or reuse of any copyrighted component of this work in other works.

(©IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

Towards a Programmable Management Plane for
SDN and Legacy Networks

Christian Sieber®, Andreas Blenk*, Arsany Basta®, David Hock ™, Wolfgang Kellerer*
*Chair of Communication Networks, Department of Electrical and Computer Engineering,
Technical University of Munich, Germany
{c.sieber,andreas.blenk,arsany.basta,wolfgang.kellerer } @ tum.de
Infosim GmbH & Co. KG, Wiirzburg, Germany
hock @infosim.net

Abstract—Software-defined Networking (SDN) and one of its
most known realization, namely OpenFlow, enabled wide-spread
and vendor-neutral programmability of the control plane of
modern network equipment. However, despite research and stan-
dardization efforts, the management plane is still eluding device-
neutral and vendor-neutral programmability. Thus, innovation in
the management plane is hampered by a dependency on human
experts, domain knowledge that is hidden in human-centered
manuals, and the huge amount of diverse device capabilities
and configuration interfaces. Recent proposals for vendor-neutral
data-models, such as OFCONEF, are still lacking majority and do
not provide a standardized way of device capability discovery and
device status monitoring. Accordingly, we present an architecture
that provides a unified interface to the management plane of
heterogeneous devices, i.e., SDN and legacy devices. We discuss
the properties of the chosen level of configuration abstraction
and show how applications northbound of the abstraction layer
are well prepared against undesired side-effects of management
actions. By example of a popular approach for enabling Open-
Flow in mixed-SDN/legacy networks, i.e., Panopticon, we provide
a proof-of-concept implementation of the proposed architecture
in a real test-bed. We show how a management application can
use the abstraction layer to discover and configure QoS options
in the network, monitor the devices, and prevent undesired traffic
interruptions in the legacy domain, while being operated in
parallel with an SDN controller.

I. INTRODUCTION

For the control of communication networks, Software-
defined Networking (SDN) opens up the devices and intro-
duces a split between the device’s control plane and the
packet forwarding paths, i.e., the data plane. Through an open
interface, e.g., the popular OpenFlow protocol, an external
controller sets forwarding rules on the devices based on its
global view of the network. In recent years, this vendor-neutral
and device-neutral interface facilitated rapid innovation in the
area of the network’s control plane, such as virtualization of
SDN networks [1]. In terms of network management, net-
works traditionally consist of independent and closed devices,
managed by a logically centralized entity, i.e., the Network
Management System (NMS). Through an NMS, a human
network operator is able, for instance, to configure the control
algorithms running on the devices, which in turn configure the
packet forwarding rules.

978-1-4673-9486-4/16/$31.00 (© 2016 IEEE

Despite proposals from research and standardization bodies,
the management plane still lacks a comparable interface and
protocol like OpenFlow for capability discovery, device man-
agement, and monitoring. Therefore, network management is
still heavily human-centered with minor autonomous behavior.
This leads to a high vulnerability to network failures of
traditional networks. Surveys account the human factor for
a large percentage of network outages, as a symptom of
an overwhelming complexity of the system. [2] accounts
configuration errors by humans for 50 % to 80 % of network
outages. Although networks are planned and configured to
provide a high redundancy, configuration errors can still lead
to dramatic network outages [3]. Accordingly, we propose an
architecture that is a first step towards a unified SDN-based
management and control of communication networks. Such a
software-defined management paves the way for eliminating
the error-prone task of manual network configuration and
enables innovation in the management plane.

This work is a first step towards a unified SDN-based man-
agement and control of communication networks. It introduces
an architecture that allows SDN-based network management
and also contains mechanisms allowing autonomous network
management. Furthermore, it enables novel network virtual-
ization techniques on top, which encompass the SDN and
legacy domain. Figure 1 depicts the overall framework this
work is embedded in. At the bottom, the physical networking
infrastructure contains OpenFlow-enabled SDN switches and
legacy switches, which is referred to as a hybrid or mixed-
SDN/legacy network. On top, a future networking application
conducts combined network control and management deci-
sions enabled by our proposed architecture. The application
interfaces with a Network Services Abstraction Layer (NSAL),
as proposed in RFC 7426 [4]. Based on our previous work
in [5], where we demonstrated the feasibility of such an
NSAL, we focus in this work on the connecting link between
the NSAL and the physical infrastructure, which we call the
Management Abstraction Layer (AL). This layer unifies the
control and management plane of the network and provides it
as one interface to the application.

In detail, the proposed architecture provides a northbound
interface via an open REST API to the NSAL. Further, it
uses distributed agents with device-specific modules to con-

Application for Network
Control & Management

$

Network Services Abstraction Layer

3

Domain Specific
Language

Management

Control Ab L
Module straction Layer
OFCONE/
OpenFlow NETCONE,
SNMP

S (D S

Mixed-SDN/Legacy network

Fig. 1. Overall framework for unifying control and management for au-
tonomous network operation. The management abstraction layer and the
domain specific language are discussed in this work. A unifying Network
Services Abstraction Layer and applications northbound are future work.

figure and monitor the heterogeneous physical infrastructure.
Furthermore, an implementation of a Python-based Domain
Specific Language (DSL) on top of the REST interface is
used to demonstrate how the abstraction layer can be used
by a future NSAL implementation.

The implementation of the management abstraction layer
(AL) consists of two key elements: an extended network topol-
ogy and a database of management task timing characteristics.
In the extended topology, the northbound interface includes the
devices’ processing pipelines to allow northbound applications
to traverse different processing paths, such as different queuing
strategies. The second important element of the architecture
is the estimation of task timings. While hardware switches
full-fill stringent performance requirements for packet for-
warding, less is known about the timing characteristics of
management operations. The importance of understanding the
timing characters of management and control operations to
avoid undefined forwarding states in the network is shown
in [6]. Furthermore, while working on the architecture and
experimenting with autonomous Quality of Service (QoS) con-
figuration, we noticed non-inferable side-effects such as traffic
interruptions in the range of seconds. For example, one device
of the test-bed discards packets for 10 seconds if the scheduler
type is changed from scheduler A to scheduler B, but not from
scheduler B to scheduler A. Therefore, we allow northbound
applications to estimate the timing, e.g., time to take effect
or duration of traffic interruptions of management operations,
before execution to prevent interruptions or flapping behavior.
A device database stores the timings of device configurations.

The proposed architecture is evaluated based on a popular
hybrid networking use case, called Panopticon [7]. Panopticon
enables OpenFlow-control in hybrid networks by configur-
ing VLAN tunnels on the legacy devices to connect two

Network Services Abstraction Layer

= M|

Offline
1 Measurements

Queries,
Network Operator / Jobs
Domain experts o

Events,
Measurements

REST ‘WebSocket
Frontend
Extended
Topology
Processing
Pipelines |~ |
pere e G -————————- Graph DB Message
- - Backend Bus
Task Timings HCEN
evice
Database 2
Configuration -l;aSl: .S:h;du.l‘m.g %
Store ‘onf. jobs Monitoring g
REST .]
Coordinator % 2
Network Management System Nt~ ——e
Inventory / Discovery N = TSme—al
Configuration Monitoring
Agents Agents

CLI REST SNMP NETCONF

Fig. 2. The proposed architecture. The northbound-facing front-end consists
of a synchronous REST and asynchronous WebSocket interface. The back-
end consists of a messaging bus, distributed agents in the network and a task
queue. A custom device database stores the devices timings and processing
pipelines. A proprietary NMS provides discovery and inventory services.

OpenFlow-enabled endpoints, which are separated by legacy
devices. Additionally, a further evaluation shows the feasibility
of a combination of the use case with QoS discovery and con-
figuration, which provides differentiated service for a subset
of the VLAN tunnels. The source code of the framework is
released as open-source, together with a virtual environment
showcasing the architecture '.

This work is structured as follows. Section II gives an
overview of the overall management architecture, including a
discussion on the level of abstraction chosen and the extended
network graph with devices’ processing pipelines. Section III
defines the term management task in the context of this work
and the estimation of the task timings and side-effects such as
traffic interruptions. Section IV evaluates the proposed archi-
tecture based on the mixed-SDN/legacy networking approach
Panopticon. Section V discusses related work. Section VI
draws conclusion.

II. ARCHITECTURE

Figure 2 presents an overview of the proposed management
plane. The Abstraction Layer (AL) and the Domain Specific
Language (DSL) on top of the AL are the key elements
of the architecture. The AL provides a unified interface
to configuration and monitoring of the underlying network.
Furthermore, it provides a stateless HTTP-based northbound
interface and a WebSocket-based interface for asynchronous
events, e.g., measurements and task completion events. The
DSL is a Python dialect tailored to the AL. It simplifies
the programming of the management module and coordinates
the request/response model of the REST interface with the
asynchronous events of an event bus.

In order to support the AL, multiple components are re-
quired southbound of the AL. In the network, distributed

Uhttp://git.io/VBT3A

TABLE I
AL DESIGN TRADE-OFFS
Model fidelity low medium high
AL intelligence required high medium low
Northbound intelligence required low medium high
Device modeling effort low medium high
Hardware feature utilization low medium high
Practicality low high low

configuration and monitoring agents execute configuration
tasks, e.g., setting VLAN tagging through a Command Line In-
terface (CLI), and gather device statistics such as device ports.
Each agent is responsible for one or more devices and uses
device-specific modules to interface with the heterogeneous
devices. Configuration tasks and monitoring configuration are
distributed among the agents through a task queue and opera-
tional configuration is stored in a key-value store. A logically
centralized event bus acts as a broker for measurements and
task completion events.

The device database provides a model of the capabilities
and the processing pipelines of a specific device type. A
custom graph database stores the high-level network topology
and the processing pipeline of the devices and makes it
available through the AL. For the discovery of the network
infrastructure, including the inventory with the vendor and the
model of each networking device, we utilize a commercial
Network Management System (NMS).

We implemented our proposed architecture relying on sev-
eral open source projects, most notable Apache ZooKeeper [8]
as configuration store, Apache Kafka[9] and crossbar.io [10]
as backend and frontend messaging bus, and RabbitMQ [11]
as messaging queue. For topology discovery and device inven-
tory, we use the proprietary NMS StableNet [12].

A. AL Design & Trade-offs

In the following, we discuss the design trade-offs of the
management AL and its provided data model. The key ele-
ments are the model fidelity and the practicality as shown in
Table I. The data model fidelity describes how many details
of the heterogeneous configuration interfaces and hardware
features of the different devices should be exposed to the
northbound management application. Practicality describes the
qualitative result of the usefulness” of a combination of
the three metrics AL-intelligence, northbound-intelligence and
hardware feature utilization.

First, we comment on the case of a low model fidelity. A
low model fidelity requires the AL to make more decisions on
its own, as many parameters are hidden from the northbound
application. This is comparable to an intent- or policy-based
interface where the AL receives abstract requirements and
translates them to device specific configurations. The metric
AL intelligence required behaves inverse to the model fidelity.
A low model fidelity requires the AL to make decisions
on its own about parameters not visible to the northbound
application. A high model fidelity requires less intelligence,

as most decisions about parameters are the responsibility of
the northbound application.

From the point of view of the modeling effort per device
type, a low fidelity AL design requires the least modeling
effort, as one has to create a basic common model for all
switching devices only, e.g., to distinguish OpenFlow from
legacy devices. However, a low model fidelity is not able
to fully leverage all features of the hardware. For example,
the OFCONF management data model for OpenFlow does
only support data-rate based scheduling, even if the hardware
could support mechanisms like Priority Queuing (PQ) or input
queuing. Furthermore, specific hardware features outside of a
simple model cannot be considered from the global perspective
of the northbound management application.

A high model fidelity in turn only requires minimal AL
intelligence. In the best case, one northbound request translates
exactly to one required configuration change, e.g., changing
a weight of a queue. On the other hand, this increases the
complexity of the decision logic in the management module,
as it has to be able to handle many options and also device-
specific exceptions and limitations, e.g., one feature blocks
another switch feature. Then again, a high model fidelity in
combination with a complex management module algorithm
allows to globally utilize a large portion of the features
of specific device types, e.g., all the different scheduling
strategies, with the cost of a high modeling effort per device
type.

The design of our AL for the management plane aims for
a medium practicality. Whenever possible, we design the AL
in a way that one northbound change requests translates to
one southbound configuration job. Furthermore, we do not
expose all hardware features of the heterogeneous devices to
the management module to facilitate rapid development of
novel management plane algorithms. Device-specific features
and parameters not covered by the AL are silently set to
sensible default values by the configuration agents, still based
on hand-crafted rules by domain experts.

B. Monitoring

We see network monitoring in the management abstraction
layer as an enabler for northbound applications to verify the
configuration. Hence, traffic engineering techniques, e.g., load-
balancing, are not in the focus, but possible with the provided
primitives. Figure 3 depicts the two modes of monitoring
supported by the platform, namely task-based on-demand
monitoring and continuous monitoring. Both modes are de-
fined based on the unified AL specification, but executed in
the context of the device-specific modules in the monitoring
agents. The choice of how to implement the monitoring, e.g.,
SNMP traps or CLI polling, is up to the device-specific module
and based on human domain experts implementation.

The on-demand monitoring creates monitoring tasks con-
sisting of the device and component to monitor, e.g., inter-
face X of device A, the metric to monitor, e.g., interface
status or received bytes, a condition which terminates the
task, e.g., average of received bytes samples is smaller than

Network SAL Network SAL
DSL DSL
SUCCESS/

‘ 1 TIMEOUT ‘ f
Abstraction Layer Abstraction Layer
v 4 Push ¥ 4
; Event Bus Coneuraion Eyent Bus

v 1 Push § 1
Monitor Monitor
Agents Agents

L1

Network Device

If condition == true:
return SUCCESS

Network Device

Fig. 3. The two modes of monitoring supported by the proposed architecture.
On-demand monitoring executes arbitrary monitoring tasks close to the device
with high frequency and defined stop criteria. Long-term monitoring data
configuration is pushed in the configuration store and from there to the agents.

1000 Bytes, and a maximum execution time of the whole
task. The condition is expressed as arbitrary (Python) code
that is executed in an isolated execution environment with
access to numerical statistic programming packages and the
collected samples. On-demand monitoring tasks allow for high
frequency monitoring without burdening the northbound in-
terfaces with unnecessarily frequent samples and are designed
for distributed synchronous operation (do - wait for condition
- continue).

The continuous monitoring mode is designed for long-term
data acquisition and asynchronous events. Continuous moni-
toring is not expressed as a monitoring task, but as a permanent
configuration in the configuration store. The application on
top of the AL can set an interval and optional threshold for
all metrics defined in the AL. The configuration is saved to
the configuration store, which triggers the monitoring agent
to update its local configuration. If the metric exceeds the
threshold, the agents send the measurement sample to the
message bus where the application on top of the AL, i.e., the
management application, can listen for the stream of samples.

C. Extended Graph & Device Models

In the following, we describe the structure of the (extended)
topology graph, which in-cooperates the processing pipelines
of the devices into the high-level topology. We use three de-
vices from our testbed as reference, an NEC PF5240F, a Cisco
Catalyst 4503-E and an HP-V1910 switch. The devices are
given anonymized as X, Y and Z in the remainder of the paper.
The association between the letters and the switches is random
and not given here. We define the graph as a list of com-
ponents with attributes and unidirectional relationships/links
between the components. The components can be put into two
categories; components that describe the processing pipeline,
e.g., a queue or scheduler, and components that describe
switch features, e.g., an OpenFlow interface component. First,
we introduce the components associated with the processing
pipeline. Afterwards, we discuss further relevant components
and relationships. To describe the processing pipeline, we
use an input and output relationship. Depending on the type

Inter- ASIC Matcher Scheduler
face
OF —

Fig. 4. Example of a simple processing pipeline of an OpenFlow switch with
two connected ports, an ASIC, a matcher, three queues, and a WFQ scheduler.

ASIC =

Start End

Fig. 5. Example of an alternative output graph path from the switch’s
application specific integrated circuit (ASIC) to an interface of a X device.
The top path offers eight queues scheduled using WFQ. The bottom path two
queues with PQ and six queues with WFQ.

of component, a component can have zero or more inputs
and zero or more outputs, e.g., a scheduling component has
multiple inputs and one output. Figure 4 gives an example
model of a simple OpenFlow switch with two connected ports.
The interface shown to the left is directly connected to the
application specific integrated circuit (ASIC), the switching
engine. The input path from the interface to the right to the
switching engine does not contain any components. Therefore
it has no input shaping mechanisms. The output path to the
interface to the right offers three queues, which are connected
to a Weighted Fair Queuing (WFQ) scheduling component and
a matcher.

Some of the switches in our testbed allow to adapt the
processing pipeline to specific use cases. We model this by
introducing an alternative path start and end component in
the graph. This enables applications on top of AL to traverse
the different alternatives like they would traverse links and
nodes in a standard high-level topology graph. Furthermore,
this simplifies modeling the processing pipeline, as it does
not inflate the definition of generic scheduler and generic
queue components. Figure 5 presents a simplified model of
the processing pipeline of the X switch in our testbed using
alternative path components. The processing path on the top
provides 8 queues scheduled by a WFQ scheduler, while the
path on the bottom schedules only 6 queues with a WFQ
scheduler and two 2 queues, plus the output of the WFQ,
with a Priority Queuing (PQ) scheduler.

Table II summarizes the relationships between the switch
components used in the extended network graph. There are the
input and output relationships, which are used to specify the

TABLE II
RELATIONSHIPS BETWEEN SWITCH COMPONENTS

Description

Refers to the component/device which
accepts the configuration changes for the
component.

Specifies which logical or physical com-
ponent houses the component.

Specifies the packet processing work-
flow for a component.

Type
managedBy

containedIn

input & output

processing pipelines. managedBy allows to delegate the con-
figuration interface of a component to a different component.
For example, a hardware interface of a switch does not have its
own configuration interface, but is configured through the CLI
or NETCONF configuration interface. containedIn specifies
the physical or logical dependency of a component and allows
to deduce failure or maintenance impacts from the graph. For
example, an interface restart results in unavailability of the
whole processing pipeline inside the interface.

ITI. TASK COMPOSITION & TIMING ESTIMATION

In this section, we discuss how an application on top of the
AL can perform management operations and query an estima-
tion of the timing characteristics of the tasks to be executed.
Management operations are expressed as atomic configuration
tasks. One task, e.g., assigning a VLAN tag to an interface,
either succeeds or fails and can be characterized by its timing,
e.g., the time it takes for the desired configuration to put into
effect, and side-effects, e.g., a necessary interface restart. In the
following, we define a configuration task in detail. Afterward,
we introduce the methodology for estimation of task timings
and side-effects based on an offline measurement set-up in our
test-bed. We give a generic solution to encompass a variety
of use cases from enterprise networks to networks with strict
timing characteristics. In the use cases presented in this paper
we reduce the complexity as some aspects are not needed to
describe the selected use cases.

A composite task 7" is defined as a set of atomic tasks ¢
(T :=14,...,t,). Each atomic task is defined by four types of
delay. tV denotes the time the atomic task is executed, ' the
transport delay caused by the AL, i.e., the task forwarding to
the agent, the processing time by the agent and the physical
propagation delay between agent and the target device, tP the
time of acknowledgment (or processing time on device), t* the
blocking time, e.g., interface restart as cause of atomic task
execution, and t? the time difference between task reception
at the device and the time the effect is measurable on the
data plane. We assume t? and t® to be mutually exclusive
(disjoint). t¢, *, and tP are relative to ¢y + ¢! and there is no
strict ordering between the three types of delay, e.g., a device
can acknowledge a change after or before the data plane effect
is measurable.

Configuration

Agent
g f
Mngt f..... :
—=—»| Switch ——

Fig. 6. Offline measurement set-up consisting of a high-precision tap device,
a configuration agent and the switch to be measured. Timing characteristics
are measured by tapping the management and the data plane interfaces.

tt tP tb td
ty [t b
estimate(T):= t_ | (1)
to \t, t& tb td
th 4 tP
ty [t 4+
evec(T) == t_ [t& +¢P ()

t, \tt + 12

A composite task can either be estimated or executed
through the AL. An estimation tries to estimate t, td, tb,
and tP based on the offline measurements. In our prototype
implementation, the estimation returns the average values of
the offline measured delays and in case of the transport
delay, the average measured transport delay (round-trip) of
previously executed tasks on a specific device. Note that the
device database does not only contain measurements, but
additional knowledge of domain experts being still required
and implemented to capture corner cases, e.g., changing from
scheduler A to B restarts the interface, changing from B to A
not. Equation 1 and 2 summarize the output of the estimation
and execution function, respectively. We focus on t° in the
remainder of this work, as interruptions are most relevant to
our investigated use cases.

Figure 6 describes the offline measurement set-up. The
management port of the switch is directly connected to a
configuration agent. A UDP stream of packets with a packet
size of 1400 Bytes is sent to a specific port and forwarded to
a configured output port. We use a high-precision hardware
tap device with three ports to capture the management traffic
and the data streams before entering and after leaving the
device. For the delay of the change of a VLAN tunnel, we
only measure the output data at the new destination port. After
the capture process, the measurements are analyzed offline and
the results are stored in the device database.

Figure 7 gives an example for a measurement of a task
where we select an alternative path in the processing pipeline,
i.e., changing the QoS scheduler of the X device in our
testbed. At to + t* with ' being zero, the switch receives the
configuration command through the management interface. As
we define the blocking delay t* and the processing on device

1000 , , ,

- 800 L ! \ |
=
=}
2
2 600 | ! » |
‘5_ — >
ﬁ) 400 [|
g «>
& 200 ! R
0 Il Il Il
0 5 10 15 20

Time (s)

Fig. 7. A packet stream traversing an interface of a X device while the
processing pipeline, i.e., the QoS scheduler of the interface is changed. t? is
on average about 6 seconds.

TABLE III
OFFLINE MEASUREMENT RESULTS FOR VLAN TAGGING
Switch | P | t° | td
X 6489ms | 125.8ms | 316.2ms
Y 4ms 5.6 ms 8.1 ms
Z 24.4 ms 0.3 ms 15.2ms

t? independent of each other, t? is the time from to + ¢* until
the interface is up again and transmits data. For this task and
device type, t° is about 6seconds on average. t! is the time
between the reception of the configuration command and the
switch’s confirmation.

Table III gives a summary of the results of the offline
measurement of the devices for the VLAN tagging. Each
measurement was repeated between 50 and 100 times. The
standard deviation is omitted in the table. For the X device,
the standard deviation of t° is about 20ms, for the Y and
Z device 1.4 ms.

IV. USE CASES & PROTOTYPE EVALUATION

In the following, we introduce and evaluate two use cases
implemented on our proposed architecture. Both use cases are
from the domain of SDN-hybrid networking. In the first use
case we evaluate the VLAN-based Panopticon [7] approach
from the perspective of the management plane and show
how the domain-specific knowledge provided by the AL can
reduce or prevent short-term interruptions of virtual networks.
In the second use case, we combine the first use case with
Quality of Service discovery and configuration. We use the AL
to discover alternative processing pipelines with low latency
scheduling to prioritize traffic of specific VLAN tunnels.
Furthermore, in this use case, we deploy task prediction and
the on-demand monitoring to prevent mid-term, i.e., about
6 seconds, service interruptions of virtual networks.

A. Use Case: VLAN Tunneling

Figure 8 depicts the test-bed topology for the VLAN tunnel
use case. Two SDN domains are connected by a legacy
network consisting of five switches. The five switches allow
three paths between two SDN domains where the two legacy
edge nodes are shared by all three paths. For sake of simplicity,
the relevant hardware interfaces are numbered from 1 to 14.

B 2~
[2.X14 7@12 13{X3 15 16
—) - 15\/ *J

SDN SDN
Domain Domain

Fig. 8. Two SDN domains in our test-bed connected by VLAN tunnel. Green
interfaces indicate the configured VLAN tunnel on the top path. X, Y and Z
denote the type of the switch (see Table III).

TABLE IV
TASK EXECUTION ORDER EFFECT ON INTERRUPTIONS
‘ 1D ‘ Execution order ‘ VEET 1b ‘
1 {t2,t7,t13}, {ta,t12,t15} 251.6ms
2 {ta,t7,t12,t13}, {t2, 15} 125.8 ms
3| {to}, {ta}, {tr}, {t12}, {t13}, {t15} | 1984 ms

t, denotes the atomic task to change the VLAN tagging of
interface x.

Now, we assume device X2 on the top path is sched-
uled for maintenance, e.g., a firmware upgrade. Without any
further information about the devices and without advanced
monitoring, a naive approach could be to execute the tasks
t,Va € {2,4,7,12,13,15} in parallel to create a new VLAN
tunnel between the SDN domains to steer the traffic through
device Z. Note that t,,Vx € {2,4}, ¢,V € {7,12} and
ty, Vo € {13,15} cannot be executed in parallel as they
require changes to the same device. A more advanced ap-
proach could first execute t,,Vz € {4,7,12,13} to configure
a new tunnel and afterward, when the device acknowledged the
command, change the steering by executing t,,Vz € {2,15}.

Table IV lists the overall blocking for different task execu-
tion orders. We assume that each set is executed in the order
given in the table and that the tasks in a set are executed
in parallel. The orders with ID 1 and 2 are the worst and
best case task execution orders for parallel task execution,
respectively. Order 3 represents the worst case for sequential
task execution, when the management application waits for
confirmation before continuing to the next task. From the table
we conclude that a planned task execution decreases the traffic
interruptions on average by factor 16. Although the absolute
interruption time of up to 2 seconds seems negligible for low
frequencies of configuration changes, we argue that a future
autonomous decision entity on top of the NSAL makes use
of the AL with a higher frequency than a static VLAN tunnel
set-up. For example, this can be for load-balancing reasons
and, therefore, can result in frequent interruptions.

B. Use Case: QoS Discovery & On-demand Monitoring

In the second use case, we show how a management
application uses the AL to first discover low-latency options
and second, configure low-latency tunneling through a legacy
network. Figure 9 depicts the test-bed for the second use case.
The network consists of an SDN and legacy domain. Two
(physical) paths through the legacy domain are connecting the

(— 3 12 P~
D—2 4 13
== IF’ 1516

- .

SDN SDN
Domain Domain

Fig. 9. Set-up for the second use case consisting of two SDN domains, two
named switches, X and Y. Switch X supports an alternative QoS processing
pipeline on the output interface as shown in Figure 5

two SDN domains. One path traverses the X switch on top and
the second path traverses a simple legacy switch with VLAN
configuration options on bottom. The X allows to switch to
alternative packet processing pipelines as hinted in the upper
part of the figure and illustrated in detail in Figure 5.

In order to provide low-latency virtual networks, the man-
agement application first has to discover the extended network
graph through the AL. The discovery takes a path of nodes
and edges from the high-level topology and returns an ex-
tended path consisting of the switch components on the path,
including the alternative processing selectors. In the extended
graph, it can calculate all shortest paths where priority queuing
is available and based on the calculated paths, determine the
alternative path selectors to configure. If the path selector
is configured without further analysis, i.e., without calling
estimate of the task to be executed, the virtual networks are
interrupted for about 6 seconds as illustrated in Figure 7.

In the following, we show how the domain knowledge of
the device database provided by the AL allows the man-
agement application to predict the interruption, monitor it
on-demand, and reroute the traffic accordingly. We denote
tr,e € {2,3,..15} as the atomic task to configure the in-
terfaces {2,3,..,15} and the alternative path selector {17}.
A management application aware of the prediction provided
by the AL, first gathers a set of tasks required for changing
to an alternative processing pipeline, denoted as 7', with
T := {t17} in this case. Second, it calculates the combined

blocking delay by t? .. := max({t’},Vx € T}) on the
path. If the ¢4, is larger than a defined threshold ¥, .

of acceptable interruption, it decides to re-route the traffic
before the change of the processing pipeline. For example,
the interruptions observed in Figure 7 can be expressed by
estimate(t1s), which returns an average ¢, of 6 seconds.
Next, we introduce the implementation of this use case in
the Python-based DSL. We assume the reader to be familiar
with the general Python3 syntax. Listing 1 gives the imple-
mentation in source code and the subsequent enumeration
summarizes the steps with corresponding line numbers in
square brackets. Please note that the listing is over-fitted to
the scenario due to space constrains, i.e., additional loops and

checks are required to make it work under different scenarios
and environments.

Step 1[4] Retrieve high-level topology

Step 2 [5] Calculate shortest paths

Step 3 [8] Request extended graph for shortest paths
Step 4 [15] Select path with priority scheduler

Step 5[19] Predict t* for alternative processing path
Step 6 [20] Re-route traffic to second shortest path
Step 7 [22] Execute conf. job for alternative processing
Step 8 [23] Monitor interface, wait until available again
Step 9 [25] Re-route traffic to first shortest path again

First, we retrieve the high-level topology as a graph of
connected interfaces. This requires one call to the AL. Second,
we calculate the path options between the two domains and
afterward, in Step 3, we query the AL to retrieve the extended
graph including the interface processing pipelines for each
relevant path, i.e., the upper and lower one in this use case.
Subsequently, in Step 4, we traverse the extended graph to
search for priority schedulers. Next, we check if the scheduler
is on a selected path segment by calling is_selected on the
priority queuing switch component. As the path segment is
not selected, we create an anonymous task object and retrieve
t* by calling estimate. Note that this does not execute the
task. Afterward, as t* > 5s, we use VLAN tunneling to
create a linear VLAN broadcasting domain (excluding the
SDN edge interfaces) to steer the traffic to the bottom path.
This implicitly creates a list of configuration jobs, which
are forwarded to the configuration agents. In Step 7, we
execute the configuration job to select the priority scheduling.
This creates one configuration job, which is executed on the
X switch and results in an interface restart, thus, a blocking
time. In Step 8, we create a monitoring job to check every
250 ms for the interface status and return when the interfaces
is available again. In the final step, we change the VLAN
configuration to steer the traffic again to the default upper
path.

Figure 10 depicts the stream of packets affected by the
described configuration changes. The traffic is interrupted
two times, but only for a brief duration. This demonstrates
how the interplay of discovery, management, and monitoring
enables an autonomous management application on top of our
proposed architecture which can correctly predict and reduce
traffic interruptions.

V. RELATED WORK

Network management in general has received a lot of atten-
tion in the past and in the present and is comprised of different
topics. We see our work in the context of configuration man-
agement, e.g., setting configuration options, monitoring, e.g.,
on-demand monitoring tasks, and device capability discovery,
e.g., QoS options. In the following, we introduce publications
most relevant to the topics of our work.

The Forwarding and Control Element Separation (ForCES)
protocol [13], which is positioned as alternative to OpenFlow,
shares similar concepts with our work. In ForCES, the hard-
ware of the forwarding elements, e.g., switches, are modeled

5 1000 : : :
s FWVAMMAAASAA WA AAWY-ARMANA Ml
g 800 |- o .
5 2 g
2 ~
2 600 |- -
£
8
& 400 |- o .
E 7
o
S 200 |- .
2
ﬁ 0 | | |
0 5 10 15 20

Time (s)

Fig. 10. Use case 2 implemented in our testbed. The short traffic interruptions
are caused by rerouting of the traffic by changing the VLAN configuration.
tg and t(lj7 are the times when the management application created the
configuration tasks and before the task is executed by the agents.

import nmdsl as nm

1

2 import networkx as nx

3

4 topo = nm.topology ()

5 sp = nx.all_shortest_paths (topo,source=1,target=16)
6

7 for s in sp:

8 et = nm.ext_topo(s)

9

10 pq = [e for e in et if e.type() == “PriorityQueuing”]
11

12 if not len(pq): continue

13 break

15 pq = pql0] # only one pq scheduler here
17 if not pq.is_selected ():

19 if pq.select().estimate()['t_b’] > 5:
20 nm.execute ([e.set_vlan(12) for e in sp[l1][1:—1]1])

22 pq.select().execute ()

23 pq.contained_in (). wait_for(intf_status=="up”’,
24 freq = 4)
25 nm.execute ([e.set_vlan(10) for e in sp[O][1:—11])

Listing 1. Working (but not optimally) implementation of use case 2

as processing pipelines of so called Logical Function Blocks
which can be discovered and configured. In our work, we
aim for less complexity and model the switches configuration
interfaces as easy to use elements and abstract many low-
level details of ForCES. At [14], an informal working group of
large network operators headed by Google is working on trans-
ferring software-defined principles to the management plane.
This could greatly simplify the implementation of the device-
specific modules in our configuration agents. OFCONF [15],
a data model for NETCONEF, is the counterpart of OpenFlow
for the management plane. However, OFCONF is still new and
the provided data models are of limited scope. Furthermore,
it is tailored to the specific needs of OpenFlow and does not
consider switch features outside of the scope of OpenFlow,
e.g., input shaping. In [16], the ONF is working on a Core
Information Model (CIM) which specifies physical, logical
and virtual switch components, relationships and protocols in
great detail. Our abstraction aims for a representation closer
to the physical switch and does not consider higher layer
relationship between protocols. The defined relationship in
CIM can be implemented on top of our AL. In [17], OASIS

is working on a Topology and Orchestration Specification
for Cloud Applications (TOSCA). However, the abstraction
focuses on higher level network services such as database
management systems (DBMS) and their relationship to other
entities, not on details of the individual forwarding elements.

In [18], the authors describe how domain knowledge is
required for network configuration, but hidden in domain
experts and human-centered switch manuals, thus, way in-
accessible for network automation. The authors introduce
COOLAID, an interface similar to a database API to create a
logically centralized abstraction of the network configuration.
In [19], the authors argue that the management plane is too
complex due to devices exposing all their internal details and
parameters. This leads to error-prone configuration, fragmen-
tation of management tools, and hard to understand config-
uration parameters. They introduce CONMan, an abstraction
layer which exposes device configuration with inter-connected
protocol configuration modules and dependencies. In [20],
the authors introduce PACMAN, a platform for automated
operation and configuration management. The work defines
active documents, which describe an abstract configuration
task. One active document represent higher-level abstractions,
spanning multiple actions and one or more devices. The
work represents a vertical subset of each of the NSAL and
AL in our work, but designed without northbound interface
and focused on composed atomic tasks. In [21], the authors
introduce SWItch, a framework for the management of data
center networks. SWItch uses namespaces trees, similar to our
switch component graph, to model the devices. COOLAID,
CONMan, SWItch and PACMAN are designed to be operated
by humans and to be responsible for the management of
the legacy control algorithms. This differs from our work
as we see and design the management plane as a building
block underneath a network services abstraction layer tailored
for automation. Furthermore, monitoring in the abstraction
layer and the management task timings in terms of delay and
blocking are not part of their work.

In [22], the authors depict Statesman, a network-state
management service deployed in the Microsoft Azure cloud.
Statesman offers a graph abstraction northbound and is de-
signed to resolve conflicts between different management
applications accessing the graph. Compared to our work, the
abstractions are not as detailed, e.g., no QoS support, and the
focus is on network states instead of atomic tasks. Domain
knowledge regarding the cost of change, i.e., the blocking time
due to configuration change, are not available to northbound
applications.

In [23], the authors conclude that monitoring the frequency
of atomic management tasks, e.g., configuration of a VLAN
on an interface, can be used to classify seldom touched
configuration options as important and dangerous. This could
be an extension to the estimation in the abstraction layer
introduced in our work. A way of automatically learning the
capabilities of a certain device is introduced in [24]. The
authors show how an ontology-based information extraction
system can deduce the capabilities of a device by analyzing

the CLI of the device. This could allow rapid prototyping
of the device models discussed in our work. In [25], the
authors introduce Hybnet, a network manager for a hybrid
SDN/legacy networks. The work is related to the second use
case in our work and to the Panopticon approach. We see this
as complementary to our work and as part of the NSAL on top
of our AL. The same applies to [26], [27], where the authors
show OpenFlow agents and control for legacy devices.

VI. CONCLUSION

In order to facilitate innovation in the management plane
of modern network equipment, a device-neutral and vendor-
neutral unified abstraction for discovery, monitoring and con-
figuration of device resources is required. Such a unified
abstraction is a first step towards combining network control
with network management in a programmable manner. Thus
it unifies the feature set of network control with the feature
set of management actions. For example by making port-based
packet schedulers available through a programmable abstrac-
tion layer, we can increase the number of possible Quality
of Service options compared to the OpenFlow and OFCONF
data model. Additionally, the abstraction has to provide ways
to capture domain knowledge from human experts and human-
centered manuals, such as device specific limitations and non-
inferable side-effects of management actions.

This work proposes an architecture that represents an
extended network topology that provides a hardware detail
level that includes even the processing pipelines of devices.
Via a northbound interface, management applications can
run networking tasks through a vendor- and device-neutral
abstraction layer. By example of Panopticon, an approach
for OpenFlow networking in mixed-SDN/legacy networks, we
show how a management application, which is actually trig-
gered by an SDN controller, can run configuration tasks. These
configuration tasks, which were not accessible before, include,
e.g., VLAN tagging on non-SDN devices, discovering of QoS
options in the network, or changing the packet scheduling.
Furthermore, the architecture provides mechanisms to estimate
traffic interruptions due to the triggered management actions,
e.g., due to the change of the scheduler configurations. By
example, we show how a smart task scheduling based on the
known timings of the management actions mitigates service
interruptions. Besides, the proposed architecture enables novel
management applications capable of autonomous network
management, e.g., plug and play for network devices. In the
future we plan to extend the abstraction layer to a larger variety
of use cases. In particular, we target use cases for holistic
network virtualization, i.e., combined control and management
virtualization, and time-critical use cases such as networks
intended for real-time communication.

VII. ACKNOWLEDGMENT

This work has been partially funded by the German Federal
Ministry of Economic Affairs and Energy (BMWi) under
the grant numbers KF3157502LF3 and KF3157602LF3 as
part of the ZIM program. This project has received funding,

in part, from the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation
programme (grant agreement No 647158 FlexNets). This
work reflects only the authors’ view and the funding agency
is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] A. Blenk, A. Basta et al., “Survey on Network Virtualization Hypervi-
sors for Software Defined Networking,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 1, pp. 655-685, 2016.

[2] Juniper Networks, “What’s behind network downtime?”” 2008.

[3] P. Gill, N. Jain et al., “Understanding network failures in data centers:
Measurement, analysis, and implications,” in Proc. of ACM SIGCOMM.
New York, NY, USA: ACM, 2011, pp. 350-361.

[4] E. Haleplidis, K. Pentikousis et al., “Software-Defined Networking
(SDN): Layers and Architecture Terminology,” RFC 7426
(Informational), Internet Engineering Task Force, Jan. 2015. [Online].
Available: http://www.ietf.org/rfc/rfc7426.txt

[5] C. Sieber, A. Blenk et al., “Network configuration with quality of service
abstractions for sdn and legacy networks,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM) 2015, May 2015.

[6] X. Jin, H. H. Liu et al., “Dynamic scheduling of network updates,”
in ACM SIGCOMM Computer Communication Review, vol. 44, no. 4.
ACM, 2014.

[7] M. Canini, A. Feldmann et al., “Software-defined networks: Incremental
deployment with Panopticon,” Computer, vol. 47, no. 11, Nov 2014.

[8] “Apache ZooKeeper,” https://zookeeper.apache.org/.

[9]1 “Apache Kafka,” http://kafka.apache.org/.

[10] “crossbar.io,” http://crossbar.io.

[11] “RabbitMQ,” https://www.rabbitmq.com/.

[12] Infosim GmbH & Co. KG, “StableNet,” https://www.infosim.net, 2015.

[13] A. Doria, J. H. Salim et al, “Forwarding and Control Element
Separation (ForCES) Protocol Specification,” RFC 5810 (Proposed
Standard), Internet Engineering Task Force, Mar. 2010, updated by RFCs
7121, 7391. [Online]. Available: http://www.ietf.org/rfc/rfc5810.txt

[14] OpenConfig, “OpenConfig,” http://www.openconfig.net/, 2015.

[15] Open Networking Foundation, “OF-Config,”
https://www.opennetworking.org/, 2015.
[16] “Core Information Model (CoreModel),”

https://www.opennetworking.org/, 2015.

[17] OASIS, “TOSCA,” https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca, 2015.

[18] X. Chen, Y. Mao et al., “Declarative configuration management for
complex and dynamic networks,” in Proc. of ACM CoNEXT, 2010, p. 6.

[19] H. Ballani and P. Francis, “CONMan: a step towards network manage-
ability,” in ACM SIGCOMM Computer Communication Review, vol. 37,
no. 4, 2007, pp. 205-216.

[20] X. Chen, Z. M. Mao et al., “PACMAN: A platform for automated and
controlled network operations and configuration management,” in Proc.
of ACM CoNEXT, New York, NY, USA, 2009, pp. 277-288.

[21] C.-C. Chen, P. Sun et al., “SWIM: A switch manager for datacenter
networks,” Internet Computing, IEEE, July 2014.

[22] P. Sun, R. Mahajan et al., “A network-state management service,” in
Proc. of ACM SIGCOMM, 2014, pp. 563-574.

[23] H. Kim, T. Benson et al., “The evolution of network configuration: a
tale of two campuses,” in Proc. of ACM SIGCOMM IMC, 2011, pp.
499-514.

[24] A. Martinez, M. Yannuzzi et al., “An ontology-based information
extraction system for bridging the configuration gap in hybrid SDN
environments,” in Proc. of IFIP/IEEE Symposium on Integrated Network
Management (IM), May 2015, pp. 441-449.

[25] H. Lu, N. Arora et al., “Hybnet: Network manager for a hybrid network
infrastructure,” in Proceedings of the Industrial Track of the 13th
ACM/IFIP/USENIX International Middleware Conference, 2013, p. 6.

[26] C.Jin, C. Lumezanu et al., “Telekinesis: Controlling legacy switch rout-
ing with openflow in hybrid networks,” in Proc. of 1st ACM SIGCOMM
Symposium on Software Defined Networking Research (SOSR), New
York, NY, USA, 2015, pp. 20:1-20:7.

[27] A. Zaalouk and K. Pentikousis, “Network configuration in OpenFlow

networks,” in Mobile Networks and Management. Springer, 2015, pp.

91-104.

