TECHNISCHE UNIVERSITAT MUNCHEN

Fakultat fiir Informatik

Lehrstuhl fiir Sicherheit in der Informationstechnik

Model-based Security Engineering of Electronic Business Processes

A framework for security engineering in the domain of business process management

Jorn Gunnar Eichler

Vollstdndiger Abdruck der bei der Fakultit fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Florian Matthes

Priifer der Dissertation:
1. Univ.-Prof. Dr. Claudia Eckert

2. Univ.-Prof. Dr. Helmut Krcmar

Die Dissertation wurde am 27.01.2015 bei der Technischen Universitdat Miinchen eingereicht
und durch die Fakultit fiir Informatik am 11.05.2015 angenommen.

ii

Contents

Kurzfassung e e e vii
ADSIIACE o e e e e e e e ix
1. Introduction e e 1
1.1. Motivation e e e e e 1
1.2. Problem Statement 2
1.3. Objectiveand Approach 4
1.4. Contributions e 6
1.5. StructureoftheThesis 8

2. Background and RelatedWork 11
2.1. Introduction L e 11
2.2. Business Process Managementt 11
2.2.1. General Terminology 11

2.2.2. Business Process Life Cycle and Supporting Systems 12

2.2.3. Business ProcessModeling 15

2.3. Software, Method, and Model-driven Engineering 17
2.3.1. Software Engineering e 17

2.3.2. Method Engineering 18

2.3.3. Model-driven Engineering o 22

2.4, SECUTILY . . . o o o i e e e e e e e e e e 27
2.4.1. General Terminology 27

2.4.2. Security Engineering o e 33

25. RelatedWork e e 35
2.5.1. Approaches for Security Engineering of Electronic Business Processes . . 36

2.5.2. Approaches for Model-based Security Engineering 42

2.53. DISCUSSION 44

2.6, SUMMATY oot e 45

3. Running Example: The ReplanProcess 47
3.1. Introduction 47
3.2. Background, Application, and Business Process Model 47
3.3. Summary e e e e e 50

4. Security Engineering ProcessModel o L. 51
4.1. Introduction e e 51
4.2. Requirements i e e e e e e 52
4.3. Design Approach 55
4.4, SITUCTUTE ot e e e e e e e e e e e e e 57
4.5, ACHIVITIES o o e e e e 63
4.5.1. SetupProcess 64

iii

Contents

45.2. Identify ASSets e 68
4.5.3. Assess SecurityGoals L L o 70
454. Model Threats 72
4.5.5. Elicit Security Requirements 74
4.5.6. DesignControls e 77
45.7. Map Controls o e e e 80
4.5.8. Generate Control Artifactsand TestCases 83

4.6. Guidance e e 84
4.6.1. Provide Guidance Artifacts for ExistingMethods 84
4.6.2. Rate Security Goals AdaptingIT-BPM 86

4.7. Tool Supportand Integration 90
4.7.1. Tool Support to Tailor a Security Engineering Process 91
4.7.2. Integration into Software Development Process Models 95

4.8, SUMMATY ottt e 99
5. Security Engineering Modeling Language 101
5.1. Introduction 101
5.2. Requirements e e e e e e e 102
5.3. Design Approach 104
5.4. Description L e e e e e 106
54.1. STTUCTUIE vttt et e e e e e e e 107
5.4.2. Classification e 108
54.3. Rating e 110
5.4.4. AnalysisandDesign L L L 112
5.4.5. Relating SecEML and Business ProcessModels 115
5.4.6. Concrete Syntaxo e e 117

5.5. Implementation e e e 118
5.6 SUMMATY L L e e e e e e e e e e e e 123
6. ExemplaryStudy 125
6.1. Introduction 125
6.2. AnalysisCriteria e e 125
6.3. TheReplanProcess i i e 127
6.3.1. SetupProcess 128
6.3.2. Identify Assets e e 130
6.3.3. Assess SecurityGoalso 131
6.3.4. Model Threats 131
6.3.5. Elicit Security Requirements v v v v v v v it 132
6.3.6. DesignControls 133
6.3.7. Map Controls e e 133
6.3.8. Generate Control Artifactsand TestCases 134

6.4. Application Experiences e 134
6.5. Comparison of Approaches 137
6.5.1. Comparison of the ProcessModels 137
6.5.2. Comparisonofthe DSMLs 0.... 140
6.5.3. Aggregation e e e 142

iv

Contents

6.6. Discussion e 145
6.7. SUMMATY ottt e e e 147
7. Conclusion 149
7.1. Summary of Contributions 149
7.2, FIndings e e 150
7.3. Future Work 152
A. SecEMLGrammar. e 155
B. Work Products from the ExemplaryStudy 161
B.1. Business ProcessModel 161
B.2. Process Model Configuration 163
B.3. ThreatCatalog e 166
B4. Control Catalog e 169
B.5. Runtime CapabilityModel 171
B.6. Security AnalysisModel 172
B.7. SecurityDesignModel 177
Listof Figures o e e e 179
Listof Tables o e e e 181
Listof Listings o i e e e e e 183
ACTONYIMIS . . o vttt i e e e e e e e e e e e e e e e e e 185
Bibliography e e 187

Contents

vi

Kurzfassung

Entwurf, Verwaltung, Ausfithrung und Analyse von Geschéftsprozessen sind vitale Herausfor-
derungen an Organisationen, die unter dem Titel Geschéftsprozessmanagement (Business
Process Management, BPM) zusammengefasst werden. Systeme fiir das Geschiftsprozess-
management (Business Process Management Systems, BPMS) erlauben es Managern und
Mitarbeitern, die Geschiftsprozesse der Organisation besser zu verstehen, zu entwerfen, zu
simulieren und auszufiihren. BPMS haben eine wichtige Funktion bei der Automatisierung
von Geschiftsprozessen und somit zur Umsetzung elektronischer Geschéftsprozesse.

Geschiftsprozesse sind eng mit den Werten einer Organisation verbunden. Ausspdhen,
Manipulieren oder Stéren von Geschiftsprozessen konnen diese Werte bedrohen. Trotz die-
ses Schutzbedarfs werden Sicherheitseigenschaften durch heutige Modellierungssprachen,
Methoden und Techniken im Anwendungsbereich von BPM kaum berticksichtigt.

In dieser Arbeit entwickeln wir ein Rahmenwerk fiir das Security Engineering im Anwen-
dungsbereich von BPM, welches eine Briicke von Geschiftsprozessmodellen zu dem Entwurf
angemessener Schutzmallnahmen und deren Konfiguration schldgt. Unser Vorschlag zielt auf
die Einbeziehung von Personen mit geringen Sicherheitskenntnissen ab und stellt flexible
Mittel fiir Anpassungen an die Umgebung sowie die Integration in existierende Entwicklungs-
prozesse und Werkzeugketten bereit. Unser Rahmenwerk umfasst:

o Security Engineering Process Model (SecEPM): SecEPM stellt eine Vorgehensweise und
Anleitungen fiir das Security Engineering elektronischer Geschéftsprozesse von der Iden-
tifikation von Schutzzielen bis zur Auswahl und Konfiguration von Schutzmaffnahmen
bereit.

o Security Engineering Modeling Language (SecEML): SecEML ist eine doméanenspezifische
Modellierungssprache fiir das Security Engineering von elektronischen Geschiftsprozessen.
Die Sprache ermdoglicht die konsistente und zugéngliche Erfassung von Arbeitsergebnissen
von SecEPM.

* Workbench: Eine prototypische Implementierung einer integrierten Arbeitsumgebung
wird im Rahmen dieser Arbeit zusammengestellt. Die Arbeitsumgebung unterstiitzt die An-
wendung von SecEPM und der Modellierungssprache SecEML, um sichere, elektronische
Geschiftsprozesse zu entwickeln.

Unsere Untersuchungen zeigen den Nutzen des Rahmenwerks, um sichere, elektronische
Geschiftsprozesse zu entwickeln. Anhand von systematisch entwickelten Bewertungskriterien
kdonnen wir zudem die Vorteile unseres Rahmenwerkes gegeniiber bestehenden Ansitzen
verdeutlichen.

vii

Kurzfassung

viii

Abstract

Design, administration, enactment, and analysis of business processes are vital challenges
to organizations subsumed under the term business process management (BPM). Dedicated
business process management systems (BPMS) allow managers and staff to better understand
the organization’s business processes, to (re-) design, to simulate, and to enact business
processes more easily. BPMS play an important role in the automation of business processes
implementing electronic business processes.

Business processes are closely connected with assets of the respective organization. Ob-
servation, manipulation, and disruption of business processes might threaten these assets.
In spite of this need, security is weakly supported by today’s BPM languages, methods, and
techniques.

In this thesis we develop a security engineering framework in the domain of BPM that
bridges the gap between business process models on one side and the design of proper
controls and their configuration on the other side. Our proposal aims at capacitating people
with low security background, providing flexibility as well as means for customization, and
offering integration possibilities into existing development processes and tool chains. Our
framework comprises:

* Security Engineering Process Model (SecEPM): SecEPM provides guidance for security
engineering of electronic business processes from the identification of security goals to the
selection and configuration of controls.

o Security Engineering Modeling Language (SecEML): SecEML is a domain-specific modeling
language for security engineering of electronic business processes. The language allows for
a consistent and accessible capturing of work products from SecEPM.

e Workbench: A prototypical implementation of an integrated security workbench is pro-
vided. It supports the application of the security engineering process model SecEPM and
the modeling language SecEML to develop secure electronic business processes.

Our study indicates the utility of our framework in order to develop secure electronic business
processes. Furthermore, we lay out advantages of our framework over existing approaches
applying systematically derived evaluation criteria.

ix

1. Introduction

1.1. Motivation

Business processes are at the heart of every organization. They are the way organizations do
their work: the set of activities carried out to accomplish a defined objective. Therefore, the
design, administration, enactment, and analysis of business processes—subsumed under
the term business process management (BPM)—are vital challenges to organizations. The
increasing importance of information systems to organizations and the development and
practice of BPM mutual influence each other. Information systems make the complex task
of BPM possible while the application of information systems increase the demand to tackle
business processes explicitly. [Dav05, Wes07]

To accomplish a given objective of a business process in an efficient and effective manner,
the interplay between people and organizational resources, such as information systems,
needs to be well aligned. BPM and accompanying systems are seen as an important facilitator
for this alignment. Business process management systems (BPMSs) allow managers and staff
to better understand the organization’s business processes, to (re-) design, to simulate, and to
enact business processes more easily. This enables organizations to become an adaptive en-
terprise: They are able to react faster to environmental and market changes and to proactively
innovate their products and services. [Wes07, Tal08]

Consequently, BPM supported by information systems and technology has seen an ongoing
development in the last decades. With respect to modeling languages and techniques a
multitude of approaches have been introduced ranging from early Petri nets [Pet62] to the
standardized XML Process Definition Language (XPDL) [Wor08], from business oriented
languages like Event-driven Process Chains (EPC) [Sch02] to executable languages like the
Business Process Modeling and Notation (BPMN) [Obj11a]. In parallel, systems to support
BPM developed from simple information systems to capture and administrate process models
to feature-rich BPM suites that also support simulation, execution, and controlling of business
process instances.

Thus, the ability for organizations to manage business processes is well supported by
today’s software industry. Dedicated modeling languages and techniques as well as BPMS help
organizations to automate, adapt and monitor business processes according to their needs
with a minimum of technical and engineering skills. BPMS are largely applied in industry, the
worldwide market for BPMS licenses is estimated at $ 9 billion® in 2010, and the importance of
BPM is expected to increase in the next years even further. [Ricl1, FS11, Cap12]

1 This is almost one third of the worldwide market for operating system software which is estimated at $ 30 billion
in 2010 [CD11].

1. Introduction

Business processes are closely connected with assets of the respective organization. Obser-
vation, manipulation, and disruption of business processes might threaten these assets or even
the existence of the organization itself. Thus, mitigation of these threats and security of busi-
ness processes ought to be of high importance for every organization [HH06, Neu09, MB11].

In spite of this need for security, BPM languages and techniques provide only little support
to express the security needs of an organization with regard to the modeled business process
or the controls that have been established to allow for a secure process execution [WMMO08,
BH13]. With the success of BPM initiatives and the deployment of more and more BPMS
within organizations a growing need has been declared to provide such means for BPM and its
systems [KDKO00, NKBO06].

Several approaches have been developed to address this need for security in the domain
of BPM. Techniques have been described to analyze security properties of given business
process models (e.g., [SLS06, ACPP11]), languages and dialects have been developed to anno-
tate existing business process models with security properties or to specify those properties
separately (e.g., [NHO8a, WMS™ 09, RFMTP11]). Only few proposals for a systematic procedure
to develop secure electronic business processes have been published that failed to yield broad
acceptance until today (e.g., [RK04, HH06, HB09]).

1.2. Problem Statement

Security engineering is about building systems to remain dependable in the face of malice,
error, or mischance [And08]. As a discipline it is still in its infancy [Eck14]. Today, mostly
general top-down process models from the software engineering domain are augmented with
security-specific techniques and methods that are only loosely integrated. As a result, security
engineering is focused on systems (not business processes), applied selectively with regard
to security properties and activities, and designed to be applied by security professionals (cf.
[And08, Geel0, HHJS11, For12]).
With regard to security engineering in the domain of BPM we focus on three major issues:

¢ Security nonprofessionals deciding and implementing security
* Heterogeneity of business process engines
» Business process environmental heterogeneity

The selection of these three major issues is inspired by the motivating observations described
above: acknowledged need for security in the domain of BPM, few proposals for a systematic
procedure to develop secure electronic business processes, and lack of acceptance of these
proposed approaches today. The issues focused in this thesis are discussed separately in
literature but not coherently considered by these proposals?.

Two further issues have been disregarded that have been mentioned in this context as
well: First, the lack of transparency with regard to costs and benefits of security investments

2 References are provided in the following paragraphs to enhance clarity. Details with regard to the existing
approaches are presented in chapter 2.

1.2. Problem Statement

(e.g., INKB06, IRRGO09]). This important issue addresses the economic rationale of security
decisions and not the application of a systematic procedure to develop secure electronic
business processes. Second, insufficient (visual) representation of security aspects in existing
BPM techniques, languages, and tooling (e.g., [MBS12]). This aspect has been addressed by
several publications and respective results are complementary to this thesis (e.g., [NH08a,
WMS*09, REMTP11]).

Security nonprofessionals implementing security

A gap between organizational business aspects and information technology can be observed
in many companies. BPM tries to narrow this gap between organization and technology,
thus allowing an organization to become adaptive and agile. Important contributing factors
provided by BPM are methods, standardizations, and tooling. Methods support the transfer
of knowledge gained during the application of BPM and enables other organizations and
practitioners to generate repeatable results. Standardization allows for a common language,
facilitates the knowledge transfer further, and renders tool independence possible. Different
vendors are able to offer specialized tooling to support the process models already existing
in the organizations. Business process experts together with domain experts are getting the
possibility to support more and more aspects of the business process life cycle. [SF03, Wes07,
WH12]

This advantage from the point of view of the BPM protagonist becomes an issue with respect
to security. Business process experts are mostly security nonprofessionals. As they analyze,
design, and configure business processes they decide implicitly about the security needs of
the organization and the controls to be deployed to secure the business process execution.
Therefore, security nonprofessionals decide about security aspects of an organization. Security
analysis and design are commonly seen as challenging task. If security nonprofessionals are
deciding and implementing security aspects of a business process without proper guidance
it is very likely that relevant security needs will not be identified, threats will not be ade-
quately mitigated, controls will be improperly selected, and implementations will be wrongly
configured. [NKB06, And08, Neu09, MBS12]

Heterogeneity of business process engines

Standardization of modeling languages and techniques enables vendors to offer tooling with
common interfaces to support BPM in organizations. Business process engines from different
vendors address different needs and environments. Naturally, the approaches to configure and
enforce controls in business process executions differ between vendors. While some try to hide
implementation details from users of their tools, others do provide interfaces to allow users
to manage every detail on their own (cf. [VdA04, Sil06, G611]). Support for (implementation
related) security standards like the Web Service Security standard [Org06] differ largely between
the products as does the configuration of the respective artifacts (cf. [BB08, IRRG09]). Because
the accepted BPM modeling languages and techniques do not provide elaborate support to
express security properties explicitly, there is no common interface to specify all relevant
security properties for BPM stakeholders [WMS*09].

Effects of this heterogeneity of business process engines with regard to provision and config-
uration of controls for secure business process execution are twofold. Users of BPM tools have

1. Introduction

to learn and understand the controls provided by their tools and have to configure or imple-
ment them tool-dependent correctly. Knowledge transfer and validation becomes difficult in
this situation as not only general security expertise is necessary but an in-depth knowledge of
the respective tooling. In this circumstances, wrongly configured or implemented controls are
very likely and might degrade the security of the business process in question. Further more,
interoperability is at danger since common interfaces are not guaranteed and the change of
the BPM tooling in use becomes difficult.

Business process environmental heterogeneity

BPM is applied in very different organizations with different approaches. Organizations from
the military sector are applying BPM as well as companies offering financial or consulting
services. Also, the role of the BPMS and the functionality actually used is diverse [VAAtHWO03,
Pal07, PCBV10]. Engineering methodologies and development processes applied depend
on organizational habits and policies [WH12]. Approaches for security engineering that are
restricted to a specific development process (e.g. traditional top-down approaches) do not fit
to the needed flexibility in the BPM domain and are not likely to be adopted.

1.3. Objective and Approach

The objective of this thesis is to develop a security engineering framework in the domain of
BPM that bridges the gap between business process models on one side and the design of
proper controls and their configuration using the means provided by the respective business
process engines and execution environment on the other side. It has to capacitate people
with low security background to profit from the framework. Flexibility in it’s application is
necessary to allow for a customization to the needs of an organization. The possibility to
integrate the framework into existing development processes and tool chains is necessary to
protect existing investments.
In order to strive for our objective, we address the following research questions:

1. What requirements does a security engineering process model for electronic business
processes place that copes with the prominence of security nonprofessionals, hetero-
geneous business process engines, and environmental heterogeneity in the domain of
BPM and how could they be met?

One main part of the security engineering framework developed in this thesis is a security
engineering process model that addresses the issues introduced in the problem statement.

Before we develop such process model, we have to investigate foundational aspects first:
What are important concepts with regard to electronic business processes, their life cycle, and
representation? What are the principles of model-driven engineering (MDE) and model-driven
security (MDS)? Analogous, a consistent terminology covering core concepts for information
technology (IT) security and security engineering is a foundational cornerstone. Another
cornerstone are concepts and methods available for design, construction, and adaptation of
development methods and techniques provided by the method engineering (ME) discipline.
Second, we need to identify relevant approaches in order to reuse existing knowledge, analyze
their shortcomings, and differentiate our approach.

1.3. Objective and Approach

To actually develop a suitable process model, we have to analyze requirements and develop
design strategies that address the issues introduced in the problem statement. The description
of structure and key entities of a corresponding process model addresses the main aspect of
this research question. Prototypical tool support and an exemplary integration of the security
engineering process model is needed to provide tangible artifacts that allow for an application
of the process model and evaluate its properties.

2. What requirements does a domain-specific modeling language (DSML) place that sup-
ports the elaboration of main work products of the developed security engineering
process model and how could they be met?

The security engineering framework developed in this thesis encompasses a DSML in order
to support the creation, validation, and analysis of main work products of the process model.
Hence, requirements and design strategies for such DSML have to be analyzed and depicted
that match with the work products of the process model. The definition and elaboration of the
metamodel as well as the concrete syntax for the DSML contribute similarly to the research
question. In correspondence with the process model, a prototypical implementation of tooling
to work with the DSML applying MDE techniques and practices substantiates the result.

3. What observations do we get applying the framework developed in this thesis?

The application of the security engineering framework developed in this thesis allows for a
discussion of its properties. Especially, observations with regard to the issues stated in the
problem statement are relevant for the validation of the framework and the contributions of
this thesis. Therefore, we have to derive analysis criteria for an exemplary study from the issues
stated in the problem statement. An exemplary study has to demonstrate the application
of the framework. Applying the analysis criteria we are able to discuss our observations
systematically.

Our research approach for this thesis rests on the design science paradigm, using a current
proposal from Peffers et al. as pragmatic framework [PTRC07]. Design science has been
introduced into research on information systems in the 1990s (e.g., [NJC90, MS95]). A widely
accepted conceptional framework for design science in information systems research has
been presented by Hevner et al. [HMPRO4]. Peffers et al. complemented this and other prior
research providing a pragmatic procedure for carrying out design science research [PTRC07].

Design science in general is contrasted with other paradigms focusing constructive and
artificial aspects: Whereas natural and social sciences try to understand reality, design science
attempts to create useful artifacts [Sim96]. Design science in information systems research
is commonly understood as to create and evaluate IT artifacts [HMPRO04] and addresses any
designed object with an embedded solution to an understood research problem [PTRC07].

In order to carry out design science research, Peffers et al. propose a procedure comprising
six activities (cf. [PTRCO7]):

1. Problem identification and motivation: A specific research problem is identified and
the value of its solution is justified. This activity requires knowledge of the state of the
problem and the relevance of its solution.

1. Introduction

2. Define the objectives for a solution: The objectives of a solutions are inferred from the
problem definition respecting the boundaries of the environment. Resources required
include knowledge of the state of problems and current solutions.

3. Design and development: The artifact in question is created. This activity includes
determination of desired properties, its architecture, and creation of the actual artifact.
Knowledge to bear in a solution is needed for this activity.

4. Demonstration: The use of the artifact to solve one or more instances of the problem is
demonstrated. Resources required for the demonstration include effective knowledge of
how to use the artifact.

5. Evaluation: How well the artifact supports a solution to the identified problem is ob-
served and measured. This includes the comparison of the objectives with actual results
and requires knowledge of relevant analysis techniques. At the end of the activity a
decision on further iterations of the other activities can be made.

6. Communication: The results of the research are communicated to researchers and other
relevant audiences including the problem, its importance, the artifact, and its utility.
This activity requires knowledge of the disciplinary culture.

This process is presented in sequential order; however there is no expectation to follow the
order as it is noted here. Peffers et al. acknowledge that research might start at almost any step
and proceed as needed in the research process. [PTRC07]

The results of these activities are represented within the thesis as follows: The identification
of the problem, the motivation of the utility of a solution, and the objectives for a solution are
presented in sections 1.1 and 1.2 as well as in this section. Chapter 2 supplements these results
in order to provide necessary background on the domains addressed in this thesis as well as
existing solution approaches. The design and development of the artifacts is presented in
chapters 4 and 5. Design and development is illustrated using an example depicted in chapter
3. Chapter 6 demonstrates the application of the artifacts and analyzes properties of the
solution. Results of this research effort have been communicated presenting selected aspects
on international conferences and other venues (cf. [Eiclla, Eicl2a, Eic12b, EFL12]) and are
presented considerably reviewed, detailed, and enhanced with this thesis. Furthermore, parts
of the results will be provided to practitioners as technical artifacts.

1.4. Contributions

In the context of this thesis we envision a collaboration of security experts, business process
experts, and domain experts that leverages the ideas of BPM to allow for an adaptive enterprise
and integrates security as a first class citizen. Therefore, we propose a model-based security
engineering framework in the domain of BPM that bridges the gap between business process
models and properly selected and configured controls for business process engines and the
execution environment of that business process. The framework developed in this thesis

1.4. Contributions

supports the Analysis and Design as well as the Configuration phase of the business process
life cycle.

Three ideas guide our contributions: The first idea is to specialize general security engi-
neering approaches for the purpose of security engineering in the domain of BPM. With
specialization we aim at detailing necessary activities in order to lower the skill set necessary
to complete them. The second, complementing idea is to capture necessary security related
facts and decisions taken in the course of the security engineering process using a DSML. This
allows for technical support in the course of the engineering process, simplified validation of
the results, and translation into process or tooling specific deployment artifacts. The third idea
is to separate the concerns or the knowledge necessary to realize security-related engineering
activities. For this purpose, security experts initially provide a setup for the security engi-
neering process that is tailored to the needs of an organization. Based on this setup business
process experts are able to realize most of the activities in the course of an actual project
while security experts might validate results in a simplified manner. Developers or technical
domain experts provide translations for the design decisions taken by business process experts
and security experts in order to implement a secure configuration of an individual business
process engine and its execution environment.

To realize these ideas, we contribute in this thesis a framework for security engineering in
the domain of BPM comprising:

» Security Engineering Process Model (SecEPM): The SecEPM provides guidance for the secu-
rity engineering from the identification of security goals to the selection and configuration
of controls. It allows for an integration in different engineering or development process
models and can be tailored to the needs of the organization.

 Security Engineering Modeling Language (SecEML): SecEML is a DSML for security engi-
neering of business processes. The language allows for consistent and accessible capturing
of work products of executed security engineering activities. Based on SecEML models,
results of the security engineering process can be validated and necessary deployment
artifacts can be generated.

* Workbench: A prototypical implementation of a workbench is provided. It supports the
application of the engineering process model SecEPM and the modeling language SecEML
to develop secure electronic business processes.

An overview of the framework is provided in figure 1.4.1. Grey squares represent parts of
the framework contributed in this thesis. White squares depict external parts that are used by
or integrated into contributed parts. Light grey squares show parts that contain external and
contributed content.

Key entities of SecEPM are organized using three categories: roles, work products, and
activities. Together they address the question: “Who (role) is doing what (activity) with which
result (work product) in order to secure an electronic business process?” Additionally, SecEPM
provides guidance artifacts including templates, checklists, examples, reference materials,
and guidelines. Guidance artifacts explain how to fulfill one or more given task of an activity.

1. Introduction

Development Security Engineering
Process Model Process Model (SecEPM)
nteatat Security Engineering
Integrates
i Methods and
Guidance / Techniques
Artifacts
manages
(storage &
SPEM authoring) SecEPM s
P|ug_ins SPEM EELE application
P|Ug_m 3 captures
work . X .
Roles, Activities, | products | Security Engineering
Work Products ™ Modeling Language
(SecEML)
EPFC

thiates and publishes supports application

Secure Development Process

SecEML Editor

Workbench

Figure 1.4.1.: Overview of the contributed framework for security engineering

utilizes integrates

Generally, they are based on existing security engineering methods and techniques. In order
to integrate SecEPM into an development process model, SecEPM is provided as plug-in
applying the Software & System Process Engineering Model (SPEM) [Obj08]. Utilizing the
Eclipse Process Framework Composer (EPFC), method content from SecEPM as well as other
development process models can be seamlessly authored and stored as well as a tailored
security engineering or security-integrated development process can be instantiated and
published.

SecEML is our proposal for a DSML capable of capturing work products of SecEPM and to
supply a basis for the validation of work products and their transformation into deployment
artifacts. An integrated workbench is provided that supports the application of SecEML. It
includes an editor for work products modeled using SecEML as well as an editor for business
process models and facilities to validate those models in combination.

1.5. Structure of the Thesis

This thesis is divided into seven major chapters (cf. figure 1.5.1). After this introductory chapter
we provide background information in chapter 2. Since we address the security of business
processes with our framework, we discuss general concepts of BPM with a focus on design,
modeling, and configuration of business processes first. Furthermore, we introduce concepts
of MDE and MDS which form a background to define our DSML. As a basis of the development
of our process model, concepts and techniques from the ME domain are introduced and
explained. Foundations of security terminology used in this thesis and its application to
security engineering is provided next. As many terms and concepts in the domain of IT
security are not generally agreed upon, we discuss different proposals and define a coherent
terminology in alignment with our purposes. A presentation of related work presents the state

1.5. Structure of the Thesis

Chapter 2:
Background and
Related Work

Chapter 1:
Introduction

Chapter 3: (.Zhapte.r & . C.hapter > .
Running Example Security Engineering Security Engineering
& P Process Model Modeling Language
Chapter 6: Chapter 7:
Exemplary Study Conclusion

Figure 1.5.1.: Thesis structure

of research with regard to the topics addressed in this thesis and positions our contributions
with regard to existing approaches.

The chapters 3, 4, and 5 detail the framework presented in this thesis. Chapter 3 introduces
arunning example to allow for a better understanding of the following chapters. It presents a
small excerpt of a real-world business process including its background in the logistics domain.
The business process model is presented and commented for later reference.

We develop SecEPM—our proposal for a security engineering process model in the domain
of BPM—in chapter 4. Based on the terminology given in the previous chapters, we define the
scope for SecEPM and its requirements to align our process model with the objective of this
thesis. In the following, we introduce constituent entities and explain their significance for the
process model. Presentation of the activities of SecEPM are at the center of the chapter. We
detail constraints, responsibilities, as well as input and output relations for the activities and
give exemplary guidance to apply the activities using the business process model introduced
in chapter 3. The provisioning of tool support and the integration of our process model into
existing development process models finalizes the chapter.

Chapter 5 is dedicated to the development of SecEML, our proposal for a modeling language
supporting the application of SecEPM. Based on our process model presented in chapter 4, we
elicit requirements for the modeling language and depict our design approach. A description
of the modeling language follows presenting abstract and concrete syntax of the language. We
discuss capturing of engineering artifacts from SecEPM first to analyze the application context
of our modeling language. Second, necessary interactions with existing business process
engines are examined to apply SecEML in tool chains utilizing those engines. We close the
chapter describing design and implementation aspects of the workbench.

1. Introduction

An exemplary study demonstrates the application of our framework in chapter 6. Analysis
criteria are defined with regard to the research objective and the problem statement stated
earlier in this introduction. SecEPM and SecEML are applied, results are analyzed as well
as compared with existing approaches, and benefits, potential issues and shortcomings are
discussed. The final chapter 7 summarizes the contributions of this thesis and outlines
directions and research topics of future work to further improve our framework.

10

2. Background and Related Work

2.1. Introduction

This chapter introduces background and related work in order to tackle the first two research
questions in the following chapters well founded:

1. What requirements does a security engineering process model for electronic business
processes place that copes with the prominence of security nonprofessionals, hetero-
geneous business process engines, and environmental heterogeneity in the domain of
BPM and how could they be met?

2. What requirements does a DSML place that supports the elaboration of main work
products of the developed security engineering process model and how could they be
met?

The chapter provides necessary knowledge for the state of problems and current solutions
as needed for the definition of the objective following the research approach of our thesis
(cf. section 1.3). Therefore, it introduces concepts and terms of this thesis, in particular
considering BPM, ME, MDE, and security engineering. Additionally, we present and discuss
related work with regard to the research objective and topics addressed in this thesis.

Section 2.2 introduces BPM concepts and terminology. Since this thesis contributes a
framework for security engineering of business processes, we discuss BPM with a focus on
design, modeling, and configuration of business processes. We depict primary concepts
and methods for the design, construction, and adaption of development methods stemming
from the ME discipline in section 2.3.2. As foundation of our modeling language SecEML
we present in section 2.3 principles of MDE. The subsequent section 2.4 provides security-
related terminology that will be used in this thesis. Since many terms and concepts in the
IT security domain are not generally agreed upon and often somehow blurred we discuss
different proposals and define a coherent terminology in alignment with our research objective.
A presentation of related work in section 2.5 allows for a positioning of the contributions of
this thesis with regard to current research.

2.2. Business Process Management

2.2.1. General Terminology

As the prominent researcher Thomas D. Davenport puts it, business processes are (simply) the
way ‘an organization does its work—the set of activities it pursues to accomplish a particular
objective for a particular customer” [Dav05, p. 2]. More precisely, a definition from Weske

11

2. Background and Related Work

includes also environment, logical relations, and constraints between the activities to be
executed:

Definition 1. “A business process consists of a set of activities that are performed in coordina-
tion in an organizational and technical environment. These activities jointly realize a business
goal.” [Wes07, p. 5]

Management of business processes includes not only their representation but also all
activities to support the whole life cycle as well as necessary terminology and methodology to
cope with business processes.

Definition 2. “Business process management includes concepts, methods, and techniques
to support the design, administration, configuration, enactment, and analysis of business
processes.” [Wes07, p. 5]

Automation of business processes is one of the cornerstones of BPM. As BPM inherited this
aim from its predecessor workflow management (WFM), an automation of a business process
is traditionally called a workflow [VAAtHWO03] or an electronic business process [Rit99]. As
business processes increasingly are supported by IT systems for automation, this distinction
is not longer used by many authors (e.g., [KLL09]). Prevalent is a differentiation with regard
to the level of a business process. Common levels are the organizational, the operational,
and the implementation level [Wes07]: Organizational business processes encompass high-
level processes, typically specified in textual form by their inputs, outputs, expected results,
and dependencies on other organizational business processes. For operational business pro-
cesses activities and their relationships are specified, but implementation aspects are (partly)
disregarded. With respect to implemented business processes information on execution of
activities and the technical and organizational environment is defined. We address business
processes at the implementation level in this thesis and therefore omit the level. Only in case
of possible ambiguities the level of a business process will be stated explicitly. To emphasize
the automation of a business process we will call it an electronic business process.

BPM relies on business process models to manage business processes. Each business
process model acts as a blueprint for a business process instance which forms a one-to-many
relationship between a business process model and its instances.

Definition 3. A business process model consists of a set of activity models and execution
constraints between them. A business process instance represents a concrete case in the
operational business of an organization, consisting of activity instances. [Wes07]

If no ambiguity is possible we will use the term business process to refer to either a business
process model or an instance. The enactment or execution of a business process is to be
read as the creation of a business process instance from a business process model and the
enactment of its activity instances following the execution constraints defined between them.

2.2.2. Business Process Life Cycle and Supporting Systems

The business process life cycle describes the various phases in support of business processes.
Several generic life cycle models have been proposed [KLL09]. The overlapping between the

12

2.2. Business Process Management

different models is large. Hence we stick to Weskes terminology for the description of the
phases (figure 2.2.1, cf. [Wes07]). Generally, the life cycle is iterated multiple times in order to
optimize the support of the business process in question [Krc10].

Design & Analysis

Identification,
modeling, validation,

simulation
Evaluation Administration Configuration
Process mining, Organization, access, System selection,
business activity policies, storage, implementation, test,
monitoring retrieval deployment
Enactment

Operation, monitoring

Figure 2.2.1.: Business process life cycle [Wes07, p. 12]

The Design and Analysis phase starts with surveys on business processes and their organiza-
tional and technical environment. Business processes are identified, reviewed, and modeled.
Validation, simulation, and verification techniques are used to check the correctness of the
business process models and to identify undesired runtime behavior.

The implementation of a business process is done in the Configuration phase. There are
multiple ways to implement a business process starting with manual procedures up to the
utilization of a dedicated business process management system. In case of electronic business
processes, the business process model is enhanced with technical information that allow for
the execution of the process with the means provided by the organizational IT infrastructure.
Additional implementation work is executed as necessary, e.g. integration of existing software
systems.

The Enactment phase encompasses the actual execution of business process instances.
Execution data is gathered, typically using log files or databases. Administrative monitor-
ing components analyzing the execution data allow for the supervision of business process
instances and their accordance to the respective business process model.

13

2. Background and Related Work

Evaluation of executed business process instances and improvement of business process
models are at the center of the Evaluation phase. Business activity monitoring and process
mining techniques aim at identifying the quality of the business process models and the
adequacy of the execution environment.

The Administrationis not a phase but encompass the necessary organizational and manage-
rial duties for all phases to allow for an efficient BPM. Structured storage and capable retrieval
of artifacts regarding business process models and information on instances as well as the
organizational and technical execution environment need to be taken into account.

The development of electronic business processes is subsumed as a part of general business
process management or engineering methodologies and its descriptions remain mostly—
from an engineering point of view—rather general (e.g. [Cha95, Wes07]). The development
is structured in a sequence of phases: In a Survey phase the project goals are defined, the
team is established, and necessary information is gathered. The business processes are
modeled, validated, and the organizational and technical environment is analyzed in the
Design phase. The technological platform on which the business process will be enacted
is chosen in the Platform Selection phase. A following Implementation and Testing phase
configures the IT systems necessary for the enactment, implements necessary components,
and tests the electronic business process. In the Deployment phase, the electronic business
process is transferred to target environment. The development phases can be mapped onto
the business process life cycle phases: Survey and Design development phases onto the
Design and Analysis life cycle phase, the Platform Selection, Implementation and Testing, and
Deployment development phases onto the Configuration life cycle phase.

More detailed development processes and methodologies for electronic business process
reflect the technical infrastructure and/or the architectural paradigms that are envisioned
by the authors. Beside specific technical or architectural constraints those processes and
methodologies resemble general software development processes and methodologies (cf.
[WGHS99] as example for a development process targeting traditional workflow systems
and [PvdHO7, DRGRAGP09] targeting service-oriented architectures). Furthermore, BPM
augmentations available for existing software development process models can be seen as
supplemental indication for this observation (e.g. [JB06] and the IBM RUP for SOMA plug-in').
Therefore, we adopt the perspective that adequate development processes and methodologies
for electronic business processes are grounded on general software development processes
and methodologies that are enriched with special practices or considerations with regard to
the automation of business processes.

Software systems for the coordination of activities involved in business processes and their
management are called business process management systems (BPMS). Figure 2.2.2 shows
a general BPMS architecture using the Fundamental Modeling Concepts (FMC) [KGT05]
notation. The Business Process Modeler component is used for creating business process
models and administrating them. Business process models are stored in the Business Process
Repository. The Business Process Engine (also known as business process execution engine) is
responsible for creation and controlling of the actual execution of business process instances.
It uses the business process models from the repository for this purposes and logs its activities

1 nttp://www.ibm.com/developerworks/rational/downloads/06/rmc_soma/

14

http://www.ibm.com/developerworks/rational/downloads/06/rmc_soma/

2.2. Business Process Management

in the Process Log. The Business Activity Monitoring component is used for evaluation and
improvement of the business process models. The Business Process Environment represents
the organizational and technical infrastructure and environment the business processes are
executed in.

BPMS

Business
Process
Repository

Process Log

Business R Business <R Business
Process —O— Process |—O—] Activity
Modeler Engine Monitoring
Business
Process

Environment

Figure 2.2.2.: Business process management systems architecture (FMC block diagram,
adapted from [Wes07, Wol10])

2.2.3. Business Process Modeling

Business process modeling is a key activity in the Design and Analysis as well as the Config-
uration phase of the business process life cycle. It aims for the explicit representation of a
business process in terms of a business process model using a process or modeling language
[VdAtHWO3]. Business process modeling has a long tradition. Therefore, it is supported by
a variety of modeling approaches including different languages, techniques, and tools. The
different approaches show different strengths and weaknesses, such as a trade-off between
expressibility, ease of use, and analysis complexity. Some approaches offer rich syntax to
express different business activities and their relationships while others provide few modeling
entities with efficient model analysis capabilities.

Several classifications for existing business process modeling approaches have been pro-
posed, highlighting formal foundation, syntactical richness, industrial or academic back-
ground, standardization and other criteria [VAAtHWO03, AS04, 1.S07, KLL09, RRIG09]. A prag-
matic criterion is the support of different phases of the business process life cycle as proposed
by Lu et al. [KLL09]: Graphical approaches enable users to express business processes in

15

2. Background and Related Work

a diagrammatic way and generally allow for a good comprehensibility in the Design and
Analysis phase. Interchange standards facilitate the portability of business process models
across different BPMS especially in the Configuration phase. Execution-focused approaches
address the automation of the business process enactment and the support of the Enactment
phase. Approaches that are directed towards diagnosis provide administrative and monitoring
capabilities for the Evaluation phase.

The BPMN standard published by the Object Management Group (OMG) in its version 2.0
provides the broadest support with regard to the criterion of supporting different phases of
the business process life cycle [Objl1a]: BPMN centers around a rich graphical syntax that is
specifically designed to support good comprehensibility. It provides an interchange format
that can be used to exchange business process models (both domain model and diagram
layout) between different tools. It specifies (informally) execution semantics and a mapping
to the Web Services Business Process Execution Language (WS-BPEL) [Org07], a common
language for business process execution. Furthermore, recent publications demonstrate the
feasibility of the formalization of the execution semantics using graph rewrite rules to allow
for a formally founded reference implementation [DVG10, VGD11]. Diagnosis is facilitated
by auditing and monitoring capabilities that leverage the extensibility feature of BPMN. The
industrial background, its origin in the BPM domain, and the widespread tool support and
application [WH12] support the choice of BPMN as a modeling language for business processes
in this thesis.

A business process can be modeled as private (executable or non-executable) business
process, public process, and choreography using BPMN. A private business process defines
the flow of activities within a specific organization, a public process represents the interactions
between a private business process and other processes or participants, including only those
activities that are used to communicate to the participants. In contrast to those business
processes, a choreography formalizes the way participants coordinate their interactions and
focuses on the exchange of information.

Although BPMN is a complex language providing more than 60 distinct graphical elements,
BPMN offers a basic set of 15 elements clustered in five categories that provides all necessary
means to model basic business processes (cf. figure 2.2.3). The five categories and their most
frequently used elements are:

* Flow Objects are used to construct a business process, including Events, Activities, and
Gateways. Activities represent work an organization performs. An Activity can be atomic
or non-atomic (compound). Gateways are used to control divergence and convergence of
Sequence Flows in a business process. Thus, it determines branching, forking, merging,
and joining of paths. Events represent something that “happens” during the course of a
business process execution. The three types of Events are Start, Intermediate, and End.

* Datais represented with four elements: Data Objects, Data Inputs, Data Outputs, and Data
Stores. Data Objects provide information about what Activities require to be performed
and/or what they produce. Data Input and Data Output provide this information for whole
business processes.

16

2.3. Software, Method, and Model-driven Engineering

(T :
! [

! [

Start Event Sequence Flow ! 1

AN -

Atomic Activity Data Object Group
Intermediate Event Message Flow
Text
................... AnnOtation
Compound Activity Gateway End Event Association
()
C
B
o
o
o ()
C
38

Figure 2.2.3.: BPMN core elements (cf. [Objl1a])

» Connecting Objects connect Flow Objects to each other or other elements. Sequence Flows
are used to define the execution order of Activities in a business process. Message Flows
specify the flow of messages between two participants. Associations are used to link ele-
ments and Artifacts like Text Annotations.

e Swimlanes group modeling elements. Pools represent a participant in a business pro-
cess, e.g. a specific organization. Lanes sub-partition Pools and represent for example
organizational entities such as roles.

* Artifacts provide additional information about a business process. The two standardized
Artifacts are Groups and Text Annotations. Groups are grouping graphical elements that
are within some common category without affecting the Sequence Flows. Text Annotations
simply provide additional textual information for the reader of a BPMN diagram.

A business process diagram using BPMN is shown in figure 3.2.1 on page 49.

2.3. Software, Method, and Model-driven Engineering

2.3.1. Software Engineering

The application of models in software engineering has a long tradition. Before we detail ideas
and specifics of method engineering and model-driven approaches, we introduce general
terms and concepts with respect to software engineering first. The terminology is taken from
international standards augmented with explanations and hints from current textbooks on
this topic (cf. [Ins90, Ins97, BD09]).

17

2. Background and Related Work

Definition 4. Software engineering is the “application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the application
of engineering to software”. [Ins90, p. 67]

Software comprises computer programs, procedures, and data pertaining to the operation
of a computer system. A system is a collection of interconnected parts to accomplish a set
of functions. Modeling is a way to deal with complexity by ignoring details irrelevant to the
question addressed. In the domain of software engineering the term model refers to any
abstraction of a system. A notation or a modeling language is a graphical or textual set of rules
for representing a model. Exemplary, the Unified Modeling Language (UML) [Objl1b] is a
notation for representing object-oriented models.

Software engineering requires the collaboration of several people with different backgrounds
and skills. The client orders and pays for the system, the project manager plans the project
and controls the progress. Persons involved in the project will be referred as participants. A
set of responsibilities in the project is called role. A role is associated with a set of tasks and
assigned to a participant. One participant can fill several roles.

Artifacts that are produced during the development are called work products, e.g., a piece of
software or a document. A work product for consumption within a project is an internal work
product. A work product that must be delivered to the client is called deliverable.

An activity is a set of tasks that is performed toward a specific purpose. For example, security
requirements elicitation is an activity whose purpose is to identify security requirements based
on the threats and security goals analyzed before. Activities can be composed of other activities,
e.g. the requirements elicitation activity includes the security requirements elicitation activity.
High-level activities can also be called phases. A task represents an atomic unit of work that
can be managed. Tasks consume resources, result in work products, and depend on work
products produced by other tasks. Resources are assets that are used to accomplish work.
Resources include time, equipment, material, and labor.

The software development process is the actual process by which user needs are translated
into a software system. Models of the software development process are called software
development process models or software life cycle models. A software development process
model represents all activities, roles, and work products necessary to develop a software
system as well as their relations.

2.3.2. Method Engineering

The development of software development process models is addressed by the method en-
gineering discipline. Method engineering has been introduced in the 1980s as a proposal to
address diverse requirements with regard to methods needed for the development of infor-
mation systems. Since the one-size-fits-all approach had been regarded as unattainable the
selection and assembly of method fragments from a repository in order to provide adequate
methods offered a solution. [HS06, HSR10]

Definition 5. Method engineering is “the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of information systems.” [Bri96, p. 276].

18

2.3. Software, Method, and Model-driven Engineering

This definition is intentionally aligned with the internationally accepted definition of soft-
ware engineering (cf. section 2.3.1). A major body of work within the method engineering
discipline is dedicated to situational method engineering addressing adequate methods in
actual organizations and projects. Situational method engineering “encompasses all aspects of
creating a development method for a specific situation” [HSR10, p. 424].

Generally speaking, a method is a repeatable procedure that specifies the steps involved
in solving a specific problem. Adapted to the method engineering discipline, a method is an
‘approach to perform a software/systems development project [...] structured systematically in
terms of [...] activities with corresponding [...] work products and |[...] roles” [HSR10, p. 426].
Recent publications in the field use the term method synonymously with the term process
model [HSR10]. A situational method—also known as tailored process model—is a method
tuned to the situation of the project at hand. The term methodology is used differently in
the field. Applying etymology, some authors restrict the usage of the term methodology to
the study of methods and scientific theory building (e.g., [Bri96]). Most authors in the field,
though, apply the term methodology more broadly to a collection of methods for solving a
class of problems and specifications how and when each method should be used or even as
synonym for method [HSR10]. We will apply the latter approach within this thesis in order
to align our terminology with common usage minimizing the use of the term methodology
altogether.

Standardized building blocks for methods are called method fragments. Within the method
engineering discipline, method fragments are commonly classified distinguishing the follow-
ing dimensions: perspective, abstraction level, and layer of granularity [BSH98].

¢ The dimension perspective differentiates product and process fragments. Product frag-
ments model the structures of the products of a method, e.g., diagrams and tables. Process
fragments are models of the development process, e.g., tasks and activities.

* The abstraction level commonly distinguishes the conceptual from the technical level. The
conceptual level addresses descriptions of development methods whereas the technical
level addresses implementable specifications, i.e., tools.

* The compositional aspect of method engineering is explicated with the layer of granularity.
Brinkkemper et al. propose to discriminate the granularity of method fragments with regard
to five layers [BSH98]: method, stage, model, diagram, and concept. Method fragments on
the method layer address a complete method. The stage layer entails method fragments on
a segment of the life cycle. The perspective or abstraction of the system to be developed is
addressed on the model layer. The diagram layer introduces representations of a view of a
model layer method fragment. Concepts and associations of the method fragments on the
diagram layer are covered on the concept layer.

While method fragments can be regarded as atomic elements of a method, different terms
for relevant combinations of method fragments have been proposed by different authors.
Commonly, the term method chunk is used for a relevant combination of process and product
fragments [HSR10]. Addressing also the granularity layer of the method fragments, Sunyaev
discriminates further method chains and alliances: method chains are combinations of method

19

2. Background and Related Work

fragments on different granularity levels, method alliances combine those of the same level
[Sunll]. Standardized method chunks are stored in and retrieved from a so-called method
base [Bri96].

Within the method engineering discipline, multiple approaches to support different phases
within the life cycle of methods have been proposed. With regard to this thesis, especially
approaches for the construction of individual method chunks and fragments from existing
methods [Ral04], for the construction of methods from method chunks [RDR03], for tailoring
or method configuration [AWK* 03, KA04, KA09], and for the integration of method chunks
from different method bases [RR01] are of interest.

Maturing over time and disseminating into industry, generalized frameworks and interna-
tional standards addressing central aspects of method engineering have been agreed upon and
respective tooling became available [FHS02, Int07, Obj08]. SPEM standardized by the OMG
provides rich modeling capabilities and is supported by mature tooling from well known ven-
dors as well as open source solutions (e.g., SPARX Enterprise Architect?, No Magic MagicDraw®,
IBM Rational Method Composer?, Eclipse Process Framework Composer®).

SPEM provides a metamodel and a conceptual framework in order to support modeling,
documenting, presenting, managing, interchanging, and enacting development methods and
processes (cf. also for the following [Obj08]). The metamodel is based on the Meta Object
Facility (MOF) [Objl4a] standard by the OMG and reuses the UML 2 infrastructure. Main
strategies for the design of SPEM are the separation of so called method content definitions
from the application of method content in a development process, independence from differ-
ent life cycle models, and process variability and extensibility using a plug-in mechanism. This
allows for the definition of highly sophisticated and scalable development process models and
software development processes at the cost of a fairly complex specification entailing more
than 60 metamodel elements.

The SPEM metamodel is organized using seven packages. We will focus on three packages:
Method Content, Managed Content, and Process Structure (cf. section 4.7.2). The Method
Content packages specifies elements for the definition of roles, tasks etc. Guidance artifacts
are represented with elements from the Managed Content package. Elements to describe
a development process build from aforementioned elements as a breakdown structure are
provided in the Process Structure package.

» Core elements from the Method Content package are Work Product Definition, Task Defini-
tion, and Role Definition including their most important relations Performer, Responsibility
Assignment, and Parameter In/Out/InOut. A Task Definition describes an assignable unit
of work. A tangible work product consumed, produced or modified by tasks is specified
with the help of a Work Product Definition and assigned to respective Task Definitions
using matching Parameter associations (In/Out/InOut). A Role Definition captures a set of
related skills, competencies, and responsibilities and is assigned to Task Definitions using

http://www.sparxsystems.com/products/ea/
http://www.nomagic.com/products/magicdraw.html
http://www.ibm.com/software/awdtools/rmc/
http://www.eclipse.org/epf/

(S I * SR \S]

20

http://www.sparxsystems.com/products/ea/
http://www.nomagic.com/products/magicdraw.html
http://www.ibm.com/software/awdtools/rmc/
http://www.eclipse.org/epf/

2.3. Software, Method, and Model-driven Engineering

the Performer association and to Work Product Definitions applying the Responsibility
Assignment association.

Main elements from the Managed Content package are Category and Guidance. Categories
are used to categorize elements based on arbitrary criteria relevant for grouping, navigation,
and browsing. Guidance elements are used to provide additional information related to
other elements including guidelines, templates, checklists etc.

The Activity element is at the center of the Process Structure package accompanied by the
Role Use, and Work Product Use elements. An Activity represents a general unit of work
assignable to specific performers represented by Role Use. An Activity can rely on inputs
and produce outputs represented by Work Product Uses. It also represents a grouping
element for all elements of a breakdown structure.

The implementation of the strategies for separation of method content definitions from
their application, independence from different life cycle models, and process variability and
extensibility in SPEM utilizes three central elements: Variability Element, Method Content
Use, and Activity Use Kind.

e The Variability Element allows to describe differences (additions, changes, omissions)
relative to an original of the same type using separate objects. It supports four Variability
Types: contributes, extends, replaces, and extends-replaces. A Variability Element that
contributes to another provides its properties into its base Variability Element without
directly altering any of its existing properties, i.e., in an additive fashion. A special Variability
Element that extends a base Variability Element inherits its properties but might override
those with its own values. Replaces defines a replacement of a base Variability Element
without directly changing any of its existing properties. Extends-replaces combines the
effects of extends and replace variability; extends-replaces variability only replaces the
values that have been redefined and leaves all other values of the base element as is.

Method Content Use is an abstract generalization for breakdown elements that references
one element from the Method Content package like Task Definition, Role Definition etc.
It provides a proxy-like representation in breakdown structures of respective reference
objects. It shall be provided with congruent copies of the relationships defined for the
content element. However, those relationships can be modified for the particular process
situation for which the Method Content Use has been created.

The Activity Use Kind enumerates the nature of reuse for an Activity element. It is applied to
reuse structures defined for one Activity in a second Activity without the need to physically
copy its nested breakdown structure. The Activity Use Kind element allows for an extension,
local contribution, or local replacement. Extension provides a mechanism for dynamically
reusing Activity substructures in other Activities. Local contribution defines specific local
additions to breakdown elements inherited via the Activity Use Kind “extension” within the
context of the reusing Activity. Local replacement defines local replacements to breakdown
elements inherited via the Activity Use Kind “extension”.

21

2. Background and Related Work

The elements specified by the SPEM metamodel might be subsumed applying common
method engineering terminology as follows (cf. also [RMMGO09]): Basic method fragments are
specified using elements from the Method Content package. Especially, Work Product Defi-
nitions provide means to specify product fragments, Task Definitions for process fragments.
Applying the associations Parameter, Performer, and Responsibility Assignment, basic method
chunks can be defined. Method fragments on the technical level are mainly addressed by
Guidance elements from the Managed Content package. Composition of method chunks are
represented applying elements from the Process Structure package. In particular, the Activity
element allows for the flexible composition of method chunks on different layers of granularity
including method alliances and chains. The method base is organized applying elements of
the Method Plugin package, that has not been covered in this section.

2.3.3. Model-driven Engineering

More than ten years ago, conceptual differences between different domain-specific concepts
needed for the development of (complex) software systems came into focus. For example, to
develop a system for telephone call processing, concepts from the telecommunication do-
main are needed to describe central parts of the problem to be solved and concepts from the
software engineering domain are needed to describe central parts of the solution. Especially
differences between concepts from the application domain and those from the software engi-
neering domain draw a lot of attention and became known as the semantic gap [BBI*04]. The
hypothesis has been suggested, that some of the challenges recognized for the development of
contemporary applications is due to the semantic gap, i.e., the distance between the concepts
of the different domains involved in the development of software systems.

2.3.3.1. Principles

Central ideas to tackle the semantic gap are direct representation, automation, and open
standards [BBI* 04, BE06]. As for direct representation, the observation has been made that the
more directly concepts in the application domain can be represented, the easier it becomes
to specify a system. Conversely, the greater the distance between the application domain
and the modeling concepts, the less value is yielded by modeling. Because of the many
different application domains and their internal complexity and sophistication the systematic
application of DSMLs® have been proposed to allow for a direct representation of the domain-
specific concepts.

While direct representation using DSMLs is helpful for the use of humans, the translation of
those models into models utilizing other (implementation) languages is time consuming and
error-prone. Therefore, transformations between models utilizing different languages, differ-
ent levels of abstraction, or different viewpoints should be automated. Automation might also
introduce validation and analysis with regard to various flaws or the generation of test artifacts.
Corresponding frameworks are important to support automation since transformations have
to make assumptions about the application and implementation environment. Furthermore,

6 The term domain-specific language (DSL) is also commonly used. As we focus on model-based security
engineering we will stick to the term DSML.

22

2.3. Software, Method, and Model-driven Engineering

frameworks allow for reuse, since developers do not have to implement such environmental
aspects repeatedly.

Domain-specific (modeling) languages and frameworks to support their application are
only likely to become common if accompanying standards support them. Open, industry-wide
standards allow for the emergence of an ecosystem of tool vendors and experienced users that
leverage the utility of direct representation and automation.

Approaches that address these ideas and try to provide explicit support to tackle the seman-
tic gap are called MDE approaches. Although no common definition of MDE is apparent, the
following principles are repeatedly named as essential for MDE: models as first class entities,
the use of DSMLs, application of metamodels to express DSMLs, and powerful tooling to
support DSML creation, application, and model transformation [Ken02, BBIT 04, Bé06, Sch06,
FRO7, SVEHO7].

Considering models as first class entities implies the systematic usage of models as central
artifact in software engineering (in opposite to using models arbitrarily) as well as the treat-
ment of any software artifact as a model (including documentation and code). While the use
of DSMLs directly springs from the idea of direct representation, it is seen as a central contri-
bution of MDE to express DSMLs by metamodels [B€06]. A metamodel describes the various
kinds of elements that a given model might contain, the way they are arranged, related, and
constrained. A model is said to conform to its metamodel. A common approach to formalize
models and metamodels in MDE is based on directed multigraphs (cf. [BBDF*06]). Powerful
tooling again stems directly from the idea of automation. Integrating these aspects we adapt
the definition of model-driven engineering from [Sch06]:

Definition 6. Model-driven engineering combines the application of multiple domain-specific
modeling languages described using metamodels with transformation engines, generators,
and respective tooling to allow for a systematic development and application of models in the
domain of software engineering.

The systematic application of models with the help of DSMLs and tooling does not only
comprise languages and technology but includes also the human and organizational aspects
such as process descriptions for coordinated construction and evolution of models in the
course of software engineering. Perhaps it is even more important to mention that MDE does
not imply an all-or-nothing approach: It is valid within the boundaries of our definition to sup-
port only parts of the engineering activities with MDE techniques and methods. Introducing
MDE must not outweigh the benefits of models with the burden of maintaining them. [Ken02]

The term model-driven engineering is often used synonymously with the term model-based
engineering. Similar concepts and techniques are described for model-based engineering as
we have discussed for model-driven engineering (e.g., [BFH*10]). We will use both terms ap-
plying the definition provided in this section and assign an individual focus to each term: The
application of the term model-based indicates a focus on DSMLs described using metamodels
and respective tooling to allow for systematic development and application of models. The
term model-driven indicates a focus on transformation engines and generators in the same
context. An example is the application of the term model-based to attribute our framework
for security engineering (focusing our DSML SecEML, cf. chapter 5). An alternative example

23

2. Background and Related Work

is the application of the term model-driven to attribute one of the frameworks for the imple-
mentation of plug-ins for our workbench focusing the generation of source code: the Eclipse
Modeling Framework (EMF).

2.3.3.2. Model-driven Architecture

Model-driven Architecture (MDA) [Obj03] is one of the best known MDE approaches for
software and system development. It is an initiative started and standardized by the OMG.
Foundation of MDA is the application of the divide and conquer strategy (or separation
of concerns) with regard to architectural aspects: The specification of a system should be
separated from the details how that system uses the capabilities of its platform. Therefore,
MDA provides means to specify a system independently of the platform that supports it,
specify platforms, choosing a particular platform for a system, and transforming the system
specification into one for a particular platform. The primary goals of MDA are portability,
interoperability, and reusability.

MDA defines different viewpoints and corresponding models to specify a system: compu-
tational independent model, platform independent model, platform model, and platform
specific model. The computational independent model (CIM) captures the environment
and the requirements of the system; details of the structure and processing of the system are
hidden or undetermined. A CIM is also called the domain model and describes the system in
the problem domain. The platform independent model (PIM) specifies the system omitting
aspects that are specific with regard to a given platform. The PIM is suitable for use with a
number of different platforms of similar type. A common technique for achieving platform
independence is to target a system model for a technology-independent virtual machine.
A platform model provides a set of technical concepts representing the parts that make up
a platform and the services provided by the platform. A platform specific model (PSM) is
the combination of the specifications in the PIM with the details that specify the usage of a
particular platform.

Models are converted from one model to another model of the same system with the help
of transformations. A MDA mapping provides all necessary specifications for transformations
of a PIM into a PSM for a particular platform. The platform model will determine the nature of
the mapping. Ideally, the MDA mapping is given in a way that allows for a transformation from
the PIM into an implementation without manual intervention. Nevertheless, MDA defines
different mappings to provide means for different application scenarios; not necessarily all
of the transformations specified by the mappings are executable. Figure 2.3.1 shows a MDA
metamodel transformation that converts a PIM to a PSM utilizing a mapping specified on the
basis of the metamodels of the PIM and the PSM.

2.3.3.3. Model-driven Security

The problem of the semantic gap addressed by MDE approaches is prevalent in the security
domain as well: First, security models and other software engineering models are typically
disjoint and expressed using different notations. Second, security requirements and imple-

24

2.3. Software, Method, and Model-driven Engineering

language used Platform
PIM Independent
Metamodel

source language

Mapping

Transformation Transformation
Specification

target language

language used Platform
PSM Specific
Metamodel

Figure 2.3.1.: MDA metamodel transformation [Obj03, p. 3-9]

mentation of corresponding controls commonly are not connected and are expressed using
(very) different means. As a result, security is often integrated into systems in a post hoc
or discretionary manner, which degrades the security and maintainability of the resulting
systems. [BDLO6]

Consequently, the adoption of MDE techniques and ideas in the security domain is an
active research topic, often addressed as model-driven security (MDS, e.g., [BDL06, HB09,
WMS™*09, MRS09, RAGFMP10, MM 10, BCE11]) and well recognized in industry [McDO07]. The
general idea of many approaches for MDS is to specify security aspects at an adequate level
of abstraction using a DSML, to transform those models to enriched design models on the
same or lower levels of abstraction, and to generate security-related artifacts necessary for
implementation using a proper platform model. An exemplary approach from Basin et al.
proposes to define security requirements considering access control constraints using a DSML
for that purpose, link them with the corresponding system design model, and transform the
resulting model into a security configuration model specifying low-level access control policies
[BDLO6].

An important challenge for the integration of security aspects in MDE approaches is the
relation of the (to be defined) security model and the (existing) requirements, design, and
implementation models. We distinguish four integration strategies: language extension,
dialect definition, entity reference, and model weaving (cf. also [MM10]).

25

2. Background and Related Work

Security Design Language | RBAC

Security Modeling
Language =
RBAC + Class Diagram

Dialect -

System Design Modeling

Language "‘~[Class Diagram

Figure 2.3.2.: Dialect definition strategy (cf. [BDLO06])

The first strategy, language extension, enhances a given modeling language in order to
express also relevant security aspects. Several languages define extension points that can
be used for this purpose. For instance, UML provides stereotypes and tags to extend UML
modeling elements. This variant of the strategy is known as lightweight language extension:
The effort for the extension is generally rather small and existing tooling supporting the
language extension points will not be broken. Another variant of this strategy is the extension
of the metamodel of a modeling language. The syntax and semantics of the language is
enriched introducing new elements and additional attributes for existing elements. This
variant is also known as heavyweight language extension since existing tools are mostly not
capable to handle the changed language. Consequently, resulting efforts are higher. An
example for lightweight language extension is the extension of BPMN for the inclusion of
security goals in business process models [WMS*09] or the definition of an UML Profile for the
specification of security requirements in activity diagrams [RFMTP11]. Heavyweight language
extension in the context of BPMN has been used in [RFMP07a].

The dialect definition strategy has been proposed by [BDL06] for the specification of access
control policies and has been used for other purposes as well [MM10]. The dialect definition
strategy proposes a modular schema for building DSMLs in the context of MDS. The schema
depicted in figure 2.3.2 is parametrized using three languages: a security modeling language,
e.g., for expressing security policies (here: role based access control (RBAC) [Ame04]), a
system design modeling language, e.g., for constructing component models (here: UML class
diagram), and a dialect, which provides a bridge between those two languages by defining
connection points. Using different instantiations of the three parameters, different languages
tailored for the specific needs can be defined based on a common set of concepts. Thus, this
schema defines families of modeling languages (called security design languages in [BDLO06]).

We will call the specification of references between models using different languages en-
tity reference strategy. Precondition is the possibility to reference entities in a language-
independent manner. If the dependency of two given models is unidirectional, only one of
the languages used has to provide those referencing possibilities. Therefore, the independent
language, models specified using this language, and tooling to work with those models are

26

2.4. Security

untouched. An example for the use of the entity reference strategy to model security policies
in the context of UML models is given in [AHB07].

If none of the languages to be integrated provide language-independent entity references
and the modeling languages should not be extended or changed, the model weaving strat-
egy provides a solution [BBDF*06]. Model weaving defines a modeling language for model
composition that provides language-independent entity references. Entities from arbitrary
models can be related using weaving models specified in a model composition language. The
integration of security concepts and business process models using model weaving has been
demonstrated in [Eic10].

2.4. Security

In the domain of IT the term security and accompanying concepts have different defini-
tions and are not used consistently in literature (cf. [AW04, McG06, FGH*10]). To provide a
consistent terminology for the thesis, section 2.4.1 introduces several proposals, discusses
similarities and differences, and provides definitions and explanations of relevant concepts.
Section 2.4.2 introduces current interpretations of security engineering, respective concepts,
and relates them with the approach taken in this thesis.

2.4.1. General Terminology

In everyday language, the term security has the meaning of a “state of being protected or safe
from harm” and “things done to make people or places safe” [MW14]. Therefore, the term
denotes a specific state as well as means to achieve it.

The application of the concept of security in the IT domain is called IT security. The term
IT security shares the ambiguity of the general concept, but further meanings have been
assigned to it. An early definition focuses distinctive means to achieve security with respect
to information systems: “The term ‘security’ describes techniques that control who may use
or modify the computer or the information contained in it.” [SS75, p. 1280] A little shift can
be observed in the following definition: “Security [is a] system condition that results from
the establishment and maintenance of measures to protect the system.” [Shi07] Still means
(“measures”) are in the focus of the definition, but IT security becomes a system condition
and protection is more general than usage and modification of the computer or information
contained on it. Commonly, IT security is defined enumerating specific objectives, e.g.,
“security [is] the protection afforded to an automated information system in order to attain the
applicable objectives of preserving the integrity, availability and confidentiality of information
system resources” [Nat96, p. 5]. Practitioners often focus adversaries: “Security [is the idea
of] engineering software so that it continues to function correctly under malicious attack [...].”
[McGO6, p. 3]

To allow for a systematic approach to define our terminology with regard to IT security, we
will focus on proposals from three main sources: the commonly referred standard 13335-1
from the International Organization for Standardization (ISO) [Int04], the influential terminol-
ogy from the Common Criteria (CC) standardized as ISO 15408-1 [Int14], and a proposal from

27

2. Background and Related Work

academia by Fabian et al. [FGH* 10]. The first two sources represent international standard-
ized as well as commonly referenced and applied terminology that stem from two different
viewpoints. ISO 13335-1 provides its terminology in the context of IT security management,
the definitions in the CC address IT security evaluation. The proposal from Fabian et al.
addresses the development of secure systems and introduces a conceptual framework for
security requirements engineering. Furthermore, it provides a mapping from the conceptual
framework to other approaches that are frequently referenced in academia. Therefore, the
terminology from Fabian et al. synthesizes many proposals from academia and allows for a
systematic positioning of our terminology with regard to related literature. Additional sources
will be used to incorporate further relevant aspects not focused in the three main sources. In
the following, we will omit the attribution “IT” of “IT security” if no misunderstandings are
possible.

A very broad definition of security is given in ISO 13335-1: “Information and communi-
cations technology (ICT) security [is defined as] all aspects related to defining, achieving, and
maintaining confidentiality, integrity, availability, non-repudiation, accountability, authen-
ticity, and reliability, of ICT.” [Int04, p. 3] Therefore, the definition highlights two aspects: the
life cycle of security (from definition to maintenance) and seven enumerated properties that
security has to tackle. The definiendum of security itself is sketched very broadly with the
term “all aspects” that are related to the life cycle of the enumerated properties. Compared
with ISO 13335-1, the definition of the CC seems to be more clear-cut: IT security is concerned
with the “/...] protection of assets from unauthorised disclosure, modification, or loss of use.
The categories of protection relating to these three types of failure of security are commonly
called confidentiality, integrity, and availability, respectively” [Intl4, p. vi]. Three of the seven
properties that have been named in the definition of the ISO 13335-1 are picked up as well
and assets shall be protected with regard to these properties to achieve security. The idea
of protecting assets is further abstracted by Fabian et al. but not explicated very well: “We
consider security to be a system property.” [FGH" 10, p. 9] Following Fabian et al., security is
achieved if all specified security properties for given resources of a system hold, i.e., there is no
violated security property. To substantiate the aspect of security being a system property, the
following definition is helpful that has been recognized by Fabian et al. as well: “Security is the
property of a save system to take only those states that do not induce unauthorized information
modification or disclosure.” [Eck14, p. 6, translation by the author] Therefore, security inter-
preted as a state of a system implies that states with specified properties must not be taken by
the system.

With our definition of security we will basically follow the proposal of Fabian et al. (aug-
mented with the precision from [Eck14]) but highlight the relation of the protection of assets
with regard to the security intentions of their stakeholders:

Definition 7. Security is the property of a system to take only those states that do not violate
the security goals of the assets affected by the system.

To make our definition of security fully transparent we need to further explain the terms
assets and security goals. Often, assets are defined as “anything that has value to the organiza-
tion” [Int04, p. 1]. As an organization generally will not consider or manage anything that it
does place any value upon, this definition does not allow for a clear-cut separation of things

28

2.4. Security

that are assets from other things. The CC is somewhat more precise in its definition: Assets are
“entities that the owner of the [target of evaluation] presumably places value upon” [Int14, p. 2].
Therefore, the CC introduces a stakeholder (the owner of the target of evaluation) in opposite
to a more general organization. Fabian et al. generalize and narrow this idea in their definition
that we will use as well:

Definition 8. “An asset is any entity that a stakeholder puts a value upon with respect to
security.” [FGH" 10, p. 11, markup by the author]

This definition introduces the security perspective taken in the valuation of entities. Fur-
thermore, it allows for a multilateral perspective on security that acknowledges conflicting
interests of different stakeholders with regard to security [RPM99, Ran00]. A stakeholder in
this definition is an individual, a group, or an organization that has an interest in the system in
question.

The term security goal or security objective is used mainly with two different meanings.
Prominently, security goals are defined as an enumerated list of properties: “The five security
goals are confidentiality, availability, integrity, accountability, and assurance.” [SHF04, p. A-
3]. This definition introduces the issue of addressing general properties as goals. Therefore,
security goals following this definition lack some context like subject and object that must be
introduced later (e.g., as security requirement). In contrast, other authors define security goals
as expression of (high-level) security needs with regard to an asset: “A stakeholder’s security
goal expresses his or her security concerns towards an asset.” [FGH* 10, p. 11] We will build our
definition on the latter proposal:

Definition 9. A security goal expresses the stakeholder’s concerns towards an asset with regard
to a security goal class.

Our definition narrows “security concerns” from the definition of Fabian et al. to “concerns
[...] with regard to a security goal class”. Therefore, we introduce those properties that are
commonly understood to be of interest in the domain of IT security as security goal classes:

Definition 10. A security goal class is a classification of security goals. Within the scope of
this thesis we will address the following classes of security goals: confidentiality, integrity,
availability, and non-repudiation.

Our distinction between security goals and security goal classes also allows for a flexibility
in the definition of the scope of security considerations without loosing precision. The CC is
applying a similar approach subsuming confidentiality, integrity, and availability as “categories
of protection” [Intl4, p. vi]. Fabian et al. address this distinction in their conceptual framework
as well: “Security goals are traditionally classified into integrity, confidentiality, and availability
goals.” [FGH* 10, p. 12].

Definitions for security goal classes are often taken from ISO 13335-1, also in academia.
Therefore, we will use those definitions as well:

¢ Confidentiality: “The property that information is not made available or disclosed to unau-
thorized individuals, entities, or processes” [Int04, p. 8]

29

2. Background and Related Work

e Integrity: “The property of safeguarding the accuracy and completeness of assets” [Int04, p.
9l

o Availability: “The property of being accessible and usable upon demand by an authorized
entity” [Int04, p. 8]

* Non-repudiation: “The ability to prove an action or event has taken place, so that this event
or action cannot be repudiated later” [Int04, p. 3]

Violations of security goals are commonly associated with threats. ISO 13335-1 introduces
threats as ‘a potential cause of an incident that may result in harm to a system or organization”
[Int04, p. 4]. Therefore, threats are not manifest as they are “potential” but might harm a
system or an organization in causing unwanted incidents. The relation of the harm potentially
caused by a threat to assets is focused in the definition of the CC: “A threat consists of an adverse
action performed by a threat agent on an asset. [...] [Adverse] actions influence one or more
properties of an asset from which that asset derives its value.” [Int14, p. 43] Following CC, a
threat agent is simply an “entity that can adversely act on assets” [Int14, p. 8]. The CC focuses
actions that might be performed by an entity in opposite to a causation of possible harm.
Thus, the CC limits threats to willingly executed acts that might devalue an asset and ignores
omissions or other inactive causation for asset devaluations. Another proposal diminishes the
relevance of threats and puts the definitional weight on vulnerabilities: “/A ...] violation [of a
security property] can be caused by a vulnerability, which could be potentially be exploited by a
threat [...].” [FGH" 10, p. 13]. Fabian et al. assign causation of violated security properties to
vulnerabilities. Vulnerabilities—following Fabian et al.—are everything that causes violations
of security properties. More commonly, vulnerabilities are defined as a deficiency of assets
or systems. ISO 13335-1 defines a vulnerability as ‘a weakness of an asset or group of assets
that can be exploited by one or more threats” [Int04, p. 4], the CC as a “weakness in the [target of
evaluation] that can be used to violate the [security functional requirements] in the operational
environment for the [target of evaluation]” [Int14, p. 17].

We will assign causation of violated security properties with threats as causation is generally
assigned with driving forces instead of deficiencies (the apple falls from the tree because of
gravity, not because the tree has failed to keep it) [Joh10]. Furthermore, we will allow not only
actions to violate security properties but also omissions:

Definition 11. A threat is a potential cause of the violation of a security goal.

As threats are potential causes, actual causes of deliberate violations of security goals are
called attacks: An attack is an exploitation of a vulnerability, realizing a threat (cf. [FGH*10]).
Vulnerabilities are defined as deficiencies of a system in question:

Definition 12. A vulnerability is a weakness of a system that can be exploited by a threat.

A security goal expresses the concerns of a stakeholder towards an asset with regard to the
security goal classes. A threat potentially violates a security goal. Refinements of security
goals are commonly called security requirements: “A security requirement refines one or more
security goals. It refers to a particular piece of information or service that explicates the meaning

30

2.4. Security

of the asset it concretizes in the context of the system under construction.” [FGH* 10, p. 12] In
CC terminology, security needs of a stakeholder are refined in security objectives, necessarily
addressing threats. Security objectives are then further refined in security requirements using
a standardized language: A security objective is a “statement of an intent to counter identified
threats” [Intl4, p. 7]. A security requirement is a “requirement, stated in a standardised
language, which is meant to contribute to achieving the security objectives for a [target of
evaluation]” [Intl4, p. 7]. A different perspective is introduced by Moffet et al., defining
security requirements as ‘constraints on [...] functional requirements” [MHNO4, p. 18]. As we
do not qualify necessarily all security requirements as constraints, we will stick to the proposal
from Fabian et al., integrating the relation of security requirements and threats proposed by
the CC:

Definition 13. A security requirement is the refinement of security goals and states the intent
to counter threats.

Until now we did not touch the second part of the meaning of security in everyday lan-
guage: the guarding measures. In IT security different terms are used to address such guarding
measures: safeguard, countermeasure, and control are the most frequently used terms. ISO
13335-1 defines safeguards as “practices, procedures, or mechanisms that may protect against
a threat, reduce a vulnerability, limit the impact of an information security incident, detects
incidents, and facilitate recovery” [Int04, p. 15]. Therefore, safeguards are not only technical
mechanisms but also human practices and organizational procedures. Furthermore, their
purpose covers not only prevention, but also “deterrence, limitation, detection, correction,
recovery, monitoring, and awareness” [Int04, p. 15]. The CC uses the term countermeasure
and control with a comparable meaning, referencing the enumeration of controls provided
by the ISO 27001 standard (cf. [Int13a, Int14]). Another approach links controls with security
goals and their classes: “[Security controls are] management, operational, and technical con-
trols (i.e., safeguards or countermeasures) prescribed for an information system to protect the
confidentiality, integrity, and availability of the system and its information.” [Natll, p. 171]
Fabian et al. simply define a countermeasure as mitigation of vulnerabilities [FGH" 10, p. 13].
We synthesize from those approaches our definition as:

Definition 14. (Security) controls are practices, procedures, or mechanisms that mitigate
threats with regard to security requirements.

Hence, we will use the term control or—in case of any ambiguity possible—security control
and subsume human practices, organizational procedures, and technical mechanisms under
it. The purpose of a control is the mitigation of one or more threats referenced by a security
requirement. The purposes can be further detailed in prevention, deterrence, limitation,
detection, correction, recovery, monitoring, and awareness. Controls are assigned to security
requirements to relate every control with one or more security goals that are pursued by the
control.

Not every security requirement can be satisfied introducing controls to a system. Fur-
thermore, most (technical) controls rely on environmental circumstances to be effective.
Therefore, the term assumption is important. In software (requirements) engineering, as-
sumptions ‘“constrain the environment of the machine” [FGH" 10, p. 13]. In the domain of

31

2. Background and Related Work

IT security, assumptions are used similar: “Assumptions [...] are made on the operational
environment in order to be able to provide security functionality.” [Int14, p. 43] Fabian et al.
detail the processing of assumptions: ‘At the implementation level, assumptions are refined to
organizational procedures |[...] that prescribe how the implemented machine must be used in
order to achieve security.“ [FGH* 10, p. 13] Therefore, we define assumptions as follows:

Definition 15. (Security) assumptions constrain the environment of a system in order to
achieve security.

Assumptions (or security assumptions in case of any ambiguity possible) are related to
security requirements and threats, as they constrain the environment of a system in order to
satisfy security requirements and mitigate threats not countered by the system itself.

Security Goal

Stakeholder Resource
Class
classifies
requires supports
supports
Security Goal considers Asset
refines Security _
threatens) introduces
addresses Reqwrement satisfies
satisfies
Threat mitigates Assumption relies on Control
relies on relies on
mitigates

Figure 2.4.1.: Core security concepts and their relations

Dependencies between the core concepts of IT security as we have introduced them can be
summarized as follows (cf. figure 2.4.1): A security goal expresses the stakeholder’s concern
towards an asset. Security goal classes that will be considered in this thesis are confidentiality,
integrity, availability, and non-repudiation. Assets might be related to other assets such as one
asset is supported by another asset, i.e., if the supportive asset’s security goals are violated, those
of the supported asset are very likely to be violated as well. Threats are potential causes of the
violation of security goals. Security requirements refine security goals and address threats that
threaten its security goals. Controls mitigate threats in order to satisfy security requirements

32

2.4. Security

(possibly in conjunction with other controls). Controls might introduce new assets into the
system that must be considered with regard to their security goals and threats as well. In
order to work properly, controls might rely on other controls or assumptions. Assumptions
constrain the environment of the system in order to mitigate threats and satisfy security
requirements. Most likely, assumptions will be refined in organizational procedures etc. at the
implementation level.

2.4.2. Security Engineering

A common definition of security engineering is not available. This might be due to the fact
that security engineering is considered to be still in its infancy [MJF06, Eck14]. One often
cited definition is provided by Anderson: “Security engineering is about building systems to
remain dependable in the face of malice, error, or mischance. As a discipline, it focuses on the
tools, processes, and methods needed to design, implement, and test complete systems, and to
adapt existing systems as their environment evolves.” [And08, p. 3] This definition focuses four
aspects: security engineering is constructive, security engineering focuses those aspects that
have to do with activities of adverse stakeholders, security engineering has to tackle (most
phases of) the system development life cycle, and security engineering is about technology
as well as human activities. Similar aspects are considered in a current definition from the
National Institute of Standards and Technology (NIST): Following NIST, security engineering is
an “interdisciplinary approach and means to enable the realization of secure systems. It focuses
on defining customer needs, security protection requirements, and required functionality early
in the systems development life cycle, documenting requirements, and then proceeding with
design, synthesis, and system validation while considering the complete problem” [Natl1, p.
171]. With regard to this definition, security engineering is also constructive, addresses the
security of systems, integrates different domains, and has to address the system development
life cycle.

The difference between security engineering and secure system (or software) development
is blurred. Often those terms are used interchangeably. The same proposals are cited to be
approaches and methods for security engineering, secure system development, or secure
software development (e.g., [JM05, KS06, CZ08, Jii09]). Sometimes security engineering is used
in a broader sense, i.e., approaches for secure system/software development are subsumed
under security engineering and the development approaches align methods, tools, and tech-
niques from security engineering in a specific configuration or arrangement (e.g., [MJF06]).
Another interpretation relates approaches for secure system or software development with
specific development methodologies that integrate security-related activities in opposite to
an integration of all security-related activities in a consistent cross-cutting discipline called
security engineering (e.g., [VFMPO05]).

Reconsidering the definition of software engineering’, we distinguish secure system or
software development from security engineering taking the following perspective: Security
engineering focuses security-related activities and provides systematic approaches for the

7 Software engineering is the “application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to software” [Ins90, p. 671, cf.
section 2.3.1.

33

2. Background and Related Work

integration and application of security-related activities. Secure system or software develop-
ment focuses system or software development and integrates also security-related activities
(cf. [Bis02, p. 484]). We call all those (parts of) activities within a system or software life
cycle security-related, that explicitly consider or apply security concepts and gain a unique
viewpoint, technique, or practice in doing so. In accordance to software development process
models, we call a representation of all activities, roles, and work products necessary to aug-
ment traditional software development process models in order to build secure and trusted
systems a security engineering process model.

With regard to the topic of this thesis—model-based security engineering for electronic
business processes—we contribute a framework to integrate and apply security-related activi-
ties from asset identification to the configuration of controls for electronic business processes
systematically. Following our distinction between security engineering and secure system
or software development, approaches for security engineering need to be integrated into
approaches for system or software development to be applicable. Therefore, our approach
has to be integrated in existing software development approaches as it is demonstrated in
section 4.7.

Methods and techniques that are applied in security engineering can be classified as secu-
rity principles, patterns, best practices, formal modeling, verification methods, and process
models.

Security principles stem from experiences. It has been recognized very early, that the
development of secure systems is difficult. To guide the engineering of secure systems, prin-
ciples have been formulated that generalize practical experience. Most prominently, design
principles for secure systems from Saltzer et al. [SS75] have been recognized in this area.

Most principles from Saltzer et al. address recommended application of controls: fail-safe
defaultsto restrict on explicitly defined access permissions, complete mediation of every access
attempt, separation of privilege to avoid single points of failure, least privilege to minimize the
impact of vulnerabilities, and least common mechanism to minimize information paths. Some
principles consider human factors: economy of mechanism to allow for an easy understanding
of the design, open design to allow for public criticism of design decisions, and psychological
acceptability to avoid circumvention of controls in everyday usage.

The formulation of security principles to guide secure system development has been repeat-
edly adopted by many authors and detailed with regard to (sub-) topics like software assurance
(e. g., [Lan01, Red07]). The NIST proposed additional engineering principles for IT security
integrating risk-based considerations (risk reduction, trade-off identification between risk,
cost, and operational effectiveness) and organizational issues (developer training) [SHF04].

Security patterns have been introduced to security engineering focusing solutions [YB97,
Sch03, HHS07]. Security patterns inherit their principle from the work provided by Gamma
et al. [GHJV95]: Their software engineering patterns capture solution blueprints, their rela-
tionship to the problem, necessary context, and constraints they impose. A frequently cited
publication is the collection of security patterns by Schumacher et al. [SFBH" 05]. Following
Schumacher et al., a security pattern describes a recurring security problem in a given context
and presents a generic solution for it. The generic solution can be adapted according to the
needs of the context. The pattern catalog provides more that 50 patterns that cover topics
like enterprise security, access control, accounting, and secure internet applications. Many

34

2.5. Related Work

of the patterns address security problems analyzed and solved before, demonstrate their
interaction, and unify the description. Therefore, the pattern catalog can be seen as a best
practice collection comparable to [And08], integrated and homogenized using the pattern
approach.

Formalization of security problems is a well known practice in security engineering [vO06].
Following Bau et al. [BM11], formal approaches to security generally build upon three com-
ponents: a system model, a threat model, and a formal definition of the security properties
in question. The security models provide a basis for security analysis, i.e., the process of
evaluating whether the desired security properties hold with regard to the system and the
threat model. Formal approaches leverage the usage of tools to automate steps in the analysis.
Frequently applied tooling includes model checkers and theorem provers. Common problem
areas for formal methods are access control (e.g., [BL73, SCFY96]), information flow (e.g.,
[Den76, MSKO07]), and cryptographic protocols (e.g., [MMS97, BCH10]). Providing important
contributions to the field of security and security engineering, formal methods are nonetheless
considered to be limited to address restricted problems. In general, larger systems cannot be
tackled completely with formal methods due to under-specification and increased complexity.

The term security best practices denotes methods and techniques that are deemed useful
in the domain of IT security. Generally, they spring from experience, are driven by practical
considerations, and cover a large set of topics and means including stepwise guidance to
general rules of thumb, checklists to sophisticated tooling. A comprehensive presentation of
security engineering best practices is provided by Anderson [And08]. Anderson presents a
set of security building blocks like protocol analysis, cryptography, and access control first.
After that, application areas and scenarios are analyzed to demonstrate the application of
security best practices to understand security problems and solution approaches based on
building blocks. Application areas encompass banking and bookkeeping, nuclear command
and control, telecommunication system security, and others.

Security principles, patterns, formal methods, and best practices provide methods, tech-
niques, and tooling to augment standard software development processes with regard to
security. Process models for security engineering integrate security-related activities and
provide guidance on how to apply those methods and practices systematically. Process mod-
els for security engineering are a vivid field of research. General requirements for process
models are analyzed in [BBH*03], process models based on specific standards are provided
in [Whi01, VWWO02, MFMPO07], and individual phases in the development life cycle are high-
lighted in [MHS05, HHS07].

2.5. Related Work

This section provides an overview of existing approaches considering security engineering of
electronic business processes. First, approaches that focus (electronic) business processes
are presented emphasizing those approaches that propose a model-based, methodological
procedure for the development of secure electronic business processes (section 2.5.1). Second,
general model-based security engineering approaches are depicted that might be applied
to electronic business processes as well (section 2.5.2). A closing discussion positions the

35

2. Background and Related Work

contributions of this thesis with respect to the approaches presented (section 2.5.3). All
approaches will be presented using the terminology developed in section 2.4 to allow for better
comprehensibility and comparison.

2.5.1. Approaches for Security Engineering of Electronic Business
Processes

2.5.1.1. Surveys

Only very few surveys have been conducted that collocate approaches for security engineering
of (electronic) business processes. An analysis of 17 development approaches for information
system security by Siponen highlights two approaches that follow a business process paradigm
[Sip05]. Both approaches address conceptual analysis and are considered as non-supportive
for actual information system development by Siponen. A subsequent proposal by one of
the authors of those approaches is discussed in some detail later in this section [HH06].
Outlining main contributions in the area of security for workflow systems, Atluri et al. touch
the topic of security engineering [AW08]. Focusing access control, several approaches for
access control specification, analysis, and validation are presented and compared. None
of them provide a methodical procedure for the development of secure electronic business
processes. Jakoubi et al. provide an overview of scientific research efforts to integrate security
and risk considerations into BPM [JTGQO09]. Comparing nine approaches, they highlight
risk valuation of business processes and identify several aspects missing in the approaches
presented such as adequate support for probabilities and some security properties, analysis
of efficient resource allocation, and metrics for security. Two of the proposals mentioned
by Jakoubi et al. will be covered in some detail in the following as they more or less directly
address security engineering of business processes [R603, NKB05], another will be touched
later as it covers only selected phases of the development [RFMPO06].

2.5.1.2. Process Oriented Security Model (POSeM)

One of the early proposals for security engineering of business processes is the Process Ori-
ented Security Model (POSeM) provided by Rohrig et al. [R603, RK04]. The objective of the
POSeM approach is to support the selection of appropriate security controls for a pre-defined
business process. To meet this objective, POSeM provides three building blocks: first, the
Security Enhanced Process Language (SEPL) to capture security requirements of business
processes, second, two rule bases to check the consistency of the security requirements and to
support the identification of appropriate controls, and third, a description of the systematic
procedure to apply the approach.

SEPL is a simplified version of the Workflow Process Definition Language (WPDL) stan-
dardized by the Workflow Management Coalition (WfMC) that introduces additional security
markups. It enables assignment of a security tag to each element of the process definition
specifying clearance or security levels with regard to security goal classifications. The first
rule base specifies checks to ensure the consistency of the security tags in the SEPL process
definition by comparing clearance and security levels of participants, tasks and necessary
resources. The second rule base provides rules to derive generic controls from SEPL models

36

2.5. Related Work

based on two IT security management standards (BS 7799 and ISO 13335-4, now succeeded by
ISO 27002 and 27005 [Int13b, Int11b]). The procedure consists of four activities:

1. Definition of security goals: Relevant assets are grouped and assigned with security goal
classes and ratings (e.g., the asset group “company-internal data” is assigned with the
security goal class “confidentiality” and a corresponding level of necessary protection
with the rating “high”).

2. Refinement of security goals: The process is modeled in SEPL and each element of the
process model is assigned with security tags based on the security goals defined in the
preceding activity (e.g., the data element “order” is regarded as “company-internal data”
and therefore assigned with the security tag “high confidentiality”).

3. Consistency analysis: The SEPL model is checked for consistency utilizing the first rule
base; inconsistencies are solved by redefining ratings of the security goals or changing
the process definition (e.g., splitting one task in two separate tasks assigned to different
participants).

4. Derivation of generic controls: For each element of the process model appropriate
controls are derived utilizing the second rule base (e.g., applying symmetric encryption
to the “order” entity in transit); doublets and obsolete controls are removed afterwards.

A fifth activity—the mapping of generic controls onto implementations—is envisioned in the
POSeM approach but not detailed.

2.5.1.3. Modeling Security Semantics of Business Processes (MoSSBP)

An approach from Herrmann et al. named Modeling Security Semantics of Business Processes
(MoSSBP) [HHO06] provides a framework to handle business process security requirements
from their specification to their realization. To meet this objective, two approaches are com-
bined: Modeling Security Semantics (MoSS) [HP99] addressing the business process expert
and the more general Object-oriented Security Analysis approach [HK01] utilizing graph rewrit-
ing to enable automated model refinement. The MoSSBP approach rests on three main pillars:
a notation to specify security goals within business processes, repositories, and a systematic
procedure to apply the approach. The repositories provide (1) business process modifications
according to security goals, (2) security controls, and (3) security control implementations.

The MoSS notation allows to assign security goal classes and specific security related terms
like “copyright” to certain elements of the business process that are considered as assets. The
repository for business process modifications entails graph rewrite rules to modify business
process models according to security goals assigned to business process elements. The reposi-
tory for security controls is used to assign controls according to the modified process models.
Elements of the repository are specified using the language ALMOS$T (A Language for Modeling
Secure Business Transactions, [RHP99]). The repository for security control implementations
maps security controls to their respective implementations. The procedure comprises four
activities:

37

2. Background and Related Work

1. Identify security goals: Security goal classes are assigned to elements of the business
process modeled as UML Activity Diagrams; checks ensure the validity of the assign-
ments.

2. Check for process modifications: Checks are executed to identify security goals that
might not be addressed by controls in the repository; for those security goals graph
rewrite rules are executed to modify the process model to allow for an application of
existing controls.

3. Assign security controls: Security controls from the repository are assigned to the secu-
rity goals; missing controls are prompted to the security expert.

4. Assign control implementations: Control implementations from the repository are
assigned to the selected security controls.

2.5.1.4. ProSecO

A security engineering approach for service-oriented architectures has been developed by
Hafner et al. [HB09]. Its application to electronic business processes integrates a previously
developed framework for high-level development and management of workflows based on
web services called SECTET [HBANO06, AHB07] and a security analysis method called ProSecO
[BHIOWO08].

The SECTET framework follows the MDA approach sketched in section 2.3.3.2. An UML
Activity Diagram is used to specify a global workflow model as PIM. Security goals are specified
for elements of the global workflow model utilizing a DSML called SECTET Policy Language
(SECTET-PL). Security goals are provided as UML Notes. SECTET transforms the global work-
flow model to local workflow models (PSMs) applying an UML Profile. A further—partly
manual—transformation generates executable workflow models as implementation specific
model (ISM) specified using the WS-BPEL and security configuration artifacts specified using
the Extensible Access Control Markup Language (XACML) [Orgl3]. Transformations of the
security goals are labeled as patterns in SECTET and provided for message integrity, confiden-
tiality, and non-repudiation generating XACML policies specifying symmetric encryption and
message signing.

The security analysis method ProSecO introduces a language to model functional and
security views. Those views describe model elements that are interrelated with regard to
security. The functional view captures dependencies of assets and stakeholders on different
levels of abstraction (e.g., business process, information, service, local component, node).
The security view relates security concepts (security goals, threats, controls) with elements
of the functional view. The elements of the security view themselves are specified using
natural language. The ProSecO analysis process specifies six activities that should be executed
iteratively:

1. Create or adapt the functional view: Assets and stakeholders are identified based on
the business process specification (e.g., a stakeholder “Research Group” and a process
“Retrieve Patient Data”).

38

2.5. Related Work

2. Define security goals: Security goals for assets are specified (e.g., the possibility to
retrieve patient data anonymously).

3. Identify dependencies: Based on the security goals, dependencies of elements in the
functional view are analyzed and modeled (e.g., the stakeholder “Research Group” uses
the process “Retrieve Patient Data”).

4. Refine security goals: Security goals are refined with regard to dependent and depending
assets (e.g., the process “Retrieve Patient Data” must not access personal data).

5. Threat and risk analysis: Threats to assets of the security goals are identified and evalu-
ated with regard to probability and possible impact (e.g., the possibility to personalize
access to patient data); security requirements are elaborated relating threats to security
goals.

6. Design of controls: Controls are chosen that satisfy the security requirements (e.g., the
application of strong pseudonyms for authentication).

2.5.1.5. Automated Risk and Utility Management (AURUM)

An approach that combines risk assessment with security requirement elicitation and interac-
tive selection of controls is presented by Neubauer et al. [NKB05, NH08a, NHO08b]. It has later
been labeled as Automated Risk and Utility Management (AURUM) [EFN09, NP10]. AURUM
is intended as method for security experts for a structured risk assessment process. It does not
provide any technical solution but supports stakeholders in finding an appropriate control
portfolio for a given business process. AURUM provides three activities each comprising
several tasks:

1. Modeling and identification: The first activity identifies and models necessary entities
for the risk assessment. First, a business process model is created specifying the pro-
cess in question. Using the business process model, assets represented in the model
are identified and classified as IT system, machinery, communication device, data, or
other assets (e.g., intangible assets). Vulnerabilities as well as threats for that assets are
identified and documented. To support vulnerability and threat analysis, the authors
propose consultation of security standards such as ISO 17799 (since 2007 succeeded by
ISO 27002 [Int13b]). The last task of the first activity is the identification of possible and
actual security controls.

2. Risk Assessment: A workshop follows after the initial activity to relate modeled entities
with each other and to allow for a quantitative trade-off analysis. Risks are identified
relating assets, vulnerabilities, and threats. Controls for the identified risks are analyzed
and assigned. Cost/benefit categories are defined for rating controls. Risks and controls
are quantified depending on the chosen categories (e.g., acquisition cost, maintenance
cost, probabilities). After that, additional constraints and dependencies are specified
with regard to the available controls, e.g., maximum number of controls per risk.

39

2. Background and Related Work

3. Interactive selection of controls: The third activity executes an interactive decision
making process using the modeled entities, their dependencies and the quantified
cost/benefit categories. Initially, Pareto-efficient portfolios of proposed controls are
generated. After that, interactive modifications of constraints or individual selections
are executed to determine an optimal control portfolio for the business process.

2.5.1.6. Other Approaches

Computer-aided security engineering focusing business processes is envisioned by Mana et al.
[MMRVO03]. The approach called Formal Methods and Modeling Language Framework (FML)
proposes the extension of UML models to capture formally specified security requirements
and the application of security patterns to assist developers in the design of secure business
processes. Implementation details of the approach are not provided.

Ciuciu et al. address a comparable objective with their approach to introduce semantic sup-
port for security-annotated BPMN business process models [CZM™*11]. Security constraints
for business process are specified with the help of a simple language that utilizes BPMN Text
Annotations [MvSB11b]. A tool supports the definition of security constraints employing
a predefined security ontology to match security intents of a business process expert with
valid security annotations. The security constrains are transformed to implementation ar-
tifacts that enable an adapted business process engine to enforce the security constraints
[MvSB11a, MB11].

A model-driven approach from Wolter et al. centers on access control for electronic business
processes [WSM07, WMMO08, WMS™09]. Business process experts annotate security goals to
business process models specified using BPMN. To validate an annotated business process
model, it is translated into the intermediate Protocol Meta Language (ProMeLa) and processed
using the model checker SPIN [Hol97]. Model markings for different enforcement components
allow for a transformation of the annotated business process model to configuration artifacts
for that components. The transformation into XACML authorization policies and Apache
Rampart® configuration files has been demonstrated so far.

Security requirements engineering for electronic business processes is addressed by Ro-
driguez et al. [RFMP06, REFMP07b, RAGFMP10, REMTP11]. Their approach defines an UML
Profile named Business Process Security (BPSec) to annotate business processes specified
using UML Activity Diagrams. The profile has also been translated for the use with BPMN
[RFMPO07a]. A corresponding Method for Business Process Security (M-BPSec) provides guid-
ance for the elicitation of security requirements of business processes and the application
of BPSec. Tools support the transformation of annotated process models to analysis models.
BPSec allows for tagging of specific elements of UML Activity Diagrams in order to annotate
stakeholder needs with regard to access control, attack detection, auditing, integrity, non-
repudiation and privacy. M-BPSec considers four stages: a construction activity to model
the business process, an activity to annotate the business process using BPSec, a refinement
activity to further detail the security annotations, and a transformation activity to generate

8 Apache Rampart is the security module of the Apache Axis 2 Web Service Stack (http://axis.apache.
org/axis2/java/rampart/).

40

http://axis.apache.org/axis2/java/rampart/
http://axis.apache.org/axis2/java/rampart/

2.5. Related Work

UML Use Cases and Class Diagrams from the annotated UML Activity Diagram. A description
of necessary roles, work products, and their dependencies completes M-BPSec.

Not equivalently detailed is the approach from Lopez et al. for security requirement engi-
neering [VML03, LMV*05]. They propose the application of a general “security” tag as UML
Stereotype for classes that should be attached to business process specifications detailing the
specific security aspect as class name (e.g., security goals like confidentiality of the respec-
tive element), attributes (e.g., specifying data that should be protected) and methods (e.g.,
specifying activities that should be audited).

The Business Process with Service Level Agreements (BP&SLA) approach presented by
Frankova et al. [FSG*11] reformulates security engineering as engineering of service level
agreements (SLAs). BP&SLA provides a method to define SLAs to be signed in order to guaran-
tee a secure operation of a web service-based business starting with high-level requirements
analysis. At first, informal security requirements provided by domain experts are formalized
using Secure Tropos [MGO07] and an indicator-based trustworthiness model is introduced
to reflect the compliance of each participant with the requirements. Intermediate models
are derived from the requirements model as well as trust indicators. Together, they enable a
comparison of different service providers with regard to compliance and to specify a hierarchy
of local process models utilizing the Secure Business Process Execution Language (Secure
BPEL, [FMS07]). Finally, a constraint system is build navigating recursively the intermediate
models and a set of solutions is identified using constraint propagation for an acceptable
security level.

Badr et al. present a comparable approach annotating service descriptions with required
controls to generate security enhanced SLAs called protection level agreements [BBT11]. To
identify security goals, assets are classified as public, restricted, private. A given set of security
goals is assigned to every asset depending on the respective class. Analogous, security controls
are assigned to each service description depending on the assets it is processing or utilizing
and their security goals. An adapted implementation of the open source enterprise service bus
(ESB) Petals? analyzes and enforces the protection level agreements specified for each service.

The integration of risk assessment and BPM is addressed by the Risk-Oriented Process
Evaluation (ROPE) methodology presented by Jakoubi et al. [JTQ07, JT09, JTGK10, TJG*11]. To
allow for an analysis, ROPE refines business process models analyzing dependencies between
process activities and their resources and environment first. Secondly, threats, their impact
on resources and the environment of an activity, and mitigating controls are investigated and
documented. A formalization of the relations between threats, controls, and business process
activities allows for a simulation of different control set selections as well as impact analysis of
threats that can be utilized in the security engineering process.

Finally, several approaches for the integration of (security) risk assessment and business
process management have been proposed, addressing information security management
instead of security engineering and therefore will not be covered here (e.g., [KH10, CKE*10]).

Alarge body of work covers the analysis of business processes focusing on their security
properties. Integration of security requirements and their verification with regard to business
process models is addressed in the approach from Backes et al. [BPWO03]. It is based on a

9 http://petals.ow2.org/

41

http://petals.ow2.org/

2. Background and Related Work

probabilistic model of reactive networks expressing and analyzing cryptographic protocols.
Business processes, security requirements, and control specifications are translated into
such probabilistic models and formal verification of the models is applied. One of the main
observations of the authors is the complexity even of small process models that renders
formal verification of larger process models impossible. An authorization model with a set of
invariants for the analysis of electronic business processes is proposed by Hung et al. [HKO03].
Based on a multilayered state machine the invariants of the authorization model are analyzed
and the process specification is deemed secure if they hold. Similarly, Armando et al. analyze
business process specifications under authorization constraints [AGMP12]. They apply an
action-based language to specify authorization constraints to allow for a number of reasoning
tasks including checks whether the execution might violate the authorization constraints.
Addressing more general security goals and procedural controls for business processes, Arsac
et al. present a validation approach that employs model checking techniques that interact
directly with the business process expert [ACPP11]. The business process expert specifies so
called security desiderata such as dual control graphically within a BPMN business process
model and a transformation of the annotated model is checked with regard to the security
desiderata. The approach of Weldemariam et al. introduces procedural security analysis
to assess the security of business processes [WV11]. Based on the formalization of asset
flows specified by the business process and possible threats, the NuSMV symbolic model
checker [CCG*02] is applied to identify security-related deficiencies of the current process
specification.

2.5.2. Approaches for Model-based Security Engineering

Although security engineering is considered an immature discipline, a large body of work has
been published in this field. This section reviews shortly related surveys and sketches general
model-based approaches for security engineering that might be applied to electronic business
processes as well.

An early survey on security engineering analyzing the application of models is provided by
Baskerville [Bas93]. Comparing a number of academic and industrial approaches, Baskerville
identifies three generations of methods and characterizes them as checklist methods, mech-
anistic engineering methods, and logical-transformational methods. The latter methods
employ analysis and design models abstracting the security problem and possible solutions.
Therefore, third generation approaches overcome oversimplifications and limitations in com-
parison to first and second generation approaches. Unfortunately, third generation methods
at that time exhibited lack of practical applicability and (industrial) experience. Addressing in-
dustrial security engineering practices, Vaughn et al. conclude that only very few model-based
approaches are applied in industry [VHF02]. Following their analysis, reasons for this lack of
application include immaturity of the (scientific sound) approaches, (inappropriate) need of
sophisticated experts and considerable investments for the specific approaches, and absence
of integrative approaches and integrated results. A recent survey by Jensen et al. focuses
model-driven approaches in security engineering [JJ11]. From the five approaches considered
to be relevant in this field (filtered out of 2844 candidate publications), three of the approaches

42

2.5. Related Work

are covered in previous sections [BDL06, REMP06, HB09], another is briefly presented in the
following paragraphs [MRS09], and one approach does only apply to data warehouses.

A prominent example of model-based security engineering is an approach based on the
UML extension UMLsec presented by Jiirjens [Jii05]. UMLsec provides an UML Profile to
specify security goals and assumptions: UML Stereotypes are used together with UML Tags
to annotate model elements with security goals. Constraints provide criteria that determine
whether security goals are met by the annotated UML models. The semantics of UMLsec
is defined on the basis of so-called UML Machines utilizing a notation similar to Abstract
State Machines (ASMs) [Gur95]. UMLsec has been applied to electronic business processes
(manually) annotating UML models on different levels of abstraction in order to validate
security goals for annotated models [Jii01] or to support security risk analysis [TJ08].

The development of (security critical) smart card applications is focused with the Se-
cureMDD approach presented by Moebius et al. [MRS09, MSR10]. Applying the SecureMDD
approach, the developer designs the system under development with the help of UML models.
A security expert annotates those design models using the SecureMDD UML Profile. The
UML Profile provides means to express some general controls such as encryption and hash-
ing. In a next step, cryptographic protocols applied to the system under development are
modeled with the help of UML Activity Diagrams and the Model Extension Language (MEL)
. The extended UML models (PIMs) are then transformed applying either a Java Card or a
formal ASM platform model. The resulting PSMs are then further transformed to Java sources
or ASM specifications (implementation model). Using the ASM specifications, the coherent
application of the controls can be validated.

An approach for model-driven development of access control infrastructure artifacts as well
as analysis of the specification models is presented by Basin et al. [BDL06, BCDE09]. They
propose a DSML to specify access constraints for UML models called SecureUML and apply
SecureUML utilizing the dialect definition strategy described in section 2.3.3.3. Transforma-
tions are provided to generate access control infrastructure artifacts for Enterprise Java Beans
(EJBs), Java Servlets, and Microsoft Enterprise Services for .NET. Properties of the specification
models are further analyzed using Object Constraint Language (OCL) [Obj14b] expressions.

Model-based security analysis is focused by the CORAS approach from Lund et al. [DRR*02,
dBDG"03, dBHL*07, LSS11]. CORAS provides a compact process model comprising seven
activities to identify assets, to describe the system and its environment, to identify, refine,
and evaluate threats and vulnerabilities, and to depict appropriate countermeasures. Results
are modeled using a graphical DSML. Secure design is not at the heart of CORAS. More for-
mally, Wimmel provides a model-based method for the specification of security requirements,
validation of security architectures, and the generation of security test cases [Wim05].

Several approaches have been presented that aim at integrating security assessment and
security engineering. Especially the representation of security analysis and security design
models based on concepts provided by the CC and accompanying instructions for the appli-
cation of such models have gained some interest. Vetterling et al. present a secure system
development process integrating activities and documents from the CC [VWWO02]. A sys-
tematic approach to develop a security architecture based on CC concepts is presented by
Whitmore [WhiO1]. Keblawi et al. report their experiences in specifying and analyzing security
requirements in large systems using CC system-level protection profiles [KS06]. Require-

43

2. Background and Related Work

ments engineering based on CC is also covered by the approach of Mellado et al. [MFMPO07].
Experiences applying such CC-based approaches in industry are reported by Sharp [Sha09].

Resting on proprietary specification and execution requirements, Eckert et al. describe
an early approach for the development of secure applications [EM97]. Security properties in
terms of information flows and access restrictions are formally specified and transformed into
statements using the programming language INSEL+. The resulting application is executed in
a dedicated distributed environment. Other early approaches encompass a method by Salter
et al. based on attack trees [SSSW98]. Similarly, more recent approaches center on threat
models and resulting risk considerations [EW05, EYZ10]. Several approaches address only se-
lected security engineering activities or properties [MBSFM10], e.g., the SQUARE methodology
provides an approach for security requirements engineering [MHSO05], privacy engineering is
discussed by Spiekermann et al. [SC09], a method to engineer access control mechanisms is
provided by [Pop05].

2.5.3. Discussion

The large body of work reviewed in the preceding sections demonstrates impressively the
active research that is related to the topic of this thesis. For a discussion of the approaches
and to elaborate the distinction with regard to our contributions we will refer to the problem
statement and general solution ideas (cf. sections 1.2 and 1.4).

In our problem statement we focused on three major issues with regard to security engineer-
ing in the domain of BPM: security nonprofessionals deciding and implementing security, the
heterogeneity of (the security configuration of) business process engines, and the environmen-
tal heterogeneity including the application of different engineering and development methods.
Our general solution ideas included the specialization of general security engineering method-
ologies for their application in the BPM domain, the provision of a DSML to capture resulting
artifacts, and the separation of security-knowledge intense (preparatory) activities and other
activities detailed with detailed guidance in a way that domain or business process experts are
able to execute them (cf. section 1.4).

Most of the approaches for security engineering in the domain of BPM address security
professionals. AURUM, ProSecO, and FML directly assign security experts to most activities.
POSeM envisions close cooperation between security professionals and nonprofessionals.
MoSSBP reflects the participation of nonprofessionals and provides means tool-based support
them. Nevertheless, the latter approaches assign recurring activities to security professionals
as well. Focusing the collaboration of security professionals and nonprofessionals in order to
lighten the skill set needed for security engineering activities, Wolter et al. come closest to our
idea [WMS™*09]. Nevertheless, their approach covers only access control. General model-based
security engineering approaches like UMLsec, SecureMDD, SecureUML, CORAS and CC-based
all address security experts, mostly in collaboration with domain experts. Additionally, most of
the security engineering approaches do not provide sufficient guidance to reproduce examples
or apply the approaches unescorted.

Approaches that bridge between (executable) process definitions, proper design of controls,
and their configuration supporting different business process engines are not available at the
moment. AURUM does not address technical details at all, FML provides only a conceptual

44

2.6. Summary

description but lacks actual implementations. POSeM only sketches mappings from controls
onto control implementations but does not elaborate them. MoSSBP does not reveal design
and implementation of transformations from control design into implementation artifacts
described in the approach. SECTET focuses Web Service environments and does not support
any business process engine directly. Other approaches support only specific aspects such as
access control or do not necessarily utilize business process models, e.g., the approach from
Wolter et. al. and SecureUML.

Likewise, only very few approaches address the environmental heterogeneity and the in-
tegration of security engineering in existing development process models and tooling. One
exception is den Braber et al. discussing the integration of CORAS into the Open Unified
Process (OpenUP) [dBDG*03]. Approaches to augment development process models with
general security engineering activities that do not rest on elaborated approaches for secu-
rity engineering are provided by [PH07, AS08] for the Rational Unified Process (RUP) and by
[Bez03, CPGO5] for agile approaches.

In summary, a large body of work discusses approaches and techniques for security engi-
neering, some of them addressing the application of security engineering in the domain of
BPM. None of the existing approaches jointly integrates means to lower the skill set necessary
to complete the recurring engineering activities enough, bridges between (executable) process
models, proper design of controls, and their configuration, and demonstrates their appli-
cability in different organizational and technical environments. Additionally, a study from
Siponen and Heikka suggests that existing methods for security engineering do not provide
adequate modeling support which is seen as crucial requirement for such methods by the
authors [SHO8].

Nevertheless, several approaches discussed in this chapter provide valuable insights that
guide this thesis. To name just some of them, approaches for MDS from Basin et al. and M6bius
et al. paved the way for high-level security goal or requirement specification and derivation of
implementation artifacts utilizing DSMLs [BDL06, MRS09]. In the area of secure electronic
business processes Hafner et al., Rohrig et al., and Wolter et al. addressed the needs in the
domain of BPM [RK04, HB09, WMS™*09]. Providing detailed guidance for their approaches and
discussing integration in existing development process models and approaches den Braber et
al. and Popp have been useful [dBDG™"03, Pop05]. Last but not least, application and industry
reports from Clavel et al., Dhillon et al., and Geer proved helpful to consider the needs in the
field [CASBEO08, Geel0, Dhill].

2.6. Summary

This chapter introduced necessary knowledge for the state of problems and current solutions
as well as central concepts and terms. Main areas of interest have been BPM, ME, MDE, and
security engineering.

Section 2.2 introduced BPM concepts and terminology. Our thesis addresses security engi-
neering of implemented and automated business processes that we call electronic business
processes. Our security engineering process model presented in chapter 4 rests on general
process models and allows for integration into (business process aware) software development

45

2. Background and Related Work

process models. Within the life cycle of business processes we focus the Design & Analysis as
well as the Configuration phase. Explicit representation of business processes necessary for
their automation is addressed by business process modeling. BPMN in its version 2.0 provides
good support for all phases of the business process life cycle, is well recognized in academia
and industry, and offers good comprehensibility despite of its rich semantics. Thus, we will
use BPMN in the following chapters as notation for business process models.

ME as the discipline for the design and adaptation of methods for the development of infor-
mation systems has been sketched in section 2.3. Core idea of ME is the systematic provision,
selection, and assembly of method fragments from a repository in order to provide adequate
methods. SPEM provides a metamodel and a conceptual framework in order to support ME. It
is standardized by the OMG, provides rich modeling capabilities and is supported by mature
tooling. We apply SPEM in chapter 4 to model our process model SecEPM and integrate
SecEPM in development process models utilizing SPEM.

MDE is an approach to tackle the semantic gap between different domain-specific concepts
necessary for the development of (complex) software systems. Central ideas of MDE are direct
representation of problems and solutions using DSMLs, automation of the translation of the
resulting models, and interoperability by the application of open standards. Therefore, MDE
combines the application of multiple DSMLs based on metamodels with tooling necessary for
specification, management, and transformation to allow for a systematic development and
application of models in the domain of software engineering.

The ideas of MDE have been picked up with regard to security coining the term MDS. MDS
aims at modeling security aspects on an adequate level of abstraction using one or more
DSMLs and transforming those models into security-related artifacts, e.g., access control
policies. Our process model SecEPM presented in chapter 4 rests on business process models,
chapter 5 introduces with SecEML a DSML utilizing the entity reference strategy to model work
products of SecEPM and to allow for transformations into other necessary work products.

To provide a solid base for our security engineering framework, section 2.4 discussed com-
mon definitions in the domain of IT security and provided definitions of important concepts
and terms. All of these concepts and terms will be reflected in SecEML to capture work prod-
ucts of SecEPM (cf. chapter 5). Security engineering focuses activities to establish security for
systems and provides systematic approaches to apply those activities. We call a representation
of all activities and work products necessary to augment traditional software development
process models in order to build secure systems a security engineering process model.

Section 2.5 presented existing approaches for security engineering of electronic business
processes and model-based security engineering respectively. A discussion of the existing
approaches revealed that none of the existing approaches addresses all challenges focused on
in our problem statement in section 1.2. Most of the approaches address security professionals,
do not bridge process models, proper design of controls, and their configuration, and do not
provide enough flexibility to cope with existing environmental heterogeneity.

46

3. Running Example: The Replan Process

3.1. Introduction

In order to develop a framework for security engineering of electronic business processes, the
previous chapter introduced concepts and terminology with regard to BPM, ME, MDE, and IT
security. This chapter presents a real world business process from the logistics domain—the
Replan Process. The Replan Process serves as running example for the development of the
security engineering process model SecEPM in chapter 4 and the DSML SecEML in chapter 5.
SecEPM activities will be motivated and explained using the Replan Process, work products
modeled using SecEML will reference entities from the Replan Process. Furthermore, the
Replan Process will be used in the exemplary study in chapter 6 to demonstrate the feasibility
of the framework developed in this thesis. The continuity in using the Replan Process enables
us to concentrate on security engineering aspects as well as explanation and examination of
the framework.

The following section 3.2 introduces the Replan Process, provides background information
on its purpose and application, and comments on the business process model of the Replan
Process. Section 3.3 summarizes briefly the results of this chapter.

3.2. Background, Application, and Business Process Model

The Replan Process is part of a business process chain to implement door-to-door delivery
of shipments around the world operated by a large provider of integrated logistics services.
Such world-wide delivery of shipments are subject of an initiative by the International Air
Transport Association (IATA) called Cargo 2000'. The objective of the Cargo 2000 initiative is to
provide a transportation scheme backed by quality standards in order to measure and improve
the efficiency of air cargo. With the help of the quality standards provided by Cargo 2000
the performance of logistics providers can be compared. Therefore, the Cargo 2000 initiative
increases the pressure on individual logistics providers to adapt their business processes in
order to improve their service quality.

One important challenge with regard to existing business processes implementing world-
wide door-to-door shipments is the separation of business processes and activities of indi-
vidual participants. Therefore, logistics providers often acquire status information about
their shipments only at transfer points between participants. For example, delays by a freight
forwarder are often noticed after they reach the next stop in their route map. This individual
delays might lead to global delays of the shipment and therefore decrease the quality of the

1 http://www.iata.org/whatwedo/cargo/cargo2000/

47

http://www.iata.org/whatwedo/cargo/cargo2000/

3. Running Example: The Replan Process

service offered by the logistics provider. To allow for a proactive intervention by the logis-
tics provider in case of delays (or other deviations from the current planning), continuous
monitoring of the shipment is desirable.

The Replan Process focuses on such proactive intervention. Status data from the freight
forwarder is continuously monitored by the logistics provider. In case of any deviations
from the current planning by given thresholds alternatives are calculated, approved by the
dispatcher, and transmitted to the freight forwarder. In the course of the research project
Alliance Digital Flow of Goods (Allianz Digitaler Warenfluss, ADiWa?) sponsored by the Federal
Ministry of Education and Research in Germany the Replan Process of a logistics provider
has been re-engineered to allow for better adaptability and service quality applying wireless
sensors, communication and BPM.

The business process model of the Replan Process is depicted in figure 3.2.1 on the next
page. It entails the interactions between the freight forwarder (Pool “P2”) and the logistics
provider (Pool “P1”) after pickup of shipments and before arrival at the shipments destination.
Each Pool is divided in two Lanes: Lane “L11” represents the dispatcher responsible for the
routing of the shipments, Lane “L12” the IT system from the logistics provider, Lane “L21” the
on-board unit (OBU) of the fright forwarder, and Lane “L22” the driver responsible to transport
the shipments to the next destination.

The logistics provider receives status messages (Event “E11”, Message “M1”) at regular
intervals from the OBU of the freight forwarder with regard to the actual position of the truck
and possibly further sensor data like temperature or vibrations. The logistics system checks
whether the status of the shipments conforms to the planned values (Task “T11”). If the
status is OK (Gateway “G12”), the electronic process terminates (Event “E12”). Otherwise,
the logistics system identifies shipments that are at risk with regard to their service level
agreements (Task “T12”). Alternative route proposals for the shipments at risk are calculated
to reduce the risk (Task “T13”). The dispatcher reviews the proposals manually and selects the
best alternative (Task “T14”). The logistics system transfers the new routing information to
the driver (Message “M2”, Task “T15”) and the electronic process terminates (Event “E13”).
The driver manually accepts the new route plan (Task “T22”).

Market pressure on the logistics providers and consecutive re-engineering of the Replan
Process to achieve better adaptability and service quality are typical phenomena that BPM
addresses. From a security point of view, the re-engineering introduces new risks to the lo-
gistics provider. After re-engineering, the Replan Process relies on external sensor data that
is transmitted over the air, involves different administrative districts coupled by IT technol-
ogy, communicates potential sensitive routing information, and includes human interaction.
Manipulation of the enactment of the electronic business process like message blocking,
tapping, or tampering as well as unauthorized access might lead do service level degradation,
contractual fines, loss of goods, information disclosure, and other unwanted results. Therefore,
security aspects of the electronic business process must be carefully analyzed and necessary
mitigation of new risks must be considered and enforced. Furthermore, re-engineering of
business processes utilizing BPM does apply frequently to multiple business processes and

2 http://adiwa.net/

48

http://adiwa.net/

3.2. Background, Application, and Business Process Model

(ureiderp ssa001d NINJE) $S2201d ue[day ayJ, :'1°¢ € 9In31]

1Z&] €3 ¥
N
21n0y 1daddy zzl g
< R
o N
= m
o
=
[
(44! 123 5 w
N|®
sniels puss Tzl]
< c
N TN
[4%! -
o
N
o
Q
[MO sniex] 2|2
€13 A0 SMEIS 219 113 2|5
N sa1noy 3s1y 1e uawdiys MO 10u £ qm
921no ua! snje 29 «u =3
NOY PUSS STL ‘ a1e|ndje) €11 Ayauap zTL sn1eis 119] RIS WU TTL g2
4 o
3
<
o
]

91N0Y 13393S ¥TL

Jaydedsig

11

49

3. Running Example: The Replan Process

therefore have to utilize resources efficiently. The security engineering framework proposed in
this thesis addresses these issues. Hence, the Replan Process is a good example to illustrate
and explain the framework as well as to demonstrate its feasibility.

3.3. Summary

This chapter introduced the Replan Process as running example for the subsequent chap-
ters. The Replan Process is a real world electronic business process supporting a logistics
provider to continuously monitor its shipments and to proactively intervene in case of delays
or disturbances.

The business process model of the Replan Process entails a collaboration between two
participants (the freight forwarder and the logistics provider) exchanging status messages
considering the current position and status of the freight forwarder and route messages
providing new route plans in case of critical delays and disturbances. As the Replan Process
relies on external sensor data that is transmitted over the air, involves different administrative
districts, and includes human interaction it exhibits interesting properties with regard to
security.

The next chapters will use this example to illustrate the security engineering process model
(chapter 4) and the corresponding modeling language (chapter 5). it also provides the back-
ground for the exemplary study (chapter 6).

50

4. Security Engineering Process Model

4.1. Introduction

The previous chapter detailed a real-world business process from the logistics domain, the
Replan Process. Our proposal to support security engineering for electronic business processes
such as the Replan Process is presented in this chapter. It addresses the development aspects
of the first research question and documents parts of the results of the design and development
activity of our research approach (cf. section 1.3):

1. What requirements does a security engineering process model for electronic business
processes place that copes with the prominence of security nonprofessionals, hetero-
geneous business process engines, and environmental heterogeneity in the domain of
BPM and how could they be met?

Our framework addresses three major issues as it is sketched in the research question: a
restricted skill set and resources available to secure electronic business processes, hetero-
geneous capabilities and configuration options with regard to security controls of existing
business process engines, and a heterogeneity of the environment with regard to engineering
methodologies and development process models.

This chapter introduces our Security Engineering Process Model (SecEPM) that consistently
integrates security-related activities in the course of the development of secure electronic
business processes and provides guidance on how to apply relevant methods and practices
systematically. SecEPM focuses the Analysis and Design as well as the Configuration phase
of the business process life cycle and details necessary activities, roles, and work products
to support security engineering from the identification of security goals to the selection
and configuration of controls. Early versions of the requirement analysis for our process
model as well as an appropriate design approach and key entities have been published before
[Eicl2a, Eic12b]. With respect to these publications, the results presented in this chapter have
been considerably reviewed, detailed, and enhanced.

The presentation of SecEPM is structured as follows: The next section 4.2 confines the scope
of our process model and analyzes key requirements derived from existing process models
and the issues detailed in the problem statement (cf. section 1.2). Section 4.3 details guiding
principles for the design of SecEPM. An overview of the key entities of our process model as
well as their grouping and relations is given in section 4.4. Section 4.5 describes the activities
covered by SecEPM providing information on purpose, necessary tasks, preconditions, results,
related roles, and work products. Examples for (optional) guidance artifacts and methods
to support certain tasks in the course of the security engineering activities are provided in
section 4.6. Authoring, storage, retrieval, instantiation, and integration of SecEPM in different

51

4. Security Engineering Process Model

development process models is discussed in section 4.7. A summary of the main results
concludes this chapter.

4.2. Requirements

In order to analyze key requirements for SecEPM, the scope of the process model needs to be
confined first. As it is detailed in the research objective (cf. section 1.3), SecEPM is part of a
security engineering framework that bridges the gap between business process models and
the design of proper controls and their configuration using means provided by the respective
business process engine and its execution environment.

Therefore, SecEPM includes only security-related activities during development of elec-
tronic business processes. With regard to the business process life cycle, the phases Analysis
and Design as well as Configuration are addressed by SecEPM. The process model presented
in this thesis focuses on actual electronic business processes represented by (executable) busi-
ness process models. Security goals, requirements, and controls are analyzed and designed
in the course of the application of SecEPM utilizing a business process model that might get
refined and detailed in the course of the supported life cycle phases. In other words, SecEPM
supports the development of a security analysis model (as representation in the problem
domain) for a given business process model, the creation of a matching security design model
(as representation in the solution domain) and a mapping of the security design model onto
the implementation.

SecEPM excludes several aspects of the BPM and security engineering discipline. First
of all, as only the gap between business process models and the design and configuration
of proper controls is addressed by SecEPM, the phases Enactment as well as Evaluation of
the business process life cycle covering operation and optimization are not considered here.
Furthermore, complementing security considerations and measurements addressing aspects
like service security, operating system security, network security, and physical security are
not part of SecEPM. Analysis and definition of further organizational measurements and
plannings like emergency response planning are not included. The business process models
provided as starting point and central artifact for SecEPM are not subjected to major changes,
a business process re-engineering perspective is not taken by SecEPM. Nevertheless, different
design alternatives for the same business process might be compared with regard to necessary
security controls and assumptions utilizing SecEPM.

Key requirements for SecEPM originate from two sources: requirements that have been
explicated for matching security engineering process models as well as requirements address-
ing the major issues detailed in the problem statement stemming from the application of
security engineering in the domain of BPM. References are provided to facilitate tracing of
the requirements. Unfortunately, requirements for security engineering process models have
been explicated rarely. Therefore, some of the requirements are taken indirectly from existing
process models.

The structure of our process model is given by definition of a security engineering process
model (cf. section 2.4.2):

52

4.2. Requirements

1. Structure: The process model must describe activities, roles, work products, and their
relations that are necessary for augmenting traditional development process models in
order to build secure electronic business processes.

Activities covered by different security engineering approaches for electronic business pro-
cesses vary slightly!. POSeM elaborates four activities: definition of security goals, refinement
of security goals, consistency analysis, and deviation of generic controls [R603]. ProSecO
details six activities: create or adapt the functional view, define security goals, identify de-
pendencies, refine security goals, threat and risk analysis, and design of controls [HB09].
AURUM collapses the prescribed tasks into three activities: modeling and identification, risk
assessment, interactive selection of controls [NP10].

In the case of SecEPM, a functional view is provided by the business process model. There-
fore, a creation of this view is not necessary. In order to cover at least the activities provided by
the named security engineering approaches and to fulfill the aim of bridging the gap between
business process models and the design and configuration of proper controls, we identify the
following requirement with regard to coverage?:

2. Coverage: The process model must cover at least activities for the assessment of security
goals, the elicitation of security requirements, threat modeling and prioritization, as
well as control design and configuration.

General requirements that are stated commonly for security engineering process models entail
the separation of requirements and controls, traceability, and the integration with different
development approaches (cf. [BBH*03, Sip05, HB09, Jii09]).

In software engineering, it is a well known strategy to separate the problem from the solu-
tion domain [BD09]. This is equally important for an effective security engineering process.
This separation is a precondition to consider different solution approaches and to compare
them with regard to a common set of requirements. Furthermore, security controls possibly
introduce accompanying requirements themselves and cover more than one requirement.
Also, they may become effective only in combination with other controls.

3. Separation of Problem and Solution Domain: The process model must allow to separate
activities and work products related to the problem domain from those related to the
solution domain.

Traceability is the ability to describe and follow the life of (software) artifacts [WvP10]. Al-
though traceability is considered an emerging discipline, it is crucial for successful security
engineering: To validate security requirements as well as security control design and imple-
mentation, the dependencies between those entities established in the course of the security
engineering activities need to be traceable. Also activities not included in SecEPM like incident
and impact analysis rely on traceability.

1 We continue to use the terminology given in section 2.4.1 instead of the diverse original terminology to allow
for a better comprehensibility and comparability.

The term coverage within this thesis has a different meaning than the term code coverage: Requirement 2
specifies the scope for the process model in terms of necessary activities that need to be covered by the process
model. In contrast, code coverage is a measure to describe the degree to which the source code of a program is
tested by a particular test suite.

2

53

4. Security Engineering Process Model

4. Traceability: The process model shall foster traceability of work products in order to
trace security aspects from high-level security goals to control configurations and vice
versa.

Security engineering process models cover only security related activities in the course of a
development project. For an effective application, the integration in at least one development
process model or approach is necessary. Furthermore, only if the security engineering process
model might be integrated into different development approaches (e.g., waterfall or agile
approaches) it is flexible enough to cover heterogeneous environments and project types.

Therefore, this requirement also addresses the issue of business process environmental
heterogeneity stated in the problem statement. It reflects the needs stemming from the
application of security engineering practices in the domain of BPM (cf. section 1.2). The
integrability requirement includes the ability to tailor the security engineering process model
for different development approaches, environments, and project types. It also addresses the
need for flexibility in the application of the process model, e.g., with regard to the sequence of
activities. The environmental heterogeneity also requires an independence from a specific
technology or tooling—excluding general BPM components—necessary to apply the security
engineering process model.

5. Integrability: The process model must integrate into different development process
models or approaches.

6. Independence from Development-time Technology: Beside general BPM components,
the process model should not need specific tooling in order to be applied.

A related requirement stems from the heterogeneity of business process engines. A security
engineering process model must take those differences into account and avoid to overspecial-
ize with regard to a specific engine or security configuration but also support stakeholders
to bridge the gap from a general security control design to specific security configuration
artifacts.

7. Independence from Runtime Technology: The process model must allow to use different
business process engines in different runtime environments.

The final requirement addresses the current situation focusing on business process experts
together with domain experts in order to execute most of the activities in the development of
electronic business processes. The resulting impairment of skill sets available and necessary for
existing security engineering approaches in the domain of BPM needs specific consideration.?

8. Restricted Skill Sets: The process model must enable security nonprofessionals to exe-
cute as much of its activities as possible without the presence of security experts.

3 Also in the general security engineering community a need for the consideration of restricted security skills in
the course of security engineering activities is getting some voice [Geel0].

54

4.3. Design Approach

4.3. Design Approach

To meet the requirements detailed in the preceding section, several strategies and princi-
ples are applied for the design of SecEPM. These strategies take proposals from the method
engineering community into account that address the construction of method chunks and
fragments from existing methods [Ral04], the construction of methods from those chunks
[RDRO3], and the tailoring or method configuration [AWK* 03, KA04, KA09]. The following
paragraphs describe three key strategies, depict decisions taken with regard to the structuring
of the activities, and highlight some principles that guided the development of our process
model.
The design of SecEPM rests on three main strategies:

1. Specialization (of existing process models and practices)
2. Separation of Concerns
3. Decoupling (of activities)

The Specialization strategy aims at using knowledge and experience condensed in existing
approaches but restricting the skill set necessary to complete activities as well as focusing on
imminent necessary activities. Most prominently, the proposal from Breu et al. for a formally
based security engineering model and its refinement provided with ProSecO prepares a foun-
dation of SecEPM [BBH* 03, HB09]. Furthermore, the largely applied IT Baseline Protection
Methodology (IT-BPM) [Bun08] provides supplemental activities and guidance to augment
SecEPM.

Some examples for the application of the Specialization strategy are sketched in the fol-
lowing. Details are provided in the next sections, especially sections 4.5 and 4.6. Similar to
the given approaches, a representation of the functional aspects of the system is the starting
point for SecEPM. More specific, not a generic enterprise model is taken as starting point
but a business process model. Analogously, SecEPM takes an asset-oriented perspective first
and identifies and interrelates assets represented in the business process model. To allow
for a comparably restricted skill set, detailed steps are provided on how to analyze the busi-
ness process model in order to identify and relate assets represented in the business process
model. Additionally, detailed guidance is provided that allows to tailor the security engineering
process to meet the available resources and to provide the necessary depth.

The Separation of Concerns strategy aims at the identification and separation of different
areas of interest and is applied with regard to several aspects of our process model. First,
security-related tasks that require security experts have been separated from tasks that might
be executed by other participants with sufficient guidance provided. Mainly, those tasks have
been concentrated in a preparatory activity in SecEPM. For example, threats and their impact
on electronic business processes are collected, analyzed, and classified by an security expert in
a preparatory task in order to provide a threat catalog for the business process expert including
application constraints for the instantiation of threat classes.

Second, treatment of conceptual and implementation aspects have been separated as well.
For instance, elicitation of the security requirements and conceptual design of proper controls

55

4. Security Engineering Process Model

A A
%, 2\2 %\ %
oD, Z O %, ©, 0
% % A % e, O,) <.
€0 o) > © A > < Z Z
2\ % \58\ % \ & \25*2%\ %
%) > > > <, A o
2\ % N2\ %\ % \%a\%%\ %
% < 2. o Z Z; % %\ %3 © e
2 2\ 2 2 \%2 42\% 2\ 7%
%% % 2\% 3\ &
5 (o)
©\& -
Specialization O @
Separation of Concerns | () () [] o o o
Decoupling O . O . . .

Figure 4.3.1.: Design strategy vs. requirement matrix for SecEPM

is separated from individual capabilities of a given business process engine. Also, application
of security controls for a business process engine is separated from its configuration details.

Third, activities and work products addressing the problem domain are separated from
activities in the solution domain. Exemplary, identification, detailing, and modeling of re-
quirements are comprised in an activity for the elicitation of requirements opposed to the
design of proper controls covered by another activity.

Fourth, activities are separated from guidance artifacts. Activities are restricted to provide
the backbone for the security engineering process. They describe aim, intention, participating
roles, work products, and tasks necessary to achieve the aim. Guiding artifacts explain how
to fulfill one or more given task, provide supportive templates and examples, and point out
alternatives in the course of the security engineering process. Exemplary, the activity for the
identification of assets details tasks in order to provide a set of interrelated business assets
and their resources represented in the business process model. In contrast, a respective
guidance artifact describes detailed step-by-step instructions that might be followed in order
to separate assets and resources and proposes criteria to interrelate individual assets. Applying
this separation, SecEPM becomes more flexible as different methods can be applied within
SecEPM providing different guidance artifacts.

While the Separation of Concerns strategy is applied mainly in order to guide the structuring
of elements of the process model, the Decoupling strategy aims at relaxing constraints of the
process model with regard to the execution sequence of activities. Hence, the Decoupling
strategy focuses pre- and postconditions of activities. As development approaches apply
development activities differently (e.g., serial vs. iterative application), decoupling of activities
allows for a flexible configuration of a SecEPM-based development process. This is especially
important for agile approaches, that generally do not provide a given sequence of activities but
push the decision of an optimal execution time to the responsible stakeholder. Examples for
the application of the Decoupling strategy include the design of activities for threat modeling
and security goal assessment that might be executed in an order decided by a process model
expert or iteratively in order to focus on high value goals.

Figure 4.3.1 depicts contributions of design strategies in order to meet the requirements
detailed in section 4.2. Filled circles denote direct contributions, empty circles indirect contri-

56

4.4. Structure

butions. The Specialization strategy addresses the Coverage requirement 2 as it specializes
process models that cover the named activities and mainly the Restricted Skill Sets require-
ment 8 as it narrows the skill set necessary for the individual activities. The Separation of
Concerns strategy addresses the Separation of Problem and Solution Domain requirement 3,
the Integrability and Independence from Development-time requirements 5 and 6, the Inde-
pendence from Runtime Technology requirement 7, and the Restricted Skill Sets requirement
8. The Decoupling strategy contributes to the Separation of Problem and Solution Domain
requirement 3 as decoupled actvities allow for an easier separation, the Integrability and
Independence from Development-time requirements (5, 6) as decoupled activities are easier
to integrate and allow for the application of different tooling, and the Restricted Skill Sets
requirement 8. The Decoupling strategy indirectly addresses the Traceability requirement 4
as it allows for an independent treatment of the respective work products of the decoupled
activities. All strategies contribute indirectly to the Structure requirement 1.

Additional guidelines for the design of SecEPM include a focus on explicit modeling and
early steps in the development life cycle. The focus on explicit modeling is related to the goals
of MDE and their major means: direct representation, automation, and open standards (cf.
section 2.3). The design of SecEPM is aligned with the application of one or more DSMLs in
the course of the security engineering process. A proposal for an applicable DSML named
SecEML is provided in chapter 5.

Our focus on early steps in the development life cycle addresses a need for applicable
methods that has been stated by Anderson and others: “Security requirements engineering is
often the most critical task of managing secure system development, and can also be the hardest.
[...] The available methodologies have consistently lagged behind those available to the rest of
the system engineering world.” [And08, p. 834]

This section presented our major design considerations: the application of the Specializa-
tion, the Separation of Concerns, and the Decoupling strategies as well as our focus on explicit
modeling and early steps in the development life cycle. The following section introduces
SecEPM and discusses the application of these considerations.

4.4. Structure

SecEPM is our proposal for a security engineering process model that integrates security-
related activities in the course of the development of secure electronic business processes.
This section provides an overview of the key entities of SecEPM as well as their grouping and
relations.

Key entities of SecEPM are organized using three categories: roles, work products, and
activities (cf. Structure requirement 1 and definitions provided in section 2.3.1). Together they
address the question: “Who (role) is doing what (activity) with which result (work product) in
order to secure an electronic business process?” Additionally, SecEPM provides guidance arti-
facts including templates, checklists, examples, reference materials, and guidelines. Guidance
artifacts explain how to fulfill one or more given task of an activity in the course of the security
engineering process.

57

4. Security Engineering Process Model

[

Business Process Engineer Process Model Configuration

. 2

Tester Threat Catalog

T s - T T T —
Evaluation
| | —
| |
| Generate Test Artifacts | Security Analysis Model
ettt D A
Implementation
| | —
| |
| Generate Control Artifacts | Security Design Model

o
1)

Developer Control Catalog

7 DD B e
Project Initiation

I I
| I
| | Process Model Engineer

_________________ -~
Requirements

s s

[
| |
|
I |
| Identify Assets Assess Security Goals |
|
| |
|
I Model Threats Elicit Security Requirements |
e .,
- ——— - — - = =
Design

Design Controls

(5

Map Controls

Security Analyst

i

Domain Expert

Figure 4.4.1.: SecEPM overview (SPEM notation)

58

4.4. Structure

Figure 4.4.1 on the facing page depicts an overview of SecEPM. Activities of SecEPM are
grouped following recommendations of the Institute of Electrical and Electronics Engineers
(IEEE) using the activity groups Requirements, Design, Implementation, and Evaluation
[Ins97]. The Requirements activity group comprises the activities Identify Assets, Assess Security
Goals, Model Threats, and Elicit Security Requirements. These activities structure the security
engineering process from the identification of business assets and related security goals, the
rating and prioritization of security goals with regard to potential damage, the assessment of
threats to those security goals, and the refinement of security requirements from security goals.
The Design activity group includes the activities Design Controls and Map Controls. They detail
the security engineering process from the identification and selection of appropriate controls
and their mapping onto an actual runtime environment. The activity groups Implementation
and Evaluation each cover only one activity: the Generate Control Artifacts and Generate Test
Artifacts activity respectively. They address the generation of implementation and test artifacts.
A preparatory activity Setup Process is assigned to the activity group Project Initiation. All
SecEPM activities comprise several method chunks relating process and product fragments.
Details are presented in section 4.5.

SecEPM distinguishes six main work products: Security Analysis Model, Security Design
Model, Process Model Configuration, Threat Catalog, Control Catalog, and Runtime Capability
Model. Table 4.1 on the next page provides an overview of the work products. Core work
products of SecEPM are the Security Analysis Model and the Security Design Model. The
Security Analysis Model defines the security problem to be solved and is created and updated
by the activities in the Requirements activity group. Activities in the Evaluation activity group
use the Security Analysis Model in order to validate design and implementation artifacts. The
Security Design Model depicts a solution of the security problem and describes the controls to
be applied as well as their mapping onto the runtime environment. Activities in the Design
activity group create and update the Security Design Model that is consumed by activities in
the Implementation activity group.

The work products Process Model Configuration, Threat Catalog, Control Catalog, and
Runtime Capability Model are mainly created upfront a specific security engineering process
and reused within several comparable projects. They cover the individual configuration of the
security engineering process for a project type or an individual project, catalogs to support
security engineering activities, and a description of the capabilities of a BPMS or its runtime
environment. Several additional work products are necessary as input for SecEPM activities
or result as output that is not considered further by any SecEPM activity. These include
the Information Security Policy, the (executable) Business Process Model, Test Artifacts, and
Implementation Artifacts. Those work products are not represented in the aforementioned
figure 4.4.1 on the facing page.

Figure 4.4.2 on page 61 displays the relations between artifacts and work products: filled
circles note a produce relation (i.e., an activity creates or updates a work product), empty
circles note a consume relation (i.e., an activity uses a work product).

We keep the number of roles in SecEPM pragmatically small. SecEPM distinguishes Busi-
ness Process Engineers, Developers, Domain Experts, Process Model Engineers, Security

59

4. Security Engineering Process Model

Name

Description

Assignment in SecEPM

Business Process
Model
Control Catalog

Implementation
Artifacts

Information

Security Policy

Process Model
Configuration
Runtime
Capability Model

Security Analysis

Model

Security Design
Model

Test Artifacts

Threat Catalog

Definition of the electronic business process

Catalog of control classes detailing
mitigation possibilities for one or more
threat class, application consequences, and
relation to other control classes

Necessary artifacts for the implementation
of the electronic business process excluding
the business process model

Definition of high-level security policies,
asset classification schemata, and rating
criteria

Individual configuration of the security
engineering process

Configuration and implementation
alternatives for controls supported by a
specific runtime environment
Description of the security problem

Description of the solution to the security
problem documented in the Security
Analysis Model

Description of tests and corresponding
artifacts to validate the quality of the
implementation

Catalog of threat classes that endanger
security goals including entry or applicability
conditions, relation to other threat classes
and consequences of successful
manifestations

Starting point and input for
most activities

Supports the design of controls
and repeatability of results

Configuration of the runtime
environment and
implementation of controls
Basis for the Threat and Control
Catalog, supports asset
identification and security goal
assessment

Tailoring of SecEPM

Basis for the mapping of
controls onto a selected
runtime environment
Documentation of assets,
security goals, threats, security
requirements, and their
relations

Documentation of selected
controls and their mapping
onto the capabilities of the
runtime environment

Tests to assess the functioning
of the controls

Supports threat analysis for
given business process models
and repeatability of results

60

Table 4.1.: SecEPM work products overview

4.4. Structure

2 A Q Q Z % PN 6(1.
2 %\ 5 \2.2\Z 2 \% e\% 3 \% 2 2%
S P > Z 5\ % 2.\ 2.\ % 2\ % 3\ %,)
2%\ %\ S \L2\22\22\%%\% %\ % \&%
5\ % \ % \2 \& \& \z2*%\ % \" %
RN * \% \% S 2 2\ ¢ %
Setup Process O
Identify Assets O . O O
Assess Security Goals O . O O
Model Threats O O . Q
Elicit Security
Requirements O . O
Design Controls O O . . O O
Map Controls O O . Q
Generate O O . .
Control Artifacts
Generate
Test Artifacts O O O O . O

Figure 4.4.2.: Activity vs. work product matrix

Analysts, and Testers. As SecEPM augments development process models, roles from SecEPM
complements those from the development process model (cf. section 4.7).

Process Model Engineers are experts for development processes and their instantiation. They
tailor SecEPM to the needs of an organization and an individual project. In SecEPM, Process
Model Engineers account for the work product Process Model Configuration. Business Process
Engineers translate business requirements into business process models and support their
configuration in order to enact them. In accordance to common practices in the BPM domain,
Business Process Engineers carry out most of the activities in SecEPM supported by Domain
Experts, Developers, Testers, and Security Analysts [SF03, Wes07]. Domain Experts provide
knowledge from the application domain of a business process. In SecEPM they contribute
to the work product Threat Catalog, support the identification of assets and the assessment
of security goals. Security Analysts are familiar with the analysis of security problems and
their solution. In SecEPM they provide the Threat Catalog (supported by the Domain Expert),
the Control Catalog, and detailed guidance for all activities. Furthermore, Security Analysts
validate the work products Security Analysis Model and Security Design Model. Developers
contribute their technological know-how. In SecEPM they provide the work product Runtime
Capability Model (supported by the Security Analyst) and support the Business Process En-
gineer in mapping controls to runtime capabilities and configuring the executable business
process model. Testers ensure the quality of the electronic business process. In SecEPM they

61

4. Security Engineering Process Model

Name Description Focus in SecEPM

Business Elicit business requirements, translate Execute most activities

Process requirements into business process models,

Engineer and support business process model
configuration

Developer Contribute technological know-how with Provide Runtime Capability Model,
regard to business process model support control mapping and
automation and specific runtime business process model
environments configuration

Domain Provide knowledge from the application Contribute to the Threat Catalog,

Expert domain of a business process support asset identification and

assessment of security goals

Process Customize individual security engineering Provide Process Model

Model processes, enhance process models based Configuration, adopt SecEPM

Engineer on experiences

Security Analyze security problems and develop Provide Threat and Control Catalog

Analyst solutions in the domain of electronic as well as detailed guidance,
business processes validate Security Analysis and

Design Model

Tester Ensure the quality of electronic business Generate Test Cases, execute them,

process implementations and interpret the results

Table 4.2.: SecEPM roles overview

generate the work product Test Artifacts and execute the test cases contained against the
developed solution. Table 4.2 summarizes the roles in SecEPM.

Compared to activities, guidance artifacts might vary largely between different instantiations
of SecEPM. As they contribute detailed support on how to complete an activity or a certain
task, they depend on the organizational environment, the skills available in a given project,
and the runtime environment in question. Guidance artifacts include checklists, examples,
guidelines, references, and templates. In section 4.6 several sample guidance artifacts are
presented and explained.

SecEPM does not prescribe the sequence of activities and does not define completeness
criteria for necessary input artifacts (work products) in order to restrict the execution of
an activity. Nevertheless, SecEPM defines logical interdependence between entities within
work products applying the terminology presented in section 2.4.1. Therefore, regardless of
the individual creation process of a work product, full validation of work products becomes
possible only if related tasks have been accomplished and the dependencies between the work
products are fulfilled. A brief comparison of (idealized) security engineering or evaluation
processes following the ProSecO, the CC, and the SecEPM approach might highlight these
dependencies.

¢ ProSecO specifies six activities that are executed sequentially and iteratively (cf. section
2.5.1): 1) a functional view is created, 2) security goals for assets are specified, 3) dependen-
cies between security goals and elements of the functional view are identified, 4) security

62

4.5. Activities

goals are refined with regard to dependent and depending assets, 5) threats to assets are
identified and evaluated, and 6) controls are chosen that satisfy the security requirements.

¢ The CC evaluation process specifies the following sequence of activities (as a part of the
whole evaluation process, cf. [Int14]): 1) analysis of threat classes, 2) specification of assets
and security goals, 3) derivation of security requirements (including a traceability matrix
between threats and respective security goals).

» SecEPM starts with the 1) identification of assets, 2) the assessment of security goals, 3) the
analysis of threats, 4) the derivation of security requirements, and 5) the design as well as
6) mapping of appropriate controls.

All given approaches take an asset-oriented perspective in the beginning and try to identify
security goals for those assets. Differences exist with regard to the role of threats. ProSecO
does not explicitly differentiate between security goals and requirements (according to our
terminology). Threat analysis is applied to evaluate risks and prioritize security goals. CC
focuses on threats as security requirements have to address an analyzed threat (no requirement
exists if no threat has been identified threatening a given security goal). With regard to this
aspect, SecEPM takes the perspective of the CC: Only if a threat has been identified, a security
requirement has been validly specified. Therefore, a logical dependency exists between assets,
security goals, threats, security requirements, and controls that must be fulfilled in order to
validate the Security Analysis Model and the Security Design Model that capture those entities.

A brief alignment of SecEPM with the concepts CIM, PIM, platform model, and PSM from
MDA might further detail the dependencies between some of its work products (cf. section
2.3.3.2). SecEPM introduces the Security Analysis Model that might be associated with the
role of a CIM. Similarly, the Security Analysis Model does only capture requirements for the
security design. The Security Design Model might be associated with the role of a PIM—
appropriate controls are selectable independent of a specific runtime environment. The
Platform Capability Model might be associated with the platform model as it provides technical
concepts and services provided by the runtime elements. The Implementation Artifacts might
be associated with the PSM as they include not only design decisions but also details that
specify the usage of a particular platform.

This alignment must not be confused with an identification: As SecEPM only addresses
security aspects of an electronic business process, it does not take the same perspective as
MDA that addresses software and system development in general. Furthermore, SecEPM starts
with a definition of an electronic business process that potentially includes platform specific
aspects in the very beginning of the security engineering process and therefore might be
associated with a PSM. Nevertheless, the similar procedure of successive inclusion of platform
specific details and design decisions supports the alignment.

4.5. Activities

This section details the activities of SecEPM. An activity in SecEPM is a set of tasks that is
performed towards a specific purpose in order to develop secure electronic business processes

63

4. Security Engineering Process Model

(cf. section 2.3.1). Every activity is introduced explaining its objective and its relations to
other entities of the process model. The execution of the tasks is exemplified using the Replan
Process (cf. chapter 3). A tabular overview summarizes information on aim and use as well as
necessary work products consumed by the activity and created and updated work products.
Furthermore, involved roles are provided and the tasks of the activity are listed. Details on
how to work on specific tasks are described in section 4.6 introducing guidance artifacts.

4.5.1. Setup Process
4.5.1.1. Overview

Before a security engineering process is started, the process needs to be set up. The preparatory
Setup Process activity subsumes all tasks that are necessary to tailor the process model to
its application environment. Depending on the size of the organization, the number of
application domains, and the heterogeneity of the development projects, this activity has to be
executed before every project, upfront a set of similar projects, or while it is introduced to the
organization. Although it is necessary to setup the security engineering process in advance,
every task might be rerun in the course of a project. This enables the provision of additional
information, detailing of overgeneralized aspects, or removal of unnecessary items from the
Process Model Configuration.

A successful security engineering process depends on a comprehensive preparation. There-
fore, a close cooperation of Business Process Engineers, Developers, Domain Experts, Security
Analysts, and the responsible Process Model Engineer is necessary for providing all required in-
formation. The individual configuration of the process model is compiled in the Process Model
Configuration. This work product does not only encompass basic definitions but includes also
selected guidance artifacts, descriptions of preferred practices and tooling, and hints on the
integration of the security engineering process into the development process. Additionally, the
Threat and Control Catalog are generated that enable security nonprofessionals to instantiate
relevant threats and to select adequate mitigation. A description of the capabilities of runtime
components is collected in the Runtime Capability Model that provides means to map the
selected controls onto actual infrastructure. Table 4.3 provides an overview of the activity
Setup Process.

4.5.1.2. Provide Basic Definitions

An early task in the Setup Activity is the provision of a basic framework for the definition
and assessment of security goals, security requirements, and controls. It aims at aligning the
security engineering process with the overall information security management and making a
coherent set of classifications available. This task is generally assigned to the Security Analyst,
supported by the other roles assigned to the superordinate activity.

The minimal set of definitions to be provided encompasses security goal classes, security
requirement purposes, and rating scales for security goals, threats, controls, and control
implementations. The definition of security goal classes provides the scope of the security
analysis: Inclusion or exclusion of specific goal classes allow for a focused analysis or a broader

64

4.5. Activities

Name Setup Process

Aim Preparation of the security engineering process

Use Tailoring of the security engineering process for an organization, the application domain,
or a development project

Input Information Security Policy

Output Process Model Configuration, Threat Catalog, Control Catalog, Runtime Capability Model
Roles Process Model Engineer (responsible), Business Process Engineer, Developer, Domain
Expert, Security Analyst
Tasks e Provide Basic Definitions
e Define Threat Classes
e Define Control Classes
e Provide Capabilities of Runtime Environment
e Provide Guiding Artifacts

Table 4.3.: Activity: Setup Process

perspective. The definition of control purposes provides a classification of intentions for the
application of controls. The definition of rating scales allows to prioritize goals, threats, and
requirements as well as to assess controls and their implementations. Depending on the risk
assessment methodology applied, rating scales might be simple, ordinal differentiations or
elaborated assessment formula. Generally, existing methods or best practices will be applied in
the course of the security engineering process covered with SecEPM. Therefore, many of these
definitions might originate in those methods and practices. Appropriate guidance artifacts
should be included to the Process Model Configuration to elaborate the application of the
definitions provided with this task (cf. task Provide Guiding Artifacts on page 67).

Exemplary, the security goal classifications provided in the preceding chapters are chosen
here: “Confidentiality”, “Integrity”, “Availability”, and “Non-repudiation” (cf. section 2.4.1).
Control purposes are specified applying the differentiations provided by an ISO standard
defining “Prevention”, “Detection”, “Limitation”, and “Monitoring” [Int04]. If we apply the risk
assessment approach from the IT-BPM, rating scales for security goals are defined as simple,
ordinal scales ranging from “Normal” as limited and calculable impact to “Very high” as
impact threatening the survival of the organization [Bun08]. For threats, controls, and control
implementations no rating scales are provided by the IT-BPM. For the application of the
selected risk assessment approach damage scenarios and corresponding rating criteria have to
be defined as well (cf. section 4.6). Exemplary, the damage scenario “Financial consequences”
is defined including the rating criterion “Limited financial losses” assigning the rating “Normal”
to the condition “Financial losses are below 50,000 EUR”.

4.5.1.3. Define Threat Classes

The identification and assessment of relevant threats is regarded as challenging task in the
course of a security engineering process (e.g., [Shol4]). SecEPM utilizes a Threat Catalog pro-
viding a pre-compiled set of threat classes relevant in the application domain and aligned with
the BPM environment to facilitate threat modeling and to allow for comparable, repeatable

65

4. Security Engineering Process Model

results. The preparation of the Threat Catalog is assigned to the Security Analyst supported by
the other roles assigned to the superordinate activity.

A threat class defines a set of possible threats for an electronic business process. It specifies
security goal classes that are violated if an instance of the threat class becomes effective, appli-
cability conditions of the threat class, affected elements, and possible impact. Furthermore,
threat classes might interrelate either in detailing (e.g., one threat is decomposed in several
sub-threats) or influencing each other (e.g., one threat leverages the impact of another threat).

Exemplary, the Security Expert starts with rather general threat classes adopting the Spoof-
ing, Tempering, Repudiation, Information disclosure, Denial of service, Elevation of privileges
(STRIDE) [SS04, Sho14] method for the threat analysis of electronic business processes. Every
adverse action proposed by the method is applied either to processes or data elements of
a business process model. One threat class is defined as “Tampering Execution Sequence”
endangering security goals of the class “Integrity” and applies to elements of the type Pool
from a BPMN business process model. Affected elements are those of the type Sequence Flow
of the Pool in question manipulating the incoming or outgoing connection. In the course of
the security engineering process, this or other threat classes might be further refined separat-
ing different attack vectors, e.g., using attack trees [Sch99] or refined versions of the STRIDE
method [SB12].

4.5.1.4. Define Control Classes

Complementary to the Threat Catalog, a set of pre-compiled control classes is utilized in
SecEPM to facilitate the design of appropriate controls and—similarly—to allow for compa-
rable and repeatable results. The definition of control classes is also a duty of the Security
Analyst supported by the other roles assigned to the superordinate activity.

A control class specifies a set of generic controls that might be applied in order to satisfy
security requirements for an electronic business process. The control class specification
includes the enumeration of addressed security goals and threat classes, control purposes
it might serve, assets that are introduced if a control of that class is applied, and protected
entities. Analogous to threat classes, control classes might be interrelated either hierarchically
or with regard to other dependencies.

Most likely, an existing control catalog will be used as a starting point and aligned by the
Security Analyst, e.g., a control catalog provided by the NIST [RSP*10]. A control class that is
derived from the control “AU-12 Audit Generation” is “Log Process Execution” that addresses
the security goal class “Integrity” and mitigates the threat class “Tampering Execution Se-
quence” providing means to detect attacks. The control class introduces log files as new assets
and protects Control Flow entities.

4.5.1.5. Provide Capabilities of Runtime Environment

In order to implement controls that have been selected in the course of the security engi-
neering process, capabilities of the runtime components of the target environment need to
be formulated. The Developer in collaboration with the Business Process Engineer and the

66

4.5. Activities

Process Model Engineer collect and document the capabilities creating the Runtime Capability
Model.

Capabilities are specified documenting the runtime component providing this capability,
the control classes that are implementable using a capability, and preconditions for the
implementation like dependencies on other capabilities. Additionally, proprietary information
on the configuration alternatives for capabilities are noted. Differences with regard to affected
and protected elements between referenced control classes and a capability are documented.

An exemplary BPMS to execute the Replan Process is Activiti®. It is an open source business
process engine and management system. A starting point to identify capabilities are security
manuals provided by the software vendor. One feature of Activiti is its logging functionality.
Therefore, a capability “Activiti logging” can be specified that is assigned to the runtime com-
ponent “Activiti” and implements the control class “Log Process Execution”. The property “Log
Level” and its domain is annotated as proprietary information with regard to the configuration
of the capability.

4.5.1.6. Provide Guiding Artifacts

An important design decision for SecEPM is the application of the Separation of Concerns
strategy (cf. section 4.3). In order to separate decisions on what to do in the course of the
security engineering process from the decisions on how to execute a given task, activities
are separated from guiding artifacts. This differentiation allows for integration of different
methods and best practices in SecEPM instead of providing different process models.

Guiding artifacts encompass checklists, examples, guidelines, references, and templates.
Every guiding artifact is classified with regard to these classes and assigned to at least one
or more tasks. Guiding artifacts might also reference each other and other elements of the
SecEPM such as responsible roles or work products. The application of guiding artifacts in the
context of SecEPM needs to be described and necessary adoptions have to be documented.
The selection of guiding artifacts should be carefully considered, as they need to be precise
enough to allow security nonprofessionals to execute the related tasks but shall not overwhelm
the practitioner with detail or alternatives.

In the course of the preceding tasks of the Setup Process activity, several guiding artifacts
have been mentioned already. Exemplary, the risk assessment approach applied for the rating
of security goals needs to be integrated as reference as well as a guideline on how to apply it
in the context of the activities Setup Process, Identify Assets, and Assess Security Goals. Also,
the STRIDE method might be provided as reference and as guideline for the activity Model
Threats [SS04, Sho14]. Some of these artifacts are described in greater detail in the following
section 4.6.

4 http://www.activiti.org/

67

http://www.activiti.org/

4. Security Engineering Process Model

Name Identify Assets
Aim Identification of assets that are impacted by the electronic business process
Use Assignment of assets and entities from the electronic business process, preparation of
security goal assessment, and integration in overall risk management
Input Process Model Configuration, Information Security Policy, Business Process Model
Output Security Analysis Model
Roles Business Process Engineer (responsible), Domain Expert
Tasks e Identify Business Assets
e Identify Modeled Assets
e |dentify Supporting Resources
e Analyze Dependencies Between Assets and Resources

Table 4.4.: Activity: Identify Assets

4.5.2. ldentify Assets
4.5.2.1. Overview

As mentioned in the preceding section 4.3, SecEPM takes an asset-oriented perspective. Assets
are entities that a stakeholder puts value upon with respect to security (cf. definition 8). The
aim of this activity is to identify, decompose, and relate all elements of value that might be
impacted by an electronic business process. Therefore, assets provide a basic link between
the functional representation of the electronic business process (documented in the Business
Process Model) and the security analysis (documented in the Security Analysis Model).

The general approach for this activity is to identify general business assets, decompose
them to enable assignment with modeled elements of the Business Process Model, and to
document necessary resources and dependencies between assets and resources. The Identify
Assets activity is a good starting point for a security engineering process as it allows to focus
on relevant aspects of the electronic business process from the business point of view. Never-
theless, several tasks of this activity are very likely to be executed multiple times in the course
of a security engineering process, e.g., the analysis of assets introduced by controls selected in
other activities.

All tasks of this activity are assigned to the Business Process Engineer supported by a Domain
Expert. Definitions and guidelines provided in the Process Model Configuration are applied
within this activity, general business assets are aligned with the Information Security Policy.
Table 4.4 provides an overview of the activity Identify Assets.

4.5.2.2. Identify Business Assets

First, general business assets related to the electronic business process are identified to assess
security needs. Mostly, these business assets reflect the main purpose of the business process
in question and depict the value at risk if the business process becomes compromised. A
business value represented by a business asset has to be documented in order to justify any
kind of control that is applied to the electronic business process,.

68

4.5. Activities

Business assets are identified using the Business Process Model and the Information Security
Policy. Descriptions of the added value provided by a business process, objectives, and results
of a business process are good candidates for business assets. Business assets might be
abstract, i.e., they are not always tangible goods but a benefit or other immaterial goods.
Business assets are documented providing at least a label, a description, and a stakeholder for
that asset.

Exemplary, the Replan Process has the purpose to monitor shipments with the purpose of
proactive intervention if thresholds are not met in the current situation. The overarching value
at risk is the successful proof of delivery (POD), i.e., the confirmation that a shipment has been
transported in time to the designated destination without damage. Therefore, “Successful
POD” with the logistics provider as stakeholder is documented as business asset for the Replan
Process.

4.5.2.3. Identify Modeled Assets

Business assets are not necessarily directly represented in the Business Process Model. In order
to enable the analysis of security goals and threats for a given electronic business process,
the business assets have to be related to the Business Process Model. Therefore, the business
assets are decomposed into modeled assets and related to elements of the Business Process
Model.

Different approaches have been proposed for the identification of assets for electronic
business processes (e.g., [WMMO08, HB09, JTGK10]). Every elements of a given type might be
regarded as modeled asset, e.g., elements of the type Message, or elements that fulfill certain
criteria, e.g., the inclusion of an element in an administrative district. The Information Security
Policy as well as guidance artifacts from the Process Model Configuration provide details for
this task. In addition to documentation requirements for general business assets, modeled
assets provide a link to related elements of the Business Process Model.

For the Replan Process, “Message M1” (status message), “Message M2” (updated route plan),
and “Pool P1” (process in the administrative district of the logistics provider) are considered
as modeled assets. This selection follows from the purpose of the Replan Process: a proactive
intervention in order to reach a successful POD. The elements Message “M1”, Message “M2”,
and Pool “P1” provide value with regard to security for the logistics provider and directly
influence the business assets “Successful POD”.

4.5.2.4. Identify Supporting Resources

Security goals for modeled assets have to be assessed and related to respective threats to
elicit requirements systematically (cf. the following sections). Some threats might not directly
effect an asset but effect an asset indirectly via other elements that have been modeled in the
Business Process Model. These elements are regarded as resources in SecEPM. A resource
Supports one or more assets.

The identification of supporting resources depends on the threat identification approach
chosen in the Setup Process activity. Similar to the preceding task, for every resource label,
description, and related entity from the Business Process Model are documented.

69

4. Security Engineering Process Model

Exemplary, “Pool P2” (the process outside the administrative district of the logistics provider),
or Message Flows between the freight forwarder and the logistics provider representing com-
munication channels might be regarded as resources.

4.5.2.5. Analyze Dependencies Between Assets and Resources

In security analysis, the protection of the weakest link is an often cited principle [VM02].
Analysis of dependencies as well between different assets as between assets and resources
is crucial to understand the propagation of security goals and to allow for their assessment, .
Integrity of a return address of a shipment might not be considered as a security goal at all or
only as minor concern. But if a manipulation of this return address endangers the successful
POD because of customs formalities, integrity of the return address becomes a major concern.

Dependencies with regard to security goals and their assessment between assets as well
as those between assets and resources are captured as a directed relation “supports” starting
with the supporting element and ending with the supported element. Primarily, dependencies
might be recorded in the course of the identification of modeled assets and resources. Within
this task, the dependencies should be reconsidered, consolidated, and documented in the
Security Analysis Model.

Exemplary, a “supports” relation between “Pool P1” and “Successful POD” is documented
as security goals for the successful POD are endangered by violations of the security goals of
the process modeled with Pool “P1”. Similarly, relations between “Message M1” and “Pool P1”,
“Message M2” and “Pool P17, “Pool P2” and “Pool P1” are documented.

4.5.3. Assess Security Goals
4.5.3.1. Overview

Security goals express stakeholders concerns towards an asset with regard to a security goal
class (cf. definition 9). The aim of this activity is the identification and evaluation of security
goals for assets that might be impacted by the electronic business process. The result of this
task are security goals and their ratings that support prioritization of further analysis effort
and bridge assets and security requirements.

In order to assess security goals, security needs for every asset are identified and rated using
the rating scales provided in the Process Model Configuration and general security policies
provided in the Information Security Policy. The Business Process Model provides context
information for the specification of security goals. Analyzing dependencies between assets,
ratings for respective security goals are adjusted to reflect those dependencies. The assessment
of security goals should be executed, whenever new assets are included in the Security Analysis
Model or dependencies between assets change. All tasks of this activity are assigned to the
Business Process Engineer supported by the Domain Expert. Table 4.5 provides an overview of
the activity Assess Security Goals.

70

4.5. Activities

Name Assess Security Goals
Aim Identification and evaluation of security goals for assets
Use Preparation of threat modeling and prioritization of security goals
Input Process Model Configuration, Information Security Policy, Business Process Model
Output Security Analysis Model
Roles Business Process Engineer (responsible), Domain Expert
Tasks e Specify Security Goals
e Rate Individual Security Goals
e Analyze Dependencies Between Security Goals
e Adjust Security Goal Ratings

Table 4.5.: Activity: Assess Security Goals
4.5.3.2. Specify Security Goals

Security goals capture security needs of stakeholders with respect to assets. With the speci-
fication of security goals the Business Process Engineer (supported by the Domain Expert)
distinguishes between relevant and insignificant security aspects: Only those aspects that are
documented by a security goal will be considered in the security analysis.

For every asset security needs are considered applying the security goal classes defined in
the Process Model Configuration. An individual security goal is documented detailing the
asset considered by the security goal, the security goal class of the security goal, and a (short)
description of the security need.

With respect to the Replan Process, the process operated for the monitoring of shipments
has been identified as an asset (“Pool P1”) because a disturbance of the process execution
endangers a successful POD. Analyzing this asset, the security need can be detailed: The
sequence of activities must not be disturbed by an unauthorized party. Therefore, the security
goal “P1 Process Integrity” is specified for the asset “Pool P1” and classified as “Integrity”
security goal.

4.5.3.3. Rate Individual Security Goals

In order to prioritize security goals and to allow for decisions considering focus areas of the
security analysis and design, security goals are rated. The rating procedure depends largely on
the respective methodology selected and documented in the Process Model Configuration.
After completion of this task, for every security goal an individual rating has to be documented
in the Security Analysis Model.

Using the IT-BPM, the Process Model Configuration defines a number of rating criteria
grouped by different damage scenarios. Following the IT-BPM, for every security goal and
damage scenario at least one criterion is assigned to the security goal. The individual rating of
the security goal is derived applying the maximum rating to the security goal. Exemplary, the
criterion “Limited financial losses” from the damage scenario “Financial Consequences” is
assigned to the security goal “P1 Process Integrity” and the derived rating is “Normal”.

71

4. Security Engineering Process Model

4.5.3.4. Analyze Dependencies Between Security Goals

The activity Identify Assets includes a task to analyze dependencies between assets that are
documented in the Security Analysis Model (cf. section 4.5.2). These dependencies are now
further refined. The objective is to document, whether security goals of supported assets
influence security goals of supporting assets or vice versa. Similarly to the preceding task, the
procedure depends largely on the respective assessment method. After completion of this
task, for every security goal the influence of security goal ratings of supporting or supported
assets have to be documented in the Security Analysis Model.

The IT-BPM method for the rating of security goals proposes the application of three ag-
gregation strategies as it is described in the corresponding guideline (cf. section 4.6.2.5).
Exemplary, the aggregation strategy for the security goal “P1 Process Integrity” is set to the
maximum strategy as security goal ratings from supported assets have to be propagated to
this security goal.

4.5.3.5. Adjust Security Goal Ratings

Ratings for individual security goals have to be adjusted to reflect dependencies between assets
and their security goals. Therefore, the influence of security goal ratings of supporting or
supported assets is evaluated and ratings for individual security goals are adjusted accordingly.
The process for the adjustment of the ratings depends largely on the respective assessment
method documented in the Process Model Configuration.

Exemplary, if a security goal of the class “Integrity” for the asset “Successful POD” has been
rated as “High”, the initial rating of the security goal “P1 Process Integrity” will be adjusted
from its individual rating “Normal” to “High” as the maximum strategy has been chosen for
this security goal and the asset “Pool P1” supports the asset “Successful POD”.

4.5.4. Model Threats
4.5.4.1. Overview

The Model Threats activity explicates security challenges for the electronic business process in
terms of threats. Threats are potential causes for the violation of security goals (cf. definition
11). The analysis of threats provides means to refine security requirements from security goals:
Only if a security goal is endangered by one or more threats, a security requirement might
be refined for that security goal. Therefore, threats enable participants to focus further on
relevant aspects of the electronic business process in the security engineering process.

The analysis and modeling of relevant threats starts with the identification of candidate
threats from the Threat Catalog, proceeds with the selection of relevant threats from the candi-
date list, and ends with an analysis of the impact of the selected threats using the Business
Process Model. The Process Model Configuration provides guidance for selected threat mod-
eling and assessment techniques including rating scales and definitions. Threat modeling
is needed whenever changes to the Business Process Model apply that might introduce new
threats or further security goals are created or updated. All tasks of this activity are assigned

72

4.5. Activities

Name Model Threats
Aim Analysis of threats that endanger security goals
Use Preparation of requirement elicitation
Input Process Model Configuration, Threat Catalog, Business Process Model
Output Security Analysis Model
Roles Business Process Engineer (responsible), Domain Expert
Tasks e Identify Candidate Threats
e Select Relevant Threats
e Analyze Threat Impact

Table 4.6.: Activity: Model Threats

to the Business Process Engineer supported by the Domain Expert. Table 4.6 provides an
overview of the activity Model Threats.

4.5.4.2. Identify Candidate Threats

SecEPM applies a collection of threat classes provided with the Threat Catalog to support the
Business Process Engineer identifying threats. Therefore, threat classes need to be identified
from the Threat Catalog that apply to the actual Business Process Model. Applicable threat
classes are instantiated and provided as candidate threats.

For every threat class the respective applicability conditions are checked to identify candi-
date threats. If the applicability conditions are fulfilled with regard to specific parts or elements
of the Business Process Model, a new candidate threat is instantiated in the Security Analysis
Model, providing a label, description, and a reference on the threat class as well as a reference
to the respective part or element of the Business Process Model.

Exemplary, the threat class “Tampering Execution Sequence” is checked for the Replan
Process. The threat class applies for the Pool “P1” and the Pool “P2” as it might be applied
to elements from the type Pool. Therefore, two candidate threats “Tamper P1 Execution
Sequence” and “Tamper P2 Execution Sequence” are instantiated and documented in the
Security Analysis Model.

4.5.4.3. Select Relevant Threats

Relevant threats that have to be considered for the refinement of security requirements provide
two properties: First, they apply to the Business Process Model, i.e., they endanger certain
aspects of the functionality or quality of the electronic business process. Second, they en-
danger a security goal of a stakeholder of the process. The first property is evaluated during
the preceding task providing candidate threats. Now, security goals need to be checked with
regard to the candidate threats to select only relevant threats. An example for this distinc-
tion might be the threat of tapping a communication channel: This threat applies to every
communication channel. It is only relevant, if confidential information can be gained by
tapping a communication channel. If this is the case, a corresponding security goal of the
class “Confidentiality” for the data transmitted has to be documented.

73

4. Security Engineering Process Model

Relevant threats are selected from the list of candidate threats by checking for every candi-
date threat, whether the parts or elements referenced by the candidate threat touch one or
more security goals. For every match, the security goal classes of the threat and the respective
security goal are compared. If both match, the threat is relevant for the security analysis and
the matching security goals are assigned to the threat. Candidate threats that do not touch a
security goal are marked as irrelevant or removed from the Security Analysis Model.

From the list of candidate threats, only “Tamper P1 Execution Sequence” touches a security
goal: “P1 Process Integrity”. The threat addresses the “Integrity” security goal class as well as
the security goal. Therefore, the security goal is assigned to the threat and it is documented in
the Security Analysis Model.

4.5.4.4. Analyze Threat Impact

The aim of this task is to analyze the impact of threats. This analysis includes the questions,
which elements of the Business Process Model would be affected by a successful realization
of threats as well as whether threats can be rated in order to prioritize further analysis and
resulting security requirements.

For each threat the affected elements are derived using the information provided by the
respective threat class. Similarly, the impact on the affected elements is evaluated and docu-
mented for each threat. The rating procedure for the threats depend largely on the selected
assessment method. Ratings for the threats are documented in the Security Analysis Model.

Exemplary, the threat “Tamper P1 Execution Sequence” affects all Sequence Flow elements
contained in the Pool “P1”, manipulating the incoming or outgoing connection of those
elements. As no rating procedure for threats has been included in the Process Model Con-
figuration, threats remain unprioritized. Alternatively, the tasks Provide Basic Definitions
and Provide Guiding Artifacts of the Setup Process activity might be re-executed in order to
integrate a respective method, e.g. from the Microsoft Secure Development Lifecycle (MS SDL)
[Micl2].

4.5.5. Elicit Security Requirements
4.5.5.1. Overview

Security requirements refine security goals and state the intent to counter threats (cf. defini-
tion 13). The activity Elicit Security Requirements synthesizes security goals and threats to
specify concise security requirements: Security goals alone do not require necessarily corre-
sponding controls. Similarly, threats state only negative instead of positive propositions. As
result of this activity, security needs for the electronic business process are specified in a way
that supports the design of appropriate controls and the mitigation of respective threats.
Security requirement elicitation covers identification of candidate requirements, selection
of security requirements, consolidation of selected security requirements, and validation of
security requirements with regard to the modeled security goals and threats. Requirement
elicitation uses security goals and threats documented in the Security Analysis Model in
combination with the Business Process Model as major input and applies definitions and
practices provided in the Process Model Configuration. Requirements are specified in the

74

4.5. Activities

Name Elicit Security Requirements
Aim Refinement of security requirements based on threats and security goals identified
Use Specification of concise security requirements as basis for the design of controls
Input Process Model Configuration, Business Process Model
Output Security Analysis Model
Roles Business Process Engineer (responsible), Domain Expert, Security Analyst
Tasks e Identify Candidate Security Requirements
e Select and Detail Security Requirements
e Consolidate Security Requirements
e Validate Security Requirements

Table 4.7.: Activity: Elicit Security Requirements

Security Analysis Model. Requirement elicitation is executed by the Business Process Engineer,
supported by the Domain Expert to align decisions with the application domain. The Security
Analyst validates the resulting requirement specification. Table 4.7 provides an overview of
the activity Elicit Security Requirements.

4.5.5.2. Identify Candidate Security Requirements

The refinement of security goals adds information to the specification of security needs for
the electronic business process in the Security Analysis Model. Elicitation of requirements
includes not only explication of inherently contained propositions but also decisions on alter-
native formulations of the security needs (and the resulting security problem). Nevertheless,
requirement elicitation must not be confounded with problem solving, i.e., the design of
adequate controls. Therefore, SecEPM distinguishes the identification of candidate security
requirements and the selection of (actual) security requirements. This task identifies candidate
security requirements that can be elicited from security goals and threats.

Every threat and security goal are analyzed in combination to identify candidate security
requirements. Results are documented as candidate security requirements in the Security
Analysis Model providing label, description, references on respective threats, and security
goals.

Exemplary, in order to address the threat “Tamper P1 Execution Sequence” for the security
goal “P1 Process Integrity” the candidate security requirement “Check P1 Execution Sequence
in Retrospect” with the respective relations is specified. An alternative candidate security
requirement analyzing the same security goal and threat might be “Check P1 Process Model
Conformance Before Activity Execution”.

4.5.5.3. Select and Detail Security Requirements

This task selects (actual) security requirements from candidate security requirements and
provides further details for these requirements. It aims at documenting decisions with regard
to the refinement of security goals and their interpretation. The meaning of the documented

75

4. Security Engineering Process Model

security goals is narrowed executing this task distinguishing actual from discarded security
requirements.

To select security requirements, candidate requirements are grouped by security goal. Sup-
ported by the domain expert, security requirements that conform to the intended interpre-
tation of the security goal are selected from the candidate security requirements. Candidate
security requirements that are not selected are marked as discarded or removed from the Secu-
rity Analysis Model. The selection process should be supported by guidance artifacts providing
a systematic approach including selection criteria. For selected security requirements, the
Business Process Model is analyzed and elements or parts of the Business Process Model that
are addressed by a requirement are documented.

For the Replan Process, the candidate security requirements “Check P1 Execution Sequence
in Retrospect” and “Check P1 Process Model Conformance Before Activity Execution” apply
to the security goal “P1 Process Integrity”. The requirement “Check P1 Execution Sequence
in Retrospect” is selected and all Control Flow elements in the Pool “P1” are assigned to the
requirement.

4.5.5.4. Consolidate Security Requirements

The tasks for security requirement identification and selection do not consider their common-
alities and conflicts. As both tasks start with individual security goal and threats, it is possible
that resulting security requirements addressing different security goals specify similar needs
for the same parts or elements of the Business Process Model. Those overlapping requirements
should be merged maintaining all relations to security goals, threats, and elements of the
Business Process Model to provide a better overview and comprehensibility. Similarly, it is
possible that resulting security requirements specify conflicting needs. Either a compromise
for conflicting security requirements must be identified or predominant security requirements
must be selected.

For the merging, security requirements are analyzed with regard to the specified func-
tionality or quality. If the required functionality or quality is identical the requirements are
merged. Merging requirements are documented in the Security Analysis Model, referencing
the superset of security goals, threats, security requirements purposes, and elements of the
Business Process Model as well as the merged security requirements. Security requirements
are analyzed with regard to the assigned elements of the Business Process Model to identify
conflicts. The required functionality or quality of security requirements assigned to the same
elements is analyzed. In case of conflicts, a compromise is formulated or predominant security
requirements are selected and documented in the Security Analysis Model.

No security requirements are specified for the Replan Process that require the same func-
tionality. Nevertheless, it is possible to think of a security requirement stemming from a
non-repudiation security goal for the Pool “P1” that requires the possibility to check the execu-
tion sequence of the Pool “P1” after the Activity “T14” in retrospect. This security requirement
would then be merged with the security requirement “Check P1 Execution Sequence in Retro-
spect”, referencing the superset of security goals, threats, elements of the Business Process
Model, as well as the merged security requirements.

76

4.5. Activities

4.5.5.5. Validate Security Requirements

The elicitation of security requirements is an important activity to design secure, electronic
business processes. In order to provide a sound foundation for the security design, the security
requirements are validated by the Security Analyst. Primarily, validation includes two aspects:
All security goals have to be covered by security requirements and all threats have to be covered
by security requirements. Additionally, the Security Analyst checks the security requirements
with regard to best practices for their specification.

To validate coverage of security goals and threats by the security requirements, (at least two)
traceability matrices are derived enumerating all security goals and referenced elements of the
Business Process Model as well as threats. Security requirements and the assigned elements
of the Business Process Model are enlisted and coverage is marked in the matrices. The
compliance check depends on the best practices selected in the Process Model Configuration.

Exemplary, for the Replan Process the security goal “P1 Process Integrity” and the threat
“Tamper P1 Execution Sequence” (impacting all Sequence Flow elements contained in Pool
“P1”) have been identified. The security requirement “Check P1 Execution Sequence in Ret-
rospect” covers the security goal “P1 Process Integrity” and the threat “Tamper P1 Execution
Sequence”. The elements referenced by the security requirement and the threat of the Business
Process Model are identical. Therefore, the validation succeeds.

4.5.6. Design Controls
4.5.6.1. Overview

During this activity, controls are introduced to mitigate threats identified for assets of the
electronic business process and to meet the specified security requirements. As SecEPM
focuses on the gap between business process models and the design of proper controls,
complementing security considerations and measurements addressing aspects like service,
operating system, network, and physical security are not considered by SecEPM (cf. section
4.2). Therefore, not every security requirement might be met with controls provided by the
BPMS. For these requirements, assumptions are formulated that have to be fulfilled by the
environment.

Similar to requirements elicitation, the design of controls separates identification of can-
didate controls as well as selection and detailing of actual controls. Selected controls are
consolidated to avoid redundancy. Assets that are introduced by the selected controls have to
be included in the security analysis. Remaining security requirements and threats not covered
by controls are specified with assumptions. The resulting set of controls and assumptions are
validated to check that all security requirements are addressed. The Business Process Engineer
is responsible for the execution of the Design Controls activity supported by the Security Ana-
lyst. The activity consumes the Security Analysis Model as major input and creates or updates
the Security Design Model. As assets might be introduced by controls, the Security Analysis
Model gets updated accordingly. The Control Catalog provides a precompiled set of applicable
controls supporting the identification of candidate controls. The Process Model Configuration
and the Information Security Policy provide guidelines and definitions, the Business Process

77

4. Security Engineering Process Model

Name Design Controls
Aim Design of security controls to fulfill the security requirements
Use Selection and tailoring of controls to cover the security requirements
Input Process Model Configuration, Control Catalog, Information Security Policy, Business
Process Model
Output Security Analysis Model, Security Design Model
Roles Business Process Engineer (responsible), Security Analyst
Tasks e Identify Candidate Controls
e Select Controls
e Consolidate Controls
e Integrate Assets Introduced by Controls
e Provide Assumptions
e Validate Controls

Table 4.8.: Activity: Design Controls

Model the context for the selection of appropriate controls. Table 4.8 provides an overview of
the activity Design Controls.

4.5.6.2. Identify Candidate Controls

The Business Process Engineer identifies candidate controls selecting applicable control
classes from the Control Catalog. A control class is applicable if it meets a security requirement
with regard to (a subset of) security goal classes, threat classes, and protects elements refer-
enced by the security requirement. Applicable control classes are instantiated and provided as
candidate controls.

For every control class from the Control Catalog and security requirement from the Security
Analysis Model security goal classes and threat classes are compared to identify candidate
controls. If a control class addresses at least a subset of the enumerated elements for each
aspect, the referenced elements of Business Process Model from the security requirement
are compared with the elements that might be protected by the control class. If (a subset
of) the referenced elements can be protected by the control class, a new candidate control is
instantiated in the Security Design Model providing at least label, description and a reference
on the security requirement. If an instance of the control class requires instances of other
control classes, respective candidate controls are instantiated and references are documented
for the dependent candidate control.

Exemplary, the control class “Log Process Execution” addresses the security goal class
“Integrity” and mitigates threats of the class “Tampering Execution Sequence” providing means
to detect attacks. These aspects correspond to those of the security requirement “Check
P1 Execution Sequence in Retrospect”. As the control class protects elements of the type
Control Flow and the security requirement references all Control Flow elements of Pool “P1”,
a candidate control “Log P1” is instantiated from the control class “Log Process Execution”
referencing the security requirement “Check P1 Execution Sequence in Retrospect”.

78

4.5. Activities

4.5.6.3. Select Controls

Generally, controls affect not only security properties but other properties of an electronic
business process as well such as maintainability, performance, usability etc. Therefore, candi-
date controls have to be analyzed with respect to their impact on those properties to minimize
unintended impact. Furthermore, different sets of controls might provide similar protection
levels and meet the same security requirements. Hence, from the list of candidate controls a
set of controls is selected that minimizes negative impact on the electronic business process
and meets the security requirements appropriately.

The analysis of the impact of candidate controls on the electronic business process is not
within the scope of SecEPM. Guidance artifacts should be provided to assess the impact and
provide respective selection criteria (e.g., adapting [EY07, NEF08, KSS12]). Similarly, criteria
for the selection of comparable sets of controls should be provided in the Process Model
Configuration to allow for an effective selection. Candidate controls that are not selected are
marked as discarded or removed from the Security Control Model. For the Replan Process,
only one candidate control is instantiated that is now selected as actual control.

4.5.6.4. Consolidate Controls

Several controls instantiating the same control class might have been documented in the
process of identification and selection of controls. If those controls meet security goals with
similar ratings they might be merged to avoid redundancies. Merged controls maintain all
relations to respective security requirements, depending controls, and protected elements in
the Business Process Model.

For the merging, controls from the same control class that reference security requirements
refining security goals with similar ratings are identified. A new, merging control is specified
in the Security Design Model, referencing the superset of security requirements, depending
controls, and protected elements as well as the merged controls. No controls instantiating the
same control class are documented for the Replan Process.

4.5.6.5. Integrate Assets Introduced by Controls

Controls might introduce new assets if they are applied for an electronic business process.
Those assets need to be considered in the security analysis the same way as other assets.
Therefore, they are included in the Security Analysis Model, respective security goals and
requirements are identified, assessed, and specified, and it is checked, whether new controls
are necessary for the protection of those assets.

For every control that is documented in the Security Design Model introduced assets are
identified. If already existing assets are identical with the asset to be introduced, these assets
are merged. Resulting assets are documented in the Security Analysis Model referencing the
respective controls.

Exemplary, the control “Log P1” introduces the new asset “P1 Log File”. This asset is docu-
mented in the Security Analysis Model referencing the control “Log P1”.

79

4. Security Engineering Process Model

4.5.6.6. Provide Assumptions

Not every security requirement might be met with a corresponding control class from the
Control Catalog. Furthermore, controls might rely on further (e.g., organizational) controls
that are not covered by control classes provided in the Control Catalog. Security assumptions
specify constraints on the environment in order to meet those security requirements or
preconditions (cf. definition 15).

To provide necessary assumptions security requirements in the Security Analysis Model
are identified that are not addressed by (at least) one control. Furthermore, controls are
identified that rely on other controls that are not documented in the Security Design Model. An
assumption is specified in the Security Design Model for every identified security requirement
and missing control, providing label, description and references on the respective security
requirement or control.

In case of the Replan Process, every security requirement is met in the Security Design Model.
Nevertheless, it is (very) likely that (e.g., physical) access to the BPMS has to be restricted. This
security requirement would be addressed by an assumption specified in the Security Design
Model.

4.5.6.7. Validate Controls

The security of the electronic business process relies on the appropriate selection of of controls.
Therefore, the controls are validated by the Security Analyst. The validation concentrates on
coverage with regard to security requirements and controls as well as assumptions. Every
security requirement has to be met by at least one control or assumption. Additionally, the
Security Analyst checks plausibility and feasibility of selected controls and assumptions.

For every security requirement referencing controls and assumptions are identified to
validate the coverage of security requirements. For every control, security goal classes and
protected elements of the Business Process Model are compared with the respective elements
of the security requirement. If all elements are covered, the security requirement is met. If
some of the elements are covered, the security requirement is partly met. If an assumption is
assigned to the security requirement, the security requirement is considered. If every security
requirement is at least considered, the validation succeeds. Nevertheless, for every security
requirement that is only partly met, the Security Analyst has to confirm sufficient coverage.

The Security Analysis Model specifies the security requirement “Check P1 Execution Se-
quence in Retrospect”. The referencing control “Log P1” and the security requirement specify
the same security goal and the same elements in the Business Process Model. Therefore, the
control meets the security requirement and the validation succeeds.

4.5.7. Map Controls
4.5.7.1. Overview

The activity Map Controls highlights the nexus between design and implementation. Capabili-
ties of runtime components are analyzed to implement the controls specified in the Security

80

4.5. Activities

Name Map Controls
Aim Map controls onto runtime environment capabilities
Use Provide platform specific details to allow for a translation of the generic security design
into implementation artifacts
Input Process Model Configuration, Runtime Capability Model, Business Process Model
Output Security Design Model
Roles Business Process Engineer (responsible), Developer
Tasks e Identify Candidate Control Implementations
e Select Control Implementations
e Configure Control Implementations
e Check Control Coverage

Table 4.9.: Activity: Map Controls

Design Model. Matching capabilities are selected and mappings between controls and their
implementations utilizing those capabilities are specified.

Similar to the design of controls, the mapping of controls separates the identification of
candidate control implementations and the selection of control implementations. Control
implementations are detailed selecting configuration options and necessary information
considering the target environment. Finally, the coverage of all controls with control imple-
mentations is checked. The Business Process Engineer is responsible for the mapping of
controls supported by the developer that provides detailed technical knowledge with regard
to the runtime component and the target environment. Major input work products are the
Security Design Model providing the controls to be implemented and the Runtime Capability
Model describing possible control implementations for the runtime component. The Process
Model Configuration and the Business Process Model provide guidelines and definitions as
well as context for the selection of appropriate control implementations. Table 4.9 provides an
overview of the activity Map Controls.

4.5.7.2. Identify Candidate Control Implementations

The Business Process Engineer identifies candidate control implementations analyzing control
implementation classes provided by the Runtime Capability Model of the runtime component
that has been selected for the target environment. Matching control implementation classes
are instantiated as candidate control implementation.

In order to identify candidate control implementations, for every control implementation
class provided in the Runtime Capability Model those controls are selected that instantiate
a control class referenced by the control implementation class. If (a subset) of threat classes
and security requirement purposes referenced by the control implementation class match
with those of the selected controls, a candidate control implementation is created in the
Security Design Model. It is providing at least label, description, and a reference to the
matching controls. If the control implementation class references other required control
implementation classes, respective candidate control implementations are instantiated that
are referenced by the dependent candidate control implementation.

81

4. Security Engineering Process Model

Exemplary, the control implementation class “Execution Log” for the runtime component
“Actitivi” references the control class “Log Process Execution”, the threat class “Tampering
Execution Sequence”, and the control purpose “Detection”. Therefore, the control “Log P1”
matches the control implementation class. A candidate control implementation “Activiti Log
P1” is instantiated from the control implementation class “Execution Log” referencing the
control “Log P1”.

4.5.7.3. Select Control Implementations

Comparable with the task Select Controls from the activity Design Controls, control implemen-
tations affect not only security properties of an electronic business process. Hence, candidate
control implementation have to be analyzed with regard to their impact on the runtime com-
ponent, other candidate control implementations, and the target environment. The Business
Process Engineer supported by the Developer selects from the candidate control implemen-
tations a set of control implementations minimizing the negative impact on the electronic
business process.

The analysis of the impact of candidate control implementations on the electronic business
process is not within the scope of SecEPM. Guidance artifacts should be provided to assess
the impact and supply criteria for the selection of appropriate control implementations.
Candidate control implementations that are not selected are marked as discarded or removed
from the Security Design Model. Generally, the consolidation of controls in the activity Design
Controls should prevent redundancy. Nevertheless, a consolidation of the selected control
implementation might be useful to improve clarity and conciseness.

For the Replan Process, the candidate control implementation “Activiti Log P1” is selected
as control implementation.

4.5.7.4. Configure Control Implementations

A control implementation specifies the utilization of a capability of a particular runtime
component to implement a control for an electronic business process. Configuration details
and specifics of the target environment have to be provided for control implementations to
become effective. The Developer provides those details for the configuration of all specified
control implementations.

In the case of the control implementation “Acitiviti Log P1”, the scope for the logging is
the execution of all activities by the Acitiviti business process engine. The property “Log
Level” specified for the control implementation class has to be set to “Fine” to provide logging
information on start and ending of an activity.

4.5.7.5. Check Control Coverage

To validate the mapping of controls onto capabilities of runtime components, the coverage
of all controls with respective control implementations has to be checked. For every control
specified in the Security Design Model respective control implementations are identified and
analyzed. If all controls are covered, the check is successful.

82

4.5. Activities

Name Generate Control Artifacts
Aim Create artifacts to implement the controls
Use Transform the Security Design Model into Implementation Artifacts
Input Process Model Configuration, Security Design Model
Output Implementation Artifacts, Business Process Model
Roles Developer (responsible), Business Process Engineer
Tasks e Provide Target Environment
e Transform Control Artifacts
e Deploy Control Artifacts

Table 4.10.: Activity: Generate Control Artifacts

For the Replan Process, the control “Log P1” is covered by the control implementation
“Activiti Log P1”. Therefore, the check succeeds.

4.5.8. Generate Control Artifacts and Test Cases

The activities Generate Control Artifacts and Generate Test Cases address the transformation
of specified control implementations into Implementation Artifacts and their testing. As both
activities depend largely on the target environment and the development-time tooling, this
section provides only a general overview. Tables 4.10 and 4.11 summarize the information on
these activities.

To generate artifacts for the implementation of the controls, the target environment has
to be specified or access to the respective infrastructure has to be provided (e.g., current
configuration of the components of the BPMS). Then, control implementations specified in
the Security Design Model are transformed into corresponding Implementation Artifacts. The
resulting artifacts are then deployed to the target environment. The activity is assigned to the
Developer, supported by the Business Process Engineer. Major input work products are the
Security Design Model specifying the control implementations and the Process Model Con-
figuration providing information on the target environment. Results are the Implementation
Artifacts and potentially an adopted Business Process Model including information on control
implementation.

The generation of test artifacts is very similar to the generation of implementation artifacts.
The differences primarily address the information about the test environment instead of the
target environment and the assignment of the activity to the Tester instead of the Developer.

Depending on the environment and the tooling, individual tasks of both activities are not
necessarily fully automated. Also, generated artifacts may not always be ready to use binaries or
configurations. Test and Implementation Artifacts may also include skeleton implementations,
partial configurations, and aids to support or test the actual implementation of controls.

83

4. Security Engineering Process Model

Name Generate Test Artifacts

Aim Create artifacts to test the functioning of the controls
Use Transform the Security Design Model together with the Security Analysis Model into Test
Artifacts

Input Process Model Configuration, Security Analysis Model, Security Design Model,
Implementation Artifacts, Business Process Model

Output Test Artifacts

Roles Tester (responsible), Business Process Engineer, Developer

Tasks e Provide Test Environment
e Transform Test Artifacts
e Deploy Test Artifacts

Table 4.11.: Activity: Generate Test Artifacts

4.6. Guidance

The preceding section detailed activities of SecEPM, i.e., descriptions of the tasks that are
proposed to be performed in order to develop secure electronic business processes as well as
respective roles and work products. This section focuses on explanations on how to execute
these tasks and presents exemplary guidance provided by SecEPM. Useful guidance artifacts
vary largely between different security engineering processes based on SecEPM since they de-
pend on environmental conditions. Therefore, the selection of exemplary guidance presented
in this section demonstrates the concept and its application.

We detail two examples in this section. The first example provides guidance on how to
prepare and integrate guidance artifacts, the other example explains the application of an
existing method for the rating of security goals in a SecEPM-based security engineering process.
Generally, guidance encompasses several artifacts such as one or more guidelines, examples,
checklists, templates, and references. Each example is introduced explaining its objective and
its relation to other entities of SecEPM. A summary of the respective method or technique is
provided including relevant references. Guidelines are documented briefly, accompanying
artifacts (e.g., simple checklists and templates) are listed but not represented here. Sample
applications are sketched in the guidelines and included in the description of the respective
tasks. More details on guidance artifacts are provided in the exemplary study in chapter 6 and
in the SecEPM repository (cf. section 4.7).

4.6.1. Provide Guidance Artifacts for Existing Methods
4.6.1.1. Overview

Guidance artifacts complement activities defined for SecEPM: Activities describe a set of tasks
that is performed to aim at a specific purpose and detail what has to be done (by whom with
which result). In contrast, guidance artifacts explain and demonstrate how to fulfill one or
more given task. Therefore, guidance artifacts allow for the integration of existing (security
engineering) methods and techniques into SecEPM-based security engineering processes.
As this variability and integrability is an important property of SecEPM, this section details

84

4.6. Guidance

Name Provide Guidance Artifacts for Existing Methods

Aim Integration of established methods and techniques into security engineering
processes based on SecEPM

Related entities e Tasks: Setup Process/Provide Guiding Artifacts
e Work products: Process Model Configuration
e Roles: Process Model Engineer, *

Guidelines e Provide Overview

e Provide Specific Guidelines

e Provide Additional Guidance Artifacts
Additional e Template: Tabular guidance overview
artifacts e Reference: EPF Method Development Practice

Table 4.12.: Guidance: Provide Guidance Artifacts for Existing Methods

some guidance for the provision of guidance artifacts with the purpose of integrating existing
(security engineering) methods.

This guidance on the provision of guidance artifacts is split into four major sections: Beside
this overview three guidelines are detailed that describe different aspects of the provision of
guidance artifacts. All guidelines support the execution of the task Provide Guiding Artifacts
of the activity Setup Process. The guidelines address primarily the Process Model Engineer
responsible for simplicity, coherence, and quality of the resulting guidance artifacts. Neverthe-
less, the individual descriptions are most likely provided by method experts (e.g., the Security
Analyst). Guidance artifacts are integrated in the SecEPM repository and alter the Process
Model Configuration.

The provision of guidance artifacts with the purpose of integrating existing methods has to
consider at least the following aspects: An overview has to be provided that introduces the
respective method and assigns the guidance artifacts to relevant SecEPM entities. The descrip-
tion of the application of the method should be provided as specific guidelines. Additional
guidance artifacts like the explanation and definition of concepts, templates, examples, and
checklists should be provided as necessary.

4.6.1.2. Provide Overview

For every method that gets integrated into SecEPM, an overview of this method and its inte-
gration into SecEPM should be supplied. This overview is prepared by a method expert (e.g.,
the Security Analyst) and checked and integrated by the Process Model Engineer in the task
Provide Guiding Artifacts from the activity Setup Process. At first, this overview should name
the integrated method (and possibly its source) and detail a short motivation considering aim
and purpose of the method and the integration into SecEPM.

Next, the overview should name the different guidance artifacts that are provided to integrate
the method into SecEPM. At least, an overview and a specific guideline should be supplied
that details the application of the method in the course of the respective security engineering
tasks. All (major) guidance artifacts should be related to respective entities of SecEPM, e.g.,
the guidelines with the respective tasks, roles, and work products.

85

4. Security Engineering Process Model

The overview should also include an introduction to the method to facilitate comprehen-
sion of the general procedure and the relevance of the other guidance artifacts. In order to
summarize these information, a tabular overview might be generated. A template for this
overview is entailed in the SecEPM repository, an example is provided for the overview to this
guideline (cf. table 4.12 on the preceding page).

4.6.1.3. Provide Specific Guidelines

The description and explanation of the application of the method to be integrated is detailed
by one or more method specific guideline. These guidelines are created by a method expert
(e.g., the Security Analyst) and reviewed and integrated by the Process Model Engineer in the
task Provide Guiding Artifacts from the activity Setup Process.

The decision with regard to the provision of one or more guidelines for one method should
consider the cohesion of the resulting guideline (i.e., it should not lump together too many
different aspects or split into too many very closely related guidelines) and the coupling with
the different entities from SecEPM, especially the tasks. As a rule of thumb, a guideline should
not be assigned to tasks from different activities and have more than two to three roles.

A guideline should reference the tasks it supports, the necessary roles, and the work products
it alters. Further guidance artifacts supporting the application of the guideline should be
referenced as well. Core of a guideline is the explanation of the steps to take to apply the
method in the context of the referenced tasks. The Method Development practice from the
Eclipse Process Framework (EPF) provides further practical hints on the definition of method
fragments including guidance artifacts®.

4.6.1.4. Provide Additional Guidance Artifacts

Additional guidance artifacts might ease the application of the method and the respective
guidelines. These additional guidance artifacts like examples, templates, checklists, references
etc. are provided by a method expert (e.g., the Security Analyst) and checked and integrated
by the Process Model Engineer in the task Provide Guiding Artifacts from the activity Setup
Process. Similar to guidelines, related entities from SecEPM should be referenced by every
guidance artifact, although these artifacts might mainly get referenced from other entities
(especially guidelines).

4.6.2. Rate Security Goals Adapting IT-BPM
4.6.2.1. Overview

In order to prioritize efforts and investments aiming at the security of an electronic business
process, specified security goals have to be differentiated with regard to the impact of their
violation. This rating of security goals should be supported by a systematic approach since the
results should be repeatable and transparent for all stakeholders. The IT-BPM provides such a

86

4.6. Guidance

Name Rate Security Goals Adapting IT-BPM
Aim Systematic rating of security goals
Related e Tasks: Setup Process/Provide Basic Definitions, Identify Assets/Analyze
entities Dependencies Between Assets and Resources, Assess Security Goals/*
e Work products: Process Model Configuration, Security Analysis Model
e Roles: Security Analyst, Domain Expert, Business Process Engineer
Guidelines e Define Damage Scenarios and Rating Criteria
e Analyze Dependencies
e Apply Rating Criteria
e Aggregate Security Goal Ratings
Additional e Example: List of damage scenarios and rating criteria
artifacts e References, concepts

Table 4.13.: Guidance: Rate Security Goals Adapting IT-BPM

method. Guidance for the adaptation and application of this method in a security engineering
process based on SecEPM is detailed in this section.

Beside this overview, four guidelines are supplied describing the following tasks (cf. ta-
ble 4.13): The first guideline supports the definition of damage scenarios and rating criteria in
the task Provide Basic Definitions from the activity Setup Process. Another guideline details
the analysis of dependencies for the task Analyze Dependencies Between Assets and Resources
from the activity Identify Assets. The last two guidelines describe the application of rating
criteria in order to rate security goals as well as the aggregation of security goal ratings de-
pending on their dependencies (tasks Rate Individual Security Goals, Analyze Dependencies
Between Security Goals, and Adjust Security Goal Ratings from the activity Assess Security
Goals). The influenced or altered work products are the Process Model Configuration entailing
basic definitions and the Security Analysis Model specifying identified dependencies and
actual ratings. The first guideline addresses the Security Analyst and aims at supporting the
provision of necessary definitions during the Setup Process activity. The other guidelines
address mainly the Business Process Engineer and partly the Domain Expert supporting the
named tasks. Additionally, a list of exemplary damage scenarios and rating criteria is delivered
with the SecEPM repository as starting point for the Security Analyst. Also, references to the
original method and definitions of specific concepts like damage scenario and aggregation
strategy are given in the SecEPM repository.

The IT-BPM is a methodology for the management of information security. It is published
as a series of standards by the Bundesamt fiir Sicherheit in der Informationstechnik (BSI)
(German Federal Office for Information Security) as “IT-Grundschutz” [Bun08] in order to
establish and maintain an appropriate level of protection for information assets of an organiza-
tion. As it aims at the management of information security it is only weakly linked to security
engineering in the first place. Three properties qualify the rating approach from the IT-BPM
as a good candidate for application in SecEPM-based security engineering processes: First,
information security management relies similar to security engineering on repeatable and
transparent ratings of security goals. Second, one of the most important objectives of IT-BPM

5 nttp://www.eclipse.org/epf/

87

http://www.eclipse.org/epf/

4. Security Engineering Process Model

is the reduction of expenses of the security process within an organization. It addresses there-
fore not only security professionals but also IT and project managers and provides extensive
documentation. Third, IT-BPM is (at least in German-speaking countries) widely applied and
results from those efforts can be partly reused applying the method in security engineering
(e.g., definitions of damage scenarios and rating criteria). Consequently, resulting ratings are
aligned between information security management and security engineering.

The method to rate security goals from the IT-BPM proposes the following procedure:
First, damage scenarios are defined that provide the analysis background in order to assess
possible negative consequences of violations of security goals. Second, rating criteria capturing
individual negative consequences are defined that assign a specific rating from an ordinal
scale to a security goal. Third, as ratings of security goals might be influenced by dependencies
between assets, those dependencies are explicated and an aggregation strategy is defined
for the rating of each (dependent) security goal encompassing maximum, cumulation, or
distribution strategy. Fourth, the actual rating is derived from the criteria and the dependency
structure. The following guidelines describe how to apply the rating method within the course
of a SecEPM-based security engineering process.

4.6.2.2. Define Damage Scenarios and Rating Criteria

In order to rate security goals following the IT-BPM the Security Analyst supported by the
Domain Expert provides necessary definitions for the Process Model Configuration within the
task Provide Basic Definitions from the activity Setup Process.

At first, damage scenarios are identified. A damage scenario describes a typical scenario that
might result from the violation of security goals. Damage scenarios are stakeholder-centered,
i.e., they describe negative consequences from the point of view of a relevant stakeholder
(which will often be the business point of view) and not from a technical perspective. Damage
scenarios need not to be disjunctive, the violation of one security goal might address several
damage scenarios. Nevertheless, the set of defined damage scenarios should cover all typical
negative consequences. Damage scenarios are defined providing at least a unique label and
a short description. Best practice from the BSI recommends to capture relevant aspects of
every damage scenario by formulating one or more questions for each security goal class and
damage scenario. Typical damage scenarios encompass “Violations of laws, regulations or
contracts”, “Physical injury”, “Financial consequences” and others. One question to capture a
relevant aspect of the damage scenario “Financial consequences” with regard to the security
goal class “Confidentiality” might be: “Could the publication of confidential information lead
to compensation claims?”

In the next step, for every damage scenario and rating one or more criteria are defined
that explicate conditions that subsume a security goal under this damage scenario and rating.
Criteria must be disjunctive with regard to one damage scenario and different ratings. They
determine the limits of each damage scenario and the respective rating. They should be easy
to decide from the stakeholder’s perspective and exclude personal opinions or other subjective
factors as much as possible. It is often helpful to decide for one or more similar aspects
of a damage scenario addressed by the corresponding questions on limits to distinguish
between the different ratings and note them as criterion. For the damage scenario “Financial

88

4.6. Guidance

consequences” the financial loss might be qualified (and also quantified) as “Acceptable loss
(< 100,000 EUR)” (assigned rating: “Normal”), “Considerable loss (>= 100,000 EUR and <
10,000,000 EUR)” (assigned rating: “High”), “Critical loss (>= 10,000,000 EUR)” (assigned
rating: “Very high”).

An additional guidance artifact provided in the SecEPM repository provides a list of exem-
plary damage scenarios, rating criteria, and questions extracted from [Bun08].

4.6.2.3. Analyze Dependencies

The dependencies between the ratings of security goals are considered by the IT-BPM analyzing
dependencies between assets in a top-down manner (relating assets from different levels of
abstraction or perspectives like business process, application, network etc.). The result is an
a-cyclic dependency graph with assets as nodes captured in the Security Analysis Model. This
guideline explains the adoption of the technique for the application on electronic business
processes in the task Analyze Dependencies Between Assets and Resources from the activity
Identify Assets.

In order to support the generation of a-cyclic dependencies between the assets, an ordered
list of asset types is defined by the Business Process Engineer supported by the Domain Expert
starting from the most general or abstract one. Depending on the technique for asset identifi-
cation, the following asset types might apply: business assets, process assets (matching Pool
entities), service assets (matching Activity entities), and message assets (matching Message
entities).

In a second step, the Business Process Engineer supported by the Domain Expert analyzes
and documents dependencies between the identified assets. They start with assets from the
first type in the ordered asset type list and assets from the next type in the list (the “lower”
assets support matching “higher” assets). One asset might support several other assets. This
creation of dependencies is repeated for every step in the list of asset types. For modeled (non-
business) assets, the dependency might be generally be deduced from an existing “contains”
or “connected with” relation of the respective element in the business process model. There
might be multiple resulting (a-cyclic) dependency graphs, every asset not contained in an
dependency graph is counted as single dependency graph.

In order to trace security goals, requirements, and controls back to business assets, every
dependency graph should include at least one business asset. Therefore, dependency graphs
not containing a business asset (orphan graphs) need revision and have to be related to existing
(non-orphan) dependency graphs connecting assets of the “highest” type in the orphan graph
with assets of an even “higher” (or preceding) type in the other graph.

If the following assets have been identified: “Successful POD”, “Pool P1”, “Message M1”, and
“Message M2”, the following dependency graph is established: “Successful POD” is supported
by “Pool P1” which is supported by “Message M1” and “Message M2”.

4.6.2.4. Apply Rating Criteria

In order to document the basis for an actual rating of a security goal, the Business Process
Engineer supported by the Domain Expert assigns to every security goal all matching criteria

89

4. Security Engineering Process Model

from all damage scenarios defined in the Process Model Configuration in the task Rate Individ-
ual Security Goals from the activity Assess Security Goals. The assignments are stored in the
Security Analysis Model.

Every security goal specified for a business asset needs at least one criterion to be assigned
to it. It might not be reasonable to assign rating criteria to modeled assets. Those security
goals will be determined by the ratings for the security goals for the supported business assets.
Rationale or comments might be added as notes to the assignments. To derive an individual
rating for a security goal, the maximum rating from all assigned criteria is evaluated as resulting
rating.

If the criterion “Limited financial losses” is assigned to the security goal “Successful POD”
the rating is evaluated as “Normal”.

4.6.2.5. Aggregate Security Goal Ratings

The dependencies between the security goals are considered analyzing the dependencies
between the corresponding assets. In a first step, the dependencies between the assets are
qualified for each security goal by the Business Process Engineer with regard to an aggregation
strategy in the task Analyze Dependencies Between Security Goals. The resulting ratings for
the security goals are derived in a second step applying these aggregation strategies to the
individual ratings of the security goals in the task Adjust Security Goal Ratings (both tasks are
from the activity Assess Security Goals, results update the Security Analysis Model).

Aggregation strategies define how ratings of supported assets influence the rating of the
supporting asset. The IT-BPM proposes the application of one of three strategies to consider
the influences of asset dependencies: the maximum, the cumulation, and the distribution
strategy. If the maximum strategy is applied, the rating of a security goal is set to the maximum
of ratings of security goals of supported assets and its individual rating. If the cumulation
strategy is applied, the rating of a security goal is increased (e.g., on the subsequent level) after
the application of the maximum strategy. If the distribution strategy is applied, the rating of
a security goal is decreased (e.g., on the preceding level) after application of the maximum
strategy.

For every security goal, the initial aggregation strategy is set to the maximum strategy. After
that, the Business Process Expert might apply the cumulation strategy to individual security
goals, if a cumulation of different supported (business) assets occur to a security goal, e.g.,
if low-rated) security goals from multiple business assets depend on the confidentiality of
one message. Inversely, the distribution strategy might be applied to a security goal, if only
a joint violation of several security goals affect a security goal of a supported asset, e.g., if a
(high-rated) security goal from one business asset is only endangered by the violation of the
integrity of a message and the integrity of the execution sequence of a process.

4.7. Tool Support and Integration

The preceding sections introduced the structure and key entities of SecEPM, presented its
security engineering activities, and demonstrated guidance artifacts that support the execution
of the activities. In order to apply SecEPM, two aspects are still missing: tool support for

90

4.7. Tool Support and Integration

-
core.default.cat_def.base <~ practice.tech.secepm.base

N
|

,
|
|
|
|
|
/

core.default.role_def.base <—' process.secepm.base

Figure 4.7.1.: Plug-in structure of SecEPM SPEM (UML component diagram)

authoring, storage, retrieval, and instantiation of SecEPM resources and integration of SecEPM
into existing software development process models. The following section 4.7.1 describes
tooling and its application. After that, integration of SecEPM into existing software engineering
process models is discussed and an example integration is detailed in section 4.7.2. Work in
this section is partly based on a master’s thesis written in the context of this thesis [Mol12].
Results presented here have been largely reviewed, re-engineered, and enhanced compared to
that thesis.

4.7.1. Tool Support to Tailor a Security Engineering Process

In order to apply a process model like SecEPM an actual security engineering process tailored
to the needs of the development project has to be defined. To facilitate this procedure, the
application of supportive tooling providing a computer aided method engineering (CAME)
environment is recommended in literature (e.g., [Bri96, HSR10]). Tooling to provide a CAME
environment might range from simple editors supporting given method engineering languages
to integrated tool chains with sophisticated retrieval, validation, and generation facilities to
automate recurring tasks in the situational method life cycle [NRO8].

Following Arni-Bloch, a comprehensive CAME environment should support at least a repos-
itory as well as tooling for authoring and instantiation [AB05]. The repository is used to store
and retrieve method fragments from the method base. Method fragments are defined, assem-
bled, and tailored using the authoring tooling. The tooling for instantiation is used to generate
and publish the actual security engineering process and supportive artifacts.

We selected the EPF Composer® in order to support storage and authoring of SecEPM as
well as instantiation of SecEPM-based security engineering processes. The EPF Composer
is an Eclipse-based rich client available under the Eclipse Public License. It integrates the
functionality demanded by Arni-Bloch within an extensible integrated development envi-
ronment (IDE) and is considered as advanced tool in the field [SHAAR12]. Several software
development process models have been published using the EPF Composer based on SPEM.
Hence, the entities of SecEPM have been modeled using the EPF Composer applying SPEM.

Packaging and naming of modeled elements for SecEPM is largely determined by the library
management approach of SPEM and the EPF Composer. Figure 4.7.1 depicts the plug-in

6 nhttp://www.eclipse.org/epf/

91

http://www.eclipse.org/epf/

4. Security Engineering Process Model

structure and their most important dependencies. Plug-ins with gray background are provided
by the EPF.

¢ core.default.cat_def.base: This plug-in defines common categories for SPEM-based process
models. These include activity groups such as “requirements” that are used to categorize
process fragments as well as so called domains like “architecture” that are applied to
product fragments. Matching categories are reused to model SecEPM categories.

¢ core.default.role_def.base: Common roles are defined in this plug-in. This includes the
roles project manager, developer, and tester. Matching roles are reused to model SecEPM
roles.

¢ practice.tech.secepm.base: This plug-in entails basic method fragments and chunks of
SecEPM. This includes role, work product, and task definitions as well as their relations.
Similarly, guidance artifacts are defined within this plug-in.

¢ process.secepm.base: Compositional method chunks such as activities and process pat-
terns are defined in this plug-in. Therefore, method fragments from the plug-in prac-
tice.tech.secepm.base might be reused without any dependencies to this plug-in.

Figure 4.7.2 displays the modeling of individual SecEPM elements and their relations using the
task Identify Business Assets as example (cf. section 4.5.2.2). The task is modeled applying the
Task Definition element from the metamodel. The Business Process Engineer and the Domain
Expert are modeled applying the Role Definition element and assigned to the Identify Busi-
ness Assets element using the Performer association. Work Product Definitions apply to the
relevant work products. They are assigned to the defined task using the respective Parameter
association and to the matching roles with the Responsibility Assignment association. The
Identify Assets activity is modeled using the Activity element from the metamodel. The Role
Use and Work Product Use relations are omitted for simplicity. SecEPM itself is modeled as
Process Pattern representing one possible application of the defined activities.

The authoring of SecEPM using the EPF Composer is shown in figure 4.7.3. It displays the
preview of one specific method fragment (the task Identify Business Assets, cf. section 4.5.2.2)
that has been detailed as well as parts of the method base (“Library”) and the current tailoring
(“Configuration”).

Figures 4.7.4 and 4.7.5 depict two exemplary artifacts that have been instantiated using the
EPF Composer: Figure 4.7.4 on page 94 displays a web page that provides all information about
the actual development process utilizing SecEPM. Such web pages are commonly published in
the intranet of developing organizations to disseminate relevant documentation, terminology,
templates etc. to all stakeholders. A project management template for Microsoft Project is
displayed in figure 4.7.5 on page 95. Such templates speed up project initiation based on
tailored development processes and harmonize the actual management of the development
projects.

92

4.7. Tool Support and Integration

uadx3 urewoq
«uopluyap s|os»

[

«swiopad»

139ulbug ssadold ssauisng
«uoniulyep 804>

1

Q

AA:QC_VV

«a|qisuodsay» | “AiorEPUBW:

|9pOJy SS3204d Ssauisng
«uoniuyap 1onpo.d yiom»

(uoneiou WHJS) Msel INdH29S Arejduraxa ue Jo SUIepoIA g’ L' ¥ 2In31]

|9poW sisAjeuy Ajinoag
«uomuyap 1onpo.d som»

«ndino»
«Kiorepuew»
7
7
sjassy ssauisng Ajjuap|
«OIUBP Yl

> <

«swJlopad»

L

«Jeuondo»

Kaijod A1anoss uonewojul
«uomulap 1onpo.d som»

«ndup» «jndul»
«Aloyepuew»

Ve

sjuswaiinbay |
«Ki0bayen» |
«=) |
s
- |
re
«asn» _

“«30B1} JUBJUOD»

uoneInbyuo) [9POIN SS3204d I
«uoiuyap onpoid yiom» |

g
; I
aseq’wdaoes yoayaonoeld|

| siessy ssauisng Ayuap)
«asN Hse}»

—

&

aseq'wdaoas ssaooid

R e ——

«

Bunsau»

sjassy Apuap|
«AyAnoe»

&

—
«Bupnsau»

Nd3%8s
«usened sseo0id»

(S

93

4. Security Engineering Process Model

File Edit Search Configuration Window Help

e H @ D aw it £ (E Ao

| il s

B Library 23 % | &£ & 7 T 0|8 identify_assets identif i =0
5 -
5 Tasks ComESG

[adjust_security_goal_ratings

= - -
= analyze_dependencies_batwaen_assets_aﬂd_\D Task: Identlfy Business Assets
[analyze_dependencies_between_security_go:

= analyze threat_impact [> Disciplines: Requirements
[identify_business_assets

m

4 - [} 3 Expand &ll Sections Collapse All Sections

[27] Configuration &2 7 =08 = Relationships

secepm Roles Primary Performer: Additional Performers:
=P » Business Process Engineer « Domain Expert
4+ Frocesses =
:o. Capability Patt
% Da‘pa utg atterns Inputs Mandatory: Optional
elivery Frocesses EI o Business Process Model « Information Security Policy
(s Custom Categories »_Process Model Confiouratinn <

(@ Guidance ok Description |Stepfs ‘ Ro\leork Products | Guidance | Categories {PrevlewJ

A=A

Figure 4.7.3.: Authoring the SecEPM process model using the EPF Composer

[index.htm

B print

-

[Team| I Activity: Identify Assets

§ Welcome Assignment of assets and entities from the electronic business process, preparation of security goal assessment,
¥ £, Delivery Processes E{DEJ and integration in overall risk management
Rol =

£ Roles Extends: Identify Assets

EI = Wark Products

(38 Architecture e 0 M. Work Breakdown Structure '\ Team Allocation '\ Work Product Usage

(28 Development
= (@ Emironment Expand All Sections Collapse All Sections
Process Hogel Conf
@ifkesqulremems Identification of assets that are impacted by the electronic business process
=) 4 Back to top

Ll ——(—

Figure 4.7.4.: Documentation of a SecEPM-based security engineering process

94

4.7. Tool Support and Integration

Task Resource Project View Acrobat Format o @ & =
o = [
= =l 4 . Mark on Track ~ P Inspect ~ - — -
=_| J ‘* Calibri -1 - Eg%%ﬁ ._w 5? -I::> \>) ; ﬁ - H}éﬁ
Ehd =2 Respect Links =5 Move ~ 2-
Gantt | Paste B J U | &~ A- Zo 88 == s _ Manually| Auto Task Infarmation .. | Scroll
chat- | - F = “@coen | # = Inactivate Schedule [Schedule| (4 Mode - - B | toTask @
View Clipboard Font Schedule Tasks Insert Properties Editing
@
=
T Start |] Finish
E Mon 18.03.13 Mon 12.03.13
@ [Tk . |TaskiName - |13 [17 Mar '13 [24 Mar '13 [31 Mar 13 -
Made Tw[T[F[s[s[m[T[w[T[F[s[s[m[T[w[T[F]s|s[m[T[w[T[F]s
& E% 'T:;' Define Control Classes &% Security Analyst;Business Process Engineer;Domain Expert;F
7 Eg =3 Provide Capabilities of Runtime Environment &5 Developer;Business Process Engineer;Process Model Enginegl
. -1 :
E 8 Eg Hq) Provide Guiding Artifacts &8 Process Model Engineer;Business Process Engineer;Domain
(=] =
g = @ =] = Identify Assets W
& ‘Eg = | Identify Business Assets | @ Business Process Engineer;Domain Expert
1u =He S Identify Modeled Assets ; Business Process Engineer;Domain Expert
12 Eg =3 Identify Supporting Resources @ Business Process Engineer;Domain Expert
= . . . | —_— . - . | i
4[] v« [m] »
Ready | s Mew Tasks: Manually Scheduled | |'@m == [} (+)

Figure 4.7.5.: A Microsoft Project template for a SecEPM-based security engineering process
4.7.2. Integration into Software Development Process Models

SecEPM is a process model for security engineering. It provides an integrated representation
of security-related activities, roles, and work products in order to support the development of
secure electronic business processes from asset identification to the configuration of controls.
Being restricted to security-related entities, SecEPM needs to be integrated into existing
software development approaches as it has been discussed before (cf. section 2.4.2).

Two important aspects have to be addressed to integrate a security engineering process
based on SecEPM into an existing software development approach systematically: First,
the integration of method fragments and chunks from two different method bases into one
method base. Second, the integration of method chunks from the integrated method base
into one development process. We will focus on the first aspect in this section as the second is
largely dominated by requirements of the development project and not so much from general
considerations.

The integration of method fragments and chunks from different method bases is regarded
as part of the method engineering discipline. In this section, we adopt an approach presented
by Ralyté et al. [RRO1]. Ralyté et al. consider two main intentions with regard to the integration
of product and process fragments: adaptation of method fragments and construction of
integrated method fragments. Main strategies to address these intentions are name unification,
merge, specialization, generalization, remove, and addition. The name unification strategy is
applied to adjust the terminology used for method fragments. Similar terms with different
semantics are disambiguated, different terms with similar semantics are unified. Method
fragments with similar semantics and structure are consolidated applying the merge strategy.
The similarity of semantics and structure does not only address the imminent meaning and
the dimensions introduced before (perspective, layer of granularity, and level of abstraction, cf.
section 2.3.2) but also include specialization and generality. Complementary, the specialization
strategy is applied to associate more general fragments with more specialized ones. Two
elements with different specialization might be generalized introducing a new generalized

95

4. Security Engineering Process Model

fragment applying the generalization strategy. Redundant or useless method fragments are
eliminated using the remove strategy. The addition strategy is used to introduce new fragments
especially in order to streamline the integrated method fragments.

We demonstrate the integration of SecEPM into OpenUP’, a software development process
model that comprises an iterative and incremental approach within an structured live cycle
published applying the Eclipse Public License [Gus08]. Both process models are compliant
with SPEM and available for the EPF Composer. As SPEM is designed to support method adap-
tation, integration, and tailoring it provides several means to apply the integration strategies
explicated above (cf. section 2.3.2). Therefore, we present our general approach to apply inte-
gration strategies proposed by Ralyté et al. utilizing different mechanisms provided by SPEM
first. Main decisions with regard to the integration of SecEPM and OpenUP are summarized
subsequently.

The integration strategies have to be applied with regard to different kinds of method
fragments. Generally, we consider two distinctions to differentiate our approach: product
versus process fragments and basic versus composite method chunks. The latter adopts the
perspective of SPEM differentiating elements from the Method Content and other packages,
especially the Process Structure package (cf. section 2.3.2).

¢ The application of the name unification strategy is independent of the different kinds of
method fragments: Method fragments with ambiguous or equivocal naming are renamed
using a Variability Element applying the “extends-replace” Variability Type. For example,
the Category “Design” for activities from SecEPM is unified with the Category “Architecture”
from OpenUP renaming the former to the latter.

¢ The application of the merge strategy might get complex. Basic method fragments or
chunks are merged utilizing a Variability Element with the Variability Type “contributes”,
i.e., one method fragment or chunk contributes to the other. In order to merge Activities
Method Content Use and/or Activity Use Kind elements are utilized. Basic breakdown
elements of Activities are merged providing alternative Method Content Use elements
that adapt necessary relationships. Nesting Activities are merged extending one Activity
utilizing “local contribution” and “local replacement” for appropriate nested Activities.
Merging of basic and composite method chunks might need a two step approach utilizing
both a Variability Element and an Activity Use Kind. Exemplary, the Task “Tailor the Process”
from OpenUP is merged with the Activity “Setup Process Model” from SecEPM contributing
the content from the Task “Provide Guiding Artifacts” to the Task “Tailor the Process” first
(utilization of a Variability Element with Variability Type “contributes”). Furthermore, it
extends the Activity “Prepare Environment” from OpenUP that includes the application of
the Task “Tailor the Process” contributing the remaining tasks from “Setup Process Model”
subsequently (utilization of an Activity Use Kind element with “local contribution”).

» The specialization strategy is applied for product fragments introducing a Work Product
Definition Relationship. For other method fragments a Variability Element is utilized
commonly that contributes the relationship between those fragments. If specialization

7 http://epf.eclipse.org/wikis/openup/

96

http://epf.eclipse.org/wikis/openup/

4.7. Tool Support and Integration

includes containment, the more general fragment might simply nest the more specialized
fragment for appropriate fragments (e.g., applying the Activity Use Kind element providing
“local contributions”). Analogous to the application of the merge strategy, specialization of
basic and composite method chunks might need a two step approach. As a simple example,
the Activity “Elicit Security Requirements” from SecEPM is a specialization of the Activity
“Identify and Outline Requirements” from OpenUP and is nested into it (utilization of an
Activity Use Kind element with “local contribution”).

* For the application of the generalization strategy a new method fragment or chunk is de-
fined that is integrated using Method Content Use, a Variability Element with the Variability
Type “replace’, or the existing specialized fragments are nested into the new method chunk.
The generalization strategy is not applied for the integration of SecEPM into OpenUP.

¢ In order to apply the remove strategy individual method fragments or chunks are not
deleted from the method base but either the containing Method Plugin is removed from
the Method Library or the method fragment is removed from the Method Configuration
applied. The remove strategy is not applied for the integration of SecEPM into OpenUP.

e The addition strategy simply introduces a new method fragment or chunk. Exemplary,
a Guidance element explaining the application of a SecEPM-based security engineering
process within an incremental development process might be introduced.

For the actual integration, we take the viewpoint of an integration of SecEPM into OpenUP.
Therefore, OpenUP concepts and structures dominate within the integration process. Other
alternatives encompass the integration of OpenUP into SecEPM or the integration of OpenUP
and SecEPM into an additional process model. Table 4.14 on the following page summarizes
main decisions.

Since both process models are SPEM compliant, and SecEPM reuses common SPEM cate-
gories, not many high-level terms needed unification (exception: activity group vs. discipline).
Similarly, reuse of common SPEM roles in SecEPM reduced the integration effort with regard
to these as well. Beside name unification for the role Process Model Engineer only the Domain
Expert from SecEPM has been integrated as specialization of the general Analyst role from
OpenUP utilizing the variability element (VE) with the Variability Type “contributes”. Most
work products of SecEPM are either complementary to OpenUP work products (e.g., Threat
Catalog) or have been integrated as specializations of existing work products utilizing Work
Product Definition Relationships (WPDRs) (e.g., Security Analysis Model and System-wide
Requirements). Similarly, most activities and tasks of SecEPM detail those of OpenUP and
have been integrated applying the specialization strategy utilizing VE or Activity Use Kind
(AUK) elements.

A mapping of one standard software development process model onto existing security
engineering approaches has been proposed by Lee et al. [LLL02]. As that mapping includes all
phases of the software life cycle as well as all security-related activities published by different
authors it is far more coarse grained than the the mapping presented in this section. Moreover,
as the proposal from Lee et al. does not address specific process models it does not consider

97

4. Security Engineering Process Model

Type SecEPM OpenUP Strategy
Term Activity Group Discipline Name unification
Role Domain Expert Analyst Specialization
(VE, contributes)
Process Model Engineer Process Engineer Name unification
Activity / Setup Process Model Prepare Environment Merge
Task (AUK, local
contribution)
Provide Guiding Artifacts Tailor the Process Merge
(VE, contributes)
Identify Assets Identify and Refine Specialization
Assess Security Goals Requirements (AUK, local
Model Threats contribution)
Elicit Security
Requirements
Identify Assets Identify and Outline Specialization
Assess Security Goals Requirements (VE, contributes)
Model Threats Detail System-Wide Specialization
Elicit Security Requirements (VE, contributes)
Requirements
Design Controls Develop Solution Increment Specialization
Map Controls (AUK, local
Generate Control Artifacts contribution)
Design Controls Design the Solution Specialization
Map Controls (VE, contributes)
Generate Control Artifacts Implement Solution Specialization
(VE, contributes)
Generate Test Artifacts Implement Tests Specialization
(VE, contributes)
Work Process Model Project Defined Process Specialization (WPDR)
Product Configuration

Security Analysis Model
Security Design Model
Implementation Artifacts
Test Artifacts

Business Process Model

System-wide Requirements
Design

Implementation

Test Cases

Test Scripts
Implementation

Specialization (WPDR)
Specialization (WPDR)
Name unification

Specialization (WPDR)

Specialization (WPDR)

98

Table 4.14.: Integration of SecEPM into OpenUP

4.8. Summary

integration strategies and their application explicitly. A security extension for the OpenUP has
been published by Ardi et al. [AS08]: A set of security-related activities for the development
of general purpose software is directly designed for OpenUP. No integration is necessary
as concepts and definitions have been taken directly from the OpenUP. Likewise a security
extension for the RUP has been described from Paes et al. [PHO7]. The integration of a specific
security engineering process model into a software development process model and the
methodical generalization of the integration procedure is not provided by any of the authors.

4.8. Summary

This chapter introduced SecEPM, our proposal for a security engineering process model that
integrates security-related activities in the course of the development of secure electronic
business processes.

We started by narrowing the scope of the process model to be developed: It should cover
the development of a security analysis model for a given business process model, the creation
of a matching security design model and a mapping of the security design model onto an
implementation in order to bridge the gap between executable business process models and
properly selected and configured controls for corresponding business process engine.

Based on this scoping, we identified eight major requirements in section 4.2 covering the
structure of the process model (1), the coverage with regard to security engineering activities
(2), the separation of problem and solution domain (3), traceability from high-level security
goals to control configurations (4), integrability into different development process models
(5), independence from development-time and runtime technology (6, 7), and the ability to be
applied in environments with restricted skill sets available with regard to security (8).

We applied three key strategies for the design of SecEPM to meet these requirements, (cf.
section 4.3): specialization of existing process models and practices to incorporate existing
knowledge and experience but restricting the skill set necessary to complete the activities (1),
separation of concerns to realize a modular and flexible process model (2), and decoupling
aiming at relaxing constraints of the process model with regard to execution sequence and
preconditions of the activities (3).

We presented the resulting process model introducing the structure covering four activity
groups of the respective IEEE standard [Ins97], nine activities focusing the early phases for the
development, two core work products (Security Analysis Model and Security Design Model),
four additional work products, and six roles highlighting the role of the Security Analyst and
the Business Process Engineer (cf. section 4.4).

Activities describing tasks to be performed in order to develop secure electronic business
processes and their relations to other elements of the process model have been detailed in
section 4.5. Support for the execution of these tasks is provided by guidance artifacts. Two
topics—provisioning of guidance artifacts as well as rating of security goals adapting a method
from the IT-BPM—have been covered with exemplary guidance artifacts, detailing relations
with other elements of the process model and presenting respective guidelines (cf. section
4.6).

99

4. Security Engineering Process Model

Authoring, storage, retrieval, and instantiation of usable resources for project participants of
SecEPM-based security engineering processes using adequate tooling has been documented
in section 4.7. This section also covered the methodical integration of SecEPM into existing
software development process models providing an exemplary integration of SecEPM into

OpenUP.

100

5. Security Engineering Modeling
Language

5.1. Introduction

SecEPM, our process model for security engineering, has been presented in the previous
chapter. SecEPM utilizes several work products. Exemplary, the Security Analysis Model
and the Security Design Model are central to many SecEPM activities. Intentionally, the
process model does not prescribe how to note and manage these work products. To minimize
prerequisites necessary to apply SecEPM, the choice of notations and tooling is left to the
Process Model Engineer and other participating stakeholders.

Nevertheless, in order to apply a security engineering process effectively an adequate mod-
eling language and supportive tooling is considered helpful [SHO08]. This chapter introduces
SecEML, our proposal for a DSML to capture work products of SecEPM and to provide a basis
for the validation of work products and their transformation into deployment artifacts. It
addresses the second research question and documents the remaining part of results of the
design and development activity of our research approach (cf. section 1.3):

2. What requirements does a DSML place that supports the elaboration of main work
products of the developed security engineering process model and how could they be
met?

SecEML has a two faced relation with the ideas of MDE. First, as a DSML it provides means to
capture work products of the security engineering process applying concepts of the domain
(i.e., security engineering) minimizing the semantic gap. Therefore, it allows for a model-
based security engineering approach applying the ideas of MDE in the domain of security
engineering.! Second, tooling supporting the application of SecEML is provided applying
model-driven techniques and frameworks. Hence, SecEML and its tooling is situated in
a model-driven environment as result of the application of MDE. Together, SecEML and
supportive tooling complement our approach to bridge the gap between (executable) business
process models and the design of proper controls and their configuration.

An early version of the modeling language has been published before as well as experiences
developing tools to support the application of the language using model-driven techniques
and frameworks [Eiclla, Eicl1b, EFL12]. The results presented in this chapter have been
considerably complemented, detailed, and enhanced compared with those publications.

SecEML is presented as follows: The next section 5.2 defines the scope of SecEML and
analyzes key requirements starting with the issues identified in the problem statement and

1 Pplease consider the different focuses of the terms model-driven engineering and model-based engineering
detailed in section 2.3.3.

101

5. Security Engineering Modeling Language

discussing criteria from literature. Section 5.3 presents strategies applied for the design of
SecEML. The language is introduced in section 5.4 providing abstract and concrete syntax.
Section 5.5 discusses the application of SecEML and details guidance using SecEML to capture
work products of SecEPM. Additionally, the development of tooling for the application of
SecEML is covered in this section. A summary of the main results in section 5.6 concludes this
chapter.

5.2. Requirements

SecEML aims at supplying an adequate DSML for the application of SecEPM. A DSML to
support the application of SecEPM might address a broad range of issues. We limit the scope of
SecEML to capture core work products of SecEPM focusing the Security Analysis Model and the
Security Design Model. Additional work products like the Threat and Control Catalog as well as
the Runtime Capability Model and the Process Configuration Model are considered as much
as their interaction with these main work products is addressed and no conceptual changes
to SecEML would be necessary for this interaction. The intended purpose of capturing work
products using a DSML is to allow for model-based security engineering fostering a shared
understanding of the results of the activities of SecEPM and an iterative and incremental
execution of the respective tasks.

The formal analysis or proof of certain properties of electronic business processes is consid-
ered outside the scope of SecEML. Several languages for this purpose have been discussed
in the sections on related work (cf. section 2.5) and might include proposals from Arsac et
al.,, Weldemariam et al., and Armando et al. [ACPP11, WV11, AGMP12]. Similarly, high-level
representation and validation of runtime policies or the configuration of individual security
mechanisms is not at the heart of SecEML. Approaches concentrating on those topics include
proposals from Basin et al., Moebius et al., and Wolter et al. [BDL06, MRS09, WMS*09]. They
are briefly covered in sections 2.3.3.3 and 2.5. SecEML is not intended as replacement for
those approaches. Instead, SecEML is intended as complimentary DSML that provides a
security engineering process point of view and might reference artifacts and elements of those
approaches.

As SecEML focuses on support for the application of SecEPM, key requirements for SecEML
address the major issues detailed in the problem statement. The first key requirements address
mainly the impairment of skills available in BPM development projects with regard to security
and general aspects like the coverage of necessary concepts.

1. Coverage: Concepts and relations defined and required by SecEPM for the description
of its core work products must be supported by the DSML.

In order to leverage also security nonprofessionals, not only all relevant concepts and relations
have to be covered by SecEML but also the concrete syntax has to be easy to learn, to read, and
to use. Therefore, it should provide a familiar appearance also for security nonprofessionals.

2. Accessible Concrete Syntax: The concrete syntax should be easy to learn and to apply by
security nonprofessionals.

102

5.2. Requirements

Even if a syntax is easy to use and the relevant concepts are directly represented by a DSML, the
creation, validation, and analysis of models applying that DSML is laborious and error-prone
if there are no tools to support the user executing these tasks. Automation as one of the core
ideas of MDE addresses this topic similarly, although we do not require an automation of the
execution of the activities of SecEPM.

3. Technical Assistance: Tools should be provided that support users of the DSML creating,
validating, and analyzing models applying the DSML.

Also, SecEML has to tackle the heterogeneity of BPMS. Therefore, it can not be required that
a given notation is supported by a BPMS in order to apply SecEML. Furthermore, security
controls, their configuration, and runtime capabilities of BPMS differ largely between different
vendors. Insofar a user is able to use SecEML to describe runtime capabilities and to specify
their configuration, specific runtime capabilities must not be presupposed in order to apply
SecEML.

4. Independence of Notation: The DSML must be applicable regardless of the notation
that is used for the specification of the electronic business process.

5. Independence of Runtime Capabilities: The DSML must not require specific runtime
capabilities of BPMSs.

The environmental heterogeneity that SecEML has to face is addressed by two further require-
ments: Integration in Tool Chains and Coexistence with Existing Models (cf. requirements 6,
7). The creation, validation, transformation, and management of models using SecEML should
not require a new infrastructure and conceptually deviating tooling. As the environment
differs between the different organizations applying BPM the possibility to use standard tools
to handle SecEML models reduces cost, effort, and risk of using SecEML and increases the
likelihood of an successful application. Similarly, if the application of SecEML does not require
changes to existing models but SecEML models profit from existing models by establishing re-
lations between elements from those models, introduction of SecEML does not break existing
tool chains and processes but allows for an enhancement of tool chains and processes.

6. Integration in Tool Chains: The application of the DSML and the integration in existing
tool chains does not require extensive prelimiaries but might reuse standard tooling.

7. Coexistence with Existing Models: The DSML does not require changes to existing
models using different notations or their tooling but elements from integration-friendly
notations can be related to elements of models using the DSML.

A consensus on general requirements for DSMLs in the domain of security engineering is not
known to the author. Therefore, the following paragraphs discuss criteria applied in literature
to evaluate security modeling approaches in the context of the key requirements and those
criteria will be used as checks for the validity of the key requirements.

Diallo et al. compare three approaches to specify security requirements [DRMSR06]. They
introduce and apply five criteria or requirements for approaches to specify security require-
ments: lernability, usability, solution inclusiveness, clarity of output, and analyzability. Learn-
ability addresses the question, how long typical project participants take to learn and use

103

5. Security Engineering Modeling Language

the approach. Usability asks for the complexity of the application of the approach (e.g., com-
paring number and difficulty of necessary steps). Solution inclusiveness requires that the
compared approaches not only specify threats but also cover (possible) controls. Clarity of
output addresses the ease of understanding of resulting artifacts for typical project partici-
pants (in opposite to the complexity of the application of the approach). Analyzability requires
the possibility and ease to analyze results with regard to typical questions, e.g., whether all
identified threats have been considered.

Another work on the usability of approaches for the specification of security properties
focusing on UML artifacts is presented by Talhi et al. [TML*09]. To evaluate the usability of
different approaches they propose four criteria: expressiveness, tool support, verifiability, and
complexity. Expressiveness addresses the provision of means to specify all necessary (security)
propositions. Tool support requires availability of tooling to support specification and analysis
of resulting models. Verifiability is defined as the ability to “verify the design against the
security requirements” [TML* 09, p. 13], i.e., the possibility to prove (security) properties of
the system (design) that has been specified. Complexity evaluates the amount of necessary
information that has to be added by the approach in question and its impact on the readability
of the original UML artifacts.

We address the criteria lernability, usability, clarity of output, complexity, and tool support
with our requirements Accessible Concrete Syntax and Technical Assistance (requirements 2
and 3). An accessible concrete syntax supports learnability and clarity of output especially
in comparison with approaches focusing a compressed or machine-friendly concrete syntax.
Additionally, it addresses the complexity criteria: As SecEML does not annotate models using
different notations, the readability of those models is not endangered by the application of
SecEML. Technical assistance addresses similar issues as tool support. It addresses also usabil-
ity since technical assistance can reduce the difficulty of tackling a given task. Analyzability is
partly addressed by the requirements Technical Assistance and Coverage (requirements 1 and
3) as tooling should support validation and analysis of the entities represented in the DSML.
Expressiveness is restricted to the purpose of SecEML: the modeling of core work products of
SecEPM covering all relevant concepts (cf. Coverage requirement 1). Solution inclusiveness
is also addressed by this requirement since controls are part of the Security Design Model.
Verifiability is excluded from our requirements, since formal analysis of properties of electronic
business processes has been excluded from the SecEMLs scope. The criteria do not exclusively
address requirements of a DSML. Also the design approach of a DSML addresses some of the
criteria and will be covered in the following section.

5.3. Design Approach

We applied the language engineering approach of Kleppe for the development of SecEML
[Kle08]. Kleppe proposes an iterative incremental engineering process focusing on the meta-
model of the DSML (cf. section 2.3.3). The main steps of the engineering process are:

1. Create an abstract syntax (here: metamodel)

2. Define and map a concrete syntax

104

5.3. Design Approach

3. Test definitions with some example models
4. Define semantics
5. Create tools to support the user

The steps are repeatedly applied with increasing comprehensiveness, i.e., the first iteration
might include only the first three steps and the results are revised in following iterations before
semantics and tooling are tackled.

Within this engineering process, we applied the following main design strategies in order to
meet the key requirements detailed in the preceding section:

1. Direct Representation

2. Modularization

3. Reuse

4. Model-driven Techniques

The Direct Representation strategy follows one of the main ideas of MDE (cf. [BBI*04, B&06]
in section 2.3.3): In order to minimize the semantic gap, concepts of the application domain
are directly represented by the DSML. The terminology defined in section 2.4.1 and applied to
specify elements and relations in the Security Analysis Model and the Security Design Model
from SecEPM become entities in SecEML. Therefore, security goals, threats, controls etc. are
directly represented and specifiable using SecEML.

The Modularization strategy aims at the provision of sparsely dependent compartments
that constitute the modeling language instead of one monolithic block. It addresses several
aspects of the language design, mainly at the level of the structuring of the abstract syntax.
Exemplary, the application of the Modularization strategy (partly in combination with the
Reuse strategy) introduces name spaces in order to specify parts of the model independently
from other parts, provides means to separate generic specifications from specializations for
project specific aspects, and allows for the specification of design and implementation aspects
using related but different model elements.

Similarly, the Reuse strategy is applied with regard to different aspects of the design of
SecEML. Reuse strives for the integration and application of existing entities instead of redun-
dant specifications and implementations. Exemplary, the application of the Reuse strategy
introduces means to access existing models and their elements instead of redundant redefini-
tions. Furthermore, it opts for the integration of established languages and implementations if
possible (e.g., the application of OCL for the specification of constraints, derived attributes and
analysis statements), and provides means to use partitioned models serialized using multiple
resources (instead of one monolithic one) that might be reused in different projects.

The application of model-driven techniques and frameworks addresses the definition of
SecEML and the provision of respective tooling. Specifying SecEML in a way that allows for the
application of model-driven techniques and frameworks as well as applying those frameworks
render short provisioning and feed back cycles optimizing the language possible. Furthermore,

105

5. Security Engineering Modeling Language

the application of model-driven techniques and frameworks aligns SecEML with the growing
group of DSMLs using similar techniques and frameworks and eases integration and reuse.

The decision on the means to relate SecEML models with business process models is largely
restricted by the requirement to allow for a coexistence of SecEML models with other models
(requirement 7): From the four strategies discussed in literature (cf. section 2.3.3.3) only entity
reference and model weaving do not require changes to existing models or their tooling. As the
entity reference strategy does not require the provision of an additional language (the weaving
language) and respective tooling, we decided to apply it for SecEML.

Several requirements are met by implementation decisions more than design strategies.
Nevertheless, the design strategies named in this section contribute to some of the require-
ments: The Direct Representation strategy contributes to the Coverage requirement (req. 1)
since all relevant concepts for SecEPM will be directly represented in SecEML. Modularization
addresses the Independence of Notations and Runtime Capabilities requirements (reqgs. 4
and 5) as specializations can be separated from generic aspects of the models, e.g., to model
the capabilities of a BPMS. The Reuse strategy accounts for the Integration in Tool Chains
and Coexistence with Existing Models requirements (reqs. 6 and 7) as existing languages and
their tooling are reused. The application of Model-driven Techniques addresses the Technical
Assistance and the Integration in Tool Chains requirements (reqs. 3 and 6) since it provides
means to effectively provide tooling to work with SecEML. The relation between the Coex-
istence with Existing Models requirement (req. 7) and the use of entity references has been
discussed already.

This section presented our major design considerations for SecEML: the application of
the Direct Representation, the Modularization, the Reuse, and the Model-driven Techniques
strategies as well as the selection of entity references instead of weaving languages for the
integration of SecEML models with models using other notations. The following section
describes SecEML and demonstrates the application of these strategies.

5.4. Description

SecEML is a textual DSML to capture core work products of SecEPM. It is specified using a
combination of languages: Ecore, OCL, Xtext, and natural language. Ecore is an implementa-
tion of the Essential Meta Object Facility (EMOF) [Objl4a] standard in the context of the EMF?
that is commonly used for the specification of metamodels. In the case of SecEML, Ecore is
used for the specification of the basic metamodel. Rules for the well-formedness of SecEML
constructs that could not be expressed using Ecore directly have been specified using OCL
and integrated as constraints in an extended Ecore metamodel. For the specification of the
concrete syntax and the mapping of abstract onto concrete syntax Xtext® has been used, a
framework for the development of DSMLs as well as a language defined for this purpose resem-
bling the Extended Backus-Naur Form (EBNF). Semantics of well-formed SecEML constructs
is provided in natural language (applying the definitions provided in section 2.4.1).

2 http://www.eclipse.org/modeling/emf/
35 nttp://www.eclipse.org/Xtext/

106

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/

5.4. Description

AbstractElement

Model PackageDeclaration Import Entity

Figure 5.4.1.: Basic entities of SecEML (UML class diagram)

model replan
language SecEML "1.0"

package Basic ()
package ThreatCatalog (

import Basic.x
// elements in package Basic might be referenced without FQON

Listing 5.1: Application of basic entities (SecEML notation)

The presentation of SecEML is based on a description of its metamodel. The description
focuses on Ecore classes as main elements of the metamodel. In order to distinguish these
Ecore classes from similar named constructs in SecEML, we will use the term entity (of SecEML)
for them in the following. UML class diagrams showing parts of the metamodel are used in
order to provide an overview of the entities and their relations. Examples applying the concrete
syntax accompany the presentation.

5.4.1. Structure

SecEML artifacts are organized as models that contain all definitions. Figure 5.4.1 presents
basic entities to organize SecEML models. The Model entity serves as container for the
elements of a model. Every model has a unique name and provides optionally the number of
the applied SecEML version to allow for transparent future improvements of SecEML.

Every element of a model that might be referenced by other elements has to provide a
unique name as an identifier. As models might grow, SecEML supports hierarchical name
spaces that are introduced defining packages applying the PackageDeclaration entity.
The fully qualified name (FQN) of an elements consists of the concatenated identifiers (unique
names) of the nesting packages and the identifier of the element using the “.” as separator.
The Import entity allows to import packages into other packages and to access elements of
imported packages using their identifier instead of their FQN. Listing 5.1 demonstrates the
application of the basic entities in SecEML.

107

5. Security Engineering Modeling Language

ThreatClass

AssetClass SecurityRequirementClass SecurityGoalClass RuntimeClass
ControlClass ControlPurpose ControllimplementationClass

&=

Figure 5.4.2.: Classification entities in SecEML (UML class diagram)

5.4.2. Classification

SecEPM strives to leverage the know-how of security experts and to support security non-
professionals in executing many of its activities without extensive support. To alignh SecEML
with this aim, general concepts and definitions that require security expertise are specified
separately applying dedicated entities. Classification is used as a shared concept for those
general concepts and definitions: Security experts, technical experst, and domain experts
provide a comprehensive, interrelated set of classifications. These classifications are used
(e.g., by a security nonprofessional) in order to document security needs and selected controls
in the Security Analysis and Design Model. Therefore, the necessary skill set to specify these
models is reduced. Furthermore, the classifications can be used to validate these models.

Figure 5.4.2 presents the main entities of SecEML and important relations in order to specify
classifications. Generally, relations between entities in the metamodel are unidirectional and
not mandatory (multiplicity [0..1] or [0..*]). This allows for the serialization of incomplete
models as well as simpler dependency structures in order to support modularization and reuse
(cf. section 5.3). A brief example demonstrating the application of the entities is depicted in
listing 5.2 on the facing page. The example omits references and expressions with regard to
elements external to the respective security model, those will be introduced in section 5.4.5.

The entity AssetClass allows for the distinction between different classes of assets. Ba-
sically, SecEPM distinguishes business assets and modeled assets, but the specification of
further asset classes decomposing these distinction further—e.g., modeled assets into data
at rest, data in transit, and process—might be applied as well. Asset classes might specify a

108

5.4. Description

assetClass ASC_Business ()
assetClass ASC_Process ()
assetClass ASC_Data ()

securityGoalClass SGC_Integrity (
description "The property of safeguarding the accuracy and
completeness of assets"

)

threatClass THC_TamperingExecutionSequence (
securityGoalClasses SGC_Integrity
assetClasses ASC_Process

)

securityRequirementClass SRC_CheckExecutionSequence (
securityGoalClasses SGC_Integrity
assetClasses ASC_Process
threatClasses THC_TamperingExecutionSequence

)
controlPurpose COP_Detection ()

controlClass COC_LogProcessExecution (
purposes COP_Detection
securityRequirementClasses SRC_CheckExecutionSequence
introduces ASC_Data

)
runtimeClass Activiti_57

controlImplementationClass CIC_LogExecution (
runtimeClass Activiti_57
controlClasses COC_LogProcessExecution
properties "logLevel"

Listing 5.2: Providing classifications (SecEML notation)

name for entities (i.e., an Ecore class name) which assets instantiating this asset class might
reference in external models.

Security goal classes are specified using the corresponding SecurityGoalClass entity.
SecEPM addresses initially the security goal classes integrity, confidentiality, availability, and
non-repudiation as they have been defined before (cf. section 2.4.1), but might also include
additional or deviating definitions. In the example listing 5.2, a security goal class “Integrity”
is defined in accordance with definition 10 applying the SecurityGoalClass entity.

The Threat Catalog contains threats classes that might apply to (the) electronic business
process (-es) in the scope of the project or the organization. These are specified applying
the ThreatClass entity. Threat classes reference one or more security goal class and asset
class that they endanger. Furthermore, they might provide three expressions: First, to specify
matching patterns for the business process model, second, expressions to identify assets that—
without mitigation—might get affected by this threat, and third, an expression to evaluate
impacted elements of the business process model. Exemplary, a threat class “Tampering
Execution Sequence” endangers security goals of the class “Integrity” and modeled assets (or,
if this granularity has been chosen, process assets).

109

5. Security Engineering Modeling Language

Security requirements refine security goals and state the intent to counter one or more
threats. The SecurityRequirementClass entity allows for the classification of security
requirements in order to provide common building blocks. They reference the classes of
security goals that get refined as well as classes of assets and threats addressed. With the help
of security requirement classes it is possible to connect related security goal classes, asset
classes, and threat classes and to state one requirement refining several security goals. Security
requirement classes might specify a matching expression that identifies elements from the
business process model that are constrained by the requirement. Security requirement classes
might be aligned utilizing security pattern catalogs (e.g., [BH04]) or existing requirement
catalogs (e.g., [Intlla] as we demonstrate in section 6.3) In the example listing 5.2 on the
previous page, tampering might endanger the integrity of process assets that requires checks
of the execution sequence.

The Control Catalog specifies mitigation possibilities for threat classes specified in the
Threat Catalog. The entity Cont ro1Class references security requirement classes a control
class might (partially) meet and threat classes it mitigates. Additionally, control classes specify
their purpose referencing elements conforming to the Cont ro1Purpose entity. Following
the respective standard, these purposes might encompass prevention, deterrence, limitation,
detection, correction, recovery, monitoring, and awareness [Int04]. In order to capture de-
pendencies between controls, control classes might reference other control classes that they
depend upon. Controls might also introduce new assets to a system. Therefore, a control
class might reference the respective asset classes. Furthermore, control classes might specify a
matching expression in order to identify elements from the business process model that are
addressed by controls of this class.

In order to support the transformation of SecEML models into test and deployment artifacts,
the RuntimeClass and the ControlImplementationClass entity provide means to
specify the capabilities of the execution environment. A runtime class supplies merely a
name and description of a runtime component. Control implementation classes reference the
control classes they (partially) implement and optionally the subset of security requirement
classes, threat classes, and purposes specified by the control classes they support. Similar
to control classes, control implementation classes might reference necessary control imple-
mentation classes. Additionally, control implementation classes specify a list of properties
necessary for the transformation of the actual control implementations into test and deploy-
ment artifacts.

5.4.3. Rating

In order to facilitate a repeatable rating of security goals (and control implementations),
SecEML provides several entities to define a domain and organization specific context for
this rating. Basically, SecEML allows for the specification of criteria that differentiate together
a number of ratings and their structuring using damage scenarios. Furthermore, several
aggregation strategies are supported in order to address dependencies between security
goals in the course of the rating. Figure 5.4.3 on the facing page depicts core entities and

110

5.4. Description

SecurityGoalRating SecurityGoal AggregationModifier

ControllmplementationRating SecurityGoalCriterion DamageScenario

Figure 5.4.3.: Prioritization entities in SecEML (UML class diagram)

securityGoalRating Normal (ordinal 1)
securityGoalRating High (ordinal 2)
securityGoalRating VeryHigh (ordinal 3)

scenario ViolationOfLaws (
title "Violations of laws, regulations, or contracts"”
)

criterion Vol _MinorViolation (
title "Violation with minor consequences"
description "Violations of regulations and laws with minor
consequences"
rating Normal
scenarios ViolationOfLaws

Listing 5.3: Providing ratings and corresponding criteria (SecEML notation)

their relation for the assessment and rating of security goals and control implementations.
Listing 5.3 demonstrates their application.

The entity SecurityGoalRating allows for the definition of an ordinal scale for the
rating of security goals. Every rating specifies an unique identifier and an ordinal number in
order to reference, compare, and sort ratings. Example listing 5.3 defines three ratings from
“Normal” to “Very High”.

Criteria to provide guidance for the consistent application of the ratings are defined with
the help of the SecurityGoalCritierion entity. A criterion provides a description
in natural language that details circumstances suggesting the application of the referenced
security goal rating. The Security Analyst and Domain Expert have to ensure that criteria for
different ratings are clear without ambiguity.

To organize and structure rating criteria, damage scenarios might be defined. A damage
scenario describes a situation that potentially decreases the value of business assets and
therefore provides a context for the application of rating criteria. If damage scenarios are
defined (applying the DamageScenario entity), every scenario should provide rating criteria
that address all ratings that have been defined.

111

5. Security Engineering Modeling Language

The entity Aggregat ionModi f ier allows for the differentiation of aggregation strategies
for dependent security goals. A dependent security goal a is a security goal for supportive
assets, i.e., assets that are supporting other assets (cf. section 4.5.2.5). At the moment, all
strategies proposed by the IT-BPM are implemented in SecEML [Bun08]: First, consideration
of dependencies might be disregarded at all. Second—if dependencies are considered—one of
maximum, cumulation, and distribution strategies might be selected with maximum strategy
as default. The maximum strategy considers ratings from all security goals that the security
goal depends upon and sets the maximum rating for the security goal. The cumulation strategy
sets the rating resulting from the maximum strategy but increased to the next higher level (if
possible) for the security goal. The cumulation strategy is applied if the asset of the security
goal in question supports comparatively many assets and therefore a violation of the security
goal damages potentially multiple assets. Similarly, the distribution strategy sets the rating
resulting from the maximum strategy but decreased to the next lower level (if possible) for the
security goal. It is applied if the violation of the security goal does not (immediately) damage
assets supported by the asset of the security goal.

5.4.4. Analysis and Design

While preceding entities of SecEML are mostly used by the Security Analyst and the Domain
Expert, entities presented in this section address the Business Process Engineer. They provide
means to document the Security Analysis and the Security Design Model. These models rely
largely on the specifications provided in the Threat and Control Catalog as well as in the
Runtime Capability Model utilizing those entities. Figure 5.4.4 on the facing page shows core
entities for analysis and design as well as several important relations. Listing 5.4 on page 114
demonstrates the application of those entities. This demonstration does not include means
to relate the security models with a business process model. Those are introduced in section
5.4.5.

The Asset entity is used to model assets. An asset instantiates an asset class, provides
descriptions in natural language and references supported assets. The resulting dependency
graph of assets must be acyclic. Additionally, an asset might reference elements external to
the security model that represent this asset in the business process model. Exemplary, three
assets are defined in listing 5.4 on page 114: a business asset for the POD, a process asset for
the Replan Process of the logistics provider supporting the business asset, and an asset for the
logging data introduced and generated by a control (cf. section 4.5.2).

Security goals are specified applying the SecurityGoal entity. A security goal instantiates
a security goal class for one asset. It provides a rating, relevant criteria that substantiate the
rating, and optionally a specification of the aggregation strategy for this security goal. In listing
5.4 only one integrity goal for the process asset is specified that is rated as “Normal” because
violations of the security goal cause only minor violations of relevant contracts.

Actual threats are modeled utilizing the Threat entity. Threats are classified instantiating
threat classes and reference security goals that are affected by the threat. Threats might provide
either a set of elements from the business process model that are affected by the threat or
an expression that yields a set of such elements. The resulting set of external elements must

112

5.4. Description

Resource Asset SecurityGoal Threat j
Runtime Property ArchitectureElement SecurityRequirement

=

Controlimplementation Control Assumption

Figure 5.4.4.: Core analysis and design entities in SecEML (UML class diagram)

be a subset of the elements retrieved by the matching pattern of the threat class. Listing
5.4 instantiates the threat of tampering with the execution sequence of the Replan Process
endangering the integrity goal for the corresponding asset.

A security requirement is specified applying the SecurityRequirement entity. A secu-
rity requirement instantiates a security requirement class and references the security goals it
refines as well as the threats it addresses. The security goals and the threats must match the
respective classes specified in the security requirement class. Listing 5.4 specifies one security
requirement for the logging of the Replan Process refining the integrity security goal for the
Replan Process and addressing the tampering threat.

The Control entity allows for the specification of controls for the electronic business
process. Controls instantiate control classes and reference security requirements that are
(partially) met as well as threats that are mitigated by a control. Furthermore, assets that are
introduced by a control are referenced as well as other controls that this control depends upon.
The resulting dependency graph of the controls must be acyclic. All referenced elements
must match the respective classes specified in the control class. Similar to threats, controls
might provide either a set of elements from the business process model that are addressed by
the control or an expression that yields a set of such elements. The resulting set of external
elements must be a subset of the elements retrieved by the matching pattern of the control
class. Exemplary, a control for the logging of the execution sequence of the Replan Process
instantiates the logging control class, references the respective requirement, and introduces
log data as new data asset.

Control implementations are specified using the Cont rol Implementat ion entity. They
reference one or more control implementation classes they instantiate, the runtime environ-
ment they are implemented in, controls that they implement, and a set of properties provided

113

5. Security Engineering Modeling Language

asset ASS_POD : ASC_Business ()
asset ASS_Replan : ASC_Process (
supports ASS_POD

asset ASS_LogData : ASC_Data (
// introduced by control, property "supports" not set
)

goal SGO_IntReplan : SGC_Integrity (
asset ASS_Replan
rating SGR_Normal
criteria RCR_VolL_MinorViolation

)

threat THR_ TamperReplan : THC_TamperingExecutionSequence (
goals SGO_IntReplan
)

securityRequirement SRE_LogReplan : SRC_CheckExecutionSequence (
goals SGO_IntReplan
threats THR_TamperReplan

)

control CON_LogReplan : COC_LogProcessExecution (
securityRequirements SRE_LogReplan
introduces ASS_LogData

)

runtime RUN_Activiti : RUC_Activiti_57

controlImplementation CIM_ LogExecution : CIC_LogExecution (
runtime RUN_Activiti
controls CON_LogReplan
properties ("loglevel" = "FINE")

Listing 5.4: Specifying security requirements and controls (SecEML notation)

114

5.4. Description

as name-value-pairs. The classes of all referenced elements must be elements of the superset
of classes specified in the referenced control implementation classes. Listing 5.4 specifies a
logger for the Activiti runtime implementing the logging control.

5.4.5. Relating SecEML and Business Process Models

The specification, documentation, and analysis of relations between the Security Analysis
and Design Model and the Business Process Model is an important aspect of SecEPM. Several
strategies for the integration of security aspects in model-driven engineering approaches have
been discussed in section 2.3.3.3 and corresponding requirements and design decisions have
been documented in sections 5.2 and 5.3. In order to apply the entity reference strategy to
integrate SecEML and other existing models, several SecEML entities provide attributes that
either store a reference to elements from the Business Process Model or an OCL expression
that is evaluated on elements of the SecEML as well as the Business Process Model.

This section introduces the specification of relations between SecEML and Business Process
Model elements and presents two examples. Listing 5.5 on the next page presents an excerpt
of the Replan Process that has been modeled in an adapted textual syntax called MockBPMN
(MBPMN) resembling BPMN without XML syntax elements for better comprehensibility (a
representation using the BPMN exchange format is provided in the appendix, cf. listing B.1 on
page 161). Only the collaboration between forwarder and logistics provider and the first activity
of the process from the logistics provider is specified omitting further details. Listing 5.6 on the
next page shows extended SecEML elements detailing references on elements of the Replan
Process and related OCL expressions. Implementation aspects for the management of relations
between SecEML and elements of the Business Process Model are covered in section 5.5.

Multiple relations between elements of SecEML models and those of the Business Process
Model exist. An obvious example is the asset concept: SecEPM identifies and documents
modeled assets, i.e., assets that are directly represented in the Business Process Model. SecEML
explicates this relation capturing a reference to the respective element from the Business
Process Model as an attribute of the Asset entity. Generally, the ID of the element of the
Business Process Model is taken as reference but other approaches for the identification of
model elements supported by EMF are valid as well. The type of the elements that might
be referenced by an asset are specified by its asset class using the type attribute of the
AssetClass entity. Other examples for direct element references supported by SecEML are
the entities attribute of the Threat, SecurityRequirement and Control entity.

The definition of explicit references between elements of SecEML and those of the Business
Process Model can be cumbersome if many elements have to be referenced or is even not
feasible if not individual instances but more general patterns have to be specified. Therefore,
SecEML supports also the definition of expressions using OCL. Exemplary, it might ease the
identification of candidate threats if a threat class provides applicability conditions not only
in natural language but also as evaluable expression supporting adequate tooling. In order
to do so, the ThreatClass entity provides the possibility to specify a matching expression
and an asset expression using the mat chExp and the assetExp attribute. The matching
expression returns all elements from the Business Process Model that will be affected by an

115

5. Security Engineering Modeling Language

collaboration (
participants
participant (P1l_Logistics_Provider),
participant (P2_Forwarder)
messageFlows MF1, MF2
)

process Pl_logistics_Provider (
laneSets laneSet (
lanes L12_LogisticsSystem, L11_Dispatcher
)

flowElements E1l1l, Tl1l_CheckStatus, S11
)

event E11 ()
task T11l_CheckStatus ()
sequenceFlow S11 (source El1l, target T1l1l_CheckStatus)

Listing 5.5: Excerpt of the Replan Process (MBPMN notation)

assetClass ASC_Process (
type "mbpmn::Process"
)

asset Ass3_Replan : ASC_Process (
supports ASS_POD
entity P1_Logistics_Provider
)

threatClass THC_TamperingExecutionSequence (
securityGoalClasses SGC_Integrity
assetClasses ASC_Process
matchExp "assets—->collect (flowElements.oclIsTypeOf (mbpmn: :

SequenceFlow))"
assetExp "mbpmn::Process.allInstances()->select (flowElements—>
exists(fe | fe.oclIsTypeOf (mbpmn::SequenceFlow)))"

Listing 5.6: Relations between security and business process models (SecEML notation)

116

5.4. Description

successful attack of that threat class. The asset expression aligns the threat class with asset
classes returning all elements of the types specified by the respective asset classes that will be
impacted if elements returned by the matching expression are manipulated. Both attributes
take an OCL expression that is evaluated in the context of the respective element it has been
defined. Similar expressions are supported for the SecurityRequirementClass and the
ControlClass entities.

Listing 5.6 demonstrates this approach for the threat class THC_TamperingExecution-
Sequence. It encompasses threats tampering with the execution sequence of the electronic
business process. This sequence is specified using the SequenceF 1ow entity in BPMN. The
asset class for this threatis ASC_Process that specifies the BPMN Process entity as related
concept for modeled assets. Therefore, the asset expression specified in assetExp returns all
elements of the Business Process Model of the type Process that reference SequenceFlow
elements (the element P1_TLogistics_Provider in listing 5.5). In turn, the matching
expression specified in mat chExp returns all SequenceF1ow elements from the result set
of the asset expression stored in the derived attribute asset s (the element S11 in the listing).

It should be noted that SecEML does not prescribe a specific approach to formulate these
expressions nor does it prescribe the specification of specific threat classes etc. It merely
provides means to support participants applying the SecEPM, e.g., the activity Model Threats
and especially the tasks Identify Candidate Threats and Select Relevant Threats. Using flexible
OCL expressions to explicate relations between models addresses the requirements Technical
Assistance, Independence of Notation, Integration in Tool Chains, and Coexistence with
Existing Models. It applies the Direct Representation design strategy as related elements are
explicitly modeled as well as the Reuse and Model-driven Techniques strategies as it reuses
existing notations and respective tooling that are commonly applied in the context of the
model-driven tool chains.

5.4.6. Concrete Syntax

Examples using the concrete syntax for SecEML have been introduced in the preceding sec-
tions. This section briefly covers the concrete syntax in general and rationale for some design
decisions.

A major design decision is concerned with the choice of a graphical or textual concrete
syntax. Most business process modeling notations provide a graphical syntax (although almost
every notation provides a textual one as well). Therefore, it might have been a natural choice to
develop a graphical syntax for SecEML. Actually, in the course of the development of SecEML
several approaches for a textual and graphical concrete syntax have been made adopting
design rules and principles provided by multiple authors [Pet95, MC96, SR01, KKP*09]. In the
end, textual representation has been favored over graphical representation for a number of
reasons (cf. also [GKR*07, EFL12]):

¢ Tool independence and tool-chain integration: Text does not require specific platforms,
environments, and tooling for reading, modifying, searching, and comparing. Furthermore,
existing tooling can be used for textual models as they are omnipresent in the development
chain. Especially, most systems for version control are text-based and have strong limita-
tions with regard to the calculation of differences and merging of conflicting versions for

117

5. Security Engineering Modeling Language

other representations. This rationale addresses the requirement for the Integration in Tool
Chains and the Reuse design strategy.

¢ Formatting speed and quality: The creation of clearly laid-out graphical models is a time-
consuming process that is only poorly supported by layout algorithms. On the other
hand, text formatting is much easier and standard algorithms render good results. The
requirements Accessible Concrete Syntax and Technical Assistance as well as the Reuse
design strategy are concerns for this rationale.

¢ Language integration and composition: Languages might integrate other languages in
order to reuse existing solutions and tooling (e.g., OCL in the case of SecEML). Seamless
integration of two different graphical representations or mixtures of textual and graphical
languages are often much harder to achieve than the integration of two textual languages.
Furthermore, tooling that supports mixed language models with textual syntax are easier to
develop, especially if they use a common development framework like EMF. This rationale
(also) addresses the requirements Accessible Concrete Syntax and Technical Assistance as
well as the Reuse and the Model-driven Techniques design strategy.

¢ Short development cycles: Although we used MDE frameworks for the development of
modeling tools for both graphical and textual representations, only in the case of textual
representations a short development cycle between changes in the metamodel, the con-
crete syntax, their mapping, and the provision of adapted tooling could be maintained.
This might be (partly) caused by the frameworks themselves or their inappropriate applica-
tion; as short development cycles allow for fast adaption of change this rationale accounted
as well for the decision in favor of a textual concrete syntax for SecEML.

The textual syntax itself is based upon the Human-usable Textual Notation (HUTN) [Obj04] in
order to provide a common appearance and a smooth learning curve. We reduced the number
of syntax elements (e.g., the colon to separate attribute name and value and the quotation
marks for identifiers) and simplified some tokens for international application (e.g., replacing
curly brackets with standard ones). The definition of the grammar is provided in EBNF in
appendix A.

5.5. Implementation

The preceding sections detailed the purpose, requirements, and major design decisions with
regard to SecEML as well as an description of the language itself. This section provides a short
presentation of the implementation of tooling to support the application of SecEML in the
security engineering process. An alternative version of the tools presented in this section
has been developed recently [Rup13]. An implementation of automated transformations
of SecEML models into implementation artifacts has been demonstrated for three different
BPMS elsewhere and will not be covered in this section [Ham13].

Two requirements for SecEML deal with tool support for SecEML: Technical Assistance
and Integration in Tool Chains (cf. requirements 3 and 6). In order to meet the Technical
Assistance requirement and to demonstrate the feasibility of our approach we developed

118

5.5. Implementation

org.eclipse.ocl

-
de.fhg.sit.seceml.text &=~ de.fhg.sit.seceml.text.ui
// _________

org.eclipse.xtext org.eclipse.ui

de.fhg.sit.xtext.bpmn2 <JI de.fhg.sit.xtext.bpmn2.ui

org.eclipse.bpmn2

Figure 5.5.1.: SecEML editor plug-ins overview (UML component diagram)

an editor for SecEML that supports creation and validation of SecEML models. Analysis of
SecEML is supported by existing tooling that we cover as well in this section. Similarly, we
meet the requirement Integration in Tool Chains with the help of existing tooling addressing
requirements management, project management, change management and other disciplines
in the development life cycle.

For the development of our SecEML editor and the integration of related tooling we chose
the Eclipse platform as foundation. The Eclipse platform has strong support in the domain
of BPM as well in the industrial as in the academic world. Many BPMS vendors take the
Eclipse platform as strategic choice for their front-end applications (e.g., major vendors like
IBM, Software AG, Red Hat but also open source solutions like Activiti, Bonita, and others).
Likewise, the Eclipse platform hosts with EMF a very well accepted framework in the domain
of model-driven engineering that we used for the development of our SecEML editor. To
facilitate the development of the editor we applied Xtext, a framework for the development of
DSMLs on top of EMF. These choices also account for the Model-driven Techniques design
strategy that we discussed in section 5.3.

The architecture of our SecEML editor is largely determined by the choice of the Eclipse
platform and the MDE frameworks. Figure 5.5.1 depicts a simplified overview of the Eclipse
plug-ins of our tooling to support the application of SecEML. Plug-ins with gray background
are provided by Eclipse (and represent merely plug-in-families):

¢ de.thg.sit.seceml.text: This plug-in contains the Ecore metamodel of SecEML, a Java imple-
mentation of the abstract syntax tree (AST), and a parser based on ANTLR.

119

5. Security Engineering Modeling Language

SecEML metamodel Implementation
(Ecore) of the AST (Java)
EMF
}
Xtext i
1
SecEML metamodel and Generated SecEML editor
concrete syntax (Xtext) (Java)
Xtext

Figure 5.5.2.: Initial transformation process for the SecEML editor

¢ de.thg.sit.seceml.text.ui: The SecEML editor supporting advanced IDE features like syntax
highlighting, content assist, and model validation is implemented with this plug-in.

¢ de.thg.sit.xtext.bpmn2 and de.fthg.sit.xtext.bpmn2.ui: Adapter plug-ins to allow for seam-
less access of BPMN business process models from the SecEML editor (or other, Xtext-based
editors).

Automation is one of the main aims applying model-driven techniques. In the case of
SecEML, automation gained by the application of MDE allowed for short feedback cycles
within the development of the language and its tooling. For the implementation of the SecEML
editor, technically we started with an integrated description of metamodel, concrete syntax,
and their mapping using the Xtext notation (collapsing the first two steps of the language
engineering process from Kleppe, cf. section 5.3). Figure 5.5.2 depicts the transformation
process for the resulting SecEML editor in this phase. Applying the Xtext framework, the
Ecore representation of the SecEML metamodel, an ANTLR-based parser, and the SecEML
editor are generated (generation is depicted using bold arrows, the responsible framework is
annotated). The embedded EMF framework generates a Java implementation of the AST that
is than utilized by the editor (dependencies are depicted using dashed arrows).

After several iterations optimizing metamodel and concrete syntax using example models
and feedback from users of the SecEML editor, we adapted the transformation process in order
to streamline the metamodel, to add constraints and derived attributes to the metamodel, and
to support further validations of SecEML models (cf. figure 5.5.3). The (initially generated)
Ecore representation of the SecEML metamodel is now manually optimized and augmented
with annotations specifying constraints and derived attributes using OCL. Similar to the
previous transformation process, EMF is used to generate the Java implementation of the
AST (including the augmentations). With the help of the Xtext framework parser and editor
implementations are generated. Additional editor features are implemented enhancing the
generated editor using Java and OCL. Although two manual augmentations are applied within
the adapted transformation process (one to the metamodel and one to the generated editor),
still changes to the metamodel as well as to the concrete syntax (mapping) could be applied
and the transformations could be executed without touching manually provided parts.

120

SecEML metamodel
annotations (OCL)

5.5. Implementation

SecEML metamodel
(Ecore)

EMF

Implementation
of the AST (Java + OCL)

SecEML concrete syntax
(Xtext)

Xtext

Generated SecEML editor

(Java)

Enhanced SecEML editor
(Java + OCL)

Figure 5.5.3.: Adapted transformation process for the SecEML editor

& Couldn't resolve reference to SecurityGoal 'a(replan.secem!

’.m,..d.nmd.w..m Jre seceml - Eclipse Platform 3R - - --:- |l ® &8 |
File Edit Navigate Search Project Run Window Help
r3~ &4 iB-0"Q WO EOCF @ G F ey 5 (@7 0ava) (& Resourc >
| 15 Package Explorer &2 S B}ﬂ_. replanseceml £3 .|} mock_replan.mbpmn | [replan.bpmn2 & replanbpmn2 | =) 8% Outline &3 =ity
p 1| bt it A b v ~ -
B%| e v‘ import Threat.* a8 B e
4 fe.fhg.sn.seceml.umpls securityRequirement SecReql_LogReplan : SRC1_LogExecutionSequence (& Replln‘
5 replan a3 goals aGoal2_Int = = = Basic
|} mock_replan.mbpmn | threats T1_TamperReplan = Asset
&= replan_bpmn.jpg) % Basic.”
& replan.bpmn2) 1% Assd_POD
& replan.seceml - package SecurityArchitecture (53.Replan
PRCEAS Y 2 3 ssl_StatusData
import Asset.* hss2_RouteData
1 import ControlCatalog.* TE AssSA_LogData
import SecurityRequirement.* % Resource
control Contl_LogReplan : ConCl_Logl ion (ji :‘unc] TI
securityRequirements SecReql_LogReplan % ThreatCatalog
il 1% SecurityRequirementCl
)) 2 Assl_StatusData - Replan.Asset.Assl_StatusData Asset Ass4_POD
% Ass2_RouteData - Replan.Asset.Ass2_RouteData Proof of Delivery (POD)
= package ActivitiSed | = Ass3 Replan - Replan.Asset.Ass3_Replan
K =
ARSI P i']Ass‘_POD R:phn.Assn.Assl_POQ]
m‘ rt Controld| '®AssSA LogData - Replan.Asset AssSA_LogData
runtimeClass Ad| 5
controlImpl 4
runtimeCla
. R
- T i
£ Problems 52 @ Java
| aror Owlmings,o;iih; Press 'F2" for focus]
[i)eunpm;n E— Resource Path Location Type
@ Errors (1 item)

/defhg.sitsecemls... line: 268 /def... Xtext Check (f...

Writable

Insert 281:20

Figure 5.5.4.: Using the SecEML editor

121

5. Security Engineering Modeling Language

Eclipse Security Workbench

Requirements/Project/Change Mangement JBoss jBPM
Mylyn Tasks Connector Subclipse
Model Management Apache Subversion
BPMN2 Modeler SecEML Editor
OCL Interactive Console
v Edgewall Trac

Figure 5.5.5.: Elements of the integrated security workbench and external components

Figure 5.5.4 displays a screen shot of the enhanced SecEML editor. The package explorer (1)
shows the resources of the project. The editor (2) allows for the creation, manipulation, and
validation of SecEML models. An outline (3) provides simplified access to the elements of the
SecEML model representing elements in a tree-like structure. Quick fixes (4) are provided by
the editor offering changes to the SecEML model in order to remove errors from the model.
In-model documentation of model elements (5) are shown to the user in order to support
editing and validation. Validation warnings and errors are displayed in the problems view (6)
allowing for an easy overview and fast navigation.

As the SecEML editor uses the Eclipse platform as foundation, applies well accepted frame-
works for the implementation, and is using a textual concrete syntax, it is easy to integrate
SecEML in existing tool chains, especially if they already apply Eclipse-based tooling. In order
to demonstrate the feasibility of the integration we provide an integrated workbench covering
BPMN as well as SecEML model management (creation, update, validation, analysis), require-
ments and project management (feature/user story/task creation, access, update), and change
management (issue creation, access, update as well as artifact versioning) utilizing the SecEML
editor and existing plugins for the Eclipse platform. Figure 5.5.5 presents the components
used for the security workbench. For model management, the BPMN2 Modeler* has been
chosen that integrates smoothly with the SecEML editor allowing for navigation from SecEML
to referenced elements of the BPMN models and the joint analysis evaluating OCL expressions

4 http://eclipse.org/bpmn2-modeler/

122

http://eclipse.org/bpmn2-modeler/

5.6. Summary

to the model instances utilizing the OCL Interactive Console®. For requirements, project, and
change management the Mylyn Tasks Connector® and the Subclipse plugin’ provide access to
the project management as well as requirements and issue tracking system Edgewall Trac?
and the version control system Apache Subversion®. The BPMS JBoss jBPM!? integrates well
with the BPMN2 Modeler. Generally, the participants of a development project work with the
same tool set. Nevertheless, depending on the respective role, components are used more
intensively (e.g., the OCL Interactive Console is used for analysis and therefore more relevant
to the Security Analyst than the Process Model Engineer). Additional components might be
needed that are provided by the BPMS in question. It should be highlighted, that the choice of
the components is not fixed and will be determined by the actual environment of an project
for the development of secure electronic business processes.

5.6. Summary

We presented SecEML in this chapter. It is our proposal for a DSML to specify work products
of SecEPM. It provides a basis for the validation of work products as well as for their transfor-
mation into deployment artifacts. We pinpointed the two faced relation of SecEML with the
ideas of MDE: First, SecEML has its role as a DSML to minimize the semantic gap. Second,
tooling supporting the application of SecEML is developed applying model-driven techniques
and frameworks.

We confined the scope of SecEML on capturing the Security Analysis Model and the Se-
curity Design Model as core artifacts of SecEPM in order to support model-based security
engineering of electronic business processes fostering a shared understanding and to allow
for an iterative and incremental execution of SecEPM activities and tasks. Formal analysis of
certain properties of electronic business processes as well as the validation of runtime policies
have been considered outside the scope of SecEML.

Seven key requirements have been identified based on this scoping (cf. section 5.2): cover-
age of all relevant concepts and relations (1), provision of an accessible concrete syntax (2),
technical assistance for the creation, validation, and analysis of SecEML models (3), inde-
pendence with regard to notations used for the specification of electronic business models
or specific runtime capabilities of BPMSs (4, 5), integration in existing tool chains for the
development of electronic business processes (6), and coexistence with existing models (7).
Criteria for the evaluation of security modeling approaches from literature have been used to
validate these key requirements.

In order to develop SecEML systematically, we applied the language engineering approach
from Kleppe that we sketched briefly in section 5.3. This section also covers four main design
strategies we applied to meet the key requirements: the Direct Representation strategy follow-
ing one of the main ideas of MDE (1), the Modularization strategy in order to provide sparsely

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/mylyn/
http://subclipse.tigris.org/
http://trac.edgewall.org/
http://subversion.apache.org/

10 http://www.jboss.org/jbpm

© oo N o O

123

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/mylyn/
http://subclipse.tigris.org/
http://trac.edgewall.org/
http://subversion.apache.org/
http://www.jboss.org/jbpm

5. Security Engineering Modeling Language

dependent compartments comprising SecEML (2), the Reuse strategy aiming at integration
of existing languages as well as modeled elements instead of redundant specifications and
implementations (3), and the application of Model-driven Techniques for the specification of
SecEML and the development of appropriate tooling (4).

We presented SecEML highlighting selected parts of its metamodel and corresponding list-
ings demonstrating the application of the selected entities and relations (cf. section 5.4). We
covered the structure of SecEML models, the specification of classifications, definition and ap-
plication of ratings, modeling of analysis and design elements, and relations between SecEML
models and the Business Process Model. We completed the presentation with rationale for the
textual concrete syntax specified in appendix A.

The implementation of our tooling for the application of SecEML was presented in section
5.5. We introduced the transformation process for the initial implementation of our SecEML
editor based on EMF and Xtext as well as its adaption in order to add further (OCL) constraints
and derived attributes to the metamodel and features to the SecEML editor. The feasibility
of the integration of the SecEML editor in existing tool chains was demonstrated integrating
several existing Eclipse plugins for requirements, project, change, and model management
that all work well in conjunction with SecEML resources and the SecEML editor.

124

6. Exemplary Study

6.1. Introduction

The preceding chapters introduced the constituent parts of our framework for model-based
security engineering of electronic business processes: the process model SecEPM, our DSML
SecEML, and tooling for the application of SecEPM as well as SecEML. This chapter provides
a joint application of our framework presenting an exemplary study. It addresses the last
research question and documents the demonstration and evaluation activities of our research
approach (cf. section 1.3):

3. What observations do we get applying the framework developed in this thesis?

In order to systematize our observations we introduce a set of analysis criteria derived from
our requirements for SecEPM and SecEML respectively (section 6.2). The Replan Process
introduced in chapter 3 provides the background for our exemplary study (section 6.3). Further
experiences gained from applications of (parts of) the framework are reported in section 6.4.
Section 6.5 applies the analysis criteria and compares the framework developed in this thesis
with existing approaches. Section 6.6 reviews application and comparison and discusses our
findings. A summary of the main results in section 6.7 concludes this chapter.

6.2. Analysis Criteria

We derive our criteria for the analysis of the exemplary study and the comparison of the
framework developed in this thesis with existing approaches from requirements specified for
SecEPM and SecEML respectively.

We elicited these requirements considering key requirements that have been explicated for
matching security engineering process models as well as requirements addressing the major
issues detailed in the problem statement. Therefore, they are well aligned with the objective of
this thesis. Furthermore, they provide a foundation to differentiate the framework developed
in this thesis from existing approaches and the progress achieved with our contributions.

The derivation of the analysis criteria is straightforward for most of the requirements for
SecEPM (cf. section 4.2). We denominate resulting criteria with the identifier of the corre-
sponding requirement to foster clarity. The following paragraphs comment only possible
ambiguities or decisions taken in the course of the derivation. An overview of the resulting
criteria is provided in table 6.1.

In order to distinguish the Coverage criterion stemming from SecEPM requirements and
the Coverage criterion stemming from SecEML requirements we name them Activity Coverage

125

6. Exemplary Study

Requirement

Criterion

Structure
(Activity) Coverage

Separation of Problem and
Solution Domain
Traceability

Integrability

Independence from
Development-time
Technology
Independence from
Runtime Technology
Restricted Skill Sets

Activities, roles, work products, and their relations are documented
Activities are provided for the assessment of security goals, elicitation
of security requirements, threat modeling and prioritization, and
control design as well as configuration

Activities and work products are separated with regard to the problem
and solution domain

Tracing of dependencies between security goals, threats,
requirements, and controls is supported

Integration into development process models is considered and
demonstrated

No specific technology or tooling is required to apply the process
model

Different business process engines and runtime environments can be
supported
Participation of security nonprofessionals is considered and a

respective role is responsible at least for one activity

Table 6.1.: Analysis criteria derived from SecEPM requirements

and Concept Coverage respectively. Activity Coverage defines the necessary scope of activities
of the security engineering process model. The Traceability criterion focuses on dependencies
and checks, whether traceability of dependencies of relevant entities is considered by the
process model in question. In case of Integrability, the respective criterion is shaped to
check explicit consideration and demonstration of the integration of the security engineering
process model in question into at least one existing development process model. Similarly,
the Restricted Skill Set criterion checks explicit consideration of security nonprofessionals
as participants and the assignment of at minimum one activity of the security engineering
process model to a role designated for security nonprofessionals.

Likewise, derivations from requirements for SecEML are mostly self-explanatory (cf. sec-
tion 5.2). An overview of the resulting criteria is provided in table 6.2. The Concept Coverage
criterion is straightened in comparison to the respective requirement in so far as it checks
whether relevant concepts and relations are directly represented in the DSML. Exemplary, a
security requirement modeled using the DSML in question needs to be directly identifiable
as such and uses different syntax elements than a security control to fulfill this criterion. The
Coexistence with Existing Models criterion checks two aspects of the respective DSML: First,
whether a (digital) business process model does not need to be changed in order to apply the
DSML. Generally, most languages applying the language extension or the dialect definition
strategy will not fulfill this criterion as they require augmentation of existing models (cf. sec-
tion 2.3.3.3). The second aspect is the possibility to link elements from the business process
model and the security model, e.g., providing references.

126

6.3. The Replan Process

Requirement

Criterion

(Concept) Coverage

Accessible Concrete
Syntax
Technical Assistance

Independence of
Notation
Independence of
Runtime Capabilities
Integration in Tool
Chains

Coexistence with
Existing Models

Concepts and relations defined and required by the process model are
directly represented in the DSML

Familiar appearance of the concrete syntax also for security
nonprofessionals

Tools to create, validate, and analyze models applying the DSML are
provided

DSML can be applied regardless of the notation of the business process
model

The DSML does not require specific runtime capabilities of BPMSs

Standard tooling can be reused to apply the DSML in existing tool chains

Existing business process models can be used without changes and
elements of business process models using common notations can be

linked to elements of models using the DSML

Table 6.2.: Analysis criteria derived from SecEML requirements

Spoofing Tampering Repudiation Information Denial of Elevation of
Disclosure Service Privilege
Process Spoof User Tamper Repudiate Disclose Denial of Elevation of
Execution User Process Process Privileges
Sequence Interaction Information Execution
Message Spoof Tamper Repudiate Disclose Denial of
Participant Message Message Message Message
Exchange Exchange
Data Tamper Data Disclose Data

Table 6.3.: Mapping of STRIDE threat classes onto BPMN entities for modeled assets

6.3. The Replan Process

The Replan Process has been introduced as running example in chapter 3. In order to protect
the interests of the participants in the originating research project and to ease reproducibility,
we removed confidential details from the original business process model and adapted the
solution to run in an open source environment for this exemplary study. Technical details that
do not contribute to the security of the Replan Process are omitted.

Proceeding and results are presented following the structure of SecEPM representing a
logical order of activities, not necessarily the actual order. For keeping the focus on SecEPM, the
results are presented independently from an actual development process. Notwithstanding,
interesting deviations are noted. The presentation is accompanied by tabular overviews
depicting important relations. These relations are taken from the respective work product
extracts that are provided in appendix B.

127

6. Exemplary Study

Security Asset Security Goal Class Threat Class Common
Requirement Class Criteria SFR
Class
User Process Confidentiality, Spoof User, Repudiate User FIA_UAU.2
Authentication Integrity, Non- Interaction
Repudiation
Message Message Confidentiality Disclose Message, Spoof FDP_UCT.1
Confidentiality Participant
Message Message Integrity Tamper Message, Spoof DFP_UIT.1
Integrity Participant
Audit Generation Process Integrity, Non- Tamper Execution FAU_GEN.1
Repudiation Sequence
Data Integrity Data Integrity, Non- Tamper Data FAU_STG.1,
Repudiation FPT_ITI.1
Data Data Confidentiality Disclose Data FAU_ITC.1
Confidentiality
User Access Process Confidentiality, Spoof User, Disclose FDP_ACC.1,
Control Integrity, Non- Process Information, FDP_ITC.1
Repudiation Elevation of Privileges,
Repudiate User Interaction
Secret Quality Process, Confidentiality, Spoof User, Spoof FIA_SOS.1
Message Integrity, Non- Participant, Repudiate User
Repudiation Interaction, Repudiate
Message Exchange
Minimum Process, Availability Denial of Process FRU_RSA.2
Quotas Message Execution, Denial of

Message Exchange

Table 6.4.: Mapping of asset classes, security goal classes, and threat classes onto security
requirement classes and related CC SFRs

6.3.1. Setup Process

As SecEPM separates tasks that need substantial input from security professionals from those
that do not need that input, the activity Setup Process plays an important role in SecEPM and
consumes significant effort at its initial execution in a new environment.

For the Replan Process, basic definitions are taken from ISO 13335-1 and the IT-BPM
[Int04, Bun08]. The security goal classes “Confidentiality”, “Integrity”, “Availability”, and “Non-
repudiation” are defined corresponding to [Int04]. The IT-BPM has been chosen as method
to rate security goals for the Replan Process. Therefore, the ratings “Normal”, “High”, and
“Very High” are defined accordingly. Furthermore, six damage scenarios are specified covering
“Violation of laws”, “Impairment of the right to informational self-determination”, “Physical
injury”, “Impaired ability to perform tasks at hand”, “Negative internal or external effects”,
and “Financial consequences”. In order to rate security goals systematically, criteria to assess
security goals are defined for all combinations of damage scenarios and security goal ratings.

To support the identification of modeled assets, three asset classes are defined encompassing

128

6.3. The Replan Process

Control Class Security Requirement Purpose Introduced Dependency
Class Asset Class
User User Authentication Prevention Data Secret Quality
Authentication
User Access User Access Control Prevention Data User
Control Authentication
Physical Access Data Confidentiality, Prevention
Control Data Integrity
Channel Message Confidentiality, Detection, Data
Protection Message Integrity Prevention
Message Message Confidentiality Prevention Data Secret Quality
Encryption
Message Message Integrity Detection Data
Authentication
Audit Generation Audit Generation Detection, Data
Monitoring
Data Encryption Data Confidentiality Prevention Data Secret Quality
Data Integrity Data Integrity Detection Data
Protection
Secret Quality Secret Quality Deterrence
Minimum Quotas Minimum Quotas Limitation

Table 6.5.: Control classes and their security goal classes, purposes, introduced asset classes,
and dependencies

“Process” assets (covering sequences of flow nodes, assigned to the BPMN entity Process),
“Message” assets (covering data in transit, assigned to the BPMN entity Message), and “Data”
assets (covering data at rest, assigned to the BPMN entity DataObject). As control purposes
“Prevention”, “Deterrence”, “Limitation”, “Detection”, “Correction”, “Recovery”, and “Moni-
toring” are defined. Rating of control implementations is restricted to “Weak” and “Strong”,
restricting weak control implementations to security requirements that refine only security

goals rated as “Normal”.

For threat modeling, the STRIDE method is selected and adopted to electronic business
processes. Therefore, the six threat classes from STRIDE are mapped onto the three modeled
assets resulting in 13 threat classes. Table 6.3 on page 127 displays the mapping and the
resulting threat classes. For every threat class, OCL expressions are provided to identify
candidate assets in the Business Process Model. Therefore, evaluation of the expressions and
comparison of the result set with the modeled assets of a Security Analysis Model provide a
basis for the identification of missing considerations with regards to threats.

In order to support the refinement of security requirements from security goals and threats
for a given Business Process Model, security requirement classes are defined that map asset
classes, security goals classes, and threat classes. The grouping of so called SFRs from Common
Criteria (cf. [Intl1a]) served as a basis for this mapping and allows for systematic extension
of the defined classes as well as an alignment of a Security Analysis Model based on these

129

6. Exemplary Study

Control Implementation Control Class Dependency Rating
Class

Log Execution Audit Generation Weak
Key Store Data Encryption, Data Integrity Protection Weak
Basic Http Authentication User Authentication Weak
Transport Layer Security Channel Protection, User Authentication Key Store Strong
User Access Control User Access Control Basic Http Weak

Authentication

Table 6.6.: The runtime capabilities of Activiti

security requirement classes with analysis artifacts conforming to this standard. Table 6.4
depicts the resulting mapping.

Control classes for the Control Catalog have been defined in correspondence with the
security requirement classes. Control classes provide structure for the solution space. Their
definition anticipates actual control implementations from targeted BPMSs in a generalized
manner but has to consider possibilities to model necessary assumptions as well. Table 6.5
on the previous page depicts the defined control classes, their security requirement classes,
purposes, introduced assets, and dependencies with other control classes. The Control Catalog
is likely to be changed within a development project and the respective task from the Setup
Process activity will be executed several times.

Activiti, the selected BPMS, provides only few security mechanisms that have been captured
in the Runtime Capability Model. The control class implementations are shown in table 6.6.
Comparing tables 6.5 and 6.6, it can be seen, that capabilities of a BPMS do not necessarily
meet the specification of their control classes (e.g., Activiti does not support the checking and
enforcement of strong secrets and the control implementation class “Basic Http Authenti-
cation” is not backed by a respective control implementation class to ensure the quality of
secrets). These mismatches should be identified and reported to the user by appropriate tool-
ing. Exemplary, the SecEML editor reports a warning offering the insertion of a reference to a
matching control implementation or the creation of a corresponding control implementation
class as quick fix.

The last task of the Setup Process is the provision of guiding artifacts. The guidance on
the rating of security goals adapting IT-BPM (cf. section 4.6.2) is selected. Additionally,
references to the STRIDE method as well as for Activiti are provided as background material.
The documentation of the tailored security engineering process is published using the EPF
Composer (cf. section 4.7.1 and figure 4.7.4).

6.3.2. Identify Assets

Until now, only preparatory tasks have been executed tailoring the security engineering pro-
cess. Most of these tasks need strong participation of the Security Analyst or are assigned
to that role. The following activities and tasks are mainly assigned to the Business Process
Engineer and interactions with the Security Analyst are minimized in order to leverage security
nonprofessionals and reduce the skill set necessary.

130

6.3. The Replan Process

Analysis of assets and requirements takes the viewpoint of the logistics provider as the
logistics provider is the driving force for the specification and enactment of the Replan Pro-
cess. The activity Identify Assets results with the POD as business asset that captures the
purpose of the Replan Process and is not represented in the Business Process Model. Two
modeled assets are identified comprising the core Replan Process of the logistics provider
(ASS_ReplanProcess)and the messages exchanged with the forwarder (ASS_Messages).
The forwarder process itself, the wide area network (WAN) transmitting the messages, the
dispatcher, and the logistics system are modeled as resources. The following dependencies are
captured for those assets and resources: The business asset POD is supported by the modeled
asset Replan Process that is in turn supported by the message asset. The resources forwarder
process, logistics system, and WAN support the message asset as participants or media for the
message exchange. The resources logistics system and dispatcher support the asset Replan
Process. Table 6.7 on the next page displays the assets in the respective column (including
those assets that have been introduced by controls in following activities).

The SecEML editor supports this activity by, e.g., identifying candidate (or probably missed)
modeled assets, linking elements from the Security Analysis Model with those from the Busi-
ness Process Model, and validating dependencies between assets and resources.

6.3.3. Assess Security Goals

Executing the activity Assess Security Goals generates four security goals for each modeled
asset (one for each security goal class) that are rated “Normal” with regard to the security goal
classes confidentiality and availability and “High” with regard to integrity and non-repudiation:
The Replan Process does not handle highly classified data (confidentiality) and supports the
timely delivery of shipments but does not hinder them (availability). Nevertheless, the Replan
Process potentially re-routes shipments which might induce delays and substantial penalties
in case of manipulations of the process or messages (integrity and non-repudiation). As
dependencies between security goals those between assets are considered as relevant in order
to identify necessary adjustments for the security goal ratings using the default maximum
principle. Hence, no manual adjustment is necessary. Table 6.7 on the following page displays
the security goals in the respective column.

The SecEML editor supports this activity by, e.g., identifying (potentially) missing security
goals and calculating ratings from criteria assigned and dependencies between the security
goals.

6.3.4. Model Threats

In order to model threats for the security goals documented for the Replan Process, candidate
threats for the threat classes specified in the Threat Catalog are identified first. All threat
candidates that endanger a security goal are then selected as relevant threats and added to
the Security Analysis Model. A dedicated rating for the threats is not documented as it can be
derived from the rating of the affected security goals and corresponds to the maximum rating
from all affected security goals.

131

6. Exemplary Study

Security Asset Security Goal Threat
Requirement
User Replan Process Replan Confidentiality, Spoof Dispatcher,

Authentication
Message Integrity
Message
Confidentiality
Audit Generation
Data Integrity
Data

Confidentiality

User Task Access
Control

Minimum Task
Resources

Messages
Messages
Replan Process

Audit Trail,
Credentials,
Privileges Keys
Audit Trail,
Credentials,
Privileges, Keys
Replan Process

Replan Process,
Messages

Integrity, and Non-
Repudiation
Message Integrity

Message Confidentiality

Replan Integrity and Non-
Repudiation

Audit Trail, Credential,
and Keys Integrity

Audit Trail, Credential,
and Keys Confidentiality

Replan Confidentiality,
Integrity, and Non-
Repudiation

Replan and Messages
Availability

Repudiate Route Selection

Tamper Messages, Spoof
Participant

Disclose Message, Spoof
Participant

Tamper Replan Process

Tamper Data

Disclose Data

Spoof Dispatcher, Disclose
Route Data, Repudiate
Route Selection

Impede Message
Transmission and Replan

Execution

Table 6.7.: Security requirements for the Replan Process

For the Replan Process, eleven threats are initially documented and supplemented with
additional threats for assets that are introduced by controls later in the security engineering
process (cf. table 6.7 that displays the security requirements for the Replan Process referencing
the respective threats).

The execution of the activity Model Threats is supported by the SecEML editor identifying
candidate threats and possibly affected security goals.

6.3.5. Elicit Security Requirements

The elicitation of security requirements yields six initial requirements and two complementing
requirements addressing assets introduced due to the selection of controls later in the process.
Table 6.7 depicts the resulting set of security requirements for the Replan Process.

The identification, selection, and consolidation of security requirements is substantially
based on the security requirement classes specified in the Threat Catalog. Identification of
candidate requirements can be reduced to the instantiation of applicable security requirement
classes. Consolidation is facilitated by the subsumption of requirements of the same security
requirement class. Similarly, validation of the security requirements is supported by the basic
definitions as well as the Threat Catalog. For all elements of the Security Analysis Model it can
be checked what decisions have been taken in order to elicit the requirements compared to
alternative possibilities within the scope of the general definitions (e.g., that the forwarder

132

6.3. The Replan Process

process has not been considered as an asset or that no requirement with regard to the quality
of the secrets has been specified). Furthermore, all security requirements can be traced to
threats, security goals, and assets (and vice versa). Therefore, threats, assets, and security goals
that have not been covered can be identified easily.

The application of SecEML and the SecEML editor provides substantial support for the
execution of the tasks of the Elicit Security Requirements activity: Identification of candidate
requirements, consolidation of requirements, and validation of completeness and consistency
of the requirements are technically supported.

6.3.6. Design Controls

The design of the controls to meet the specified security requirements comprises a simple con-
trol set (anticipating the restricted control implementations provided by the selected BPMS).
Users are authenticated and access to user tasks is mediated. Integrity and confidentiality
of messages are protected using a secure channel for message exchange. Audit trails are
generated in order to monitor the Replan Process execution and detect deviations from the
specified execution sequence. Protection of data assets rests on the assumption that access to
the data is restricted physically.

The controls introduce a couple of assets into the Replan Process that need some consid-
eration as well. Therefore, the respective activities from the security engineering process are
repeated for an incremental update of the Security Analysis Model. Table 6.8 displays the
controls specified for the Replan Process.

Similar to requirements elicitation, execution of necessary tasks for the design of proper
controls are substantially based on the Control Catalog: Identification, selection, and detailing
of controls use control classes and those classes indicate the introduction of new assets
alongside. Even more, checking of the coverage of all security requirements profits from
tracing of controls to requirements and threats including affected elements of the Business
Process Model.

The SecEML editor provides feedback on candidate controls, covered requirements etc.
Exemplary, no control and assumption has been provided for the requirement to enforce
the provision of minimum resources for the execution of tasks of the Replan Process as the
selected BPMS and its environment do not support such mechanisms. Therefore, it can be
easily deduced from the Security Analysis and Design Model (e.g., using the SecEML editor)
that the impediment of the execution of the Replan Process as well as impediment of message
transmission are not mitigated and the security goals Replan Process and message availability
are not backed by proper controls.

6.3.7. Map Controls

The mapping of controls onto control implementations provided by Activiti mainly applies
the control implementation classes provided with the Runtime Capability Model: Candidate
control implementations are instantiated, effective control implementations are selected, and
necessary configuration parameters are provided. If control implementations are provided for

133

6. Exemplary Study

Control / Requirement Introduced Dependency Implementation
Assumption Asset
User User Authentication Credentials Basic HTTP
Authentication Authentication
User Task Access User Access Control Privileges User User Access
Control Authentication Control
Message Message Keys TLS
Protection Confidentiality and

Integrity
Audit Generation Audit Generation Audit Trail Log Execution
Physical Access Data Confidentiality
Control and Integrity

Table 6.8.: Controls, assumptions and control implementations for the Replan Process

all controls specified in the Security Design Model, the coverage check is successful (cf. table
6.8).

Additionally, the application of SecEML allows for further validation: Instantiation of the
relations specified by the control (implementation) classes can be checked as well, e.g., in
order to detect a missing instantiation of the dependency from the transport layer security
(TLS) control implementation to a key store. The SecEML editor supports these validations as
well as the generation of proposals for the instantiation of candidate control implementations.

6.3.8. Generate Control Artifacts and Test Cases

Generation of control artifacts and test cases is largely dependent on the environment, the
embedding development process, and the development project. For larger and technically
homogenous projects, setup and maintenance of transformation chains bridging several steps
might be efficient, smaller or more heterogeneous environments and projects might apply
only few automated transformation steps. As the implementation of transformation chains is
not at the heart of this thesis, the generation of deployment artifacts (e.g., adaptation of the file
“logging.properties” for the logging control implementation) and test artifacts will not further
covered in this section. An example for the generation of respective artifacts is documented in
a master’s thesis that has been written in the context our efforts [Ham13].

6.4. Application Experiences

This section reports on exemplary experiences applying (parts of) the framework in different
environments. These experiences do not resemble full case studies and are not backed by
formal surveys. Therefore, the experiences are sketched only briefly. The intention of this sec-
tion is to illustrate the application of the framework in different settings and to report on early
feedback of users. Further applications within similar environments and with comparable
results have been omitted as they do not yield further insights.

134

6.4. Application Experiences

The Equipment Surveillance Process Within the course of the already mentioned re-
search project ADiWa (cf. section 3.2), further electronic business processes have been an-
alyzed and re-engineered to allow for better adaptability, service quality, and new service
offerings. One example is the Equipment Surveillance process from an international provider
of power and automation technologies. The Equipment Surveillance process identifies neces-
sary and optional services for the customers of the automation technologies provider. Within
the research project the electronic business process has been re-engineered to switch from a
rigid service delivery to a flexible on-demand service delivery.

An early version of SecEPM has been employed in order to identify assets, assess security
goals, elicit security requirements, and to select and configure necessary controls for the
Equipment Surveillance Process. After preparation of the security engineering process, the
respective activities have been executed by security nonprofessionals (employees of the au-
tomation technologies provider) independently as well as within workshops accompanied by
security experts.

The coverage of activities met the needs of the project. Separation of Security Analysis
Model and Security Design Model, traces between the elements, and independence from
runtime technology proved helpful in the course of the project, since implications of alternative
solutions (mainly due to changes in the business requirements or technical constraints) could
be compared and discussed on a common basis. The security nonprofessionals have been
able to execute the activities although further guiding artifacts might have been helpful to
facilitate adoption. A formal integration into a development process model did not take place.
SecEML has not been applied for the Equipment Surveillance Process.

The Account Opening Process Within the course of a master’s thesis to develop alterna-
tive SecEML tooling, the Account Opening Process has been modeled and analyzed [Rup13].
The Account Opening Process offers customers and prospects the possibility to open a banking
account using the website of the bank. Figure 6.4.1 depicts the business process model.

For the master’s thesis an early version of SecEPM has been used in order to setup the
security engineering process, identify assets, assess security goals, elicit security requirements,
and to select controls. SecEML has been applied to capture and validate SecEPM work products.
The activities have been executed by the student which has a background as security consultant
for financial institutions.

Adoption and application of SecEPM as well as SecEML proved simple and straightforward.
The activities covered all necessary aspects of the analysis. Separation of problem and solution
domain, traceability of dependencies, independence from development-time and runtime
technology facilitated adoption and application. The structure of SecEPM allowed for a simple
integration of existing threat and control catalogs. The background of the student hindered the
evaluation of the Restricted Skill Sets criteria in this case. SecEML provided all necessary con-
cepts and relations to capture the work products. Concrete syntax, independence of notation
and runtime capabilities proved helpful for the analysis. Technical assistance, integration in
tool chains, and coexistence with existing models have not been evaluated since new tooling
has been developed within the master’s thesis.

135

6. Exemplary Study

Scoring
Acceptable?

Send SCHUFA
Request

Receive SCHUFA
Scoring

Create
Customer Record

Clear Data

£
2 [No]
1
2
2]
Check Retrieve Assign Verification) .
Application Data [YesI® ¢ \cromer Record Account Number Successful? [Yes]» Confirm Application
Start Se Reti R It
art Session eturn Resu
~
f=4
©
o
o~ (
[
<
3 Approve Application
Q
£
e} |
- I'e
[
<
] Verify Application
[=5
£
e} |
8}
a
Re m Receive Result
.
e
£
S
2
1]
=]
(e}
.
o Enter Aggree with GTC Confirm
3 Application Data and SCHUFA ; ﬁ Application

Figure 6.4.1.: The Account Opening Process [Rup13,

p- 25] (BPMN process diagram)

136

6.5. Comparison of Approaches

The Partner Communication Service In a consulting project for a small and medium-
sized enterprise (SME) a new communication service has been integrated into the business
process to exchange production data with business partners of the SME. The business process
receives status information about pre-products from business partners and sends correspond-
ing information back to the business partners. [Eiclla]

Within the course of this project an early version of SecEML has been used to model the
present security posture of the business process. Analogous, SecEML has been used to model,
validate, and analyze different solutions for the integration of the new communication service.
SecEML has been applied together with the security officer of the SME, a project manager,
and several domain experts (for IT infrastructure, operations, and the production application).
The security officer as well as domain experts for the IT infrastructure used SecEML regularly
as end users. SecEPM has not been applied in the project.

The application of SecEML proved very helpful. Especially, the tooling to validate and
analyze the models supported the identification of several weaknesses of the present business
process. Similarly, tooling and the independence of runtime capabilities facilitated the discus-
sion of alternative solutions. SecEML covered all necessary concepts for the analysis. Direct
representation, independence of notation, and coexistence with existing models contributed
to the quick acceptance of SecEML by the end users. The possibility to reuse standard tooling
with SecEML allowed for an easy integration into the existing tool chain (e.g., versioning and
comparison). On the downside, the application of SecEML has been questioned for larger
projects as the textual approach does not foster a fine grained access control for respective
models. Also, the appearance of the security workbench attracts people with background as
software developer more. For long-term maintenance of SecEML models the stakeholders
voted for an additional form-based user interface.

6.5. Comparison of Approaches

This section reviews our results comparing the framework developed in this thesis with ex-
isting approaches for security engineering of electronic business processes (cf. sections 2.5.1
and 2.5.3). The application of our framework provides necessary background for this review
(cf. sections 6.3 and 6.4). The comparison is systematized applying the criteria developed in
section 6.2.

Figure 6.5.1 depicts an overview of the comparison. Filled circles denote fulfillment of an
criterion, striped circles indicate partial fulfillment, and empty circles implicate an unfulfilled
criterion. If no circle is displayed, a criterion is not applicable with regard to the respective
approach. The figure displays criteria for process models as well as for DSMLs. Captions in
italic and a lighter grey background indicate criteria that are related to DSMLs.

6.5.1. Comparison of the Process Models

Structure All approaches document activities, roles, work products, and their relations. Not
every approach explicates its structure very clearly. Especially, the relations between work

137

6. Exemplary Study

Figure 6.5.1.: Comparison of approaches for security engineering in the domain of BPM

138

6.5. Comparison of Approaches

products and roles are sometimes provided only indirectly (e.g., MoSSBP). Nevertheless, all
approaches qualify as process model.

Activity Coverage Not all approaches fulfill the Activity Coverage criterion. AURUM and
MoSSBP do not differentiate the assessment of security goals and the elicitation of security
requirements. MoSSBP and POSeM do not include threat modeling but assume this step
as prerequisite to the security engineering process. Control configuration is considered by
POSeM but not explicated. Only ProSecO and SecEPM fulfill the Activity Coverage criterion
completely.

The consequences of non-fulfillment of the criterion might be demonstrated by the fol-
lowing examples using the analysis of the Replan Process as background (cf. section 6.3):
Differences between the security goal Replan Confidentiality and a corresponding security
requirement User Access Control are not analyzed with AURUM or MoSSBP, underlying deci-
sions are not explicated. Similarly, application of MoSSBP and POSeM does not reveal different
threats like Spoof Dispatcher and Repudiate Route Selection that might raise the same security
requirement User Access Control. In such cases, security analysis remains incomplete and
development of alternative security designs becomes difficult.

Separation of Problem and Solution Domain Consequently, the problem and solution
domain is not separated in MoSSBP: Security goals, security requirements, and threats are not
consistently differentiated. Therefore, security analysis is intertwined with security design. The
other approaches do separate the problem and solution domain. Nevertheless, POSeM and
AURUM provide only a partial security analysis as threat modeling is not supported (POSeM)
or security goals and requirements are not separated (AURUM). As exemplified for the Activity
Coverage criterion, rationale and comparison of alternative security designs becomes difficult
with these approaches.

Traceability The Traceability criterion is fulfilled for MoSSBP, ProSecO, and SecEPM. AU-
RUM and POSeM do not provide explicit means to trace dependencies between security goals,
threats, security requirements etc. but both can be augmented to do so. Nevertheless, al-
though MoSSBP and ProSecO support traceability, their respective DSMLs do provide only
little (ALMOS$T) or no explicit (SECTET-PL) tool supported traceability features.

Lack of support for traceability hinders effective impact analysis as well as comprehension of
work products. Exemplary, exploiting the support for traceability from SecEPM (and SecEML)
allows for a simple (tool supported) analysis of all security goals that are (partially) protected
applying the control Basic HTTP Authentication: The control addresses the three security
goals Replan Confidentiality, Integrity, and Non-Repudiation.

Integrability The integration of the security engineering approaches into development
process models is considered by ProSecO and SecEPM. Nevertheless, ProSecO does only
conceptually sketch the integration into a generic development process model. Only the
framework developed in this thesis provides necessary means for an actual integration into
different development process models.

139

6. Exemplary Study

Exemplary, a SecEPM plug-in for a CAME tool is provided with this thesis. The plug-in
conforms to SPEM and supports leading products in the market (cf. section 2.3.2). Addi-
tionally, a systematic approach for such an integration has been explicated and an actual
integration is demonstrated in section 4.7.2. Without such means for integration activities,
work products, and roles remain unaligned and the decision about the execution sequence
and the consideration of mutual influence of activities remains to the individual participant.
Without such plug-in a documentation of the integrated process model has to bridge the
different representations of the initial models manually.

Independence from Development-time Technology AURUM, ProSecO, and SecEPM
are independent from development-time technology. POSeM applies a proprietary WPDL
dialect as starting point for its analysis and utilizes respective tooling. Nevertheless, also
without such tooling POSeM might be applied. MoSSBP requires proprietary graph rewriting
tools in order to be applied. Therefore, AURUM, ProSecO, and SecEPM fulfill the Independence
from Development-time Technology criterion, POSeM fulfills partly the criterion, and MoSSBP
does not fulfill the criterion.

Independence from Runtime Technology Independent from runtime technology are
only AURUM and SecEPM. Conceptually, ProSecO is similarly technology agnostic but assumes
a specific MDA tool chain supporting specific implementation-related standards like WS-BPEL
and XACML in order to leverage all benefits. POSeM applies its proprietary WPDL dialect that
needs to be supported by the runtime environment in order to avoid extra effort. MoSSBP
depends on specific runtime environments supporting the resulting secured business process
models.

Thus, only AURUM and SecEPM might have been applied without either changes to the
runtime environment of the Replan Process or limitations as well as extra effort with regard to
the adaption of the business process model.

Restricted Skill Sets The Restricted Skill Sets criterion is fulfilled by SecEPM and MoSSBP.
All other approaches consider the participation of security nonprofessionals but do not assign
activities with a role designated for security nonprofessionals as responsible role. Therefore,
they fulfill the criterion only partly.

In case of SecEPM, the Security Analyst provides the Process Model Configuration, the
Threat and Control Catalog as well as the tailored process during the activity Setup Process.
This enables the Business Process Engineer to execute for example the activities Identify Assets,
Assess Security Goals, and Elicit Security Requirements as responsible role.

6.5.2. Comparison of the DSMLs

The criteria related to DSMLs do not apply to AURUM as it does not propose the application
of a dedicated DSML. The authors propose a specific method and corresponding tooling to
quantify costs and benefits of selected control sets. This method might be integrated in other
approaches like SecEPM but this integration is not covered within this thesis.

140

6.5. Comparison of Approaches

Concept Coverage The Concept Coverage criterion is fulfilled by SecEML and SEPL. The
concepts of MoSSBP and ALMOST are not aligned with the respective process model, i.e.,
different terms are used in the process model and the DSML. SECTET-PL does not provide
direct representation: Exemplary, security goals are not named as such and represented as
equations in UML Notes. This misalignment of concepts or lack of direct representation
widens the semantic gap and lifts the level of skills necessary to represent the results of the
activities using the respective DSML.

Accessible Concrete Syntax Analogously, the Accessible Concrete Syntax criterion is not
fulfilled for ALMOST and SECTET-PL. Both DSMLs address security experts that are able to
translate the security concepts in question into technical representations or property-related
equations and interpret resulting work products. Therefore, it becomes very hard for security
nonprofessionals to apply ALMOS$T and SECTET-PL in the context of MoSSBP and ProSecO
(at least without tooling that shields the user from the language). SEPL applies a proprietary
WPDL dialect that is easy to use for BPM domain experts. Analogously, SecEML is based upon
HUTN that allows for a common appearance and smooth learning curve.

Technical Assistance All approaches provide technical assistance to apply their respec-
tive DSML. Nevertheless, tools for the application of POSeM are only partly implemented (e.g.,
application of the specified rule sets is not supported so far), for MoSSBP technical assistance
for the creation and maintenance of repository items is not supported, and ProSecO/SECTET
applies generic UML tools that do not provide SECTET-PL syntax checking, validation and
analysis without further implementation.

Therefore, the lack of technical assistance increases the prerequisites to apply these ap-
proaches and the effort needed. Especially for security nonprofessionals, technical assistance
for the application of a DSML eases its adoption and the validity of resulting models.

Independence of Notation Only SecEML can be applied independently of the notation
used for the business process model. POSeM uses a proprietary WPDL dialect, MoSSBP
(ALMOS$T) and ProSecO (SECTET-PL) apply specific UML dialects. Therefore, all three ap-
proaches require a transformation of existing business process models into compatible no-
tations that might break existing tool chains or render the application of established tools
impossible.

For example, existing transformations in MDA tool chains often do not maintain relations
between UML Notes and the respective model elements. Application of SECTET-PL will
become difficult in these environments.

Independence of Runtime Capabilities All DSMLs provide means to model the capabil-
ities of the BPMS in question. A dedicated possibility to model the different capabilities of
several BPMSs is only provided by SEPL and SecEML. SECTET-PL does not encapsulate this
information but spreads it partly across the UML Notes used with SECTET-PL and partly across
the transformations that generate the secured business process model. ALMOST does not
separate capabilities of different BPMSs and depends on specific capabilities as precondition.

141

6. Exemplary Study

Therefore, it becomes very hard to model and compare the application of different BPMSs
(or the same BPMS in different configurations) for the same business process in order to select
the optimal engine and to balance trade-offs. Even worse, it might not be possible to apply
SECTET-PL or ALMOS$T at all.

Integration in Tool Chains SEPL and SecEML do not require a dedicated infrastructure
or conceptually deviating tooling in order to create, validate, transform, and manage respec-
tive models. Dedicated tooling provided for these DSMLs can be used in combination with
standard tooling, e.g. for change and model management. SECTET-PL rests on UML that fits
very well in existing tool chains. Unfortunately, SECTET-PL requires a specific application
procedure that places several constraints on the tools applied (e.g., handling of UML Notes
or transformation environment) that might hinder effective application of standard tooling.
ALMOST in the context of MoSSBP requires dedicated tooling for model management and
application that will not integrate easily in existing tool chains.

Coexistence with Existing Models Only SecEML allows for an effective coexistence
with existing business process models. SECTET-PL is applied within UML Notes attached to
elements in existing business process models and therefore changes existing models. SEPL
integrates security directly into the business process model, existing WPDL models have to be
changed in order to capture the security aspects. The application of ALMOS$T in the context of
MoSSBP requires specific business process models that are changed within the execution of
the activities from MoSSBP.

6.5.3. Aggregation

None of the existing approaches that we compared with our framework meets all requirements
(cf. figure 6.5.1). Nevertheless, the approaches exhibit different strength with regard to our
analysis criteria. In order to streamline the results from the preceding sections comparing the
existing approaches we assign our analysis criteria to the main issues with regard to security
in the domain of BPM. Figure 6.5.2 displays the primary assignments, i.e., which analysis
criteria applies foremost to one of the main issues: security nonprofessionals deciding and
implementing security (labeled “Security Nonprofessionals”), heterogeneity of business pro-
cess engines (labeled “Heterogeneity of BPM Engines”), and business process environmental
heterogeneity (labeled “Environmental Heterogeneity”). Filled circles denote the primary
assignment. The assignments are based mainly on rationale provided in the corresponding
sections of the requirement analysis for SecEPM and SecEML (cf. sections 4.2 and 5.2).

With regard to process models, the analysis criteria Activity Coverage, Traceability, and
Restricted Skill Sets apply primary to Security Nonprofessionals. The analysis criteria Separa-
tion of Problem and Solution Domain as well as the Independence from Runtime Technology
are primarily assigned to the Heterogeneity of BPM Engines. The analysis criteria Structure,
Integrability, and Independence from Development-time Technology apply primarily to En-
vironmental Heterogeneity. With regard to DSMLs, the analysis criteria Concept Coverage,

142

6.5. Comparison of Approaches

Figure 6.5.2.: Primary assignment of analysis criteria and main issues

143

6. Exemplary Study

Security Heterogeneity = Environmental Sum

Nonprofessionals of BPM Engines Heterogeneity
AURUM 0(3) 2 (0) 2 (0) 4(3)
MoSSBP 2 (1) 0(0) 1(0) 3(1)
POSeM 0(3) 1(0) 1(1) 2 (4)
ProSecO 2 (1) 1(1) 2(1) 5(3)
SecEPM 3 (0) 2 (0) 3 (0) 8 (0)

Table 6.9.: Fulfillment of analysis criteria with regard to main issues by process model

Security Heterogeneity = Environmental Sum

Nonprofessionals of BPM Engines Heterogeneity
ALMOST 0(2) 0(1) 0(0) 0(3)
SecEML 3(0) 2 (0) 2 (0) 7 (0)
SECTET-PL 0 (2) 0(1) 0(1) 0 (4)
SEPL 2 (1) 1(0) 1(0) 4(1)

Table 6.10.: Fulfillment of analysis criteria with regard to main issues by DSML

Accessible Concrete Syntax, and Technical Assistance are assigned primarily to Security Non-
professionals. The analysis criteria Independence of Notation and Independence of Runtime
Capabilities apply primarily to Heterogeneity of BPM Engines. Integration in Tool Chains and
Coexistence with Existing Models are assigned primarily to Environmental Heterogeneity.

Table 6.9 displays the aggregation of fulfilled or (in brackets) partly fulfilled analysis criteria
of the process models included in our comparison with regard to the main issues described
earlier. The aggregation displays the following order: POSeM fulfills least analysis criteria,
followed by MoSSBP and AURUM. Nevertheless, POSeM fulfills more criteria partly compared
with MoSSBP. ProSecO is next in the list dominated by SecEPM. Within this total order, MoSSBP
demonstrates its relative strength in the support of security nonprofessionals while AURUM
and POSeM address heterogeneity of business process engines and heterogeneity of the
environment better. ProSecO as well as SecEPM are (comparatively) well balanced with regard
to all three aspects.

Table 6.10 displays a similar aggregation of fulfilled (or partly fulfilled) analysis criteria
for the DSMLs. ALMOST fulfills least analysis criteria, followed by SECTET-PL, SEPL, and
SecEML. In line with the observation for the corresponding process model MoSSBP, ALMO$T
demonstrates its relative strength to support security nonprofessionals. Unlike ProSecO, the
respective DSML SECTET-PL fulfills rather few analysis criteria and remains weak in compar-
ison to the other DSMLs as well as with respect to ProSecO. In contrast to the combination
ProSecO and SECTET-PL, SEPL fulfills many analysis criteria and provides comparable good
support also for security nonprofessionals—which is different for its process model POSeM.
Our proposal SecEML fulfills all analysis criteria as well as our process model SecEPM.

144

6.6. Discussion

6.6. Discussion

The joint application of our framework, the report on exemplary application experiences, and
the systematic comparison based on our analysis criteria demonstrate the feasibility of the
framework developed in this thesis and its advantages over other approaches. This discussion
starts with an short interpretation of the comparison presented in the preceding section,
details some specifics of our framework and closes with some general considerations.

The comparison of existing approaches with our framework revealed its advantages. As we
designed SecEPM and SecEML applying requirements that have been used as basis for our
analysis criteria, this result is not unexpected. Nevertheless, the comparison displayed the
relative strength of the different approaches. Interestingly, one of the strongest process models
(i.e., ProSecO) is accompanied by a rather weak DSML applying our analysis criteria. Similarly,
one of the strongest DSMLs (i.e., SEPL) is accompanied by one of the weakest process model
applying our analysis criteria. As process model and DSML are interrelated and often closely
coupled, a replacement of a DSML and/or process model is not an easy task. Therefore, our
framework demonstrates one unique strength providing a process model and DSML that both
fulfill all of our analysis criteria uniformly.

But not only the systematic comparison of the approaches applying our analysis criteria
demonstrates the advantages of our framework. The following paragraphs discuss specifics of
our framework that have been demonstrated in the preceding sections and might be summa-
rized using the terms adaptability, supportiveness, and maintainability.

The joint application displays multiple options to adapt our framework to heterogeneous
environments and technical constraints in a structured and guided manner. One impor-
tant aspect is the integration of different established methods into the security engineering
process. Security goal classes, ratings, and damage scenarios including rating criteria stem
from established methods and standards that have been incorporated into the Process Model
Configuration. Exemplary, the adoption of the STRIDE method for threat modeling and the
alignment of security requirement classes with SFRs from Common Criteria account for this.
The mechanisms provided by Activiti have been represented as control implementation classes
well. Equally, other methods and standards could have been used as a basis for these models
which demonstrates the adaptability of the framework. These observations might be gener-
alized: Separation of activities and guidance in SecEPM allows for a simple and transparent
integration of additional methods and provision of supporting material. This differentiation is
unique in comparison with the existing approaches.

Also, the integration of a preparatory activity Setup Process allows for an application of
SecEPM in heterogeneous environments facing restricted skill sets with regard to security. A
similar activity is only implicitly addressed by existing approaches, e.g., referring control or
threat catalogs that need to be set up in advance. Thus, existing approaches do not take the
separation of (preparatory) security-intense tasks and other tasks into focus compared with
SecEPM.

The need to tailor the security engineering process for the respective organization has
got not much attention in existing approaches. SecEPM explicitly introduces this need as
an activity and provides modular process model content in order to fit to heterogeneous
environments and to allow for an easy enrichment as well as reduction of the amount of

145

6. Exemplary Study

documentation provided. Similarly, the consideration of the need to integrate SecEPM into
software development process models and its explication is unique with regard to existing
approaches discussed. This allows to align security engineering with the existing development
organization and does not offer an all-or-nothing alternative forcing unnecessary and costly
changes to the organization.

Adaptability comes at some cost: The adaptability of our framework harbors the possibil-
ity to provoke inconsistencies and omissions. Exemplary, inconsistent guidelines might be
lumped together, threats or their mitigation might be not considered. In order to limit possible
inconsistencies and omissions, several means have been integrated into the framework. This
encompasses the structuring and documentation of the elements of SecEPM including the
relations and dependencies of the elements, the provision of a guideline on the integration of
(further) methods and techniques, and the application of tooling for authoring and manage-
ment of the security engineering process model. Similarly, the following means contribute
with regard to the mitigation of costs of adaptability: SecEML specifying relevant elements
of the work products and capturing important relations between them as well as tooling to
support the creation, validation, and maintenance of consistent and analyzable work products.
Nevertheless, without necessary skills available to setup the security engineering process and
to validate its results the framework might not be applied successfully.

Reviewing the results of our study, supportiveness might be seen as another summariz-
ing and discriminating property of our framework. The specification of the Process Model
Configuration, Threat and Control Catalog, and the Runtime Capability Model using SecEML
and the application of the SecEML editor provides comprehensive support to enable security
nonprofessionals to create Security Analysis and Design Models.

Similarly, these models specified using SecEML and corresponding tooling provide means
for security experts participating in a development project as Security Analyst or reviewing its
results to understand the decisions taken in the security engineering process and to validate
completeness and consistency of the resulting models. Furthermore, systematical analysis
and comparison of design alternatives is supported applying existing tools from the EMF
ecosystem, e.g., the Interactive OCL Console to evaluate OCL expressions in order to identify
critical controls which failure endangers many or highly rated security goals. As well, the
Process Model Engineer (and other roles like the Security Analyst) receive substantial support
tailoring the security engineering process and integrating the process into the development
process applying the SecEPM plug-in.

As a drawback, supportiveness of our framework for security nonprofessionals depends
largely on non-trivial and potentially time-costly preparatory tasks mainly of the Security
Analyst and—to some degree—other participating roles. Exemplary, the provision of the Threat
and Control Catalog is critical: Only those threats will be considered for which corresponding
threat classes have been specified in the Threat Catalog. Likewise, only those controls will be
applied that are envisioned in the Control Catalog. Nevertheless, SecEPM does not only detail
those necessary steps but respective artifacts specified using SecEML can be collected and
shared intra- and inter-organizationally and therefore leverage existing solutions.

The means to allow for a simple maintenance of the security engineering process model as
well as the work products resulting from its application in a development process are similar to
those mitigating possible negative consequences from adaptability. Maintainability of the work

146

6.7. Summary

products is established by SecEML providing means to trace elements of the model as well as
corresponding tooling checking the consistency of the work products specified using SecEML,
allowing for simple navigation to referenced and referencing elements of the models, and
evaluate derived attributes of elements based on their dependencies (e.g., security goal ratings).
For SecEPM, modeling of the process model applying the well recognized standard SPEM and
respective tooling as well as guidance for complementing SecEPM allow for maintainability.

As with adaptability, maintainability must be balanced with the ease of application of our
framework. Creation, evaluation, and maintenance of dependencies between model elements
(within work products or for the security engineering process model) requires effort that must
not outweigh its benefits or introduce new challenges. The design of SecEPM considers this
aspects decoupling activities, focusing on the description of dependencies between model
elements with dedicated elements, and separating the different concerns with regard to roles,
implementation, etc. (cf. sections 4.3 and 4.6).

Although SecEPM covers all activities identified in the requirements analysis (cf. section 4.2),
it addresses only a restricted set of activities compared with approaches for the development
of secure systems (cf. [Eurll]). This is mainly due to the confinement of the scope of this
thesis in order to provide a comprehensive approach considering the major issues detailed
in the problem statement (cf. section 1.2). Support for additional phases of the BPM life
cycle would be interesting (e.g., Enactment, Analysis, or Administration). Also, inclusion of
further methods such as the validation of security-related properties of the business process
model itself or consideration of additional components and layers of the systems used for
the enactment of electronic business processes might be valuable. Notwithstanding, SecEPM
addresses comprehensively the major issues focused on in this thesis, and we are optimistic
that it is flexible enough to incorporate many further aspects as well.

With regard to application experiences, our observations displays promising results (cf.
section 6.4). Participants using (parts of) the framework have been able to understand and
execute all activities and guidelines of SecEPM and to adopt SecEML quickly. Feedback of
end users included the wish for further guidelines and a form-based user interface to support
non-technical users better. These additions can be integrated seamlessly. The request for fine
grained access control in the context of large scale work products using SecEML needs further
investigation as it has not been considered in any of the approaches presented in section 2.5.
Nevertheless, further case studies and empirical experiments will be necessary in order to
complement the exemplary study of this thesis, to foster deeper insights, and to provide solid
ground for an empirical evaluation of the framework. Unfortunately, empirical evaluations
are generally rare in the security engineering domain and not available for the approaches
discussed in this chapter.

6.7. Summary

This chapter provided a joint application of our framework presenting an exemplary study
and documents the demonstration and evaluation activities of our research approach.

Eight analysis criteria from the requirements specified for SecEPM and seven additional
analysis criteria from the requirements specified for SecEML have been derived and docu-

147

6. Exemplary Study

mented (cf. section 6.2). Few disambiguations have been made, e.g., in order to differentiate
Activity and Concept Coverage. Similarly, several criteria have been adopted to pin down
a clear and testable criterion, e.g., to specify that at least one activity is assigned to a role
designated for security nonprofessionals in order to fulfill the Restricted Skill Sets criterion.

We applied our framework to the Replan Process in section 6.3. We documented the appli-
cation of all activities, resulting work products (as summary tables as well as SecEML listings),
accompanying considerations and rationale. Support for the execution of the activities pro-
vided by the the SecEML editor has been highlighted.

Exemplary experiences applying (parts of) the framework in different environments have
been documented in section 6.4. Application of SecEPM for the Equipment Surveillance
Process, application of SecEPM and SecEML for the Account Opening Process, and application
of an early version of SecEML for the Partner Communication Service displayed promising
results. Participants have been able to understand and execute all activities and guidelines
of SecEPM and to adopt SecEML quickly. Possibilities for the improvement of the framework
have been observed and documented.

A comparison of the framework developed in this thesis and existing approaches for security
engineering of electronic business processes revealed advantages of our framework over
the existing approaches (cf. section 6.5). Two criteria are not fulfilled for any of the other
approaches investigated (Independence of Notation, Coexistence with Existing Models) or
only partly fulfilled (Integrability, Technical Assistance). None of the other approaches fulfilled
all criteria for either the process model or the DSML.

Section 6.6 discussed the results from the preceding sections. The exemplary study demon-
strated feasibility of the framework developed in this thesis and its advantages over other
approaches. Especially, it proved to be uniquely adaptable providing nonetheless structure,
guidance, and support to be applied by different participants. Similarly, the framework pro-
vides maintainable artifacts and results in maintainable work products that supports coping
with the complexity of the framework and the security engineering of electronic business pro-
cesses. Although the application experiences are promising, further case studies and empirical
experiments will be necessary in order to complement the results of this exemplary study.

148

7. Conclusion

The preceding chapters presented development and application of our model-based security
engineering framework in the domain of BPM. This chapter concludes the thesis and is
structured as follows: We summarize our contributions in section 7.1. Findings with regard
to our research questions reflecting our contributions are subsumed in section 7.2. The final
section 7.3 provides directions on future work and research topics to further improve our
framework.

7.1. Summary of Contributions

With this thesis we contribute our framework for model-based security engineering in the
domain of BPM. This framework comprises three main components: the Security Engineering
Process Model model (SecEPM), its accompanying Security Engineering Modeling Language
(SecEML), and an integrated security workbench supporting the application of SecEPM and
SecEML.

Alongside, we document our approach for the development of the framework and its
components. This includes not only conceptual and methodical considerations but also
technical aspects and proposals for an implementation.

Security Engineering Process Model (SecEPM)

We contribute our process model for security engineering that integrates security-related
activities in the course of the development of secure electronic business processes. We elicit
major requirements derived from matching security engineering process models and the
issues detailed in the problem statement. Corresponding design strategies for our process
model are explicated including specialization, separation of concerns, and decoupling.

We provide structure and key entities of SecEPM as well as their relationships comprising
activities, work products, roles. Additionally, we depict guiding artifacts to supplement the
aforementioned entities of the process model in a flexible and extendible way. We model
SecEPM applying the internationally standardized metamodel SPEM and provide strategies
as well as their application in order to integrate SecEPM into existing development process
models.

Security Engineering Modeling Language (SecEML)

We complement SecEPM contributing our DSML to capture work products of SecEPM and to
provide a basis for the validation and transformation of these models. We establish our DSML
eliciting key requirements aligned with the process model and explicate corresponding design
strategies encompassing direct representation, modularization, reuse, and application of MDE
techniques. We document the metamodel of SecEML and the definition of its concrete syntax.

149

7. Conclusion

Workbench

As third part of our framework an integrated security workbench supporting the application of
SecEPM and SecEML is provided. We document the application of a model-driven framework
based on EMF and Xtext in order to implement a SecEML editor as well as the adaptation
of the model-driven transformation chain in order to add further capabilities to the SecEML
editor. We describe the integration of our SecEML editor into an integrated security workbench
supporting model management, requirements management, project management and change
management.

7.2. Findings

Important motives for the application of BPM and accompanying systems are flexibility and
responsiveness: to allow for faster reactions to environmental and market changes as well as
for proactive innovations of products and services, and thus finally, to become an adaptive
enterprise. Although security of electronic business processes ought to be of high importance
for every organization, only few proposals for the systematic development of secure electronic
business processes have been published. We approached this topic focusing on three major
issues with regard to security engineering in the domain of BPM: security nonprofessionals
implementing security, heterogeneity of business process engines, and business process
environmental heterogeneity. In order to develop a security engineering framework in the
domain of BPM we detailed three questions to guide our research.

1. What requirements does a security engineering process model for electronic business
processes place that copes with the prominence of security nonprofessionals, hetero-
geneous business process engines, and environmental heterogeneity in the domain of
BPM and how could they be met?

We propose SecEPM as security engineering process model for electronic business processes
suitable in the domain of BPM. It is systematically developed to address the issues detailed in
the problem statement using existing proposals as foundation.

SecEPM leverages security nonprofessionals within the development process of secure
electronic business processes. It details necessary activities from the initial identification of
assets and the assessment of respective security goals to control design and their mapping
onto capabilities of the runtime environment. It provides information on necessary work
products and their content as well as guidance for the execution of the activities. Furthermore,
it consolidates tasks that need security expertise as much as possible in a preparatory activity
and allows security experts to understand and validate work products compiled by security
nonprofessionals documenting relationships between assets, security goals, requirements,
controls, and their configuration.

Heterogeneity of business process engines is considered by SecEPM separating runtime
independent from runtime dependent aspects. This includes the specification of an activity
to explicitly map generic controls onto runtime capabilities as well as the respective work
products (especially, the Runtime Capability Model).

Likewise, SecEPM addresses environmental heterogeneity in the domain of BPM. It concen-
trates on core security-related activities, work products, roles, and guidance artifacts. These

150

7.2. Findings

method fragments and chunks are modeled using SPEM, an internationally accepted and
standardized metamodel. Strategies for the integration of SecEPM with development process
models and their application are detailed and backed by available tooling to support all nec-
essary steps. Nevertheless, SecEPM is not bound to specific development-time technology
hindering integration into existing tool chains.

2. What requirements does a DSML place that supports the elaboration of main work
products of the developed security engineering process model and how could they be
met?

SecEML is our proposal for a DSML that supports the elaboration of main work products of
SecEPM and complements our framework for security engineering in the domain of BPM. It
is systematically aligned with SecEPM and contributes to the research objective addressing
analogously the issues identified in the problem statement.

SecEML and its respective tooling support security nonprofessionals elaborating the work
products of SecEPM. SecEML covers necessary concepts and relations and provides an acces-
sible textual syntax. The SecEML editor facilitates creation, validation, and analysis of work
products.

An important aspect of SecEML is the ability to capture the configuration of chosen controls
independently from generic aspects. Therefore, SecEML copes with the heterogeneity of
business process engines as it provides a link between design and implementation that can be
used within MDS tool chains.

Equally, SecEML and its corresponding tooling facilitates elaboration of main work products
of SecEPM in heterogeneous environments. It does not require specific notations with regard
to the specification of electronic business processes. The application of OCL statements within
SecEML introduces powerful means to specify relations between modeled elements within
work products as well as with the business process model. Furthermore, the application of a
model-driven framework to develop the SecEML editor alleviates the adaptation of the tooling
and the integration into an existing tool chain.

3. What observations do we get applying the framework developed in this thesis?

The prototypical implementation of the constituents of the framework and their joint ap-
plication demonstrated the feasibility of our proposal. The application of analysis criteria
derived from the requirements elicited in preceding sections shows significant advantages of
the framework developed in this thesis over other approaches for security engineering in the
domain of BPM. No other approach fulfills all analysis criteria and several criteria are only met
by our approach.

The exemplary study demonstrates multiple options to adapt our framework to heteroge-
neous environments and technical constraints imposed by different BPMSs in a structured
and guided manner. SecEPM is SPEM compliant, allows for integration of existing methods
and is furthermore prepared for the integration into existing development processes. SecEML
contributes similarly to adaptability providing configurable means for technical assistance
and adaptation. Nevertheless, adaptability of our framework induces a complexity that must
be managed in order to balance utility and tailoring effort.

151

7. Conclusion

Supportiveness might be seen as another summarizing and discriminating property of our
framework. Our framework is supportive for participants as it provides flexible but detailed
directions. It assists participants using the integrated workbench creating, validating, and
analyzing work products. On the downside, in order to fully exploit the supportiveness of the
framework, non-trivial and potentially time-costly preparatory tasks have to be executed.

The means to allow for a simple maintenance of the security engineering process model as
well as the work products resulting from its application in a development process are similar
to those mitigating possible negative consequences from adaptability. The maintainability
of our framework is achieved providing means to manage, trace, and validate elements and
relationships conceptually and technically for the process model and (instantiated) work
products. As with flexibility, maintenance must be managed.

The reported application experiences display promising results. Participants using (parts
of) the framework have been able to understand and execute all activities and guidelines
of SecEPM and to adopt SecEML quickly. Further improvements have been proposed that
might be realized in future development. Nevertheless, further case studies and empirical
experiments will be necessary in order to complement the exemplary study of this thesis,
to foster deeper insights, and to provide solid ground for an empirical evaluation of the
framework.

7.3. Future Work

The development of our framework for security engineering of electronic business processes
included a couple of decisions that might be challenged. Exemplary, the focus on the three
issues depicted in the problem statement influenced largely objective, development, and
finally the result of this thesis. We based our choice on objectives of BPM and important
findings from scientific publications. Other authors might consider additional issues equally
or even more pressing. Future work might be devoted to further analyze complementary
issues with regard to security in the domain of BPM. Since foundations and procedure for
the development of our framework has been documented in detail, we would expect that
analysis and adaptation of the framework with regard to potential deviating issues might be
significantly facilitated.

The exemplary study demonstrated application and benefits of our framework. As it has
been noted in the findings, further case studies and empirical experiments will be necessary
to support our results. Empirical studies analyzing the benefits of approaches for security
engineering are generally rare. Thus, it seems to be very promising to not only support our
results with respective studies but provide further insights in this research field based on
our framework. Exemplary, we consider the cross-sectional comparison of the application
of our framework within different environments (e.g., smaller and larger companies) but
similar projects (in terms of technical complexity and project size) as an interesting approach.
Complementary, it seems to be promising to measure the change in efficiency due to the
application within many projects in the same environment as a longitudinal study.

As we restricted the scope of SecEPM for this thesis, it might be worthwhile to extend the
scope of the process model. Further life cycle phases might be included into the process

152

7.3. Future Work

model. Additional methods and development processes might be selected for analysis and
integration. Likewise, the analysis of different domains and the transfer of results from this
thesis into promising domains might be interesting.

Similarly, enhancements of the technical assistance for the application of the framework
might further leverage its effect. Especially with regard to SecEML, alternative representations
of work products might lower reservations concerning the use of SecEML, e.g., providing a
form-based representation. The implementation of tool chains to automate the transforma-
tion of SecEML models into implementation and test artifacts might bolster the efficiency for
(technically) similar projects. Additionally, the focus of the contributed security workbench
might be broadened. As it is focused on the support for the actual security engineering process
it might be enhanced to become part of a CAME in order to collect, harmonize, and provide
work products like the Threat and Control Catalog or the Runtime Capability Model.

We might draw an analogy to confine the role of our framework: As security controls do
not dissolve security problems but shift important aspects in order to keep them manageable,
the application of our framework for security engineering of electronic business processes
does not dissolve the hardships of security engineering in general. It provides a proposal
to structure and setup the security engineering process in a flexible manner, explains and
guides the execution of necessary tasks, and provides means to technically assist the security
engineering process. Hence, it shifts important aspects in order to align security engineering
with the prominence of security nonprofessionals, heterogeneous business process engines,
and environmental heterogeneity in the domain of BPM.

153

7. Conclusion

154

A. SecEML Grammar

Grammar of SecEML provided using EBNF according to ISO 14977 [Int96] 1

Model — 'model’ ID
[’ language’ ID [STRING]]
[’ process’ ObjectRef]

{AbstractElement} ;
AbstractElement — Entity | PackageDeclaration | Import ;
PackageDeclaration — ’package’ QualifiedName ’ (’
{AbstractElement}
4) 14 ;
Import — "import’ QualifiedNameWithWildcard;
Entity — Stakeholder | AssetClass | Asset | Resource | SecurityGoalClass |

SecurityGoalRating | DamageScenario | SecurityGoalCriterion |
SecurityGoal | Threat | ThreatClass | ControlPurpose |
SecurityRequirementClass | SecurityRequirement | ControlClass |
ArchitectureElement | Runtime | ControllmplementationClass |
ControllmplementationRating | Controllmplementation |
RuntimeClass ;

Stakeholder — ’stakeholder’ ID’ ('
["title’ STRING]
["description’ STRING]
I)_l ;

AssetClass — "assetClass’ ID’ ('
["title’ STRING]
["description’ STRING]
["type’ STRING]
SE

Asset — "asset’ ID’ :’ AssetClassRef’ (’
["title’ STRING]
["description’ STRING]
["stakeholder’ StakeholderRef{’, ’ StakeholderRef}]
[" supports’ AssetRef{’,’ AssetRef}]
["elements’ ObjectRef{’,_’ ObjectRef} |

I)l;

1 We do not provide a minimal set of syntax rules to make the definition easier to understand.

155

A. SecEML Grammar

Resource — "resource’ ID’ ('
["title’ STRING]
["description’ STRING]
[/ supports’ AssetRef{’,_’ AssetRef} |
["elements’ ObjectRef{’,’ ObjectRef}]

I)l;

SecurityGoalClass — ’securityGoalClass’ ID’ ('
["title’ STRING]
["description’ STRING]
4) 4 ;

SecurityGoalRating ~— ’securityGoalRating’ ID’ (’
["title’” STRING]
["description’ STRING]
"ordinal’ INT
)

DamageScenario — ’scenario’ ID’ ('
["title’ STRING]
["description’ STRING]
S

SecurityGoalCriterion — "criterion’ ID” (’
["title’ STRING]
["description’ STRING]
"rating’ SecurityGoalRatingRef
"scenarios’ DamageScenarioRef{’ ,’ DamageScenarioRef}
")

AccountingForDependencies — ' Dependencies’ |’NoDependencies’ ;

AggregationStrategy — 'Maximum’ |’Cumulation’ |’Distribution’ ;

AggregationModifier — [AccountingForDependencies] AggregationStrategy ;

SecurityGoal — "goal’ ID’:’" SecurityGoalClassRef " (’
"asset’ AssetRef
[" stakeholder’ StakeholderRef{’,’ StakeholderRef}]
[’ rating’ SecurityGoalRatingRef]
["criteria’ SecurityGoalCriterionRef {" , ’
SecurityGoalCriterionRef}]
[’ aggregatedUsing’ AggregationModifier]
[comment’ STRING]

l)l;

ThreatClass — 'threatClass’ ID’ ('
"securityGoalClasses’ SecurityGoalClassRef {” .’
SecurityGoalClassRef}

"assetClasses’ AssetClassRef {’ I AssetClassRef}
["assetExp’ STRING]

156

["matchExp’ STRING]
["transformExp’ STRING]
4)_l ;

Threat — "threat’ ID’:’ ThreatClassRef’ ('
"goals’ SecurityGoalRef{’ , " SecurityGoalRef}
(["entities’ ObjectRef (',
STRING]) B

I)l;

SecurityRequirementClass — * securityRequirementClass’ ID’ (’
"securityGoalClasses’ SecurityGoalClassRef{’ , ’
SecurityGoalClassRef}
"assetClasses’ AssetClassRef{’ ,’ AssetClassRef}
"threatClasses’ ThreatClassRef {’ . ThreatClassRef}
["matchExp’ STRING]

I)l;

SecurityRequirement — ’ securityRequirement’ ID’ :’
SecurityRequirementClassRef * (”
"goals’ SecurityGoalRef {’ .’ SecurityGoalRef}
"threats’ ThreatRef{’,’ ThreatRef}
[("entities’ ObjectRef{’ . ObjectRef}) | (" entityExp”’

STRING)]

I)_l ;
ControlPurpose — ’controlPurpose’ ID;
ControlClass — ’"controlClass’ ID’ (’

"securityRequirementClasses’

’ ObjectRef)*) | (" entityExp

4

SecurityRequirementClassRef {’ , © SecurityRequirementClassRef}

["threatClasses’ ThreatClassRef {* , ' ThreatClassRef}]
[’ purposes’ ControlPurposeRef {’ .’ ControlPurposeRef}]
["introduces’ AssetClassRef{’,’ AssetClassRef}]
["reliesOn’ ControlClassRef{’ ,’ ControlClassRef}]

[’ matchExp’ STRING] B

14)_l ;

ArchitectureElement — (Control | Assumption) ’ : 7 ControlClassRef ’ (7
"securityRequirements’ SecurityRequirementRef{’, ’
SecurityRequirementRef}

["threats’ ThreatRef{’,’ ThreatRef}]

["introduces’ AssetRef{’ r’ AssetRef}]

["reliesOn’ ArchitectureElementRef {’ , ’
ArchitectureElementRef}]

[(("entities’ ObjectRef{’,’ ObjectRef}) | (' entityExp’
STRING)]

I)I;

157

A. SecEML Grammar

Assumption — "assumption’ ID;
Control — ’"control’ 1ID;
RuntimeClass — "runtimeClass’ ID ' ('

["title’ STRING]
["description’ STRING]
4) 14 ;

Runtime — ’runtime’ ID’ :’ RuntimeClassRef;

ControllmplementationRating — ' controlImplementationRating’ ID ' (’
"ordinal’ INT -
[’ ratingRestriction’ SecurityGoalRatingRef {’ .’
SecurityGoalRatingRef}]
")

Property — 7 (" STRING "=’ STRING ")’ ;

ControllmplementationClass — ' controlImplementationClass’ ID’ ('
"runtimeClass’ RuntimeClassRef
"controlClasses’ ControlClassRef{’, * ControlClassRef}
[’ rating’ ControllmplementationRatingRef]
[securityRequirementClasses’
SecurityRequirementClassRef {* , * SecurityRequirementClassRef}]
["threatClasses’ ThreatClassRef {’ 1’ ThreatClassRef}]
[" purposes’ ControlPurposeRef{’ , * ControlPurposeRef}]
["reliesOn’ ControllmplementationClassRef {’ .
ControllmplementationClassRef}]
["properties’ STRING{’,’ STRING}]
[’validationExp’ STRING]
S

Controllmplementation — ' controlImplementation’ ID’ :’
ControllmplementationClassRef {’ .’
ControllmplementationClassRef}
" (" "runtime’ RuntimeRef’ controls’ ControlRef[’,’
ControlRef)* B
{ properties’ Property (’ ,_’ Property}]

I)l;

StakeholderRef — QualifiedName ;
AssetClassRef — QualifiedName ;
AssetRef — QualifiedName ;

SecurityGoalClassRef — QualifiedName ;
SecurityGoalRatingRef — QualifiedName ;
DamageScenarioRef — QualifiedName ;
SecurityGoalCriterionRef — QualifiedName ;
SecurityGoalRef — QualifiedName ;

158

ThreatRef — QualifiedName ;
ThreatClassRef — QualifiedName ;
ControlPurposeRef = — QualifiedName ;
SecurityRequirementClassRef — QualifiedName ;
SecurityRequirementRef — QualifiedName ;
ControlClassRef — QualifiedName ;
ArchitectureElementRef — QualifiedName ;
RuntimeRef — QualifiedName ;
ControllmplementationClassRef — QualifiedName ;
ControllmplementationRatingRef — QualifiedName ;

ControllmplementationRef — QualifiedName ;

RuntimeClassRef — QualifiedName ;

ObjectRef — QualifiedName ;
QualifiedNameWithWildcard — QualifiedName ’ . " ?;
QualifiedName — ID{’ .’ ID};

STRING — ?String like in Java? ;

INT — ?Integer like in Java? ;

1D — Z?ldentifier like in Java? ;

159

A. SecEML Grammar

160

B. Work Products from the Exemplary
Study

B.1. Business Process Model

—

<?xml version="1.0" encoding="UTF-8"?>
<bpmn2:definitions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34

instance" xmlns:bpmn2="http://www.omg.org/spec/BPMN/20100524/MODEL
" xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI" xmlns:dc
="http://www.omg.org/spec/DD/20100524/DC" xmlns:di="http://www.omg
.org/spec/DD/20100524/DI" id="ReplanDefinitions" name="
ReplanDefinitions" targetNamespace="http://sample.bpmn2.org/bpmn2/
sample/collaboration">
<bpmn2:collaboration id="ReplanCollaboration" name="
ReplanCollaboration">
<bpmn2:participant id="P2_Forwarder" name="P2_Forwarder"
processRef="P2_ForwarderProcess"/>
<bpmn2:participant id="P1l_LogisticsProvider" name="
Pl_LogisticsProvider" processRef="P1l_logisticsProviderProcess"
/>
<bpmn2:messageFlow id="MF1" messageRef="M1_Status" name="MF1"
sourceRef="T21_SendStatus" targetRef="E11"/>
<bpmn2:messageFlow id="MF2" messageRef="M2_Route" name="MF2"
sourceRef="T15_SendRoute" targetRef="E23"/>
</bpmn2:collaboration>
<bpmn2:process id="P2_ForwarderProcess" name="P2_ForwarderProcess">
<bpmn2:laneSet i1d="LS2_ForwarderLaneSet" name="
LS2_ForwarderLaneSet">
<bpmn2:lane id="L21_OBU" name="L21_OBU">
<bpmn2: flowNodeRef>E21</bpmn2: flowNodeRef>
<pbpmn2: flowNodeRef>E22</bpmn2: flowNodeRef>
<bpmn2: flowNodeRef>T21_SendStatus</bpmn2:flowNodeRef>
<pbpmn2: flowNodeRef>E23</bpmn2: flowNodeRef>
<bpmn2: flowNodeRef>E24</bpmn2: flowNodeRef>
</bpmn2:lane>
<bpmn2:lane id="L22_Driver" name="L22_Driver">
<bpmn2:flowNodeRef>T22_AcceptRoute</bpmn2:flowNodeRef>
</bpmn2:lane>
</bpmn2:laneSet>
<bpmn2:startEvent i1id="E21" name="E21">
<bpmn2:outgoing>SequenceFlow_1</bpmn2:outgoing>
</bpmn2:startEvent>
<bpmn2:sequenceFlow id="SequenceFlow_1" sourceRef="E21" targetRef
="T21_SendStatus"/>
<bpmn2:endEvent id="E22" name="E22">
<bpmn2:incoming>SequenceFlow_2</bpmn2:incoming>
</bpmn2:endEvent>
<bpmn2:task id="T21_SendStatus" name="T21_SendStatus">
<bpmn2:incoming>SequenceFlow_1</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_2</bpmn2:outgoing>
</bpmn2:task>
<bpmn2:sequenceFlow id="SequenceFlow_2" sourceRef="T21_SendStatus
" targetRef="E22"/>
<bpmn2:startEvent 1id="E23" name="E23">

161

35

37

38
39
40
41
42
43
44
45

46

47

48
49

50

51
52
53
54

55
56
57
58

59
60
61
62
63
64
65
66
67
68

69
70
71
72
73

74

75
76
77
78
79

80
81
82

83
84

B. Work Products from the Exemplary Study

<bpmn2:outgoing>SequenceFlow_12</bpmn2:outgoing>
</bpmn2:startEvent>
<bpmn2:sequenceFlow id="SequenceFlow_12" sourceRef="E23"
targetRef="T22_AcceptRoute"/>
<bpmn2:endEvent id="E24" name="E24">
<bpmn2:incoming>SequenceFlow_14</bpmn2:incoming>
</bpmn2:endEvent>
<bpmn2:userTask i1id="T22_AcceptRoute" name="T22_AcceptRoute">
<bpmn?2:incoming>SequenceFlow_12</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_14</bpmn2:outgoing>
</bpmn2:userTask>
<bpmn2:sequenceFlow id="SequenceFlow_14" name="" sourceRef="
T22_AcceptRoute" targetRef="E24"/>
<bpmn2:association id="Association_1" sourceRef="M1l_Status"
targetRef="MF1"/>
<bpmn2:association id="Association_3" sourceRef="M2_Route"
targetRef="MF2"/>
</bpmn2:process>
<bpmn2:process 1d="P1l_LogisticsProviderProcess" name="
Pl_LogisticsProviderProcess">
<bpmn2:laneSet id="LS1_LogisticsProviderLaneSet" name="
LS1_LogisticsProviderLaneSet">
<bpmn2:lane id="L1l1l_Dispatcher" name="L11l_Dispatcher">
<bpmn2:flowNodeRef>T14_SelectRoute</bpmn2:flowNodeRef>
</bpmn2:lane>
<bpmn2:lane id="L12_LogisticsSystem" name="L12_ LogisticsSystem"
>
<bpmn2: flowNodeRef>E11</bpmn2: flowNodeRef>
<bpmn2: flowNodeRef>T11l_ CheckStatus</bpmn2:flowNodeRef>
<bpmn2:flowNodeRef>G1l2_StatusOK</bpmn2:flowNodeRef>
<bpmn2:flowNodeRef>T12_TIdentifyShipmentsAtRisk</
bpmn2: flowNodeRef>
<bpmn2:flowNodeRef>T13_CalculateRoutes</bpmn2:flowNodeRef>
<bpmn2:flowNodeRef>T15_SendRoute</bpmn2:flowNodeRef>
<bpmn2: flowNodeRef>E13</bpmn2: flowNodeRef>
<bpmn2: flowNodeRef>E12</bpmn2: flowNodeRef>
</bpmn2:lane>
</bpmn2:laneSet>
<bpmn2:startEvent id="E11l" name="E11">
<bpmn2:outgoing>SequenceFlow_3</bpmn2:outgoing>
</bpmn2:startEvent>
<bpmn2:sequenceFlow id="SequenceFlow_3" sourceRef="E11" targetRef
="T11_CheckStatus"/>
<bpmn2:task id="T1l1l_CheckStatus" name="T1l1l_CheckStatus">
<bpmn2:incoming>SequenceFlow_3</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_4</bpmn2:outgoing>
</bpmn2:task>
<bpmn2:sequenceFlow id="SequenceFlow_4" sourceRef="
T11_CheckStatus" targetRef="G12_StatusOK"/>
<bpmn2:exclusiveGateway i1d="G12_StatusOK" name="G1l2_StatusOK"
gatewayDirection="Diverging">
<bpmn2:incoming>SequenceFlow_4</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_5</bpmn2:outgoing>
<bpmn2:outgoing>SequenceFlow_6</bpmn2:outgoing>
</bpmn2:exclusiveGateway>
<bpmn2:sequenceFlow id="SequenceFlow_5" sourceRef="Gl2_StatusOK"
targetRef="E12"/>
<bpmn2:sequenceFlow id="SequenceFlow_6" sourceRef="G1l2_StatusOK"
targetRef="T12_TdentifyShipmentsAtRisk"/>
<bpmn2:task id="T12_IdentifyShipmentsAtRisk" name="
T12_TIdentifyShipmentsAtRisk">
<bpmn2:incoming>SequenceFlow_6</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_7</bpmn2:outgoing>
</bpmn2:task>

162

85

86
87
88
89
90

91
92
93
94
95

96
97
98

100
101
102
103

104
105
106
107
108
109
110
111

112

NO G W~

10
11
12

13
14
15
16

B.2. Process Model Configuration

<bpmn2:sequenceFlow id="SequenceFlow_7" sourceRef="
T12_IdentifyShipmentsAtRisk" targetRef="T13_CalculateRoutes"/>
<bpmn2:task id="T13_CalculateRoutes" name="T13_CalculateRoutes">
<bpmn2:incoming>SequenceFlow_7</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_8</bpmn2:outgoing>
</bpmn2:task>
<bpmn2:sequenceFlow id="SequenceFlow_8" sourceRef="
T13_CalculateRoutes" targetRef="T14_SelectRoute"/>
<bpmn2:task id="T15_SendRoute" name="T15_SendRoute">
<bpmn2:incoming>SequenceFlow_10</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_11</bpmn2:outgoing>
</bpmn2:task>
<bpmn2:sequenceFlow id="SequenceFlow_11" sourceRef="T15_SendRoute
" targetRef="E13"/>
<bpmn2:endEvent id="E13" name="E13">
<bpmn2:incoming>SequenceFlow_11</bpmn2:incoming>
</bpmn2:endEvent>
<bpmn2:userTask 1d="T14_SelectRoute" name="T14_SelectRoute">
<bpmn2:incoming>SequenceFlow_8</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_10</bpmn2:outgoing>
</bpmn2:userTask>
<bpmn2:sequenceFlow id="SequenceFlow_10" sourceRef="
T1l4_SelectRoute" targetRef="T15_SendRoute"/>
<bpmn2:endEvent id="E12" name="E12">
<bpmn2:incoming>SequenceFlow_5</bpmn2:incoming>
</bpmn2:endEvent>
</bpmn2:process>
<bpmn2:message id="M1l_Status" itemRef="StatusMessageDefintion" name
="M1_Status"/>
<bpmn2:message id="M2_Route" itemRef="RouteMessageDefinition" name=
"M2_Route" />
<bpmn2:itemDefinition id="StatusMessageDefintion" structureRef="
StatusMessageDefintion"/>
<bpmn2:itemDefinition id="RouteMessageDefinition" structureRef="
RouteMessageDefinition"/>
</bpmn2:definitions>

Listing B.1: Extract from the Business Process Model (BPMN notation)

B.2. Process Model Configuration

J ok *
* Process model configuration for Replan Process case study
* Author: J6rn Eichler
*/
model MDL_Replan language SecEML "1.1" process ReplanDefinitions

/*+ Package for basic definitions: this package reflects the
information security policy of the organization */
package PCK_Basic (

/*+ Definition of confidentiality (ISO 13335-1) x/
securityGoalClass SGC_Confidentiality (
description "The property that information is not made
available or disclosed to unauthorized individuals,
entities, or processes"

)
/%% Definition of availability (ISO 13335-1) =/
securityGoalClass SGC_Availability (
description "The property of being accessible and usable upon
demand by an authorized entity"

163

17
18
19
20

21
22
23
24

45
46
47
48

49
50
51
52

53
54

55
56
57
58
59
60

61
62
63
64

65
66
67

B. Work Products from the Exemplary Study

164

)
/*% Definition of integrity (ISO 13335-1) »/
securityGoalClass SGC_Integrity (
description "The property of safeguarding the accuracy and
completeness of assets"
)
/++ Definition of non-repudiation (ISO 13335-1) #*/
securityGoalClass SGC_NonRepudiation (
description "The ability to prove an action or event has
taken place, so that this event or action cannot be
repudiated later"

)

/%% No rating for security goal applicable (in order to define a
non-goal explicitly) #*/
securityGoalRating SGR_NotApplicable (
description "No loss or damage is to be expected"
ordinal O
)
/++ Definition of rating "normal" (IT-BPM) */
securityGoalRating SGR_Normal (
description "The impact of any loss or damage is limited and
calculable."
ordinal 1

)
/%% Definition of rating "high" (IT-BPM) */
securityGoalRating SGR_High (
description "The impact of any loss or damage may be
considerable."
ordinal 2
)
/#*% Definition of rating "very high" (IT-BPM) */
securityGoalRating SGR_VeryHigh (
description "The impact of any loss or damage may be of
catastrophic proportions which could threaten the very
survival of the organization."
ordinal 3

)

/*+ Definition of damage scenario "violation of laws, regulations
, or contracts (IT-BPM) x/

scenario DSC_ViolationOfLaws (
title "Violations of laws, regulations, or contracts"

)

/*+ Definition of damage scenario "impairment of the right to
informational self-determination" =/
scenario DSC_InformationalSelfDetermination (
title "Impairment of the right to informational self-
determination"
)
/%% Definition of damage scenario "physical injury" =*/
scenario DSC_PhysicalInjury (
title "Physical injury"
)

/%% Definition of damage scenario "impaired ability to perform
tasks at hand" */

scenario DSC_ImpairedPerformance (
title "Impaired ability to perform tasks at hand"

/*+ Definition of damage scenario "negative internal or external
effects" */

scenario DSC_NegativeEffects (
title "Negative internal or external effects"

)

68
69
70
71
72
73
74
75
76

77
78

79

80
81

82
83
84

85
86
87
88

89
90
91

92
93
94
95

96
97

99
100
101
102

103
104
105

106
107
108
109

110
111
112
113
114
115
116
117
118

B.2. Process Model Configuration

/++ Definition of damage scenario "financial consequences" x/
scenario DSC_FinancialConsequences (

title "Financial consequences"
)

/%% Sole criterion for security goal rating "not applicable" x*/
criterion SCR_NoHarm (
title "No danger or harm considerable”
description "No security goal with this class existing: no
damage or harm considerable"
rating SGR_NotApplicable
scenarios DSC_ViolationOfLaws,
DSC_InformationalSelfDetermination, DSC_PhysicalInjury,
DSC_ImpairedPerformance, DSC_NegativeEffects,
DSC_FinancialConsequences
)
/#*% Criterion for violations of regulations and laws with minor
consequences */
criterion SCR_Vol_MinorViolation (
title "Violation with minor consequences"
description "Violations of regulations and laws with minor
consequences"
rating SGR_Normal
scenarios DSC_ViolationOfLaws
)
/*+ Criterion for minor breaches of contract which result in at
most minor contractual penalties #*/
criterion SCR_VolL_MinorPenalties (
title "Violation with minor penalties"
description "Minor breaches of contract which result in at
most minor contractual penalties"
rating SGR_Normal
scenarios DSC_ViolationOfLaws
)
/*+ Criterion for violations of regulations and laws with
substantial consequences */
criterion SCR_Vol_SubstantialViolation (
title "Violations with substantial consequences"
description "Violations of regulations and laws with
substantial consequences"
rating SGR_High
scenarios DSC_ViolationOfLaws
)
/#*% Criterion for major breaches of contract with high
contractual penalties x/
criterion SCR_Vol_SubstantialPenalties (
title "Violations with substantial consequences"
description "Major breaches of contract with high contractual
penalties”
rating SGR_High
scenarios DSC_ViolationOfLaws
)
/%% Criterion for fundamental violations of regulations and laws
*
/
criterion SCR_Vol_FundamentalViolation (
title "Fundamental violations"
description "Fundamental violations of regulations and laws"
rating SGR_VeryHigh
scenarios DSC_ViolationOfLaws
)

// [additional criteria omitted]

/#*% Business asset that is not explicitly modeled in the business
process model */

165

119
120

121
122

123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154

155

156
157

N O Gk Ww N~

o=}

B. Work Products from the Exemplary Study

assetClass ASC_BusinessAsset (
description "Asset class for assets that are not explicitly
modeled in the business process model"
)
/++ Asset class for sequences of flow nodes (including tasks,
events etc.) */
assetClass ASC_ProcessAsset (
description "Asset class for sequences of flow nodes (
including tasks, events etc.)"
type "bpmn::Process"
)
/*+ Asset class for data in transit (messages) */
assetClass ASC_MessageAsset (
description "Asset class for data in transit (messages)"
type "bpmn::Message"
)
/#** Asset class for data at rest #*/
assetClass ASC_DataAsset (
description "Asset class for data at rest"
type "bpmn::DataObject"

/++ Prevention x/
controlPurpose Prevention
/#*+ Deterrence #*/
controlPurpose Deterrence
/*+ Limitation x/
controlPurpose Limitation
/*+ Detection #*/
controlPurpose Detection
/% Correction */
controlPurpose Correction
/%% Recovery #*/
controlPurpose Recovery
/*+* Monitoring x/
controlPurpose Monitoring

/#*% Rating for control implementations that provide only basic
protection */

controlImplementationRating CIR_Weak (ordinal 1
ratingRestriction SGR_NotApplicable, SGR_Normal)

/#*% Rating for control implementations that provide strong
protection */

controlImplementationRating CIR_Strong (ordinal 2)

Listing B.2: Extract from the Process Model Configuration (SecEML notation)

B.3. Threat Catalog

J ok k
* Threat catalog for Replan Process case study
* Author: J6rn Eichler
*/
model MDL_Replan language SecEML "1.1" process ReplanDefinitions

/*% Package for the threat classes: here STRIDE adapted for BPMN
process models */
package PCK_ThreatCatalog (

import MDL_Replan.PCK_Basic.x

166

11
12
13
14

15

16
17
18
19
20
21

22

23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61

63
64
65
66
67

B.3. Threat Catalog

/%% Generic threat class to cover arbitrary instances #*/
threatClass THC_GenericThreat (
securityGoalClasses SGC_Integrity, SGC_Availability,
SGC_Confidentiality, SGC_NonRepudiation
assetClasses ASC_BusinessAsset, ASC_DataAsset,
ASC_MessageAsset, ASC_ProcessAsset
)
/%% Tamper the execution sequence of processes */
threatClass THC_TamperExecutionSequence (
securityGoalClasses SGC_Integrity
assetClasses ASC_ProcessAsset
// retrieve candidate elements for modeled assets: all
Process entities that contain sequence flow elements
assetExp "bpmn::Process.allInstances()->select (flowElements—>
exists(fe | fe.oclIsTypeOf (bpmn::SequenceFlow)))"
// retrieve affected elements: all SequenceFlow elements of a
candidate modeled asset
matchExp "assetElements->collect (flowElements.oclIsTypeOf (
bpmn: :SequenceFlow))"
)
/*+ Tamper messages x/
threatClass THC_TamperMessage (
securityGoalClasses SGC_Integrity
assetClasses ASC_MessageAsset
// retrieve affected elements: candidate modeled assets
matchExp "assetElements"
)
/*+ Tamper data at rest =/
threatClass THC_TamperData (
securityGoalClasses SGC_Integrity
assetClasses ASC_DataAsset
// retrieve affected elements: candidate modeled assets
matchExp "assetElements"
)
/%% Spoof participants #*/
threatClass THC_SpoofParticipant (
securityGoalClasses SGC_Confidentiality, SGC_Integrity,
SGC_NonRepudiation
assetClasses ASC_MessageAsset
)
/%% Spoof users within a process #/
threatClass THC_SpoofUser (
securityGoalClasses SGC_Confidentiality, SGC_Integrity,
SGC_NonRepudiation
assetClasses ASC_ProcessAsset
)
/*+ Repudiate messages */
threatClass THC_RepudiateMessage (
securityGoalClasses SGC_NonRepudiation
assetClasses ASC_MessageAsset
// retrieve affected elements: candidate modeled assets
matchExp "assetElements"
)
/*+ Repudiate interaction with a process instance as a user #*/
threatClass THC_RepudiateUserInteraction (
securityGoalClasses SGC_NonRepudiation
assetClasses ASC_ProcessAsset
)
/*+ Disclose confidential message content #*/
threatClass THC_DiscloseMessage (
securityGoalClasses SGC_Confidentiality
assetClasses ASC_MessageAsset
// retrieve affected elements: candidate modeled assets
matchExp "assetElements"

167

68

70
71
72
73
74
75
76
7
78
79
80
81
82
83

84
85
86
87

89
90
91
92
93
94
95

96
97

98

99
100
101
102
103
104

105
106
107
108
109
110

111
112

113
114
115
116

117
118
119
120
121
122
123
124

B. Work Products from the Exemplary Study

)

/*+ Disclose confidential process information from user tasks */
threatClass THC_DiscloseProcessInformation (

securityGoalClasses SGC_Confidentiality

assetClasses ASC_ProcessAsset

/#*+ Disclose confidential data at rest =/
threatClass THC_DiscloseData (
securityGoalClasses SGC_Confidentiality
assetClasses ASC_DataAsset
)
/%% Denial or impede process execution #*/
threatClass THC_DenialOfProcessExecution (
securityGoalClasses SGC_Availability
assetClasses ASC_ProcessAsset
// retrieve candidate elements for modeled assets: all
Process elements
assetExp "bpmn::Process.allInstances ()"
// retrieve affected elements: candidate modeled assets
matchExp "assetElements"
)
/*+ Denial or impede of message exchange #*/
threatClass THC_DenialOfMessageExchange (
securityGoalClasses SGC_Availability
assetClasses ASC_MessageAsset

/*+ Elevate privileges within process execution */
threatClass THC_ElevatePrivileges (
securityGoalClasses SGC_Availability, SGC_Confidentiality,
SGC_Integrity, SGC_NonRepudiation
assetClasses ASC_ProcessAsset
// retrieve candidate elements for modeled assets: all
Process elements
assetExp "bpmn::Process.allInstances ()"
// retrieve affected elements: candidate modeled assets
matchExp "assetElements"

/+* Package for the requirement classes: here Common Criteria is used

as classification schema =/

package PCK_RequirementClasses (

168

import MDL_Replan.PCK_Basic.x
import MDL_Replan.PCK_ThreatCatalog.

/#*% The system shall authenticate users before any interaction (
CC FIA_UAU.Z2) #*/
securityRequirementClass SRC_UserAuthentication (
securityGoalClasses SGC_Confidentiality, SGC_Integrity,
SGC_NonRepudiation
assetClasses ASC_ProcessAsset
threatClasses THC_SpoofUser, THC_RepudiateUserInteraction

/*+ The system shall enforce message transmission or reception in
a manner protected from
* unauthorized disclosure (CC FDP_UCT.1)
*/
securityRequirementClass SRC_MessageConfidentiality (
securityGoalClasses SGC_Confidentiality
assetClasses ASC_MessageAsset
threatClasses THC_DiscloseMessage, THC_SpoofParticipant
)
/%% The system shall enforce message transmission or reception in
a manner protected from

125

126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144

145
146
147
148
149
150

151
152

153
154

155
156

157
158

159
160
161
162

163

164
165
166
167
168

169
170

B.4. Control Catalog

* modification, deletion, insertion, or replay errors (CC
FDP_UIT.1)
*/
securityRequirementClass SRC_Messagelntegrity (
securityGoalClasses SGC_Integrity
assetClasses ASC_MessageAsset
threatClasses THC_TamperMessage, THC_SpoofParticipant
)
/++ The system shall generate an audit record (CC FAU_GEN.1) */
securityRequirementClass SRC_AuditGeneration (
securityGoalClasses SGC_Integrity, SGC_NonRepudiation
assetClasses ASC_ProcessAsset
threatClasses THC_TamperExecutionSequence
)
/++ The system shall be able to prevent unauthorized
modifications to stored data (CC FAU_STG.1, FPT_ITI.1) */
securityRequirementClass SRC_Datalntegrity (
securityGoalClasses SGC_Integrity, SGC_NonRepudiation
assetClasses ASC_DataAsset
threatClasses THC_TamperData
)
/*+ The system shall be able to prevent unauthorized disclosure
of stored data (CC FAU_ITC.1) =/
securityRequirementClass SRC_DataConfidentiality (
securityGoalClasses SGC_Confidentiality
assetClasses ASC_DataAsset
threatClasses THC_DiscloseData
)
/*+ The system shall enforce access control of users to user
tasks (CC FDP_ACC.1, FDP_ACF.1) x/
securityRequirementClass SRC_UserAccessControl (
securityGoalClasses SGC_Integrity, SGC_Confidentiality,
SGC_NonRepudiation
assetClasses ASC_ProcessAsset
threatClasses THC_SpoofUser, THC_DiscloseProcessInformation,
THC_ElevatePrivileges, THC_RepudiateUserInteraction
)
/*+ The system shall verify that secrets meet defined quality
metrics (CC FIA _S0S.1) */
securityRequirementClass SRC_SecretQuality (
securityGoalClasses SGC_Integrity, SGC_Confidentiality,
SGC_NonRepudiation
assetClasses ASC_ProcessAsset, ASC_MessageAsset
threatClasses THC_SpoofUser, THC_SpoofParticipant
)
/%% The system shall ensure the provision of minimum quantity of
CPU, memory, and disk allocation
* for each task to be executed or message to be processed within
a given time frame (CC FRU_RSA.Z2)
*
/

securityRequirementClass SRC_MinimumQuotas (
securityGoalClasses SGC_Availability
assetClasses ASC_ProcessAsset, ASC_MessageAsset
threatClasses THC_DenialOfMessageExchange,
THC_DenialOfProcessExecution

Listing B.3: Extract from the Threat Catalog (SecEML notation)

B.4. Control Catalog

169

O NG W=

©

B. Work Products from the Exemplary Study

J ok k
* Control catalog for Replan Process case study
* Author: J6rn Eichler
*/
model MDL_Replan language SecEML "1.1" process ReplanDefinitions

/** Package for the control classes #*/
package PCK_ControlClasses (

import MDL_Replan.PCK_Basic.x
import MDL_Replan.PCK_ThreatCatalog.
import MDL_Replan.PCK_RequirementClasses. *

/%% User authentication */

controlClass COC_UserAuthentication (
securityRequirementClasses SRC_UserAuthentication
purposes Prevention
// User credentials are introduced by control
introduces ASC_DataAsset

)

/% User access control #*/

controlClass COC_UserAccessControl (
securityRequirementClasses SRC_UserAccessControl
purposes Prevention
// User privileges are introduced by control
introduces ASC_DataAsset
reliesOn COC_UserAuthentication

)

/++ Access to physical resources are restricted #*/

controlClass COC_PhysicalAccessControl (
securityRequirementClasses SRC_DataConfidentiality,

SRC_DatalIntegrity

purposes Prevention

/#*%* Message encryption x*/

controlClass COC_MessageEncryption (
securityRequirementClasses SRC_MessageConfidentiality
purposes Prevention
// Keys are introduced by control
introduces ASC_DataAsset

/++ Channel protection #*/

controlClass COC_ChannelProtection (
securityRequirementClasses SRC_MessageConfidentiality,

SRC_MessageIntegrity

purposes Detection, Prevention
// Keys are introduced by control
introduces ASC_DataAsset

)

/++ Message authentication */

controlClass COC_MessageAuthentication (
securityRequirementClasses SRC_Messagelntegrity
purposes Detection
// Keys are introduced by control
introduces ASC_DataAsset

/#*% Audit generation */

controlClass COC_AuditGeneration (
securityRequirementClasses SRC_AuditGeneration
purposes Detection, Monitoring
// Audit trail is introduced by control
introduces ASC_DataAsset

)
/*+ Encryption of data at rest x/

170

63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

NO Gk W=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

B.5. Runtime Capability Model

controlClass COC_DataEncryption (
securityRequirementClasses SRC_DataConfidentiality
purposes Prevention
// Keys are introduced by control
introduces ASC_DataAsset

)

/++ Integrity protection of data at rest */

controlClass COC_DatalIntegrityProtection (
securityRequirementClasses SRC_Datalntegrity
purposes Detection
// Keys are introduced by control
introduces ASC_DataAsset

)

/++ Verification of secret quality =/

controlClass COC_SecretQuality (
securityRequirementClasses SRC_SecretQuality
purposes Deterrence

)

/#*% Provision of minimum quotas */

controlClass COC_MinimumQuotas (
securityRequirementClasses SRC_MinimumQuotas
purposes Limitation

Listing B.4: Extract from the Control Catalog (SecEML notation)

B.5. Runtime Capability Model

VAT
* Runtime capabilities of Activiti for Replan Process case study
* Author: J6rn Eichler
*/

model MDIL_Replan language SecEML "1.1" process ReplanDefinitions

/*+ Package for basic definitions: this package reflects the
information security policy of the organization #*/
package PCK_Activiti (

import MDL_Replan.PCK_Basic.x

import MDL_Replan.PCK_ThreatCatalog.*
import MDL_Replan.PCK_RequirementClasses.x*
import MDIL_Replan.PCK_ControlClasses.

runtimeClass Activiti_57 ()

/*+ Logging of all task executions (start, stop, user) #*/
controlImplementationClass CIC_LogExecution (
runtimeClass Activiti_57
controlClasses COC_AuditGeneration
rating CIR_Weak
properties "logLevel"
)
/%% Protected storage of keys x/
controlImplementationClass CIC_Keystore (
runtimeClass Activiti_57
controlClasses COC_DataEncryption,
COC_DatalIntegrityProtection
rating CIR_Weak
// allowed properties :— keystore: JKS, PKCS11 or PKCS12,
tool: keytool, openSSL or MS key-manager

171

30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51
52

N U WN

= e e e e e
N WD+ OO

19
20
21
22
23
24
25

26
27
28
29

31

B. Work Products from the Exemplary Study

properties "keystoreType", "keystorelLocation", "tool"

/** Authentication for remote users */
controlImplementationClass CIC_BasicHttpAuthentication (
runtimeClass Activiti_57
controlClasses COC_UserAuthentication
rating CIR _Weak

)
/*+ Channel protection applying TLS */
controlImplementationClass CIC_TLS (
runtimeClass Activiti_57
controlClasses COC_ChannelProtection, COC_UserAuthentication
rating CIR_Strong
reliesOn CIC_Keystore
properties "clientAuthentication", "serverAuthentication"

/#*+ Bulld-in Activiti access control for user tasks +*/
controlImplementationClass CIC_UserAccessControl (
runtimeClass Activiti_57
controlClasses COC_UserAccessControl
rating CIR_Weak

Listing B.5: Extract from the Runtime Capability Model (SecEML notation)

B.6. Security Analysis Model

J ok k
* Security Analysis Model for Replan Process case study
* Author: J6rn Eichler
*/
model MDI_Replan language SecEML "1.1" process ReplanDefinitions

/#+* Definition of assets and resources */
package PCK_Assets (

import MDL_Replan.PCK_Basic.x*
import ReplanDefinitions.«

/++ The logistics provider is the view point of the analysis */
stakeholder STA_LogisticsProvider (

title ’'Logistics Provider’
)

/#*% Objective of Replan process: supporting the Proof of Delivery

(POD) «/

asset ASS_POD : ASC_BusinessAsset (
title "Proof of Delivery"

)

// modeled assets

/%% Replan process (Pool that is operated by the logistics
provider; perspective taken by the security analysis) #*/
asset ASS_ReplanProcess : ASC_ProcessAsset (
title "Replan Process"
supports ASS_POD
elements Pl_LogisticsProviderProcess

/#*% Status data and routing data exchanged with forwarder #*/

172

44

45
46
47
48
49

50

51
52
53
54
55

56

B.6. Security Analysis Model

asset ASS_Messages : ASC_MessageAsset (
title "Replan Messages"
supports ASS_ReplanProcess
elements M1_Status, M2_Route

)

// assets introduced by security decisions

/#*% Logging data */
asset ASS_AuditTrail : ASC_DataAsset (
title "Log Data"
// does not support assets explicitly as it is introduced by
control
// does not link an process model element as it 1is not
represented there
)
/%% User credentials and privileges #*/
asset ASS_CredentialsPrivileges : ASC_DataAsset (
title "User Credentials and Privileges"
// does not support assets explicitly as it is introduced by
control
// does not link an process model element as it 1is not
represented there
)
/*+ Keys for secure channel establishment =/
asset ASS_Keys : ASC_DataAsset (
title "Keys for Secure Message Exchange"
// does not support assets explicitly as it is introduced by
control
// does not 1link an process model element as it 1s not
represented there

)

/#*% Actual logistics system */
resource RES_LogisticsSystem (
supports ASS_Messages, ASS_ReplanProcess
elements P1_LogisticsProviderProcess.
LS1_LogisticsProviderLaneSet.L12_LogisticsSystem
)
/*+ Dispatcher x/
resource RES_Dispatcher (
supports ASS_ReplanProcess
elements P1_LogisticsProviderProcess.
LS1_LogisticsProviderLaneSet.Ll1l_Dispatcher
)
/%% Medium for message exchange #*/
resource RES_GSM (
supports ASS_Messages
elements ReplanCollaboration.MF1l, ReplanCollaboration.MF2
)
/%% Forwarder as participant of the collaboration */
resource RES_Forwarder (
supports ASS_Messages
elements P2_ForwarderProcess

)

/** Package for security goals and their rating #*/
package PCK_Goals (

import MDL_Replan.PCK_Basic.x
import MDL_Replan.PCK_Assets.x

/%% Integrity of Replan process #*/
goal SGO_ReplanIntegrity : SGC_Integrity (

173

B. Work Products from the Exemplary Study

89 asset ASS_ReplanProcess

90 stakeholder STA_lLogisticsProvider

91 rating SGR_High

92 criteria SCR_VolL_SubstantialPenalties

93

94 /*+ Confidentiality of Replan process information x/
95 goal SGO_ReplanConfidentiality : SGC_Confidentiality (
96 asset ASS_ReplanProcess

97 stakeholder STA_lLogisticsProvider

98 rating SGR_Normal

99 criteria SCR_VolL_MinorViolation

100)

101 /++ Availability of Replan process #/

102 goal SGO_ReplanAvailabilty : SGC_Availability (

103 asset ASS_ReplanProcess

104 stakeholder STA_LogisticsProvider

105 rating SGR_Normal

106 criteria SCR_VolL_MinorPenalties

107)

108 /*+ Non-repudiation of Replan process #*/

109 goal SGO_ReplanNonRepudiation : SGC_NonRepudiation (
110 asset ASS_ReplanProcess

111 stakeholder STA_LogisticsProvider

112 rating SGR_High

113 criteria SCR_VolL_SubstantialPenalties

114)

115 /*+ Confidentiality of message data #*/

116 goal SGO_MessageConfidentiality : SGC_Confidentiality (
117 asset ASS_Messages

118 // no individual rating, only derivation

119)

120 /*+ Integrity of message */

121 goal SGO_Messagelntegrity : SGC_Integrity (

122 asset ASS_Messages

123 // no individual rating, only derivation

124

125 /*+ Availability of message / message exchange */

126 goal SGO_MessageAvailability : SGC_Availability (

127 asset ASS_Messages

128 // no individual rating, only derivation

129)

130 /%% Non-repudiation of message transmission #*/

131 goal SGO_MessageNonRepudiation : SGC_NonRepudiation (
132 asset ASS_Messages

133 // no individual rating, only derivation

134)

135 /++ Integrity of log data */

136 goal SGO_AuditTraillIntegrity : SGC_Integrity (

137 asset ASS_AuditTrail

138 // no individual rating, only derivation

139)

140 /%% Confidentiality of log data #*/

141 goal SGO_AuditTrailConfidentiality : SGC_Confidentiality (
142 asset ASS_AuditTrail

143 // no individual rating, only derivation

144)

145 /*+ Integrity of credentials and privileges x/

146 goal SGO_CredentiallIntegrity : SGC_Integrity (

147 asset ASS_CredentialsPrivileges

148 // no individual rating, only derivation

149

150 /%% Confidentiality of credentials and privileges */
151 goal SGO_CredentialConfidentiality : SGC_Confidentiality (
152 asset ASS_CredentialsPrivileges

153 // no individual rating, only derivation

174

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185
186
187
188

189
190
191
192

193
194
195
196
197
198
199

200
201
202
203
204
205
206
207
208

209
210
211
212
213

)

B.6. Security Analysis Model

)
/#*% Integrity of keys =*/
goal SGO_KeysIntegrity : SGC_Integrity (
asset ASS_Keys
// no individual rating, only derivation
)
/#*% Confidentiality of keys =/
goal SGO_KeysConfidentiality : SGC_Confidentiality (
asset ASS_Keys
// no individual rating, only derivation

/++ Package for relevant threats #*/
package PCK_Threats (

import MDIL_Replan.PCK_Basic.*
import MDL_Replan.PCK_ThreatCatalog. *
import MDL_Replan.PCK_Goals.x

/*+ Tampering of the execution sequence of the Replan process #/

threat THR_TamperReplanProcess : THC_TamperExecutionSequence (
goals SGO_ReplanIntegrity

)

/++ Tampering of the messages */

threat THR_TamperMessages : THC_TamperMessage (
goals SGO_Messagelntegrity

)

/%% Tamper of the log data =/
threat THR_TamperData : THC_TamperData (
goals SGO_AuditTraillntegrity, SGO_CredentiallIntegrity,
SGO_KeysIntegrity
)
/*% Spoofing of the forwarder or the logistics provider #*/
threat THR_SpoofParticipant : THC_SpoofParticipant (
goals SGO_MessageConfidentiality, SGO_MessagelIntegrity,
SGO_MessageNonRepudiation

)

/%% Spoofing of the dispatcher #/

threat THR_SpoofDispatcher : THC_SpoofUser (
goals SGO_ReplanConfidentiality, SGO_ReplanIntegrity,

SGO_ReplanNonRepudiation

)

/++ Repudiate message transmission x/

threat THR_RepudiateMessages : THC_RepudiateMessage (
goals SGO_MessageNonRepudiation

)

/++ Repudiate route selection by dispatcher x/

threat THR_RepudiateRouteSelection : THC_RepudiateUserInteraction
(
goals SGO_ReplanNonRepudiation

)

/++ Disclose message data */

threat THR_DiscloseMessages : THC_DiscloseMessage (
goals SGO_MessageConfidentiality

)

/#+% Disclose log data =*/

threat THR_DiscloseData : THC_DiscloseData (
goals SGO_AuditTrailConfidentiality,

SGO_CredentialConfidentiality, SGO_KeysConfidentiality

)

/*+ Disclose route data via user Interaction =*/

threat THR _DiscloseRouteData : THC_DiscloseProcessInformation (
goals SGO_ReplanConfidentiality

)

175

214
215
216
217
218
219

220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237

238

239
240
241

242
243
244
245
246

247

248
249
250
251
252
253
254
255
256
257
258

259
260
261
262

263

264
265
266
267

B. Work Products from the Exemplary Study

)

/++ Impede Replan Process execution */

threat THR_ ImpedeReplanExecution : THC_DenialOfProcessExecution
goals SGO_ReplanAvailabilty

)

/*+ Impede message Transmission #*/

threat THR_ ImpedeMesssageTransmission
THC_DenialOfMessageExchange (
goals SGO_MessageAvailability

)

/%% Elevate privileges 1in Replan Process #*/

threat THR_ElevatePrivilegesInReplan : THC_ElevatePrivileges (
goals SGO_ReplanAvailabilty, SGO_ReplanConfidentiality,

SGO_ReplanIntegrity, SGO_ReplanNonRepudiation

/*+ Package for requirements x*/
package PCK_Requirements (

176

import MDL_Replan.PCK_Basic.*

import MDIL_Replan.PCK_RequirementClasses.*
import MDL_Replan.PCK_Goals.*

import MDL_Replan.PCK_Threats. *

/++ Authenticate users before any interaction */
securityRequirement SRE_UserAuthentication
SRC_UserAuthentication (
goals SGO_ReplanConfidentiality, SGO_ReplanIntegrity,
SGO_ReplanNonRepudiation
threats THR_SpoofDispatcher, THR_RepudiateRouteSelection

/*+ Enforce message transmission without modification, deletion,
insertion, or replay */

securityRequirement SRE_MessagelIntegrity : SRC_MessagelIntegrity
goals SGO_Messagelntegrity
threats THR_TamperMessages, THR_SpoofParticipant

VEE] %ﬁforce message transmission without unauthorized disclosure
*

securityRequirement SRE_MessageConfidentiality
SRC_MessageConfidentiality (
goals SGO_MessageConfidentiality
threats THR DiscloseMessages, THR_SpoofParticipant

)

/++ Generate audit record */

securityRequirement SRE_AuditGeneration : SRC_AuditGeneration (
goals SGO_ReplanIntegrity, SGO_ReplanNonRepudiation
threats THR_TamperReplanProcess

)

/*+ Prevent unauthorized modification of log data x/

securityRequirement SRE_DatalIntegrity : SRC_Datalntegrity (
goals SGO_AuditTraillntegrity, SGO_CredentiallIntegrity,

SGO_KeysIntegrity

threats THR_TamperData

)

/*+ Prevent unauthorized disclosure of log data #*/

securityRequirement SRE_DataConfidentiality
SRC_DataConfidentiality (
goals SGO_AuditTrailConfidentiality,

SGO_CredentialConfidentiality, SGO_KeysConfidentiality

threats THR_DiscloseData

)

/++ Enforce access control for user tasks #*/

securityRequirement SRE_UserTaskAccessControl
SRC_UserAccessControl (

(

(

268
269
270
271
272

273
274

275
276

OO W~

BND DN DD DN DN DN e e e b e e e e
NO R WNHHOWOWONO AR WN—OWO

28
29
30
31
32
33
34
35
36

37

38

39

B.7. Security Design Model

goals SGO_ReplanConfidentiality, SGO_ReplanIntegrity,
SGO_ReplanNonRepudiation
threats THR_SpoofDispatcher, THR DiscloseRouteData,
THR_RepudiateRouteSelection
)
/*+ Provide minimum resources for every task to be executed */
securityRequirement SRE_MinimumTaskResources : SRC_MinimumQuotas

(

goals SGO_MessageAvailability, SGO_ReplanAvailabilty

threats THR_ImpedeMesssageTransmission,
THR_ImpedeReplanExecution

Listing B.6: Extract from the Security Analysis Model (SecEML notation)

B.7. Security Design Model

VAT
* Security Design Model for Replan Process case study
* Author: J6rn Eichler
*/
model MDL_Replan language SecEML "1.1" process ReplanDefinitions

/** Definition of controls */
package PCK_Controls (

import MDIL_Replan.PCK_ControlClasses.
import MDL_Replan.PCK_Assets.*
import MDL_Replan.PCK_Requirements. *

/++ Authentication for user tasks */

control CON_UserAuthentication : COC_UserAuthentication (
securityRequirements SRE_UserAuthentication
introduces ASS_CredentialsPrivileges

)

/%% Access control for user tasks #*/

control CON_UserTaskAccessControl : COC_UserAccessControl (
securityRequirements SRE_UserTaskAccessControl
introduces ASS_CredentialsPrivileges
reliesOn CON_UserAuthentication

)

/*+* Channel protection for message exchange x/

control CON_MessageProtection : COC_ChannelProtection (
securityRequirements SRE_MessageConfidentiality,

SRE_MessageIntegrity

introduces ASS_Keys

)

/++ Generate audit for process execution #*/

control CON_AuditGeneration : COC_AuditGeneration (
securityRequirements SRE_AuditGeneration
introduces ASS_AuditTrail

)

/%% Data integrity and confidentiality provided by physical
access control x/
assumption ASU_PhysicalAccessControl : COC_PhysicalAccessControl
(
securityRequirements SRE_DataConfidentiality,
SRE_DatalIntegrity

177

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68

70
71

B. Work Products from the Exemplary Study

)

/*% Package for control implementations in Activiti */
package PCK_ActivitiRuntime (

import MDL_Replan.PCK_ControlClasses.*
import MDL_Replan.PCK_Activiti.x
import MDIL_Replan.PCK_Controls.x*

runtime RUN_Activiti : Activiti_57

/++ Logging of the execution trace x/
controlImplementation CIM_LogExecution : CIC_LogExecution
runtime RUN_Activiti
controls CON_AuditGeneration
properties ("logLevel" = "fine")
)
/*% Application of TLS to protect message exchange */
controlImplementation CIM_TLS : CIC_TLS (
runtime RUN_Activiti
controls CON_MessageProtection
properties
("clientAuthentication"
("serverAuthentication"

"true ") ,
"t rye")

)

controlImplementation CIM_UserAccessControl
CIC_UserAccessControl (
runtime RUN_Activiti
controls CON_UserTaskAccessControl

(

178

Listing B.7: Extract from the Security Design Model (SecEML notation)

List

1.4.1.
1.5.1.

2.2.1.
2.2.2.

2.2.3.
2.3.1.
2.3.2.
2.4.1.

3.2.1.

4.3.1.
4.4.1.
4.4.2.
4.7.1.
4.7.2.
4.7.3.
4.7.4.
4.7.5.

5.4.1.
5.4.2.
5.4.3.
5.4.4.
5.5.1.
5.5.2.
5.5.3.
5.5.4.
5.5.5.

6.4.1.
6.5.1.
6.5.2.

of Figures

Overview of the contributed framework for security engineering 8
Thesisstructure e e 9
Business process life cycle [Wes07,p. 12] 13
Business process management systems architecture (FMC block diagram,

adapted from [Wes07, Wol10]) ittt e 15
BPMN core elements (cf. [Objlla]l) 17
MDA metamodel transformation [Obj03,p.3-9] 25
Dialect definition strategy (cf. [BDLO6]) 26
Core security concepts and theirrelations 32
The Replan Process (BPMN process diagram) 49
Design strategy vs. requirement matrix forSecEPM 56
SecEPM overview (SPEM notation) i 58
Activity vs. work product matrix L. 61
Plug-in structure of SecEPM SPEM (UML component diagram) 91
Modeling of an exemplary SecEPM task (SPEM notation) 93
Authoring the SecEPM process model using the EPF Composer 94
Documentation of a SecEPM-based security engineering process 94
A Microsoft Project template for a SecEPM-based security engineering process 95
Basic entities of SecEML (UML classdiagram) 107
Classification entities in SecEML (UML class diagram) 108
Prioritization entities in SecEML (UML class diagram) 111
Core analysis and design entities in SecEML (UML class diagram) 113
SecEML editor plug-ins overview (UML component diagram) 119
Initial transformation process for the SecEMLeditor 120
Adapted transformation process for the SecEML editor 121
Usingthe SecEMLeditor 121
Elements of the integrated security workbench and external components . . 122
The Account Opening Process [Rup13, p. 25] (BPMN process diagram) 136
Comparison of approaches for security engineering in the domain of BPM . . 138
Primary assignment of analysis criteria and mainissues 143

179

List of Figures

180

List of Tables

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.

6.1.
6.2.
6.3.
6.4.

6.5.

6.6.
6.7.
6.8.
6.9.
6.10.

SecEPM work products overview 60
SecEPMroles overview e e 62
Activity: Setup Process e 65
Activity: Identify Assets e 68
Activity: Assess SecurityGoals L o e 71
Activity: Model Threats 73
Activity: Elicit Security Requirements 75
Activity: Design Controls e 78
Activity: Map Controls e 81
Activity: Generate Control Artifacts 83
Activity: Generate Test Artifacts 84
Guidance: Provide Guidance Artifacts for Existing Methods 85
Guidance: Rate Security Goals Adapting IT-BPM 87
Integration of SecEPM intoOpenUP 98
Analysis criteria derived from SecEPM requirements 126
Analysis criteria derived from SecEML requirements. 127
Mapping of STRIDE threat classes onto BPMN entities for modeled assets . . . 127
Mapping of asset classes, security goal classes, and threat classes onto security

requirement classes and related CCSFRs 128
Control classes and their security goal classes, purposes, introduced asset

classes,and dependencies 129
The runtime capabilities of Activiti 130
Security requirements for the ReplanProcess 132
Controls, assumptions and control implementations for the Replan Process . 134
Fulfillment of analysis criteria with regard to main issues by process model . . 144
Fulfillment of analysis criteria with regard to main issues by DSML 144

181

List of Tables

182

List of Listings

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.

Application of basic entities (SecEML notation) 107
Providing classifications (SecEML notation) 109
Providing ratings and corresponding criteria (SecEML notation) 111
Specifying security requirements and controls (SecEML notation) 114
Excerpt of the Replan Process (MBPMN notation) 116
Relations between security and business process models (SecEML notation) . . 116
Extract from the Business Process Model (BPMN notation) 161
Extract from the Process Model Configuration (SecEML notation) 163
Extract from the Threat Catalog (SecEML notation) 166
Extract from the Control Catalog (SecEML notation) 170
Extract from the Runtime Capability Model (SecEML notation) 171
Extract from the Security Analysis Model (SecEML notation) 172
Extract from the Security Design Model (SecEML notation) 177

183

List of Listings

184

Acronyms

ASM
AST
AUK
AURUM

BPM
BPMN
BPMS
BPSec
BSI

CAME
CC
CIM

DSL
DSML

EBNF
EJB
EMF
EMOF
EPC
EPF
EPEFC
ESB

FMC
FML
FQN

HUTN

Abstract State Machine

abstract syntax tree

Activity Use Kind

Automated Risk and Utility Management

business process management

Business Process Modeling and Notation

business process management system

Business Process Security

Bundesamt fiir Sicherheit in der Informationstechnik

computer aided method engineering
Common Criteria
computational independent model

domain-specific language
domain-specific modeling language

Extended Backus-Naur Form
Enterprise Java Bean

Eclipse Modeling Framework
Essential Meta Object Facility
Event-driven Process Chains

Eclipse Process Framework

Eclipse Process Framework Composer
enterprise service bus

Fundamental Modeling Concepts
Formal Methods and Modeling Language Framework

fully qualified name

Human-usable Textual Notation

185

Acronyms

TIATA
ICT
IDE
IEEE
ISM
ISO

IT
IT-BPM

M-BPSec
MBPMN
MDA
MDE
MDS
ME

MEL
MOF
MoSS
MoSSBP
MS SDL

NIST

OBU
OCL
OMG
OpenUP

PIM
POD
POSeM
ProMeLa
PSM

RBAC
ROPE
RUP

SecEML

186

International Air Transport Association
information and communications technology
integrated development environment

Institute of Electrical and Electronics Engineers
implementation specific model

International Organization for Standardization
information technology

IT Baseline Protection Methodology

Method for Business Process Security
MockBPMN

Model-driven Architecture
model-driven engineering
model-driven security

method engineering

Model Extension Language

Meta Object Facility

Modeling Security Semantics

Modeling Security Semantics of Business Processes
Microsoft Secure Development Lifecycle

National Institute of Standards and Technology

on-board unit

Object Constraint Language
Object Management Group
Open Unified Process

platform independent model
proof of delivery

Process Oriented Security Model
Protocol Meta Language
platform specific model

role based access control
Risk-Oriented Process Evaluation

Rational Unified Process

Security Engineering Modeling Language

SecEPM
SEPL
SFR
SLA
SME
SPEM
STRIDE

TLS

UML

VE

WAN
WFM
WIMC
WPDL
WPDR
WS-BPEL

XACML
XPDL

Acronyms

Security Engineering Process Model

Security Enhanced Process Language

security functional requirement

service level agreement

small and medium-sized enterprise

Software & System Process Engineering Model

Spoofing, Tempering, Repudiation, Information disclosure, Denial of service,
Elevation of privileges

transport layer security

Unified Modeling Language
variability element

wide area network

workflow management

Workflow Management Coalition
Workflow Process Definition Language
Work Product Definition Relationship

Web Services Business Process Execution Language

Extensible Access Control Markup Language
XML Process Definition Language

187

Acronyms

188

Bibliography

[ABO5]

[ACPP11]

[AGMP12]

[AHBO7]

[Ame04]

[And08]

[ASO4]

[ASO8]

[AW04]

[AW08]

[AWK* 03]

N. Arni-Bloch. Towards a CAME tools for situational method engineering. In
Proceedings of the 1st International Conference on Interoperability of Enterprise
Software and Applications INTEROP-ESA 2005), pages 45-50, 2005.

W. Arsac, L. Compagna, G. Pellegrino, and S. Ponta. Security validation of
business processes via model-checking. In Engineering Secure Software and
Systems (ESSoS 2011), volume 6542 of LNCS, pages 29-42. Springer, 2011.

A. Armando, E. Giunchiglia, M. Maratea, and S. E. Ponta. An action-based
approach to the formal specification and automatic analysis of business pro-
cesses under authorization constraints. Journal of Computer and System Sci-
ences, 78(1):119-141, 2012.

M. Alam, M. Hafner, and R. Breu. Model-driven security engineering for trust
management in SECTET. Journal of Software, 2(1):47-59, 2007.

American National Standards Institute. ANSI INCITS 359-2004: Role based
access control, 2004.

R.J. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. Wiley, 2nd edition, 2008.

R. S. Aguilar-Savén. Business process modelling: Review and framework.
International Journal of Production Economics, 90(2):129-149, 2004.

S. Ardi and N. Shahmehri. Integrating a security plug-in with the OpenUP/Ba-
sic Development Process. In Proceedings of the 3rd International Conference on
Availability, Reliability and Security (ARES 2008), pages 284-291. IEEE, 2008.

M. Andrews and J. Whittaker. Computer security. IEEE Security & Privacy,
2(5):68-71, 2004.

V. Atluri and J. Warner. Security for workflow systems. In Handbook of Database
Security, pages 213-230. Springer, 2008.

P Agerfalk, K. Wistrand, E Karlsson, G. Borjesson, M. Elmberg, and K. Méller.
Flexible processes and method configuration: Outline of a joint industry-
academia research project. In Proceedings of the 5th International Conference
on Enterprise Information Systems (ICEIS 2003), volume 3, pages 185-190, 2003.

189

Bibliography

[BE06]

[Bas93]

[BBO8]

[BBDF*06]

[BBH*03]

[BBI*04]

(BBT11]

[BCDEO9]

[BCE11]

[BCH10]

[BD09]

[BDLO6]

190

J. Bézivin. Model driven engineering: An emerging technical space. In Genera-
tive and Transformational Techniques in Software Engineering, volume 4143 of
LNCS, pages 36-64. Springer, 2006.

R. Baskerville. Information systems security design methods: implications for
information systems development. ACM Computing Surveys, 25(4):375-414,
1993.

E. W. N. Bernroider and M. Bernroider. A comparative study of business
process management tools based on open source software and a commercial
reference. In Proceedings of the 5th International Conference on Cybernetics
and Information Technologies, Systems and Applications (CITSA 2008), 2008.

J. Bézivin, S. Bouzitouna, M. Del Fabro, M. Gervais, E Jouault, D. Kolovos,
I. Kurtev, and R. Paige. A canonical scheme for model composition. In Proceed-
ings of the 2nd European Conference on Model Driven Architecture: Founda-
tions and Applications (ECMDA-FA 2006), volume 4066 of LNCS, pages 346-360.
Springer, 2006.

R. Breu, K. Burger, M. Hafner, J. Jiirjens, G. Popp, G. Wimmel, and V. Lotz. Key
issues of a formally based process model for security engineering. In Proceed-
ings of the 16th International Conference on Software & Systems Engineering
and their Applications (ICSSEA 2003), 2003.

G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B. Selic. An MDA manifesto.
MDA Journal, 5:2-9, 2004.

Y. Badr, E Biennier, and S. Tata. The integration of corporate security strategies
in collaborative business processes. IEEE Transactions on Services Computing,
4(3):243-254, 2011.

D. Basin, M. Clavel, J. Doser, and M. Egea. Automated analysis of security-
design models. Information and Software Technology, 51(5):815-831, 2009.

D. Basin, M. Clavel, and M. Egea. A decade of model-driven security. In Proceed-
ings of the 16th ACM Symposium on Access Control Models and Technologies
(SACMAT 2011), pages 1-10. ACM, 2011.

M. Brus6, K. Chatzikokolakis, and J. Hartog. Formal verification of privacy for
RFID systems. In 23rd IEEE Computer Security Foundations Symposium (CSF
2010), pages 75-88. IEEE, 2010.

B. Bruegge and A. H. Dutoit. Object-Oriented Software Engineering. Pearson,
3rd edition, 2009.

D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML mod-
els to access control infrastructures. ACM Transactions on Software Engineering
and Methodology, 15(1):39-91, 2006.

[Bez03]

[BFH'10]

(BHO04]

[(BH13]

[BHIOWO08]

[Bis02]

[BL73]

[(BM11]

[BPWO3]

[Brio6]

[BSH98]

[BunO08]

[Capl2]

[CCG*02]

Bibliography

K. Beznosov. eXtreme security engineering: On employing XP practices to
achieve "good enough security" without defining it. In Proceedings of the 1st
ACM Workshop on Business Driven Security Engineering (BizSec 2003), 2003.

M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seamless
model-based development: From isolated tools to integrated model engineer-
ing environments. Proceedings of the IEEE, 98(4):526-545, 2010.

B. Blakley and C. Heath. Security design patterns. Technical Guide G031, Open
Group, 2004.

A. D. Brucker and I. Hang. Secure and compliant implementation of business
process-driven systems. In Business Process Management Workshops (BPM
2013), volume 132 of LNBIP, pages 662—674. Springer, 2013.

R. Breu, M. Hafner, E Innerhofer-Oberperfler, and E Wozak. Model-driven
security engineering of service oriented systems. In Information Systems and
e-Business Technologies (UNISCON 2008), volume 5 of LNBIP, pages 59-71.
Springer, 2008.

M. Bishop. Computer security: Art and science. Addison-Wesley, 2002.

D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical founda-
tions. Technical Report 2547, MITRE, 1973.

J. Bau and J. Mitchell. Security modeling and analysis. IEEE Security & Privacy,
9(3):18-25, 2011.

M. Backes, B. Pfitzmann, and M. Waidner. Security in business process engi-
neering. In Business Process Management (BPM 2003), volume 2678 of LNCS,
pages 1019-1019. Springer, 2003.

S. Brinkkemper. Method engineering: engineering of information systems
development methods and tools. Information and Software Technology,
38(4):275-280, 1996.

S. Brinkkemper, M. Saeki, and E Harmsen. Assembly techniques for method
engineering. In Advanced Information Systems Engineering (CAiSE 1998),
volume 1413 of LNCS, pages 381-400. Springer, 1998.

Bundesamt fiir Sicherheit in der Informationstechnik. BSI-Standard 100-2:
IT-Grundschutz methodology, 2008.

Capgemini. Global business process management report, 2012.

A. Cimatti, E. Clarke, E. Giunchiglia, E Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic
model checking. In Computer Aided Verification (CAV 2002), volume 2404 of
LNCS, pages 359-364. Springer, 2002.

191

Bibliography

(CD11]

[CASBE08]

[Cha95]

[CKE*10]

[CPGO5]

[CZ08]

[CZM*11]

[Dav05]

[dBDG*03]

[dBHL*07]

[Den76]

[Dhill]

[DRGRAGP09]

192

M. Cheung and A. Dayley. Market share analysis: Operating system software,
worldwide, 2010. Technical Report G00212436, Gartner, 2011.

M. Clavel, V. da Silva, C. Braga, and M. Egea. Model-driven security in practice:
An industrial experience. In Model Driven Architecture — Foundations and
Applications (ECMDA-FA 2008), volume 5095 of LNCS, pages 326-337. Springer,
2008.

B. Chadha. A model driven methodology for business process engineering.
In Proceedings of the Computers in Engineering Conference, pages 1165-1182.
ASME, 1995.

E. W. Cope, J. M. Kuster, D. Etzweiler, L. A. Deleris, and B. Ray. Incorporating
risk into business process models. IBM Journal of Research and Development,
54(3):4:1-4:13, 2010.

H. Chivers, R. Paige, and X. Ge. Agile security using an incremental secu-
rity architecture. In Extreme Programming and Agile Processes in Software
Engineering (XP 2005), volume 3556 of LNCS, pages 57-65. Springer, 2005.

J. Cabot and N. Zannone. Towards an Integrated Framework for Model-driven
Security Engineering. In Proceedings of the 1st Modeling Security Workshop
(MODSEC 2008), volume 413. CEUR, 2008.

I. Ciuciu, G. Zhao, J. Miille, S. Stackelberg, C. Vasquez, T. Haberecht, R. Meers-
man, and K. B6hm. Semantic support for security-annotated business process
models. In Enterprise, Business-Process and Information Systems Modeling
(BPMDS 2011), volume 81 of LNBIP, pages 284-298. Springer, 2011.

T. Davenport. The coming commoditization of processes. Harvard Business
Review, 83(6):100-108, 2005.

E den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stelen, and J. @. Aagedal.
The CORAS methodology: model-based risk assessment using UML and UP.
In UML and the Unified Process, pages 332-357. IRM Press, 2003.

E den Braber, I. Hogganvik, M. Lund, K. Stelen, and E Vraalsen. Model-based
security analysis in seven steps — a guided tour to the CORAS method. BT
Technology Journal, 25(1):101-117, 2007.

D. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5):236-243, 1976.

D. Dhillon. Developer-driven threat modeling: Lessons learned in the trenches.
IEEE Security & Privacy, 9(4):41-47, 2011.

A. Delgado, E Ruiz, I. Garcia-Rodriguez de Guzmadn, and M. Piattini. Towards
a service-oriented and model-driven framework with business processes as

[DRMSRO06]

[DRR*02]

[DVG10]

[Eck14]

[EFL12]

[EFNO09]

[Eic10]

[Eiclla]

[Eicl1b]

[Eicl2a]

Bibliography

first-class citizens. In Business Process, Services Computing and Intelligent
Service Management (BPSC 2009), volume 147 of LNI. GI, 2009.

M. Diallo, J. Romero-Mariona, S. Sim, and D. Richardson. A comparative eval-
uation of three approaches to specifying security requirements. In Proceedings
of the 12th Working Conference on Requirements Engineering: Foundation for
Software Quality (RefsQ 2006), 2006.

T. Dimitrakos, B. Ritchie, D. Raptis, J. @. Aagedal, E den Braber, K. Stolen,
and S. H. Houmb. Integrating model-based security risk management into
eBusiness systems development: The CORAS approach. In Proceedings of the
IFIP Conference on Towards The Knowledge Society: E-Commerce, E-Business,
E-Government (I3E 2002), pages 159-175. Kluwer, 2002.

R. Dijkman and P. Van Gorp. BPMN 2.0 execution semantics formalized as
graph rewrite rules. In Business Process Modelling Notation (BPMN 2010),
volume 67 of LNBIP, pages 16-30. Springer, 2010.

C. Eckert. IT-Sicherheit: Konzepte — Verfahren — Protokolle. De Gruyter Olden-
bourg, 9th edition, 2014.

J. Eichler, A. Fuchs, and N. Lincke. Supporting security engineering at design
time with adequate tooling. In Proceedings of the 15th IEEE International
Conference on Computational Science and Engineering (CSE 2012), pages 194—
201. IEEE, 2012.

A. Ekelhart, S. Fenz, and T. Neubauer. AURUM: A framework for supporting
information security risk management. In Proceedings of the 42nd Hawaii
International Conference on System Sciences (HICSS 2009), pages 1-10. IEEE,
2009.

J. Eichler. Sicherheitsmodellierung dynamischer Geschiftsprozesse. De-
liverable D.G7.2 im Forschungsprojekt ADiWa (BMBF Forderkennzeichen
01IA08006), 2010.

J. Eichler. Lightweight modeling and analysis of security concepts. In Engineer-
ing Secure Software and Systems (ESSoS 2011), volume 6542 of LNCS, pages
128-141. Springer, 2011.

J. Eichler. Modellgetriebener IT-Grundschutz: Erstellung und Analyse von IT-
Sicherheitskonzeptionen in offenen Werkzeugketten. In Sicher in die digitale
Welt von morgen — Tagungsband zum 12. Deutschen IT-Sicherheitskongress,
pages 11-22. Bundesamt fiir Sicherheit in der Informationstechnik, 2011.

J. Eichler. SecEPM: A security engineering process model for electronic busi-
ness processes. In Proceedings of the 9th IEEE International Conference on
e-Business Engineering (ICEBE 2012), pages 206-213. IEEE, 2012.

193

Bibliography

[Eic12b]

(EM97]

[Eurll]

[EWO05]

[EY07]

[EYZ10]

[FGH*10]

[FHS02]

[FMS07]

[For12]

[FRO7]

[FS11]

194

J. Eichler. Towards a security engineering process model for electronic business
processes. In Fast Abstracts & Student Forum Proceedings of the 9th European
Dependable Computing Conference (EDCC 2012), number 1204.4428v1. CoRR,
2012.

C. Eckert and D. Marek. Developing secure applications: A systematic ap-
proach. In Proceedings of the IFIP TC11 13th International Conference on Infor-
mation Security in Research and Business (SEC 1997), pages 267-279. Chapman
& Hall, 1997.

European Network and Information Security Agency. Secure software engi-
neering initiatives. Technical report, 2011.

S. Evans and J. Wallner. Risk-based security engineering through the eyes
of the adversary. In Proceedings from the 6th Annual IEEE SMC Information
Assurance Workshop (IAW 2005), pages 158-165. IEEE, 2005.

G. Elahi and E. Yu. A goal oriented approach for modeling and analyzing
security trade-offs. In Conceptual Modeling (ER 2007), volume 4801 of LNCS,
pages 375-390. Springer, 2007.

G. Elahij, E. Yu, and N. Zannone. A vulnerability-centric requirements en-
gineering framework: analyzing security attacks, countermeasures, and re-
quirements based on vulnerabilities. Requirements Engineering, 15(1):41-62,
2010.

B. Fabian, S. Giirses, M. Heisel, T. Santen, and H. Schmidt. A comparison
of security requirements engineering methods. Requirements Engineering,
15(1):7-40, 2010.

D. G. Firesmith and B. Henderson-Sellers. The OPEN process framework: An
introduction. Addison-Wesley, 2002.

G. Frankova, E Massacci, and M. Seguran. From early requirements analysis
towards secure workflows. In Trust Management (IFIP-TM 2007), volume 238
of IFIP, pages 407-410. Springer, 2007.

Forrester Research. The software security risk report. Technical Report 1-
HMGX0Z, 2012.

R. France and B. Rumpe. Model-driven development of complex software: A
research roadmap. In Proceedings of the Workshop on the Future of Software
Engineering (FOSE 2007), pages 37-54. IEEE, 2007.

M. Fleming and J. Silverstein. Worldwide business process management and
middleware 2010 vendor shares. Technical Report 228317, IDC, 2011.

[FSG*11]

[GO11]

[GeelO]

(GHJV95]

[GKR*07]

[Gur95]

[Gus08]

[Ham13]

[(HBO09]

[HBANOG6]

(HHO6]

[HHJS11]

(HHSO07]

[HKO1]

Bibliography

G. Frankova, M. Séguran, E Gilcher, S. Trabelsi, J. Dorflinger, and M. Aiello.
Deriving business processes with service level agreements from early require-
ments. Journal of Systems and Software, 84(8):1351-1363, 2011.

M. Go6tz. BPM-Systeme im Vergleich, 2011. iTransparent.

D. Geer. Are companies actually using secure development life cycles? Com-
puter, 43(6):12-16, 2010.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements of
reusable object-oriented design. Addison-Wesley, 1995.

H. Gronniger, H. Krahn, B. Rumpe, M. Schindler, and S. Voélkel. Text-based
modeling. In Proceedings of the 4th International Workshop on Software Lan-
guage Engineering (ATEM 2007), 2007.

Y. Gurevich. Specification and validation methods, chapter Evolving algebras
1993: Lipari guide, pages 9-36. Oxford University Press, 1995.

B. Gustafsson. OpenUP - the best of two worlds. Methods & Tools, 16(1):21-32,
2008.

S. Hameed. Model-driven, secure configuration of runtime environments for
electronic processes. Master’s thesis, Fachhochschule Kiel, 2013.

M. Hafner and R. Breu. Security engineering for service-oriented architectures.
Springer, 2009.

M. Hafner, R. Breu, B. Agreiter, and A. Nowak. SECTET: an extensible framework
for the realization of secure inter-organizational workflows. Internet Research,
16(5):491-506, 2006.

P. Herrmann and G. Herrmann. Security requirement analysis of business
processes. Electronic Commerce Research, 6(3):305-335, 2006.

D. Hatebur, M. Heisel, J. Jiirjens, and H. Schmidt. Systematic development
of UMLsec design models based on security requirements. In Fundamental
Approaches to Software Engineering (FASE 2011), volume 6603 of LNCS, pages
232-246. Springer, 2011.

D. Hatebur, M. Heisel, and H. Schmidt. A security engineering process based
on patterns. In Proceedings of the 18th International Conference on Database
and Expert Systems Applications (DEXA 2007), pages 734-738. IEEE, 2007.

P. Herrmann and H. Krumm. Object-oriented security analysis and model-
ing. In Proceedings of the 9th International Conference on Telecommunication
Systems — Modeling and Analysis (ICTSM 2001), pages 21-32. IFIP, 2001.

195

Bibliography

[HKO3]

[HMPRO4]

[Hol97]

[(HP99]

[HS06]

[HSR10]

[Ins90]

[Ins97]

[Int96]

(Int04]

(Int07]

(Intlla]

[Intl11b]

(Int13a]

196

P. Hung and K. Karlapalem. A secure workflow model. In Proceedings of
the Australasian Information Security Workshop (AISW 2003), pages 33-41.
Australian Computer Society, 2003.

A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information
systems research. MIS quarterly, 28(1):75-105, 2004.

G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279-295, 1997.

G. Herrmann and G. Pernul. Viewing business-process security from different
perspectives. International Journal of Electronic Commerce, 3(3):89-103, 1999.

B. Henderson-Sellers. Method engineering: Theory and practice. In Informa-
tion Systems Technology and its Applications (ISTA 2006), volume 84 of LNI,
pages 13-23. GI, 2006.

B. Henderson-Sellers and J. Ralyté. Situational method engineering: state-of-
the-art review. Journal of Universal Computer Science, 16(3):424-478, 2010.

Institute of Electrical and Electronics Engineers. IEEE standard glossary of
software engineering terminology (std. 610.12-1990), 1990.

Institute of Electrical and Electronics Engineers. IEEE standard for developing
software life cycle processes (std. 1074-1997), 1997.

International Organization for Standardization. ISO/IEC 14977: Information
technology — syntactic metalanguage — extended BNF, 1996.

International Organization for Standardization. ISO/IEC 13335-1: Information
technology - security techniques —- management of information and commu-
nications technology security — part 1: Concepts and models for information
and communications technology security management, 2004.

International Organization for Standardization. ISO/IEC 24744: Software
engineering — metamodel for development methodologies, 2007.

International Organization for Standardization. ISO/IEC 15408-2: Information
technology — security techniques — evaluation criteria for IT security — part 1:
Security functional components, 2011.

International Organization for Standardization. ISO/IEC 27005: Information
technology — security techniques — information security risk management,
2011.

International Organization for Standardization. ISO/IEC 27001: Information
technology - security techniques — information security management systems
- requirements, 2013.

[Int13b]

(Int14]

(IRRGO9]

[Jio1]

[Ji05]

[Ji09]

[JBO6]

(JJ11]

[(JMO3]

[Joh10]

(JT09]

[JTGK10]

[JTGQO9]

Bibliography

International Organization for Standardization. ISO/IEC 27002: Information
technology — security techniques — code of practice for information security
controls, 2013.

International Organization for Standardization. ISO/IEC 15408-1: Information
technology — security techniques — evaluation criteria for IT security — part 1:
Introduction and general model, 2014.

M. Indulska, J. Recker, M. Rosemann, and P. Green. Business process model-
ing: Current issues and future challenges. In Advanced Information Systems
Engineering (CAiSE 2009), volume 5565 of LNCS, pages 501-514. Springer, 2009.

J. Jiirjens. Developing secure systems with UMLsec — from business processes
to implementation. In Verldssliche IT-Systeme 2001: Sicherheit in komplexen
IT-Infrastrukturen (VIS 2001), pages 151-161. Vieweg, 2001.

J. Jirjens. Secure Systems Development with UML. Springer, 2005.

J. Jiirjens. Security and dependability engineering. In Security and Depend-
ability for Ambient Intelligence, chapter 2, pages 21-36. Springer, 2009.

S. Johnson and A. Brown. A model-driven development approach to creat-
ing service-oriented solutions. In Service-Oriented Computing (ICSOC 2006),
volume 4294 of LNCS, pages 624-636. Springer, 2006.

J.Jensen and M. Jaatun. Not ready for prime time: A survey on security in model
driven development. International Journal of Secure Software Engineering,
2(4):49-61, 2011.

K. Jayaram and A. Mathur. Software engineering for secure software — state of
the art: A survey. Technical Report 2005-67, Department of Computer Science,
Purdue University, USA, 2005.

R. G. Johnston. Being vulnerable to the threat of confusing threats with vulner-
abilities. The Journal of Physical Security, 4(2):30-34, 2010.

S. Jakoubi and S. Tjoa. A reference model for risk-aware business process
management. In Proceedings of the 4th International Conference on Risks and
Security of Internet and Systems (CRiSIS 2009), pages 82-89. IEEE, 2009.

S. Jakoubi, S. Tjoa, S. Goluch, and G. Kitzler. Risk-aware business process
management — establishing the link between business and security. In Complex
Intelligent Systems and Their Applications, volume 41 of Springer Optimization
and its Applications, pages 109-135. Springer, 2010.

S. Jakoubi, S. Tjoa, G. Goluch, and G. Quirchmayr. A survey of scientific ap-
proaches considering the integration of security and risk aspects into business
process management. In Proceedings of the 20th International Workshop on

197

Bibliography

[JTQO7]

[KA04]

[KA09]

[KDKOO0]

[Ken02]

[KGTO05]

(KH10]

[KKP*09]

[Kle08]

[KLLO9]

[Krc10]

[KS06]

[KSS12]

198

Database and Expert Systems Application (DEXA 2009), pages 127-132. IEEE,
2009.

S. Jakoubi, S. Tjoa, and G. Quirchmayr. ROPE: A methodology for enabling the
risk-aware modelling and simulation of business processes. In Proceedings of
the 15th European Conference on Information Systems (ECIS 2007), 2007.

E Karlsson and P. J. Agerfalk. Method configuration: adapting to situational
characteristics while creating reusable assets. Information and Software Tech-
nology, 46(9):619-633, 2004.

E Karlsson and P. Agerfalk. Exploring agile values in method configuration.
European Journal of Information Systems, 18(4):300-316, 2009.

S. Kokolakis, A. Demopoulos, and E. Kiountouzis. The use of business process
modelling in information systems security analysis and design. Information
Management and Computer Security, 8(2/3):107-115, 2000.

S. Kent. Model driven engineering. In Integrated Formal Methods (IFM 2002),
volume 2335 of LNCS, pages 286-298. Springer, 2002.

A. Knopfel, B. Grone, and P. Tabeling. Fundamental modeling concepts. Wiley,
2005.

K. Khanmohammadi and S. Houmb. Business process-based information
security risk assessment. In Proceedings of the 4th International Conference on
Network and System Security (NSS 2010), pages 199-206, 2010.

G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Vélkel.
Design guidelines for domain specific languages. In Proceedings of the 9th
OOPSLA Workshop on Domain-Specific Modeling (DSM 2009), 2009.

A. Kleppe. Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley, 2008.

R. Ko, S. Lee, and E. Lee. Business process management (BPM) standards: a
survey. Business Process Management Journal, 15(5):744-791, 2009.

H. Krcmar. Informationsmanagement. Springer, 5th edition, 2010.

E Keblawi and D. Sullivan. Applying the common criteria in systems engineer-
ing. IEEE Security & Privacy, 4:50-55, 2006.

E. Kiesling, C. Strausss, and C. Stummer. A multi-objective decision support
framework for simulation-based security control selection. In Proceedings of
the 7th International Conference on Availability, Reliability and Security (ARES
2012), pages 454-462. IEEE, 2012.

[Lan01]

[LLLO2]

[LMV*05]

[LS07]

[LSS11]

[MB11]

[MBS12]

[MBSFM10]

[MC96]

[McDO07]

(McGO06]

[MFMPO07]

(MGO07]

[MHNO4]

Bibliography

C. E. Landwehr. Computer security. International Journal of Information
Security, 1:3-13, 2001.

Y. Lee, J. Lee, and Z. Lee. Integrating software lifecycle process standards with
security engineering. Computers & Security, 21(4):345-355, 2002.

J. Lopez,]. A. Montenegro, J. L. Vivas, E. Okamoto, and E. Dawson. Specification
and design of advanced authentication and authorization services. Computer
Standards & Interfaces, 27(5):467-478, 2005.

R. Lu and S. Sadiqg. A survey of comparative business process modeling ap-
proaches. In Business Information Systems (BIS 2007), volume 4439 of LNCS,
pages 82-94. Springer, 2007.

M. Lund, B. Solhaug, and K. Stelen. Model-driven risk analysis: the CORAS
approach. Springer, 2011.

J. Miiller and K. Bohm. The architecture of a secure business-process-
management system in service-oriented environments. In Proceedings of
the 9th IEEE European Conference on Web Services (ECOWS 2011), pages 49-56.
IEEE, 2011.

G. Monakova, A. D. Brucker, and A. Schaad. Security and safety of assets in
business processes. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing (SAC 2012), pages 1667-1673. ACM, 2012.

D. Mellado, C. Blanco, L. E. Sdnchez, and E. Fernddez-Medina. A systematic
review of security requirements engineering. Computer Standards & Interfaces,
32(4):153-165, 2010.

L. Mclver and D. Conway. Seven deadly sins of introductory programming
language design. In Proceedings of the International Conference on Software
Engineering: Education and Practice (SEEP 1996), pages 309-316. IEEE, 1996.

N. McDonald. Model-driven security: Enabling a real-time, adaptive security
infrastructure. Technical Report G00151498, Gartner, 2007.

G. McGraw. Software Security: Building Security In. Addison-Wesley, 2006.

D. Mellado, E. Ferndndez-Medina, and M. Piattini. A common criteria based
security requirements engineering process for the development of secure
information systems. Computer Standards & Interfaces, 29(2):244-253, 2007.

H. Mouratidis and P. Giorgini. Secure tropos: A security-oriented extension of
the tropos methodology. International Journal of Software Engineering and
Knowledge Engineering, 17(2):285-309, 2007.

J. D. Moffett, C. B. Haley, and B. Nuseibeh. Core security requirements artefacts.
Technical Report 23, Department of Computing, The Open University, 2004.

199

Bibliography

[MHSO05]

[Mic12]

[(MJFO06]

(MM10]

[MMRVO03]

[MMS97]

[Mol12]

[MRS09]

[MS95]

[MSKO07]

[MSR10]

[MvSB11a]

200

N. R. Mead, E. D. Hough, and T. R. Stehney. Security quality requirements
engineering (SQUARE) methodology. Technical Report CMU/SEI-2005-TR-
009, Software Engineering Institute, Carnegie Mellon University, 2005.

Microsoft Corporation. Microsoft Security Development Lifecycle — SDL pro-
cess guidance version 5.2. Technical report, 2012.

H. Mouratidis, J. Jiirjens, and J. Fox. Towards a comprehensive framework for
secure systems development. In Advanced Information Systems Engineering
(CAiSE 2006), volume 4001 of LNCS, pages 48-62. Springer, 2006.

M. Menzel and C. Meinel. SecureSOA: Modelling security requirements for
service-oriented architectures. In Procedings of the IEEE International Confer-
ence on Services Computing (SCC 2010), pages 146-153. IEEE, 2010.

A. Mana, J. A. Montenegro, C. Rudolph, and J. L. Vivas. A business process-
driven approach to security engineering. In Proceedings of the 14th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA 2003),
pages 477-481. IEEE, 2003.

J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using mure. In IEEE Symposion on Security and Privacy (S&P 1997),
pages 141-151. IEEE, 1997.

D.-C. Moldovan. Ausarbeitung und Untersuchung eines Vorgehensmodells fiir
das Security Engineering. Master’s thesis, Hochschule RheinMain, Wiesbaden,
2012.

N. Moebius, W. Reif, and K. Stenzel. Modeling security-critical applications
with UML in the SecureMDD approach. International Journal on Advances in
Software, 1(1):59-79, 2009.

S.T. March and G. E Smith. Design and natural science research on information
technology. Decision Support Systems, 15(4):251-266, 1995.

H. Mantel, H. Sudbrock, and T. KrauBer. Combining different proof techniques
for verifying information flow security. In Logic-Based Program Synthesis and
Transformation (LOPSTR 2006), volume 4407 of LNCS, pages 94-110. Springer,
2007.

N. Moebius, K. Stenzel, and W. Reif. Formal verification of application-specific
security properties in a model-driven approach. In Engineering Secure Software
and Systems (ESSoS 2010), volume 5965 of LNCS. Springer, 2010.

J. Miille, S. von Stackelberg, and K. Bbhm. Modelling and transforming security
constraints in privacy-aware business processes. In Procedings of the IEEE
International Conference on Service Oriented Computing and Applications
(SOCA 2011). IEEE, 2011.

[MvSB11b]

(MW14]

[Nat96]

[Natll1]

[NEFO08]

[Neu09]

[NHO08a]

[NHO08Db]

[NJC90]

[NKBO5]

[NKBO6]

[NP10]

[NRO8]

Bibliography

J. Miille, S. von Stackelberg, and K. Bohm. A security language for BPMN
process models. Technical Report 2011, 9, Karlsruhe Institute of Technology,
Faculty of Informatics, 2011.

Merriam-Webster. Merriam-webster’s collegiate dictionary, December 2014.

National Institute of Standards and Technology. An introduction to computer
security — the NIST handbook. Special Publication 800-12, 1996.

National Institute of Standards and Technology. Glossary of key information
security terms. Technical Report IR 7298, 2011.

T. Neubauer, A. Ekelhart, and S. Fenz. Interactive selection of ISO 27001 con-
trols under multiple objectives. In Proceedings of the IFIP TC 11 23rd Interna-
tional Information Security Conference (SEC 2008), volume 278 of IFIP, pages
477-492. Springer, 2008.

T. Neubauer. An empirical study about the status of business process manage-
ment. Business Process Management Journal, 15(2):166-183, 2009.

T. Neubauer and J. Heurix. Defining secure business processes with respect
to multiple objectives. In Proceedings of the 3rd International Conference on
Availability, Reliability and Security (ARES 2008), pages 187-194. IEEE, 2008.

T. Neubauer and J. Heurix. Objective types for the valuation of secure business
processes. In Proceedings of the 7th IEEE/ACIS International Conference on
Computer and Information Science (ICIS 2008), pages 231-236. IEEE, 2008.

J. E Nunamaker Jr and M. Chen. Systems development in information systems
research. In Proceedings of the 23rd Annual Hawaii International Conference
on System Sciences (HICSS 1990), pages 631-640. IEEE, 1990.

T. Neubauer, M. Klemen, and S. Biffl. Business process-based valuation of
IT-security. In Proceedings of the 7th International Workshop on Economics-
Driven Software Engineering Research (EDSER 2005), pages 1-5. ACM, 2005.

T. Neubauer, M. Klemen, and S. Biffl. Secure business process management:
A roadmap. In Proceedings of the 1st International Conference on Availability,
Reliability and Security (ARES 2006). IEEE, 2006.

T. Neubauer and M. Pehn. Workshop-based risk assessment for the definition
of secure business processes. In Proceedings of the International Conference
on Information, Process, and Knowledge Management (eKNOW 2010), pages
74-79. IEEE, 2010.

A. Niknafs and R. Ramsin. Computer-aided method engineering: An analysis of
existing environments. In Advanced Information Systems Engineering (CAiSE
2008), volume 5074 of LNCS, pages 525-540. Springer, 2008.

201

Bibliography

[Obj03]

[Obj04]

[Obj08]

[Obj11a]

[Obj11b]

[Objl4a]

[Obj14b]

[Org06]

[Org07]

[Orgl3]

[Pal07]

[PCBV10]

[Pet62]

[Pet95]

[PHO7]

[Pop05]

202

Object Management Group. MDA guide version 1.0.1, June 2003.

Object Management Group. Human-usable textual notation (HUTN) specifi-
cation version 1.0, August 2004.

Object Management Group. Software & systems process engineering meta-
model specification version 2.0, 2008.

Object Management Group. Business process model and notation (BPMN)
version 2.0, January 2011.

Object Management Group. OMG unified modeling language (OMG UML)
infrastructure version 2.4.1, 2011.

Object Management Group. Meta object facility (MOF) core specification
version 2.4.2, 2014.

Object Management Group. OMG object constraint language (OCL) version
2.4,2014.

Organization for the Advancement of Structured Information Standards. Web
service security: SOAP message security 1.1, 2006.

Organization for the Advancement of Structured Information Standards. Web
services business process execution language version 2.0, 2007.

Organization for the Advancement of Structured Information Standards. Ex-
tensible access control markup language version 3.0, 2013.

N. Palmer. A survey on business process initiatives, 2007.

S. Patig, V. Casanova-Brito, and B. Vogeli. IT requirements of business process
management in practice — an empirical study. In Business Process Management
(BPM 2010), volume 6336 of LNCS, pages 13-28. Springer, 2010.

C. A. Petri. Fundamentals of a theory of asynchronous information flow. In
Proceedings of the IFIP Congress on Information Processing (IFIP 1962), pages
386-390, 1962.

M. Petre. Why looking isn’'t always seeing: Readership skills and graphical
programming. Communications of the ACM, 38(6):33, 1995.

C. E. d. B. Paes and C. M. Hirata. RUP extension for the development of secure
systems. In Proceedings of the 4th International Conference on Information
Technology (CIT 2007), pages 643-652. IEEE, 2007.

G. Popp. Methode zur Integration von Sicherheitsanforderungen in die Entwick-
lung zugriffssicherer Systeme. PhD thesis, Technische Universitdt Miinchen,
Januar 2005.

[PTRCO7]

[PvdHO7]

[R603]

[Ral04]

[Ran00]

[RAGFMP10]

[RDRO3]

[Red07]

[REMPO06]

[REMPO7a]

[RFEMPO07b]

[RFMTP11]

Bibliography

K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design
science research methodology for information systems research. Journal of
Management Information Systems, 24(3):45-77, 2007.

M. Papazoglou and W. van den Heuvel. Business process development life
cycle methodology. Communications of the ACM, 50(10):79-85, 2007.

S. Rohrig. Using Process Models to Analyse IT Security Requirements. PhD thesis,
Universitat Zirich, 2003.

J. Ralyté. Towards situational methods for information systems development:
Engineering reusable method chunks. In Proceedings of the International
Conference on Information Systems Development (ISD 2004), pages 271-282,
2004.

K. Rannenberg. Multilateral security a concept and examples for balanced
security. In Proceedings of the Workshop on New Security Paradigms (NSPW
2000), pages 151-162. ACM, 2000.

A. Rodriguez, I. G.-R. de Guzman, E. Ferndndez-Medina, and M. Piattini. Semi-
formal transformation of secure business processes into analysis class and
use case models: An MDA approach. Information and Software Technology,
52(9):945-971, 2010.

J. Ralyté, R. Deneckere, and C. Rolland. Towards a generic model for situational
method engineering. In Advanced Information Systems Engineering (CAiSE
2003), volume 2681 of LNCS, pages 95-110. Springer, 2003.

S. T. J. Redwine, editor. Software Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain Secure Software. U.S. Department
of Homeland Security, 2007.

A. Rodriguez, E. Ferndndez-Medina, and M. Piattini. Towards a UML 2.0
extension for the modeling of security requirements in business processes.
In Trust and Privacy in Digital Business, volume 4083 of LNCS, pages 51-61.
Springer, 2006.

A. Rodriguez, E. Fernandez-Medina, and M. Piattini. A BPMN extension for the
modeling of security requirements in business processes. IEICE Transactions
on Information and Systems, 90(4):745, 2007.

A. Rodriguez, E. Ferndndez-Medina, and M. Piattini. M-BPSec: a method for
security requirement elicitation from a UML 2.0 business process specification.
In Advances in Conceptual Modeling: Foundations and Applications (FP-UML
2007), volume 4802 of LNCS, pages 106-115. Springer, 2007.

A. Rodriguez, E. Ferndndez-Medina, J. Trujillo, and M. Piattini. Secure busi-
ness process model specification through a UML 2.0 activity diagram profile.
Decision Support Systems, 51(3):446-465, 2011.

203

Bibliography

[RHP99]

[Ricl1]

[Rit99]

[RK04]

[RMMGO09]

[RPM99]

[RRO1]

[RRIG09]

[RSP*10]

[Rup13]

[SB12]

[SCO09]

[SCFY96]

204

A. W. R6hm, G. Herrmann, and G. Pernul. A language for modeling secure
business transactions. In Proceedings of the 15th Annual Computer Security
Applications Conference (ACSAC 1999), pages 22-31. IEEE, 1999.

C. Richardson. The ROI of BPM suites. Technical Report 60205, Forrester
Research, Inc., 2011.

P. Rittgen. From process model to electronic business process. In Proceedings
of the European Conference on Information Systems (ECIS 1999), 1999.

S. Rohrig and K. Knorr. Security analysis of electronic business processes.
Electronic Commerce Research, 4(1):59-81, 2004.

S. Rougemaille, E Migeon, T. Millan, and M.-P. Gleizes. Methodology fragments
definition in SPEM for designing adaptive methodology: A first step. In Agent-
Oriented Software Engineering IX (AOSE 2008), volume 5386 of LNCS, pages
74-85. Springer, 2009.

K. Rannenberg, A. Pfitzmann, and G. Miiller. IT security and multilateral secu-
rity. In Multilateral Security in Communications — Technology, Infrastructure,
Economy, pages 21-29. Addison-Wesley, 1999.

J. Ralyté and C. Rolland. An assembly process model for method engineering.
In Advanced Information Systems Engineering (CAiSE 2001), volume 2068 of
LNCS, pages 267-283. Springer, 2001.

J. Recker, M. Rosemann, M. Indulska, and P. Green. Business process modeling:
a comparative analysis. Journal of the Association for Information Systems,
10(4):333-363, 2009.

R. Ross, G. Stoneburner, E. Porter, G. Rogers, M. Swanson, R. Graubart,
B. Hodge, A. Johnson, S. Katzke, G. Turner, K. Dempsey, and C. Enloe. Recom-
mended security controls for federal information systems and organizations.
Special Publication 800-53, National Institute of Standards and Technology,
2010.

C. Ruppricht. Entwicklung eines Werkzeugs fiir die Sicherheitsmodellierung
elektronischer Prozesse. Master’s thesis, Wilhelm Biichner Hochschule, Darm-
stadt, 2013.

A. Schaad and M. Borozdin. TAM?: automated threat analysis. In Proceedings
of the 27th Annual ACM Symposium on Applied Computing (SAC 2012), pages
1103-1108. ACM, 2012.

S. Spiekermann and L. E Cranor. Engineering privacy. IEEE Transactions on
Software Engineering, 35(1):67-82, 2009.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control
models. Computer, 29(2):38-47, 1996.

[Sch99]

[Sch02]

[Sch03]

[Sch06]

[SFO3]

[SFBH"05]

[SHO08]

[Sha09]

[SHAAR12]

[SHF04]

[Shi07]

[Shol4]

[Sil06]

[Sim96]

[Sip05]

Bibliography

B. Schneier. Modeling security threats. Dr. Dobb’s Journal, December 1999.

A.-W. Scheer. Vom Geschdiftsprozess zum Anwendungssystem. Springer, 4th
edition, 2002.

M. Schumacher. Security engineering with patterns: origins, theoretical model,
and new applications. Springer, 2003.

D. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25-31, 2006.

H. Smith and P. Fingar. Business process management: the third wave. Meghan-
Kiffer, 2003.

M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, E Buschmann, and
P. Sommerlad. Security Patterns: Integrating Security and Systems Engineering.
John Wiley & Sons, 2005.

M. Siponen and J. Heikka. Do secure information system design methods
provide adequate modeling support? Information and Software Technology,
50(9-10):1035-1053, 2008.

R. Sharp. Report: CC-based design of secure application systems. In Engineer-
ing Secure Software and Systems (ESSoS 2009), volume 5429 of LNCS, pages
111-121. Springer, 2009.

Z. Shakeri Hossein Abad, A. Alipour, and R. Ramsin. Enhancing tool support
for situational engineering of agile methodologies in Eclipse. In Software
Engineering Research, Management and Applications (SERA 2012), volume 430
of SCI, pages 141-152. Springer, 2012.

G. Stoneburner, C. Hayden, and A. Feringa. Engineering principles for informa-
tion technology security (a baseline for achieving security). Special Publication
800-27, National Institute of Standards and Technology, 2004.

R. Shirey. Internet security glossary, version 2. Request for Comments 4949,
IEFT, 2007.

A. Shostack. Threat Modeling: Designing for Security. Wiley, 2014.

B. Silver. The 2006 BPMS report: Understanding and evaluating BPM suites,
2006. BPM Institute.

H. A. Simon. The sciences of the artificial. MIT Press, 1996.

M. T. Siponen. Analysis of modern IS security development approaches: to-
wards the next generation of social and adaptable ISS methods. Information
and Organization, 15(4):339-375, 2005.

205

Bibliography

[SLS06]

[SRO1]

[SS75]

[SS04]

[SSSW98]

[Sunll]

[SVEHO07]

[Talo8]

[TJ08]

[TIG*11]

[TML*09]

[VAAO04]

[VAAtHWO03]

206

A. Schaad, V. Lotz, and K. Sohr. A model-checking approach to analysing
organisational controls in a loan origination process. In Proceedings of the 11th
ACM Symposion on Access Control Models and Technologies (SACMAT 2006),
pages 139-149. ACM, 2006.

J. Steel and K. Raymond. Generating human-usable textual notations for
information models. In Proceedings of the 5th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2001), pages 250-261. IEEE,
2001.

J. Saltzer and M. Schroeder. The protection of information in computer sys-
tems. Proceedings of the IEEE, 63(9):1278-1308, 1975.

E Swiderski and W. Snyder. Threat modeling. Microsoft, 2004.

C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner. Toward a secure system
engineering methodolgy. In Proceedings of the Workshop on New Security
Paradigms (NSPW 1998), pages 2-10. ACM, 1998.

A. Sunyaev. Health-Care Telematics in Germany: Design and Application of a
Security Analysis Method. Gabler, 2011.

T. Stahl, M. Vélter, S. Efftinge, and A. Haase. Modellgetriebene Softwareentwick-
lung: Techniken, Engineering, Management. dpunkt, 2007.

P. Tallon. Inside the adaptive enterprise: an information technology capa-
bilities perspective on business process agility. Information Technology and
Management, 9(1):21-36, 2008.

S. Taubenberger and J. Jiirjens. IT security risk analysis based on business
process models enhanced with security requirements. In Proceedings of the
Workshop on Modeling Security (MODSEC 2008), volume 413. CEUR, 2008.

S. Tjoa, S. Jakoubi, G. Goluch, G. Kitzler, S. Goluch, and G. Quirchmayr. A for-
mal approach enabling risk-aware business process modeling and simulation.
IEEE Transactions on Services Computing, 4(2):153-166, 2011.

C. Talhi, D. Mouheb, V. Lima, M. Debbabi, L. Wang, and M. Pourzandi. Usability
of security specification approaches for UML design: A survey. Journal of
Object Technology, 8(6):103-122, 2009.

W. Van der Aalst. Business process management demystified: A tutorial on
models, systems and standards for workflow management. In Lectures on
Concurrency and Petri Nets, volume 3098 of LNCS, pages 1-65. Springer, 2004.

W. Van der Aalst, A. ter Hofstede, and M. Weske. Business process management:
A survey. In Business Process Management (BPM 2003), volume 2678 of LNCS,
pages 1019-1019. Springer, 2003.

[VEMPO5]

[VGD11]

[VHFO02]

[VMO02]

[VMLO03]

[vO06]

[VWWO02]

[Wes07]

[WGHS99]

[WH12]

[Whi01]

[Wim05]

[WMMO8]

[WMS*09]

Bibliography

R. Villarroel, E. Ferndndez-Medina, and M. Piattini. Secure information
systems development — a survey and comparison. Computers & Security,
24(4):308-321, 2005.

P. Van Gorp and R. Dijkman. BPMN 2.0 execution semantics formalized as
graph rewrite rules: extended version. Beta Working Paper 353, Technische
Universiteit Eindhoven, 2011.

R. Vaughn, R. Hennig, and K. Fox. An empirical study of industrial security-
engineering practices. Journal of Systems and software, 61(3):225-232, 2002.

J. Viega and G. McGraw. Building Secure Software: How to Avoid Security
Problems the Right Way. Addison-Wesley, 2002.

J. L. Vivas, J. A. Montenegro, and J. Lépez. Towards a business process-driven
framework for security engineering with the UML. In Information Security
(ISC 2003), volume 2851 of LNCS, pages 381-395. Springer, 2003.

D. von Oheimb. Formal methods in the security business: Exotic flowers
thriving in an expanding niche. In Formal Methods (FM 2006), volume 4085 of
LNCS, pages 592-597. Springer, 2006.

M. Vetterling, G. Wimmel, and A. Wisspeintner. Secure systems development
based on the common criteria: the PalME project. ACM SIGSOFT Software
Engineering Notes, 27(6):138, 2002.

M. Weske. Business process management: concepts, languages, architectures.
Springer, 2007.

M. Weske, T. Goesmann, R. Holten, and R. Striemer. A reference model for work-
flow application development processes. ACM SIGSOFT Software Engineering
Notes, 24(2):1-10, 1999.

C. Wolf and P. Harmon. The state of business process management 2012, 2012.
BPTrends Report.

J. J. Whitmore. A method for designing secure solutions. IBM Systems Journal,
40(3):747-768, 2001.

G. Wimmel. Model-Based Development of Security-Critical Systems. PhD thesis,
Technische Universitat Miinchen, 2005.

C. Wolter, M. Menzel, and C. Meinel. Modelling security goals in business
processes. In Modellierung 2008, volume 127 of LNI, pages 197-212. GI, 2008.

C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel. Model-driven
business process security requirement specification. Journal of Systems Archi-
tecture, 55(4):211-223, 2009.

207

Bibliography

[Wol10]

[Wor08]

[WSMO7]

[WV11]

[WvP10]

[YB97]

208

C. Wolter. A Methodology for Model-Driven Process Security. PhD thesis, Uni-
versitiat Potsdam, 2010.

Workflow Management Coalition. Process definition interface — XML process
definition language, 2008.

C. Wolter, A. Schaad, and C. Meinel. Deriving XACML policies from busi-
ness process models. In Web Information Systems Engineering (WISE 2007)
Workshops, volume 4832 of LNCS, pages 142-153. Springer, 2007.

K. Weldemariam and A. Villafiorita. Procedural security analysis: A method-
ological approach. Journal of Systems and Software, 84(7):1114-1129, 2011.

S. Winkler and J. von Pilgrim. A survey of traceability in requirements en-
gineering and model-driven development. Software and Systems Modeling,
9(4):529-565, 2010.

J. Yoder and J. Barcalow. Architectural patterns for enabling application secu-
rity. In Proceedings of Pattern Languages of Programs (PLoP 1997), 1997.

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Problem Statement
	Objective and Approach
	Contributions
	Structure of the Thesis

	Background and Related Work
	Introduction
	Business Process Management
	General Terminology
	Business Process Life Cycle and Supporting Systems
	Business Process Modeling

	Software, Method, and Model-driven Engineering
	Software Engineering
	Method Engineering
	Model-driven Engineering

	Security
	General Terminology
	Security Engineering

	Related Work
	Approaches for Security Engineering of Electronic Business Processes
	Approaches for Model-based Security Engineering
	Discussion

	Summary

	Running Example: The Replan Process
	Introduction
	Background, Application, and Business Process Model
	Summary

	Security Engineering Process Model
	Introduction
	Requirements
	Design Approach
	Structure
	Activities
	Setup Process
	Identify Assets
	Assess Security Goals
	Model Threats
	Elicit Security Requirements
	Design Controls
	Map Controls
	Generate Control Artifacts and Test Cases

	Guidance
	Provide Guidance Artifacts for Existing Methods
	Rate Security Goals Adapting IT-BPM

	Tool Support and Integration
	Tool Support to Tailor a Security Engineering Process
	Integration into Software Development Process Models

	Summary

	Security Engineering Modeling Language
	Introduction
	Requirements
	Design Approach
	Description
	Structure
	Classification
	Rating
	Analysis and Design
	Relating SecEML and Business Process Models
	Concrete Syntax

	Implementation
	Summary

	Exemplary Study
	Introduction
	Analysis Criteria
	The Replan Process
	Setup Process
	Identify Assets
	Assess Security Goals
	Model Threats
	Elicit Security Requirements
	Design Controls
	Map Controls
	Generate Control Artifacts and Test Cases

	Application Experiences
	Comparison of Approaches
	Comparison of the Process Models
	Comparison of the DSMLs
	Aggregation

	Discussion
	Summary

	Conclusion
	Summary of Contributions
	Findings
	Future Work

	SecEML Grammar
	Work Products from the Exemplary Study
	Business Process Model
	Process Model Configuration
	Threat Catalog
	Control Catalog
	Runtime Capability Model
	Security Analysis Model
	Security Design Model

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Bibliography

