Sec. 4.1.2.1). Compared to them, the Zodiac FX performs poorly: up to three orders of

5.2. Step 1: Switch Benchmarking 169

inc.-l
ast

inc.-f
irst

dec.-l
ast

dec.-f
irst

200

250

300

350

pr
oc

es
si

ng
ti

m
e

[µ
s]

40

60

80

th
ro

ug
hp

ut
[M

bp
s]

(a) priorities-used rule.

all

five-tu
ple

dl-dst
tp-dst port

msk.-nw-dst

1000

1500

pr
oc

es
si

ng
ti

m
e

[µ
s]

0.4

0.6

th
ro

ug
hp

ut
[M

bp
s]

(b) match type.

output

set-d
l-sr

c

stri
p-vlan

set-vlan-id

set-vlan-pcp

set-n
w-src

set-n
w-to

s

set-tp
-src

350

400

pr
oc

es
si

ng
ti

m
e

[µ
s]

80

90

th
ro

ug
hp

ut
[M

bp
s]

(c) action.

64 320 576 832
1088

1344

IS packet size [bytes]

2.05

2.10

pr
oc

es
si

ng
ti

m
e

[µ
s]

(d) IS packet size [bytes].

Figure 5.10: (a)–(c) Processing time and computed throughput of the Zodiac FX and (d) processing time of the
IS. (a) 17 entries, �ve-tuple matching, 790-byte packets and output action, (b) 128 entries, increasing priorities,
last entry used, 64-byte packets and output action, (c) 1 entry, port matching, decreasing priorities, last entry
used, 1516-byte packets and output action.

magnitude slower. This is in line with our motivational experiment of Sec. 5.1.3: processing time is
not negligible for low-cost devices.

Used entry and priorities. For a single selected case within our dimensions, Fig. 5.10a shows that
the processing time is the lowest when the priorities are decreasing and the �rst entry matches. In
this case, a full comparison against the other entries is not necessary. For all other cases, the switch
compares the packet against each entry in the table. Compared to Fig. 5.9, other dimensions are not
aggregated. We see that, in this case, the switch performance is highly predictable: the processing
time variance is negligible.

Match type. Naturally, as the match structure becomes larger, the processing time increases
(Fig. 5.10b). For instance, for this selected case, port matching requires around 0.88 ms and all around
1.65 ms. We again observe that the switch performance is predictable for a speci�c investigated
case.

Action type. Actions that require the re-computation of L3/L4 checksums are slower (Fig. 5.10c).
For instance, for this selected case, set-nw-src requires 380 `s while the simple output action is the
fastest with around 322 `B . We observe that the action type has a much lower impact than the match
type: the match type in�uences the time needed to check each entry, while the action is only executed
once. As for Fig. 5.10a and 5.10b, we observe that the switch performance is highly predictable.

Outcomes. Our results show that, for a single case among our dimensions, the processing time
of the Zodiac FX is very stable, enabling us to precisely and deterministically model the DP per-
formance. We also see that, for di�erent cases, the performance of the Zodiac FX can highly vary.

170 Chapter 5. Measurements and Testbed Implementation for Small Networks

Finally, we observe that the processing time of the switch creates a potential for satisfying the latency
requirements of typical industrial applications, which are in the order of milliseconds [Kat+17a].

5.2.4 Data Plane Throughput

As we have shown in Sec. 5.1.3, small-scale programmable devices are presumably not able to process
packets at line rate. In this section, we present our methodology to quantify the actual rate at
which packets are processed. We detail how this rate can be computed based on the processing time
(Sec. 5.2.3), demonstrate that this computation is indeed correct, and give insights on the throughput
achieved by the Zodiac FX.

5.2.4.1 Mathematical Computation

Generally, throughput)% can be computed from packet size ;? and packet processing time ?FX

through
)% = ;?/?FX. (5.5)

However, if the switch is able to process several packets simultaneously, e.g., through a pipeline,
Eqn. 5.5 becomes a lower bound on the throughput. The Zodiac FX forms a pipeline composed of the
IS, the link IS–CPU, and the CPU; it can hence process packets simultaneously. The throughput of
the Zodiac FX then corresponds to the throughput of the bottleneck element in the pipeline. Hence,
we determine the throughput of these three elements.

Through a setup identical to Fig. 5.8a, we measure the processing time of the IS (Fig. 5.10d) by
con�guring it in L2 learning mode, hence not using the CPU. The results show a stable processing
time independent of the packet size of ?IS = 2.07 `s on average. The IS is never the bottleneck.
Indeed, although it is traversed twice in the pipeline, its maximum processing time corresponds to a
minimum throughput (through Eqn. 5.5) which is greater than twice the throughput of the link IS–
CPU1. The latter is given by ;?/(;? + 21) × 100 Mbps, as the link has to transport, besides the ?-byte
packet, the 1-byte tail tag, the preamble (7 bytes), SFD (1 byte) and interframe gap (IFG) (12 bytes).
The throughput of the CPU can be computed with Eqn. 5.5. As a result, the throughput can be
computed as

)% = min
{
;?/?CPU, ;?/(;? + 21) × 100 Mbps

}
, (5.6)

where
?CPU = ?FX − 2?IS − 2?P+SFD − 2C?+1 (5.7)

is inferred from Fig. 5.11b and C?+1 corresponds to the transmission time of a (;? + 1)-byte packet.
We measured ?IS in L2 learning mode, which is slower than when it is used with the Zodiac FX
switch [Mic17]. Hence, to avoid taking any too optimistic assumption for throughput computation,
we neglect this term in Eqn. 5.7. ?FX is obtained from Sec. 5.2.3.

5.2. Step 1: Switch Benchmarking 171

Zodiac FX

ISCPU

3 24 1

Controller Measurement PC
DPDK

(a) DP throughput setup.

→ →
→ →

← ←
→ →

DPDK IS CPU DPDK

?FX

?IS CP+SFD
C?+1

C?+1?ISCP+SFD

?CPU
CP+SFD

Cp

(b) Sequence diagram.

Figure 5.11: (a) Setup for the measurement of DP throughput and (b) corresponding sequence diagram.

0 20 40 60 80 100
input rate [Mbps]

0

5

10

ou
tp

ut
ra

te
[M

bp
s]

max. throughputs

17 rules
33 rules

(a) Finding max. throughput.

0 25 50 75 100
measured throughput [Mbps]

0

50

100

co
m

p.
th

rg
p.

[M
bp

s]

Eqn. 5.5
Eqn. 5.6

(b) Veri�cation of Eqn. 5.5 & 5.6.

Figure 5.12: (a) Output rate based on the input rate for �ve-tuple matching, 64-byte packets, decreasing
priorities, the �rst entry matching and 17 or 33 entries. (b) Measured throughput compared to Eqn. 5.5 & 5.6.

5.2.4.2 Empirical Veri�cation

Setup. We use DPDK [DPD18] and our own modi�ed version of its pktgen application to generate
tra�c on one port and to log the received throughput on another other port (Fig. 5.11a)2. Fig. 5.12a
shows the output rate of the Zodiac FX for two speci�c cases. When sending not more than the
maximum throughput, the CPU is fast enough to process all packets, and the output rate equals the
input rate. Interestingly, when the transmission exceeds the maximum throughput, the output rate
reduces linearly. This is because, the CPU sends pause frames if it cannot process all the packets. As
a result, the IS starts bu�ering the packets. As such, the bu�er at the IS grows, and packets sent back
by the CPU might be dropped, decreasing the throughput. As a result, we use a binary search in
order to �nd the maximum input rate that can be processed, i.e., to �nd the maximum of the curves
in Fig. 5.12a. Due to the precision of the DPDK sending rate and statistics reports, we use 650 kbps
as the precision for the binary search.

Evaluation dimensions. For the sake of brevity, we only consider the output action, the �ve-
tuple and port matchings and the increasing-last and decreasing-�rst priorities and matched entry
combinations. The numbers of �ow entries and packet sizes of Tab. 5.1 are all considered.

1This is not true for very small packets (e.g., 48 bytes). However, in this case, the throughput of the CPU is lower and the
IS is still not the bottleneck.

2The IS is by default con�gured with “half-duplex back-pressure collision �ow control” [Mic17], a L2 mechanism instruct-
ing a device to reduce its sending rate if congestion happens. To prevent this from forcing DPDK to throttle, we deactivate this
feature on the IS.

172 Chapter 5. Measurements and Testbed Implementation for Small Networks

Results. Fig. 5.12b shows that Eqn. 5.5 underestimates the actual throughput and that the error
increases with the throughput. On the other hand, we observe that Eqn. 5.6 corresponds closely to
the actual throughput. The relative error remains below 6%.

5.2.4.3 Results

We use Eqn. 5.6 for all cases of Tab. 5.1. The results are shown as blue curves in Fig. 5.9 and Fig. 5.10a–
c. In Fig. 5.9, several cases are aggregated. The corresponding minimum and maximum throughputs
are shown with dashed lines and the average throughput with a full solid line. Fig. 5.9 shows that
delivery at line rate can be achieved only for less than 65 �ow entries and packets of more than
790 bytes. Depending on the scenario, the throughput varies from less than 1 Mbps to line rate.
Fig. 5.10b shows a bad case, as the number of installed entries is high (128) and the packet size is small
(64 bytes). We observe that the throughput is very low, i.e., can be as low as 0.3 Mbps. Reversely,
Fig. 5.10c shows one of the best cases for throughput, as there is only one rule installed, and packets
are big (1516 bytes). In this case, line-rate throughput can be reached only for the output, set-dl-src
and strip-vlan actions, while other actions are limited to around 80 Mbps.

Outcomes. We observe that the throughput of the Zodiac FX can greatly vary, from low values
(300 kbps) to line rate. This is in line with our experiment of Sec. 5.1.3: for low-cost devices, the
assumption that packets are always processed at line rate is not valid. However, these values create
a potential for ful�lling the throughput requirements of typical applications with predictable latency
requirements, which are usually no more than hundreds of kilobits per second [Kat+17a].

5.2.5 Bu�er Capacity

Ensuring no packet loss with DNC concepts requires knowing the maximum number of packets that
can be bu�ered at each switch. This section describes our methodology and applies it to our case
study.

Setup. We adopt an approach similar to the one proposed in request for comments (RFC)
2544 [BM99]; [Mor17]. The setup is shown in Fig. 5.8a. We generate packets as fast as possible
on port 1 of the switch. The switch is con�gured by the controller with 128 entries with �ve-tuple
matching and output action to port 2. As the bu�er size surely does not depend on these parameters,
we do not vary them. Using the taps, we monitor both ports at packet level. Thereby, we can (i)
determine, over time, the number of packets backlogged in the switch, and (ii) identify when a
packet gets lost. The number of backlogged packets when the �rst packet gets lost is the bu�er
capacity of the switch.

Results. All obtained results are consistent with the following elaboration. The IS does not bu�er
packets and forwards data directly to the CPU which has a one-packet receive bu�er and 24 bu�ers
of 128 bytes in memory. As a result, the bu�er size1FX available at the switch can be computed, based
on the packet length ;? , as 1FX = 1 + b24/d;?/128ec. This value ranges from 3 packets for 1516-byte
packets to 25 packets for 64-byte packets.

5.3. Step 2: Switch Model 173

Switch Scheduling

SoA Scheduling

Switch
Processing

Loko

Figure 5.13: On top, SoA approaches modeling independently each port. On the bottom, Loko’s approach:
the forwarding performance is modeled as a service shared among all ports.

5.3 Step 2: Switch Model

Based on our measurement results, we can now construct an accurate performance model for the
switch. In particular, we aim to derive the DNC service curve (see Sec. 2.2.5 and 2.2.8) of the switch.
As shown in Sec. 5.1.3, because of their architectures based on a central CPU for packet processing,
low-cost programmable switches should be modeled using a single service curve, rather than using
independent per-port models, as done by SoA approaches for carrier-grade switches (Fig. 5.13).

We propose to use a V',) rate-latency service curve (see Sec. 2.2.5.2). The ' and) parameters
intuitively correspond to the worst-case throughput (Sec. 5.2.4) and processing time (Sec. 5.2.2 and
Sec. 5.2.3) of the switch for the considered scenario. This is how the model handles varying tra�c
conditions: the entire space is grasped by considering the worst-case scenario, which has to be
determined beforehand based on the given dimensioning of the network. In order to account for
per-packet delay and not per-bit delay, ;/' (where ; is the largest possible packet size) has to be
added to the obtained) value (see Sec. 2.2.7). By considering that the service is shared among all the
di�erent �ows entering the switch, the model automatically takes into account not only inter-port
interferences (and hence possible interferences of CP packets) but also bu�ering inside the switch.

For example, consider our case study of the Zodiac FX. If we investigate a scenario with �ve-
tuple match types, output actions, packets of 306 bytes, and all other parameters unknown, we have
' = 1.88 Mbps and) = 1.35 ms + ;/' = 2.65 ms. Indeed, the processing time and throughput values
for 128 �ow entries with increasing priorities and the last entry matching have to be used, as this is
the worst case. Note that the worst-case for processing time and throughput can be di�erent. For
example, if the packet size is unknown, then the smallest and largest possible packet sizes have to be
considered for the throughput and processing time respectively. Note that the processing time and
throughput of CP packets also have to be considered for de�ning the worst-case values.

5.4 Step 3: Network Model

Having established the DNC switch model, we now describe how Loko builds on top of it to de�ne a
network model and provide E2E latency guarantees. As described in chapter 2 and Fig. 2.1, we con-
sider a proactive scenario where a routing procedure residing in a centralized controller is contacted
to �nd a delay-constrained path for a given �ow. We consider the DetServ architecture described in

174 Chapter 5. Measurements and Testbed Implementation for Small Networks

1 33 65 97 128
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

delay [ms]

0.3
0.5
1

5
10
20
30

1 33 65 97 128
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. burst [kB]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

1 33 65 97 128
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. rate [Mbps]

0.5
1

5
10
20
40
70

(a) full-rate allocation.

17 49 81 113
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

delay [ms]

0.5
1

5
10
20
30

17 49 81 113
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. burst [kB]

1.6
1.8
2.0
2.2
2.4
2.6

17 49 81 113
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. rate [Mbps]

0.1

0.5
1

5
10

(b) �fth-rate allocation.

Figure 5.14: Guaranteed delay and maximum allowed burst and rate at each switch for two resource allocation
schemes and combinations of packet size and number of �ow entries.

Sec. 2.3. That is, the routing procedure relies on a network model for admission control, obtaining
worst-case delay values, resources reservation, and computing cost values for path optimization. In
order to avoid having to reroute already accepted �ows, the worst-case delays provided by the net-
work model for each switch must be valid for the whole lifetime of the network, i.e., even if other
�ows are added later on. The admission control mechanism is then responsible for preventing the
routing procedure from using a switch if this violates the provided delay bound or if it can lead to
bu�er over�ow.

Following the DetServ architecture, Loko achieves this by using a resource allocation algorithm.
Loko’s resource allocation algorithm assigns maximum allowed token-bucket parameter values (burst
size1 and rate A) for each switch. In conjunction with the service curves of the switches (see Fig. 2.20),
this de�nes the worst-case delay for each switch. The admission control then rejects a �ow if adding it
to the currently used token bucket parameters exceeds the allocated maximum values. That requires
applications to always comply with their requested burst and rate parameters, which is typically
the case for industrial applications [Kat+17a]. The admission control ensures that the per-switch
worst-case delays are never violated and valid for the whole lifetime of the network.

For example, consider our case study of the Zodiac FX and a scenario where all �ow entries match
on �ve-tuple and have a single output action. Considering the worst-case of increasing priorities with
the last entry matching, this de�nes a V',) service curve for each packet size and number of entries
combination. Fig. 5.14 shows two di�erent resource allocation strategies (referred to as full-rate and
�fth-rate) and how they lead to di�erent delay, burst and rate values depending on the number of
�ow entries and packet sizes. In Fig. 5.14a, the full rate ' of the service curve is allocated, and the
maximum burst is chosen so that no bu�er over�ow occurs, i.e., the maximum backlog computed
through DNC is equal to the bu�er capacity. White areas show cases where this is infeasible. That
is, while the switch can handle such high throughput, the maximum burst has – in order to avoid
bu�er over�ow – to be lower than the considered packet size, which is not possible. In order to avoid
such cases, one can rather assign a fraction of the service curve rate. Indeed, DNC establishes that
making the rate A smaller leads to a lower maximum backlog 1 + A) and hence allows to increase the

5.5. Loko: Evaluation 175

QJumpSilo Loko
0

25
50
75

100

pa
ck

et
s

[%
] OK

Late
Lost

Figure 5.15: Performance of Silo [Jan+15], QJump [Gro+15] and Loko. Only Loko provides predictable latency.

Service curve Res. all. max. rate max. burst max. delay

' = 11.8 Mbps full-rate 11.8 Mbps 2.02 kB 1.86 ms
) = 0.46 ms �fth-rate 2.37 Mbps 2.32 kB 2.07 ms

Table 5.2: Loko con�guration for the �nal evaluation.

maximum allowed burst1 (see Fig. 2.20). Doing so, the total burst that can be accepted is higher at the
price of a lower total maximum rate. Fig. 5.14b shows an exemplary allocation where the maximum
rate is �xed to one �fth of the throughput of the switch. The resource allocation algorithm has to
make such an a priori decision between delay, bu�er and rate at each switch. We later only consider
the two strategies shown in Fig. 5.14.

5.5 Loko: Evaluation

In this section, we empirically verify Loko and its underlying modeling with a proof-of-concept
implementation with the Zodiac FX. We send several tra�c �ows through a network of switches and
verify that guaranteed delay bounds are not violated and that no packets are lost. Fig. 5.15 shows
the main result: with a setup identical to the scenario considered in Sec. 5.1.3, Loko successfully
provides latency guarantees, while SoA approaches fail. Because DNC is known as a conservative
approach, we further quantify the overprovisioning of the model, i.e., how much additional tra�c
can be sent until delay violations or packet loss actually happen. Finally, through simulations, we
show that the network utilization and rejection rates achieved by Loko allow to support typical
industrial applications with latency requirements and that they scale to network sizes typically seen
in industrial scenarios.

Loko con�guration. We consider �ve-tuple matching, output action, increasing priorities, last
entry matching (as this is the worst-case), 306-byte packets (typical for industrial scenarios) and 17
�ow entries (as our experiment consists of four �ows). For this case, the switch service curve is given
by ' = 11.8 Mbps and) = 257 `s + ;/' = 464 `s. Tab. 5.2 shows the corresponding maximum rates,
bursts and per-switch delays for the two di�erent resource allocation schemes. As our main goal is
to show that Loko works and that guarantees are indeed ful�lled, we focus on a simple con�guration
for our experiments. While the speci�c values of the bandwidth and delay in other con�gurations
are di�erent (in accordance with Fig. 5.14), the qualitative behavior of the system remains the same.

176 Chapter 5. Measurements and Testbed Implementation for Small Networks

Controller

Zodiac FX 3
2 4

1
Zodiac FX3

24

1

UCP = WACP,1CP UCP = WACP,1CP

U∗1 + U∗2

U∗1 + U∗2

H1
U1 = WA1,11

H2
U2 = WA2,12

H3
U1 = WA1,11

H4
U2 = WA2,12

Figure 5.16: Loko evaluation setup. Only the arrival curves entering the switches are annotated.

5.5.1 Measurements: Proof-of-Concept Testbed Implementation

Network setup. We interconnect two Zodiac FX switches and connect each of them to two
hosts (Fig. 5.16). This corresponds to the scenario investigated in Sec. 5.1.3. For simplicity, we
consider a symmetrical scenario where both switches receive �ows with arrival curves U1 and U2

on their ports 1 and 2 respectively. This tra�c is then forwarded to port 3 of the switches, and
then further forwarded by the other switch to the corresponding symmetrical hosts. The controller
proactively adds these �ow entries and places them at the end of the table (with increasing
priorities). To account for runtime programmability, we further consider a given tra�c UCP from
the controller which does not generate DP tra�c but potentially generates a CP response (e.g.,
EchoRequest). As a result, the total tra�c entering both switches is given by U1 + U2 + U∗1 + U∗2 + UCP

where U∗8 = WA8 ,18+A8� ∀8 ∈ {1, 2}, where � is the worst-case delay of the switch as computed by
the resource allocation algorithm (leftmost heatmaps in Fig. 5.14). We then de�ne A1, 11, A2 and 12

such that the total amount of bursts and rates entering the two switches are accepted by Loko (four
rightmost heatmaps in Fig. 5.14). Several rate and burst distributions are possible. For simplicity,
and to be able to conduct a parameter-based study, we de�ne # via 11 = #12 and A1 = #A2. This
leads to

A2 =
' − ACP
2# + 2 , 12 =

� − 1CP − A2� (# + 1)
2# + 2 . (5.8)

We consider that the controller sends 2pps EchoRequest packets per second. That is, ACP = 1CP × 2pps

and 1CP = 66 bytes if 2pps ≠ 0, 1CP = 0 otherwise.

Tra�c generation. In terms of delay and packet loss, the worst case occurs when all the allowed
bursts arrive at the same time at a switch. To maximize the probability of this to happen, we use
mgen [US] to generate randomly separated bursts at line rate and the Linux tc utility and its tbf
queuing discipline [Lin] to shape these bursts so that they follow the computed token-bucket pa-
rameters (Eqn. 5.8). We further de�ne the rate multiplier<A and the burst multiplier<1 to adjust the
sending behavior of the hosts. Values greater than 1 imply that the hosts send more than allowed by
Loko.

Delay measurement. Through a setup similar to Fig. 5.8a, we measure the E2E delay of each
packet for the two U1 �ows between �1 and �3. We then compare the observed delays to the
guaranteed latency 2� (as each �ow traverses two switches): 3.72 ms for the full-rate allocation
strategy and 4.13 ms for the �fth-rate strategy. The traces allow to detect packet loss.

Plots. We plot the packet delays for di�erent parameter combinations as boxplots. The whiskers
correspond to the 1% and 99% percentiles. The minimum and maximum outliers are shown as crosses.

5.5. Loko: Evaluation 177

1 2 3 4 5 6 7 8 9 10 11
mr

0

1

2

3

4

de
la

y
[m

s]
0

20

40

60

pa
ck

et
lo

ss
[%

]

(a) <1 = 1.

1 2 3 4 5 6 7 8 9 10 11
mb

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(b) <A = 1.

Figure 5.17: �fth-rate allocation with 2pps = 0 and # = 2.

Each boxplot corresponds to the delays observed for 30 runs of 10 seconds, i.e., for a total of 5 minutes,
and between 150k and 2M packets observed depending on the case, which we believe is su�cient
for statistical signi�cance. A red horizontal line identi�es the delay guarantee and a black horizontal
line the minimum possible delay based on processing time. The packet loss rate for the 30 runs is
further shown in blue. Empty bullets identify cases for which no packets were lost, and full blue
bullets identify packet loss.

5.5.1.1 Infeasibility of Some Scenarios

Because of our prede�ned setup, some cases can be infeasible, i.e., lead to per-�ow burst values
which are lower than the considered packet size. Indeed, since we have four �ows sharing the burst
allocated by the resource allocation algorithm, more infeasible cases than in Fig. 5.14 can happen.
This is just a property of our simple evaluation setup and is unrelated to Loko and its models. The
infeasible cases arise because the Zodiac FX bu�er is a scarce resource. We always consider 306-byte
packets and 17 �ow entries because this scenario is always feasible.

5.5.1.2 ��h-rate Resource Allocation

We �rst consider the�fth-rate resource allocation scheme (Fig. 5.14b), do not send CP tra�c (2pps = 0),
and use # = 2.

Impact of sent rates. Sending only the allowed bursts (<1 = 1), Fig. 5.17a shows the packet delays
and packet loss rates observed for di�erent rate multiplier values (<A). We see that when the Loko
admission control is respected (<A = 1), no packets are lost, and the delay guarantee is not violated.
Increasing<A , we observe losses starting from<A = 5. Then, the loss rate increases, e.g., to around
60% for<A = 11. We do not observe any delay violation.

Impact of sent bursts. With <A = 1, i.e., sending only at the allowed rate, Fig. 5.17b shows
the packet delays and packet loss rates observed for di�erent values of <1 . Again, when the Loko
admission control is respected (<1 = 1), we observe no packet loss and no delay violations. Starting
from<1 = 4, we observe packet loss, even though less than for<A > 1 (Fig. 5.17a). This is because
reaching the throughput limit is easier than reaching the bu�er capacity limit. Indeed, since a burst
is an instantaneous event, the bu�er capacity of the switch is challenged only when the bursts are

178 Chapter 5. Measurements and Testbed Implementation for Small Networks

0.9 1 1.1 1.2 1.3 1.4
mr

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(a) <1 = 1.

1 2 3 4 5 6 7 8 9 10 11
mb

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(b) <A = 0.95.

Figure 5.18: full-rate allocation with 2pps = 0 and # = 0.

synchronized, which is probabilistically rare. We also observe that <A must be increased more in
order to observe losses. This is because we are using the �fth-rate resource allocation scheme. While
losses could have happened for 1 < <A < 5, the limit was the bu�er capacity, which was not reached
because bursts were never synchronized. Reaching<A = 5, since a �fth of the real throughput was
allocated, the throughput of the switch also becomes the limit, which leads to more lost packets (and
even larger delays).

5.5.1.3 full-rate Resource Allocation

We now consider the full-rate resource allocation scheme (Fig. 5.14a) without CP tra�c (2pps = 0). In
this case, the allowed burst is smaller and hence the infeasibility problem mentioned in Sec. 5.5.1.1
is exacerbated. As a result, we now consider # = 0, thereby e�ectively having only two �ows.

Impact of sent rates. With<1 = 1, Fig. 5.18a shows the results for di�erent values of<A . Because
of our 6% error in throughput computation (Sec. 5.2.4.2), we observe losses for <A = 1. Using
<A = 0.95 allows to account for this error: we then observe no packet loss. Compared to Fig. 5.17a, we
see that packet losses happen earlier, i.e., when increasing the sent rate by 5% only. This is because
we allocated the full throughput of the switch: again, in practice, the throughput limit can be reached
faster than the bu�er limit. In contrast, with the �fth-rate allocation, while an increase by 5% can
theoretically �ll the bu�er, we do not observe loss because such cases are rare in practice. We also
observe delay violations for<A = 1.45.

Impact of sent bursts. With<A = 0.95, Fig. 5.18b shows that delays increase with<1 and packet
losses happen starting from<1 = 3: again, practically reaching the bu�er capacity is probabilistically
rare and hence happens for bigger values. We also observe delay violations starting from<1 = 7.

5.5.1.4 CP Interference

With the full-rate strategy and for<A = 0.95 and<1 = 1, we introduce CP tra�c. Fig. 5.19a shows
the result for di�erent values of 2pps without including the CP tra�c in the model. We observe losses
starting from 2pps = 450. Fig. 5.19b shows the same scenario but with 2pps = 750 included in the
modeling. We observe that this prevents losses to happen until 2pps = 750, thereby successfully
modeling the presence of interfering CP tra�c.

5.5. Loko: Evaluation 179

0 150 300 450 600 750 900 1050
cpps

0

1

2

3

4

de
la

y
[m

s]
0

20

40

60

pa
ck

et
lo

ss
[%

]

(a) 2pps not modeled.

0 150 300 450 600 750 900 1050
cpps

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(b) 2pps = 750 included.

Figure 5.19: full-rate allocation with # = 0,<A = 0.95 and<1 = 1.

0 5 10 15 20 25 30
max. path length l

0

25

50

75

100

re
je

ct
.r

at
e

[%
]

Max. burst:
Max. rate:

89%
49%

100%
41%

100%
32%

100%
25%

100%
17%

85%
8.4%

99%
8.4%

0

2

4

6

ne
tw

or
k

ut
il.

[M
bp

s]

(a) Medium-sized �ows.

0 5 10 15 20 25 30
max. path length l

0

25

50

75

100

re
je

ct
.r

at
e

[%
]

Max. burst:
Max. rate:

15%
97%

25%
100%

34%
100%

44%
100%

53%
100%

64%
100%

76%
100%

0

5

10

ne
tw

or
k

ut
il.

[M
bp

s]

(b) Arti�cially inc. bu�er size.

Figure 5.20: Loko scales to path lengths typical of industrial scenarios (∼5 hops). Arti�cially increasing (10×)
the bu�er capacity of the Zodiac FX (5.20b) allows to reach the maximum theoretical network utilization (11.8
Mbps, see Tab. 5.2).

5.5.2 Simulations: Scalability and Utilization

In order to assess the scalability, network utilization and rejection rates achieved by Loko, we run
a simulation of its admission control. We consider a ring network, a typical industrial network
topology. The scalability of Loko depends only on the burst increase of �ows at each hop. Hence,
Loko does not scale with the network size, and we consider a constant ring size of 31 switches. For
a given path length ; , ranging from 0 (source and destination are attached to the same switch) to
30 hops, we generate 100 �ow requests from a random source node to the node ; hops away. The
�ows have 750 kbps to 1 Mbps bandwidth requirements, corresponding to typical demands observed
in traces from a wind park network from a worldwide industrial operator [Kat+17a]. The burst of a
�ow always corresponds to one packet size, i.e., 306 bytes. We use the full-rate resource allocation
scheme. The delay guarantees of �ows are given by � × (; + 1), where � = 1.86 ms is the per-switch
latency guarantee (Tab. 5.2). For paths of 30 hops, this corresponds to around 56 ms, which is on the
order of typical latency requirements [Kat+17a]. We run 1000 simulations for each path length ; .

We then evaluate the fraction of accepted �ows and report the total rate utilization of each switch
(which actually corresponds to the network utilization). For each path length, boxplots and outliers
show the achieved rejection rates and the utilization for each of the 31 switches over 1000 runs.
The whiskers of the boxplots identify the 1% and 99% percentiles. We also show the burst and rate
utilization (with respect to the maximum values de�ned by the resource allocation algorithm – see
Tab. 5.2) of the bottleneck switch.

180 Chapter 5. Measurements and Testbed Implementation for Small Networks

Fig. 5.20a shows that the maximum switch capacity can never be reached (only up to 49%, i.e.,
6 Mbps). Because of the small bu�er capacity of the Zodiac FX, the maximum burst allowance is
always the bottleneck and the reason for rejecting �ows. We observe that Loko can scale up to
around 5 nodes, a typical maximum path length in a medium-sized industrial network [Kat+17a].
The rejection rates increase with the path lengths because, as per network calculus, a �ow consumes
more bu�er resources at each hop it passes (the green curve in Fig. 2.20 has a higher burst than the
red curve). In order to further evaluate the impact of the bu�er capacity, we now hypothetically
assume a switch with a bu�er capacity 10 times larger. Now, �ows are rejected because of reaching
the throughput capacity of the switch, i.e., 11.8 Mbps in this scenario (Fig. 5.20b). As a result, though
the rejection rates still increase with the path lengths, the network utilization stays mostly around its
maximum value. This arti�cial scenario shows that while Loko can, in principle, realize the maximum
throughput of the Zodiac FX switch, the small size of the switch bu�er causes rejection of �ows to
avoid bu�er over�ow, preventing Loko from reaching the full throughput.

5.5.3 Outcomes

We observe that, if the admission control of Loko is respected, no packets are lost and delay violations
do not occur. We also see that packet loss and delay violations can indeed happen if hosts send more
than allowed. We further show that interfering CP tra�c can also lead to DP packet loss and that
Loko is able to incorporate this in its modeling in order to provide its guarantees even in the presence
of CP tra�c. Finally, we show that the bounds, network utilization and scalability achieved by
Loko satisfy the requirements of existing industrial applications. As such, Loko successfully provides
deterministic latency guarantees for low-cost programmable switches serving industrial applications,
even in the presence of interfering CP tra�c.

5.6 Discussion: Generalizability

While we demonstrated Loko for the particular case of the Zodiac FX, we discuss whether it gen-
eralizes to other switches. In principle, Loko can apply to any switch that processes packets using
a centralized CPU. There is a single requirement: the processing of the CPU must be deterministic,
which is for instance not the case for OS-based processing. In such cases (e.g., the Banana Pi R1 and R2
and the new Zodiac GX), the OS and other processes can interfere with packet processing. However,
alternatives such as core pinning exist and might provide performance determinism. For instance,
packet processing frameworks like DPDK, which are assigned a complete CPU core, could be used:
there, execution is isolated on a separate core and not disturbed by the kernel running on the other
cores. Further work is needed to assess the performance predictability of DPDK or of a lightweight
network driver bypassing the OS kernel. This opens a broad range of applications as DPDK-based
implementations for network functions are more and more common, because they provide greater
performance.

Furthermore, while we focused our implementation on an SDN/OF switch, our approach is not
tied to these technologies. The only requirement is to have a programmable forwarding behavior.
For example, a newly released �rmware of the Zodiac FX supports P4. This could also be modeled
and used by Loko. On the other hand, we highlight that Loko is designed for and tailored to low-

5.7. Summary 181

cost low-capacity switches and, hence, could not be used for commodity networking hardware; such
devices do not exhibit inter-port interferences due to centralized CPU processing.

Typically, latency-critical applications require safety, reliability, and ability to operate in harsh
environments (e.g., high temperatures, dust, or humidity). We did not consider such aspects. Our
work is a �rst step toward showing that low-cost switches can be used, at least from a networking
performance point of view, for providing predictable performance. The analysis and evaluation of
other aspects (e.g., the mean time between failures (MTBF) of the switch) are left for future work.

Finally, we highlight that Loko only supports applications with clear and constant network re-
source requirements in terms of token-bucket burst and rate parameters. The incorporation of rather
unpredictable tra�c (e.g., TCP or video streaming) or of tra�c which does not require any latency
guarantees, requires the design of isolation mechanisms that would prevent such applications to in-
terfere with (or use resources of) applications with strict requirements, which also constitutes an
interesting topic for future work.

5.7 Summary

A predictable network performance is mission critical for many applications and yet hard to provide
due to di�culties in modeling the behavior of the increasingly complex network equipment. This
chapter studied the problem of providing deterministic latency guarantees in small networks based
on low-capacity hardware (e.g., in-cabin and industrial networks): such networks are of increasing
importance, need to meet stringent performance requirements, but have hardly been explored so
far. The main contribution of this chapter is the design, implementation, and evaluation of Loko,
a system which provides predictable latency guarantees in programmable networks using low-cost
hardware. Loko relies on a novel measurement-based methodology and uses DNC to derive a reliable
performance model of a given switch and implement the model functions of the DetServ architecture
(see Sec. 2.3.4). To this end, we also showed that SoA models in the literature like QJump and Silo
fall short to model the behavior of such switches, due to incorrect architectural and performance
assumptions. As a case study, we implemented Loko for the Zodiac FX switch. Our experiments
are encouraging: we found that the derived models are indeed accurate, allowing Loko to provide
deterministic E2E guarantees with low-cost programmable devices.

Beside illustrating the correctness of Loko’s operation, our results convey two main messages.
First, low-cost devices should not be underestimated, as minimal but tailored implementations are
su�cient to provide predictable performance: guaranteed performance and simple programmability
are not mutually exclusive. Second, low-cost devices require to take precautions: traditional as-
sumptions can become wrong and invalidate existing theories. In general, we view our work as a
�rst step and believe that it opens several interesting avenues for future research around tailored
implementations on low-cost devices such as DPDK-based packet processing on multi-port NICs.

182 Chapter 5. Measurements and Testbed Implementation for Small Networks

5.8 Appendix: Silo Guarantees for our Scenario

duration of any time interval

data

∇ =
port rate ('

8)∇ = sum of rates (A 8)

queue bound (?8)

queue capacity (28)bu�er capacity (�8)

sum of bursts (18)

Figure 5.21: Silo’s concepts of queue bound and queue capacity [Jan+15] for port 8 .

The guarantees provided by Silo [Jan+15] are based on an admission control scheme. It relies on the
concepts of queue bound and queue capacity, de�ned for each port 8 .

• The queue bound ?8 is the maximum queuing delay that can occur at a port 8 . If the total rate
A8 sent to port 8 is greater than its output rate '8 , it is in�nite. Otherwise, it is computed by
dividing the total burst 18 sent to the port by the port rate '8 , i.e.,

?8 =

{
∞ if A8 > '8 ,
18/'8 otherwise.

(5.9)

The queue bounds are dependent on the tra�c in the network.

• The queue capacity 28 is the maximum queuing delay that can occur at a port 8 before packets
are dropped. It is computed by dividing the port bu�er capacity �8 by the port rate '8 , i.e.,

28 =
�8
'8
. (5.10)

The queue capacity is independent of the tra�c in the network.

These concepts are illustrated in Fig. 5.21 for a given port 8 .
A new �ow is accepted on a given path if the queue bounds on the output ports of this path are

all lower than the corresponding queue capacities [Jan+15], i.e., if

?8 ≤ 28 ∀8 ∈ path. (5.11)

Then, the latency guarantee ! of the �ow corresponds to the sum of queue capacities over the path
of the �ow [Jan+15], i.e.,

! =
∑
8∈path

28 . (5.12)

The sum A8 of the rates at a port simply corresponds to the sum of the rates of all the �ows going
through this port.

5.8. Appendix: Silo Guarantees for our Scenario 183

The sum18 of the bursts at a port corresponds to the sum of the bursts generated by the individual
�ows �owing through this port. At its �rst hop, the burst generated by a �ow corresponds to its
original burst. At each subsequent hop, this burst is increased by the rate of the �ow multiplied by
the queue capacity 28 of the previously traversed port [Jan+15].

Zodiac FX. With 306-byte packets, as measured in Sec. 5.2.5, the Zodiac FX has a total bu�er size
of 9 packets, i.e., 3 per data port. This leads to the following queue capacity at each port

28 =
3 × 306 bytes

100 Mbps = 73.4 `s, ∀8 . (5.13)

Over our two-hop network, accepted �ows receive the following guarantee on latency

! = 2 × 28 = 146.9 `s. (5.14)

Silo would allow each host to send tra�c at the rate of 45 Mbps and with a maximum burst of
306 bytes. Indeed, the generated queue bounds ?8 are all lower than the queue capacities 28 . The
ports between the switches transport two �ows with their original burst. That is, the queue bound
for these ports is given by

?8 =
2 × 306 bytes

100 Mbps = 49.0 `s. (5.15)

The ports connected towards the hosts only transport one �ow, but with the burst increased by an
already traversed output port. Hence, for output ports connected to hosts, the queue bound is given
by

?8 =
306 bytes + 45 Mbps × 73.4 `s

100 Mbps = 57.5 `s. (5.16)

Both these queues bounds are lower than the queue capacities 28 , i.e., we indeed have ?8 ≤ 28 for all
ports 8 .

Banana Pi R1. For the Banana Pi R1, computations must be adapted to account for the 1 Gbps
link rate supported by the switch. We consider the same bu�er size as for the Zodiac FX: the queue
capacity is given by

28 =
3 × 306 bytes

1 Gbps = 7.34 `s (5.17)

and the guaranteed latency by
! = 2 × 28 = 14.7 `s. (5.18)

Silo would allow each host to send tra�c at the rate of 450 Mbps and with a maximum burst of
306 bytes: the queue bounds they generate is

?8 =
2 × 306 bytes

1 Gbps = 4.90 `s (5.19)

for the ports connecting switches (the �rst burst of two �ows) and

?8 =
306 bytes + 45 Mbps × 7.34 `s

1 Gbps = 5.75 `s (5.20)

for the output ports connected to hosts (the burst of one �ow increased by one hop), both of which
are lower than the queue capacities 28 , i.e., we indeed have ?8 ≤ 28 for all ports 8 .

Chapter 6

Conclusions and Outlook

Applications from emerging systems such as the IoT, CPSs, and cloud computing impose new re-
quirements on the communication networks on top of which they are deployed. In particular, these
applications require predictability from the networking infrastructure, both in terms of correctness
and performance. Predictable network performance indeed enables applications to guarantee a given
quality of service to their users and customers. For example, a safety-critical control loop in a man-
ufacturing plant would require predictable latency, and in particular strict E2E per-packet latency
guarantees, in order to ensure that safety operations and commands are triggered on time upon
reception of emergency signals or events. Similarly, control �ows responsible for ensuring synchro-
nization and state replication among control VMs (e.g., SDN controllers) in a data center can provide
guarantees on the worst-case synchronization time and state divergence if the underlying network
infrastructure provides E2E latency guarantees.

As illustrated by the two above examples, among the di�erent network QoS properties, latency
is one of the most critical metric for applications, both in industrial and data center networks. This
thesis focused on the design, implementation, and evaluation of mechanisms for providing latency
guarantees to applications. In particular, we focused on strict latency guarantees, where each packet
is guaranteed to reach its destination within a given latency bound. SoA systems for providing such
guarantees are typically expensive, in�exible, and lead to vendor lock-in because they rely on propri-
etary protocols or require changes within the network protocol stack of end hosts and/or forwarding
devices. Programmable networks have been considered in the recent years as a solution to overcome
such protocol openness issues and improve the automation and �exibility of network con�guration
and management. Network operators can use open interfaces and programs written independently
from the networking hardware to con�gure the behavior of their network. Albeit its numerous
bene�ts towards �exibility, network programmability also introduces challenges, in particular with
respect to predictability and network performance. This thesis studied the particular problem of
providing predictable latency, i.e., strict E2E latency bounds, to applications in programmable net-
works. The next section summarizes the key contributions and outcomes of this thesis and Sec. 6.2
reports on interesting and challenging future research directions in the area of predictable latency
in programmable networks.

185

186 Chapter 6. Conclusions and Outlook

6.1 Summary

The main outcome of this thesis consists of the design, implementation, and evaluation of two com-
plete systems for providing predictable latency in programmable networks.

First, Chameleon focuses on data center networks and circumvents typical unpredictable behavior
of programmable devices by pushing all its con�guration to end-hosts and relying on source routing
to enforce the forwarding decisions in the network. Priority levels and routes followed by �ows in
the network are continuously updated in order to improve resources utilization. The usage of source
routing allows to easily ensure that per-packet guarantees are satis�ed at any time, even in the
presence of recon�gurations. We showed that Chameleon outperforms the SoA in terms of network
utilization: some links can reach 100% utilization and up to 7 times more �ows can be accepted
compared to SoA approaches.

Second, Loko focuses on networks with low-cost and low-capacity forwarding devices, which
we refer to as small networks. We showed with detailed measurements that traditional latency mod-
els, including those used by Chameleon, are not valid for low-capacity network equipment. This is
mostly due to the fact that low-capacity hardware typically relies on a central CPU for packet pro-
cessing, which leads to inter-port interferences, a phenomenon typically assumed non-existent by
SoA latency models. The results of our detailed measurement campaign allowed to derive switch and
network models for the design of access control and resource allocation routines. We showed that the
resulting Loko system successfully provides strict latency guarantees with software-based, low-cost
and low-capacity forwarding equipment. This result conveys an important message. Programmable
networks which do not depend on complex switch hardware platforms can provide predictable per-
formance and may thus �nd interesting applications in other contexts as well. For example, using
DPDK for deploying new applications with predictable performance constitutes an attractive low-
cost and more �exible alternative to the typically more expensive and less �exible hardware pro-
grammable devices.

Towards these systems, this thesis made contributions in several areas. We succinctly summarize
these in the following paragraphs.

Measurements of programmable hardware and components. While programmable devices
have been designed with �exibility and ease-of-con�guration in mind, performance predictability
remained an open question. Through detailed measurement campaigns, we investigated the pre-
dictability of programmable forwarding devices, both from a performance and a management point
of view. We quanti�ed the performance of switch hardware from many di�erent angles, from unpre-
dictable behaviors (e.g., �ow con�guration and bu�er management) to predictable behaviors (e.g.,
processing time and throughput) and including unexpected but predictable behaviors (e.g., overhead
of scheduling disciplines). These measurements and their output formed the basis for the design of
(re-)con�guration procedures. In the particular case of Chameleon, the observed unpredictable man-
agement behavior of switches were circumvented through end-host networking and source routing.

Design of strict latency forwarding models. Based on these measurements, we designed la-
tency models that form the basis of our complete E2E provisioning systems. By allocating a time

6.2. Future Work 187

resource to individual priority queues (or switches in the case of Loko), our models ensure that per-
priority-queue (or per-switch) latency bounds are guaranteed throughout the lifetime of the network.
An access control routine is responsible for keeping this invariant. We have shown that our models
allow to reach high network utilization (some links can reach 100% network utilization) while still
providing low request processing time (at most hundreds of milliseconds).

Optimization of the routing procedure. As part of network QoS provisioning systems, the rout-
ing procedure plays a central role. It is responsible for �nding valid embeddings in a short amount
of time. This thesis thoroughly investigated the algorithmic issue of �nding a route for applications.
In particular, we proposed enhancements to SoA algorithms for improving their runtime, optimality,
and completeness in various di�erent network settings.

6.2 Future Work

We believe that the following research directions are of particular interest for future work.

Stochastic latency guarantees. This thesis focused on the provisioning of strict latency guar-
antees that are satis�ed at any time on a per-packet basis. While having such guarantees presents
various bene�ts for many applications, the quest for deterministic and strict latency guarantees leads
to forced pessimistic assumptions (as part of DNC), which in turn leads to network resources that are
e�ectively left unused while they could be used by other applications. In other words, and as shown
in Tab. 2.1, ensuring strict latency guarantees prevents from achieving work-conservation. Further-
more, network tra�c typically exhibits variations that can be hard to deterministically predict and
ensuring that users strictly comply with agreed tra�c envelopes is challenging. An interesting and
promising research direction is to slightly relax the deterministic guarantees and look for guarantees
that are only stochastically guaranteed. For example, an application could be guaranteed a maximum
E2E latency of 120 ms for 95% of its packets. While many applications in cloud computing and CPSs
would still greatly bene�t from such guarantees, relaxing the deterministic aspect of the require-
ments has the potential of drastically improving network utilization, and hence revenue for network
operators. Such a relaxation would also make it possible to deal with uncertainties in network con-
ditions (e.g., failures) and less predictable tra�c patterns that only follow stochastic distributions.
To understand how the latency models, routing procedures, and results in this thesis would have to
be adapted is an interesting and challenging research question.

Investigation of networks providing both deterministic and stochastic latency guarantees.

Instead of focusing either on deterministic or stochastic guarantees, an interesting research direction
is to design a system able to provide both QoS levels to its applications. This is a particularly chal-
lenging problem, as deterministic guarantees require the precise allocation and management of re-
sources, while stochastic guarantees inherently introduce uncertainty and variations in the resources
consumption of applications. As a result, appropriate isolation techniques have to be investigated
and developed to logically separate both types of tra�c and prevent any interference that would
violate SLAs.

188 Chapter 6. Conclusions and Outlook

Leverage programmable data planes for latency guarantees in wide-area networks. While
this thesis investigated many di�erent types of networks, including small networks, data center
networks as well as industrial networks, wide-area networks, e.g., Internet service provider (ISP)
or autonomous system (AS) networks, present very interesting challenges for achieving latency
guarantees. At the same time, many applications deployed over the Internet, e.g., remote surgery,
would greatly bene�t from latency guarantees. Whereas the networks considered in this thesis can
be managed through an out-of-band mechanism, wide-area networks require in-band management.
In the context of predictability, this introduces various challenges. For example, control and data
�ows must be properly isolated while still guaranteeing the appropriate QoS for both channels. The
investigation of this kind of network and how the solutions proposed in this thesis can be applied
and adapted is an interesting research direction. In particular, the (re-)con�guration of forwarding
devices is a challenging problem, as the solution based on end-host networking proposed in this
thesis cannot be deployed on networks of such scale and physical size. Such networks rather require
the solution to be implemented in the network and it is an interesting research direction to investigate
how data plane programmability technologies such as P4 [Bos+14] can help to implement an in-
network solution for providing strict latency guarantees, e.g., by performing tagging operations
and/or taking local decisions based on observed delay variations.

Bibliography

Publications by the Author

Journal Publications

[Guc+17] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer. “Unicast QoS Routing Algo-
rithms for SDN: A Comprehensive Survey and Performance Evaluation.” In: IEEE Com-
munications Surveys & Tutorials 20.1 (2017), pp. 388–415.

[GVK17] J. W. Guck, A. Van Bemten, and W. Kellerer. “DetServ: Network Models for Real-Time
QoS Provisioning in SDN-based Industrial Environments.” In: IEEE Transactions on Net-
work and Service Management (TNSM) 14.4 (2017), pp. 1003–1017.

[Viz+19] P. Vizarreta, A. Van Bemten, E. Sakic, K. Abbasi, N. E. Petroulakis, W. Kellerer, and
C. Mas Machuca. “Incentives for a Softwarization of Wind Park Communication Net-
works.” In: IEEE Communications Magazine 57.5 (2019), pp. 138–144.

[Zop+18] S. Zoppi, A. Van Bemten, H. M. Gürsu, M. Vilgelm, J. Guck, and W. Kellerer. “Achieving
Hybrid Wired/Wireless Industrial Networks with WDetServ: Reliability-based Schedul-
ing for Delay Guarantees.” In: IEEE Transactions on Industrial Informatics 14.5 (2018),
pp. 2307–2319.

Conference Publications

[Kat+17a] S. Katsikeas, K. Fysarakis, A. Miaoudakis, A. Van Bemten, I. Askoxylakis, I. Papaefs-
tathiou, and A. Plemenos. “Lightweight & Secure Industrial IoT Communications via
the MQ Telemetry Transport Protocol.” In: Proceedings of the IEEE Symposium on Com-
puters and Communications (ISCC). IEEE. 2017, pp. 1193–1200.

[Sak+20] E. Sakic, A. Van Bemten, M. Avdic, and W. Kellerer. “Automated Bootstrapping of A
Fault-Resilient In-Band Control Plane.” In: Proceedings of the ACM SIGCOMM Sympo-
sium on Software De�ned Networking Research (SOSR). ACM. 2020, pp. 1–13.

[Van+18a] A. Van Bemten, J. W. Guck, C. Mas Machuca, and W. Kellerer. “Routing Metrics De-
pending on Previous Edges: The M= Taxonomy and its Corresponding Solutions.” In:
Proceedings of the IEEE International Conference on Communications (ICC). IEEE. 2018,
pp. 1–7.

189

190 Bibliography

[Van+18b] A. Van Bemten, J. W. Guck, P. Vizarreta, C. Mas Machuca, and W. Kellerer. “LARAC-SN
and Mole in the Hole: Enabling Routing through Service Function Chains.” In: Proceed-
ings of the IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE.
2018, pp. 298–302.

[Van+19a] A. Van Bemten, N. Ðerić, A. Varasteh, A. Blenk, S. Schmid, and W. Kellerer. “Empirical
Predictability Study of SDN Switches.” In: Proceedings of the ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS). ACM/IEEE. 2019,
pp. 1–13.

[Van+19b] A. Van Bemten, N. Ðerić, J. Zerwas, A. Blenk, S. Schmid, and W. Kellerer. “Loko: Pre-
dictable Latency in Small Networks.” In: Proceedings of the ACM International Conference
on emerging Networking EXperiments and Technologies (CoNEXT). ACM. 2019, pp. 355–
369.

[Van+20] A. Van Bemten, N. Ðerić, A. Varasteh, S. Schmid, C. Mas Machuca, A. Blenk, and W.
Kellerer. “Chameleon: Predictable Latency and High Utilization with Queue-Aware and
Adaptive Source Routing.” In: Proceedings of the ACM International Conference on emerg-
ing Networking EXperiments and Technologies (CoNEXT). 2020, pp. 451–465.

Technical Reports

[Van+19c] A. Van Bemten, J. W. Guck, C. Mas Machuca, and W. Kellerer. “Bounded Dijkstra (BD):
Search Space Reduction for Expediting Shortest Path Subroutines.” In: arXiv preprint
arXiv:1903.00436 (2019).

[VK16] A. Van Bemten and W. Kellerer. “Network Calculus: A Comprehensive Guide.” In:
Technical University of Munich, Chair of Communication Networks, Technical Report No.
201603 (Oct. 2016).

Web

[Van19a] A. Van Bemten. Source code, con�guration �les, and data sets associated to Loko. 2019.
url: https://loko.lkn.ei.tum.de.

[Van19b] A. Van Bemten. Source code, con�guration �les, and data sets associated to the empirical
predictability study of SDN switches. 2019. url: https://sdn-predictability.lkn.ei.tum.de.

[Van19c] A. Van Bemten. LORA: The League of Routing Algorithms. 2017–2019. url: https://lora.
lkn.ei.tum.de.

General Publications

[05] “Communication Delivery Time Performance Requirements for Electric Power Substa-
tion Automation.” In: IEEE Std 1646-2004 (2005), pp. 1–24.

[Abr+12] I. Abraham, D. Delling, A. Goldberg, and R. Werneck. “Hierarchical hub labelings for
shortest paths.” In: Springer European Symposium on Algorithms (2012), pp. 24–35.

https://loko.lkn.ei.tum.de
https://sdn-predictability.lkn.ei.tum.de
https://lora.lkn.ei.tum.de
https://lora.lkn.ei.tum.de

191

[Ada+15] D. Adami, L. Donatini, S. Giordano, and M. Pagano. “A network control application
enabling Software-De�ned Quality of Service.” In: Proceedings of the IEEE International
Conference on Communications (ICC). 2015, pp. 6074–6079.

[Add+15] B. Addis, D. Belabed, M. Bouet, and S. Secci. “Virtual network functions placement
and routing optimization.” In: Proceedings of the IEEE International Conference on Cloud
Networking (CloudNet). Oct. 2015, pp. 171–177.

[AE10] R. A. Adams and C. Essex. Calculus. A Complete Course. 7th ed. Pearson Education
Canada, 2010.

[ÅGB11] J. Åkerberg, M. Gidlund, and M. Björkman. “Future research challenges in wireless
sensor and actuator networks targeting industrial automation.” In: Proceedings of the
International Conference on Industrial Informatics. IEEE. 2011, pp. 410–415.

[Agy+14] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour. “Design consider-
ations for a 5G network architecture.” In: IEEE Communications Magazine 52.11 (2014),
pp. 65–75.

[AIN] A. Adam, A. Ilan, and T. Nadeau. Introduction to virtio-networking and vhost-net (Red
Hat Blog). https://www.redhat .com/en/blog/introduction- virtio- networking- and-
vhost-net. Accessed: 2020-02-02.

[AIY13] T. Akiba, Y. Iwata, and Y. Yoshida. “Fast exact shortest-path distance queries on large
networks by pruned landmark labeling.” In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. ACM. 2013, pp. 349–360.

[Ali+11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan. “Data center TCP (DCTCP).” In: ACM SIGCOMM Computer Commu-
nication Review. Vol. 41. 4. ACM. 2011, pp. 63–74.

[Ali+12] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. “Less is
more: trading a little bandwidth for ultra-low latency in the data center.” In: Proceedings
of the USENIX Symposium on Networked Systems Design and Implementation (NSDI).
2012, pp. 253–266.

[Ali+13] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.
“pFabric: Minimal near-optimal datacenter transport.” In: ACM SIGCOMM Computer
Communication Review. Vol. 43. 4. ACM. 2013, pp. 435–446.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

[An+16] N. An, T. Ha, K.-J. Park, and H. Lim. “Dynamic priority-adjustment for real-time �ows
in software-de�ned networks.” In: Proceedings of the IEEE International Telecommunica-
tions Network Strategy and Planning Symposium. IEEE. 2016, pp. 144–149.

[AN78] Y. P. Aneja and K. P. Nair. “The constrained shortest path problem.” In: Wiley Naval
Research Logistics (NRL) 25.3 (1978), pp. 549–555.

https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net

192 Bibliography

[And16] R. C. de Andrade. “New formulations for the elementary shortest-path problem visiting
a given set of nodes.” In: Elsevier European Journal of Operational Research 254.3 (2016),
pp. 755–768.

[Ara+18] J. T. Araújo, L. Saino, L. Buytenhek, and R. Landa. “Balancing on the edge: Transport
a�nity without network state.” In: Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 2018, pp. 111–124.

[AX14] A. V. Akella and K. Xiong. “Quality of service (QoS)-guaranteed network resource allo-
cation via software de�ned networking (SDN).” In: Proceedings of the IEEE International
Conference on Dependable, Autonomic and Secure Computing (DASC). IEEE. 2014, pp. 7–
13.

[Bac+92] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity, An
Algebra for Discrete Event Systems. John Wiley and Sons, 1992.

[Bai+16] W. Bai, L. Chen, K. Chen, and H. Wu. “Enabling {ECN} in Multi-Service Multi-Queue
Data Centers.” In: Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 2016, pp. 537–549.

[Bal+11] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. “Towards predictable datacenter
networks.” In: ACM SIGCOMM Computer Communication Review. Vol. 41. 4. ACM. 2011,
pp. 242–253.

[Bal+13] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and G. O’Shea. “Chatty
tenants and the cloud network sharing problem.” In: Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI). 2013, pp. 171–184.

[Bar+13] M. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, et al. “PolicyCop: An Autonomic QoS
Policy Enforcement Framework for Software De�ned Networks.” In: Proceedings of the
IEEE SDN for Future Networks and Services (SDN4FNS) Conference. IEEE. 2013, pp. 1–7.

[Bar+15] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. “On orchestrating virtual net-
work functions.” In: Proceedings of the IEEE/IFIP International Conference on Network and
Service Management (CNSM). IEEE. 2015, pp. 50–56.

[Bas+14] A. Basta, W. Kellerer, M. Ho�mann, H. J. Morper, and K. Ho�mann. “Applying NFV and
SDN to LTE mobile core gateways, the functions placement problem.” In: Proceedings of
the ACM SIGCOMMWorkshop on All Things Cellular. ACM. 2014, pp. 33–38.

[Bas+16] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner,
and R. F. Werneck. “Route planning in transportation networks.” In:Algorithm Engineer-
ing. Springer, 2016, pp. 19–80.

[Bau+07] R. Baumann, S. Heimlicher, M. Strasser, and A. Weibel. “A survey on routing metrics.”
In: ETH Zürich, Computer Engineering and Networks Laboratory, TIK Report 262 (2007).

[Bau+18] S. Bauer, D. Raumer, P. Emmerich, and G. Carle. “Behind the scenes: what device bench-
marks can tell us.” In: Proceedings of the ACM/IRTF Applied Networking Research Work-
shop (ANRW). ACM/IRTF. Montreal, Canada, 2018, pp. 58–65.

193

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an
Overview. RFC 1633. RFC Editor, June 1994. url: http://www.rfc-editor.org/rfc/rfc1633.
txt.

[BE12] M. J. Bannister and D. Eppstein. “Randomized speedup of the Bellman-Ford algorithm.”
In: Proceedings of the SIAM Meeting on Analytic Algorithmics and Combinatorics. 2012,
pp. 41–47.

[Bel58] R. Bellman. “On a routing problem.” In: Quarterly of Applied Mathematics 16.1 (Apr.
1958), pp. 87–90.

[BG96] D. Blokh and G. Gutin. “An approximate algorithm for combinatorial optimization prob-
lems with two parameters.” In: Australasian Journal of Combinatorics 14 (1996), pp. 157–
164.

[Bia+10] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. “OpenFlow switching: Data plane per-
formance.” In: Proceedings of the IEEE International Conference on Communications (ICC).
IEEE. 2010, pp. 1–5.

[BJT09] A. Bouillard, L. Jouhet, and E. Thierry. “Service Curves in Network Calculus: dos and
don’ts.” In: Research Report 7094, INRIA (2009).

[BM12] M. Bourdellès and N. Menegale. “Routing optimization for network coding.” In: Proceed-
ings of the IFIP Wireless Days. IEEE. 2012, pp. 1–6.

[BM99] S. Bradner and J. McQuaid. BenchmarkingMethodology for Network Interconnect Devices.
RFC 2544. RFC Editor, Mar. 1999. url: http://www.rfc-editor.org/rfc/rfc2544.txt.

[BO62] A. M. Brucker and E. Ostrow. “Some Function Classes Related to the Class of Convex
Functions.” In: Paci�c Journal of Mathematics 12.4 (Apr. 1962), pp. 1203–1215.

[Bos+08] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. Smid. “Computing the greedy span-
ner in near-quadratic time.” In: Scandinavian Workshop on Algorithm Theory. Springer.
2008, pp. 390–401.

[Bos+14] P. Bosshart et al. “P4: Programming protocol-independent packet processors.” In: ACM
SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–95.

[BR13] Z. Bozakov and A. Rizk. “Taming SDN controllers in heterogeneous hardware environ-
ments.” In: Proceedings of the IEEE European Workshop on Software De�ned Networks
(EWSDN). IEEE. 2013, pp. 50–55.

[BS18] P. Biondi and the Scapy community. Scapy. https : / / scapy.net. Accessed: 2018-10-18.
2018.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[CA03] G. Cheng and N. Ansari. “A new heuristics for �nding the delay constrained least cost
path.” In: Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM).
Vol. 7. 2003, pp. 3711–3715.

[CBL05] F. Ciucu, A. Burchard, and J. Liebeherr. “A Network Service Curve Approach For the
Stochastic Analysis of Networks.” In: ACM SIGMETRICS Performance Evaluation Review.
Vol. 33. 1. ACM. 2005, pp. 279–290.

http://www.rfc-editor.org/rfc/rfc1633.txt
http://www.rfc-editor.org/rfc/rfc1633.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
https://scapy.net

194 Bibliography

[CGR96] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. “Shortest paths algorithms: Theory
and experimental evaluation.” In: Springer Mathematical Programming 73.2 (May 1996),
pp. 129–174.

[CGS99] B. V. Cherkassky, A. V. Goldberg, and C. Silverstein. “Buckets, heaps, lists, and mono-
tone priority queues.” In: SIAM Journal on Computing 28.4 (1999), pp. 1326–1346.

[Cha00] C.-S. Chang. Performance Guarantees in Communication Networks. Springer Verlag,
2000.

[Che+16] G. Chen et al. “Fast and Cautious: Leveraging Multi-path Diversity for Transport Loss
Recovery in Data Centers.” In: Proceedings of the USENIX Annual Technical Conference.
2016, pp. 29–42.

[Cho+16] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. “{HUG}: Multi-Resource Fairness for
Correlated and Elastic Demands.” In: Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). 2016, pp. 407–424.

[Cho95] E. I. Chong. “On �nding single source single destination k shortest paths.” In: Proceedings
of the International Conference on Computing and Information. 1995, pp. 40–47.

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
3rd ed. MIT Press, 2009.

[Cor+13] J. C. Corbett et al. “Spanner: Google’s globally distributed database.” In: ACM Transac-
tions on Computer Systems (TOCS) 31.3 (2013), pp. 1–22.

[Cru91] R. L. Cruz. “A Calculus for Network Delay, Part I: Network Elements in Isolation.” In:
IEEE Transactions on Information Theory 37.1 (Jan. 1991), pp. 114–131.

[DBK15] R. Durner, A. Blenk, and W. Kellerer. “Performance study of dynamic QoS management
for OpenFlow-enabled SDN switches.” In: Proceedings of the IEEE International Sympo-
sium on Quality of Service (IWQoS). IEEE. 2015, pp. 177–182.

[DDC18] A. Drescher, J. DeHart, and P. Crowley. “Bayesian factor analysis and performance mea-
surement of the Linux forwarding architecture.” In: Proceedings of the ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems (ANCS). ACM/IEEE.
2018, pp. 28–40.

[Deb01] K. Deb. Multi-objective Optimization Using Evolutionary Algorithms. Vol. 16. John Wiley
& Sons, Chichester, UK, 2001.

[DeC+07] G. DeCandia et al. “Dynamo: amazon’s highly available key-value store.” In: ACM
SIGOPS Operating Systems Review. Vol. 41. 6. ACM. 2007, pp. 205–220.

[Dec05] J.-D. Decotignie. “Ethernet-based real-time and industrial communications.” In: Proceed-
ings of the IEEE 93.6 (2005), pp. 1102–1117.

[Del] Dell.Dell EMCNetworking S4048-ON Switch. https://i.dell.com/sites/doccontent/shared-
content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.
pdf. Accessed: 2019-01-31.

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs.” In: Springer Nu-
merische mathematik 1.1 (1959), pp. 269–271.

https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf

195

[Don02] S. F. Donnelly. “High precision timing in passive measurements of data networks.” PhD
thesis. University of Waikato, 2002.

[DPD18] DPDK Project. Home - DPDK. https://www.dpdk.org. Accessed: 2018-10-18. 2018.

[Dre69] S. E. Dreyfus. “An appraisal of some shortest-path algorithms.” In: INFORMS Operations
Research 17.3 (1969), pp. 395–412.

[Dua14] Q. Duan. “Network-as-a-service in Software-De�ned Networks for end-to-end QoS pro-
visioning.” In: Proceedings of the IEEE Wireless and Optical Communication Conference
(WOCC). IEEE. 2014, pp. 1–5.

[Duf+17] M. Dufour, S. Paris, J. Leguay, and M. Draief. “Online Bandwidth Calendaring: On-the-
�y admission, scheduling, and path computation.” In: Proceedings of the IEEE Interna-
tional Conference on Communications (ICC). IEEE. 2017, pp. 1–6.

[Egi+12] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp. “OpenQoS: An OpenFlow con-
troller design for multimedia delivery with end-to-end Quality of Service over Software-
De�ned Networks.” In: Proceedings of the IEEE Asia-Paci�c Signal & Information Process-
ing Association Annual Summit and Conference (APSIPA ASC). IEEE. 2012, pp. 1–8.

[Emm+14] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. “Performance characteristics of vir-
tual switching.” In: Proceedings of the IEEE International Conference on Cloud Networking
(CloudNet). IEEE. 2014, pp. 120–125.

[Emm+15] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle. “Moongen: A script-
able high-speed packet generator.” In: Proceedings of the ACM InternetMeasurement Con-
ference (IMC). ACM. 2015, pp. 275–287.

[End16] Endace Technology Limited. Endace DAG 7.5G4 Datasheet". https://www.endace.com/
dag-7.5g4-datasheet.pdf. Accessed: 2018-10-26. 2016.

[Fen+02a] G. Feng, C. Douligeris, K. Makki, and N. Pissinou. “Performance evaluation of delay-
constrained least-cost QoS routing algorithms based on linear and nonlinear lagrange
relaxation.” In: Proceedings of the IEEE International Conference on Communications
(ICC). Vol. 4. 2002, pp. 2273–2278.

[Fen+02b] G. Feng, K. Makki, N. Pissinou, and C. Douligeris. “Heuristic and exact algorithms for
QoS routing with multiple constraints.” In: IEICE Transactions on Communications 85.12
(2002), pp. 2838–2850.

[Fid06] M. Fidler. “WlC15-2: A Network Calculus Approach to Probabilistic Quality of Service
Analysis of Fading Channels.” In: Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM). IEEE. 2006, pp. 1–6.

[Fir+18] D. Firestone et al. “Azure accelerated networking: SmartNICs in the public cloud.” In:
Proceedings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2018, pp. 51–66.

[Fir17] D. Firestone. “VFP: A Virtual Switch Platform for Host SDN in the Public Cloud.” In:
Proceedings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2017, pp. 315–328.

https://www.dpdk.org
https://www.endace.com/dag-7.5g4-datasheet.pdf
https://www.endace.com/dag-7.5g4-datasheet.pdf

196 Bibliography

[For56] L. R. Ford Jr. Network �ow theory. Tech. rep. DTIC Document, 1956.

[FR17] N. Feamster and J. Rexford. “Why (and how) networks should run themselves.” In: arXiv
preprint arXiv:1710.11583 (2017).

[FSR06] L. Fu, D. Sun, and L. R. Rilett. “Heuristic shortest path algorithms for transportation
applications: State of the art.” In: Elsevier Computers & Operations Research 33.11 (Nov.
2006), pp. 3324–3343.

[FSV18] K.-T. Foerster, S. Schmid, and S. Vissicchio. “Survey of consistent software-de�ned net-
work updates.” In: IEEE Communications Surveys & Tutorials 21.2 (2018), pp. 1435–1461.

[FT87] M. L. Fredman and R. E. Tarjan. “Fibonacci heaps and their uses in improved network
optimization algorithms.” In: Journal of the ACM (JACM) 34.3 (1987), pp. 596–615.

[Gal+15] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle. “Comparison of
frameworks for high-performance packet IO.” In: Proceedings of the ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems (ANCS). ACM/IEEE.
2015, pp. 29–38.

[Gen+16] Y. Geng, V. Jeyakumar, A. Kabbani, and M. Alizadeh. “J uggler: a practical reordering
resilient network stack for datacenters.” In: Proceedings of the ACM European Conference
on Computer Systems. ACM. 2016, p. 20.

[GGT10] R. G. Garroppo, S. Giordano, and L. Tavanti. “A survey on multi-constrained optimal
path computation: Exact and approximate algorithms.” In: Elsevier Computer Networks
54.17 (2010), pp. 3081–3107.

[GH05] A. V. Goldberg and C. Harrelson. “Computing the shortest path: A search meets graph
theory.” In: Proceedings of the ACM SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics. 2005, pp. 156–165.

[GH13] B. Galloway and G. P. Hancke. “Introduction to Industrial Control Networks.” In: IEEE
Communications Surveys & Tutorials 15.2 (Second Qu. 2013), pp. 860–880.

[Gha+16] M. Ghaznavi, N. Shahriar, R. Ahmed, and R. Boutaba. “Service Function Chaining Sim-
pli�ed.” In: arXiv preprint arXiv:1601.00751 (2016).

[GHG14] S. Gorlatch, T. Humernbrum, and F. Glinka. “Improving QoS in real-time internet ap-
plications: from best-e�ort to Software-De�ned Networks.” In: International Conference
on Computing, Networking and Communications (ICNC). IEEE. 2014, pp. 189–193.

[Gho+17] S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and A. Firoozshahian. “DRILL: Micro load
balancing for low-latency data center networks.” In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM. 2017, pp. 225–238.

[GJF13a] P. Gaj, J. Jasperneite, and M. Felser. “Computer Communication Within Industrial Dis-
tributed Environment—a Survey.” In: IEEE Transactions on Industrial Informatics 9.1 (Feb.
2013), pp. 182–189.

[GJF13b] P. Gaj, J. Jasperneite, and M. Felser. “Computer communication within industrial dis-
tributed environment - A survey.” In: IEEE Transactions on Industrial Informatics. Vol. 9.
1. IEEE, 2013, pp. 182–189.

197

[GM03] L. Guo and I. Matta. “Search space reduction in QoS routing.” In: Elsevier Computer
Networks 41.1 (2003), pp. 73–88.

[Gom+15] T. Gomes, S. Marques, L. Martins, M. Pascoal, and D. Tipper. “Protected shortest path
visiting speci�ed nodes.” In: Proceedings of the IEEE International Workshop on Reliable
Networks Design and Modeling (RNDM). IEEE. 2015, pp. 120–127.

[Gom+17] T. Gomes, L. Martins, S. Ferreira, M. Pascoal, and D. Tipper. “Algorithms for determining
a node-disjoint path pair visiting speci�ed nodes.” In: Elsevier Optical Switching and
Networking 23 (2017), pp. 189–204.

[GRK15] J. W. Guck, M. Reisslein, and W. Kellerer. “Model-based control plane for fast routing in
industrial QoS network.” In: Proceedings of the IEEE International Symposium on Quality
of Service (IWQoS). IEEE. 2015, pp. 65–66.

[GRK16] J. W. Guck, M. Reisslein, and W. Kellerer. “Function Split Between Delay-Constrained
Routing and Resource Allocation for Centrally Managed QoS in Industrial Networks.”
In: IEEE Transactions on Industrial Informatics 12.6 (Dec. 2016), pp. 2050–2061.

[Gro+15] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand, and J.
Crowcroft. “Queues Don’t Matter When You Can JUMP Them!” In: Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation (NSDI). USENIX.
2015, pp. 1–14.

[Guc18] J. W. Guck. “Centralized Online Routing for Deterministic Quality of Service in Packet
Switched Networks.” PhD thesis. Technische Universität München, 2018.

[Gun+11] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke.
“Smart grid technologies: communication technologies and standards.” In: IEEE Trans-
actions on Industrial Informatics 7.4 (2011), pp. 529–539.

[Guo+10] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. “Secondnet:
a data center network virtualization architecture with bandwidth guarantees.” In: Pro-
ceedings of the ACM International Conference on emerging Networking EXperiments and
Technologies (CoNEXT). ACM. 2010, p. 15.

[GY05] J. L. Gross and J. Yellen. Graph theory and its applications. CRC Press, 2005.

[GYG13] A. Gelberger, N. Yemini, and R. Giladi. “Performance analysis of software-de�ned net-
working (SDN).” In: Proceedings of the IEEE International Symposium on Modeling, Anal-
ysis & Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE. 2013,
pp. 389–393.

[Han+17] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi, and M. Wójcik.
“Re-architecting datacenter networks and stacks for low latency and high performance.”
In: Proceedings of ACM SIGCOMM. ACM. 2017, pp. 29–42.

[HCG12] C.-Y. Hong, M. Caesar, and P. B. Godfrey. “Finishing �ows quickly with preemptive
scheduling.” In: ACM SIGCOMM Computer Communication Review 42.4 (2012), pp. 127–
138.

198 Bibliography

[He+15a] K. He, J. Khalid, S. Das, A. Gember-Jacobson, C. Prakash, A. Akella, L. E. Li, and M.
Thottan. “Latency in software de�ned networks: Measurements and mitigation tech-
niques.” In: ACM SIGMETRICS Performance Evaluation Review. Vol. 43. 1. ACM. 2015,
pp. 435–436.

[He+15b] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L. E. Li, and M.
Thottan. “Measuring control plane latency in sdn-enabled switches.” In: Proceedings of
the ACM SIGCOMM Symposium on Software De�ned Networking Research (SOSR). ACM.
2015, p. 25.

[He+15c] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. “Presto: Edge-based load
balancing for fast datacenter networks.” In: ACM SIGCOMM Computer Communication
Review. Vol. 45. 4. ACM. 2015, pp. 465–478.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. “A formal basis for the heuristic determination
of minimum cost paths.” In: IEEE Transactions on Systems Science and Cybernetics 4.2
(1968), pp. 100–107.

[Hos+07] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas. “A survey of
application-layer multicast protocols.” In: IEEE Communications Surveys & Tutorials 9.3
(Third Qu. 2007), pp. 58–74.

[HS09] M. Hilger and H. Schilling. “Fast point-to-point shortest path computations with arc-
�ags.” In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge 74 (2009),
pp. 41–72.

[HSW09] M. Holzer, F. Schulz, and D. Wagner. “Engineering multilevel overlay graphs for
shortest-path queries.” In: ACM Journal of Experimental Algorithmics (JEA) 13 (2009),
p. 5.

[Hu+16] S. Hu, W. Bai, K. Chen, C. Tian, Y. Zhang, and H. Wu. “Providing bandwidth guarantees,
work conservation and low latency simultaneously in the cloud.” In: IEEE International
Conference on Computer Communications (INFOCOM). IEEE. 2016, pp. 1–9.

[HWJ16] D. Henneke, L. Wisniewski, and J. Jasperneite. “Analysis of realizing a future industrial
network by means of Software-De�ned Networking (SDN).” In: Proceedings of the IEEE
World Conference on Factory Communication Systems (WFCS). IEEE. 2016, pp. 1–4.

[HYS13] D. Y. Huang, K. Yocum, and A. C. Snoeren. “High-�delity switch models for software-
de�ned network emulation.” In: Proceedings of the ACM SIGCOMM Workshop on Hot
Topics in Software De�ned Networking. ACM. 2013, pp. 43–48.

[HZ80] G. Y. Handler and I. Zang. “A dual algorithm for the constrained shortest path problem.”
In: Wiley Networks 10.4 (1980), pp. 293–309.

[IAK98] K. Ishida, K. Amano, and N. Kannari. “A delay-constrained least-cost path routing pro-
tocol and the synthesis method.” In: Proceedings of the IEEE International Conference on
Real-Time Computing Systems and Applications. 1998, pp. 58–65.

[Iba73] T. Ibaraki. “Algorithms for obtaining shortest paths visiting speci�ed nodes.” In: SIAM
Review 15.2 (1973), pp. 309–317.

199

[IEC18] IEC/IEEE 60802 Joint Project. Use Cases IEC/IEEE 60802 v1.3. http://www.ieee802.org/1/
�les/public/docs2018/60802-industrial-use-cases-0918-v13.pdf. Accessed: 2020-01-30.
2018.

[IEE] IEEE. Time-Sensitive Networking (TSN) Task Group. url: https://1.ieee802.org/tsn/.

[Ike+94] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku,
and K. Mitoh. “A fast algorithm for �nding better routes by AI search techniques.” In:
Proceedings of the IEEE Vehicle Navigation and Information Systems Conference. IEEE.
1994, pp. 291–296.

[ITU15] ITU-R: Radiocommunication Sector of ITU. “IMT Vision–Framework and overall ob-
jectives of the future development of IMT for 2020 and beyond.” In: Rec. ITU-R M.2083-0
(2015).

[Jal+13] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan. “Speeding up
distributed request-response work�ows.” In: ACM SIGCOMMComputer Communication
Review. Vol. 43. 4. ACM. 2013, pp. 219–230.

[Jan+15] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. “Silo: Predictable message latency in the
cloud.” In: ACM SIGCOMM Computer Communication Review 45.4 (2015), pp. 435–448.

[Jar+11] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia. “Modeling and
performance evaluation of an OpenFlow architecture.” In: Proceedings of the Interna-
tional Teletra�c Congress. International Teletra�c Congress. 2011, pp. 1–7.

[Jey+13] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and A. Greenberg. “EyeQ:
Practical network performance isolation at the edge.” In: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI). USENIX, 2013,
pp. 297–311.

[Jia06] Y. Jiang. “A Basic Stochastic Network Calculus.” In: ACM SIGCOMM Computer Commu-
nication Review 36.4 (2006), pp. 123–134.

[JL08] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer, 2008.

[JN04] J. Jasperneite and P. Neumann. “How to guarantee realtime Behavior using Ethernet.”
In: Proceedings of the IFAC Symposium on Information Control Problems inManufacturing
(INCOM). Gulf Professional Publishing. 2004.

[Jos+18] R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo. “BurstRadar: Practical real-time
microburst monitoring for datacenter networks.” In: Proceedings of the ACMAsia-Paci�c
Workshop on Systems. ACM. 2018, pp. 1–8.

[JSQ02] G. R. Jagadeesh, T. Srikanthan, and K. Quek. “Heuristic techniques for accelerating hi-
erarchical routing on road networks.” In: IEEE Transactions on Intelligent Transportation
Systems 3.4 (2002), pp. 301–309.

[Jüt+01] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó. “Lagrange relaxation based method
for the QoS routing problem.” In: Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM). Vol. 2. 2001, pp. 859–868.

http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf
http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf
https://1.ieee802.org/tsn/

200 Bibliography

[JV01] Z. Jia and P. Varaiya. “Heuristic Methods for Delay-Constrained Least-Cost Routing
Problem Using :-Shortest-Path Algorithms.” In: IEEE International Conference on Com-
puter Communications (INFOCOM). 2001, pp. 1–9.

[Kas+12] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and P. Dely. “Towards QoE-
driven multimedia service negotiation and path optimization with software de�ned net-
working.” In: Proceedings of the IEEE International Conference on Software, Telecommu-
nications and Computer Networks (SoftCOM). IEEE. Sept. 2012, pp. 1–5.

[Kat+17b] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and J. Rexford. “Clove:
Congestion-aware load balancing at the virtual edge.” In: Proceedings of the ACM Inter-
national Conference on emerging Networking EXperiments and Technologies (CoNEXT).
ACM. 2017, pp. 323–335.

[KCL14] A. L. King, S. Chen, and I. Lee. “The middleware assurance substrate: Enabling strong
real-time guarantees in open systems with OpenFlow.” In: Proceedings of the IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time Distributed Com-
puting (ISORC). IEEE. 2014, pp. 133–140.

[Kel+19] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and S. Schmid. “Adaptable
and data-driven softwarized networks: Review, opportunities, and challenges.” In: Pro-
ceedings of the IEEE 107.4 (2019), pp. 711–731.

[Kim+10] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and P. Yalagandula. “Au-
tomated and Scalable QoS Control for Network Convergence.” In: Proceedings of the
USENIX Internet Network Management Workshop/Workshop on Research on Enterprise
Networking (INM/WREN). Vol. 10. 1. 2010, pp. 1–1.

[KK01] T. Korkmaz and M. Krunz. “Multi-constrained optimal path selection.” In: IEEE Interna-
tional Conference on Computer Communications (INFOCOM). Vol. 2. 2001, pp. 834–843.

[KK13] R. H. Khan and J. Y. Khan. “A comprehensive review of the application characteristics
and tra�c requirements of a smart grid communications network.” In: Elsevier Computer
Networks 57.3 (2013), pp. 825–845.

[KK77] L. Kleinrock and F. Kamoun. “Hierarchical routing for large networks performance eval-
uation and optimization.” In: Elsevier Computer Networks 1.3 (1977), pp. 155158–174.

[Kni+11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. “The Internet
Topology Zoo.” In: IEEE Journal on Selected Areas in Communications 29.9 (Oct. 2011),
pp. 1765–1775.

[KOK14] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen. “An Industrial Perspective on Wire-
less Sensor Networks—A Survey of Requirements, Protocols, and Challenges.” In: IEEE
Communications Surveys & Tutorials 16.3 (Third Qu. 2014), pp. 1391–1412.

[KPK14] M. Kuźniar, P. Perešíni, and D. Kostić.What you need to know about SDN control and data
planes. Tech. rep. EPFL-REPORT-199497. École Polytechnique Fédérale de Lausanne
(EPFL), 2014.

201

[KPK15] M. Kuźniar, P. Perešíni, and D. Kostić. “What you need to know about SDN �ow tables.”
In: Proceedings of the International Conference on Passive and Active Network Measure-
ment. Springer. 2015, pp. 347–359.

[KR13] J. F. Kurose and K. W. Ross.Computer Networking: A Top-DownApproach. 6th ed. Pearson
Education, 2013.

[KRR16] A. A. Khan, M. H. Rehmani, and M. Reisslein. “Cognitive radio for smart grids: Survey
of architectures, spectrum sensing mechanisms, and networking protocols.” In: IEEE
Communications Surveys & Tutorials 18.1 (Jan. 2016), pp. 860–898.

[KS98] S. Keshav and R. Sharma. “Issues and trends in router design.” In: IEEE Communications
Magazine. Vol. 36. 5. IEEE, 1998, pp. 144–151.

[Kum+15] A. Kumar et al. “BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing.” In: ACM SIGCOMM Computer Communication Review 45.4 (2015), pp. 1–14.

[Kuo+16] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai. “Deploying chains of virtual network
functions: On the relation between link and server usage.” In: Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM). Apr. 2016, pp. 1–9.

[Kuź+18] M. Kuźniar, P. Perešíni, D. Kostić, and M. Canini. “Methodology, measurement and
analysis of �ow table update characteristics in hardware open�ow switches.” In: Elsevier
Computer Networks 136 (2018), pp. 22–36.

[Kwa89] J. B. Kwa. “BS*: An admissible bidirectional staged heuristic search algorithm.” In: Else-
vier Arti�cial Intelligence 38.1 (1989), pp. 95–109.

[Lam+12] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and G. Varghese. “Netshare and stochas-
tic netshare: predictable bandwidth allocation for data centers.” In: ACM SIGCOMM
Computer Communication Review 42.3 (2012), pp. 5–11.

[Laz+14] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R. Yang, and M. Yu. “Tango: Sim-
plifying SDN control with automatic switch property inference, abstraction, and opti-
mization.” In: Proceedings of the ACM International Conference on emerging Networking
EXperiments and Technologies (CoNEXT). ACM. 2014, pp. 199–212.

[Lee+14] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma. “Application-
driven bandwidth guarantees in datacenters.” In: ACM SIGCOMM Computer Communi-
cation Review. Vol. 44. 4. ACM. 2014, pp. 467–478.

[LHH95] W. C. Lee, M. G. Hluchyi, and P. A. Humblet. “Routing subject to quality of service
constraints in integrated communication networks.” In: IEEE Network 9.4 (July 1995),
pp. 46–55.

[Li+17] J. Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan. “Industrial Internet: A Survey
on the Enabling Technologies, Applications, and Challenges.” In: IEEE Communications
Surveys & Tutorials 19.3 (Third Qu. 2017), pp. 1504–1526.

[Li+19] Y. Li et al. “HPCC: high precision congestion control.” In: Proceedings of ACM SIGCOMM.
2019, pp. 44–58.

202 Bibliography

[Lin] Linux man pages. tc(8): show/change tra�c control settings - Linux man page. https :
//linux.die.net/man/8/tc. Accessed: 2018-10-18.

[Lin+17] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. “A survey on internet of
things: Architecture, enabling technologies, security and privacy, and applications.” In:
IEEE Internet of Things Journal (2017).

[Lin+18] Y.-D. Lin, Y.-K. Lai, C.-Y. Wang, and Y.-C. Lai. “OFBench: Performance test suite on
OpenFlow switches.” In: IEEE Systems Journal 12.3 (2018), pp. 2949–2959.

[Liu+16] F. Liu, J. Guo, X. Huang, and J. C. Lui. “eBA: E�cient bandwidth guarantee under traf-
�c variability in datacenters.” In: IEEE/ACM Transactions on Networking 25.1 (2016),
pp. 506–519.

[Liu+18] Z. Liu, K. Chen, H. Wu, S. Hu, Y.-C. Hut, Y. Wang, and G. Zhang. “Enabling Work-
Conserving Bandwidth Guarantees for Multi-Tenant Datacenters via Dynamic Tenant-
Queue Binding.” In: IEEE International Conference on Computer Communications (INFO-
COM). IEEE. 2018, pp. 1–9.

[LL09] A. Lingas and E.-M. Lundell. “E�cient approximation algorithms for shortest cycles in
undirected graphs.” In: Elsevier Information Processing Letters 109.10 (2009), pp. 493–498.

[LLF05] W. Liu, W. Lou, and Y. Fang. “An e�cient quality of service routing algorithm for delay-
sensitive applications.” In: Elsevier Computer Networks 47.1 (Jan. 2005), pp. 87–104.

[LR01] G. Liu and K. Ramakrishnan. “A*Prune: An algorithm for �nding shortest paths sub-
ject to multiple constraints.” In: IEEE International Conference on Computer Communi-
cations (INFOCOM). Vol. 2. 2001, pp. 743–749.

[LT12] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet. Springer, Apr. 2012.

[MA04] R. T. Marler and J. S. Arora. “Survey of multi-objective optimization methods for en-
gineering.” In: Springer Structural and Multidisciplinary Optimization 26.6 (Apr. 2004),
pp. 369–395.

[Mah+16] T. Mahmoodi et al. “VirtuWind: virtual and programmable industrial network prototype
deployed in operational wind park.” In: Wiley Transactions on Emerging Telecommuni-
cations Technologies 27.9 (2016), pp. 1281–1288.

[McK+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner. “OpenFlow: enabling innovation in campus networks.” In: SIG-
COMM Computer Communication Review 38.2 (2008), pp. 69–74.

[Mel+19] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and G. Porter. “Ex-
panding across time to deliver bandwidth e�ciency and low latency.” In: arXiv preprint
arXiv:1903.12307 (2019).

[MGT16] L. Martins, T. Gomes, and D. Tipper. “An e�cient heuristic for calculating a protected
path with speci�ed nodes.” In: Proceedings of the IEEE International Workshop on Reliable
Networks Design and Modeling (RNDM). IEEE. 2016, pp. 150–157.

https://linux.die.net/man/8/tc
https://linux.die.net/man/8/tc

203

[Mic17] Microchip Technology Inc. Microchip KSZ8795CLX. http : / / ww1 . microchip . com /
downloads/en/DeviceDoc/00002112B.pdf. Accessed: 2018-10-26. 2017.

[Mij+15] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. “Network
function virtualization: state-of-the-art and research challenges.” In: IEEE Communica-
tions Surveys & Tutorials 18.1 (2015), pp. 236–262.

[MMB17] D. S. Marcon, F. M. Mazzola, and M. P. Barcellos. “Achieving minimum bandwidth guar-
antees and work-conservation in large-scale, SDN-based datacenter networks.” In: El-
sevier Computer Networks 127 (2017), pp. 109–125.

[MMP15] W. Ma, C. Medina, and D. Pan. “Tra�c-Aware Placement of NFV Middleboxes.” In:
Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM). IEEE. 2015,
pp. 1–6.

[MOA11] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory of Majorization and Its
Applications. 2nd ed. Springer Series in Statistics, 2011.

[Mon+18] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. “Homa: A receiver-driven low-
latency transport protocol using network priorities.” In: Proceedings of ACM SIGCOMM.
ACM. 2018, pp. 221–235.

[Moo59] E. F. Moore. The Shortest Path Through a Maze. Bell Telephone System, 1959.

[Mor17] A. Morton. Updates for the Back-to-back Frame Benchmark in RFC 2544. Internet-Draft
draft-morton-bmwg-b2b-frame-00. IETF Secretariat, Oct. 2017. url: http://www.ietf.
org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt.

[MP12] J. C. Mogul and L. Popa. “What we talk about when we talk about cloud network per-
formance.” In: ACM SIGCOMM Computer Communication Review 42.5 (2012), pp. 44–
48.

[MP18] R. McGuinness and G. Porter. “Evaluating the performance of software NICs for 100-
Gb/s datacenter tra�c control.” In: Proceedings of the ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS). ACM/IEEE. 2018, pp. 74–
88.

[Nao+08] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown. “Implement-
ing an OpenFlow switch on the NetFPGA platform.” In: Proceedings of the ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS).
ACM/IEEE. Nov. 2008, pp. 1–9.

[Nor18] Northbound Networks. GitHub - NorthboundNetworks/ZodiacFX: Firmware for
the Northbound Networks Zodiac FX OpenFlow Switch. https : / / github . com /
NorthboundNetworks/ZodiacFX. Accessed: 2018-08-03. 2018.

[Nor19] Northbound Networks. Zodiac FX Switch Hardware. https://northboundnetworks.com/
products/zodiac-fx. Accessed: 2019-03-18. 2019.

[OD+13] I. Owens, A. Durresi, et al. “Video over Software-De�ned Networking (VSDN).” In:
Proceedings of the IEEE International Conference on Network-Based Information Systems
(NBiS). IEEE. 2013, pp. 44–51.

http://ww1.microchip.com/downloads/en/DeviceDoc/00002112B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/00002112B.pdf
http://www.ietf.org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt
http://www.ietf.org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt
https://github.com/NorthboundNetworks/ZodiacFX
https://github.com/NorthboundNetworks/ZodiacFX
https://northboundnetworks.com/products/zodiac-fx
https://northboundnetworks.com/products/zodiac-fx

204 Bibliography

[Ope09] Open Networking Foundation (ONF). OpenFlow Switch Speci�cation Version 1.0.0 (ONF
TS-001). https://www.opennetworking.org/wp-content/uploads/2013/04/open�ow-
spec-v1.0.0.pdf. 2009.

[PBS17] J. Perry, H. Balakrishnan, and D. Shah. “Flowtune: Flowlet control for datacenter net-
works.” In: Proceedings of the USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI). 2017, pp. 421–435.

[Per+14] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. “Fastpass: A centralized
zero-queue datacenter network.” In: ACM SIGCOMM Computer Communication Review.
Vol. 44. 4. 2014, pp. 307–318.

[Pfa+15] B. Pfa� et al. “The Design and Implementation of Open vSwitch.” In: Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation (NSDI). Vol. 15.
2015, pp. 117–130.

[PMK13] G. Pongrácz, L. Molnár, and Z. L. Kis. “Removing roadblocks from SDN: OpenFlow soft-
ware switch performance on Intel DPDK.” In: Proceedings of the IEEE EuropeanWorkshop
on Software De�ned Networks (EWSDN). IEEE. 2013, pp. 62–67.

[Pop+12] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
“FairCloud: sharing the network in cloud computing.” In: ACM SIGCOMM Computer
Communication Review. Vol. 42. 4. 2012, pp. 187–198.

[Pop+13] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. Santos. “Elastic-
switch: Practical work-conserving bandwidth guarantees for cloud computing.” In:ACM
SIGCOMM Computer Communication Review. Vol. 43. 4. ACM. 2013, pp. 351–362.

[Pop19] D. A. Popescu. “Latency-driven performance in data centres.” PhD thesis. University of
Cambridge, 2019.

[PR02] P. Paul and S. V. Raghavan. “Survey of QoS Routing.” In: Proceedings of the ACM Inter-
national Conference on Computer Communication (ICCC). ACM. Mumbai, Maharashtra,
India, 2002, pp. 50–75.

[Rah+16] R. Rahimi, M. Veeraraghavan, Y. Nakajima, H. Takahashi, S. Okamoto, and N. Yamanaka.
“A high-performance OpenFlow software switch.” In: Proceedings of the IEEE Interna-
tional Conference on High Performance Switching and Routing (HPSR). IEEE. 2016, pp. 93–
99.

[Ram00] M. Ramalho. “Intra- and inter-domain multicast routing protocols: A survey and taxon-
omy.” In: IEEE Communications Surveys & Tutorials 3.1 (First Qu. 2000), pp. 2–25.

[Rau+16] D. Raumer, S. Gallenmüller, F. Wohlfart, P. Emmerich, P. Werneck, and G. Carle. “Re-
visiting benchmarking methodology for interconnect devices.” In: Proceedings of the
ACM/IRTF Applied Networking Research Workshop (ANRW). ACM/IRTF. Berlin, Ger-
many, 2016, pp. 55–61.

[Rod+11] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. O. Guedes. “Gatekeeper: Support-
ing Bandwidth Guarantees for Multi-tenant Datacenter Networks.” In: vol. 1. 3. 2011,
pp. 784–789.

https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf

205

[Ros50] R. Rosenbaum. “Sub-additive Functions.” In: Duke Mathematical Journal 17.3 (1950),
pp. 227–247.

[Rot+12] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. “OFLOPS: An open frame-
work for OpenFlow switch evaluation.” In: Proceedings of the International Conference
on Passive and Active Network Measurement. Springer. 2012, pp. 85–95.

[RS00] D. S. Reeves and H. F. Salama. “A distributed algorithm for delay-constrained unicast
routing.” In: IEEE/ACM Transactions on Networking 8.2 (Apr. 2000), pp. 239–250.

[RS16] M. Rost and S. Schmid. “Service chain and virtual network embeddings: Approximations
using randomized rounding.” In: arXiv preprint arXiv:1604.02180 (2016).

[RT12] M. N. Rice and V. J. Tsotras. “Bidirectional A* Search with Additive Approximation
Bounds.” In: Proceedings of the AAAI Symposium on Combinatorial Search (SOCS). 2012.

[RT13] M. N. Rice and V. J. Tsotras. “Parameterized algorithms for generalized traveling sales-
man problems in road networks.” In: Proceedings of the ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM. 2013, pp. 114–123.

[Ryu17] Ryu SDN Framework Community. Ryu SDN Framework. https://osrg.github.io/ryu/.
Accessed: 2018-10-26. 2017.

[Sau10] T. Sauter. “The three generations of �eld-level networks - evolution and compatibility
issues.” In: IEEE Transactions on Industrial Electronics. Vol. 57. 11. IEEE, 2010, pp. 3585–
3595.

[SCC07] L. Santos, J. Coutinho-Rodrigues, and J. R. Current. “An improved solution algorithm
for the constrained shortest path problem.” In: Elsevier Transportation Research Part B:
Methodological 41.7 (Aug. 2007), pp. 756–771.

[Sch+03] J. Schmitt, P. Hurley, M. Hollick, and R. Steinmetz. “Per-�ow guarantees under class-
based priority queueing.” In: Proceedings of the IEEE Global Telecommunications Confer-
ence (GLOBECOM). Vol. 7. IEEE. 2003, pp. 4169–4174.

[Sch+16] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann. “Application-aware
industrial ethernet based on an SDN-supported TDMA approach.” In: Proceedings of the
IEEE World Conference on Factory Communication Systems (WFCS). IEEE. 2016, pp. 1–8.

[SDJ15] S. K. Singh, T. Das, and A. Jukan. “A Survey on Internet Multipath Routing and Provi-
sioning.” In: IEEE Communications Surveys & Tutorials 17.4 (Fourth Qu. 2015), pp. 2157–
2175.

[Sha+13] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro. “Enhanc-
ing network management frameworks with SDN-like control.” In: Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management (IM). IFIP/IEEE.
2013, pp. 688–691.

[Sha+14] S. Sharma et al. “Implementing quality of service for the software de�ned networking
enabled future Internet.” In: Proceedings of the IEEE European Workshop on Software
De�ned Networks. IEEE. 2014, pp. 49–54.

https://osrg.github.io/ryu/

206 Bibliography

[Sha+17] M. Sha� et al. “5G: A tutorial overview of standards, trials, challenges, deployment, and
practice.” In: IEEE Journal on Selected Areas in Communications 35.6 (2017), pp. 1201–
1221.

[She+16] M. Shen, L. Zhu, M. Wei, Q. Zhang, M. Wang, and F. Li. “Joint Optimization of Flow
Latency in Routing and Scheduling for Software De�ned Networks.” In: Proceedings of
the IEEE International Conference on Computer Communication and Networks (ICCCN).
IEEE. 2016, pp. 1–8.

[Shi+11] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha. “Sharing the Data Center
Network.” In: Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI). Vol. 11. 2011, pp. 23–23.

[Shi54] A. Shimbel. “Structure in communication nets.” In: Proceedings of the Symposium on
Information Networks. 1954, pp. 199–203.

[Sin18a] Sinovoip. Banana Pi BPI-R1 Open-source Router. http://www.banana- pi.org/r1.html.
Accessed: 2018-10-24. 2016-2018.

[Sin18b] Sinovoip. Banana Pi BPI-R2 Open-source Router. http://www.banana- pi.org/r2.html.
Accessed: 2018-10-24. 2016-2018.

[SJH06] T. Skeie, S. Johannessen, and O. Holmeide. “Timeliness of real-time IP communication in
switched industrial Ethernet networks.” In: IEEE Transactions on Industrial Informatics
2.1 (Feb. 2006), pp. 25–39.

[SK18] E. Sakic and W. Kellerer. “Impact of adaptive consistency on distributed sdn applica-
tions: An empirical study.” In: IEEE Journal on Selected Areas in Communications 36.12
(2018), pp. 2702–2715.

[SK66] J. Saksena and S. Kumar. “The Routing Problem with “K” Speci�ed Nodes.” In: INFORMS
Operations Research 14.5 (1966), pp. 909–913.

[SL98] Q. Sun and H. Langendörfer. “A new distributed routing algorithm for supporting delay-
sensitive applications.” In: Elsevier Computer Communications 21.6 (May 1998), pp. 572–
578.

[SMM98] R. Sriram, G. Manimaran, and C. S. R. Murthy. “Preferred link based delay-constrained
least-cost routing in wide area networks.” In: Elsevier Computer Communications 21.18
(Dec. 1998), pp. 1655–1669.

[Som+10] J. Sommer, S. Gunreben, F. Feller, M. Kohn, A. Mifdaoui, D. Saß, and J. Scharf. “Ethernet–
a survey on its �elds of application.” In: IEEE Communications Surveys & Tutorials.
Vol. 12. 2. IEEE, 2010, pp. 263–284.

[SPD14] P. Simari, G. Picciau, and L. De Floriani. “Fast and scalable mesh superfacets.” In: Com-
puter Graphics Forum. Vol. 33. 7. Wiley Online Library. 2014, pp. 181–190.

[SRV97] H. F. Salama, D. S. Reeves, and Y. Viniotis. “A distributed algorithm for delay-
constrained unicast routing.” In: IEEE International Conference on Computer Communi-
cations (INFOCOM). Vol. 1. 1997, pp. 84–91.

http://www.banana-pi.org/r1.html
http://www.banana-pi.org/r2.html

207

[ST83] I. Stewart and D. Tall. Complex Analysis (The Hitchhiker’s Guide to the Plane). Cambridge
University Press, 1983.

[Sta15] W. Stallings. Foundations of modern networking: SDN, NFV, QoE, IoT, and Cloud. Addison-
Wesley Professional, 2015.

[STV12] L. Seno, F. Tramarin, and S. Vitturi. “Performance of industrial communication sys-
tems: Real application contexts.” In: IEEE Industrial Electronics Magazine 6.2 (June 2012),
pp. 27–37.

[SV08] T. Schuster and D. Verma. “Networking concepts comparison for avionics architec-
ture.” In: Proceedings of the IEEE/AIAA Digital Avionics Systems Conference. Oct. 2008,
pp. 1.D.1-1-1.D.1–11.

[Tho03] M. Thorup. “Integer priority queues with decrease key in constant time and the single
source shortest paths problem.” In: Proceedings of the ACM Symposium on Theory of
Computing. ACM. 2003, pp. 149–158.

[TPR14] S. Tomovic, N. Prasad, and I. Radusinovic. “SDN control framework for QoS provi-
sioning.” In: Proceedings of the IEEE Telecommunications Forum (TELFOR). IEEE. 2014,
pp. 111–114.

[Tri11] TriaGnoSys GmbH. Onair and TriaGnoSys launch most lightweight in�ight connectivity
solution for business jets. http://triagnosys.com/assets/PressReleases/OnAirTGSbizjet.
pdf. Accessed: 2019-01-31. May 2011.

[TW11] A. S. Tanenbaum and D. J. Wetherall. Computer Networks. 5th ed. Prentice Hall, 2011.

[US] US Naval Research Laboratory. Multi-Generator (MGEN) | Networks and Communication
Systems Branch. https://www.nrl.navy.mil/itd/ncs/products/mgen. Accessed: 2018-10-
18.

[Var14] S. Varone. On a many-to-one shortest paths for a taxi service. Tech. rep. HES-SO/HEG-
GE/C–14/1/1-CH. Haute école de gestion de Genève, 2014.

[Vat+12] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren. “Practical TDMA for data-
center ethernet.” In: Proceedings of the ACM European Conference on Computer Systems.
ACM. 2012, pp. 225–238.

[VHV12] B. Vamanan, J. Hasan, and T. N. Vijaykumar. “Deadline-aware datacenter TCP (D2TCP).”
In: ACM SIGCOMM Computer Communication Review. Vol. 42. 4. ACM, 2012, pp. 115–
126.

[Vir17] VirtuWind EU Project. VirtuWind - Deliverable D3.2: Detailed Intra-Domain SDN & NFV
Architecture. http://www.virtuwind.eu/. Accessed: 2020-01-30. 2017.

[Viz+17] P. Vizarreta, M. Condoluci, C. Mas Machuca, T. Mahmoodi, and W. Kellerer. “QoS-driven
Function Placement Reducing Expenditures in NFV Deployments.” In: Proceedings of the
IEEE International Conference on Communications (ICC). 2017.

[VJ14] S. Varone and V. Janilionis. “Insertion heuristic for a dynamic dial-a-ride problem us-
ing geographical maps.” In: Proceedings of the Conférence Francophone de Modélisation,
Optimisation et Simulation (MOSIM). 2014.

http://triagnosys.com/assets/PressReleases/OnAirTGSbizjet.pdf
http://triagnosys.com/assets/PressReleases/OnAirTGSbizjet.pdf
https://www.nrl.navy.mil/itd/ncs/products/mgen
http://www.virtuwind.eu/

208 Bibliography

[Wax88] B. M. Waxman. “Routing of multipoint connections.” In: IEEE Journal on Selected Areas
in Communications 6.9 (Dec. 1988), pp. 1617–1622.

[WH00] B. Wang and J. C. Hou. “Multicast routing and its QoS extension: Problems, algorithms,
and protocols.” In: IEEE Network 14.1 (Jan. 2000), pp. 22–36.

[Wid94] R. Widyono. The design and evaluation of routing algorithms for real-time channels. Tech.
rep. TR-94-024. International Computer Science Institute Berkeley, 1994.

[Wil+11] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. “Better never than late: Meet-
ing deadlines in datacenter networks.” In: ACM SIGCOMM Computer Communication
Review. Vol. 41. 4. ACM. 2011, pp. 50–61.

[WMZ19] J. Woodru�, A. W. Moore, and N. Zilberman. “Measuring Burstiness in Data Center
Applications.” In: Proceedings of the ACM Workshop on Bu�er Sizing. 2019.

[Xie+12] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. “The only constant is change: Incorporat-
ing time-varying network reservations in data centers.” In: ACM SIGCOMM Computer
Communication Review 42.4 (2012), pp. 199–210.

[Yan+12] Y. Yan, Y. Qian, H. Sharif, and D. Tipper. “A survey on smart grid communication infras-
tructures: Motivations, requirements and challenges.” In: IEEE Communications Surveys
& Tutorials 15.1 (2012), pp. 5–20.

[Yaq+17] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran, and M. Guizani.
“Internet of things architecture: Recent advances, taxonomy, requirements, and open
challenges.” In: IEEE Wireless Communications 24.3 (June 2017), pp. 10–16.

[Yen70] J. Y. Yen. “An algorithm for �nding shortest routes from all source nodes to a given
destination in general networks.” In: AMS Quarterly of Applied Mathematics 27.4 (Jan.
1970), pp. 526–530.

[Yen71] J. Y. Yen. “Finding the : shortest loopless paths in a network.” In: INFORMSManagement
Science 17.11 (1971), pp. 712–716.

[Zah+19] E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy. “Links as a Service
(LaaS): Guaranteed tenant isolation in the shared cloud.” In: IEEE Journal on Selected
Areas in Communications 37.5 (2019), pp. 1072–1084.

[Zat+12] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. “DeTail: reducing the �ow comple-
tion time tail in datacenter networks.” In: Proceedings of ACM SIGCOMM. ACM. 2012,
pp. 139–150.

[ZBC19] J. Zhang, W. Bai, and K. Chen. “Enabling ECN for datacenter networks with RTT vari-
ations.” In: Proceedings of the ACM International Conference on emerging Networking
EXperiments and Technologies (CoNEXT). 2019, pp. 233–245.

[ZPG95] Q. Zhu, M. Parsa, and J. Garcia-Luna-Aceves. “A source-based algorithm for delay-
constrained minimum-cost multicasting.” In: Proceedings of the IEEE International Con-
ference on Computer Communications (INFOCOM). Vol. 1. 1995, pp. 377–385.

Acronyms and Abbreviations

:CSP : constrained shortest paths 66

:MCP : multi-constrained paths 66

:MCSP : multi-constrained shortest paths 66

:SP : shortest paths 66, 68, 84, 85, 87

:SPT : shortest paths tree 84–86

ACL access control list 128

API application program interface 145

AS autonomous system 188

ASIC application-speci�c integrated circuit 120, 123, 130

AUT algorithm under test 73

BD bounded Dijkstra 6, 64, 80–94

BF Bellman-Ford 64, 67–70, 81, 82, 84–87, 106

BFS breadth-�rst search 67, 104, 106

BW bandwidth 12

CAT cache allocation technology 148

CBR constant bit rate 34

CLI command line interface 161, 164

CMST constrained minimum Steiner tree 80, 82

CP control plane 2, 4, 9, 10, 14, 43, 60, 160, 164–167, 173, 176–178, 180

CPS cyber-physical system 1, 185, 187

CPU central processing unit 3, 57, 78, 87, 101, 112, 117, 120, 124, 125, 147–149, 151, 159–161, 163,
164, 167, 170–173, 180, 181, 186

209

210 Acronyms and Abbreviations

CSP constrained shortest path 63, 64, 66–71, 74, 76, 78–80, 82, 85–88, 90, 91, 93–99, 101, 102, 106,
111–114

D
2
TCP deadline-aware datacenter TCP 12, 13

D
3 deadline-driven delivery 12, 13

DAG data acquisition and generation 121, 153, 154, 161, 164, 165, 167

DCLC delay-constrained least-cost 4, 57, 63, 69, 82, 143, 146, 147, 152

DCTCP data center TCP 12, 13

DetServ deterministic services 4, 6, 7, 9, 10, 12, 15, 43, 44, 54, 56, 58–61, 64, 68–70, 78, 79, 93, 95, 96,
103–107, 115, 134, 158, 159, 163, 173, 174, 181

DNC deterministic network calculus 7, 9, 10, 15–17, 19, 23, 24, 26, 30, 32, 37, 41, 42, 44, 53, 106, 107,
118, 124–126, 132, 136, 139, 141, 142, 148, 154, 158, 163, 172–175, 181, 187

DP data plane 2, 4, 9, 10, 14, 41, 160, 161, 164, 166–169, 171, 176, 180

DPDK data plane development kit 6, 7, 145, 147–149, 152, 153, 171, 180, 181, 186

DPI deep packet inspection 94

E2E end-to-end 1–4, 7, 9, 10, 21, 37, 38, 40–43, 45, 54, 59, 60, 65, 69, 117, 120, 129, 139, 154, 158, 173,
176, 181, 185–187

EBD edge-based Dijkstra 6, 64, 103, 109, 113–115

ECDF empirical cumulative distribution function 58, 112–114, 152

ECN early congestion noti�cation 12–14

EDF earliest deadline �rst 13

EEPROM electrically erasable programmable read-only memory 160

FCT �ow completion time 12, 13

FIFO �rst-in �rst-out 31, 36, 38

FPP function placement problem 94

GPS generalized processor sharing 37

GR grid random 72–74, 76

GTA graph transformation algorithm 6, 64, 103, 109–115

HPCC high precision congestion control 12, 14

HTTP hypertext transfer protocol 145, 160, 161, 164

Acronyms and Abbreviations 211

HUG high utilization with guarantees 12, 13

HULL high-bandwidth ultra-low latency 12, 14

i:SP iterative : shortest paths 68, 70, 73–75, 77, 79

I/O input/output 57, 72

IEEE institute of electrical and electronics engineers 15

IFG interframe gap 170

ILP integer linear program 96

ILS input link shaping 52–56, 58, 104–107

IntServ integrated services 35

IoT internet of things 1, 185

IP Internet protocol 11, 134, 148, 161

IS integrated switch 159–161, 164, 169–172

ISP Internet service provider 188

L2 layer-2 121, 124, 128, 159–161, 170, 171

L3 layer-3 121, 124, 128

L4 layer-4 13, 14, 121, 124, 161

LaaS links as a service 12, 14

LAN local area network 11, 154

LARAC-SN Lagrange relaxation based aggregated cost for speci�ed nodes 6, 64, 95, 96, 98–103, 107,
108

LC least-cost 63, 67–70, 73–75, 82, 85, 87, 88, 90, 92, 101, 103

LD least-delay 57, 69, 70, 73–76, 78–80, 82, 85, 87, 90, 92, 101, 104

LLC last level cache 148

LLDP link-layer discovery protocol 145

M2M machine-to-machine 1

MAC medium access control 11

MCP multi-constrained path 66, 80, 82

MCSP multi-constrained shortest path 66, 67, 70, 71, 80, 82, 103, 109, 114, 115

212 Acronyms and Abbreviations

MHM multi-hop model 44, 47, 58

MITH mole in the hole 6, 64, 95, 96, 99–103, 107, 108

MPLS multi-protocol label switching 12, 147

MTBF mean time between failures 181

NBI northbound interface 2, 9, 41, 145

NFV network function virtualization 94, 95, 102

NIC network interface card 7, 147, 148, 152, 181

NTP network time protocol 150

OF OpenFlow 2, 45, 61, 118, 121, 124, 128–130, 145, 147, 160, 161, 164, 165, 167, 180

OG optimality gap 67, 69, 73–79, 95, 101–103

ORB one ring bottleneck 72, 76

OS operating system 12, 14, 15, 73, 120, 124, 158, 180

OSNE ordered speci�ed nodes extension 94–99, 101

OSP optimal substructure property 6, 64, 103, 105, 106, 108–111, 113, 115

OVS open vswitch 130

PDQ preemptive distributive quick 12, 13

PLC programmable logic controller 57, 72

PQ priority queuing 12, 38, 45, 48, 49, 118, 120, 124–126, 133, 134, 136

PTP precision time protocol 150, 154, 155

QoS quality of service 1, 2, 4, 7, 10–15, 40–42, 55, 59, 61, 103, 105, 115, 118, 158, 185, 187, 188

RAM random access memory 147, 151, 160

REST representational state transfer 145

RFC request for comments 172

RSVP resource reservation protocol 13

s:SP static : shortest paths 68, 70, 71, 77

s:SPT static : shortest paths tree 70, 77

SBI southbound interface 145, 146

Acronyms and Abbreviations 213

SCADA supervisory control and data acquisition 150

SDN software-de�ned networking 2, 3, 6, 7, 9–11, 41, 45, 61, 95, 117, 118, 120, 136, 137, 180, 185

SFC service function chain 6, 7, 64, 79, 94, 102, 107, 108, 115

SFD start frame delimiter 121, 164, 165, 170

SJF shortest job �rst 13

SLA service level agreement 9, 105, 187

SNC stochastic network calculus 9, 15

SNE speci�ed nodes extension 94, 96

SoA state of the art 6, 7, 12, 40, 54, 61, 63, 64, 69, 95, 96, 99–106, 108–111, 113–115, 117–121, 126, 129,
132, 133, 136, 138, 140, 149–151, 155, 157–159, 161, 173, 175, 181, 185–187

SP shortest path 64, 66–71, 74–77, 79–87, 89–93, 96–98, 103, 105, 106, 109, 111, 112, 114, 115, 146,
152

SP-SN shortest path with speci�ed nodes 97–99

SPT shortest path tree 67, 68, 70, 71, 75–77, 79–82, 84–87, 90–93

SSH secure shell 145

TBM threshold-based model 44, 47–50, 52–56, 58, 61, 64, 104, 106, 107, 115, 142, 157, 158

TCAM ternary content-addressable memory 9, 124, 128, 137

TCP transmission control protocol 132, 161, 181

TDMA time-division multiple access 12, 14, 59, 60

TIVC temporally interleaved virtual cluster 12, 13

ToS type of service 121

TRB two rings bottleneck 72, 76

TRR two rings random 72, 76

TSC timestamp counter 149

TSN time-sensitive networking 15

USART universal synchronous/asynchronous receiver/transmitter 160

USB universal serial bus 160, 161

VBR variable bit rate 34, 35

214 Acronyms and Abbreviations

VLAN virtual local area network 12, 15, 45, 55, 136, 137, 147, 148, 155

VM virtual machine 11, 13, 138–140, 142, 144, 145, 147–149, 152, 153, 155, 185

VMDQ virtual machine device queues 148

VNF virtual network function 7, 64, 79, 94, 95, 108

vNIC virtual network interface card 13

WC work-conserving 12

WDetServ wireless deterministic services 4, 10, 59–61

WFQ weighted fair queuing 12, 13

WG wireless gateway 59, 60

WSN wireless sensor network 59

	Introduction
	Research Challenges
	Contributions
	Outline

	Architecture Design and Network Modeling for Predictable Latency
	Related Work
	Modeling Background: Deterministic Network Calculus
	Introduction
	Mathematical Background: Min-Plus Algebra
	Data Modeling
	Arrival Curves
	Service Curves
	Bounds
	Packet-Based Systems
	Service Curves for Common Nodes

	DetServ: Architecture Design
	Parameter Considered: End-to-End Delay
	Problem Formulation: Online Flow Embedding
	Routing Topology: Queue-Level Topology
	Architecture Components: Routing, Resource Allocation and Reservation, Access Control and Cost Function
	Model Functions: Interface of the Network Model

	DetServ: End-to-End Network Latency Model
	Notations
	Mathematical Formulation of Latency Requirements
	Model Functions Implementation: The Threshold-based Model
	Threshold-based Model: Example
	Threshold-based Model: The Blocking Problem
	Computation of the Burst Increase
	Input Link Shaping

	DetServ: Evaluation
	Packet-level Simulation: Confirming Correctness
	Monte Carlo Simulation

	WDetServ: Support for Hybrid Wired/Wireless Networks
	Summary

	Optimization of the Path Selection Strategy
	Background: Terminology and Definitions
	Routing Metrics
	Optimization Problems
	Mathematical Formulation

	Background: Shortest Path Algorithms
	Evaluation of the Available Routing Algorithms
	List of Available Algorithms
	Performance Evaluation
	Which Algorithm is Best?
	Summary

	Search Space Reduction for Expediting Shortest Path Subroutines
	Related Work
	Proposed Solution: Bounded Dijkstra (BD)
	Application: BD for CSP Routing
	Evaluation
	Summary

	Enabling Routing through Service Function Chains
	Related Work
	LARAC-SN: OSNE of the CSP Problem
	Mole in the Hole (MITH)
	Evaluation
	Summary

	Handling the Optimality/Completeness Loss due to DetServ
	Motivation: Violation of the Optimal Substructure Property
	The Mn Taxonomy
	Solutions for the Mn Taxonomy
	Evaluation
	Applicability of the Solutions
	Summary

	Summary

	Measurements and Testbed Implementation for Data Center Networks
	Predictability Study of SDN Switches
	Related Work
	Measurement Study: Performance Predictability
	Measurement Study: Management Predictability
	Insights and Discussions

	Chameleon: High Utilization with Queue-Aware and Adaptive Source Routing
	Motivation: Unexploited Opportunities
	Chameleon System Design
	Chameleon Implementation
	Evaluation

	Summary

	Measurements and Testbed Implementation for Small Networks
	Motivation: SoA Falls Short for Low-Cost Devices
	Hardware Architecture
	Firmware Architecture
	Why Does SoA Fail?

	Step 1: Switch Benchmarking
	Ensuring Deterministic Performance
	Control Plane Processing Time
	Data Plane Processing Time
	Data Plane Throughput
	Buffer Capacity

	Step 2: Switch Model
	Step 3: Network Model
	Loko: Evaluation
	Measurements: Proof-of-Concept Testbed Implementation
	Simulations: Scalability and Utilization
	Outcomes

	Discussion: Generalizability
	Summary
	Appendix: Silo Guarantees for our Scenario

	Conclusions and Outlook
	Summary
	Future Work

	Bibliography
	Acronyms and Abbreviations

