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Introduction
Wearable health monitoring technologies, including smart watches 

and fitness trackers, have attracted considerable consumer interest 
over the past few years.1–3 Not only has this interest has been mainly 
encouraged by the rapid demand growth in the wearable technology 
market for the ubiquitous, continuous, and pervasive monitoring of vital 
signs, but it has been leveraged by the state-of-the-art technological 
developments in sensor technology and wireless communications.4–7 
According to Page,8 the wearable technology market was valued at 
over $13.2 billion by the end of 2016 and its value is forecast to reach 
$34 billion by the end of 2020. Among the different categories on the 
wearable technology market, pervasive health monitoring applications 
are ranked the fastest growing segments due to the overwhelming 
need to monitor chronic diseases and aging populations9,10 Currently, 
modern wearable devices are no longer only focused on simple 
fitness tracking measurements such as the number of steps taken in 
a day, they also monitor important physiological considerations, such 
as Heart Rate Variability (HRV), glucose measures, blood pressure 
readings, and much additional health-related information.9 Among 
the numerous vital signs measured, the heart rate (HR) calculation 
has been one of the most valuable parameters. For many years, 
the Electrocardiogram (ECG) has been used as a dominant cardiac 
monitoring technique to identify cardiovascular abnormalities and 
to detect irregularities in heart rhythms.11 The ECG is a recording 
of the electrical activity of the heart. It shows the variations in the 
amplitude of the ECG signal versus time. This recorded electrical 
activity originates from the depolarization of conductive pathway of 
the heart and the cardiac muscle tissues during each cardiac cycle.12 

Even though traditional cardiac monitoring technologies using the 
ECG signals has undergone continuous improvements for decades to 
address the ever-changing requirements of their users, specifically in 
terms of measurement accuracy and wearing comfort ability as shown 

in,13–16 these techniques, up to now, have not been enhanced to the 
point of offering the user flexibility, portability, and convenience. For 
instance, for the ECG to operate effectively, several bioelectrodes 
must be placed at certain body locations; this procedure greatly 
limits the moving flexibility and mobility of the users. In addition, 
PPG has shown itself to be an alternative HR monitoring technique. 
For instance, Bolaños et al.,17 compared the HRV signals extracted 
from PPG and ECG signals. By using detailed signal analysis, they 
demonstrated that the PPG signal offers an excellent potential to 
replace ECG recordings for the extraction of HRV signals, especially 
in monitoring healthy individuals. Therefore, to overcome the ECG 
limitations, an alternative solution based on PPG technology can be 
used.

Photoplethysmography, known most commonly as PPG, utilizes 
an infrared light to measure the volumetric variations of blood 
circulation. This measurement provides valuable information about 
the cardiovascular system.18 The popularity of the PPG technology as 
an alternative heart rate monitoring technique has recently increased, 
mainly due to the simplicity of its operation, the wearing comfort 
ability for its users, and its cost effectiveness.19 However, one of 
the major difficulties in using PPG-based monitoring techniques is 
their inaccuracy in tracking the PPG signals during daily routine 
activities and light physical exercises. This limitation is due to the fact 
that the PPG signals are very susceptible to Motion Artifacts (MA) 
caused by hand movements.20 Moreover, alternative factors such 
as environmental noise may also affect the PPG signal acquisition, 
which consequently affect the estimation accuracy of the HR.21 Many 
studies have demonstrated that the second derivative of the PPG 
signal contains valuable health-related information.22 Investigation 
into this signal has shown strong potential to assist researchers and 
clinicians in evaluating various cardiovascular-related diseases, 
including atherosclerosis and arterial stiffness. In addition, the detailed 
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Abstract

Photoplethysmography (PPG) is an uncomplicated and inexpensive optical 
measurement method that is often used for heart rate monitoring purposes. PPG is 
a non-invasive technology that uses a light source and a photodetector at the surface 
of skin to measure the volumetric variations of blood circulation. Recently, there has 
been much interest from numerous researchers around the globe to extract further 
valuable information from the PPG signal in addition to heart rate estimation and 
pulse oxymetry readings. PPG signal’s second derivative wave contains important 
health-related information. Thus, analysis of this waveform can help researchers and 
clinicians to evaluate various cardiovascular-related diseases such as atherosclerosis 
and arterial stiffness. Moreover, investigating the second derivative wave of PPG 
signal can also assist in early detection and diagnosis of various cardiovascular 
illnesses that may possibly appear later in life. For early recognition and analysis of 
such illnesses, continuous and real-time monitoring is an important approach that has 
been enabled by the latest technological advances in sensor technology and wireless 
communications. The aim of this article is to briefly consider some of the current 
developments and challenges of wearable PPG-based monitoring technologies and 
then to discuss some of the potential applications of this technology in clinical settings. 
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analysis of this signal can also help with the timely identification and 
diagnose of various cardiovascular diseases. The goal of this review 
article is to investigate some valuable aspects of the PPG signal and 
PPG-based monitoring devices. The PPG’s ability to measure blood 
variations in different parts of the body and its potential ability to 
detect physiological parameters that are linked to the cardiovascular 
and respiratory systems has continued to motivate the scientific 
community to develop more inexpensive and highly accurate wearable 
PPG-based devices for monitoring daily routine activities. Future 
research will continue to refine different techniques and approaches to 
reduce the effects of MA on the quality of the PPG signal.

PPG-based monitoring devices

A typical PPG device contains a light source and a photodetector. 
The light source emits light to a tissue and the photodetector measures 
the reflected light from the tissue. The reflected light is proportional 
to blood volume variations.23 Similar to ECGs, PPG waves can also 
help to diagnose cardiac arrhythmias (irregular heartbeat) because 
they reliably manifest cardiac and respiratory activities. Most 
common PPG sensors use an infrared  light emitting diode (IR-
LED) or a green LED as the main light source. IR-LEDs are most 
commonly used for measuring the flow of blood that is more deeply 
concentrated in certain parts of body such as the muscles, whereas 
green light is typically used for calculating the absorption of oxygen 
in oxyhemoglobin (oxygenated blood) and deoxyhemoglobin (blood 
without oxygen present).24 Although there are other LED sensors with 
different colors to measure hemoglobin, green LED is considered 
the most commonly used. This is simply because it penetrates more 
deeply into tissue and therefore can provide measurements that are 
more accurate. PPG sensors also use a photodetector to measure the 
intensity of reflected light from the tissue. The blood volume changes 
can then be measured (calculated) based on the amount of the detected 
light. In addition, according to25 PPG sensors are also useful in the 
determination of hyperemia, or an excess of blood flow. Wearable 
PPG sensors can only be placed at certain body locations as shown in 
Figure 1. However, different measurement sites have different degrees 
of accuracy.18 While it is most common to use specific body locations 
such as the finger, earlobe and forehead, researchers are considering 
other body locations for more convenient alternatives. 

HR monitoring techniques that rely on PPG sensors have several 
advantages over traditional ECG-based systems. For instance, PPG 
sensors use simpler hardware implementation and have lower costs, 
and for operation, only a single sensor is required to be placed on 
the body. This is in contrast with traditional ECG recordings.26 A 
traditional ECG-based system requires at least three bioelectrodes 
placed on different body locations (such as the right arm, left arm and 
right leg) to be able to operate effectively. This requirement greatly 
restricts the patients’ flexibility of motion. In addition, PPG sensors 
can operate more effectively if they are placed at specific easily 
accessible anatomical positions such as the earlobe and fingertip 
where the desired PPG signals are collected with higher quality. 
Consequently, it is imperative to find specific measurement sites that 
guarantee the optimal quality of sensor data. PPG sensors are designed 
in two different distinct forms: transmission mode and reflectance 
mode. Each mode comes with advantages and disadvantages. In 
transmission mode, the light source and detector are separated by the 
tissue, whereas in reflectance mode, the photodetector is positioned 
along the light source on the same side of the tissue to measure 
the reflected light. Both sensor types can provide non-invasive 

measurements.27 However, in transmission mode, too much pressure 
can slow down the peripheral blood volume, which may result in the 
reduction of venous oscillations. A measurement site is chosen based 
on different applications.28–30 For transmission mode, the fingertip and 
earlobe are commonly used. The measurement body placements for 
the reflectance mode sensors are the wrists, forearm, ankle, forehead 
and torso, as shown in Fig. 1. At different measurement sites, the 
sensors can either be used as cuffs or clips. The required amount of 
pressure to apply the sensor is also a key factor in selecting a specific 
measurement site.31

Figure 1Most common measurement sites for PPG.

Wristband-type PPG-based Devices

In comparison to the various types of PPG-based HR monitoring 
devices in existence, the wristband-type PPG is considered the most 
popular and preferred device. The reason for its popularity is partly 
due to its remarkable properties such as being inexpensive, highly 
portable, and very convenient to wear by its users. However, these 
devices also have their own limitations. Several suggestions for 
tackling the shortcomings of wrist-type PPG devices for clinical 
setups have been presented in various studies to date. For instance, 
in Lee et al.,32 presented a novel wristwatch PPG probe positioned 
on the ulnar and radial arteries in the patient’s wrist instead of the 
blood capillaries as the common measurement site. The proposed 
device improved sensitivity and accuracy of the PPG signal by using 
an array of sensors, IR-LEDs, and photo transistors. Thomas et al.,33 
proposed a method to mitigate the effects of motion artifacts on the 
quality of the PPG signal. In this method, a nine-axis MEMS inertial 
sensor along with green LEDs were added to the PPG device to sense 
body measurements and detect posture.33 A similar method was also 
proposed in34 to mitigate motion artifacts by applying two reflective 
pulse signals from a single green LED sensor.

Forehead-type PPG-based devices

The human forehead can also be utilized as an alternative site for 
heart rate monitoring using a PPG device. Generally, the reflectance of 
the optical signal from a person’s forehead is relatively powerful. This 
is because of the fact that the human skull is covered by comparatively 
thin skin along with a higher density of blood vessels in the forehead 
region. The placement of the reflectance mode PPG sensors on 
someone’s forehead has shown an improved reaction to pulsatile 
signal variations in low perfusion environments.18 Previous studies 
such as18 have shown that the placement of PPG sensors on the human 
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forehead can alleviate the destructive effects of motion artifacts on 
the quality of the PPG signal specially during light physical activities. 
Mendelson et al.,35 used six photo detectors that were mounted on a 
soldier’s helmet. They found that using minimal pressure between the 
sensors and tissue could produce less noisy signals from the person’s 
forehead.35

Ear-type PPG-based devices 

The earlobe is one of the most frequently used measurement sites 
for PPG-based devices. This is due to the scientific fact that earlobes 
are not comprised of cartilage and thus they contain large blood 
supplies. Moreover, earlobes are far less vulnerable to the effects of 
motion artifacts compared to other extremities. Magnetic ear clips and 
headphones have been used in the past to obtain PPG signals. Poh et 
al.,36 proposed a magnetic earring sensor to be placed on the earlobe. 
In addition to earrings, ear-type PPG sensors can also be designed and 
incorporated into an earphone and earbud to provide more comfort for 
the users.18 After a PPG sensor is placed in the ear, the sensor earbuds 
could be positioned against the tragus to be able to sense the light 
reflected from the subcutaneous blood vessels.18 Alternatively, a PPG 
sensor can be placed in the ear canal. Budidha et al.,37 demonstrated 
that by placing a PPG sensor in the ear canal, a more accurate signal 
could be collected. 

PPG sensors

Photoplethysmography sensors are designed in different types but 
they all measure changes in blood volume and provide similar results 
despite these differences in design.38 A typical PPG sensor emits light 
at the tissue site with one or more LEDs. The photodiode measures 
the intensity of the non-absorbed light reflected from the tissue.39 
The LED colors used in most scientific trials are red and green; 
however, in some studies a yellow LED has also been used.40 Light 
with longer wavelengths penetrates more deeply into the tissue.41 For 
instance, infrared light has a more effective penetration depth in the 
skin compared to green light. However, the authors in41 stated that 
infrared light is more susceptible to motion artifacts. Therefore, green 
LED that has shorter wavelength may be a better option for certain 
applications.41 Motion artifacts are usually caused by the movement 
of the PPG sensor over the tissue, skin deformation, blood flow 
dynamics, and ambient temperature.42,43 In addition, wearable devices 
could be equipped with accelerometers to capture the direction of 
motion to reduce movement artifacts,40 especially during intense 
physical activity. 

Factors affecting PPG sensor recordings

Several factors can affect PPG recordings. These factors are 
sensing, biological, and cardiovascular factors. Table 1 gives a brief 
list of these factors. Tissue modifications generated by voluntary or 
involuntary movements can create alterations of inner tissues, such 
as muscle movement and dilation of tissues. The receiving light will 
be modified due to these movements, generating a different signal. 
The anatomy of individuals along with differences in organ sizes 
and amount of fluids retained by the tissues result in variation of the 
propagated light through the tissue.44 Another factor that can modify 
the signal is the displacement of the sensor. Physical activities and 
body movements may result in the displacement of the sensor relative 
to its original location. The sensor movement changes the path of light 
and consequently modifies the signals.45 The pressure applied by the 
device on the skin controls the magnitude of the received signal.

Table 1 Factors altering PPG response.45

Sensing

Sensor geometry 
Emitted light intensity 
Sensor-skin interface 
Ambient light 
Photodiode sensitivity

Biological
Oxygen concentration 
Organ characteristics

Cardiovascular

Microcirculation volume 
Arterial blood volume 
Interstitial fluids 
Venous volume

PPG signal

The PPG signal comprises pulsatile (AC) and superimposed 
(DC) components. The AC component is provided by the cardiac 
synchronous variations in blood volume that arise from heartbeats. The 
DC component is shaped by respiration, sympathetic nervous system 
activity, and thermoregulation.46 The AC component depicts changes 
in blood volume, which are caused by cardiac activity and depend on 
the systolic and diastolic phases.47–49 The systolic phase (also called, 
“rise time”) starts with a valley and ends with the pulse wave systolic 
peak. The pulse wave end is marked by another valley at the end of the 
diastolic phase.51 Features such as rise time, amplitude, and shape can 
predict vascular changes in the bloodstream.52,53 Additionally, PPG 
can be used to measure HRV,54,55 or the variations between heartbeat 
time intervals (Peak-to-Peak or P-P Interval) as shown in Figure 2. 
The variation can be due to many factors such as the individual’s age, 
heart conditions, and physical fitness.56 HRV is used for evaluating 
the sympathetic and parasympathetic influences of the Autonomic 
Nervous System (ANS).57 Factors affecting HRV include, but are 
not limited to, age, cancer and thermoregulation [58], [59]. The PPG 
signal is divided into two unique phases: the rising edge of the pulse 
called anacrotic, which primarily describes the systole, and the falling 
edge of the pulse called the catacrotic, which represents the diastole. 
Additionally, a dicrotic notch, is typically visible at the catacrotic 
phase.22 To ease the interpretation of the PPG wave, Ozawa et al 
differentiated the PPG signals to analyze the wave contour.60 Table 2 
describes the main features of the original PPG signal.

Table 2 features of PPG signal22,50,61–64

PPG Feature Description

Systolic Amplitude
Reflects AC variation in blood 
volume around the measurement 
site. 

Pulse Area Total area under the PPG curve.

Peak to Peak Interval Interval between two systolic 
peaks.

Large Artery Stiffness Index The time interval between the 
systolic and diastolic peaks. 

Figure 2 Sample of a photoplethysmogram signal where P-P interval is marked

Second derivative wave of PPG signal

The second derivative wave of the original PPG signal is 
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called the acceleration photoplethysmogram (APG), and it is more 
commonly used than the first derivative wave. APG is an indicator 
of the acceleration of the blood. Figure 3 shows the original PPG 
signal along with its first and second derivative waves.57 There are 
a number of critical points that can be extracted from the second 
derivative wave of a PPG signal. These critical points can be used 
to detect and diagnose cardiac abnormalities. In clinical and research 
settings, there are still ongoing efforts to improve the current methods 
of obtaining critical points from the second derivative wave of the 
PPG signal.5,7,10 Figure 3 shows only three critical points that were 
extracted by57 from the original PPG signal. Other articles such as22 

investigated additional critical points of the second derivative wave. 
As demonstrated in,22 critical point a is the early systolic location. 
Point b is the lowest point in the early systolic wave. Point c is the 
resurgent of late systolic. Point d indicates the decreasing part of late 
systolic and point e represents the early diastolic wave. The APG main 
features for waveform analysis are described in more detail in Table 3. 
From the second derivative, we can compute the large artery stiffness 
index.65 Additionally, the APG correlates with the distensibility of the 
carotid artery, age, blood pressure, risk of coronary heart disease, and 
the presence of the atherosclerotic disorders.22,60,66–69 PPG describes 
how fast blood moves within blood vessels. Systolic and diastolic 
waves interact with each other to form a waveform that resembles a 
long curve with varying troughs and rests that represent the critical 
points as stated before. The positive waves, namely the a, c, and e 
waves, rest above the baseline and have positive values, while b and d 
are negative waves. Thus, the latter waves lie below the baseline due to 
their negative values. The relationship between the waves represents 
different physiological trends found in subjects. For example, the ratio 
b/a represents increased arterial stiffness that increases with age.22 
This ratio can also indicate hypertension. Potential work includes 
examining the relationship between a/b and studying the impact of 
age, body mass index, and core temperature on PPG waves.75 To 
date, there are algorithms that can detect a-waves and b-waves, but 
not accurately. In order to analyze the results of a PPG experiment, 
there needs to be a clear and accurate assessment of these waves 
to determine future steps to be taken for the assessment of arterial 
stiffness and other cardiovascular diseases that may be present.75 
Table 3 acceleration photoplethysmogram features22,60,70-74

APG Features Description

Ratio c/a, e/a Indicates arterial stiffness.

Ratio b/a
Reflects increased arterial stiffness, 
consequently increases with age.

Ratio d/a
Indicates decreased arterial stiffness. 
Useful parameter for the evaluation of left 
ventricular afterload.

Ratio (b-c-d-e)/a
Valuable as a vascular aging and  
arteriosclerotic disease indicator.

Ratio (b-e)/a APG aging index.

Ratio (c+d-b)/a A more comprehensive aging index.

a-a Interval Represents a completed cardiac cycle. HRV 
can be calculated using the a-a interval.

Some PPG applications

The early detection of physiological parameters based on PPG 
signals has become of great interest to the research and clinical 

community. Because PPG is an indication of the blood flow generated 
by the heart using near-infrared light, this method can be used to detect 
cardiovascular diseases, such as vascular aging. The cardiovascular 
and respiratory systems work together and due to this synergistic 
relationship; PPG offers the possibility of obtaining respiratory 
related information. The section below goes into detail on how PPG 
could potentially collect information related to vascular aging and 
respiratory physiology.

Figure 3 A) PPG signal B) PPG first derivative C) PPG second derivative.

Vascular aging and PPG

Ageing is one of the factors that can lead to arterial stiffness because 
of the noticeable changes in peripheral pulse propagations. In younger 
subjects, such propagations reveal a steep systolic peak.76 This means 
that the presence of ageing is barely visible in young subjects, but 
compared to older subjects, the systolic peak will be visibly steeper. 
Arterial stiffness is a flag for cardiovascular diseases which will show 
up on the pulse timing in the PPG signal. Peripheral pulse can predict 
whether or not arterial stiffness is present and can also predict future 
cardiovascular problems because it is a biomarker for the assessment 
of health and disease.77 As an individual gets older, the arteries get 
larger and less dense: this change is reflected where the wave peaks in 
the PPG signal.77 By evaluating different points and magnitudes of the 
PPG signal, which reflects arterial wall stiffness, the pumping power 
of the left ventricle can be analyzed.77 The amplitude of the PPG can 
show changes in blood volume, thereby giving information about 
arterial compliance and arterial elastic properties.77 With increased 
arterial stiffness, the vessel thickness increases and the inner diameter 
is reduced, which makes it harder for the patient’s cardiovascular 
system to work. The volume of blood moved in a given time 
provides an indication of vascular aging during the cardiac cycle.76 

The maximum amplitude of a single pulse denotes the relationship 
between age and arterial stiffness. Arteriosclerosis thickens and 
hardens the walls of arteries. Consequently, their resistance becomes 
higher and their capacitance declines.77 Another important feature in 
analyzing PPG signals is to assess how well blood vessels adapt to 
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their environment and more specifically, to the thickness of the blood 
in the cardiac system.76 Age plays a crucial role in arterial stiffness 
as arteriosclerosis occurs with older adulthood.77 However, it is still 
difficult to get a clear detection of the waves, due to blurred inflection 
points, making it hard to determine where arterial stiffness is located 
in the PPG signal.78 The second derivative is used to monitor arterial 
conditions such as the vascular response in resistance arteries, which 
are important in regulating blood pressure.79,80 The stiffness index is 
computed by taking the body height and dividing it by the interval 
between the systolic and diastolic peaks.22,48 Vascular aging can be 
evaluated through the SDPPG aging index, SDPPG-AI (b-c-d-e/a).81 

The above-mentioned index shows that aging causes arterial dilation 
and stiffness By setting a relationship between a and b parameters, 
valuable information can be extracted. For instance, it has been shown 
in22 that b/a relationship increases with age and the d/a relationship 
decreases with age.

Respiration rate and PPG

Vital signs, of which respiratory rate is one of the essential 
components, are critical in determining a subject’s health and potential 
illnesses.96 Respiratory rate is the number of breaths a person takes per 
minute while resting.44 Respiratory rates can be at a healthy level, or 
too high or too low.44 Current devices used to determine respiratory 
rates include a nasal cannula and a chest band, but these methods can 
be harmful to the patient.44 Respiratory rates are related to PPG in 
three ways: 1) The pulse wave amplitude is affected by the flexibility 
of the blood vessels, 2) there is a variation of the pulse envelope, and 
3) a decrease in intrathoracic pressure can lead to increasing venous 
return during inspiration.44 Using PPG to estimate respiration rates 
could be a potential approach for obtaining information on respiration-
related matters. PPG could be used to extract or identify a respiratory 
trend embedded in physiological signals.82 There are three respiratory-
induced variations that can be extracted from a PPG; frequency, 
intensity, and amplitude.83 The frequency and amplitude of the heart-
related variations are modulated by respiration which changes the 
statistical characteristics of the signal. The modulated signal has a 
non-stationary nature, which in turn causes difficulty in the estimation 
of HRV.84,85 A method proposed by Chon et al.,86 refers to a technique 
that utilizes the pulse oximeter signal to estimate respiratory rate.86 

The proposed variable-frequency complex demodulation (VFCDM) 
provides accurate time, greater resolution, and better amplitude 
estimates compared to other methods, such as the continuous wavelet 
transform (CWT), and autoregressive (AR) modeling.86 

Discussion
Monitoring of heart rate during daily routine activities and physical 

exercise is an important feature in many modern wearable devices such 
as wristbands and smart watches. However, obtaining high quality 
PPG signals during physical exercise is difficult and challenging as 
PPG signals are usually contaminated by very strong motion artifacts 
caused by subject’s hand movements. This area of research has been 
very popular for the past few years and many leading high-tech 
companies and academics have been actively working on this topic. 
Currently researchers are investigating the effects of motion artifacts 
on the quality of acquired PPG signals and proposing solutions to 
mitigate or ideally remove this destructive affects. Examples of highly 
cited articles that use signal-processing approaches to tackle this 
problem are shown in.87,88,89,90,91 A vast number of articles in this topic 
as shown in,93,93,94,95 also use accelerometer data in order to be able to 
remove the motion artifact problem. In addition, many researchers 

such as,22,96,97 nowadays around the globe are investigating to possibly 
extract further valuable information from the PPG signal in addition 
to heart rate estimation and pulse oxymetry readings. This paper in 
particular considered articles that investigates the second derivative 
wave of original PPG signal. We investigated how second derivative 
wave can be used to estimate the vascular aging and compared attempts 
that have been done in the past by other researchers to monitor arterial 
conditions such as.60,69,79,80

Conclusion
PPG is a noninvasive, low cost, and simple optical measurement 

technique applied at the surface of the skin to measure physiological 
parameters. Scientific interest has continued to look beyond the 
pulse oximetry and heart rate calculation, and more into the potential 
applications of PPG sensors. It is now well known that the second 
derivative wave of the original PPG signal contains important 
health-related information and the analysis of this wave could lead 
researchers, clinicians, and health-care providers to the early detection 
and diagnosis of various cardiovascular diseases typically occurring 
later in life. In processing the acceleration of the PPG signal, troughs 
and rests carry valuable health-related information that can be used by 
health-care professionals to learn about the well-being of the patient’s 
heart and cardiovascular system. Through filtering and feature 
extraction, a specific wave can be targeted, and its patterns correlating 
to physiological biomarkers can be determined. PPG thus reveals 
itself as a promising technology in both health-care settings and in 
assessment of daily activity, due to its non-invasiveness, low cost, 
and portability. It has the potential to furnish health-care providers 
with the tool that will allow the early detection and diagnosis of 
cardiovascular diseases, thereby offering greater insight into a 
patient’s health. However, further investigations using low power 
consumption to determine even more vital health-related information 
must be conducted.
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